ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.277 by root, Sun Dec 14 21:58:08 2008 UTC vs.
Revision 1.377 by root, Wed Jun 8 13:11:55 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME 57# ifndef EV_USE_REALTIME
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
67# endif 71# endif
68# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
70# endif 74# endif
71# else 75# else
72# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
74# endif 78# endif
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
164#endif 186#endif
187
188EV_CPP(extern "C" {)
165 189
166#ifndef _WIN32 190#ifndef _WIN32
167# include <sys/time.h> 191# include <sys/time.h>
168# include <sys/wait.h> 192# include <sys/wait.h>
169# include <unistd.h> 193# include <unistd.h>
172# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 197# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
176# endif 200# endif
201# undef EV_AVOID_STDIO
177#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
178 211
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
180 245
181#ifndef EV_USE_CLOCK_SYSCALL 246#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 247# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 249# else
185# define EV_USE_CLOCK_SYSCALL 0 250# define EV_USE_CLOCK_SYSCALL 0
186# endif 251# endif
187#endif 252#endif
188 253
189#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 256# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 257# else
193# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
194# endif 259# endif
195#endif 260#endif
196 261
197#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 264#endif
200 265
201#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 267# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 268# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 269# else
205# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
206# endif 271# endif
207#endif 272#endif
208 273
209#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 276#endif
212 277
213#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
214# ifdef _WIN32 279# ifdef _WIN32
215# define EV_USE_POLL 0 280# define EV_USE_POLL 0
216# else 281# else
217# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 283# endif
219#endif 284#endif
220 285
221#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 289# else
225# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
226# endif 291# endif
227#endif 292#endif
228 293
234# define EV_USE_PORT 0 299# define EV_USE_PORT 0
235#endif 300#endif
236 301
237#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 305# else
241# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
242# endif 307# endif
243#endif 308#endif
244 309
245#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 312#endif
252 313
253#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 316#endif
260 317
261#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 321# else
265# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
266# endif 331# endif
267#endif 332#endif
268 333
269#if 0 /* debugging */ 334#if 0 /* debugging */
270# define EV_VERIFY 3 335# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 336# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 337# define EV_HEAP_CACHE_AT 1
273#endif 338#endif
274 339
275#ifndef EV_VERIFY 340#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 342#endif
278 343
279#ifndef EV_USE_4HEAP 344#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 345# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 346#endif
282 347
283#ifndef EV_HEAP_CACHE_AT 348#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
285#endif 364#endif
286 365
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
288 373
289#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
292#endif 377#endif
300# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
302#endif 387#endif
303 388
304#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
306# include <sys/select.h> 392# include <sys/select.h>
307# endif 393# endif
308#endif 394#endif
309 395
310#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 397# include <sys/statfs.h>
313# include <sys/inotify.h> 398# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 400# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 401# undef EV_USE_INOTIFY
320 405
321#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 407# include <winsock.h>
323#endif 408#endif
324 409
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 412# include <stdint.h>
337# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
338extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
339# endif 415# endif
340int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 417# ifdef O_CLOEXEC
342} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
343# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
344#endif 446#endif
345 447
346/**/ 448/**/
347 449
348#if EV_VERIFY >= 3 450#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 451# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 452#else
351# define EV_FREQUENT_CHECK do { } while (0) 453# define EV_FREQUENT_CHECK do { } while (0)
352#endif 454#endif
353 455
354/* 456/*
355 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 459 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 462
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
367 468
368#if __GNUC__ >= 4 469#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
371#else 472#else
378 479
379#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline 482#define inline_size static inline
382 483
383#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
384# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
385#else 494#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
391 497
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
394 500
395typedef ev_watcher *W; 501typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
398 504
399#define ev_active(w) ((W)(w))->active 505#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 506#define ev_at(w) ((WT)(w))->at
401 507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
402#if EV_USE_MONOTONIC 514#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
406#endif 526#endif
407 527
408#ifdef _WIN32 528#ifdef _WIN32
409# include "ev_win32.c" 529# include "ev_win32.c"
410#endif 530#endif
411 531
412/*****************************************************************************/ 532/*****************************************************************************/
533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
413 631
414static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
415 633
416void 634void
417ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
427 645
428 if (syserr_cb) 646 if (syserr_cb)
429 syserr_cb (msg); 647 syserr_cb (msg);
430 else 648 else
431 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
432 perror (msg); 656 perror (msg);
657#endif
433 abort (); 658 abort ();
434 } 659 }
435} 660}
436 661
437static void * 662static void *
438ev_realloc_emul (void *ptr, long size) 663ev_realloc_emul (void *ptr, long size)
439{ 664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
440 /* some systems, notably openbsd and darwin, fail to properly 668 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and 669 * implement realloc (x, 0) (as required by both ansi c-89 and
442 * the single unix specification, so work around them here. 670 * the single unix specification, so work around them here.
443 */ 671 */
444 672
445 if (size) 673 if (size)
446 return realloc (ptr, size); 674 return realloc (ptr, size);
447 675
448 free (ptr); 676 free (ptr);
449 return 0; 677 return 0;
678#endif
450} 679}
451 680
452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
453 682
454void 683void
462{ 691{
463 ptr = alloc (ptr, size); 692 ptr = alloc (ptr, size);
464 693
465 if (!ptr && size) 694 if (!ptr && size)
466 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
468 abort (); 701 abort ();
469 } 702 }
470 703
471 return ptr; 704 return ptr;
472} 705}
474#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
476 709
477/*****************************************************************************/ 710/*****************************************************************************/
478 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
479typedef struct 716typedef struct
480{ 717{
481 WL head; 718 WL head;
482 unsigned char events; 719 unsigned char events; /* the events watched for */
483 unsigned char reify; 720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 722 unsigned char unused;
486#if EV_USE_EPOLL 723#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 724 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 725#endif
489#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
490 SOCKET handle; 727 SOCKET handle;
491#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
492} ANFD; 732} ANFD;
493 733
734/* stores the pending event set for a given watcher */
494typedef struct 735typedef struct
495{ 736{
496 W w; 737 W w;
497 int events; 738 int events; /* the pending event set for the given watcher */
498} ANPENDING; 739} ANPENDING;
499 740
500#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 742/* hash table entry per inotify-id */
502typedef struct 743typedef struct
505} ANFS; 746} ANFS;
506#endif 747#endif
507 748
508/* Heap Entry */ 749/* Heap Entry */
509#if EV_HEAP_CACHE_AT 750#if EV_HEAP_CACHE_AT
751 /* a heap element */
510 typedef struct { 752 typedef struct {
511 ev_tstamp at; 753 ev_tstamp at;
512 WT w; 754 WT w;
513 } ANHE; 755 } ANHE;
514 756
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 757 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 758 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 760#else
761 /* a heap element */
519 typedef WT ANHE; 762 typedef WT ANHE;
520 763
521 #define ANHE_w(he) (he) 764 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 765 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 766 #define ANHE_at_cache(he)
547 790
548 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
549 792
550#endif 793#endif
551 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
552/*****************************************************************************/ 807/*****************************************************************************/
553 808
809#ifndef EV_HAVE_EV_TIME
554ev_tstamp 810ev_tstamp
555ev_time (void) 811ev_time (void)
556{ 812{
557#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
558 struct timespec ts; 816 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 819 }
820#endif
821
562 struct timeval tv; 822 struct timeval tv;
563 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 825}
826#endif
567 827
568ev_tstamp inline_size 828inline_size ev_tstamp
569get_clock (void) 829get_clock (void)
570{ 830{
571#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
573 { 833 {
594 if (delay > 0.) 854 if (delay > 0.)
595 { 855 {
596#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
597 struct timespec ts; 857 struct timespec ts;
598 858
599 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
603#elif defined(_WIN32) 861#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3)); 862 Sleep ((unsigned long)(delay * 1e3));
605#else 863#else
606 struct timeval tv; 864 struct timeval tv;
607 865
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 867 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 868 /* by older ones */
869 EV_TV_SET (tv, delay);
614 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
615#endif 871#endif
616 } 872 }
617} 873}
618 874
619/*****************************************************************************/ 875/*****************************************************************************/
620 876
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 878
623int inline_size 879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
624array_nextsize (int elem, int cur, int cnt) 882array_nextsize (int elem, int cur, int cnt)
625{ 883{
626 int ncur = cur + 1; 884 int ncur = cur + 1;
627 885
628 do 886 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 928 }
671#endif 929#endif
672 930
673#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 933
676/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
677 941
678void noinline 942void noinline
679ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
680{ 944{
681 W w_ = (W)w; 945 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 954 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 955 pendings [pri][w_->pending - 1].events = revents;
692 } 956 }
693} 957}
694 958
695void inline_speed 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 976{
698 int i; 977 int i;
699 978
700 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
702} 981}
703 982
704/*****************************************************************************/ 983/*****************************************************************************/
705 984
706void inline_speed 985inline_speed void
707fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
708{ 987{
709 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
710 ev_io *w; 989 ev_io *w;
711 990
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 995 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
718 } 997 }
719} 998}
720 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
721void 1011void
722ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 1013{
724 if (fd >= 0 && fd < anfdmax) 1014 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
726} 1016}
727 1017
728void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
729fd_reify (EV_P) 1021fd_reify (EV_P)
730{ 1022{
731 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
732 1049
733 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
734 { 1051 {
735 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
736 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
737 ev_io *w; 1054 ev_io *w;
738 1055
739 unsigned char events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
740 1058
741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
742 events |= (unsigned char)w->events;
743 1060
744#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
745 if (events)
746 { 1062 {
747 unsigned long arg; 1063 anfd->events = 0;
748 #ifdef EV_FD_TO_WIN32_HANDLE 1064
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
750 #else 1066 anfd->events |= (unsigned char)w->events;
751 anfd->handle = _get_osfhandle (fd); 1067
752 #endif 1068 if (o_events != anfd->events)
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1069 o_reify = EV__IOFDSET; /* actually |= */
754 } 1070 }
755#endif
756 1071
757 { 1072 if (o_reify & EV__IOFDSET)
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
761 anfd->reify = 0;
762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
766 }
767 } 1074 }
768 1075
769 fdchangecnt = 0; 1076 fdchangecnt = 0;
770} 1077}
771 1078
772void inline_size 1079/* something about the given fd changed */
1080inline_size void
773fd_change (EV_P_ int fd, int flags) 1081fd_change (EV_P_ int fd, int flags)
774{ 1082{
775 unsigned char reify = anfds [fd].reify; 1083 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 1084 anfds [fd].reify |= flags;
777 1085
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
783 } 1091 }
784} 1092}
785 1093
786void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
787fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
788{ 1097{
789 ev_io *w; 1098 ev_io *w;
790 1099
791 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 1104 }
796} 1105}
797 1106
798int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
799fd_valid (int fd) 1109fd_valid (int fd)
800{ 1110{
801#ifdef _WIN32 1111#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
803#else 1113#else
804 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
805#endif 1115#endif
806} 1116}
807 1117
825 1135
826 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 1137 if (anfds [fd].events)
828 { 1138 {
829 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
830 return; 1140 break;
831 } 1141 }
832} 1142}
833 1143
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 1145static void noinline
840 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 1151 if (anfds [fd].events)
842 { 1152 {
843 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 1154 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 1156 }
847} 1157}
848 1158
1159/* used to prepare libev internal fd's */
1160/* this is not fork-safe */
1161inline_speed void
1162fd_intern (int fd)
1163{
1164#ifdef _WIN32
1165 unsigned long arg = 1;
1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1167#else
1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
1169 fcntl (fd, F_SETFL, O_NONBLOCK);
1170#endif
1171}
1172
849/*****************************************************************************/ 1173/*****************************************************************************/
850 1174
851/* 1175/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not 1176 * the heap functions want a real array index. array index 0 is guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree. 1178 * the branching factor of the d-tree.
855 */ 1179 */
856 1180
857/* 1181/*
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 1192#define UPHEAP_DONE(p,k) ((p) == (k))
869 1193
870/* away from the root */ 1194/* away from the root */
871void inline_speed 1195inline_speed void
872downheap (ANHE *heap, int N, int k) 1196downheap (ANHE *heap, int N, int k)
873{ 1197{
874 ANHE he = heap [k]; 1198 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 1199 ANHE *E = heap + N + HEAP0;
876 1200
916#define HEAP0 1 1240#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 1241#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 1242#define UPHEAP_DONE(p,k) (!(p))
919 1243
920/* away from the root */ 1244/* away from the root */
921void inline_speed 1245inline_speed void
922downheap (ANHE *heap, int N, int k) 1246downheap (ANHE *heap, int N, int k)
923{ 1247{
924 ANHE he = heap [k]; 1248 ANHE he = heap [k];
925 1249
926 for (;;) 1250 for (;;)
927 { 1251 {
928 int c = k << 1; 1252 int c = k << 1;
929 1253
930 if (c > N + HEAP0 - 1) 1254 if (c >= N + HEAP0)
931 break; 1255 break;
932 1256
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 1258 ? 1 : 0;
935 1259
946 ev_active (ANHE_w (he)) = k; 1270 ev_active (ANHE_w (he)) = k;
947} 1271}
948#endif 1272#endif
949 1273
950/* towards the root */ 1274/* towards the root */
951void inline_speed 1275inline_speed void
952upheap (ANHE *heap, int k) 1276upheap (ANHE *heap, int k)
953{ 1277{
954 ANHE he = heap [k]; 1278 ANHE he = heap [k];
955 1279
956 for (;;) 1280 for (;;)
967 1291
968 heap [k] = he; 1292 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1293 ev_active (ANHE_w (he)) = k;
970} 1294}
971 1295
972void inline_size 1296/* move an element suitably so it is in a correct place */
1297inline_size void
973adjustheap (ANHE *heap, int N, int k) 1298adjustheap (ANHE *heap, int N, int k)
974{ 1299{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
976 upheap (heap, k); 1301 upheap (heap, k);
977 else 1302 else
978 downheap (heap, N, k); 1303 downheap (heap, N, k);
979} 1304}
980 1305
981/* rebuild the heap: this function is used only once and executed rarely */ 1306/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1307inline_size void
983reheap (ANHE *heap, int N) 1308reheap (ANHE *heap, int N)
984{ 1309{
985 int i; 1310 int i;
986 1311
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1315 upheap (heap, i + HEAP0);
991} 1316}
992 1317
993/*****************************************************************************/ 1318/*****************************************************************************/
994 1319
1320/* associate signal watchers to a signal signal */
995typedef struct 1321typedef struct
996{ 1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
997 WL head; 1327 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 1328} ANSIG;
1000 1329
1001static ANSIG *signals; 1330static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 1331
1006/*****************************************************************************/ 1332/*****************************************************************************/
1007 1333
1008void inline_speed 1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1009fd_intern (int fd)
1010{
1011#ifdef _WIN32
1012 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1014#else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK);
1017#endif
1018}
1019 1335
1020static void noinline 1336static void noinline
1021evpipe_init (EV_P) 1337evpipe_init (EV_P)
1022{ 1338{
1023 if (!ev_is_active (&pipeev)) 1339 if (!ev_is_active (&pipe_w))
1024 { 1340 {
1025#if EV_USE_EVENTFD 1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1026 if ((evfd = eventfd (0, 0)) >= 0) 1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1027 { 1347 {
1028 evpipe [0] = -1; 1348 evpipe [0] = -1;
1029 fd_intern (evfd); 1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1030 ev_io_set (&pipeev, evfd, EV_READ); 1350 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1351 }
1032 else 1352 else
1033#endif 1353# endif
1034 { 1354 {
1035 while (pipe (evpipe)) 1355 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1356 ev_syserr ("(libev) error creating signal/async pipe");
1037 1357
1038 fd_intern (evpipe [0]); 1358 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1359 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1361 }
1042 1362
1043 ev_io_start (EV_A_ &pipeev); 1363 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1365 }
1046} 1366}
1047 1367
1048void inline_size 1368inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1370{
1051 if (!*flag) 1371 if (!*flag)
1052 { 1372 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
1054 1375
1055 *flag = 1; 1376 *flag = 1;
1056 1377
1057#if EV_USE_EVENTFD 1378#if EV_USE_EVENTFD
1058 if (evfd >= 0) 1379 if (evfd >= 0)
1060 uint64_t counter = 1; 1381 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t)); 1382 write (evfd, &counter, sizeof (uint64_t));
1062 } 1383 }
1063 else 1384 else
1064#endif 1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
1065 write (evpipe [1], &old_errno, 1); 1391 write (evpipe [1], &dummy, 1);
1066 1392
1067 errno = old_errno; 1393 errno = old_errno;
1068 } 1394 }
1069} 1395}
1070 1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
1071static void 1399static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1400pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1401{
1402 int i;
1403
1074#if EV_USE_EVENTFD 1404#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1405 if (evfd >= 0)
1076 { 1406 {
1077 uint64_t counter; 1407 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t)); 1408 read (evfd, &counter, sizeof (uint64_t));
1079 } 1409 }
1080 else 1410 else
1081#endif 1411#endif
1082 { 1412 {
1083 char dummy; 1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1084 read (evpipe [0], &dummy, 1); 1415 read (evpipe [0], &dummy, 1);
1085 } 1416 }
1086 1417
1087 if (gotsig && ev_is_default_loop (EV_A)) 1418#if EV_SIGNAL_ENABLE
1088 { 1419 if (sig_pending)
1089 int signum; 1420 {
1090 gotsig = 0; 1421 sig_pending = 0;
1091 1422
1092 for (signum = signalmax; signum--; ) 1423 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 1424 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 1425 ev_feed_signal_event (EV_A_ i + 1);
1095 } 1426 }
1427#endif
1096 1428
1097#if EV_ASYNC_ENABLE 1429#if EV_ASYNC_ENABLE
1098 if (gotasync) 1430 if (async_pending)
1099 { 1431 {
1100 int i; 1432 async_pending = 0;
1101 gotasync = 0;
1102 1433
1103 for (i = asynccnt; i--; ) 1434 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 1435 if (asyncs [i]->sent)
1105 { 1436 {
1106 asyncs [i]->sent = 0; 1437 asyncs [i]->sent = 0;
1110#endif 1441#endif
1111} 1442}
1112 1443
1113/*****************************************************************************/ 1444/*****************************************************************************/
1114 1445
1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
1458}
1459
1115static void 1460static void
1116ev_sighandler (int signum) 1461ev_sighandler (int signum)
1117{ 1462{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32 1463#ifdef _WIN32
1123 signal (signum, ev_sighandler); 1464 signal (signum, ev_sighandler);
1124#endif 1465#endif
1125 1466
1126 signals [signum - 1].gotsig = 1; 1467 ev_feed_signal (signum);
1127 evpipe_write (EV_A_ &gotsig);
1128} 1468}
1129 1469
1130void noinline 1470void noinline
1131ev_feed_signal_event (EV_P_ int signum) 1471ev_feed_signal_event (EV_P_ int signum)
1132{ 1472{
1133 WL w; 1473 WL w;
1134 1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
1135#if EV_MULTIPLICITY 1480#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1481 /* it is permissible to try to feed a signal to the wrong loop */
1137#endif 1482 /* or, likely more useful, feeding a signal nobody is waiting for */
1138 1483
1139 --signum; 1484 if (expect_false (signals [signum].loop != EV_A))
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 1485 return;
1486#endif
1143 1487
1144 signals [signum].gotsig = 0; 1488 signals [signum].pending = 0;
1145 1489
1146 for (w = signals [signum].head; w; w = w->next) 1490 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 1492}
1149 1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
1509 break;
1510 }
1511}
1512#endif
1513
1514#endif
1515
1150/*****************************************************************************/ 1516/*****************************************************************************/
1151 1517
1518#if EV_CHILD_ENABLE
1152static WL childs [EV_PID_HASHSIZE]; 1519static WL childs [EV_PID_HASHSIZE];
1153
1154#ifndef _WIN32
1155 1520
1156static ev_signal childev; 1521static ev_signal childev;
1157 1522
1158#ifndef WIFCONTINUED 1523#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1524# define WIFCONTINUED(status) 0
1160#endif 1525#endif
1161 1526
1162void inline_speed 1527/* handle a single child status event */
1528inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1529child_reap (EV_P_ int chain, int pid, int status)
1164{ 1530{
1165 ev_child *w; 1531 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1533
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 { 1535 {
1170 if ((w->pid == pid || !w->pid) 1536 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1))) 1537 && (!traced || (w->flags & 1)))
1172 { 1538 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1180 1546
1181#ifndef WCONTINUED 1547#ifndef WCONTINUED
1182# define WCONTINUED 0 1548# define WCONTINUED 0
1183#endif 1549#endif
1184 1550
1551/* called on sigchld etc., calls waitpid */
1185static void 1552static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1554{
1188 int pid, status; 1555 int pid, status;
1189 1556
1197 /* make sure we are called again until all children have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
1198 /* we need to do it this way so that the callback gets called before we continue */ 1565 /* we need to do it this way so that the callback gets called before we continue */
1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1200 1567
1201 child_reap (EV_A_ pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1) 1569 if ((EV_PID_HASHSIZE) > 1)
1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1204} 1571}
1205 1572
1206#endif 1573#endif
1207 1574
1208/*****************************************************************************/ 1575/*****************************************************************************/
1209 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
1210#if EV_USE_PORT 1580#if EV_USE_PORT
1211# include "ev_port.c" 1581# include "ev_port.c"
1212#endif 1582#endif
1213#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
1214# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
1270 /* kqueue is borked on everything but netbsd apparently */ 1640 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 1641 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 1642 flags &= ~EVBACKEND_KQUEUE;
1273#endif 1643#endif
1274#ifdef __APPLE__ 1644#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation 1645 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_SELECT; 1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1277#endif 1651#endif
1278 1652
1279 return flags; 1653 return flags;
1280} 1654}
1281 1655
1283ev_embeddable_backends (void) 1657ev_embeddable_backends (void)
1284{ 1658{
1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1286 1660
1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */ 1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1289 flags &= ~EVBACKEND_EPOLL; 1663 flags &= ~EVBACKEND_EPOLL;
1290 1664
1291 return flags; 1665 return flags;
1292} 1666}
1293 1667
1294unsigned int 1668unsigned int
1295ev_backend (EV_P) 1669ev_backend (EV_P)
1296{ 1670{
1297 return backend; 1671 return backend;
1298} 1672}
1299 1673
1674#if EV_FEATURE_API
1300unsigned int 1675unsigned int
1301ev_loop_count (EV_P) 1676ev_iteration (EV_P)
1302{ 1677{
1303 return loop_count; 1678 return loop_count;
1304} 1679}
1305 1680
1681unsigned int
1682ev_depth (EV_P)
1683{
1684 return loop_depth;
1685}
1686
1306void 1687void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{ 1689{
1309 io_blocktime = interval; 1690 io_blocktime = interval;
1310} 1691}
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{ 1695{
1315 timeout_blocktime = interval; 1696 timeout_blocktime = interval;
1316} 1697}
1317 1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1318static void noinline 1724static void noinline
1319loop_init (EV_P_ unsigned int flags) 1725loop_init (EV_P_ unsigned int flags)
1320{ 1726{
1321 if (!backend) 1727 if (!backend)
1322 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
1323#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
1324 { 1743 {
1325 struct timespec ts; 1744 struct timespec ts;
1745
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 1747 have_monotonic = 1;
1328 } 1748 }
1329#endif 1749#endif
1750
1751 /* pid check not overridable via env */
1752#ifndef _WIN32
1753 if (flags & EVFLAG_FORKCHECK)
1754 curpid = getpid ();
1755#endif
1756
1757 if (!(flags & EVFLAG_NOENV)
1758 && !enable_secure ()
1759 && getenv ("LIBEV_FLAGS"))
1760 flags = atoi (getenv ("LIBEV_FLAGS"));
1330 1761
1331 ev_rt_now = ev_time (); 1762 ev_rt_now = ev_time ();
1332 mn_now = get_clock (); 1763 mn_now = get_clock ();
1333 now_floor = mn_now; 1764 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now; 1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1335 1769
1336 io_blocktime = 0.; 1770 io_blocktime = 0.;
1337 timeout_blocktime = 0.; 1771 timeout_blocktime = 0.;
1338 backend = 0; 1772 backend = 0;
1339 backend_fd = -1; 1773 backend_fd = -1;
1340 gotasync = 0; 1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1341#if EV_USE_INOTIFY 1778#if EV_USE_INOTIFY
1342 fs_fd = -2; 1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1343#endif 1780#endif
1344 1781#if EV_USE_SIGNALFD
1345 /* pid check not overridable via env */ 1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1346#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK)
1348 curpid = getpid ();
1349#endif 1783#endif
1350 1784
1351 if (!(flags & EVFLAG_NOENV) 1785 if (!(flags & EVBACKEND_MASK))
1352 && !enable_secure ()
1353 && getenv ("LIBEV_FLAGS"))
1354 flags = atoi (getenv ("LIBEV_FLAGS"));
1355
1356 if (!(flags & 0x0000ffffU))
1357 flags |= ev_recommended_backends (); 1786 flags |= ev_recommended_backends ();
1358 1787
1788#if EV_USE_IOCP
1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790#endif
1359#if EV_USE_PORT 1791#if EV_USE_PORT
1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1361#endif 1793#endif
1362#if EV_USE_KQUEUE 1794#if EV_USE_KQUEUE
1363 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1370#endif 1802#endif
1371#if EV_USE_SELECT 1803#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif 1805#endif
1374 1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1375 ev_init (&pipeev, pipecb); 1810 ev_init (&pipe_w, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI); 1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
1377 } 1813 }
1378} 1814}
1379 1815
1380static void noinline 1816/* free up a loop structure */
1817void
1381loop_destroy (EV_P) 1818ev_loop_destroy (EV_P)
1382{ 1819{
1383 int i; 1820 int i;
1384 1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1385 if (ev_is_active (&pipeev)) 1845 if (ev_is_active (&pipe_w))
1386 { 1846 {
1387 ev_ref (EV_A); /* signal watcher */ 1847 /*ev_ref (EV_A);*/
1388 ev_io_stop (EV_A_ &pipeev); 1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1389 1849
1390#if EV_USE_EVENTFD 1850#if EV_USE_EVENTFD
1391 if (evfd >= 0) 1851 if (evfd >= 0)
1392 close (evfd); 1852 close (evfd);
1393#endif 1853#endif
1394 1854
1395 if (evpipe [0] >= 0) 1855 if (evpipe [0] >= 0)
1396 { 1856 {
1397 close (evpipe [0]); 1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1398 close (evpipe [1]); 1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1399 } 1859 }
1400 } 1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1401 1866
1402#if EV_USE_INOTIFY 1867#if EV_USE_INOTIFY
1403 if (fs_fd >= 0) 1868 if (fs_fd >= 0)
1404 close (fs_fd); 1869 close (fs_fd);
1405#endif 1870#endif
1406 1871
1407 if (backend_fd >= 0) 1872 if (backend_fd >= 0)
1408 close (backend_fd); 1873 close (backend_fd);
1409 1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
1410#if EV_USE_PORT 1878#if EV_USE_PORT
1411 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1412#endif 1880#endif
1413#if EV_USE_KQUEUE 1881#if EV_USE_KQUEUE
1414 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1429#if EV_IDLE_ENABLE 1897#if EV_IDLE_ENABLE
1430 array_free (idle, [i]); 1898 array_free (idle, [i]);
1431#endif 1899#endif
1432 } 1900 }
1433 1901
1434 ev_free (anfds); anfdmax = 0; 1902 ev_free (anfds); anfds = 0; anfdmax = 0;
1435 1903
1436 /* have to use the microsoft-never-gets-it-right macro */ 1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 1906 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 1907 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 1908#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 1909 array_free (periodic, EMPTY);
1441#endif 1910#endif
1442#if EV_FORK_ENABLE 1911#if EV_FORK_ENABLE
1443 array_free (fork, EMPTY); 1912 array_free (fork, EMPTY);
1444#endif 1913#endif
1914#if EV_CLEANUP_ENABLE
1915 array_free (cleanup, EMPTY);
1916#endif
1445 array_free (prepare, EMPTY); 1917 array_free (prepare, EMPTY);
1446 array_free (check, EMPTY); 1918 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE 1919#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY); 1920 array_free (async, EMPTY);
1449#endif 1921#endif
1450 1922
1451 backend = 0; 1923 backend = 0;
1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1452} 1933}
1453 1934
1454#if EV_USE_INOTIFY 1935#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 1936inline_size void infy_fork (EV_P);
1456#endif 1937#endif
1457 1938
1458void inline_size 1939inline_size void
1459loop_fork (EV_P) 1940loop_fork (EV_P)
1460{ 1941{
1461#if EV_USE_PORT 1942#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 1944#endif
1469#endif 1950#endif
1470#if EV_USE_INOTIFY 1951#if EV_USE_INOTIFY
1471 infy_fork (EV_A); 1952 infy_fork (EV_A);
1472#endif 1953#endif
1473 1954
1474 if (ev_is_active (&pipeev)) 1955 if (ev_is_active (&pipe_w))
1475 { 1956 {
1476 /* this "locks" the handlers against writing to the pipe */ 1957 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */ 1958 /* while we modify the fd vars */
1478 gotsig = 1; 1959 sig_pending = 1;
1479#if EV_ASYNC_ENABLE 1960#if EV_ASYNC_ENABLE
1480 gotasync = 1; 1961 async_pending = 1;
1481#endif 1962#endif
1482 1963
1483 ev_ref (EV_A); 1964 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev); 1965 ev_io_stop (EV_A_ &pipe_w);
1485 1966
1486#if EV_USE_EVENTFD 1967#if EV_USE_EVENTFD
1487 if (evfd >= 0) 1968 if (evfd >= 0)
1488 close (evfd); 1969 close (evfd);
1489#endif 1970#endif
1490 1971
1491 if (evpipe [0] >= 0) 1972 if (evpipe [0] >= 0)
1492 { 1973 {
1493 close (evpipe [0]); 1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1494 close (evpipe [1]); 1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1495 } 1976 }
1496 1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1497 evpipe_init (EV_A); 1979 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */ 1980 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ); 1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1500 } 1983 }
1501 1984
1502 postfork = 0; 1985 postfork = 0;
1503} 1986}
1504 1987
1505#if EV_MULTIPLICITY 1988#if EV_MULTIPLICITY
1506 1989
1507struct ev_loop * 1990struct ev_loop *
1508ev_loop_new (unsigned int flags) 1991ev_loop_new (unsigned int flags)
1509{ 1992{
1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1511 1994
1512 memset (loop, 0, sizeof (struct ev_loop)); 1995 memset (EV_A, 0, sizeof (struct ev_loop));
1513
1514 loop_init (EV_A_ flags); 1996 loop_init (EV_A_ flags);
1515 1997
1516 if (ev_backend (EV_A)) 1998 if (ev_backend (EV_A))
1517 return loop; 1999 return EV_A;
1518 2000
2001 ev_free (EV_A);
1519 return 0; 2002 return 0;
1520} 2003}
1521 2004
1522void 2005#endif /* multiplicity */
1523ev_loop_destroy (EV_P)
1524{
1525 loop_destroy (EV_A);
1526 ev_free (loop);
1527}
1528
1529void
1530ev_loop_fork (EV_P)
1531{
1532 postfork = 1; /* must be in line with ev_default_fork */
1533}
1534 2006
1535#if EV_VERIFY 2007#if EV_VERIFY
1536static void noinline 2008static void noinline
1537verify_watcher (EV_P_ W w) 2009verify_watcher (EV_P_ W w)
1538{ 2010{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 2012
1541 if (w->pending) 2013 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 2015}
1544 2016
1545static void noinline 2017static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N) 2018verify_heap (EV_P_ ANHE *heap, int N)
1547{ 2019{
1548 int i; 2020 int i;
1549 2021
1550 for (i = HEAP0; i < N + HEAP0; ++i) 2022 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 2023 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 2027
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 2029 }
1558} 2030}
1559 2031
1560static void noinline 2032static void noinline
1561array_verify (EV_P_ W *ws, int cnt) 2033array_verify (EV_P_ W *ws, int cnt)
1562{ 2034{
1563 while (cnt--) 2035 while (cnt--)
1564 { 2036 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 2038 verify_watcher (EV_A_ ws [cnt]);
1567 } 2039 }
1568} 2040}
1569#endif 2041#endif
1570 2042
2043#if EV_FEATURE_API
1571void 2044void
1572ev_loop_verify (EV_P) 2045ev_verify (EV_P)
1573{ 2046{
1574#if EV_VERIFY 2047#if EV_VERIFY
1575 int i; 2048 int i;
1576 WL w; 2049 WL w;
1577 2050
1578 assert (activecnt >= -1); 2051 assert (activecnt >= -1);
1579 2052
1580 assert (fdchangemax >= fdchangecnt); 2053 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 2054 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 2056
1584 assert (anfdmax >= 0); 2057 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 2058 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next) 2059 for (w = anfds [i].head; w; w = w->next)
1587 { 2060 {
1588 verify_watcher (EV_A_ (W)w); 2061 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 2064 }
1592 2065
1593 assert (timermax >= timercnt); 2066 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 2067 verify_heap (EV_A_ timers, timercnt);
1595 2068
1611#if EV_FORK_ENABLE 2084#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt); 2085 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt); 2086 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif 2087#endif
1615 2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
1616#if EV_ASYNC_ENABLE 2094#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt); 2095 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt); 2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif 2097#endif
1620 2098
2099#if EV_PREPARE_ENABLE
1621 assert (preparemax >= preparecnt); 2100 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt); 2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
1623 2103
2104#if EV_CHECK_ENABLE
1624 assert (checkmax >= checkcnt); 2105 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt); 2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
1626 2108
1627# if 0 2109# if 0
2110#if EV_CHILD_ENABLE
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
1630# endif 2114# endif
1631#endif 2115#endif
1632} 2116}
1633 2117#endif
1634#endif /* multiplicity */
1635 2118
1636#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
1637struct ev_loop * 2120struct ev_loop *
1638ev_default_loop_init (unsigned int flags)
1639#else 2121#else
1640int 2122int
2123#endif
1641ev_default_loop (unsigned int flags) 2124ev_default_loop (unsigned int flags)
1642#endif
1643{ 2125{
1644 if (!ev_default_loop_ptr) 2126 if (!ev_default_loop_ptr)
1645 { 2127 {
1646#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
1648#else 2130#else
1649 ev_default_loop_ptr = 1; 2131 ev_default_loop_ptr = 1;
1650#endif 2132#endif
1651 2133
1652 loop_init (EV_A_ flags); 2134 loop_init (EV_A_ flags);
1653 2135
1654 if (ev_backend (EV_A)) 2136 if (ev_backend (EV_A))
1655 { 2137 {
1656#ifndef _WIN32 2138#if EV_CHILD_ENABLE
1657 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
1658 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
1659 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
1660 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
1661#endif 2143#endif
1666 2148
1667 return ev_default_loop_ptr; 2149 return ev_default_loop_ptr;
1668} 2150}
1669 2151
1670void 2152void
1671ev_default_destroy (void) 2153ev_loop_fork (EV_P)
1672{ 2154{
1673#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr;
1675#endif
1676
1677 ev_default_loop_ptr = 0;
1678
1679#ifndef _WIN32
1680 ev_ref (EV_A); /* child watcher */
1681 ev_signal_stop (EV_A_ &childev);
1682#endif
1683
1684 loop_destroy (EV_A);
1685}
1686
1687void
1688ev_default_fork (void)
1689{
1690#if EV_MULTIPLICITY
1691 struct ev_loop *loop = ev_default_loop_ptr;
1692#endif
1693
1694 postfork = 1; /* must be in line with ev_loop_fork */ 2155 postfork = 1; /* must be in line with ev_default_fork */
1695} 2156}
1696 2157
1697/*****************************************************************************/ 2158/*****************************************************************************/
1698 2159
1699void 2160void
1700ev_invoke (EV_P_ void *w, int revents) 2161ev_invoke (EV_P_ void *w, int revents)
1701{ 2162{
1702 EV_CB_INVOKE ((W)w, revents); 2163 EV_CB_INVOKE ((W)w, revents);
1703} 2164}
1704 2165
1705void inline_speed 2166unsigned int
1706call_pending (EV_P) 2167ev_pending_count (EV_P)
2168{
2169 int pri;
2170 unsigned int count = 0;
2171
2172 for (pri = NUMPRI; pri--; )
2173 count += pendingcnt [pri];
2174
2175 return count;
2176}
2177
2178void noinline
2179ev_invoke_pending (EV_P)
1707{ 2180{
1708 int pri; 2181 int pri;
1709 2182
1710 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
1711 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
1712 { 2185 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714 2187
1715 if (expect_true (p->w))
1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1718
1719 p->w->pending = 0; 2188 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 2190 EV_FREQUENT_CHECK;
1722 }
1723 } 2191 }
1724} 2192}
1725 2193
1726#if EV_IDLE_ENABLE 2194#if EV_IDLE_ENABLE
1727void inline_size 2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
1728idle_reify (EV_P) 2198idle_reify (EV_P)
1729{ 2199{
1730 if (expect_false (idleall)) 2200 if (expect_false (idleall))
1731 { 2201 {
1732 int pri; 2202 int pri;
1744 } 2214 }
1745 } 2215 }
1746} 2216}
1747#endif 2217#endif
1748 2218
1749void inline_size 2219/* make timers pending */
2220inline_size void
1750timers_reify (EV_P) 2221timers_reify (EV_P)
1751{ 2222{
1752 EV_FREQUENT_CHECK; 2223 EV_FREQUENT_CHECK;
1753 2224
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 2226 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2227 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
1763 ev_at (w) += w->repeat; 2236 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 2237 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 2238 ev_at (w) = mn_now;
1766 2239
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 2241
1769 ANHE_at_cache (timers [HEAP0]); 2242 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
1771 } 2250 }
1772 else 2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 2252
1775 EV_FREQUENT_CHECK; 2253 feed_reverse_done (EV_A_ EV_TIMER);
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 } 2254 }
1778} 2255}
1779 2256
1780#if EV_PERIODIC_ENABLE 2257#if EV_PERIODIC_ENABLE
1781void inline_size 2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
2267 {
2268 ev_tstamp nat = at + w->interval;
2269
2270 /* when resolution fails us, we use ev_rt_now */
2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
1782periodics_reify (EV_P) 2285periodics_reify (EV_P)
1783{ 2286{
1784 EV_FREQUENT_CHECK; 2287 EV_FREQUENT_CHECK;
1785 2288
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 2290 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2291 int feed_count = 0;
1789 2292
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2293 do
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2298
2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 2303
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 2305
1799 ANHE_at_cache (periodics [HEAP0]); 2306 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
1801 } 2320 }
1802 else if (w->interval) 2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 2322
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2323 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 2324 }
1827} 2325}
1828 2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
1829static void noinline 2329static void noinline
1830periodics_reschedule (EV_P) 2330periodics_reschedule (EV_P)
1831{ 2331{
1832 int i; 2332 int i;
1833 2333
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838 2338
1839 if (w->reschedule_cb) 2339 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval) 2341 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2342 periodic_recalc (EV_A_ w);
1843 2343
1844 ANHE_at_cache (periodics [i]); 2344 ANHE_at_cache (periodics [i]);
1845 } 2345 }
1846 2346
1847 reheap (periodics, periodiccnt); 2347 reheap (periodics, periodiccnt);
1848} 2348}
1849#endif 2349#endif
1850 2350
1851void inline_speed 2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
2358 {
2359 ANHE *he = timers + i + HEAP0;
2360 ANHE_w (*he)->at += adjust;
2361 ANHE_at_cache (*he);
2362 }
2363}
2364
2365/* fetch new monotonic and realtime times from the kernel */
2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 2368time_update (EV_P_ ev_tstamp max_block)
1853{ 2369{
1854 int i;
1855
1856#if EV_USE_MONOTONIC 2370#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic)) 2371 if (expect_true (have_monotonic))
1858 { 2372 {
2373 int i;
1859 ev_tstamp odiff = rtmn_diff; 2374 ev_tstamp odiff = rtmn_diff;
1860 2375
1861 mn_now = get_clock (); 2376 mn_now = get_clock ();
1862 2377
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1879 * doesn't hurt either as we only do this on time-jumps or 2394 * doesn't hurt either as we only do this on time-jumps or
1880 * in the unlikely event of having been preempted here. 2395 * in the unlikely event of having been preempted here.
1881 */ 2396 */
1882 for (i = 4; --i; ) 2397 for (i = 4; --i; )
1883 { 2398 {
2399 ev_tstamp diff;
1884 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1885 2401
2402 diff = odiff - rtmn_diff;
2403
1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1887 return; /* all is well */ 2405 return; /* all is well */
1888 2406
1889 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 2408 mn_now = get_clock ();
1891 now_floor = mn_now; 2409 now_floor = mn_now;
1892 } 2410 }
1893 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 2414# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 2415 periodics_reschedule (EV_A);
1896# endif 2416# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 2417 }
1900 else 2418 else
1901#endif 2419#endif
1902 { 2420 {
1903 ev_rt_now = ev_time (); 2421 ev_rt_now = ev_time ();
1904 2422
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 2427#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1909#endif 2429#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 2430 }
1918 2431
1919 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1920 } 2433 }
1921} 2434}
1922 2435
1923void 2436void
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1945{ 2438{
2439#if EV_FEATURE_API
2440 ++loop_depth;
2441#endif
2442
2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
1946 loop_done = EVUNLOOP_CANCEL; 2445 loop_done = EVBREAK_CANCEL;
1947 2446
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1949 2448
1950 do 2449 do
1951 { 2450 {
1952#if EV_VERIFY >= 2 2451#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A); 2452 ev_verify (EV_A);
1954#endif 2453#endif
1955 2454
1956#ifndef _WIN32 2455#ifndef _WIN32
1957 if (expect_false (curpid)) /* penalise the forking check even more */ 2456 if (expect_false (curpid)) /* penalise the forking check even more */
1958 if (expect_false (getpid () != curpid)) 2457 if (expect_false (getpid () != curpid))
1966 /* we might have forked, so queue fork handlers */ 2465 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork)) 2466 if (expect_false (postfork))
1968 if (forkcnt) 2467 if (forkcnt)
1969 { 2468 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A); 2470 EV_INVOKE_PENDING;
1972 } 2471 }
1973#endif 2472#endif
1974 2473
2474#if EV_PREPARE_ENABLE
1975 /* queue prepare watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1977 { 2477 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1980 } 2480 }
2481#endif
1981 2482
1982 if (expect_false (!activecnt)) 2483 if (expect_false (loop_done))
1983 break; 2484 break;
1984 2485
1985 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1987 loop_fork (EV_A); 2488 loop_fork (EV_A);
1992 /* calculate blocking time */ 2493 /* calculate blocking time */
1993 { 2494 {
1994 ev_tstamp waittime = 0.; 2495 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.; 2496 ev_tstamp sleeptime = 0.;
1996 2497
2498 /* remember old timestamp for io_blocktime calculation */
2499 ev_tstamp prev_mn_now = mn_now;
2500
2501 /* update time to cancel out callback processing overhead */
2502 time_update (EV_A_ 1e100);
2503
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1998 { 2505 {
1999 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100);
2001
2002 waittime = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
2003 2507
2004 if (timercnt) 2508 if (timercnt)
2005 { 2509 {
2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2007 if (waittime > to) waittime = to; 2511 if (waittime > to) waittime = to;
2008 } 2512 }
2009 2513
2010#if EV_PERIODIC_ENABLE 2514#if EV_PERIODIC_ENABLE
2011 if (periodiccnt) 2515 if (periodiccnt)
2012 { 2516 {
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2014 if (waittime > to) waittime = to; 2518 if (waittime > to) waittime = to;
2015 } 2519 }
2016#endif 2520#endif
2017 2521
2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
2018 if (expect_false (waittime < timeout_blocktime)) 2523 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime; 2524 waittime = timeout_blocktime;
2020 2525
2021 sleeptime = waittime - backend_fudge; 2526 /* at this point, we NEED to wait, so we have to ensure */
2527 /* to pass a minimum nonzero value to the backend */
2528 if (expect_false (waittime < backend_mintime))
2529 waittime = backend_mintime;
2022 2530
2531 /* extra check because io_blocktime is commonly 0 */
2023 if (expect_true (sleeptime > io_blocktime)) 2532 if (expect_false (io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 { 2533 {
2534 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2535
2536 if (sleeptime > waittime - backend_mintime)
2537 sleeptime = waittime - backend_mintime;
2538
2539 if (expect_true (sleeptime > 0.))
2540 {
2028 ev_sleep (sleeptime); 2541 ev_sleep (sleeptime);
2029 waittime -= sleeptime; 2542 waittime -= sleeptime;
2543 }
2030 } 2544 }
2031 } 2545 }
2032 2546
2547#if EV_FEATURE_API
2033 ++loop_count; 2548 ++loop_count;
2549#endif
2550 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2034 backend_poll (EV_A_ waittime); 2551 backend_poll (EV_A_ waittime);
2552 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2035 2553
2036 /* update ev_rt_now, do magic */ 2554 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime); 2555 time_update (EV_A_ waittime + sleeptime);
2038 } 2556 }
2039 2557
2046#if EV_IDLE_ENABLE 2564#if EV_IDLE_ENABLE
2047 /* queue idle watchers unless other events are pending */ 2565 /* queue idle watchers unless other events are pending */
2048 idle_reify (EV_A); 2566 idle_reify (EV_A);
2049#endif 2567#endif
2050 2568
2569#if EV_CHECK_ENABLE
2051 /* queue check watchers, to be executed first */ 2570 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt)) 2571 if (expect_false (checkcnt))
2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2572 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2573#endif
2054 2574
2055 call_pending (EV_A); 2575 EV_INVOKE_PENDING;
2056 } 2576 }
2057 while (expect_true ( 2577 while (expect_true (
2058 activecnt 2578 activecnt
2059 && !loop_done 2579 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2580 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2061 )); 2581 ));
2062 2582
2063 if (loop_done == EVUNLOOP_ONE) 2583 if (loop_done == EVBREAK_ONE)
2064 loop_done = EVUNLOOP_CANCEL; 2584 loop_done = EVBREAK_CANCEL;
2065}
2066 2585
2586#if EV_FEATURE_API
2587 --loop_depth;
2588#endif
2589}
2590
2067void 2591void
2068ev_unloop (EV_P_ int how) 2592ev_break (EV_P_ int how)
2069{ 2593{
2070 loop_done = how; 2594 loop_done = how;
2071} 2595}
2072 2596
2597void
2598ev_ref (EV_P)
2599{
2600 ++activecnt;
2601}
2602
2603void
2604ev_unref (EV_P)
2605{
2606 --activecnt;
2607}
2608
2609void
2610ev_now_update (EV_P)
2611{
2612 time_update (EV_A_ 1e100);
2613}
2614
2615void
2616ev_suspend (EV_P)
2617{
2618 ev_now_update (EV_A);
2619}
2620
2621void
2622ev_resume (EV_P)
2623{
2624 ev_tstamp mn_prev = mn_now;
2625
2626 ev_now_update (EV_A);
2627 timers_reschedule (EV_A_ mn_now - mn_prev);
2628#if EV_PERIODIC_ENABLE
2629 /* TODO: really do this? */
2630 periodics_reschedule (EV_A);
2631#endif
2632}
2633
2073/*****************************************************************************/ 2634/*****************************************************************************/
2635/* singly-linked list management, used when the expected list length is short */
2074 2636
2075void inline_size 2637inline_size void
2076wlist_add (WL *head, WL elem) 2638wlist_add (WL *head, WL elem)
2077{ 2639{
2078 elem->next = *head; 2640 elem->next = *head;
2079 *head = elem; 2641 *head = elem;
2080} 2642}
2081 2643
2082void inline_size 2644inline_size void
2083wlist_del (WL *head, WL elem) 2645wlist_del (WL *head, WL elem)
2084{ 2646{
2085 while (*head) 2647 while (*head)
2086 { 2648 {
2087 if (*head == elem) 2649 if (expect_true (*head == elem))
2088 { 2650 {
2089 *head = elem->next; 2651 *head = elem->next;
2090 return; 2652 break;
2091 } 2653 }
2092 2654
2093 head = &(*head)->next; 2655 head = &(*head)->next;
2094 } 2656 }
2095} 2657}
2096 2658
2097void inline_speed 2659/* internal, faster, version of ev_clear_pending */
2660inline_speed void
2098clear_pending (EV_P_ W w) 2661clear_pending (EV_P_ W w)
2099{ 2662{
2100 if (w->pending) 2663 if (w->pending)
2101 { 2664 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2665 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2103 w->pending = 0; 2666 w->pending = 0;
2104 } 2667 }
2105} 2668}
2106 2669
2107int 2670int
2111 int pending = w_->pending; 2674 int pending = w_->pending;
2112 2675
2113 if (expect_true (pending)) 2676 if (expect_true (pending))
2114 { 2677 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2678 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2679 p->w = (W)&pending_w;
2116 w_->pending = 0; 2680 w_->pending = 0;
2117 p->w = 0;
2118 return p->events; 2681 return p->events;
2119 } 2682 }
2120 else 2683 else
2121 return 0; 2684 return 0;
2122} 2685}
2123 2686
2124void inline_size 2687inline_size void
2125pri_adjust (EV_P_ W w) 2688pri_adjust (EV_P_ W w)
2126{ 2689{
2127 int pri = w->priority; 2690 int pri = ev_priority (w);
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2691 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2692 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 2693 ev_set_priority (w, pri);
2131} 2694}
2132 2695
2133void inline_speed 2696inline_speed void
2134ev_start (EV_P_ W w, int active) 2697ev_start (EV_P_ W w, int active)
2135{ 2698{
2136 pri_adjust (EV_A_ w); 2699 pri_adjust (EV_A_ w);
2137 w->active = active; 2700 w->active = active;
2138 ev_ref (EV_A); 2701 ev_ref (EV_A);
2139} 2702}
2140 2703
2141void inline_size 2704inline_size void
2142ev_stop (EV_P_ W w) 2705ev_stop (EV_P_ W w)
2143{ 2706{
2144 ev_unref (EV_A); 2707 ev_unref (EV_A);
2145 w->active = 0; 2708 w->active = 0;
2146} 2709}
2153 int fd = w->fd; 2716 int fd = w->fd;
2154 2717
2155 if (expect_false (ev_is_active (w))) 2718 if (expect_false (ev_is_active (w)))
2156 return; 2719 return;
2157 2720
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 2721 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2722 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 2723
2161 EV_FREQUENT_CHECK; 2724 EV_FREQUENT_CHECK;
2162 2725
2163 ev_start (EV_A_ (W)w, 1); 2726 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2727 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 2728 wlist_add (&anfds[fd].head, (WL)w);
2166 2729
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2730 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2168 w->events &= ~EV_IOFDSET; 2731 w->events &= ~EV__IOFDSET;
2169 2732
2170 EV_FREQUENT_CHECK; 2733 EV_FREQUENT_CHECK;
2171} 2734}
2172 2735
2173void noinline 2736void noinline
2175{ 2738{
2176 clear_pending (EV_A_ (W)w); 2739 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 2740 if (expect_false (!ev_is_active (w)))
2178 return; 2741 return;
2179 2742
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2743 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 2744
2182 EV_FREQUENT_CHECK; 2745 EV_FREQUENT_CHECK;
2183 2746
2184 wlist_del (&anfds[w->fd].head, (WL)w); 2747 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
2186 2749
2187 fd_change (EV_A_ w->fd, 1); 2750 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2188 2751
2189 EV_FREQUENT_CHECK; 2752 EV_FREQUENT_CHECK;
2190} 2753}
2191 2754
2192void noinline 2755void noinline
2195 if (expect_false (ev_is_active (w))) 2758 if (expect_false (ev_is_active (w)))
2196 return; 2759 return;
2197 2760
2198 ev_at (w) += mn_now; 2761 ev_at (w) += mn_now;
2199 2762
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2763 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 2764
2202 EV_FREQUENT_CHECK; 2765 EV_FREQUENT_CHECK;
2203 2766
2204 ++timercnt; 2767 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2768 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 2771 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 2772 upheap (timers, ev_active (w));
2210 2773
2211 EV_FREQUENT_CHECK; 2774 EV_FREQUENT_CHECK;
2212 2775
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2776 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 2777}
2215 2778
2216void noinline 2779void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 2780ev_timer_stop (EV_P_ ev_timer *w)
2218{ 2781{
2223 EV_FREQUENT_CHECK; 2786 EV_FREQUENT_CHECK;
2224 2787
2225 { 2788 {
2226 int active = ev_active (w); 2789 int active = ev_active (w);
2227 2790
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2791 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 2792
2230 --timercnt; 2793 --timercnt;
2231 2794
2232 if (expect_true (active < timercnt + HEAP0)) 2795 if (expect_true (active < timercnt + HEAP0))
2233 { 2796 {
2234 timers [active] = timers [timercnt + HEAP0]; 2797 timers [active] = timers [timercnt + HEAP0];
2235 adjustheap (timers, timercnt, active); 2798 adjustheap (timers, timercnt, active);
2236 } 2799 }
2237 } 2800 }
2238 2801
2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now; 2802 ev_at (w) -= mn_now;
2242 2803
2243 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2244} 2807}
2245 2808
2246void noinline 2809void noinline
2247ev_timer_again (EV_P_ ev_timer *w) 2810ev_timer_again (EV_P_ ev_timer *w)
2248{ 2811{
2266 } 2829 }
2267 2830
2268 EV_FREQUENT_CHECK; 2831 EV_FREQUENT_CHECK;
2269} 2832}
2270 2833
2834ev_tstamp
2835ev_timer_remaining (EV_P_ ev_timer *w)
2836{
2837 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2838}
2839
2271#if EV_PERIODIC_ENABLE 2840#if EV_PERIODIC_ENABLE
2272void noinline 2841void noinline
2273ev_periodic_start (EV_P_ ev_periodic *w) 2842ev_periodic_start (EV_P_ ev_periodic *w)
2274{ 2843{
2275 if (expect_false (ev_is_active (w))) 2844 if (expect_false (ev_is_active (w)))
2277 2846
2278 if (w->reschedule_cb) 2847 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2848 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 2849 else if (w->interval)
2281 { 2850 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2851 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 2852 periodic_recalc (EV_A_ w);
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 2853 }
2286 else 2854 else
2287 ev_at (w) = w->offset; 2855 ev_at (w) = w->offset;
2288 2856
2289 EV_FREQUENT_CHECK; 2857 EV_FREQUENT_CHECK;
2295 ANHE_at_cache (periodics [ev_active (w)]); 2863 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 2864 upheap (periodics, ev_active (w));
2297 2865
2298 EV_FREQUENT_CHECK; 2866 EV_FREQUENT_CHECK;
2299 2867
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2868 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 2869}
2302 2870
2303void noinline 2871void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 2872ev_periodic_stop (EV_P_ ev_periodic *w)
2305{ 2873{
2310 EV_FREQUENT_CHECK; 2878 EV_FREQUENT_CHECK;
2311 2879
2312 { 2880 {
2313 int active = ev_active (w); 2881 int active = ev_active (w);
2314 2882
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2883 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 2884
2317 --periodiccnt; 2885 --periodiccnt;
2318 2886
2319 if (expect_true (active < periodiccnt + HEAP0)) 2887 if (expect_true (active < periodiccnt + HEAP0))
2320 { 2888 {
2321 periodics [active] = periodics [periodiccnt + HEAP0]; 2889 periodics [active] = periodics [periodiccnt + HEAP0];
2322 adjustheap (periodics, periodiccnt, active); 2890 adjustheap (periodics, periodiccnt, active);
2323 } 2891 }
2324 } 2892 }
2325 2893
2326 EV_FREQUENT_CHECK;
2327
2328 ev_stop (EV_A_ (W)w); 2894 ev_stop (EV_A_ (W)w);
2895
2896 EV_FREQUENT_CHECK;
2329} 2897}
2330 2898
2331void noinline 2899void noinline
2332ev_periodic_again (EV_P_ ev_periodic *w) 2900ev_periodic_again (EV_P_ ev_periodic *w)
2333{ 2901{
2339 2907
2340#ifndef SA_RESTART 2908#ifndef SA_RESTART
2341# define SA_RESTART 0 2909# define SA_RESTART 0
2342#endif 2910#endif
2343 2911
2912#if EV_SIGNAL_ENABLE
2913
2344void noinline 2914void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 2915ev_signal_start (EV_P_ ev_signal *w)
2346{ 2916{
2347#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif
2350 if (expect_false (ev_is_active (w))) 2917 if (expect_false (ev_is_active (w)))
2351 return; 2918 return;
2352 2919
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2920 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2354 2921
2355 evpipe_init (EV_A); 2922#if EV_MULTIPLICITY
2923 assert (("libev: a signal must not be attached to two different loops",
2924 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2356 2925
2357 EV_FREQUENT_CHECK; 2926 signals [w->signum - 1].loop = EV_A;
2927#endif
2358 2928
2929 EV_FREQUENT_CHECK;
2930
2931#if EV_USE_SIGNALFD
2932 if (sigfd == -2)
2359 { 2933 {
2360#ifndef _WIN32 2934 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2361 sigset_t full, prev; 2935 if (sigfd < 0 && errno == EINVAL)
2362 sigfillset (&full); 2936 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365 2937
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2938 if (sigfd >= 0)
2939 {
2940 fd_intern (sigfd); /* doing it twice will not hurt */
2367 2941
2368#ifndef _WIN32 2942 sigemptyset (&sigfd_set);
2369 sigprocmask (SIG_SETMASK, &prev, 0); 2943
2370#endif 2944 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2945 ev_set_priority (&sigfd_w, EV_MAXPRI);
2946 ev_io_start (EV_A_ &sigfd_w);
2947 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2948 }
2371 } 2949 }
2950
2951 if (sigfd >= 0)
2952 {
2953 /* TODO: check .head */
2954 sigaddset (&sigfd_set, w->signum);
2955 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2956
2957 signalfd (sigfd, &sigfd_set, 0);
2958 }
2959#endif
2372 2960
2373 ev_start (EV_A_ (W)w, 1); 2961 ev_start (EV_A_ (W)w, 1);
2374 wlist_add (&signals [w->signum - 1].head, (WL)w); 2962 wlist_add (&signals [w->signum - 1].head, (WL)w);
2375 2963
2376 if (!((WL)w)->next) 2964 if (!((WL)w)->next)
2965# if EV_USE_SIGNALFD
2966 if (sigfd < 0) /*TODO*/
2967# endif
2377 { 2968 {
2378#if _WIN32 2969# ifdef _WIN32
2970 evpipe_init (EV_A);
2971
2379 signal (w->signum, ev_sighandler); 2972 signal (w->signum, ev_sighandler);
2380#else 2973# else
2381 struct sigaction sa; 2974 struct sigaction sa;
2975
2976 evpipe_init (EV_A);
2977
2382 sa.sa_handler = ev_sighandler; 2978 sa.sa_handler = ev_sighandler;
2383 sigfillset (&sa.sa_mask); 2979 sigfillset (&sa.sa_mask);
2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2980 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2385 sigaction (w->signum, &sa, 0); 2981 sigaction (w->signum, &sa, 0);
2982
2983 if (origflags & EVFLAG_NOSIGMASK)
2984 {
2985 sigemptyset (&sa.sa_mask);
2986 sigaddset (&sa.sa_mask, w->signum);
2987 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2988 }
2386#endif 2989#endif
2387 } 2990 }
2388 2991
2389 EV_FREQUENT_CHECK; 2992 EV_FREQUENT_CHECK;
2390} 2993}
2391 2994
2392void noinline 2995void noinline
2400 3003
2401 wlist_del (&signals [w->signum - 1].head, (WL)w); 3004 wlist_del (&signals [w->signum - 1].head, (WL)w);
2402 ev_stop (EV_A_ (W)w); 3005 ev_stop (EV_A_ (W)w);
2403 3006
2404 if (!signals [w->signum - 1].head) 3007 if (!signals [w->signum - 1].head)
3008 {
3009#if EV_MULTIPLICITY
3010 signals [w->signum - 1].loop = 0; /* unattach from signal */
3011#endif
3012#if EV_USE_SIGNALFD
3013 if (sigfd >= 0)
3014 {
3015 sigset_t ss;
3016
3017 sigemptyset (&ss);
3018 sigaddset (&ss, w->signum);
3019 sigdelset (&sigfd_set, w->signum);
3020
3021 signalfd (sigfd, &sigfd_set, 0);
3022 sigprocmask (SIG_UNBLOCK, &ss, 0);
3023 }
3024 else
3025#endif
2405 signal (w->signum, SIG_DFL); 3026 signal (w->signum, SIG_DFL);
3027 }
2406 3028
2407 EV_FREQUENT_CHECK; 3029 EV_FREQUENT_CHECK;
2408} 3030}
3031
3032#endif
3033
3034#if EV_CHILD_ENABLE
2409 3035
2410void 3036void
2411ev_child_start (EV_P_ ev_child *w) 3037ev_child_start (EV_P_ ev_child *w)
2412{ 3038{
2413#if EV_MULTIPLICITY 3039#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3040 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 3041#endif
2416 if (expect_false (ev_is_active (w))) 3042 if (expect_false (ev_is_active (w)))
2417 return; 3043 return;
2418 3044
2419 EV_FREQUENT_CHECK; 3045 EV_FREQUENT_CHECK;
2420 3046
2421 ev_start (EV_A_ (W)w, 1); 3047 ev_start (EV_A_ (W)w, 1);
2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3048 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2423 3049
2424 EV_FREQUENT_CHECK; 3050 EV_FREQUENT_CHECK;
2425} 3051}
2426 3052
2427void 3053void
2431 if (expect_false (!ev_is_active (w))) 3057 if (expect_false (!ev_is_active (w)))
2432 return; 3058 return;
2433 3059
2434 EV_FREQUENT_CHECK; 3060 EV_FREQUENT_CHECK;
2435 3061
2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3062 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2437 ev_stop (EV_A_ (W)w); 3063 ev_stop (EV_A_ (W)w);
2438 3064
2439 EV_FREQUENT_CHECK; 3065 EV_FREQUENT_CHECK;
2440} 3066}
3067
3068#endif
2441 3069
2442#if EV_STAT_ENABLE 3070#if EV_STAT_ENABLE
2443 3071
2444# ifdef _WIN32 3072# ifdef _WIN32
2445# undef lstat 3073# undef lstat
2451#define MIN_STAT_INTERVAL 0.1074891 3079#define MIN_STAT_INTERVAL 0.1074891
2452 3080
2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3081static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2454 3082
2455#if EV_USE_INOTIFY 3083#if EV_USE_INOTIFY
2456# define EV_INOTIFY_BUFSIZE 8192 3084
3085/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3086# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2457 3087
2458static void noinline 3088static void noinline
2459infy_add (EV_P_ ev_stat *w) 3089infy_add (EV_P_ ev_stat *w)
2460{ 3090{
2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3091 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2462 3092
2463 if (w->wd < 0) 3093 if (w->wd >= 0)
3094 {
3095 struct statfs sfs;
3096
3097 /* now local changes will be tracked by inotify, but remote changes won't */
3098 /* unless the filesystem is known to be local, we therefore still poll */
3099 /* also do poll on <2.6.25, but with normal frequency */
3100
3101 if (!fs_2625)
3102 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3103 else if (!statfs (w->path, &sfs)
3104 && (sfs.f_type == 0x1373 /* devfs */
3105 || sfs.f_type == 0xEF53 /* ext2/3 */
3106 || sfs.f_type == 0x3153464a /* jfs */
3107 || sfs.f_type == 0x52654973 /* reiser3 */
3108 || sfs.f_type == 0x01021994 /* tempfs */
3109 || sfs.f_type == 0x58465342 /* xfs */))
3110 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3111 else
3112 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2464 { 3113 }
3114 else
3115 {
3116 /* can't use inotify, continue to stat */
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 3117 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2467 3118
2468 /* monitor some parent directory for speedup hints */ 3119 /* if path is not there, monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3120 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */ 3121 /* but an efficiency issue only */
2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3122 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2472 { 3123 {
2473 char path [4096]; 3124 char path [4096];
2483 if (!pend || pend == path) 3134 if (!pend || pend == path)
2484 break; 3135 break;
2485 3136
2486 *pend = 0; 3137 *pend = 0;
2487 w->wd = inotify_add_watch (fs_fd, path, mask); 3138 w->wd = inotify_add_watch (fs_fd, path, mask);
2488 } 3139 }
2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3140 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2490 } 3141 }
2491 } 3142 }
2492 3143
2493 if (w->wd >= 0) 3144 if (w->wd >= 0)
2494 {
2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3145 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2496 3146
2497 /* now local changes will be tracked by inotify, but remote changes won't */ 3147 /* now re-arm timer, if required */
2498 /* unless the filesystem it known to be local, we therefore still poll */ 3148 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer); 3149 ev_timer_again (EV_A_ &w->timer);
2513 } 3150 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2514} 3151}
2515 3152
2516static void noinline 3153static void noinline
2517infy_del (EV_P_ ev_stat *w) 3154infy_del (EV_P_ ev_stat *w)
2518{ 3155{
2521 3158
2522 if (wd < 0) 3159 if (wd < 0)
2523 return; 3160 return;
2524 3161
2525 w->wd = -2; 3162 w->wd = -2;
2526 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3163 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2527 wlist_del (&fs_hash [slot].head, (WL)w); 3164 wlist_del (&fs_hash [slot].head, (WL)w);
2528 3165
2529 /* remove this watcher, if others are watching it, they will rearm */ 3166 /* remove this watcher, if others are watching it, they will rearm */
2530 inotify_rm_watch (fs_fd, wd); 3167 inotify_rm_watch (fs_fd, wd);
2531} 3168}
2533static void noinline 3170static void noinline
2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3171infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2535{ 3172{
2536 if (slot < 0) 3173 if (slot < 0)
2537 /* overflow, need to check for all hash slots */ 3174 /* overflow, need to check for all hash slots */
2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3175 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2539 infy_wd (EV_A_ slot, wd, ev); 3176 infy_wd (EV_A_ slot, wd, ev);
2540 else 3177 else
2541 { 3178 {
2542 WL w_; 3179 WL w_;
2543 3180
2544 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3181 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2545 { 3182 {
2546 ev_stat *w = (ev_stat *)w_; 3183 ev_stat *w = (ev_stat *)w_;
2547 w_ = w_->next; /* lets us remove this watcher and all before it */ 3184 w_ = w_->next; /* lets us remove this watcher and all before it */
2548 3185
2549 if (w->wd == wd || wd == -1) 3186 if (w->wd == wd || wd == -1)
2550 { 3187 {
2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3188 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2552 { 3189 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3190 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2554 w->wd = -1; 3191 w->wd = -1;
2555 infy_add (EV_A_ w); /* re-add, no matter what */ 3192 infy_add (EV_A_ w); /* re-add, no matter what */
2556 } 3193 }
2557 3194
2558 stat_timer_cb (EV_A_ &w->timer, 0); 3195 stat_timer_cb (EV_A_ &w->timer, 0);
2563 3200
2564static void 3201static void
2565infy_cb (EV_P_ ev_io *w, int revents) 3202infy_cb (EV_P_ ev_io *w, int revents)
2566{ 3203{
2567 char buf [EV_INOTIFY_BUFSIZE]; 3204 char buf [EV_INOTIFY_BUFSIZE];
2568 struct inotify_event *ev = (struct inotify_event *)buf;
2569 int ofs; 3205 int ofs;
2570 int len = read (fs_fd, buf, sizeof (buf)); 3206 int len = read (fs_fd, buf, sizeof (buf));
2571 3207
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3208 for (ofs = 0; ofs < len; )
3209 {
3210 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3211 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3212 ofs += sizeof (struct inotify_event) + ev->len;
3213 }
2574} 3214}
2575 3215
2576void inline_size 3216inline_size void
2577check_2625 (EV_P) 3217ev_check_2625 (EV_P)
2578{ 3218{
2579 /* kernels < 2.6.25 are borked 3219 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3220 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */ 3221 */
2582 struct utsname buf; 3222 if (ev_linux_version () < 0x020619)
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return; 3223 return;
2587 3224
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1; 3225 fs_2625 = 1;
2597} 3226}
2598 3227
2599void inline_size 3228inline_size int
3229infy_newfd (void)
3230{
3231#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3232 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3233 if (fd >= 0)
3234 return fd;
3235#endif
3236 return inotify_init ();
3237}
3238
3239inline_size void
2600infy_init (EV_P) 3240infy_init (EV_P)
2601{ 3241{
2602 if (fs_fd != -2) 3242 if (fs_fd != -2)
2603 return; 3243 return;
2604 3244
2605 fs_fd = -1; 3245 fs_fd = -1;
2606 3246
2607 check_2625 (EV_A); 3247 ev_check_2625 (EV_A);
2608 3248
2609 fs_fd = inotify_init (); 3249 fs_fd = infy_newfd ();
2610 3250
2611 if (fs_fd >= 0) 3251 if (fs_fd >= 0)
2612 { 3252 {
3253 fd_intern (fs_fd);
2613 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3254 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2614 ev_set_priority (&fs_w, EV_MAXPRI); 3255 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w); 3256 ev_io_start (EV_A_ &fs_w);
3257 ev_unref (EV_A);
2616 } 3258 }
2617} 3259}
2618 3260
2619void inline_size 3261inline_size void
2620infy_fork (EV_P) 3262infy_fork (EV_P)
2621{ 3263{
2622 int slot; 3264 int slot;
2623 3265
2624 if (fs_fd < 0) 3266 if (fs_fd < 0)
2625 return; 3267 return;
2626 3268
3269 ev_ref (EV_A);
3270 ev_io_stop (EV_A_ &fs_w);
2627 close (fs_fd); 3271 close (fs_fd);
2628 fs_fd = inotify_init (); 3272 fs_fd = infy_newfd ();
2629 3273
3274 if (fs_fd >= 0)
3275 {
3276 fd_intern (fs_fd);
3277 ev_io_set (&fs_w, fs_fd, EV_READ);
3278 ev_io_start (EV_A_ &fs_w);
3279 ev_unref (EV_A);
3280 }
3281
2630 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3282 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2631 { 3283 {
2632 WL w_ = fs_hash [slot].head; 3284 WL w_ = fs_hash [slot].head;
2633 fs_hash [slot].head = 0; 3285 fs_hash [slot].head = 0;
2634 3286
2635 while (w_) 3287 while (w_)
2640 w->wd = -1; 3292 w->wd = -1;
2641 3293
2642 if (fs_fd >= 0) 3294 if (fs_fd >= 0)
2643 infy_add (EV_A_ w); /* re-add, no matter what */ 3295 infy_add (EV_A_ w); /* re-add, no matter what */
2644 else 3296 else
3297 {
3298 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3299 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2645 ev_timer_again (EV_A_ &w->timer); 3300 ev_timer_again (EV_A_ &w->timer);
3301 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3302 }
2646 } 3303 }
2647 } 3304 }
2648} 3305}
2649 3306
2650#endif 3307#endif
2667static void noinline 3324static void noinline
2668stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3325stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2669{ 3326{
2670 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3327 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2671 3328
2672 /* we copy this here each the time so that */ 3329 ev_statdata prev = w->attr;
2673 /* prev has the old value when the callback gets invoked */
2674 w->prev = w->attr;
2675 ev_stat_stat (EV_A_ w); 3330 ev_stat_stat (EV_A_ w);
2676 3331
2677 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3332 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2678 if ( 3333 if (
2679 w->prev.st_dev != w->attr.st_dev 3334 prev.st_dev != w->attr.st_dev
2680 || w->prev.st_ino != w->attr.st_ino 3335 || prev.st_ino != w->attr.st_ino
2681 || w->prev.st_mode != w->attr.st_mode 3336 || prev.st_mode != w->attr.st_mode
2682 || w->prev.st_nlink != w->attr.st_nlink 3337 || prev.st_nlink != w->attr.st_nlink
2683 || w->prev.st_uid != w->attr.st_uid 3338 || prev.st_uid != w->attr.st_uid
2684 || w->prev.st_gid != w->attr.st_gid 3339 || prev.st_gid != w->attr.st_gid
2685 || w->prev.st_rdev != w->attr.st_rdev 3340 || prev.st_rdev != w->attr.st_rdev
2686 || w->prev.st_size != w->attr.st_size 3341 || prev.st_size != w->attr.st_size
2687 || w->prev.st_atime != w->attr.st_atime 3342 || prev.st_atime != w->attr.st_atime
2688 || w->prev.st_mtime != w->attr.st_mtime 3343 || prev.st_mtime != w->attr.st_mtime
2689 || w->prev.st_ctime != w->attr.st_ctime 3344 || prev.st_ctime != w->attr.st_ctime
2690 ) { 3345 ) {
3346 /* we only update w->prev on actual differences */
3347 /* in case we test more often than invoke the callback, */
3348 /* to ensure that prev is always different to attr */
3349 w->prev = prev;
3350
2691 #if EV_USE_INOTIFY 3351 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0) 3352 if (fs_fd >= 0)
2693 { 3353 {
2694 infy_del (EV_A_ w); 3354 infy_del (EV_A_ w);
2695 infy_add (EV_A_ w); 3355 infy_add (EV_A_ w);
2720 3380
2721 if (fs_fd >= 0) 3381 if (fs_fd >= 0)
2722 infy_add (EV_A_ w); 3382 infy_add (EV_A_ w);
2723 else 3383 else
2724#endif 3384#endif
3385 {
2725 ev_timer_again (EV_A_ &w->timer); 3386 ev_timer_again (EV_A_ &w->timer);
3387 ev_unref (EV_A);
3388 }
2726 3389
2727 ev_start (EV_A_ (W)w, 1); 3390 ev_start (EV_A_ (W)w, 1);
2728 3391
2729 EV_FREQUENT_CHECK; 3392 EV_FREQUENT_CHECK;
2730} 3393}
2739 EV_FREQUENT_CHECK; 3402 EV_FREQUENT_CHECK;
2740 3403
2741#if EV_USE_INOTIFY 3404#if EV_USE_INOTIFY
2742 infy_del (EV_A_ w); 3405 infy_del (EV_A_ w);
2743#endif 3406#endif
3407
3408 if (ev_is_active (&w->timer))
3409 {
3410 ev_ref (EV_A);
2744 ev_timer_stop (EV_A_ &w->timer); 3411 ev_timer_stop (EV_A_ &w->timer);
3412 }
2745 3413
2746 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
2747 3415
2748 EV_FREQUENT_CHECK; 3416 EV_FREQUENT_CHECK;
2749} 3417}
2794 3462
2795 EV_FREQUENT_CHECK; 3463 EV_FREQUENT_CHECK;
2796} 3464}
2797#endif 3465#endif
2798 3466
3467#if EV_PREPARE_ENABLE
2799void 3468void
2800ev_prepare_start (EV_P_ ev_prepare *w) 3469ev_prepare_start (EV_P_ ev_prepare *w)
2801{ 3470{
2802 if (expect_false (ev_is_active (w))) 3471 if (expect_false (ev_is_active (w)))
2803 return; 3472 return;
2829 3498
2830 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
2831 3500
2832 EV_FREQUENT_CHECK; 3501 EV_FREQUENT_CHECK;
2833} 3502}
3503#endif
2834 3504
3505#if EV_CHECK_ENABLE
2835void 3506void
2836ev_check_start (EV_P_ ev_check *w) 3507ev_check_start (EV_P_ ev_check *w)
2837{ 3508{
2838 if (expect_false (ev_is_active (w))) 3509 if (expect_false (ev_is_active (w)))
2839 return; 3510 return;
2865 3536
2866 ev_stop (EV_A_ (W)w); 3537 ev_stop (EV_A_ (W)w);
2867 3538
2868 EV_FREQUENT_CHECK; 3539 EV_FREQUENT_CHECK;
2869} 3540}
3541#endif
2870 3542
2871#if EV_EMBED_ENABLE 3543#if EV_EMBED_ENABLE
2872void noinline 3544void noinline
2873ev_embed_sweep (EV_P_ ev_embed *w) 3545ev_embed_sweep (EV_P_ ev_embed *w)
2874{ 3546{
2875 ev_loop (w->other, EVLOOP_NONBLOCK); 3547 ev_run (w->other, EVRUN_NOWAIT);
2876} 3548}
2877 3549
2878static void 3550static void
2879embed_io_cb (EV_P_ ev_io *io, int revents) 3551embed_io_cb (EV_P_ ev_io *io, int revents)
2880{ 3552{
2881 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3553 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2882 3554
2883 if (ev_cb (w)) 3555 if (ev_cb (w))
2884 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3556 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2885 else 3557 else
2886 ev_loop (w->other, EVLOOP_NONBLOCK); 3558 ev_run (w->other, EVRUN_NOWAIT);
2887} 3559}
2888 3560
2889static void 3561static void
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3562embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{ 3563{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3564 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893 3565
2894 { 3566 {
2895 struct ev_loop *loop = w->other; 3567 EV_P = w->other;
2896 3568
2897 while (fdchangecnt) 3569 while (fdchangecnt)
2898 { 3570 {
2899 fd_reify (EV_A); 3571 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3572 ev_run (EV_A_ EVRUN_NOWAIT);
2901 } 3573 }
2902 } 3574 }
2903} 3575}
2904 3576
2905static void 3577static void
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3580 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909 3581
2910 ev_embed_stop (EV_A_ w); 3582 ev_embed_stop (EV_A_ w);
2911 3583
2912 { 3584 {
2913 struct ev_loop *loop = w->other; 3585 EV_P = w->other;
2914 3586
2915 ev_loop_fork (EV_A); 3587 ev_loop_fork (EV_A);
2916 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3588 ev_run (EV_A_ EVRUN_NOWAIT);
2917 } 3589 }
2918 3590
2919 ev_embed_start (EV_A_ w); 3591 ev_embed_start (EV_A_ w);
2920} 3592}
2921 3593
2932{ 3604{
2933 if (expect_false (ev_is_active (w))) 3605 if (expect_false (ev_is_active (w)))
2934 return; 3606 return;
2935 3607
2936 { 3608 {
2937 struct ev_loop *loop = w->other; 3609 EV_P = w->other;
2938 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3610 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2939 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3611 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2940 } 3612 }
2941 3613
2942 EV_FREQUENT_CHECK; 3614 EV_FREQUENT_CHECK;
2943 3615
2969 3641
2970 ev_io_stop (EV_A_ &w->io); 3642 ev_io_stop (EV_A_ &w->io);
2971 ev_prepare_stop (EV_A_ &w->prepare); 3643 ev_prepare_stop (EV_A_ &w->prepare);
2972 ev_fork_stop (EV_A_ &w->fork); 3644 ev_fork_stop (EV_A_ &w->fork);
2973 3645
3646 ev_stop (EV_A_ (W)w);
3647
2974 EV_FREQUENT_CHECK; 3648 EV_FREQUENT_CHECK;
2975} 3649}
2976#endif 3650#endif
2977 3651
2978#if EV_FORK_ENABLE 3652#if EV_FORK_ENABLE
3011 3685
3012 EV_FREQUENT_CHECK; 3686 EV_FREQUENT_CHECK;
3013} 3687}
3014#endif 3688#endif
3015 3689
3016#if EV_ASYNC_ENABLE 3690#if EV_CLEANUP_ENABLE
3017void 3691void
3018ev_async_start (EV_P_ ev_async *w) 3692ev_cleanup_start (EV_P_ ev_cleanup *w)
3019{ 3693{
3020 if (expect_false (ev_is_active (w))) 3694 if (expect_false (ev_is_active (w)))
3021 return; 3695 return;
3696
3697 EV_FREQUENT_CHECK;
3698
3699 ev_start (EV_A_ (W)w, ++cleanupcnt);
3700 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3701 cleanups [cleanupcnt - 1] = w;
3702
3703 /* cleanup watchers should never keep a refcount on the loop */
3704 ev_unref (EV_A);
3705 EV_FREQUENT_CHECK;
3706}
3707
3708void
3709ev_cleanup_stop (EV_P_ ev_cleanup *w)
3710{
3711 clear_pending (EV_A_ (W)w);
3712 if (expect_false (!ev_is_active (w)))
3713 return;
3714
3715 EV_FREQUENT_CHECK;
3716 ev_ref (EV_A);
3717
3718 {
3719 int active = ev_active (w);
3720
3721 cleanups [active - 1] = cleanups [--cleanupcnt];
3722 ev_active (cleanups [active - 1]) = active;
3723 }
3724
3725 ev_stop (EV_A_ (W)w);
3726
3727 EV_FREQUENT_CHECK;
3728}
3729#endif
3730
3731#if EV_ASYNC_ENABLE
3732void
3733ev_async_start (EV_P_ ev_async *w)
3734{
3735 if (expect_false (ev_is_active (w)))
3736 return;
3737
3738 w->sent = 0;
3022 3739
3023 evpipe_init (EV_A); 3740 evpipe_init (EV_A);
3024 3741
3025 EV_FREQUENT_CHECK; 3742 EV_FREQUENT_CHECK;
3026 3743
3054 3771
3055void 3772void
3056ev_async_send (EV_P_ ev_async *w) 3773ev_async_send (EV_P_ ev_async *w)
3057{ 3774{
3058 w->sent = 1; 3775 w->sent = 1;
3059 evpipe_write (EV_A_ &gotasync); 3776 evpipe_write (EV_A_ &async_pending);
3060} 3777}
3061#endif 3778#endif
3062 3779
3063/*****************************************************************************/ 3780/*****************************************************************************/
3064 3781
3104{ 3821{
3105 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3822 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3106 3823
3107 if (expect_false (!once)) 3824 if (expect_false (!once))
3108 { 3825 {
3109 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3826 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3110 return; 3827 return;
3111 } 3828 }
3112 3829
3113 once->cb = cb; 3830 once->cb = cb;
3114 once->arg = arg; 3831 once->arg = arg;
3126 ev_timer_set (&once->to, timeout, 0.); 3843 ev_timer_set (&once->to, timeout, 0.);
3127 ev_timer_start (EV_A_ &once->to); 3844 ev_timer_start (EV_A_ &once->to);
3128 } 3845 }
3129} 3846}
3130 3847
3848/*****************************************************************************/
3849
3850#if EV_WALK_ENABLE
3851void
3852ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3853{
3854 int i, j;
3855 ev_watcher_list *wl, *wn;
3856
3857 if (types & (EV_IO | EV_EMBED))
3858 for (i = 0; i < anfdmax; ++i)
3859 for (wl = anfds [i].head; wl; )
3860 {
3861 wn = wl->next;
3862
3863#if EV_EMBED_ENABLE
3864 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3865 {
3866 if (types & EV_EMBED)
3867 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3868 }
3869 else
3870#endif
3871#if EV_USE_INOTIFY
3872 if (ev_cb ((ev_io *)wl) == infy_cb)
3873 ;
3874 else
3875#endif
3876 if ((ev_io *)wl != &pipe_w)
3877 if (types & EV_IO)
3878 cb (EV_A_ EV_IO, wl);
3879
3880 wl = wn;
3881 }
3882
3883 if (types & (EV_TIMER | EV_STAT))
3884 for (i = timercnt + HEAP0; i-- > HEAP0; )
3885#if EV_STAT_ENABLE
3886 /*TODO: timer is not always active*/
3887 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3888 {
3889 if (types & EV_STAT)
3890 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3891 }
3892 else
3893#endif
3894 if (types & EV_TIMER)
3895 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3896
3897#if EV_PERIODIC_ENABLE
3898 if (types & EV_PERIODIC)
3899 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3900 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3901#endif
3902
3903#if EV_IDLE_ENABLE
3904 if (types & EV_IDLE)
3905 for (j = NUMPRI; i--; )
3906 for (i = idlecnt [j]; i--; )
3907 cb (EV_A_ EV_IDLE, idles [j][i]);
3908#endif
3909
3910#if EV_FORK_ENABLE
3911 if (types & EV_FORK)
3912 for (i = forkcnt; i--; )
3913 if (ev_cb (forks [i]) != embed_fork_cb)
3914 cb (EV_A_ EV_FORK, forks [i]);
3915#endif
3916
3917#if EV_ASYNC_ENABLE
3918 if (types & EV_ASYNC)
3919 for (i = asynccnt; i--; )
3920 cb (EV_A_ EV_ASYNC, asyncs [i]);
3921#endif
3922
3923#if EV_PREPARE_ENABLE
3924 if (types & EV_PREPARE)
3925 for (i = preparecnt; i--; )
3926# if EV_EMBED_ENABLE
3927 if (ev_cb (prepares [i]) != embed_prepare_cb)
3928# endif
3929 cb (EV_A_ EV_PREPARE, prepares [i]);
3930#endif
3931
3932#if EV_CHECK_ENABLE
3933 if (types & EV_CHECK)
3934 for (i = checkcnt; i--; )
3935 cb (EV_A_ EV_CHECK, checks [i]);
3936#endif
3937
3938#if EV_SIGNAL_ENABLE
3939 if (types & EV_SIGNAL)
3940 for (i = 0; i < EV_NSIG - 1; ++i)
3941 for (wl = signals [i].head; wl; )
3942 {
3943 wn = wl->next;
3944 cb (EV_A_ EV_SIGNAL, wl);
3945 wl = wn;
3946 }
3947#endif
3948
3949#if EV_CHILD_ENABLE
3950 if (types & EV_CHILD)
3951 for (i = (EV_PID_HASHSIZE); i--; )
3952 for (wl = childs [i]; wl; )
3953 {
3954 wn = wl->next;
3955 cb (EV_A_ EV_CHILD, wl);
3956 wl = wn;
3957 }
3958#endif
3959/* EV_STAT 0x00001000 /* stat data changed */
3960/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3961}
3962#endif
3963
3131#if EV_MULTIPLICITY 3964#if EV_MULTIPLICITY
3132 #include "ev_wrap.h" 3965 #include "ev_wrap.h"
3133#endif 3966#endif
3134 3967
3135#ifdef __cplusplus 3968EV_CPP(})
3136}
3137#endif
3138 3969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines