ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.378 by root, Mon Jun 13 09:52:36 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
274# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
275extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
276# endif 415# endif
277int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 417# ifdef O_CLOEXEC
279} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
280# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
281#endif 446#endif
282 447
283/**/ 448/**/
284 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
285/* 456/*
286 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 468
299#if __GNUC__ >= 4 469#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
302#else 472#else
309 479
310#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 482#define inline_size static inline
313 483
314#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
315# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
316#else 494#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
322 497
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
325 500
326typedef ev_watcher *W; 501typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
329 504
505#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 506#define ev_at(w) ((WT)(w))->at
331 507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
332#if EV_USE_MONOTONIC 514#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 526#endif
337 527
338#ifdef _WIN32 528#ifdef _WIN32
339# include "ev_win32.c" 529# include "ev_win32.c"
340#endif 530#endif
341 531
342/*****************************************************************************/ 532/*****************************************************************************/
343 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
344static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
345 633
346void 634void
347ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
348{ 636{
349 syserr_cb = cb; 637 syserr_cb = cb;
350} 638}
351 639
352static void noinline 640static void noinline
353syserr (const char *msg) 641ev_syserr (const char *msg)
354{ 642{
355 if (!msg) 643 if (!msg)
356 msg = "(libev) system error"; 644 msg = "(libev) system error";
357 645
358 if (syserr_cb) 646 if (syserr_cb)
359 syserr_cb (msg); 647 syserr_cb (msg);
360 else 648 else
361 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
362 perror (msg); 656 perror (msg);
657#endif
363 abort (); 658 abort ();
364 } 659 }
365} 660}
366 661
367static void * 662static void *
368ev_realloc_emul (void *ptr, long size) 663ev_realloc_emul (void *ptr, long size)
369{ 664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
370 /* some systems, notably openbsd and darwin, fail to properly 668 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 669 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 670 * the single unix specification, so work around them here.
373 */ 671 */
374 672
375 if (size) 673 if (size)
376 return realloc (ptr, size); 674 return realloc (ptr, size);
377 675
378 free (ptr); 676 free (ptr);
379 return 0; 677 return 0;
678#endif
380} 679}
381 680
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
383 682
384void 683void
392{ 691{
393 ptr = alloc (ptr, size); 692 ptr = alloc (ptr, size);
394 693
395 if (!ptr && size) 694 if (!ptr && size)
396 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
398 abort (); 701 abort ();
399 } 702 }
400 703
401 return ptr; 704 return ptr;
402} 705}
404#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
406 709
407/*****************************************************************************/ 710/*****************************************************************************/
408 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
409typedef struct 716typedef struct
410{ 717{
411 WL head; 718 WL head;
412 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
414#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
415 SOCKET handle; 727 SOCKET handle;
416#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
417} ANFD; 732} ANFD;
418 733
734/* stores the pending event set for a given watcher */
419typedef struct 735typedef struct
420{ 736{
421 W w; 737 W w;
422 int events; 738 int events; /* the pending event set for the given watcher */
423} ANPENDING; 739} ANPENDING;
424 740
425#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
426typedef struct 743typedef struct
427{ 744{
428 WL head; 745 WL head;
429} ANFS; 746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
430#endif 767#endif
431 768
432#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
433 770
434 struct ev_loop 771 struct ev_loop
453 790
454 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
455 792
456#endif 793#endif
457 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
458/*****************************************************************************/ 807/*****************************************************************************/
459 808
809#ifndef EV_HAVE_EV_TIME
460ev_tstamp 810ev_tstamp
461ev_time (void) 811ev_time (void)
462{ 812{
463#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
464 struct timespec ts; 816 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 819 }
820#endif
821
468 struct timeval tv; 822 struct timeval tv;
469 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 825}
826#endif
473 827
474ev_tstamp inline_size 828inline_size ev_tstamp
475get_clock (void) 829get_clock (void)
476{ 830{
477#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
479 { 833 {
500 if (delay > 0.) 854 if (delay > 0.)
501 { 855 {
502#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
503 struct timespec ts; 857 struct timespec ts;
504 858
505 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
509#elif defined(_WIN32) 861#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3)); 862 Sleep ((unsigned long)(delay * 1e3));
511#else 863#else
512 struct timeval tv; 864 struct timeval tv;
513 865
514 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
516 868 /* by older ones */
869 EV_TV_SET (tv, delay);
517 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
518#endif 871#endif
519 } 872 }
520} 873}
521 874
522/*****************************************************************************/ 875/*****************************************************************************/
523 876
524int inline_size 877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
525array_nextsize (int elem, int cur, int cnt) 882array_nextsize (int elem, int cur, int cnt)
526{ 883{
527 int ncur = cur + 1; 884 int ncur = cur + 1;
528 885
529 do 886 do
530 ncur <<= 1; 887 ncur <<= 1;
531 while (cnt > ncur); 888 while (cnt > ncur);
532 889
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 892 {
536 ncur *= elem; 893 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 895 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 896 ncur /= elem;
540 } 897 }
541 898
542 return ncur; 899 return ncur;
546array_realloc (int elem, void *base, int *cur, int cnt) 903array_realloc (int elem, void *base, int *cur, int cnt)
547{ 904{
548 *cur = array_nextsize (elem, *cur, cnt); 905 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 906 return ev_realloc (base, elem * *cur);
550} 907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 911
552#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 913 if (expect_false ((cnt) > (cur))) \
554 { \ 914 { \
555 int ocur_ = (cur); \ 915 int ocur_ = (cur); \
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 928 }
569#endif 929#endif
570 930
571#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 933
574/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
575 941
576void noinline 942void noinline
577ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
578{ 944{
579 W w_ = (W)w; 945 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 954 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 955 pendings [pri][w_->pending - 1].events = revents;
590 } 956 }
591} 957}
592 958
593void inline_speed 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 976{
596 int i; 977 int i;
597 978
598 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
600} 981}
601 982
602/*****************************************************************************/ 983/*****************************************************************************/
603 984
604void inline_size 985inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
619{ 987{
620 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
621 ev_io *w; 989 ev_io *w;
622 990
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 995 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
629 } 997 }
630} 998}
631 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
632void 1011void
633ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
634{ 1013{
635 if (fd >= 0 && fd < anfdmax) 1014 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
637} 1016}
638 1017
639void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
640fd_reify (EV_P) 1021fd_reify (EV_P)
641{ 1022{
642 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
643 1049
644 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
645 { 1051 {
646 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
647 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
648 ev_io *w; 1054 ev_io *w;
649 1055
650 unsigned char events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
651 1058
652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
653 events |= (unsigned char)w->events;
654 1060
655#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
656 if (events)
657 { 1062 {
658 unsigned long argp; 1063 anfd->events = 0;
659 #ifdef EV_FD_TO_WIN32_HANDLE 1064
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
661 #else 1066 anfd->events |= (unsigned char)w->events;
662 anfd->handle = _get_osfhandle (fd); 1067
663 #endif 1068 if (o_events != anfd->events)
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1069 o_reify = EV__IOFDSET; /* actually |= */
665 } 1070 }
666#endif
667 1071
668 { 1072 if (o_reify & EV__IOFDSET)
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
672 anfd->reify = 0;
673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
677 }
678 } 1074 }
679 1075
680 fdchangecnt = 0; 1076 fdchangecnt = 0;
681} 1077}
682 1078
683void inline_size 1079/* something about the given fd changed */
1080inline_size void
684fd_change (EV_P_ int fd, int flags) 1081fd_change (EV_P_ int fd, int flags)
685{ 1082{
686 unsigned char reify = anfds [fd].reify; 1083 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 1084 anfds [fd].reify |= flags;
688 1085
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
694 } 1091 }
695} 1092}
696 1093
697void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
698fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
699{ 1097{
700 ev_io *w; 1098 ev_io *w;
701 1099
702 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 1104 }
707} 1105}
708 1106
709int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
710fd_valid (int fd) 1109fd_valid (int fd)
711{ 1110{
712#ifdef _WIN32 1111#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 1113#else
715 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
716#endif 1115#endif
717} 1116}
718 1117
722{ 1121{
723 int fd; 1122 int fd;
724 1123
725 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1125 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
729} 1128}
730 1129
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1131static void noinline
736 1135
737 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1137 if (anfds [fd].events)
739 { 1138 {
740 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
741 return; 1140 break;
742 } 1141 }
743} 1142}
744 1143
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1145static void noinline
750 1149
751 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1151 if (anfds [fd].events)
753 { 1152 {
754 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
1154 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1156 }
757} 1157}
758 1158
759/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
760 1160/* this is not fork-safe */
761/* towards the root */ 1161inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1162fd_intern (int fd)
849{ 1163{
850#ifdef _WIN32 1164#ifdef _WIN32
851 int arg = 1; 1165 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1167#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1170#endif
857} 1171}
858 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
859static void noinline 1336static void noinline
860evpipe_init (EV_P) 1337evpipe_init (EV_P)
861{ 1338{
862 if (!ev_is_active (&pipeev)) 1339 if (!ev_is_active (&pipe_w))
863 { 1340 {
864#if EV_USE_EVENTFD 1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
866 { 1347 {
867 evpipe [0] = -1; 1348 evpipe [0] = -1;
868 fd_intern (evfd); 1349 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1350 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1351 }
871 else 1352 else
872#endif 1353# endif
873 { 1354 {
874 while (pipe (evpipe)) 1355 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1356 ev_syserr ("(libev) error creating signal/async pipe");
876 1357
877 fd_intern (evpipe [0]); 1358 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1359 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1361 }
881 1362
882 ev_io_start (EV_A_ &pipeev); 1363 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1365 }
885} 1366}
886 1367
887void inline_size 1368inline_size void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1370{
890 if (!*flag) 1371 if (!*flag)
891 { 1372 {
892 int old_errno = errno; /* save errno because write might clobber it */
893
894 *flag = 1; 1373 *flag = 1;
895 1374
1375 pipe_write_skipped = 1;
1376
1377 if (pipe_write_wanted)
1378 {
1379 int old_errno = errno; /* save errno because write will clobber it */
1380 char dummy;
1381
1382 pipe_write_skipped = 0;
1383
1384#if EV_USE_EVENTFD
1385 if (evfd >= 0)
1386 {
1387 uint64_t counter = 1;
1388 write (evfd, &counter, sizeof (uint64_t));
1389 }
1390 else
1391#endif
1392 {
1393 /* win32 people keep sending patches that change this write() to send() */
1394 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1395 /* so when you think this write should be a send instead, please find out */
1396 /* where your send() is from - it's definitely not the microsoft send, and */
1397 /* tell me. thank you. */
1398 write (evpipe [1], &dummy, 1);
1399 }
1400
1401 errno = old_errno;
1402 }
1403 }
1404}
1405
1406/* called whenever the libev signal pipe */
1407/* got some events (signal, async) */
1408static void
1409pipecb (EV_P_ ev_io *iow, int revents)
1410{
1411 int i;
1412
1413 if (revents & EV_READ)
1414 {
896#if EV_USE_EVENTFD 1415#if EV_USE_EVENTFD
897 if (evfd >= 0) 1416 if (evfd >= 0)
898 { 1417 {
899 uint64_t counter = 1; 1418 uint64_t counter;
900 write (evfd, &counter, sizeof (uint64_t)); 1419 read (evfd, &counter, sizeof (uint64_t));
901 } 1420 }
902 else 1421 else
903#endif 1422#endif
904 write (evpipe [1], &old_errno, 1); 1423 {
905
906 errno = old_errno;
907 }
908}
909
910static void
911pipecb (EV_P_ ev_io *iow, int revents)
912{
913#if EV_USE_EVENTFD
914 if (evfd >= 0)
915 {
916 uint64_t counter = 1;
917 read (evfd, &counter, sizeof (uint64_t));
918 }
919 else
920#endif
921 {
922 char dummy; 1424 char dummy;
1425 /* see discussion in evpipe_write when you think this read should be recv in win32 */
923 read (evpipe [0], &dummy, 1); 1426 read (evpipe [0], &dummy, 1);
1427 }
1428 }
1429
1430 pipe_write_skipped = 0;
1431
1432#if EV_SIGNAL_ENABLE
1433 if (sig_pending)
924 } 1434 {
1435 sig_pending = 0;
925 1436
926 if (gotsig && ev_is_default_loop (EV_A)) 1437 for (i = EV_NSIG - 1; i--; )
927 { 1438 if (expect_false (signals [i].pending))
928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1); 1439 ev_feed_signal_event (EV_A_ i + 1);
934 } 1440 }
1441#endif
935 1442
936#if EV_ASYNC_ENABLE 1443#if EV_ASYNC_ENABLE
937 if (gotasync) 1444 if (async_pending)
938 { 1445 {
939 int i; 1446 async_pending = 0;
940 gotasync = 0;
941 1447
942 for (i = asynccnt; i--; ) 1448 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 1449 if (asyncs [i]->sent)
944 { 1450 {
945 asyncs [i]->sent = 0; 1451 asyncs [i]->sent = 0;
949#endif 1455#endif
950} 1456}
951 1457
952/*****************************************************************************/ 1458/*****************************************************************************/
953 1459
1460void
1461ev_feed_signal (int signum)
1462{
1463#if EV_MULTIPLICITY
1464 EV_P = signals [signum - 1].loop;
1465
1466 if (!EV_A)
1467 return;
1468#endif
1469
1470 evpipe_init (EV_A);
1471
1472 signals [signum - 1].pending = 1;
1473 evpipe_write (EV_A_ &sig_pending);
1474}
1475
954static void 1476static void
955ev_sighandler (int signum) 1477ev_sighandler (int signum)
956{ 1478{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32 1479#ifdef _WIN32
962 signal (signum, ev_sighandler); 1480 signal (signum, ev_sighandler);
963#endif 1481#endif
964 1482
965 signals [signum - 1].gotsig = 1; 1483 ev_feed_signal (signum);
966 evpipe_write (EV_A_ &gotsig);
967} 1484}
968 1485
969void noinline 1486void noinline
970ev_feed_signal_event (EV_P_ int signum) 1487ev_feed_signal_event (EV_P_ int signum)
971{ 1488{
972 WL w; 1489 WL w;
973 1490
1491 if (expect_false (signum <= 0 || signum > EV_NSIG))
1492 return;
1493
1494 --signum;
1495
974#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1497 /* it is permissible to try to feed a signal to the wrong loop */
976#endif 1498 /* or, likely more useful, feeding a signal nobody is waiting for */
977 1499
978 --signum; 1500 if (expect_false (signals [signum].loop != EV_A))
979
980 if (signum < 0 || signum >= signalmax)
981 return; 1501 return;
1502#endif
982 1503
983 signals [signum].gotsig = 0; 1504 signals [signum].pending = 0;
984 1505
985 for (w = signals [signum].head; w; w = w->next) 1506 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1507 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 1508}
988 1509
1510#if EV_USE_SIGNALFD
1511static void
1512sigfdcb (EV_P_ ev_io *iow, int revents)
1513{
1514 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1515
1516 for (;;)
1517 {
1518 ssize_t res = read (sigfd, si, sizeof (si));
1519
1520 /* not ISO-C, as res might be -1, but works with SuS */
1521 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1522 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1523
1524 if (res < (ssize_t)sizeof (si))
1525 break;
1526 }
1527}
1528#endif
1529
1530#endif
1531
989/*****************************************************************************/ 1532/*****************************************************************************/
990 1533
1534#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 1535static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 1536
995static ev_signal childev; 1537static ev_signal childev;
996 1538
997#ifndef WIFCONTINUED 1539#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 1540# define WIFCONTINUED(status) 0
999#endif 1541#endif
1000 1542
1001void inline_speed 1543/* handle a single child status event */
1544inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 1545child_reap (EV_P_ int chain, int pid, int status)
1003{ 1546{
1004 ev_child *w; 1547 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1548 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 1549
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1550 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 { 1551 {
1009 if ((w->pid == pid || !w->pid) 1552 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1))) 1553 && (!traced || (w->flags & 1)))
1011 { 1554 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1555 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1019 1562
1020#ifndef WCONTINUED 1563#ifndef WCONTINUED
1021# define WCONTINUED 0 1564# define WCONTINUED 0
1022#endif 1565#endif
1023 1566
1567/* called on sigchld etc., calls waitpid */
1024static void 1568static void
1025childcb (EV_P_ ev_signal *sw, int revents) 1569childcb (EV_P_ ev_signal *sw, int revents)
1026{ 1570{
1027 int pid, status; 1571 int pid, status;
1028 1572
1036 /* make sure we are called again until all children have been reaped */ 1580 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */ 1581 /* we need to do it this way so that the callback gets called before we continue */
1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1582 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1039 1583
1040 child_reap (EV_A_ pid, pid, status); 1584 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1) 1585 if ((EV_PID_HASHSIZE) > 1)
1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1586 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1043} 1587}
1044 1588
1045#endif 1589#endif
1046 1590
1047/*****************************************************************************/ 1591/*****************************************************************************/
1048 1592
1593#if EV_USE_IOCP
1594# include "ev_iocp.c"
1595#endif
1049#if EV_USE_PORT 1596#if EV_USE_PORT
1050# include "ev_port.c" 1597# include "ev_port.c"
1051#endif 1598#endif
1052#if EV_USE_KQUEUE 1599#if EV_USE_KQUEUE
1053# include "ev_kqueue.c" 1600# include "ev_kqueue.c"
1109 /* kqueue is borked on everything but netbsd apparently */ 1656 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 1657 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 1658 flags &= ~EVBACKEND_KQUEUE;
1112#endif 1659#endif
1113#ifdef __APPLE__ 1660#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 1661 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 1662 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1663 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1664#endif
1665#ifdef __FreeBSD__
1666 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1116#endif 1667#endif
1117 1668
1118 return flags; 1669 return flags;
1119} 1670}
1120 1671
1122ev_embeddable_backends (void) 1673ev_embeddable_backends (void)
1123{ 1674{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1675 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1125 1676
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1677 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */ 1678 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1128 flags &= ~EVBACKEND_EPOLL; 1679 flags &= ~EVBACKEND_EPOLL;
1129 1680
1130 return flags; 1681 return flags;
1131} 1682}
1132 1683
1133unsigned int 1684unsigned int
1134ev_backend (EV_P) 1685ev_backend (EV_P)
1135{ 1686{
1136 return backend; 1687 return backend;
1137} 1688}
1138 1689
1690#if EV_FEATURE_API
1139unsigned int 1691unsigned int
1140ev_loop_count (EV_P) 1692ev_iteration (EV_P)
1141{ 1693{
1142 return loop_count; 1694 return loop_count;
1143} 1695}
1144 1696
1697unsigned int
1698ev_depth (EV_P)
1699{
1700 return loop_depth;
1701}
1702
1145void 1703void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1704ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{ 1705{
1148 io_blocktime = interval; 1706 io_blocktime = interval;
1149} 1707}
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1710ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 1711{
1154 timeout_blocktime = interval; 1712 timeout_blocktime = interval;
1155} 1713}
1156 1714
1715void
1716ev_set_userdata (EV_P_ void *data)
1717{
1718 userdata = data;
1719}
1720
1721void *
1722ev_userdata (EV_P)
1723{
1724 return userdata;
1725}
1726
1727void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1728{
1729 invoke_cb = invoke_pending_cb;
1730}
1731
1732void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1733{
1734 release_cb = release;
1735 acquire_cb = acquire;
1736}
1737#endif
1738
1739/* initialise a loop structure, must be zero-initialised */
1157static void noinline 1740static void noinline
1158loop_init (EV_P_ unsigned int flags) 1741loop_init (EV_P_ unsigned int flags)
1159{ 1742{
1160 if (!backend) 1743 if (!backend)
1161 { 1744 {
1745 origflags = flags;
1746
1747#if EV_USE_REALTIME
1748 if (!have_realtime)
1749 {
1750 struct timespec ts;
1751
1752 if (!clock_gettime (CLOCK_REALTIME, &ts))
1753 have_realtime = 1;
1754 }
1755#endif
1756
1162#if EV_USE_MONOTONIC 1757#if EV_USE_MONOTONIC
1758 if (!have_monotonic)
1163 { 1759 {
1164 struct timespec ts; 1760 struct timespec ts;
1761
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1762 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 1763 have_monotonic = 1;
1167 } 1764 }
1168#endif
1169
1170 ev_rt_now = ev_time ();
1171 mn_now = get_clock ();
1172 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif 1765#endif
1183 1766
1184 /* pid check not overridable via env */ 1767 /* pid check not overridable via env */
1185#ifndef _WIN32 1768#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK) 1769 if (flags & EVFLAG_FORKCHECK)
1190 if (!(flags & EVFLAG_NOENV) 1773 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure () 1774 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS")) 1775 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS")); 1776 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 1777
1195 if (!(flags & 0x0000ffffU)) 1778 ev_rt_now = ev_time ();
1779 mn_now = get_clock ();
1780 now_floor = mn_now;
1781 rtmn_diff = ev_rt_now - mn_now;
1782#if EV_FEATURE_API
1783 invoke_cb = ev_invoke_pending;
1784#endif
1785
1786 io_blocktime = 0.;
1787 timeout_blocktime = 0.;
1788 backend = 0;
1789 backend_fd = -1;
1790 sig_pending = 0;
1791#if EV_ASYNC_ENABLE
1792 async_pending = 0;
1793#endif
1794 pipe_write_skipped = 0;
1795 pipe_write_wanted = 0;
1796#if EV_USE_INOTIFY
1797 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1798#endif
1799#if EV_USE_SIGNALFD
1800 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1801#endif
1802
1803 if (!(flags & EVBACKEND_MASK))
1196 flags |= ev_recommended_backends (); 1804 flags |= ev_recommended_backends ();
1197 1805
1806#if EV_USE_IOCP
1807 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1808#endif
1198#if EV_USE_PORT 1809#if EV_USE_PORT
1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1810 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1200#endif 1811#endif
1201#if EV_USE_KQUEUE 1812#if EV_USE_KQUEUE
1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1813 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1209#endif 1820#endif
1210#if EV_USE_SELECT 1821#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1822 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 1823#endif
1213 1824
1825 ev_prepare_init (&pending_w, pendingcb);
1826
1827#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 1828 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 1829 ev_set_priority (&pipe_w, EV_MAXPRI);
1830#endif
1216 } 1831 }
1217} 1832}
1218 1833
1219static void noinline 1834/* free up a loop structure */
1835void
1220loop_destroy (EV_P) 1836ev_loop_destroy (EV_P)
1221{ 1837{
1222 int i; 1838 int i;
1223 1839
1840#if EV_MULTIPLICITY
1841 /* mimic free (0) */
1842 if (!EV_A)
1843 return;
1844#endif
1845
1846#if EV_CLEANUP_ENABLE
1847 /* queue cleanup watchers (and execute them) */
1848 if (expect_false (cleanupcnt))
1849 {
1850 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1851 EV_INVOKE_PENDING;
1852 }
1853#endif
1854
1855#if EV_CHILD_ENABLE
1856 if (ev_is_active (&childev))
1857 {
1858 ev_ref (EV_A); /* child watcher */
1859 ev_signal_stop (EV_A_ &childev);
1860 }
1861#endif
1862
1224 if (ev_is_active (&pipeev)) 1863 if (ev_is_active (&pipe_w))
1225 { 1864 {
1226 ev_ref (EV_A); /* signal watcher */ 1865 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 1866 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 1867
1229#if EV_USE_EVENTFD 1868#if EV_USE_EVENTFD
1230 if (evfd >= 0) 1869 if (evfd >= 0)
1231 close (evfd); 1870 close (evfd);
1232#endif 1871#endif
1233 1872
1234 if (evpipe [0] >= 0) 1873 if (evpipe [0] >= 0)
1235 { 1874 {
1236 close (evpipe [0]); 1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 1877 }
1239 } 1878 }
1879
1880#if EV_USE_SIGNALFD
1881 if (ev_is_active (&sigfd_w))
1882 close (sigfd);
1883#endif
1240 1884
1241#if EV_USE_INOTIFY 1885#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 1886 if (fs_fd >= 0)
1243 close (fs_fd); 1887 close (fs_fd);
1244#endif 1888#endif
1245 1889
1246 if (backend_fd >= 0) 1890 if (backend_fd >= 0)
1247 close (backend_fd); 1891 close (backend_fd);
1248 1892
1893#if EV_USE_IOCP
1894 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1895#endif
1249#if EV_USE_PORT 1896#if EV_USE_PORT
1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1251#endif 1898#endif
1252#if EV_USE_KQUEUE 1899#if EV_USE_KQUEUE
1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1900 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1268#if EV_IDLE_ENABLE 1915#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 1916 array_free (idle, [i]);
1270#endif 1917#endif
1271 } 1918 }
1272 1919
1273 ev_free (anfds); anfdmax = 0; 1920 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 1921
1275 /* have to use the microsoft-never-gets-it-right macro */ 1922 /* have to use the microsoft-never-gets-it-right macro */
1923 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 1924 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 1925 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 1926#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 1927 array_free (periodic, EMPTY);
1280#endif 1928#endif
1281#if EV_FORK_ENABLE 1929#if EV_FORK_ENABLE
1282 array_free (fork, EMPTY); 1930 array_free (fork, EMPTY);
1283#endif 1931#endif
1932#if EV_CLEANUP_ENABLE
1933 array_free (cleanup, EMPTY);
1934#endif
1284 array_free (prepare, EMPTY); 1935 array_free (prepare, EMPTY);
1285 array_free (check, EMPTY); 1936 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE 1937#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY); 1938 array_free (async, EMPTY);
1288#endif 1939#endif
1289 1940
1290 backend = 0; 1941 backend = 0;
1942
1943#if EV_MULTIPLICITY
1944 if (ev_is_default_loop (EV_A))
1945#endif
1946 ev_default_loop_ptr = 0;
1947#if EV_MULTIPLICITY
1948 else
1949 ev_free (EV_A);
1950#endif
1291} 1951}
1292 1952
1293#if EV_USE_INOTIFY 1953#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 1954inline_size void infy_fork (EV_P);
1295#endif 1955#endif
1296 1956
1297void inline_size 1957inline_size void
1298loop_fork (EV_P) 1958loop_fork (EV_P)
1299{ 1959{
1300#if EV_USE_PORT 1960#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1961 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 1962#endif
1308#endif 1968#endif
1309#if EV_USE_INOTIFY 1969#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 1970 infy_fork (EV_A);
1311#endif 1971#endif
1312 1972
1313 if (ev_is_active (&pipeev)) 1973 if (ev_is_active (&pipe_w))
1314 { 1974 {
1315 /* this "locks" the handlers against writing to the pipe */ 1975 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
1321 1976
1322 ev_ref (EV_A); 1977 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 1978 ev_io_stop (EV_A_ &pipe_w);
1324 1979
1325#if EV_USE_EVENTFD 1980#if EV_USE_EVENTFD
1326 if (evfd >= 0) 1981 if (evfd >= 0)
1327 close (evfd); 1982 close (evfd);
1328#endif 1983#endif
1329 1984
1330 if (evpipe [0] >= 0) 1985 if (evpipe [0] >= 0)
1331 { 1986 {
1332 close (evpipe [0]); 1987 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 1988 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 1989 }
1335 1990
1991#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 evpipe_init (EV_A); 1992 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 1993 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 1994 pipecb (EV_A_ &pipe_w, EV_READ);
1995#endif
1339 } 1996 }
1340 1997
1341 postfork = 0; 1998 postfork = 0;
1342} 1999}
2000
2001#if EV_MULTIPLICITY
2002
2003struct ev_loop *
2004ev_loop_new (unsigned int flags)
2005{
2006 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2007
2008 memset (EV_A, 0, sizeof (struct ev_loop));
2009 loop_init (EV_A_ flags);
2010
2011 if (ev_backend (EV_A))
2012 return EV_A;
2013
2014 ev_free (EV_A);
2015 return 0;
2016}
2017
2018#endif /* multiplicity */
2019
2020#if EV_VERIFY
2021static void noinline
2022verify_watcher (EV_P_ W w)
2023{
2024 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2025
2026 if (w->pending)
2027 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2028}
2029
2030static void noinline
2031verify_heap (EV_P_ ANHE *heap, int N)
2032{
2033 int i;
2034
2035 for (i = HEAP0; i < N + HEAP0; ++i)
2036 {
2037 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2038 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2039 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2040
2041 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2042 }
2043}
2044
2045static void noinline
2046array_verify (EV_P_ W *ws, int cnt)
2047{
2048 while (cnt--)
2049 {
2050 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2051 verify_watcher (EV_A_ ws [cnt]);
2052 }
2053}
2054#endif
2055
2056#if EV_FEATURE_API
2057void
2058ev_verify (EV_P)
2059{
2060#if EV_VERIFY
2061 int i;
2062 WL w;
2063
2064 assert (activecnt >= -1);
2065
2066 assert (fdchangemax >= fdchangecnt);
2067 for (i = 0; i < fdchangecnt; ++i)
2068 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2069
2070 assert (anfdmax >= 0);
2071 for (i = 0; i < anfdmax; ++i)
2072 for (w = anfds [i].head; w; w = w->next)
2073 {
2074 verify_watcher (EV_A_ (W)w);
2075 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2076 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2077 }
2078
2079 assert (timermax >= timercnt);
2080 verify_heap (EV_A_ timers, timercnt);
2081
2082#if EV_PERIODIC_ENABLE
2083 assert (periodicmax >= periodiccnt);
2084 verify_heap (EV_A_ periodics, periodiccnt);
2085#endif
2086
2087 for (i = NUMPRI; i--; )
2088 {
2089 assert (pendingmax [i] >= pendingcnt [i]);
2090#if EV_IDLE_ENABLE
2091 assert (idleall >= 0);
2092 assert (idlemax [i] >= idlecnt [i]);
2093 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2094#endif
2095 }
2096
2097#if EV_FORK_ENABLE
2098 assert (forkmax >= forkcnt);
2099 array_verify (EV_A_ (W *)forks, forkcnt);
2100#endif
2101
2102#if EV_CLEANUP_ENABLE
2103 assert (cleanupmax >= cleanupcnt);
2104 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2105#endif
2106
2107#if EV_ASYNC_ENABLE
2108 assert (asyncmax >= asynccnt);
2109 array_verify (EV_A_ (W *)asyncs, asynccnt);
2110#endif
2111
2112#if EV_PREPARE_ENABLE
2113 assert (preparemax >= preparecnt);
2114 array_verify (EV_A_ (W *)prepares, preparecnt);
2115#endif
2116
2117#if EV_CHECK_ENABLE
2118 assert (checkmax >= checkcnt);
2119 array_verify (EV_A_ (W *)checks, checkcnt);
2120#endif
2121
2122# if 0
2123#if EV_CHILD_ENABLE
2124 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2125 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2126#endif
2127# endif
2128#endif
2129}
2130#endif
1343 2131
1344#if EV_MULTIPLICITY 2132#if EV_MULTIPLICITY
1345struct ev_loop * 2133struct ev_loop *
1346ev_loop_new (unsigned int flags)
1347{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349
1350 memset (loop, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags);
1353
1354 if (ev_backend (EV_A))
1355 return loop;
1356
1357 return 0;
1358}
1359
1360void
1361ev_loop_destroy (EV_P)
1362{
1363 loop_destroy (EV_A);
1364 ev_free (loop);
1365}
1366
1367void
1368ev_loop_fork (EV_P)
1369{
1370 postfork = 1; /* must be in line with ev_default_fork */
1371}
1372
1373#endif
1374
1375#if EV_MULTIPLICITY
1376struct ev_loop *
1377ev_default_loop_init (unsigned int flags)
1378#else 2134#else
1379int 2135int
2136#endif
1380ev_default_loop (unsigned int flags) 2137ev_default_loop (unsigned int flags)
1381#endif
1382{ 2138{
1383 if (!ev_default_loop_ptr) 2139 if (!ev_default_loop_ptr)
1384 { 2140 {
1385#if EV_MULTIPLICITY 2141#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2142 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 2143#else
1388 ev_default_loop_ptr = 1; 2144 ev_default_loop_ptr = 1;
1389#endif 2145#endif
1390 2146
1391 loop_init (EV_A_ flags); 2147 loop_init (EV_A_ flags);
1392 2148
1393 if (ev_backend (EV_A)) 2149 if (ev_backend (EV_A))
1394 { 2150 {
1395#ifndef _WIN32 2151#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 2152 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 2153 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 2154 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2155 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 2156#endif
1405 2161
1406 return ev_default_loop_ptr; 2162 return ev_default_loop_ptr;
1407} 2163}
1408 2164
1409void 2165void
1410ev_default_destroy (void) 2166ev_loop_fork (EV_P)
1411{ 2167{
1412#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr;
1414#endif
1415
1416#ifndef _WIN32
1417 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev);
1419#endif
1420
1421 loop_destroy (EV_A);
1422}
1423
1424void
1425ev_default_fork (void)
1426{
1427#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr;
1429#endif
1430
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 2168 postfork = 1; /* must be in line with ev_default_fork */
1433} 2169}
1434 2170
1435/*****************************************************************************/ 2171/*****************************************************************************/
1436 2172
1437void 2173void
1438ev_invoke (EV_P_ void *w, int revents) 2174ev_invoke (EV_P_ void *w, int revents)
1439{ 2175{
1440 EV_CB_INVOKE ((W)w, revents); 2176 EV_CB_INVOKE ((W)w, revents);
1441} 2177}
1442 2178
1443void inline_speed 2179unsigned int
1444call_pending (EV_P) 2180ev_pending_count (EV_P)
2181{
2182 int pri;
2183 unsigned int count = 0;
2184
2185 for (pri = NUMPRI; pri--; )
2186 count += pendingcnt [pri];
2187
2188 return count;
2189}
2190
2191void noinline
2192ev_invoke_pending (EV_P)
1445{ 2193{
1446 int pri; 2194 int pri;
1447 2195
1448 for (pri = NUMPRI; pri--; ) 2196 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 2197 while (pendingcnt [pri])
1450 { 2198 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2199 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 2200
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
1457 p->w->pending = 0; 2201 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 2202 EV_CB_INVOKE (p->w, p->events);
1459 } 2203 EV_FREQUENT_CHECK;
1460 } 2204 }
1461} 2205}
1462 2206
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 2207#if EV_IDLE_ENABLE
1544void inline_size 2208/* make idle watchers pending. this handles the "call-idle */
2209/* only when higher priorities are idle" logic */
2210inline_size void
1545idle_reify (EV_P) 2211idle_reify (EV_P)
1546{ 2212{
1547 if (expect_false (idleall)) 2213 if (expect_false (idleall))
1548 { 2214 {
1549 int pri; 2215 int pri;
1561 } 2227 }
1562 } 2228 }
1563} 2229}
1564#endif 2230#endif
1565 2231
1566void inline_speed 2232/* make timers pending */
2233inline_size void
2234timers_reify (EV_P)
2235{
2236 EV_FREQUENT_CHECK;
2237
2238 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2239 {
2240 do
2241 {
2242 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2243
2244 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2245
2246 /* first reschedule or stop timer */
2247 if (w->repeat)
2248 {
2249 ev_at (w) += w->repeat;
2250 if (ev_at (w) < mn_now)
2251 ev_at (w) = mn_now;
2252
2253 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2254
2255 ANHE_at_cache (timers [HEAP0]);
2256 downheap (timers, timercnt, HEAP0);
2257 }
2258 else
2259 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2260
2261 EV_FREQUENT_CHECK;
2262 feed_reverse (EV_A_ (W)w);
2263 }
2264 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2265
2266 feed_reverse_done (EV_A_ EV_TIMER);
2267 }
2268}
2269
2270#if EV_PERIODIC_ENABLE
2271
2272static void noinline
2273periodic_recalc (EV_P_ ev_periodic *w)
2274{
2275 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2276 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2277
2278 /* the above almost always errs on the low side */
2279 while (at <= ev_rt_now)
2280 {
2281 ev_tstamp nat = at + w->interval;
2282
2283 /* when resolution fails us, we use ev_rt_now */
2284 if (expect_false (nat == at))
2285 {
2286 at = ev_rt_now;
2287 break;
2288 }
2289
2290 at = nat;
2291 }
2292
2293 ev_at (w) = at;
2294}
2295
2296/* make periodics pending */
2297inline_size void
2298periodics_reify (EV_P)
2299{
2300 EV_FREQUENT_CHECK;
2301
2302 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2303 {
2304 int feed_count = 0;
2305
2306 do
2307 {
2308 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2309
2310 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2311
2312 /* first reschedule or stop timer */
2313 if (w->reschedule_cb)
2314 {
2315 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2316
2317 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2318
2319 ANHE_at_cache (periodics [HEAP0]);
2320 downheap (periodics, periodiccnt, HEAP0);
2321 }
2322 else if (w->interval)
2323 {
2324 periodic_recalc (EV_A_ w);
2325 ANHE_at_cache (periodics [HEAP0]);
2326 downheap (periodics, periodiccnt, HEAP0);
2327 }
2328 else
2329 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2330
2331 EV_FREQUENT_CHECK;
2332 feed_reverse (EV_A_ (W)w);
2333 }
2334 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2335
2336 feed_reverse_done (EV_A_ EV_PERIODIC);
2337 }
2338}
2339
2340/* simply recalculate all periodics */
2341/* TODO: maybe ensure that at least one event happens when jumping forward? */
2342static void noinline
2343periodics_reschedule (EV_P)
2344{
2345 int i;
2346
2347 /* adjust periodics after time jump */
2348 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2349 {
2350 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2351
2352 if (w->reschedule_cb)
2353 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2354 else if (w->interval)
2355 periodic_recalc (EV_A_ w);
2356
2357 ANHE_at_cache (periodics [i]);
2358 }
2359
2360 reheap (periodics, periodiccnt);
2361}
2362#endif
2363
2364/* adjust all timers by a given offset */
2365static void noinline
2366timers_reschedule (EV_P_ ev_tstamp adjust)
2367{
2368 int i;
2369
2370 for (i = 0; i < timercnt; ++i)
2371 {
2372 ANHE *he = timers + i + HEAP0;
2373 ANHE_w (*he)->at += adjust;
2374 ANHE_at_cache (*he);
2375 }
2376}
2377
2378/* fetch new monotonic and realtime times from the kernel */
2379/* also detect if there was a timejump, and act accordingly */
2380inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2381time_update (EV_P_ ev_tstamp max_block)
1568{ 2382{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2383#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2384 if (expect_true (have_monotonic))
1573 { 2385 {
2386 int i;
1574 ev_tstamp odiff = rtmn_diff; 2387 ev_tstamp odiff = rtmn_diff;
1575 2388
1576 mn_now = get_clock (); 2389 mn_now = get_clock ();
1577 2390
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2391 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1594 * doesn't hurt either as we only do this on time-jumps or 2407 * doesn't hurt either as we only do this on time-jumps or
1595 * in the unlikely event of having been preempted here. 2408 * in the unlikely event of having been preempted here.
1596 */ 2409 */
1597 for (i = 4; --i; ) 2410 for (i = 4; --i; )
1598 { 2411 {
2412 ev_tstamp diff;
1599 rtmn_diff = ev_rt_now - mn_now; 2413 rtmn_diff = ev_rt_now - mn_now;
1600 2414
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2415 diff = odiff - rtmn_diff;
2416
2417 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2418 return; /* all is well */
1603 2419
1604 ev_rt_now = ev_time (); 2420 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2421 mn_now = get_clock ();
1606 now_floor = mn_now; 2422 now_floor = mn_now;
1607 } 2423 }
1608 2424
2425 /* no timer adjustment, as the monotonic clock doesn't jump */
2426 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2427# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1611# endif 2429# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2430 }
1615 else 2431 else
1616#endif 2432#endif
1617 { 2433 {
1618 ev_rt_now = ev_time (); 2434 ev_rt_now = ev_time ();
1619 2435
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2436 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2437 {
2438 /* adjust timers. this is easy, as the offset is the same for all of them */
2439 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2440#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2441 periodics_reschedule (EV_A);
1624#endif 2442#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2443 }
1629 2444
1630 mn_now = ev_rt_now; 2445 mn_now = ev_rt_now;
1631 } 2446 }
1632} 2447}
1633 2448
1634void 2449void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2450ev_run (EV_P_ int flags)
1650{ 2451{
2452#if EV_FEATURE_API
2453 ++loop_depth;
2454#endif
2455
2456 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2457
1651 loop_done = EVUNLOOP_CANCEL; 2458 loop_done = EVBREAK_CANCEL;
1652 2459
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2460 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2461
1655 do 2462 do
1656 { 2463 {
2464#if EV_VERIFY >= 2
2465 ev_verify (EV_A);
2466#endif
2467
1657#ifndef _WIN32 2468#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2469 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2470 if (expect_false (getpid () != curpid))
1660 { 2471 {
1661 curpid = getpid (); 2472 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2478 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2479 if (expect_false (postfork))
1669 if (forkcnt) 2480 if (forkcnt)
1670 { 2481 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2482 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2483 EV_INVOKE_PENDING;
1673 } 2484 }
1674#endif 2485#endif
1675 2486
2487#if EV_PREPARE_ENABLE
1676 /* queue prepare watchers (and execute them) */ 2488 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 2489 if (expect_false (preparecnt))
1678 { 2490 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2491 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2492 EV_INVOKE_PENDING;
1681 } 2493 }
2494#endif
1682 2495
1683 if (expect_false (!activecnt)) 2496 if (expect_false (loop_done))
1684 break; 2497 break;
1685 2498
1686 /* we might have forked, so reify kernel state if necessary */ 2499 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2500 if (expect_false (postfork))
1688 loop_fork (EV_A); 2501 loop_fork (EV_A);
1693 /* calculate blocking time */ 2506 /* calculate blocking time */
1694 { 2507 {
1695 ev_tstamp waittime = 0.; 2508 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 2509 ev_tstamp sleeptime = 0.;
1697 2510
2511 /* remember old timestamp for io_blocktime calculation */
2512 ev_tstamp prev_mn_now = mn_now;
2513
2514 /* update time to cancel out callback processing overhead */
2515 time_update (EV_A_ 1e100);
2516
2517 /* from now on, we want a pipe-wake-up */
2518 pipe_write_wanted = 1;
2519
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2520 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1699 { 2521 {
1700 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100);
1702
1703 waittime = MAX_BLOCKTIME; 2522 waittime = MAX_BLOCKTIME;
1704 2523
1705 if (timercnt) 2524 if (timercnt)
1706 { 2525 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2526 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1708 if (waittime > to) waittime = to; 2527 if (waittime > to) waittime = to;
1709 } 2528 }
1710 2529
1711#if EV_PERIODIC_ENABLE 2530#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 2531 if (periodiccnt)
1713 { 2532 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2533 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1715 if (waittime > to) waittime = to; 2534 if (waittime > to) waittime = to;
1716 } 2535 }
1717#endif 2536#endif
1718 2537
2538 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 2539 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 2540 waittime = timeout_blocktime;
1721 2541
1722 sleeptime = waittime - backend_fudge; 2542 /* at this point, we NEED to wait, so we have to ensure */
2543 /* to pass a minimum nonzero value to the backend */
2544 if (expect_false (waittime < backend_mintime))
2545 waittime = backend_mintime;
1723 2546
2547 /* extra check because io_blocktime is commonly 0 */
1724 if (expect_true (sleeptime > io_blocktime)) 2548 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 2549 {
2550 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2551
2552 if (sleeptime > waittime - backend_mintime)
2553 sleeptime = waittime - backend_mintime;
2554
2555 if (expect_true (sleeptime > 0.))
2556 {
1729 ev_sleep (sleeptime); 2557 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 2558 waittime -= sleeptime;
2559 }
1731 } 2560 }
1732 } 2561 }
1733 2562
2563#if EV_FEATURE_API
1734 ++loop_count; 2564 ++loop_count;
2565#endif
2566 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 2567 backend_poll (EV_A_ waittime);
2568 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2569
2570 pipe_write_wanted = 0;
2571
2572 if (pipe_write_skipped)
2573 {
2574 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2575 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2576 }
2577
1736 2578
1737 /* update ev_rt_now, do magic */ 2579 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 2580 time_update (EV_A_ waittime + sleeptime);
1739 } 2581 }
1740 2582
1747#if EV_IDLE_ENABLE 2589#if EV_IDLE_ENABLE
1748 /* queue idle watchers unless other events are pending */ 2590 /* queue idle watchers unless other events are pending */
1749 idle_reify (EV_A); 2591 idle_reify (EV_A);
1750#endif 2592#endif
1751 2593
2594#if EV_CHECK_ENABLE
1752 /* queue check watchers, to be executed first */ 2595 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 2596 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2597 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2598#endif
1755 2599
1756 call_pending (EV_A); 2600 EV_INVOKE_PENDING;
1757 } 2601 }
1758 while (expect_true ( 2602 while (expect_true (
1759 activecnt 2603 activecnt
1760 && !loop_done 2604 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2605 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1762 )); 2606 ));
1763 2607
1764 if (loop_done == EVUNLOOP_ONE) 2608 if (loop_done == EVBREAK_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 2609 loop_done = EVBREAK_CANCEL;
1766}
1767 2610
2611#if EV_FEATURE_API
2612 --loop_depth;
2613#endif
2614}
2615
1768void 2616void
1769ev_unloop (EV_P_ int how) 2617ev_break (EV_P_ int how)
1770{ 2618{
1771 loop_done = how; 2619 loop_done = how;
1772} 2620}
1773 2621
2622void
2623ev_ref (EV_P)
2624{
2625 ++activecnt;
2626}
2627
2628void
2629ev_unref (EV_P)
2630{
2631 --activecnt;
2632}
2633
2634void
2635ev_now_update (EV_P)
2636{
2637 time_update (EV_A_ 1e100);
2638}
2639
2640void
2641ev_suspend (EV_P)
2642{
2643 ev_now_update (EV_A);
2644}
2645
2646void
2647ev_resume (EV_P)
2648{
2649 ev_tstamp mn_prev = mn_now;
2650
2651 ev_now_update (EV_A);
2652 timers_reschedule (EV_A_ mn_now - mn_prev);
2653#if EV_PERIODIC_ENABLE
2654 /* TODO: really do this? */
2655 periodics_reschedule (EV_A);
2656#endif
2657}
2658
1774/*****************************************************************************/ 2659/*****************************************************************************/
2660/* singly-linked list management, used when the expected list length is short */
1775 2661
1776void inline_size 2662inline_size void
1777wlist_add (WL *head, WL elem) 2663wlist_add (WL *head, WL elem)
1778{ 2664{
1779 elem->next = *head; 2665 elem->next = *head;
1780 *head = elem; 2666 *head = elem;
1781} 2667}
1782 2668
1783void inline_size 2669inline_size void
1784wlist_del (WL *head, WL elem) 2670wlist_del (WL *head, WL elem)
1785{ 2671{
1786 while (*head) 2672 while (*head)
1787 { 2673 {
1788 if (*head == elem) 2674 if (expect_true (*head == elem))
1789 { 2675 {
1790 *head = elem->next; 2676 *head = elem->next;
1791 return; 2677 break;
1792 } 2678 }
1793 2679
1794 head = &(*head)->next; 2680 head = &(*head)->next;
1795 } 2681 }
1796} 2682}
1797 2683
1798void inline_speed 2684/* internal, faster, version of ev_clear_pending */
2685inline_speed void
1799clear_pending (EV_P_ W w) 2686clear_pending (EV_P_ W w)
1800{ 2687{
1801 if (w->pending) 2688 if (w->pending)
1802 { 2689 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2690 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 2691 w->pending = 0;
1805 } 2692 }
1806} 2693}
1807 2694
1808int 2695int
1812 int pending = w_->pending; 2699 int pending = w_->pending;
1813 2700
1814 if (expect_true (pending)) 2701 if (expect_true (pending))
1815 { 2702 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2704 p->w = (W)&pending_w;
1817 w_->pending = 0; 2705 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 2706 return p->events;
1820 } 2707 }
1821 else 2708 else
1822 return 0; 2709 return 0;
1823} 2710}
1824 2711
1825void inline_size 2712inline_size void
1826pri_adjust (EV_P_ W w) 2713pri_adjust (EV_P_ W w)
1827{ 2714{
1828 int pri = w->priority; 2715 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2716 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2717 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 2718 ev_set_priority (w, pri);
1832} 2719}
1833 2720
1834void inline_speed 2721inline_speed void
1835ev_start (EV_P_ W w, int active) 2722ev_start (EV_P_ W w, int active)
1836{ 2723{
1837 pri_adjust (EV_A_ w); 2724 pri_adjust (EV_A_ w);
1838 w->active = active; 2725 w->active = active;
1839 ev_ref (EV_A); 2726 ev_ref (EV_A);
1840} 2727}
1841 2728
1842void inline_size 2729inline_size void
1843ev_stop (EV_P_ W w) 2730ev_stop (EV_P_ W w)
1844{ 2731{
1845 ev_unref (EV_A); 2732 ev_unref (EV_A);
1846 w->active = 0; 2733 w->active = 0;
1847} 2734}
1854 int fd = w->fd; 2741 int fd = w->fd;
1855 2742
1856 if (expect_false (ev_is_active (w))) 2743 if (expect_false (ev_is_active (w)))
1857 return; 2744 return;
1858 2745
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2746 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2747 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2748
2749 EV_FREQUENT_CHECK;
1860 2750
1861 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2752 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 2753 wlist_add (&anfds[fd].head, (WL)w);
1864 2754
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2755 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 2756 w->events &= ~EV__IOFDSET;
2757
2758 EV_FREQUENT_CHECK;
1867} 2759}
1868 2760
1869void noinline 2761void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2762ev_io_stop (EV_P_ ev_io *w)
1871{ 2763{
1872 clear_pending (EV_A_ (W)w); 2764 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2765 if (expect_false (!ev_is_active (w)))
1874 return; 2766 return;
1875 2767
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2768 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2769
2770 EV_FREQUENT_CHECK;
1877 2771
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2772 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2773 ev_stop (EV_A_ (W)w);
1880 2774
1881 fd_change (EV_A_ w->fd, 1); 2775 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2776
2777 EV_FREQUENT_CHECK;
1882} 2778}
1883 2779
1884void noinline 2780void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2781ev_timer_start (EV_P_ ev_timer *w)
1886{ 2782{
1887 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
1888 return; 2784 return;
1889 2785
1890 ev_at (w) += mn_now; 2786 ev_at (w) += mn_now;
1891 2787
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2788 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2789
2790 EV_FREQUENT_CHECK;
2791
2792 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2793 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2794 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2795 ANHE_w (timers [ev_active (w)]) = (WT)w;
2796 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2797 upheap (timers, ev_active (w));
1898 2798
2799 EV_FREQUENT_CHECK;
2800
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2801 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2802}
1901 2803
1902void noinline 2804void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2805ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2806{
1905 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1907 return; 2809 return;
1908 2810
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2811 EV_FREQUENT_CHECK;
1910 2812
1911 { 2813 {
1912 int active = ((W)w)->active; 2814 int active = ev_active (w);
1913 2815
2816 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2817
2818 --timercnt;
2819
1914 if (expect_true (active < timercnt)) 2820 if (expect_true (active < timercnt + HEAP0))
1915 { 2821 {
1916 timers [active] = timers [timercnt]; 2822 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2823 adjustheap (timers, timercnt, active);
1918 } 2824 }
1919
1920 --timercnt;
1921 } 2825 }
1922 2826
1923 ev_at (w) -= mn_now; 2827 ev_at (w) -= mn_now;
1924 2828
1925 ev_stop (EV_A_ (W)w); 2829 ev_stop (EV_A_ (W)w);
2830
2831 EV_FREQUENT_CHECK;
1926} 2832}
1927 2833
1928void noinline 2834void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2835ev_timer_again (EV_P_ ev_timer *w)
1930{ 2836{
2837 EV_FREQUENT_CHECK;
2838
1931 if (ev_is_active (w)) 2839 if (ev_is_active (w))
1932 { 2840 {
1933 if (w->repeat) 2841 if (w->repeat)
1934 { 2842 {
1935 ev_at (w) = mn_now + w->repeat; 2843 ev_at (w) = mn_now + w->repeat;
2844 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2845 adjustheap (timers, timercnt, ev_active (w));
1937 } 2846 }
1938 else 2847 else
1939 ev_timer_stop (EV_A_ w); 2848 ev_timer_stop (EV_A_ w);
1940 } 2849 }
1941 else if (w->repeat) 2850 else if (w->repeat)
1942 { 2851 {
1943 w->at = w->repeat; 2852 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2853 ev_timer_start (EV_A_ w);
1945 } 2854 }
2855
2856 EV_FREQUENT_CHECK;
2857}
2858
2859ev_tstamp
2860ev_timer_remaining (EV_P_ ev_timer *w)
2861{
2862 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 2863}
1947 2864
1948#if EV_PERIODIC_ENABLE 2865#if EV_PERIODIC_ENABLE
1949void noinline 2866void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2867ev_periodic_start (EV_P_ ev_periodic *w)
1954 2871
1955 if (w->reschedule_cb) 2872 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2873 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 2874 else if (w->interval)
1958 { 2875 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2876 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 2877 periodic_recalc (EV_A_ w);
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2878 }
1963 else 2879 else
1964 ev_at (w) = w->offset; 2880 ev_at (w) = w->offset;
1965 2881
2882 EV_FREQUENT_CHECK;
2883
2884 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2885 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2886 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2887 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2888 ANHE_at_cache (periodics [ev_active (w)]);
2889 upheap (periodics, ev_active (w));
1970 2890
2891 EV_FREQUENT_CHECK;
2892
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2893 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2894}
1973 2895
1974void noinline 2896void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2897ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2898{
1977 clear_pending (EV_A_ (W)w); 2899 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2900 if (expect_false (!ev_is_active (w)))
1979 return; 2901 return;
1980 2902
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2903 EV_FREQUENT_CHECK;
1982 2904
1983 { 2905 {
1984 int active = ((W)w)->active; 2906 int active = ev_active (w);
1985 2907
2908 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2909
2910 --periodiccnt;
2911
1986 if (expect_true (active < periodiccnt)) 2912 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2913 {
1988 periodics [active] = periodics [periodiccnt]; 2914 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2915 adjustheap (periodics, periodiccnt, active);
1990 } 2916 }
1991
1992 --periodiccnt;
1993 } 2917 }
1994 2918
1995 ev_stop (EV_A_ (W)w); 2919 ev_stop (EV_A_ (W)w);
2920
2921 EV_FREQUENT_CHECK;
1996} 2922}
1997 2923
1998void noinline 2924void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 2925ev_periodic_again (EV_P_ ev_periodic *w)
2000{ 2926{
2006 2932
2007#ifndef SA_RESTART 2933#ifndef SA_RESTART
2008# define SA_RESTART 0 2934# define SA_RESTART 0
2009#endif 2935#endif
2010 2936
2937#if EV_SIGNAL_ENABLE
2938
2011void noinline 2939void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 2940ev_signal_start (EV_P_ ev_signal *w)
2013{ 2941{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2018 return; 2943 return;
2019 2944
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2945 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 2946
2022 evpipe_init (EV_A); 2947#if EV_MULTIPLICITY
2948 assert (("libev: a signal must not be attached to two different loops",
2949 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 2950
2951 signals [w->signum - 1].loop = EV_A;
2952#endif
2953
2954 EV_FREQUENT_CHECK;
2955
2956#if EV_USE_SIGNALFD
2957 if (sigfd == -2)
2024 { 2958 {
2025#ifndef _WIN32 2959 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 2960 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 2961 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 2962
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2963 if (sigfd >= 0)
2964 {
2965 fd_intern (sigfd); /* doing it twice will not hurt */
2032 2966
2033#ifndef _WIN32 2967 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 2968
2035#endif 2969 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2970 ev_set_priority (&sigfd_w, EV_MAXPRI);
2971 ev_io_start (EV_A_ &sigfd_w);
2972 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2973 }
2036 } 2974 }
2975
2976 if (sigfd >= 0)
2977 {
2978 /* TODO: check .head */
2979 sigaddset (&sigfd_set, w->signum);
2980 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2981
2982 signalfd (sigfd, &sigfd_set, 0);
2983 }
2984#endif
2037 2985
2038 ev_start (EV_A_ (W)w, 1); 2986 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 2987 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 2988
2041 if (!((WL)w)->next) 2989 if (!((WL)w)->next)
2990# if EV_USE_SIGNALFD
2991 if (sigfd < 0) /*TODO*/
2992# endif
2042 { 2993 {
2043#if _WIN32 2994# ifdef _WIN32
2995 evpipe_init (EV_A);
2996
2044 signal (w->signum, ev_sighandler); 2997 signal (w->signum, ev_sighandler);
2045#else 2998# else
2046 struct sigaction sa; 2999 struct sigaction sa;
3000
3001 evpipe_init (EV_A);
3002
2047 sa.sa_handler = ev_sighandler; 3003 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 3004 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3005 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 3006 sigaction (w->signum, &sa, 0);
3007
3008 if (origflags & EVFLAG_NOSIGMASK)
3009 {
3010 sigemptyset (&sa.sa_mask);
3011 sigaddset (&sa.sa_mask, w->signum);
3012 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3013 }
2051#endif 3014#endif
2052 } 3015 }
3016
3017 EV_FREQUENT_CHECK;
2053} 3018}
2054 3019
2055void noinline 3020void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 3021ev_signal_stop (EV_P_ ev_signal *w)
2057{ 3022{
2058 clear_pending (EV_A_ (W)w); 3023 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 3024 if (expect_false (!ev_is_active (w)))
2060 return; 3025 return;
2061 3026
3027 EV_FREQUENT_CHECK;
3028
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 3029 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 3030 ev_stop (EV_A_ (W)w);
2064 3031
2065 if (!signals [w->signum - 1].head) 3032 if (!signals [w->signum - 1].head)
3033 {
3034#if EV_MULTIPLICITY
3035 signals [w->signum - 1].loop = 0; /* unattach from signal */
3036#endif
3037#if EV_USE_SIGNALFD
3038 if (sigfd >= 0)
3039 {
3040 sigset_t ss;
3041
3042 sigemptyset (&ss);
3043 sigaddset (&ss, w->signum);
3044 sigdelset (&sigfd_set, w->signum);
3045
3046 signalfd (sigfd, &sigfd_set, 0);
3047 sigprocmask (SIG_UNBLOCK, &ss, 0);
3048 }
3049 else
3050#endif
2066 signal (w->signum, SIG_DFL); 3051 signal (w->signum, SIG_DFL);
3052 }
3053
3054 EV_FREQUENT_CHECK;
2067} 3055}
3056
3057#endif
3058
3059#if EV_CHILD_ENABLE
2068 3060
2069void 3061void
2070ev_child_start (EV_P_ ev_child *w) 3062ev_child_start (EV_P_ ev_child *w)
2071{ 3063{
2072#if EV_MULTIPLICITY 3064#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3065 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 3066#endif
2075 if (expect_false (ev_is_active (w))) 3067 if (expect_false (ev_is_active (w)))
2076 return; 3068 return;
2077 3069
3070 EV_FREQUENT_CHECK;
3071
2078 ev_start (EV_A_ (W)w, 1); 3072 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3073 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3074
3075 EV_FREQUENT_CHECK;
2080} 3076}
2081 3077
2082void 3078void
2083ev_child_stop (EV_P_ ev_child *w) 3079ev_child_stop (EV_P_ ev_child *w)
2084{ 3080{
2085 clear_pending (EV_A_ (W)w); 3081 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 3082 if (expect_false (!ev_is_active (w)))
2087 return; 3083 return;
2088 3084
3085 EV_FREQUENT_CHECK;
3086
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3087 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 3088 ev_stop (EV_A_ (W)w);
3089
3090 EV_FREQUENT_CHECK;
2091} 3091}
3092
3093#endif
2092 3094
2093#if EV_STAT_ENABLE 3095#if EV_STAT_ENABLE
2094 3096
2095# ifdef _WIN32 3097# ifdef _WIN32
2096# undef lstat 3098# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 3099# define lstat(a,b) _stati64 (a,b)
2098# endif 3100# endif
2099 3101
2100#define DEF_STAT_INTERVAL 5.0074891 3102#define DEF_STAT_INTERVAL 5.0074891
3103#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 3104#define MIN_STAT_INTERVAL 0.1074891
2102 3105
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3106static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 3107
2105#if EV_USE_INOTIFY 3108#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 3109
3110/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3111# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 3112
2108static void noinline 3113static void noinline
2109infy_add (EV_P_ ev_stat *w) 3114infy_add (EV_P_ ev_stat *w)
2110{ 3115{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3116 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 3117
2113 if (w->wd < 0) 3118 if (w->wd >= 0)
3119 {
3120 struct statfs sfs;
3121
3122 /* now local changes will be tracked by inotify, but remote changes won't */
3123 /* unless the filesystem is known to be local, we therefore still poll */
3124 /* also do poll on <2.6.25, but with normal frequency */
3125
3126 if (!fs_2625)
3127 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3128 else if (!statfs (w->path, &sfs)
3129 && (sfs.f_type == 0x1373 /* devfs */
3130 || sfs.f_type == 0xEF53 /* ext2/3 */
3131 || sfs.f_type == 0x3153464a /* jfs */
3132 || sfs.f_type == 0x52654973 /* reiser3 */
3133 || sfs.f_type == 0x01021994 /* tempfs */
3134 || sfs.f_type == 0x58465342 /* xfs */))
3135 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3136 else
3137 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 3138 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3139 else
3140 {
3141 /* can't use inotify, continue to stat */
3142 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 3143
2117 /* monitor some parent directory for speedup hints */ 3144 /* if path is not there, monitor some parent directory for speedup hints */
3145 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3146 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3147 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 3148 {
2120 char path [4096]; 3149 char path [4096];
2121 strcpy (path, w->path); 3150 strcpy (path, w->path);
2122 3151
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3154 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3155 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 3156
2128 char *pend = strrchr (path, '/'); 3157 char *pend = strrchr (path, '/');
2129 3158
2130 if (!pend) 3159 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 3160 break;
2132 3161
2133 *pend = 0; 3162 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 3163 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 3164 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3165 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 3166 }
2138 } 3167 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 3168
2142 if (w->wd >= 0) 3169 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3170 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3171
3172 /* now re-arm timer, if required */
3173 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3174 ev_timer_again (EV_A_ &w->timer);
3175 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 3176}
2145 3177
2146static void noinline 3178static void noinline
2147infy_del (EV_P_ ev_stat *w) 3179infy_del (EV_P_ ev_stat *w)
2148{ 3180{
2151 3183
2152 if (wd < 0) 3184 if (wd < 0)
2153 return; 3185 return;
2154 3186
2155 w->wd = -2; 3187 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3188 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w); 3189 wlist_del (&fs_hash [slot].head, (WL)w);
2158 3190
2159 /* remove this watcher, if others are watching it, they will rearm */ 3191 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd); 3192 inotify_rm_watch (fs_fd, wd);
2161} 3193}
2162 3194
2163static void noinline 3195static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3196infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 3197{
2166 if (slot < 0) 3198 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 3199 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3200 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3201 infy_wd (EV_A_ slot, wd, ev);
2170 else 3202 else
2171 { 3203 {
2172 WL w_; 3204 WL w_;
2173 3205
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3206 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2175 { 3207 {
2176 ev_stat *w = (ev_stat *)w_; 3208 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */ 3209 w_ = w_->next; /* lets us remove this watcher and all before it */
2178 3210
2179 if (w->wd == wd || wd == -1) 3211 if (w->wd == wd || wd == -1)
2180 { 3212 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3213 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3214 {
3215 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2183 w->wd = -1; 3216 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3217 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3218 }
2186 3219
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3220 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3225
2193static void 3226static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3227infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3228{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3229 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3230 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3231 int len = read (fs_fd, buf, sizeof (buf));
2200 3232
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3233 for (ofs = 0; ofs < len; )
3234 {
3235 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3236 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3237 ofs += sizeof (struct inotify_event) + ev->len;
3238 }
2203} 3239}
2204 3240
2205void inline_size 3241inline_size void
3242ev_check_2625 (EV_P)
3243{
3244 /* kernels < 2.6.25 are borked
3245 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3246 */
3247 if (ev_linux_version () < 0x020619)
3248 return;
3249
3250 fs_2625 = 1;
3251}
3252
3253inline_size int
3254infy_newfd (void)
3255{
3256#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3257 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3258 if (fd >= 0)
3259 return fd;
3260#endif
3261 return inotify_init ();
3262}
3263
3264inline_size void
2206infy_init (EV_P) 3265infy_init (EV_P)
2207{ 3266{
2208 if (fs_fd != -2) 3267 if (fs_fd != -2)
2209 return; 3268 return;
2210 3269
3270 fs_fd = -1;
3271
3272 ev_check_2625 (EV_A);
3273
2211 fs_fd = inotify_init (); 3274 fs_fd = infy_newfd ();
2212 3275
2213 if (fs_fd >= 0) 3276 if (fs_fd >= 0)
2214 { 3277 {
3278 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3279 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3280 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
2218 } 3283 }
2219} 3284}
2220 3285
2221void inline_size 3286inline_size void
2222infy_fork (EV_P) 3287infy_fork (EV_P)
2223{ 3288{
2224 int slot; 3289 int slot;
2225 3290
2226 if (fs_fd < 0) 3291 if (fs_fd < 0)
2227 return; 3292 return;
2228 3293
3294 ev_ref (EV_A);
3295 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3296 close (fs_fd);
2230 fs_fd = inotify_init (); 3297 fs_fd = infy_newfd ();
2231 3298
3299 if (fs_fd >= 0)
3300 {
3301 fd_intern (fs_fd);
3302 ev_io_set (&fs_w, fs_fd, EV_READ);
3303 ev_io_start (EV_A_ &fs_w);
3304 ev_unref (EV_A);
3305 }
3306
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3307 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2233 { 3308 {
2234 WL w_ = fs_hash [slot].head; 3309 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3310 fs_hash [slot].head = 0;
2236 3311
2237 while (w_) 3312 while (w_)
2242 w->wd = -1; 3317 w->wd = -1;
2243 3318
2244 if (fs_fd >= 0) 3319 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3320 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3321 else
3322 {
3323 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3324 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3325 ev_timer_again (EV_A_ &w->timer);
3326 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3327 }
2248 } 3328 }
2249
2250 } 3329 }
2251} 3330}
2252 3331
3332#endif
3333
3334#ifdef _WIN32
3335# define EV_LSTAT(p,b) _stati64 (p, b)
3336#else
3337# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3338#endif
2254 3339
2255void 3340void
2256ev_stat_stat (EV_P_ ev_stat *w) 3341ev_stat_stat (EV_P_ ev_stat *w)
2257{ 3342{
2264static void noinline 3349static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3350stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3351{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3352 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3353
2269 /* we copy this here each the time so that */ 3354 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3355 ev_stat_stat (EV_A_ w);
2273 3356
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3357 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3358 if (
2276 w->prev.st_dev != w->attr.st_dev 3359 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3360 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3361 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3362 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3363 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3364 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3365 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3366 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3367 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3368 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3369 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3370 ) {
3371 /* we only update w->prev on actual differences */
3372 /* in case we test more often than invoke the callback, */
3373 /* to ensure that prev is always different to attr */
3374 w->prev = prev;
3375
2288 #if EV_USE_INOTIFY 3376 #if EV_USE_INOTIFY
3377 if (fs_fd >= 0)
3378 {
2289 infy_del (EV_A_ w); 3379 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3380 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3381 ev_stat_stat (EV_A_ w); /* avoid race... */
3382 }
2292 #endif 3383 #endif
2293 3384
2294 ev_feed_event (EV_A_ w, EV_STAT); 3385 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3386 }
2296} 3387}
2299ev_stat_start (EV_P_ ev_stat *w) 3390ev_stat_start (EV_P_ ev_stat *w)
2300{ 3391{
2301 if (expect_false (ev_is_active (w))) 3392 if (expect_false (ev_is_active (w)))
2302 return; 3393 return;
2303 3394
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3395 ev_stat_stat (EV_A_ w);
2309 3396
3397 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3398 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3399
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3400 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3401 ev_set_priority (&w->timer, ev_priority (w));
2315 3402
2316#if EV_USE_INOTIFY 3403#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3404 infy_init (EV_A);
2318 3405
2319 if (fs_fd >= 0) 3406 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3407 infy_add (EV_A_ w);
2321 else 3408 else
2322#endif 3409#endif
3410 {
2323 ev_timer_start (EV_A_ &w->timer); 3411 ev_timer_again (EV_A_ &w->timer);
3412 ev_unref (EV_A);
3413 }
2324 3414
2325 ev_start (EV_A_ (W)w, 1); 3415 ev_start (EV_A_ (W)w, 1);
3416
3417 EV_FREQUENT_CHECK;
2326} 3418}
2327 3419
2328void 3420void
2329ev_stat_stop (EV_P_ ev_stat *w) 3421ev_stat_stop (EV_P_ ev_stat *w)
2330{ 3422{
2331 clear_pending (EV_A_ (W)w); 3423 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3424 if (expect_false (!ev_is_active (w)))
2333 return; 3425 return;
2334 3426
3427 EV_FREQUENT_CHECK;
3428
2335#if EV_USE_INOTIFY 3429#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 3430 infy_del (EV_A_ w);
2337#endif 3431#endif
3432
3433 if (ev_is_active (&w->timer))
3434 {
3435 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 3436 ev_timer_stop (EV_A_ &w->timer);
3437 }
2339 3438
2340 ev_stop (EV_A_ (W)w); 3439 ev_stop (EV_A_ (W)w);
3440
3441 EV_FREQUENT_CHECK;
2341} 3442}
2342#endif 3443#endif
2343 3444
2344#if EV_IDLE_ENABLE 3445#if EV_IDLE_ENABLE
2345void 3446void
2347{ 3448{
2348 if (expect_false (ev_is_active (w))) 3449 if (expect_false (ev_is_active (w)))
2349 return; 3450 return;
2350 3451
2351 pri_adjust (EV_A_ (W)w); 3452 pri_adjust (EV_A_ (W)w);
3453
3454 EV_FREQUENT_CHECK;
2352 3455
2353 { 3456 {
2354 int active = ++idlecnt [ABSPRI (w)]; 3457 int active = ++idlecnt [ABSPRI (w)];
2355 3458
2356 ++idleall; 3459 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 3460 ev_start (EV_A_ (W)w, active);
2358 3461
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3462 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 3463 idles [ABSPRI (w)][active - 1] = w;
2361 } 3464 }
3465
3466 EV_FREQUENT_CHECK;
2362} 3467}
2363 3468
2364void 3469void
2365ev_idle_stop (EV_P_ ev_idle *w) 3470ev_idle_stop (EV_P_ ev_idle *w)
2366{ 3471{
2367 clear_pending (EV_A_ (W)w); 3472 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3473 if (expect_false (!ev_is_active (w)))
2369 return; 3474 return;
2370 3475
3476 EV_FREQUENT_CHECK;
3477
2371 { 3478 {
2372 int active = ((W)w)->active; 3479 int active = ev_active (w);
2373 3480
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3481 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3482 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 3483
2377 ev_stop (EV_A_ (W)w); 3484 ev_stop (EV_A_ (W)w);
2378 --idleall; 3485 --idleall;
2379 } 3486 }
2380}
2381#endif
2382 3487
3488 EV_FREQUENT_CHECK;
3489}
3490#endif
3491
3492#if EV_PREPARE_ENABLE
2383void 3493void
2384ev_prepare_start (EV_P_ ev_prepare *w) 3494ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 3495{
2386 if (expect_false (ev_is_active (w))) 3496 if (expect_false (ev_is_active (w)))
2387 return; 3497 return;
3498
3499 EV_FREQUENT_CHECK;
2388 3500
2389 ev_start (EV_A_ (W)w, ++preparecnt); 3501 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3502 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 3503 prepares [preparecnt - 1] = w;
3504
3505 EV_FREQUENT_CHECK;
2392} 3506}
2393 3507
2394void 3508void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 3509ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 3510{
2397 clear_pending (EV_A_ (W)w); 3511 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3512 if (expect_false (!ev_is_active (w)))
2399 return; 3513 return;
2400 3514
3515 EV_FREQUENT_CHECK;
3516
2401 { 3517 {
2402 int active = ((W)w)->active; 3518 int active = ev_active (w);
3519
2403 prepares [active - 1] = prepares [--preparecnt]; 3520 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 3521 ev_active (prepares [active - 1]) = active;
2405 } 3522 }
2406 3523
2407 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
2408}
2409 3525
3526 EV_FREQUENT_CHECK;
3527}
3528#endif
3529
3530#if EV_CHECK_ENABLE
2410void 3531void
2411ev_check_start (EV_P_ ev_check *w) 3532ev_check_start (EV_P_ ev_check *w)
2412{ 3533{
2413 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2414 return; 3535 return;
3536
3537 EV_FREQUENT_CHECK;
2415 3538
2416 ev_start (EV_A_ (W)w, ++checkcnt); 3539 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3540 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 3541 checks [checkcnt - 1] = w;
3542
3543 EV_FREQUENT_CHECK;
2419} 3544}
2420 3545
2421void 3546void
2422ev_check_stop (EV_P_ ev_check *w) 3547ev_check_stop (EV_P_ ev_check *w)
2423{ 3548{
2424 clear_pending (EV_A_ (W)w); 3549 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 3550 if (expect_false (!ev_is_active (w)))
2426 return; 3551 return;
2427 3552
3553 EV_FREQUENT_CHECK;
3554
2428 { 3555 {
2429 int active = ((W)w)->active; 3556 int active = ev_active (w);
3557
2430 checks [active - 1] = checks [--checkcnt]; 3558 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 3559 ev_active (checks [active - 1]) = active;
2432 } 3560 }
2433 3561
2434 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
3563
3564 EV_FREQUENT_CHECK;
2435} 3565}
3566#endif
2436 3567
2437#if EV_EMBED_ENABLE 3568#if EV_EMBED_ENABLE
2438void noinline 3569void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 3570ev_embed_sweep (EV_P_ ev_embed *w)
2440{ 3571{
2441 ev_loop (w->other, EVLOOP_NONBLOCK); 3572 ev_run (w->other, EVRUN_NOWAIT);
2442} 3573}
2443 3574
2444static void 3575static void
2445embed_io_cb (EV_P_ ev_io *io, int revents) 3576embed_io_cb (EV_P_ ev_io *io, int revents)
2446{ 3577{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3578 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448 3579
2449 if (ev_cb (w)) 3580 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3581 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else 3582 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK); 3583 ev_run (w->other, EVRUN_NOWAIT);
2453} 3584}
2454 3585
2455static void 3586static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3587embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 3588{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3589 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 3590
2460 { 3591 {
2461 struct ev_loop *loop = w->other; 3592 EV_P = w->other;
2462 3593
2463 while (fdchangecnt) 3594 while (fdchangecnt)
2464 { 3595 {
2465 fd_reify (EV_A); 3596 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3597 ev_run (EV_A_ EVRUN_NOWAIT);
2467 } 3598 }
2468 } 3599 }
3600}
3601
3602static void
3603embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3604{
3605 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3606
3607 ev_embed_stop (EV_A_ w);
3608
3609 {
3610 EV_P = w->other;
3611
3612 ev_loop_fork (EV_A);
3613 ev_run (EV_A_ EVRUN_NOWAIT);
3614 }
3615
3616 ev_embed_start (EV_A_ w);
2469} 3617}
2470 3618
2471#if 0 3619#if 0
2472static void 3620static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3621embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2481{ 3629{
2482 if (expect_false (ev_is_active (w))) 3630 if (expect_false (ev_is_active (w)))
2483 return; 3631 return;
2484 3632
2485 { 3633 {
2486 struct ev_loop *loop = w->other; 3634 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3635 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3636 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 3637 }
3638
3639 EV_FREQUENT_CHECK;
2490 3640
2491 ev_set_priority (&w->io, ev_priority (w)); 3641 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 3642 ev_io_start (EV_A_ &w->io);
2493 3643
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 3644 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 3645 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 3646 ev_prepare_start (EV_A_ &w->prepare);
2497 3647
3648 ev_fork_init (&w->fork, embed_fork_cb);
3649 ev_fork_start (EV_A_ &w->fork);
3650
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3651 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 3652
2500 ev_start (EV_A_ (W)w, 1); 3653 ev_start (EV_A_ (W)w, 1);
3654
3655 EV_FREQUENT_CHECK;
2501} 3656}
2502 3657
2503void 3658void
2504ev_embed_stop (EV_P_ ev_embed *w) 3659ev_embed_stop (EV_P_ ev_embed *w)
2505{ 3660{
2506 clear_pending (EV_A_ (W)w); 3661 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 3662 if (expect_false (!ev_is_active (w)))
2508 return; 3663 return;
2509 3664
3665 EV_FREQUENT_CHECK;
3666
2510 ev_io_stop (EV_A_ &w->io); 3667 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 3668 ev_prepare_stop (EV_A_ &w->prepare);
3669 ev_fork_stop (EV_A_ &w->fork);
2512 3670
2513 ev_stop (EV_A_ (W)w); 3671 ev_stop (EV_A_ (W)w);
3672
3673 EV_FREQUENT_CHECK;
2514} 3674}
2515#endif 3675#endif
2516 3676
2517#if EV_FORK_ENABLE 3677#if EV_FORK_ENABLE
2518void 3678void
2519ev_fork_start (EV_P_ ev_fork *w) 3679ev_fork_start (EV_P_ ev_fork *w)
2520{ 3680{
2521 if (expect_false (ev_is_active (w))) 3681 if (expect_false (ev_is_active (w)))
2522 return; 3682 return;
3683
3684 EV_FREQUENT_CHECK;
2523 3685
2524 ev_start (EV_A_ (W)w, ++forkcnt); 3686 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3687 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 3688 forks [forkcnt - 1] = w;
3689
3690 EV_FREQUENT_CHECK;
2527} 3691}
2528 3692
2529void 3693void
2530ev_fork_stop (EV_P_ ev_fork *w) 3694ev_fork_stop (EV_P_ ev_fork *w)
2531{ 3695{
2532 clear_pending (EV_A_ (W)w); 3696 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 3697 if (expect_false (!ev_is_active (w)))
2534 return; 3698 return;
2535 3699
3700 EV_FREQUENT_CHECK;
3701
2536 { 3702 {
2537 int active = ((W)w)->active; 3703 int active = ev_active (w);
3704
2538 forks [active - 1] = forks [--forkcnt]; 3705 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 3706 ev_active (forks [active - 1]) = active;
2540 } 3707 }
2541 3708
2542 ev_stop (EV_A_ (W)w); 3709 ev_stop (EV_A_ (W)w);
2543}
2544#endif
2545 3710
3711 EV_FREQUENT_CHECK;
3712}
3713#endif
3714
2546#if EV_ASYNC_ENABLE 3715#if EV_CLEANUP_ENABLE
2547void 3716void
2548ev_async_start (EV_P_ ev_async *w) 3717ev_cleanup_start (EV_P_ ev_cleanup *w)
2549{ 3718{
2550 if (expect_false (ev_is_active (w))) 3719 if (expect_false (ev_is_active (w)))
2551 return; 3720 return;
2552 3721
3722 EV_FREQUENT_CHECK;
3723
3724 ev_start (EV_A_ (W)w, ++cleanupcnt);
3725 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3726 cleanups [cleanupcnt - 1] = w;
3727
3728 /* cleanup watchers should never keep a refcount on the loop */
3729 ev_unref (EV_A);
3730 EV_FREQUENT_CHECK;
3731}
3732
3733void
3734ev_cleanup_stop (EV_P_ ev_cleanup *w)
3735{
3736 clear_pending (EV_A_ (W)w);
3737 if (expect_false (!ev_is_active (w)))
3738 return;
3739
3740 EV_FREQUENT_CHECK;
3741 ev_ref (EV_A);
3742
3743 {
3744 int active = ev_active (w);
3745
3746 cleanups [active - 1] = cleanups [--cleanupcnt];
3747 ev_active (cleanups [active - 1]) = active;
3748 }
3749
3750 ev_stop (EV_A_ (W)w);
3751
3752 EV_FREQUENT_CHECK;
3753}
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757void
3758ev_async_start (EV_P_ ev_async *w)
3759{
3760 if (expect_false (ev_is_active (w)))
3761 return;
3762
3763 w->sent = 0;
3764
2553 evpipe_init (EV_A); 3765 evpipe_init (EV_A);
3766
3767 EV_FREQUENT_CHECK;
2554 3768
2555 ev_start (EV_A_ (W)w, ++asynccnt); 3769 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3770 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 3771 asyncs [asynccnt - 1] = w;
3772
3773 EV_FREQUENT_CHECK;
2558} 3774}
2559 3775
2560void 3776void
2561ev_async_stop (EV_P_ ev_async *w) 3777ev_async_stop (EV_P_ ev_async *w)
2562{ 3778{
2563 clear_pending (EV_A_ (W)w); 3779 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 3780 if (expect_false (!ev_is_active (w)))
2565 return; 3781 return;
2566 3782
3783 EV_FREQUENT_CHECK;
3784
2567 { 3785 {
2568 int active = ((W)w)->active; 3786 int active = ev_active (w);
3787
2569 asyncs [active - 1] = asyncs [--asynccnt]; 3788 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 3789 ev_active (asyncs [active - 1]) = active;
2571 } 3790 }
2572 3791
2573 ev_stop (EV_A_ (W)w); 3792 ev_stop (EV_A_ (W)w);
3793
3794 EV_FREQUENT_CHECK;
2574} 3795}
2575 3796
2576void 3797void
2577ev_async_send (EV_P_ ev_async *w) 3798ev_async_send (EV_P_ ev_async *w)
2578{ 3799{
2579 w->sent = 1; 3800 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 3801 evpipe_write (EV_A_ &async_pending);
2581} 3802}
2582#endif 3803#endif
2583 3804
2584/*****************************************************************************/ 3805/*****************************************************************************/
2585 3806
2595once_cb (EV_P_ struct ev_once *once, int revents) 3816once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 3817{
2597 void (*cb)(int revents, void *arg) = once->cb; 3818 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 3819 void *arg = once->arg;
2599 3820
2600 ev_io_stop (EV_A_ &once->io); 3821 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 3822 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 3823 ev_free (once);
2603 3824
2604 cb (revents, arg); 3825 cb (revents, arg);
2605} 3826}
2606 3827
2607static void 3828static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 3829once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 3830{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3831 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3832
3833 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 3834}
2612 3835
2613static void 3836static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 3837once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 3838{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3839 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3840
3841 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 3842}
2618 3843
2619void 3844void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3845ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 3846{
2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3847 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2623 3848
2624 if (expect_false (!once)) 3849 if (expect_false (!once))
2625 { 3850 {
2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3851 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2627 return; 3852 return;
2628 } 3853 }
2629 3854
2630 once->cb = cb; 3855 once->cb = cb;
2631 once->arg = arg; 3856 once->arg = arg;
2643 ev_timer_set (&once->to, timeout, 0.); 3868 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 3869 ev_timer_start (EV_A_ &once->to);
2645 } 3870 }
2646} 3871}
2647 3872
3873/*****************************************************************************/
3874
3875#if EV_WALK_ENABLE
3876void
3877ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3878{
3879 int i, j;
3880 ev_watcher_list *wl, *wn;
3881
3882 if (types & (EV_IO | EV_EMBED))
3883 for (i = 0; i < anfdmax; ++i)
3884 for (wl = anfds [i].head; wl; )
3885 {
3886 wn = wl->next;
3887
3888#if EV_EMBED_ENABLE
3889 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3890 {
3891 if (types & EV_EMBED)
3892 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3893 }
3894 else
3895#endif
3896#if EV_USE_INOTIFY
3897 if (ev_cb ((ev_io *)wl) == infy_cb)
3898 ;
3899 else
3900#endif
3901 if ((ev_io *)wl != &pipe_w)
3902 if (types & EV_IO)
3903 cb (EV_A_ EV_IO, wl);
3904
3905 wl = wn;
3906 }
3907
3908 if (types & (EV_TIMER | EV_STAT))
3909 for (i = timercnt + HEAP0; i-- > HEAP0; )
3910#if EV_STAT_ENABLE
3911 /*TODO: timer is not always active*/
3912 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3913 {
3914 if (types & EV_STAT)
3915 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3916 }
3917 else
3918#endif
3919 if (types & EV_TIMER)
3920 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3921
3922#if EV_PERIODIC_ENABLE
3923 if (types & EV_PERIODIC)
3924 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3925 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3926#endif
3927
3928#if EV_IDLE_ENABLE
3929 if (types & EV_IDLE)
3930 for (j = NUMPRI; i--; )
3931 for (i = idlecnt [j]; i--; )
3932 cb (EV_A_ EV_IDLE, idles [j][i]);
3933#endif
3934
3935#if EV_FORK_ENABLE
3936 if (types & EV_FORK)
3937 for (i = forkcnt; i--; )
3938 if (ev_cb (forks [i]) != embed_fork_cb)
3939 cb (EV_A_ EV_FORK, forks [i]);
3940#endif
3941
3942#if EV_ASYNC_ENABLE
3943 if (types & EV_ASYNC)
3944 for (i = asynccnt; i--; )
3945 cb (EV_A_ EV_ASYNC, asyncs [i]);
3946#endif
3947
3948#if EV_PREPARE_ENABLE
3949 if (types & EV_PREPARE)
3950 for (i = preparecnt; i--; )
3951# if EV_EMBED_ENABLE
3952 if (ev_cb (prepares [i]) != embed_prepare_cb)
3953# endif
3954 cb (EV_A_ EV_PREPARE, prepares [i]);
3955#endif
3956
3957#if EV_CHECK_ENABLE
3958 if (types & EV_CHECK)
3959 for (i = checkcnt; i--; )
3960 cb (EV_A_ EV_CHECK, checks [i]);
3961#endif
3962
3963#if EV_SIGNAL_ENABLE
3964 if (types & EV_SIGNAL)
3965 for (i = 0; i < EV_NSIG - 1; ++i)
3966 for (wl = signals [i].head; wl; )
3967 {
3968 wn = wl->next;
3969 cb (EV_A_ EV_SIGNAL, wl);
3970 wl = wn;
3971 }
3972#endif
3973
3974#if EV_CHILD_ENABLE
3975 if (types & EV_CHILD)
3976 for (i = (EV_PID_HASHSIZE); i--; )
3977 for (wl = childs [i]; wl; )
3978 {
3979 wn = wl->next;
3980 cb (EV_A_ EV_CHILD, wl);
3981 wl = wn;
3982 }
3983#endif
3984/* EV_STAT 0x00001000 /* stat data changed */
3985/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3986}
3987#endif
3988
2648#if EV_MULTIPLICITY 3989#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 3990 #include "ev_wrap.h"
2650#endif 3991#endif
2651 3992
2652#ifdef __cplusplus 3993EV_CPP(})
2653}
2654#endif
2655 3994

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines