ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC vs.
Revision 1.378 by root, Mon Jun 13 09:52:36 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
237# endif 331# endif
238#endif 332#endif
239 333
240#if 0 /* debugging */ 334#if 0 /* debugging */
241# define EV_VERIFY 3 335# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 336# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 337# define EV_HEAP_CACHE_AT 1
244#endif 338#endif
245 339
246#ifndef EV_VERIFY 340#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 342#endif
249 343
250#ifndef EV_USE_4HEAP 344#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 345# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 346#endif
253 347
254#ifndef EV_HEAP_CACHE_AT 348#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
256#endif 364#endif
257 365
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
259 373
260#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
263#endif 377#endif
271# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
273#endif 387#endif
274 388
275#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
276# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
277# include <sys/select.h> 392# include <sys/select.h>
278# endif 393# endif
279#endif 394#endif
280 395
281#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
282# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
283#endif 404#endif
284 405
285#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h> 407# include <winsock.h>
287#endif 408#endif
288 409
289#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 412# include <stdint.h>
292# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
293extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
294# endif 415# endif
295int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
296# ifdef __cplusplus 417# ifdef O_CLOEXEC
297} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
298# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
299#endif 446#endif
300 447
301/**/ 448/**/
302 449
303#if EV_VERIFY >= 3 450#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 451# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 452#else
306# define EV_FREQUENT_CHECK do { } while (0) 453# define EV_FREQUENT_CHECK do { } while (0)
307#endif 454#endif
308 455
309/* 456/*
310 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */ 459 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
318 462
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
322 468
323#if __GNUC__ >= 4 469#if __GNUC__ >= 4
324# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
325# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
326#else 472#else
333 479
334#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
335#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline 482#define inline_size static inline
337 483
338#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
339# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
340#else 494#else
341# define inline_speed static inline
342#endif
343
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
346 497
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
349 500
350typedef ev_watcher *W; 501typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
353 504
354#define ev_active(w) ((W)(w))->active 505#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 506#define ev_at(w) ((WT)(w))->at
356 507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
357#if EV_USE_MONOTONIC 514#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 526#endif
362 527
363#ifdef _WIN32 528#ifdef _WIN32
364# include "ev_win32.c" 529# include "ev_win32.c"
365#endif 530#endif
366 531
367/*****************************************************************************/ 532/*****************************************************************************/
368 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
369static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
370 633
371void 634void
372ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
373{ 636{
374 syserr_cb = cb; 637 syserr_cb = cb;
375} 638}
376 639
377static void noinline 640static void noinline
378syserr (const char *msg) 641ev_syserr (const char *msg)
379{ 642{
380 if (!msg) 643 if (!msg)
381 msg = "(libev) system error"; 644 msg = "(libev) system error";
382 645
383 if (syserr_cb) 646 if (syserr_cb)
384 syserr_cb (msg); 647 syserr_cb (msg);
385 else 648 else
386 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
387 perror (msg); 656 perror (msg);
657#endif
388 abort (); 658 abort ();
389 } 659 }
390} 660}
391 661
392static void * 662static void *
393ev_realloc_emul (void *ptr, long size) 663ev_realloc_emul (void *ptr, long size)
394{ 664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
395 /* some systems, notably openbsd and darwin, fail to properly 668 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 669 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 670 * the single unix specification, so work around them here.
398 */ 671 */
399 672
400 if (size) 673 if (size)
401 return realloc (ptr, size); 674 return realloc (ptr, size);
402 675
403 free (ptr); 676 free (ptr);
404 return 0; 677 return 0;
678#endif
405} 679}
406 680
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
408 682
409void 683void
417{ 691{
418 ptr = alloc (ptr, size); 692 ptr = alloc (ptr, size);
419 693
420 if (!ptr && size) 694 if (!ptr && size)
421 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
423 abort (); 701 abort ();
424 } 702 }
425 703
426 return ptr; 704 return ptr;
427} 705}
429#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
431 709
432/*****************************************************************************/ 710/*****************************************************************************/
433 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
434typedef struct 716typedef struct
435{ 717{
436 WL head; 718 WL head;
437 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
439#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
440 SOCKET handle; 727 SOCKET handle;
441#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
442} ANFD; 732} ANFD;
443 733
734/* stores the pending event set for a given watcher */
444typedef struct 735typedef struct
445{ 736{
446 W w; 737 W w;
447 int events; 738 int events; /* the pending event set for the given watcher */
448} ANPENDING; 739} ANPENDING;
449 740
450#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 742/* hash table entry per inotify-id */
452typedef struct 743typedef struct
455} ANFS; 746} ANFS;
456#endif 747#endif
457 748
458/* Heap Entry */ 749/* Heap Entry */
459#if EV_HEAP_CACHE_AT 750#if EV_HEAP_CACHE_AT
751 /* a heap element */
460 typedef struct { 752 typedef struct {
461 ev_tstamp at; 753 ev_tstamp at;
462 WT w; 754 WT w;
463 } ANHE; 755 } ANHE;
464 756
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 757 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 758 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 760#else
761 /* a heap element */
469 typedef WT ANHE; 762 typedef WT ANHE;
470 763
471 #define ANHE_w(he) (he) 764 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 765 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 766 #define ANHE_at_cache(he)
497 790
498 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
499 792
500#endif 793#endif
501 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
502/*****************************************************************************/ 807/*****************************************************************************/
503 808
809#ifndef EV_HAVE_EV_TIME
504ev_tstamp 810ev_tstamp
505ev_time (void) 811ev_time (void)
506{ 812{
507#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
508 struct timespec ts; 816 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 819 }
820#endif
821
512 struct timeval tv; 822 struct timeval tv;
513 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 825}
826#endif
517 827
518ev_tstamp inline_size 828inline_size ev_tstamp
519get_clock (void) 829get_clock (void)
520{ 830{
521#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
523 { 833 {
544 if (delay > 0.) 854 if (delay > 0.)
545 { 855 {
546#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
547 struct timespec ts; 857 struct timespec ts;
548 858
549 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
553#elif defined(_WIN32) 861#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3)); 862 Sleep ((unsigned long)(delay * 1e3));
555#else 863#else
556 struct timeval tv; 864 struct timeval tv;
557 865
558 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
560 868 /* by older ones */
869 EV_TV_SET (tv, delay);
561 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
562#endif 871#endif
563 } 872 }
564} 873}
565 874
566/*****************************************************************************/ 875/*****************************************************************************/
567 876
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 878
570int inline_size 879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
571array_nextsize (int elem, int cur, int cnt) 882array_nextsize (int elem, int cur, int cnt)
572{ 883{
573 int ncur = cur + 1; 884 int ncur = cur + 1;
574 885
575 do 886 do
592array_realloc (int elem, void *base, int *cur, int cnt) 903array_realloc (int elem, void *base, int *cur, int cnt)
593{ 904{
594 *cur = array_nextsize (elem, *cur, cnt); 905 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 906 return ev_realloc (base, elem * *cur);
596} 907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 911
598#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 913 if (expect_false ((cnt) > (cur))) \
600 { \ 914 { \
601 int ocur_ = (cur); \ 915 int ocur_ = (cur); \
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 928 }
615#endif 929#endif
616 930
617#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 933
620/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
621 941
622void noinline 942void noinline
623ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
624{ 944{
625 W w_ = (W)w; 945 W w_ = (W)w;
634 pendings [pri][w_->pending - 1].w = w_; 954 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 955 pendings [pri][w_->pending - 1].events = revents;
636 } 956 }
637} 957}
638 958
639void inline_speed 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 976{
642 int i; 977 int i;
643 978
644 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
646} 981}
647 982
648/*****************************************************************************/ 983/*****************************************************************************/
649 984
650void inline_size 985inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
665{ 987{
666 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
667 ev_io *w; 989 ev_io *w;
668 990
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 995 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
675 } 997 }
676} 998}
677 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
678void 1011void
679ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
680{ 1013{
681 if (fd >= 0 && fd < anfdmax) 1014 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
683} 1016}
684 1017
685void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
686fd_reify (EV_P) 1021fd_reify (EV_P)
687{ 1022{
688 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
689 1049
690 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
691 { 1051 {
692 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
694 ev_io *w; 1054 ev_io *w;
695 1055
696 unsigned char events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
697 1058
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
699 events |= (unsigned char)w->events;
700 1060
701#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
702 if (events)
703 { 1062 {
704 unsigned long argp; 1063 anfd->events = 0;
705 #ifdef EV_FD_TO_WIN32_HANDLE 1064
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
707 #else 1066 anfd->events |= (unsigned char)w->events;
708 anfd->handle = _get_osfhandle (fd); 1067
709 #endif 1068 if (o_events != anfd->events)
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1069 o_reify = EV__IOFDSET; /* actually |= */
711 } 1070 }
712#endif
713 1071
714 { 1072 if (o_reify & EV__IOFDSET)
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
723 }
724 } 1074 }
725 1075
726 fdchangecnt = 0; 1076 fdchangecnt = 0;
727} 1077}
728 1078
729void inline_size 1079/* something about the given fd changed */
1080inline_size void
730fd_change (EV_P_ int fd, int flags) 1081fd_change (EV_P_ int fd, int flags)
731{ 1082{
732 unsigned char reify = anfds [fd].reify; 1083 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 1084 anfds [fd].reify |= flags;
734 1085
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
740 } 1091 }
741} 1092}
742 1093
743void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
744fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
745{ 1097{
746 ev_io *w; 1098 ev_io *w;
747 1099
748 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 1104 }
753} 1105}
754 1106
755int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
756fd_valid (int fd) 1109fd_valid (int fd)
757{ 1110{
758#ifdef _WIN32 1111#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 1113#else
761 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
762#endif 1115#endif
763} 1116}
764 1117
768{ 1121{
769 int fd; 1122 int fd;
770 1123
771 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1125 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
775} 1128}
776 1129
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1131static void noinline
782 1135
783 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1137 if (anfds [fd].events)
785 { 1138 {
786 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
787 return; 1140 break;
788 } 1141 }
789} 1142}
790 1143
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1145static void noinline
796 1149
797 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1151 if (anfds [fd].events)
799 { 1152 {
800 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
1154 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1156 }
803} 1157}
804 1158
1159/* used to prepare libev internal fd's */
1160/* this is not fork-safe */
1161inline_speed void
1162fd_intern (int fd)
1163{
1164#ifdef _WIN32
1165 unsigned long arg = 1;
1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1167#else
1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
1169 fcntl (fd, F_SETFL, O_NONBLOCK);
1170#endif
1171}
1172
805/*****************************************************************************/ 1173/*****************************************************************************/
806 1174
807/* 1175/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 1176 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 1178 * the branching factor of the d-tree.
811 */ 1179 */
812 1180
813/* 1181/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 1192#define UPHEAP_DONE(p,k) ((p) == (k))
825 1193
826/* away from the root */ 1194/* away from the root */
827void inline_speed 1195inline_speed void
828downheap (ANHE *heap, int N, int k) 1196downheap (ANHE *heap, int N, int k)
829{ 1197{
830 ANHE he = heap [k]; 1198 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 1199 ANHE *E = heap + N + HEAP0;
832 1200
872#define HEAP0 1 1240#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 1241#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 1242#define UPHEAP_DONE(p,k) (!(p))
875 1243
876/* away from the root */ 1244/* away from the root */
877void inline_speed 1245inline_speed void
878downheap (ANHE *heap, int N, int k) 1246downheap (ANHE *heap, int N, int k)
879{ 1247{
880 ANHE he = heap [k]; 1248 ANHE he = heap [k];
881 1249
882 for (;;) 1250 for (;;)
883 { 1251 {
884 int c = k << 1; 1252 int c = k << 1;
885 1253
886 if (c > N + HEAP0 - 1) 1254 if (c >= N + HEAP0)
887 break; 1255 break;
888 1256
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 1258 ? 1 : 0;
891 1259
902 ev_active (ANHE_w (he)) = k; 1270 ev_active (ANHE_w (he)) = k;
903} 1271}
904#endif 1272#endif
905 1273
906/* towards the root */ 1274/* towards the root */
907void inline_speed 1275inline_speed void
908upheap (ANHE *heap, int k) 1276upheap (ANHE *heap, int k)
909{ 1277{
910 ANHE he = heap [k]; 1278 ANHE he = heap [k];
911 1279
912 for (;;) 1280 for (;;)
923 1291
924 heap [k] = he; 1292 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 1293 ev_active (ANHE_w (he)) = k;
926} 1294}
927 1295
928void inline_size 1296/* move an element suitably so it is in a correct place */
1297inline_size void
929adjustheap (ANHE *heap, int N, int k) 1298adjustheap (ANHE *heap, int N, int k)
930{ 1299{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 1301 upheap (heap, k);
933 else 1302 else
934 downheap (heap, N, k); 1303 downheap (heap, N, k);
935} 1304}
936 1305
937/* rebuild the heap: this function is used only once and executed rarely */ 1306/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 1307inline_size void
939reheap (ANHE *heap, int N) 1308reheap (ANHE *heap, int N)
940{ 1309{
941 int i; 1310 int i;
1311
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i) 1314 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0); 1315 upheap (heap, i + HEAP0);
946} 1316}
947 1317
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
962
963/*****************************************************************************/ 1318/*****************************************************************************/
964 1319
1320/* associate signal watchers to a signal signal */
965typedef struct 1321typedef struct
966{ 1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
967 WL head; 1327 WL head;
968 EV_ATOMIC_T gotsig;
969} ANSIG; 1328} ANSIG;
970 1329
971static ANSIG *signals; 1330static ANSIG signals [EV_NSIG - 1];
972static int signalmax;
973
974static EV_ATOMIC_T gotsig;
975
976void inline_size
977signals_init (ANSIG *base, int count)
978{
979 while (count--)
980 {
981 base->head = 0;
982 base->gotsig = 0;
983
984 ++base;
985 }
986}
987 1331
988/*****************************************************************************/ 1332/*****************************************************************************/
989 1333
990void inline_speed 1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
991fd_intern (int fd)
992{
993#ifdef _WIN32
994 int arg = 1;
995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
996#else
997 fcntl (fd, F_SETFD, FD_CLOEXEC);
998 fcntl (fd, F_SETFL, O_NONBLOCK);
999#endif
1000}
1001 1335
1002static void noinline 1336static void noinline
1003evpipe_init (EV_P) 1337evpipe_init (EV_P)
1004{ 1338{
1005 if (!ev_is_active (&pipeev)) 1339 if (!ev_is_active (&pipe_w))
1006 { 1340 {
1007#if EV_USE_EVENTFD 1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1008 if ((evfd = eventfd (0, 0)) >= 0) 1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1009 { 1347 {
1010 evpipe [0] = -1; 1348 evpipe [0] = -1;
1011 fd_intern (evfd); 1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1012 ev_io_set (&pipeev, evfd, EV_READ); 1350 ev_io_set (&pipe_w, evfd, EV_READ);
1013 } 1351 }
1014 else 1352 else
1015#endif 1353# endif
1016 { 1354 {
1017 while (pipe (evpipe)) 1355 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe"); 1356 ev_syserr ("(libev) error creating signal/async pipe");
1019 1357
1020 fd_intern (evpipe [0]); 1358 fd_intern (evpipe [0]);
1021 fd_intern (evpipe [1]); 1359 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ); 1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1023 } 1361 }
1024 1362
1025 ev_io_start (EV_A_ &pipeev); 1363 ev_io_start (EV_A_ &pipe_w);
1026 ev_unref (EV_A); /* watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 } 1365 }
1028} 1366}
1029 1367
1030void inline_size 1368inline_size void
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{ 1370{
1033 if (!*flag) 1371 if (!*flag)
1034 { 1372 {
1035 int old_errno = errno; /* save errno because write might clobber it */
1036
1037 *flag = 1; 1373 *flag = 1;
1038 1374
1375 pipe_write_skipped = 1;
1376
1377 if (pipe_write_wanted)
1378 {
1379 int old_errno = errno; /* save errno because write will clobber it */
1380 char dummy;
1381
1382 pipe_write_skipped = 0;
1383
1384#if EV_USE_EVENTFD
1385 if (evfd >= 0)
1386 {
1387 uint64_t counter = 1;
1388 write (evfd, &counter, sizeof (uint64_t));
1389 }
1390 else
1391#endif
1392 {
1393 /* win32 people keep sending patches that change this write() to send() */
1394 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1395 /* so when you think this write should be a send instead, please find out */
1396 /* where your send() is from - it's definitely not the microsoft send, and */
1397 /* tell me. thank you. */
1398 write (evpipe [1], &dummy, 1);
1399 }
1400
1401 errno = old_errno;
1402 }
1403 }
1404}
1405
1406/* called whenever the libev signal pipe */
1407/* got some events (signal, async) */
1408static void
1409pipecb (EV_P_ ev_io *iow, int revents)
1410{
1411 int i;
1412
1413 if (revents & EV_READ)
1414 {
1039#if EV_USE_EVENTFD 1415#if EV_USE_EVENTFD
1040 if (evfd >= 0) 1416 if (evfd >= 0)
1041 { 1417 {
1042 uint64_t counter = 1; 1418 uint64_t counter;
1043 write (evfd, &counter, sizeof (uint64_t)); 1419 read (evfd, &counter, sizeof (uint64_t));
1044 } 1420 }
1045 else 1421 else
1046#endif 1422#endif
1047 write (evpipe [1], &old_errno, 1); 1423 {
1048
1049 errno = old_errno;
1050 }
1051}
1052
1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy; 1424 char dummy;
1425 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1066 read (evpipe [0], &dummy, 1); 1426 read (evpipe [0], &dummy, 1);
1427 }
1428 }
1429
1430 pipe_write_skipped = 0;
1431
1432#if EV_SIGNAL_ENABLE
1433 if (sig_pending)
1067 } 1434 {
1435 sig_pending = 0;
1068 1436
1069 if (gotsig && ev_is_default_loop (EV_A)) 1437 for (i = EV_NSIG - 1; i--; )
1070 { 1438 if (expect_false (signals [i].pending))
1071 int signum;
1072 gotsig = 0;
1073
1074 for (signum = signalmax; signum--; )
1075 if (signals [signum].gotsig)
1076 ev_feed_signal_event (EV_A_ signum + 1); 1439 ev_feed_signal_event (EV_A_ i + 1);
1077 } 1440 }
1441#endif
1078 1442
1079#if EV_ASYNC_ENABLE 1443#if EV_ASYNC_ENABLE
1080 if (gotasync) 1444 if (async_pending)
1081 { 1445 {
1082 int i; 1446 async_pending = 0;
1083 gotasync = 0;
1084 1447
1085 for (i = asynccnt; i--; ) 1448 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent) 1449 if (asyncs [i]->sent)
1087 { 1450 {
1088 asyncs [i]->sent = 0; 1451 asyncs [i]->sent = 0;
1092#endif 1455#endif
1093} 1456}
1094 1457
1095/*****************************************************************************/ 1458/*****************************************************************************/
1096 1459
1460void
1461ev_feed_signal (int signum)
1462{
1463#if EV_MULTIPLICITY
1464 EV_P = signals [signum - 1].loop;
1465
1466 if (!EV_A)
1467 return;
1468#endif
1469
1470 evpipe_init (EV_A);
1471
1472 signals [signum - 1].pending = 1;
1473 evpipe_write (EV_A_ &sig_pending);
1474}
1475
1097static void 1476static void
1098ev_sighandler (int signum) 1477ev_sighandler (int signum)
1099{ 1478{
1100#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct;
1102#endif
1103
1104#if _WIN32 1479#ifdef _WIN32
1105 signal (signum, ev_sighandler); 1480 signal (signum, ev_sighandler);
1106#endif 1481#endif
1107 1482
1108 signals [signum - 1].gotsig = 1; 1483 ev_feed_signal (signum);
1109 evpipe_write (EV_A_ &gotsig);
1110} 1484}
1111 1485
1112void noinline 1486void noinline
1113ev_feed_signal_event (EV_P_ int signum) 1487ev_feed_signal_event (EV_P_ int signum)
1114{ 1488{
1115 WL w; 1489 WL w;
1116 1490
1491 if (expect_false (signum <= 0 || signum > EV_NSIG))
1492 return;
1493
1494 --signum;
1495
1117#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1497 /* it is permissible to try to feed a signal to the wrong loop */
1119#endif 1498 /* or, likely more useful, feeding a signal nobody is waiting for */
1120 1499
1121 --signum; 1500 if (expect_false (signals [signum].loop != EV_A))
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return; 1501 return;
1502#endif
1125 1503
1126 signals [signum].gotsig = 0; 1504 signals [signum].pending = 0;
1127 1505
1128 for (w = signals [signum].head; w; w = w->next) 1506 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1507 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130} 1508}
1131 1509
1510#if EV_USE_SIGNALFD
1511static void
1512sigfdcb (EV_P_ ev_io *iow, int revents)
1513{
1514 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1515
1516 for (;;)
1517 {
1518 ssize_t res = read (sigfd, si, sizeof (si));
1519
1520 /* not ISO-C, as res might be -1, but works with SuS */
1521 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1522 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1523
1524 if (res < (ssize_t)sizeof (si))
1525 break;
1526 }
1527}
1528#endif
1529
1530#endif
1531
1132/*****************************************************************************/ 1532/*****************************************************************************/
1133 1533
1534#if EV_CHILD_ENABLE
1134static WL childs [EV_PID_HASHSIZE]; 1535static WL childs [EV_PID_HASHSIZE];
1135
1136#ifndef _WIN32
1137 1536
1138static ev_signal childev; 1537static ev_signal childev;
1139 1538
1140#ifndef WIFCONTINUED 1539#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0 1540# define WIFCONTINUED(status) 0
1142#endif 1541#endif
1143 1542
1144void inline_speed 1543/* handle a single child status event */
1544inline_speed void
1145child_reap (EV_P_ int chain, int pid, int status) 1545child_reap (EV_P_ int chain, int pid, int status)
1146{ 1546{
1147 ev_child *w; 1547 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1548 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1149 1549
1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1550 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 { 1551 {
1152 if ((w->pid == pid || !w->pid) 1552 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1))) 1553 && (!traced || (w->flags & 1)))
1154 { 1554 {
1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1555 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1162 1562
1163#ifndef WCONTINUED 1563#ifndef WCONTINUED
1164# define WCONTINUED 0 1564# define WCONTINUED 0
1165#endif 1565#endif
1166 1566
1567/* called on sigchld etc., calls waitpid */
1167static void 1568static void
1168childcb (EV_P_ ev_signal *sw, int revents) 1569childcb (EV_P_ ev_signal *sw, int revents)
1169{ 1570{
1170 int pid, status; 1571 int pid, status;
1171 1572
1179 /* make sure we are called again until all children have been reaped */ 1580 /* make sure we are called again until all children have been reaped */
1180 /* we need to do it this way so that the callback gets called before we continue */ 1581 /* we need to do it this way so that the callback gets called before we continue */
1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1582 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1182 1583
1183 child_reap (EV_A_ pid, pid, status); 1584 child_reap (EV_A_ pid, pid, status);
1184 if (EV_PID_HASHSIZE > 1) 1585 if ((EV_PID_HASHSIZE) > 1)
1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1586 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1186} 1587}
1187 1588
1188#endif 1589#endif
1189 1590
1190/*****************************************************************************/ 1591/*****************************************************************************/
1191 1592
1593#if EV_USE_IOCP
1594# include "ev_iocp.c"
1595#endif
1192#if EV_USE_PORT 1596#if EV_USE_PORT
1193# include "ev_port.c" 1597# include "ev_port.c"
1194#endif 1598#endif
1195#if EV_USE_KQUEUE 1599#if EV_USE_KQUEUE
1196# include "ev_kqueue.c" 1600# include "ev_kqueue.c"
1252 /* kqueue is borked on everything but netbsd apparently */ 1656 /* kqueue is borked on everything but netbsd apparently */
1253 /* it usually doesn't work correctly on anything but sockets and pipes */ 1657 /* it usually doesn't work correctly on anything but sockets and pipes */
1254 flags &= ~EVBACKEND_KQUEUE; 1658 flags &= ~EVBACKEND_KQUEUE;
1255#endif 1659#endif
1256#ifdef __APPLE__ 1660#ifdef __APPLE__
1257 // flags &= ~EVBACKEND_KQUEUE; for documentation 1661 /* only select works correctly on that "unix-certified" platform */
1258 flags &= ~EVBACKEND_POLL; 1662 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1663 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1664#endif
1665#ifdef __FreeBSD__
1666 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1259#endif 1667#endif
1260 1668
1261 return flags; 1669 return flags;
1262} 1670}
1263 1671
1265ev_embeddable_backends (void) 1673ev_embeddable_backends (void)
1266{ 1674{
1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1675 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1268 1676
1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1677 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */ 1678 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1271 flags &= ~EVBACKEND_EPOLL; 1679 flags &= ~EVBACKEND_EPOLL;
1272 1680
1273 return flags; 1681 return flags;
1274} 1682}
1275 1683
1276unsigned int 1684unsigned int
1277ev_backend (EV_P) 1685ev_backend (EV_P)
1278{ 1686{
1279 return backend; 1687 return backend;
1280} 1688}
1281 1689
1690#if EV_FEATURE_API
1282unsigned int 1691unsigned int
1283ev_loop_count (EV_P) 1692ev_iteration (EV_P)
1284{ 1693{
1285 return loop_count; 1694 return loop_count;
1286} 1695}
1287 1696
1697unsigned int
1698ev_depth (EV_P)
1699{
1700 return loop_depth;
1701}
1702
1288void 1703void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1704ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1290{ 1705{
1291 io_blocktime = interval; 1706 io_blocktime = interval;
1292} 1707}
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1710ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{ 1711{
1297 timeout_blocktime = interval; 1712 timeout_blocktime = interval;
1298} 1713}
1299 1714
1715void
1716ev_set_userdata (EV_P_ void *data)
1717{
1718 userdata = data;
1719}
1720
1721void *
1722ev_userdata (EV_P)
1723{
1724 return userdata;
1725}
1726
1727void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1728{
1729 invoke_cb = invoke_pending_cb;
1730}
1731
1732void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1733{
1734 release_cb = release;
1735 acquire_cb = acquire;
1736}
1737#endif
1738
1739/* initialise a loop structure, must be zero-initialised */
1300static void noinline 1740static void noinline
1301loop_init (EV_P_ unsigned int flags) 1741loop_init (EV_P_ unsigned int flags)
1302{ 1742{
1303 if (!backend) 1743 if (!backend)
1304 { 1744 {
1745 origflags = flags;
1746
1747#if EV_USE_REALTIME
1748 if (!have_realtime)
1749 {
1750 struct timespec ts;
1751
1752 if (!clock_gettime (CLOCK_REALTIME, &ts))
1753 have_realtime = 1;
1754 }
1755#endif
1756
1305#if EV_USE_MONOTONIC 1757#if EV_USE_MONOTONIC
1758 if (!have_monotonic)
1306 { 1759 {
1307 struct timespec ts; 1760 struct timespec ts;
1761
1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1762 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1309 have_monotonic = 1; 1763 have_monotonic = 1;
1310 } 1764 }
1311#endif
1312
1313 ev_rt_now = ev_time ();
1314 mn_now = get_clock ();
1315 now_floor = mn_now;
1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif 1765#endif
1326 1766
1327 /* pid check not overridable via env */ 1767 /* pid check not overridable via env */
1328#ifndef _WIN32 1768#ifndef _WIN32
1329 if (flags & EVFLAG_FORKCHECK) 1769 if (flags & EVFLAG_FORKCHECK)
1333 if (!(flags & EVFLAG_NOENV) 1773 if (!(flags & EVFLAG_NOENV)
1334 && !enable_secure () 1774 && !enable_secure ()
1335 && getenv ("LIBEV_FLAGS")) 1775 && getenv ("LIBEV_FLAGS"))
1336 flags = atoi (getenv ("LIBEV_FLAGS")); 1776 flags = atoi (getenv ("LIBEV_FLAGS"));
1337 1777
1338 if (!(flags & 0x0000ffffU)) 1778 ev_rt_now = ev_time ();
1779 mn_now = get_clock ();
1780 now_floor = mn_now;
1781 rtmn_diff = ev_rt_now - mn_now;
1782#if EV_FEATURE_API
1783 invoke_cb = ev_invoke_pending;
1784#endif
1785
1786 io_blocktime = 0.;
1787 timeout_blocktime = 0.;
1788 backend = 0;
1789 backend_fd = -1;
1790 sig_pending = 0;
1791#if EV_ASYNC_ENABLE
1792 async_pending = 0;
1793#endif
1794 pipe_write_skipped = 0;
1795 pipe_write_wanted = 0;
1796#if EV_USE_INOTIFY
1797 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1798#endif
1799#if EV_USE_SIGNALFD
1800 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1801#endif
1802
1803 if (!(flags & EVBACKEND_MASK))
1339 flags |= ev_recommended_backends (); 1804 flags |= ev_recommended_backends ();
1340 1805
1806#if EV_USE_IOCP
1807 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1808#endif
1341#if EV_USE_PORT 1809#if EV_USE_PORT
1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1810 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1343#endif 1811#endif
1344#if EV_USE_KQUEUE 1812#if EV_USE_KQUEUE
1345 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1813 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1352#endif 1820#endif
1353#if EV_USE_SELECT 1821#if EV_USE_SELECT
1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1822 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1355#endif 1823#endif
1356 1824
1825 ev_prepare_init (&pending_w, pendingcb);
1826
1827#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1357 ev_init (&pipeev, pipecb); 1828 ev_init (&pipe_w, pipecb);
1358 ev_set_priority (&pipeev, EV_MAXPRI); 1829 ev_set_priority (&pipe_w, EV_MAXPRI);
1830#endif
1359 } 1831 }
1360} 1832}
1361 1833
1362static void noinline 1834/* free up a loop structure */
1835void
1363loop_destroy (EV_P) 1836ev_loop_destroy (EV_P)
1364{ 1837{
1365 int i; 1838 int i;
1366 1839
1840#if EV_MULTIPLICITY
1841 /* mimic free (0) */
1842 if (!EV_A)
1843 return;
1844#endif
1845
1846#if EV_CLEANUP_ENABLE
1847 /* queue cleanup watchers (and execute them) */
1848 if (expect_false (cleanupcnt))
1849 {
1850 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1851 EV_INVOKE_PENDING;
1852 }
1853#endif
1854
1855#if EV_CHILD_ENABLE
1856 if (ev_is_active (&childev))
1857 {
1858 ev_ref (EV_A); /* child watcher */
1859 ev_signal_stop (EV_A_ &childev);
1860 }
1861#endif
1862
1367 if (ev_is_active (&pipeev)) 1863 if (ev_is_active (&pipe_w))
1368 { 1864 {
1369 ev_ref (EV_A); /* signal watcher */ 1865 /*ev_ref (EV_A);*/
1370 ev_io_stop (EV_A_ &pipeev); 1866 /*ev_io_stop (EV_A_ &pipe_w);*/
1371 1867
1372#if EV_USE_EVENTFD 1868#if EV_USE_EVENTFD
1373 if (evfd >= 0) 1869 if (evfd >= 0)
1374 close (evfd); 1870 close (evfd);
1375#endif 1871#endif
1376 1872
1377 if (evpipe [0] >= 0) 1873 if (evpipe [0] >= 0)
1378 { 1874 {
1379 close (evpipe [0]); 1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1380 close (evpipe [1]); 1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1381 } 1877 }
1382 } 1878 }
1879
1880#if EV_USE_SIGNALFD
1881 if (ev_is_active (&sigfd_w))
1882 close (sigfd);
1883#endif
1383 1884
1384#if EV_USE_INOTIFY 1885#if EV_USE_INOTIFY
1385 if (fs_fd >= 0) 1886 if (fs_fd >= 0)
1386 close (fs_fd); 1887 close (fs_fd);
1387#endif 1888#endif
1388 1889
1389 if (backend_fd >= 0) 1890 if (backend_fd >= 0)
1390 close (backend_fd); 1891 close (backend_fd);
1391 1892
1893#if EV_USE_IOCP
1894 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1895#endif
1392#if EV_USE_PORT 1896#if EV_USE_PORT
1393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1394#endif 1898#endif
1395#if EV_USE_KQUEUE 1899#if EV_USE_KQUEUE
1396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1900 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1411#if EV_IDLE_ENABLE 1915#if EV_IDLE_ENABLE
1412 array_free (idle, [i]); 1916 array_free (idle, [i]);
1413#endif 1917#endif
1414 } 1918 }
1415 1919
1416 ev_free (anfds); anfdmax = 0; 1920 ev_free (anfds); anfds = 0; anfdmax = 0;
1417 1921
1418 /* have to use the microsoft-never-gets-it-right macro */ 1922 /* have to use the microsoft-never-gets-it-right macro */
1923 array_free (rfeed, EMPTY);
1419 array_free (fdchange, EMPTY); 1924 array_free (fdchange, EMPTY);
1420 array_free (timer, EMPTY); 1925 array_free (timer, EMPTY);
1421#if EV_PERIODIC_ENABLE 1926#if EV_PERIODIC_ENABLE
1422 array_free (periodic, EMPTY); 1927 array_free (periodic, EMPTY);
1423#endif 1928#endif
1424#if EV_FORK_ENABLE 1929#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY); 1930 array_free (fork, EMPTY);
1426#endif 1931#endif
1932#if EV_CLEANUP_ENABLE
1933 array_free (cleanup, EMPTY);
1934#endif
1427 array_free (prepare, EMPTY); 1935 array_free (prepare, EMPTY);
1428 array_free (check, EMPTY); 1936 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE 1937#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY); 1938 array_free (async, EMPTY);
1431#endif 1939#endif
1432 1940
1433 backend = 0; 1941 backend = 0;
1942
1943#if EV_MULTIPLICITY
1944 if (ev_is_default_loop (EV_A))
1945#endif
1946 ev_default_loop_ptr = 0;
1947#if EV_MULTIPLICITY
1948 else
1949 ev_free (EV_A);
1950#endif
1434} 1951}
1435 1952
1436#if EV_USE_INOTIFY 1953#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P); 1954inline_size void infy_fork (EV_P);
1438#endif 1955#endif
1439 1956
1440void inline_size 1957inline_size void
1441loop_fork (EV_P) 1958loop_fork (EV_P)
1442{ 1959{
1443#if EV_USE_PORT 1960#if EV_USE_PORT
1444 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1961 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1445#endif 1962#endif
1451#endif 1968#endif
1452#if EV_USE_INOTIFY 1969#if EV_USE_INOTIFY
1453 infy_fork (EV_A); 1970 infy_fork (EV_A);
1454#endif 1971#endif
1455 1972
1456 if (ev_is_active (&pipeev)) 1973 if (ev_is_active (&pipe_w))
1457 { 1974 {
1458 /* this "locks" the handlers against writing to the pipe */ 1975 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
1464 1976
1465 ev_ref (EV_A); 1977 ev_ref (EV_A);
1466 ev_io_stop (EV_A_ &pipeev); 1978 ev_io_stop (EV_A_ &pipe_w);
1467 1979
1468#if EV_USE_EVENTFD 1980#if EV_USE_EVENTFD
1469 if (evfd >= 0) 1981 if (evfd >= 0)
1470 close (evfd); 1982 close (evfd);
1471#endif 1983#endif
1472 1984
1473 if (evpipe [0] >= 0) 1985 if (evpipe [0] >= 0)
1474 { 1986 {
1475 close (evpipe [0]); 1987 EV_WIN32_CLOSE_FD (evpipe [0]);
1476 close (evpipe [1]); 1988 EV_WIN32_CLOSE_FD (evpipe [1]);
1477 } 1989 }
1478 1990
1991#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1479 evpipe_init (EV_A); 1992 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */ 1993 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ); 1994 pipecb (EV_A_ &pipe_w, EV_READ);
1995#endif
1482 } 1996 }
1483 1997
1484 postfork = 0; 1998 postfork = 0;
1485} 1999}
1486 2000
1487#if EV_MULTIPLICITY 2001#if EV_MULTIPLICITY
1488 2002
1489struct ev_loop * 2003struct ev_loop *
1490ev_loop_new (unsigned int flags) 2004ev_loop_new (unsigned int flags)
1491{ 2005{
1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2006 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1493 2007
1494 memset (loop, 0, sizeof (struct ev_loop)); 2008 memset (EV_A, 0, sizeof (struct ev_loop));
1495
1496 loop_init (EV_A_ flags); 2009 loop_init (EV_A_ flags);
1497 2010
1498 if (ev_backend (EV_A)) 2011 if (ev_backend (EV_A))
1499 return loop; 2012 return EV_A;
1500 2013
2014 ev_free (EV_A);
1501 return 0; 2015 return 0;
1502} 2016}
1503 2017
1504void 2018#endif /* multiplicity */
1505ev_loop_destroy (EV_P)
1506{
1507 loop_destroy (EV_A);
1508 ev_free (loop);
1509}
1510
1511void
1512ev_loop_fork (EV_P)
1513{
1514 postfork = 1; /* must be in line with ev_default_fork */
1515}
1516 2019
1517#if EV_VERIFY 2020#if EV_VERIFY
1518static void 2021static void noinline
2022verify_watcher (EV_P_ W w)
2023{
2024 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2025
2026 if (w->pending)
2027 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2028}
2029
2030static void noinline
2031verify_heap (EV_P_ ANHE *heap, int N)
2032{
2033 int i;
2034
2035 for (i = HEAP0; i < N + HEAP0; ++i)
2036 {
2037 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2038 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2039 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2040
2041 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2042 }
2043}
2044
2045static void noinline
1519array_check (W **ws, int cnt) 2046array_verify (EV_P_ W *ws, int cnt)
1520{ 2047{
1521 while (cnt--) 2048 while (cnt--)
2049 {
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2050 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2051 verify_watcher (EV_A_ ws [cnt]);
2052 }
1523} 2053}
1524#endif 2054#endif
1525 2055
2056#if EV_FEATURE_API
1526void 2057void
1527ev_loop_verify (EV_P) 2058ev_verify (EV_P)
1528{ 2059{
1529#if EV_VERIFY 2060#if EV_VERIFY
1530 int i; 2061 int i;
2062 WL w;
1531 2063
2064 assert (activecnt >= -1);
2065
2066 assert (fdchangemax >= fdchangecnt);
2067 for (i = 0; i < fdchangecnt; ++i)
2068 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2069
2070 assert (anfdmax >= 0);
2071 for (i = 0; i < anfdmax; ++i)
2072 for (w = anfds [i].head; w; w = w->next)
2073 {
2074 verify_watcher (EV_A_ (W)w);
2075 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2076 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2077 }
2078
2079 assert (timermax >= timercnt);
1532 checkheap (timers, timercnt); 2080 verify_heap (EV_A_ timers, timercnt);
2081
1533#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
2083 assert (periodicmax >= periodiccnt);
1534 checkheap (periodics, periodiccnt); 2084 verify_heap (EV_A_ periodics, periodiccnt);
1535#endif 2085#endif
1536 2086
2087 for (i = NUMPRI; i--; )
2088 {
2089 assert (pendingmax [i] >= pendingcnt [i]);
1537#if EV_IDLE_ENABLE 2090#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; ) 2091 assert (idleall >= 0);
2092 assert (idlemax [i] >= idlecnt [i]);
1539 array_check ((W **)idles [i], idlecnt [i]); 2093 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1540#endif 2094#endif
2095 }
2096
1541#if EV_FORK_ENABLE 2097#if EV_FORK_ENABLE
2098 assert (forkmax >= forkcnt);
1542 array_check ((W **)forks, forkcnt); 2099 array_verify (EV_A_ (W *)forks, forkcnt);
1543#endif 2100#endif
2101
2102#if EV_CLEANUP_ENABLE
2103 assert (cleanupmax >= cleanupcnt);
2104 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2105#endif
2106
1544#if EV_ASYNC_ENABLE 2107#if EV_ASYNC_ENABLE
2108 assert (asyncmax >= asynccnt);
1545 array_check ((W **)asyncs, asynccnt); 2109 array_verify (EV_A_ (W *)asyncs, asynccnt);
2110#endif
2111
2112#if EV_PREPARE_ENABLE
2113 assert (preparemax >= preparecnt);
2114 array_verify (EV_A_ (W *)prepares, preparecnt);
2115#endif
2116
2117#if EV_CHECK_ENABLE
2118 assert (checkmax >= checkcnt);
2119 array_verify (EV_A_ (W *)checks, checkcnt);
2120#endif
2121
2122# if 0
2123#if EV_CHILD_ENABLE
2124 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2125 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2126#endif
1546#endif 2127# endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif 2128#endif
1550} 2129}
1551 2130#endif
1552#endif /* multiplicity */
1553 2131
1554#if EV_MULTIPLICITY 2132#if EV_MULTIPLICITY
1555struct ev_loop * 2133struct ev_loop *
1556ev_default_loop_init (unsigned int flags)
1557#else 2134#else
1558int 2135int
2136#endif
1559ev_default_loop (unsigned int flags) 2137ev_default_loop (unsigned int flags)
1560#endif
1561{ 2138{
1562 if (!ev_default_loop_ptr) 2139 if (!ev_default_loop_ptr)
1563 { 2140 {
1564#if EV_MULTIPLICITY 2141#if EV_MULTIPLICITY
1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2142 EV_P = ev_default_loop_ptr = &default_loop_struct;
1566#else 2143#else
1567 ev_default_loop_ptr = 1; 2144 ev_default_loop_ptr = 1;
1568#endif 2145#endif
1569 2146
1570 loop_init (EV_A_ flags); 2147 loop_init (EV_A_ flags);
1571 2148
1572 if (ev_backend (EV_A)) 2149 if (ev_backend (EV_A))
1573 { 2150 {
1574#ifndef _WIN32 2151#if EV_CHILD_ENABLE
1575 ev_signal_init (&childev, childcb, SIGCHLD); 2152 ev_signal_init (&childev, childcb, SIGCHLD);
1576 ev_set_priority (&childev, EV_MAXPRI); 2153 ev_set_priority (&childev, EV_MAXPRI);
1577 ev_signal_start (EV_A_ &childev); 2154 ev_signal_start (EV_A_ &childev);
1578 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2155 ev_unref (EV_A); /* child watcher should not keep loop alive */
1579#endif 2156#endif
1584 2161
1585 return ev_default_loop_ptr; 2162 return ev_default_loop_ptr;
1586} 2163}
1587 2164
1588void 2165void
1589ev_default_destroy (void) 2166ev_loop_fork (EV_P)
1590{ 2167{
1591#if EV_MULTIPLICITY
1592 struct ev_loop *loop = ev_default_loop_ptr;
1593#endif
1594
1595#ifndef _WIN32
1596 ev_ref (EV_A); /* child watcher */
1597 ev_signal_stop (EV_A_ &childev);
1598#endif
1599
1600 loop_destroy (EV_A);
1601}
1602
1603void
1604ev_default_fork (void)
1605{
1606#if EV_MULTIPLICITY
1607 struct ev_loop *loop = ev_default_loop_ptr;
1608#endif
1609
1610 if (backend)
1611 postfork = 1; /* must be in line with ev_loop_fork */ 2168 postfork = 1; /* must be in line with ev_default_fork */
1612} 2169}
1613 2170
1614/*****************************************************************************/ 2171/*****************************************************************************/
1615 2172
1616void 2173void
1617ev_invoke (EV_P_ void *w, int revents) 2174ev_invoke (EV_P_ void *w, int revents)
1618{ 2175{
1619 EV_CB_INVOKE ((W)w, revents); 2176 EV_CB_INVOKE ((W)w, revents);
1620} 2177}
1621 2178
1622void inline_speed 2179unsigned int
1623call_pending (EV_P) 2180ev_pending_count (EV_P)
2181{
2182 int pri;
2183 unsigned int count = 0;
2184
2185 for (pri = NUMPRI; pri--; )
2186 count += pendingcnt [pri];
2187
2188 return count;
2189}
2190
2191void noinline
2192ev_invoke_pending (EV_P)
1624{ 2193{
1625 int pri; 2194 int pri;
1626 2195
1627 for (pri = NUMPRI; pri--; ) 2196 for (pri = NUMPRI; pri--; )
1628 while (pendingcnt [pri]) 2197 while (pendingcnt [pri])
1629 { 2198 {
1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2199 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1631 2200
1632 if (expect_true (p->w))
1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1635
1636 p->w->pending = 0; 2201 p->w->pending = 0;
1637 EV_CB_INVOKE (p->w, p->events); 2202 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK; 2203 EV_FREQUENT_CHECK;
1639 }
1640 } 2204 }
1641} 2205}
1642 2206
1643#if EV_IDLE_ENABLE 2207#if EV_IDLE_ENABLE
1644void inline_size 2208/* make idle watchers pending. this handles the "call-idle */
2209/* only when higher priorities are idle" logic */
2210inline_size void
1645idle_reify (EV_P) 2211idle_reify (EV_P)
1646{ 2212{
1647 if (expect_false (idleall)) 2213 if (expect_false (idleall))
1648 { 2214 {
1649 int pri; 2215 int pri;
1661 } 2227 }
1662 } 2228 }
1663} 2229}
1664#endif 2230#endif
1665 2231
1666void inline_size 2232/* make timers pending */
2233inline_size void
1667timers_reify (EV_P) 2234timers_reify (EV_P)
1668{ 2235{
1669 EV_FREQUENT_CHECK; 2236 EV_FREQUENT_CHECK;
1670 2237
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2238 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 { 2239 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2240 do
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 { 2241 {
2242 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2243
2244 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2245
2246 /* first reschedule or stop timer */
2247 if (w->repeat)
2248 {
1680 ev_at (w) += w->repeat; 2249 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now) 2250 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now; 2251 ev_at (w) = mn_now;
1683 2252
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2253 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685 2254
1686 ANHE_at_cache (timers [HEAP0]); 2255 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0); 2256 downheap (timers, timercnt, HEAP0);
2257 }
2258 else
2259 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2260
2261 EV_FREQUENT_CHECK;
2262 feed_reverse (EV_A_ (W)w);
1688 } 2263 }
1689 else 2264 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691 2265
1692 EV_FREQUENT_CHECK; 2266 feed_reverse_done (EV_A_ EV_TIMER);
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 } 2267 }
1695} 2268}
1696 2269
1697#if EV_PERIODIC_ENABLE 2270#if EV_PERIODIC_ENABLE
1698void inline_size 2271
2272static void noinline
2273periodic_recalc (EV_P_ ev_periodic *w)
2274{
2275 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2276 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2277
2278 /* the above almost always errs on the low side */
2279 while (at <= ev_rt_now)
2280 {
2281 ev_tstamp nat = at + w->interval;
2282
2283 /* when resolution fails us, we use ev_rt_now */
2284 if (expect_false (nat == at))
2285 {
2286 at = ev_rt_now;
2287 break;
2288 }
2289
2290 at = nat;
2291 }
2292
2293 ev_at (w) = at;
2294}
2295
2296/* make periodics pending */
2297inline_size void
1699periodics_reify (EV_P) 2298periodics_reify (EV_P)
1700{ 2299{
1701 EV_FREQUENT_CHECK; 2300 EV_FREQUENT_CHECK;
1702 2301
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2302 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 { 2303 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2304 int feed_count = 0;
1706 2305
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2306 do
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 { 2307 {
2308 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2309
2310 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2311
2312 /* first reschedule or stop timer */
2313 if (w->reschedule_cb)
2314 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2315 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713 2316
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2317 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715 2318
1716 ANHE_at_cache (periodics [HEAP0]); 2319 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0); 2320 downheap (periodics, periodiccnt, HEAP0);
2321 }
2322 else if (w->interval)
2323 {
2324 periodic_recalc (EV_A_ w);
2325 ANHE_at_cache (periodics [HEAP0]);
2326 downheap (periodics, periodiccnt, HEAP0);
2327 }
2328 else
2329 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2330
2331 EV_FREQUENT_CHECK;
2332 feed_reverse (EV_A_ (W)w);
1718 } 2333 }
1719 else if (w->interval) 2334 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727 2335
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2336 feed_reverse_done (EV_A_ EV_PERIODIC);
1743 } 2337 }
1744} 2338}
1745 2339
2340/* simply recalculate all periodics */
2341/* TODO: maybe ensure that at least one event happens when jumping forward? */
1746static void noinline 2342static void noinline
1747periodics_reschedule (EV_P) 2343periodics_reschedule (EV_P)
1748{ 2344{
1749 int i; 2345 int i;
1750 2346
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2350 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755 2351
1756 if (w->reschedule_cb) 2352 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2353 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval) 2354 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2355 periodic_recalc (EV_A_ w);
1760 2356
1761 ANHE_at_cache (periodics [i]); 2357 ANHE_at_cache (periodics [i]);
1762 } 2358 }
1763 2359
1764 reheap (periodics, periodiccnt); 2360 reheap (periodics, periodiccnt);
1765} 2361}
1766#endif 2362#endif
1767 2363
1768void inline_speed 2364/* adjust all timers by a given offset */
2365static void noinline
2366timers_reschedule (EV_P_ ev_tstamp adjust)
2367{
2368 int i;
2369
2370 for (i = 0; i < timercnt; ++i)
2371 {
2372 ANHE *he = timers + i + HEAP0;
2373 ANHE_w (*he)->at += adjust;
2374 ANHE_at_cache (*he);
2375 }
2376}
2377
2378/* fetch new monotonic and realtime times from the kernel */
2379/* also detect if there was a timejump, and act accordingly */
2380inline_speed void
1769time_update (EV_P_ ev_tstamp max_block) 2381time_update (EV_P_ ev_tstamp max_block)
1770{ 2382{
1771 int i;
1772
1773#if EV_USE_MONOTONIC 2383#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic)) 2384 if (expect_true (have_monotonic))
1775 { 2385 {
2386 int i;
1776 ev_tstamp odiff = rtmn_diff; 2387 ev_tstamp odiff = rtmn_diff;
1777 2388
1778 mn_now = get_clock (); 2389 mn_now = get_clock ();
1779 2390
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2391 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1796 * doesn't hurt either as we only do this on time-jumps or 2407 * doesn't hurt either as we only do this on time-jumps or
1797 * in the unlikely event of having been preempted here. 2408 * in the unlikely event of having been preempted here.
1798 */ 2409 */
1799 for (i = 4; --i; ) 2410 for (i = 4; --i; )
1800 { 2411 {
2412 ev_tstamp diff;
1801 rtmn_diff = ev_rt_now - mn_now; 2413 rtmn_diff = ev_rt_now - mn_now;
1802 2414
2415 diff = odiff - rtmn_diff;
2416
1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2417 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1804 return; /* all is well */ 2418 return; /* all is well */
1805 2419
1806 ev_rt_now = ev_time (); 2420 ev_rt_now = ev_time ();
1807 mn_now = get_clock (); 2421 mn_now = get_clock ();
1808 now_floor = mn_now; 2422 now_floor = mn_now;
1809 } 2423 }
1810 2424
2425 /* no timer adjustment, as the monotonic clock doesn't jump */
2426 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811# if EV_PERIODIC_ENABLE 2427# if EV_PERIODIC_ENABLE
1812 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1813# endif 2429# endif
1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1816 } 2430 }
1817 else 2431 else
1818#endif 2432#endif
1819 { 2433 {
1820 ev_rt_now = ev_time (); 2434 ev_rt_now = ev_time ();
1821 2435
1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2436 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1823 { 2437 {
2438 /* adjust timers. this is easy, as the offset is the same for all of them */
2439 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1824#if EV_PERIODIC_ENABLE 2440#if EV_PERIODIC_ENABLE
1825 periodics_reschedule (EV_A); 2441 periodics_reschedule (EV_A);
1826#endif 2442#endif
1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1834 } 2443 }
1835 2444
1836 mn_now = ev_rt_now; 2445 mn_now = ev_rt_now;
1837 } 2446 }
1838} 2447}
1839 2448
1840void 2449void
1841ev_ref (EV_P)
1842{
1843 ++activecnt;
1844}
1845
1846void
1847ev_unref (EV_P)
1848{
1849 --activecnt;
1850}
1851
1852static int loop_done;
1853
1854void
1855ev_loop (EV_P_ int flags) 2450ev_run (EV_P_ int flags)
1856{ 2451{
2452#if EV_FEATURE_API
2453 ++loop_depth;
2454#endif
2455
2456 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2457
1857 loop_done = EVUNLOOP_CANCEL; 2458 loop_done = EVBREAK_CANCEL;
1858 2459
1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2460 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1860 2461
1861 do 2462 do
1862 { 2463 {
1863#if EV_VERIFY >= 2 2464#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A); 2465 ev_verify (EV_A);
1865#endif 2466#endif
1866 2467
1867#ifndef _WIN32 2468#ifndef _WIN32
1868 if (expect_false (curpid)) /* penalise the forking check even more */ 2469 if (expect_false (curpid)) /* penalise the forking check even more */
1869 if (expect_false (getpid () != curpid)) 2470 if (expect_false (getpid () != curpid))
1877 /* we might have forked, so queue fork handlers */ 2478 /* we might have forked, so queue fork handlers */
1878 if (expect_false (postfork)) 2479 if (expect_false (postfork))
1879 if (forkcnt) 2480 if (forkcnt)
1880 { 2481 {
1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2482 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1882 call_pending (EV_A); 2483 EV_INVOKE_PENDING;
1883 } 2484 }
1884#endif 2485#endif
1885 2486
2487#if EV_PREPARE_ENABLE
1886 /* queue prepare watchers (and execute them) */ 2488 /* queue prepare watchers (and execute them) */
1887 if (expect_false (preparecnt)) 2489 if (expect_false (preparecnt))
1888 { 2490 {
1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2491 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1890 call_pending (EV_A); 2492 EV_INVOKE_PENDING;
1891 } 2493 }
2494#endif
1892 2495
1893 if (expect_false (!activecnt)) 2496 if (expect_false (loop_done))
1894 break; 2497 break;
1895 2498
1896 /* we might have forked, so reify kernel state if necessary */ 2499 /* we might have forked, so reify kernel state if necessary */
1897 if (expect_false (postfork)) 2500 if (expect_false (postfork))
1898 loop_fork (EV_A); 2501 loop_fork (EV_A);
1903 /* calculate blocking time */ 2506 /* calculate blocking time */
1904 { 2507 {
1905 ev_tstamp waittime = 0.; 2508 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.; 2509 ev_tstamp sleeptime = 0.;
1907 2510
2511 /* remember old timestamp for io_blocktime calculation */
2512 ev_tstamp prev_mn_now = mn_now;
2513
2514 /* update time to cancel out callback processing overhead */
2515 time_update (EV_A_ 1e100);
2516
2517 /* from now on, we want a pipe-wake-up */
2518 pipe_write_wanted = 1;
2519
1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2520 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1909 { 2521 {
1910 /* update time to cancel out callback processing overhead */
1911 time_update (EV_A_ 1e100);
1912
1913 waittime = MAX_BLOCKTIME; 2522 waittime = MAX_BLOCKTIME;
1914 2523
1915 if (timercnt) 2524 if (timercnt)
1916 { 2525 {
1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2526 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1918 if (waittime > to) waittime = to; 2527 if (waittime > to) waittime = to;
1919 } 2528 }
1920 2529
1921#if EV_PERIODIC_ENABLE 2530#if EV_PERIODIC_ENABLE
1922 if (periodiccnt) 2531 if (periodiccnt)
1923 { 2532 {
1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2533 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1925 if (waittime > to) waittime = to; 2534 if (waittime > to) waittime = to;
1926 } 2535 }
1927#endif 2536#endif
1928 2537
2538 /* don't let timeouts decrease the waittime below timeout_blocktime */
1929 if (expect_false (waittime < timeout_blocktime)) 2539 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime; 2540 waittime = timeout_blocktime;
1931 2541
1932 sleeptime = waittime - backend_fudge; 2542 /* at this point, we NEED to wait, so we have to ensure */
2543 /* to pass a minimum nonzero value to the backend */
2544 if (expect_false (waittime < backend_mintime))
2545 waittime = backend_mintime;
1933 2546
2547 /* extra check because io_blocktime is commonly 0 */
1934 if (expect_true (sleeptime > io_blocktime)) 2548 if (expect_false (io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 { 2549 {
2550 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2551
2552 if (sleeptime > waittime - backend_mintime)
2553 sleeptime = waittime - backend_mintime;
2554
2555 if (expect_true (sleeptime > 0.))
2556 {
1939 ev_sleep (sleeptime); 2557 ev_sleep (sleeptime);
1940 waittime -= sleeptime; 2558 waittime -= sleeptime;
2559 }
1941 } 2560 }
1942 } 2561 }
1943 2562
2563#if EV_FEATURE_API
1944 ++loop_count; 2564 ++loop_count;
2565#endif
2566 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1945 backend_poll (EV_A_ waittime); 2567 backend_poll (EV_A_ waittime);
2568 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2569
2570 pipe_write_wanted = 0;
2571
2572 if (pipe_write_skipped)
2573 {
2574 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2575 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2576 }
2577
1946 2578
1947 /* update ev_rt_now, do magic */ 2579 /* update ev_rt_now, do magic */
1948 time_update (EV_A_ waittime + sleeptime); 2580 time_update (EV_A_ waittime + sleeptime);
1949 } 2581 }
1950 2582
1957#if EV_IDLE_ENABLE 2589#if EV_IDLE_ENABLE
1958 /* queue idle watchers unless other events are pending */ 2590 /* queue idle watchers unless other events are pending */
1959 idle_reify (EV_A); 2591 idle_reify (EV_A);
1960#endif 2592#endif
1961 2593
2594#if EV_CHECK_ENABLE
1962 /* queue check watchers, to be executed first */ 2595 /* queue check watchers, to be executed first */
1963 if (expect_false (checkcnt)) 2596 if (expect_false (checkcnt))
1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2597 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2598#endif
1965 2599
1966 call_pending (EV_A); 2600 EV_INVOKE_PENDING;
1967 } 2601 }
1968 while (expect_true ( 2602 while (expect_true (
1969 activecnt 2603 activecnt
1970 && !loop_done 2604 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2605 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1972 )); 2606 ));
1973 2607
1974 if (loop_done == EVUNLOOP_ONE) 2608 if (loop_done == EVBREAK_ONE)
1975 loop_done = EVUNLOOP_CANCEL; 2609 loop_done = EVBREAK_CANCEL;
1976}
1977 2610
2611#if EV_FEATURE_API
2612 --loop_depth;
2613#endif
2614}
2615
1978void 2616void
1979ev_unloop (EV_P_ int how) 2617ev_break (EV_P_ int how)
1980{ 2618{
1981 loop_done = how; 2619 loop_done = how;
1982} 2620}
1983 2621
2622void
2623ev_ref (EV_P)
2624{
2625 ++activecnt;
2626}
2627
2628void
2629ev_unref (EV_P)
2630{
2631 --activecnt;
2632}
2633
2634void
2635ev_now_update (EV_P)
2636{
2637 time_update (EV_A_ 1e100);
2638}
2639
2640void
2641ev_suspend (EV_P)
2642{
2643 ev_now_update (EV_A);
2644}
2645
2646void
2647ev_resume (EV_P)
2648{
2649 ev_tstamp mn_prev = mn_now;
2650
2651 ev_now_update (EV_A);
2652 timers_reschedule (EV_A_ mn_now - mn_prev);
2653#if EV_PERIODIC_ENABLE
2654 /* TODO: really do this? */
2655 periodics_reschedule (EV_A);
2656#endif
2657}
2658
1984/*****************************************************************************/ 2659/*****************************************************************************/
2660/* singly-linked list management, used when the expected list length is short */
1985 2661
1986void inline_size 2662inline_size void
1987wlist_add (WL *head, WL elem) 2663wlist_add (WL *head, WL elem)
1988{ 2664{
1989 elem->next = *head; 2665 elem->next = *head;
1990 *head = elem; 2666 *head = elem;
1991} 2667}
1992 2668
1993void inline_size 2669inline_size void
1994wlist_del (WL *head, WL elem) 2670wlist_del (WL *head, WL elem)
1995{ 2671{
1996 while (*head) 2672 while (*head)
1997 { 2673 {
1998 if (*head == elem) 2674 if (expect_true (*head == elem))
1999 { 2675 {
2000 *head = elem->next; 2676 *head = elem->next;
2001 return; 2677 break;
2002 } 2678 }
2003 2679
2004 head = &(*head)->next; 2680 head = &(*head)->next;
2005 } 2681 }
2006} 2682}
2007 2683
2008void inline_speed 2684/* internal, faster, version of ev_clear_pending */
2685inline_speed void
2009clear_pending (EV_P_ W w) 2686clear_pending (EV_P_ W w)
2010{ 2687{
2011 if (w->pending) 2688 if (w->pending)
2012 { 2689 {
2013 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2690 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2014 w->pending = 0; 2691 w->pending = 0;
2015 } 2692 }
2016} 2693}
2017 2694
2018int 2695int
2022 int pending = w_->pending; 2699 int pending = w_->pending;
2023 2700
2024 if (expect_true (pending)) 2701 if (expect_true (pending))
2025 { 2702 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2704 p->w = (W)&pending_w;
2027 w_->pending = 0; 2705 w_->pending = 0;
2028 p->w = 0;
2029 return p->events; 2706 return p->events;
2030 } 2707 }
2031 else 2708 else
2032 return 0; 2709 return 0;
2033} 2710}
2034 2711
2035void inline_size 2712inline_size void
2036pri_adjust (EV_P_ W w) 2713pri_adjust (EV_P_ W w)
2037{ 2714{
2038 int pri = w->priority; 2715 int pri = ev_priority (w);
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2716 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2717 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri; 2718 ev_set_priority (w, pri);
2042} 2719}
2043 2720
2044void inline_speed 2721inline_speed void
2045ev_start (EV_P_ W w, int active) 2722ev_start (EV_P_ W w, int active)
2046{ 2723{
2047 pri_adjust (EV_A_ w); 2724 pri_adjust (EV_A_ w);
2048 w->active = active; 2725 w->active = active;
2049 ev_ref (EV_A); 2726 ev_ref (EV_A);
2050} 2727}
2051 2728
2052void inline_size 2729inline_size void
2053ev_stop (EV_P_ W w) 2730ev_stop (EV_P_ W w)
2054{ 2731{
2055 ev_unref (EV_A); 2732 ev_unref (EV_A);
2056 w->active = 0; 2733 w->active = 0;
2057} 2734}
2064 int fd = w->fd; 2741 int fd = w->fd;
2065 2742
2066 if (expect_false (ev_is_active (w))) 2743 if (expect_false (ev_is_active (w)))
2067 return; 2744 return;
2068 2745
2069 assert (("ev_io_start called with negative fd", fd >= 0)); 2746 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2747 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2070 2748
2071 EV_FREQUENT_CHECK; 2749 EV_FREQUENT_CHECK;
2072 2750
2073 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2752 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2075 wlist_add (&anfds[fd].head, (WL)w); 2753 wlist_add (&anfds[fd].head, (WL)w);
2076 2754
2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2755 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2078 w->events &= ~EV_IOFDSET; 2756 w->events &= ~EV__IOFDSET;
2079 2757
2080 EV_FREQUENT_CHECK; 2758 EV_FREQUENT_CHECK;
2081} 2759}
2082 2760
2083void noinline 2761void noinline
2085{ 2763{
2086 clear_pending (EV_A_ (W)w); 2764 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2765 if (expect_false (!ev_is_active (w)))
2088 return; 2766 return;
2089 2767
2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2768 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091 2769
2092 EV_FREQUENT_CHECK; 2770 EV_FREQUENT_CHECK;
2093 2771
2094 wlist_del (&anfds[w->fd].head, (WL)w); 2772 wlist_del (&anfds[w->fd].head, (WL)w);
2095 ev_stop (EV_A_ (W)w); 2773 ev_stop (EV_A_ (W)w);
2096 2774
2097 fd_change (EV_A_ w->fd, 1); 2775 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2098 2776
2099 EV_FREQUENT_CHECK; 2777 EV_FREQUENT_CHECK;
2100} 2778}
2101 2779
2102void noinline 2780void noinline
2105 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
2106 return; 2784 return;
2107 2785
2108 ev_at (w) += mn_now; 2786 ev_at (w) += mn_now;
2109 2787
2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2788 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2111 2789
2112 EV_FREQUENT_CHECK; 2790 EV_FREQUENT_CHECK;
2113 2791
2114 ++timercnt; 2792 ++timercnt;
2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2793 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2118 ANHE_at_cache (timers [ev_active (w)]); 2796 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w)); 2797 upheap (timers, ev_active (w));
2120 2798
2121 EV_FREQUENT_CHECK; 2799 EV_FREQUENT_CHECK;
2122 2800
2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2801 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2124} 2802}
2125 2803
2126void noinline 2804void noinline
2127ev_timer_stop (EV_P_ ev_timer *w) 2805ev_timer_stop (EV_P_ ev_timer *w)
2128{ 2806{
2133 EV_FREQUENT_CHECK; 2811 EV_FREQUENT_CHECK;
2134 2812
2135 { 2813 {
2136 int active = ev_active (w); 2814 int active = ev_active (w);
2137 2815
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2816 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139 2817
2140 --timercnt; 2818 --timercnt;
2141 2819
2142 if (expect_true (active < timercnt + HEAP0)) 2820 if (expect_true (active < timercnt + HEAP0))
2143 { 2821 {
2144 timers [active] = timers [timercnt + HEAP0]; 2822 timers [active] = timers [timercnt + HEAP0];
2145 adjustheap (timers, timercnt, active); 2823 adjustheap (timers, timercnt, active);
2146 } 2824 }
2147 } 2825 }
2148 2826
2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now; 2827 ev_at (w) -= mn_now;
2152 2828
2153 ev_stop (EV_A_ (W)w); 2829 ev_stop (EV_A_ (W)w);
2830
2831 EV_FREQUENT_CHECK;
2154} 2832}
2155 2833
2156void noinline 2834void noinline
2157ev_timer_again (EV_P_ ev_timer *w) 2835ev_timer_again (EV_P_ ev_timer *w)
2158{ 2836{
2176 } 2854 }
2177 2855
2178 EV_FREQUENT_CHECK; 2856 EV_FREQUENT_CHECK;
2179} 2857}
2180 2858
2859ev_tstamp
2860ev_timer_remaining (EV_P_ ev_timer *w)
2861{
2862 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2863}
2864
2181#if EV_PERIODIC_ENABLE 2865#if EV_PERIODIC_ENABLE
2182void noinline 2866void noinline
2183ev_periodic_start (EV_P_ ev_periodic *w) 2867ev_periodic_start (EV_P_ ev_periodic *w)
2184{ 2868{
2185 if (expect_false (ev_is_active (w))) 2869 if (expect_false (ev_is_active (w)))
2187 2871
2188 if (w->reschedule_cb) 2872 if (w->reschedule_cb)
2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2873 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval) 2874 else if (w->interval)
2191 { 2875 {
2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2876 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2193 /* this formula differs from the one in periodic_reify because we do not always round up */ 2877 periodic_recalc (EV_A_ w);
2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2195 } 2878 }
2196 else 2879 else
2197 ev_at (w) = w->offset; 2880 ev_at (w) = w->offset;
2198 2881
2199 EV_FREQUENT_CHECK; 2882 EV_FREQUENT_CHECK;
2205 ANHE_at_cache (periodics [ev_active (w)]); 2888 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w)); 2889 upheap (periodics, ev_active (w));
2207 2890
2208 EV_FREQUENT_CHECK; 2891 EV_FREQUENT_CHECK;
2209 2892
2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2893 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2211} 2894}
2212 2895
2213void noinline 2896void noinline
2214ev_periodic_stop (EV_P_ ev_periodic *w) 2897ev_periodic_stop (EV_P_ ev_periodic *w)
2215{ 2898{
2220 EV_FREQUENT_CHECK; 2903 EV_FREQUENT_CHECK;
2221 2904
2222 { 2905 {
2223 int active = ev_active (w); 2906 int active = ev_active (w);
2224 2907
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2908 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226 2909
2227 --periodiccnt; 2910 --periodiccnt;
2228 2911
2229 if (expect_true (active < periodiccnt + HEAP0)) 2912 if (expect_true (active < periodiccnt + HEAP0))
2230 { 2913 {
2231 periodics [active] = periodics [periodiccnt + HEAP0]; 2914 periodics [active] = periodics [periodiccnt + HEAP0];
2232 adjustheap (periodics, periodiccnt, active); 2915 adjustheap (periodics, periodiccnt, active);
2233 } 2916 }
2234 } 2917 }
2235 2918
2236 EV_FREQUENT_CHECK;
2237
2238 ev_stop (EV_A_ (W)w); 2919 ev_stop (EV_A_ (W)w);
2920
2921 EV_FREQUENT_CHECK;
2239} 2922}
2240 2923
2241void noinline 2924void noinline
2242ev_periodic_again (EV_P_ ev_periodic *w) 2925ev_periodic_again (EV_P_ ev_periodic *w)
2243{ 2926{
2249 2932
2250#ifndef SA_RESTART 2933#ifndef SA_RESTART
2251# define SA_RESTART 0 2934# define SA_RESTART 0
2252#endif 2935#endif
2253 2936
2937#if EV_SIGNAL_ENABLE
2938
2254void noinline 2939void noinline
2255ev_signal_start (EV_P_ ev_signal *w) 2940ev_signal_start (EV_P_ ev_signal *w)
2256{ 2941{
2257#if EV_MULTIPLICITY
2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2259#endif
2260 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2261 return; 2943 return;
2262 2944
2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2945 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2264 2946
2265 evpipe_init (EV_A); 2947#if EV_MULTIPLICITY
2948 assert (("libev: a signal must not be attached to two different loops",
2949 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2266 2950
2267 EV_FREQUENT_CHECK; 2951 signals [w->signum - 1].loop = EV_A;
2952#endif
2268 2953
2954 EV_FREQUENT_CHECK;
2955
2956#if EV_USE_SIGNALFD
2957 if (sigfd == -2)
2269 { 2958 {
2270#ifndef _WIN32 2959 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2271 sigset_t full, prev; 2960 if (sigfd < 0 && errno == EINVAL)
2272 sigfillset (&full); 2961 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275 2962
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2963 if (sigfd >= 0)
2964 {
2965 fd_intern (sigfd); /* doing it twice will not hurt */
2277 2966
2278#ifndef _WIN32 2967 sigemptyset (&sigfd_set);
2279 sigprocmask (SIG_SETMASK, &prev, 0); 2968
2280#endif 2969 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2970 ev_set_priority (&sigfd_w, EV_MAXPRI);
2971 ev_io_start (EV_A_ &sigfd_w);
2972 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2973 }
2281 } 2974 }
2975
2976 if (sigfd >= 0)
2977 {
2978 /* TODO: check .head */
2979 sigaddset (&sigfd_set, w->signum);
2980 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2981
2982 signalfd (sigfd, &sigfd_set, 0);
2983 }
2984#endif
2282 2985
2283 ev_start (EV_A_ (W)w, 1); 2986 ev_start (EV_A_ (W)w, 1);
2284 wlist_add (&signals [w->signum - 1].head, (WL)w); 2987 wlist_add (&signals [w->signum - 1].head, (WL)w);
2285 2988
2286 if (!((WL)w)->next) 2989 if (!((WL)w)->next)
2990# if EV_USE_SIGNALFD
2991 if (sigfd < 0) /*TODO*/
2992# endif
2287 { 2993 {
2288#if _WIN32 2994# ifdef _WIN32
2995 evpipe_init (EV_A);
2996
2289 signal (w->signum, ev_sighandler); 2997 signal (w->signum, ev_sighandler);
2290#else 2998# else
2291 struct sigaction sa; 2999 struct sigaction sa;
3000
3001 evpipe_init (EV_A);
3002
2292 sa.sa_handler = ev_sighandler; 3003 sa.sa_handler = ev_sighandler;
2293 sigfillset (&sa.sa_mask); 3004 sigfillset (&sa.sa_mask);
2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3005 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2295 sigaction (w->signum, &sa, 0); 3006 sigaction (w->signum, &sa, 0);
3007
3008 if (origflags & EVFLAG_NOSIGMASK)
3009 {
3010 sigemptyset (&sa.sa_mask);
3011 sigaddset (&sa.sa_mask, w->signum);
3012 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3013 }
2296#endif 3014#endif
2297 } 3015 }
2298 3016
2299 EV_FREQUENT_CHECK; 3017 EV_FREQUENT_CHECK;
2300} 3018}
2301 3019
2302void noinline 3020void noinline
2310 3028
2311 wlist_del (&signals [w->signum - 1].head, (WL)w); 3029 wlist_del (&signals [w->signum - 1].head, (WL)w);
2312 ev_stop (EV_A_ (W)w); 3030 ev_stop (EV_A_ (W)w);
2313 3031
2314 if (!signals [w->signum - 1].head) 3032 if (!signals [w->signum - 1].head)
3033 {
3034#if EV_MULTIPLICITY
3035 signals [w->signum - 1].loop = 0; /* unattach from signal */
3036#endif
3037#if EV_USE_SIGNALFD
3038 if (sigfd >= 0)
3039 {
3040 sigset_t ss;
3041
3042 sigemptyset (&ss);
3043 sigaddset (&ss, w->signum);
3044 sigdelset (&sigfd_set, w->signum);
3045
3046 signalfd (sigfd, &sigfd_set, 0);
3047 sigprocmask (SIG_UNBLOCK, &ss, 0);
3048 }
3049 else
3050#endif
2315 signal (w->signum, SIG_DFL); 3051 signal (w->signum, SIG_DFL);
3052 }
2316 3053
2317 EV_FREQUENT_CHECK; 3054 EV_FREQUENT_CHECK;
2318} 3055}
3056
3057#endif
3058
3059#if EV_CHILD_ENABLE
2319 3060
2320void 3061void
2321ev_child_start (EV_P_ ev_child *w) 3062ev_child_start (EV_P_ ev_child *w)
2322{ 3063{
2323#if EV_MULTIPLICITY 3064#if EV_MULTIPLICITY
2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3065 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2325#endif 3066#endif
2326 if (expect_false (ev_is_active (w))) 3067 if (expect_false (ev_is_active (w)))
2327 return; 3068 return;
2328 3069
2329 EV_FREQUENT_CHECK; 3070 EV_FREQUENT_CHECK;
2330 3071
2331 ev_start (EV_A_ (W)w, 1); 3072 ev_start (EV_A_ (W)w, 1);
2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3073 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2333 3074
2334 EV_FREQUENT_CHECK; 3075 EV_FREQUENT_CHECK;
2335} 3076}
2336 3077
2337void 3078void
2341 if (expect_false (!ev_is_active (w))) 3082 if (expect_false (!ev_is_active (w)))
2342 return; 3083 return;
2343 3084
2344 EV_FREQUENT_CHECK; 3085 EV_FREQUENT_CHECK;
2345 3086
2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3087 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2347 ev_stop (EV_A_ (W)w); 3088 ev_stop (EV_A_ (W)w);
2348 3089
2349 EV_FREQUENT_CHECK; 3090 EV_FREQUENT_CHECK;
2350} 3091}
3092
3093#endif
2351 3094
2352#if EV_STAT_ENABLE 3095#if EV_STAT_ENABLE
2353 3096
2354# ifdef _WIN32 3097# ifdef _WIN32
2355# undef lstat 3098# undef lstat
2356# define lstat(a,b) _stati64 (a,b) 3099# define lstat(a,b) _stati64 (a,b)
2357# endif 3100# endif
2358 3101
2359#define DEF_STAT_INTERVAL 5.0074891 3102#define DEF_STAT_INTERVAL 5.0074891
3103#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2360#define MIN_STAT_INTERVAL 0.1074891 3104#define MIN_STAT_INTERVAL 0.1074891
2361 3105
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3106static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363 3107
2364#if EV_USE_INOTIFY 3108#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192 3109
3110/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3111# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2366 3112
2367static void noinline 3113static void noinline
2368infy_add (EV_P_ ev_stat *w) 3114infy_add (EV_P_ ev_stat *w)
2369{ 3115{
2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3116 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2371 3117
2372 if (w->wd < 0) 3118 if (w->wd >= 0)
3119 {
3120 struct statfs sfs;
3121
3122 /* now local changes will be tracked by inotify, but remote changes won't */
3123 /* unless the filesystem is known to be local, we therefore still poll */
3124 /* also do poll on <2.6.25, but with normal frequency */
3125
3126 if (!fs_2625)
3127 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3128 else if (!statfs (w->path, &sfs)
3129 && (sfs.f_type == 0x1373 /* devfs */
3130 || sfs.f_type == 0xEF53 /* ext2/3 */
3131 || sfs.f_type == 0x3153464a /* jfs */
3132 || sfs.f_type == 0x52654973 /* reiser3 */
3133 || sfs.f_type == 0x01021994 /* tempfs */
3134 || sfs.f_type == 0x58465342 /* xfs */))
3135 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3136 else
3137 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2373 { 3138 }
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3139 else
3140 {
3141 /* can't use inotify, continue to stat */
3142 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2375 3143
2376 /* monitor some parent directory for speedup hints */ 3144 /* if path is not there, monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3145 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2378 /* but an efficiency issue only */ 3146 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3147 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 { 3148 {
2381 char path [4096]; 3149 char path [4096];
2382 strcpy (path, w->path); 3150 strcpy (path, w->path);
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3154 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3155 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388 3156
2389 char *pend = strrchr (path, '/'); 3157 char *pend = strrchr (path, '/');
2390 3158
2391 if (!pend) 3159 if (!pend || pend == path)
2392 break; /* whoops, no '/', complain to your admin */ 3160 break;
2393 3161
2394 *pend = 0; 3162 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask); 3163 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 } 3164 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3165 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 } 3166 }
2399 } 3167 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402 3168
2403 if (w->wd >= 0) 3169 if (w->wd >= 0)
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3170 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3171
3172 /* now re-arm timer, if required */
3173 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3174 ev_timer_again (EV_A_ &w->timer);
3175 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2405} 3176}
2406 3177
2407static void noinline 3178static void noinline
2408infy_del (EV_P_ ev_stat *w) 3179infy_del (EV_P_ ev_stat *w)
2409{ 3180{
2412 3183
2413 if (wd < 0) 3184 if (wd < 0)
2414 return; 3185 return;
2415 3186
2416 w->wd = -2; 3187 w->wd = -2;
2417 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3188 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2418 wlist_del (&fs_hash [slot].head, (WL)w); 3189 wlist_del (&fs_hash [slot].head, (WL)w);
2419 3190
2420 /* remove this watcher, if others are watching it, they will rearm */ 3191 /* remove this watcher, if others are watching it, they will rearm */
2421 inotify_rm_watch (fs_fd, wd); 3192 inotify_rm_watch (fs_fd, wd);
2422} 3193}
2423 3194
2424static void noinline 3195static void noinline
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3196infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{ 3197{
2427 if (slot < 0) 3198 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */ 3199 /* overflow, need to check for all hash slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3200 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2430 infy_wd (EV_A_ slot, wd, ev); 3201 infy_wd (EV_A_ slot, wd, ev);
2431 else 3202 else
2432 { 3203 {
2433 WL w_; 3204 WL w_;
2434 3205
2435 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3206 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2436 { 3207 {
2437 ev_stat *w = (ev_stat *)w_; 3208 ev_stat *w = (ev_stat *)w_;
2438 w_ = w_->next; /* lets us remove this watcher and all before it */ 3209 w_ = w_->next; /* lets us remove this watcher and all before it */
2439 3210
2440 if (w->wd == wd || wd == -1) 3211 if (w->wd == wd || wd == -1)
2441 { 3212 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3213 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 { 3214 {
3215 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2444 w->wd = -1; 3216 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */ 3217 infy_add (EV_A_ w); /* re-add, no matter what */
2446 } 3218 }
2447 3219
2448 stat_timer_cb (EV_A_ &w->timer, 0); 3220 stat_timer_cb (EV_A_ &w->timer, 0);
2453 3225
2454static void 3226static void
2455infy_cb (EV_P_ ev_io *w, int revents) 3227infy_cb (EV_P_ ev_io *w, int revents)
2456{ 3228{
2457 char buf [EV_INOTIFY_BUFSIZE]; 3229 char buf [EV_INOTIFY_BUFSIZE];
2458 struct inotify_event *ev = (struct inotify_event *)buf;
2459 int ofs; 3230 int ofs;
2460 int len = read (fs_fd, buf, sizeof (buf)); 3231 int len = read (fs_fd, buf, sizeof (buf));
2461 3232
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3233 for (ofs = 0; ofs < len; )
3234 {
3235 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3236 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3237 ofs += sizeof (struct inotify_event) + ev->len;
3238 }
2464} 3239}
2465 3240
2466void inline_size 3241inline_size void
3242ev_check_2625 (EV_P)
3243{
3244 /* kernels < 2.6.25 are borked
3245 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3246 */
3247 if (ev_linux_version () < 0x020619)
3248 return;
3249
3250 fs_2625 = 1;
3251}
3252
3253inline_size int
3254infy_newfd (void)
3255{
3256#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3257 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3258 if (fd >= 0)
3259 return fd;
3260#endif
3261 return inotify_init ();
3262}
3263
3264inline_size void
2467infy_init (EV_P) 3265infy_init (EV_P)
2468{ 3266{
2469 if (fs_fd != -2) 3267 if (fs_fd != -2)
2470 return; 3268 return;
2471 3269
3270 fs_fd = -1;
3271
3272 ev_check_2625 (EV_A);
3273
2472 fs_fd = inotify_init (); 3274 fs_fd = infy_newfd ();
2473 3275
2474 if (fs_fd >= 0) 3276 if (fs_fd >= 0)
2475 { 3277 {
3278 fd_intern (fs_fd);
2476 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3279 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2477 ev_set_priority (&fs_w, EV_MAXPRI); 3280 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w); 3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
2479 } 3283 }
2480} 3284}
2481 3285
2482void inline_size 3286inline_size void
2483infy_fork (EV_P) 3287infy_fork (EV_P)
2484{ 3288{
2485 int slot; 3289 int slot;
2486 3290
2487 if (fs_fd < 0) 3291 if (fs_fd < 0)
2488 return; 3292 return;
2489 3293
3294 ev_ref (EV_A);
3295 ev_io_stop (EV_A_ &fs_w);
2490 close (fs_fd); 3296 close (fs_fd);
2491 fs_fd = inotify_init (); 3297 fs_fd = infy_newfd ();
2492 3298
3299 if (fs_fd >= 0)
3300 {
3301 fd_intern (fs_fd);
3302 ev_io_set (&fs_w, fs_fd, EV_READ);
3303 ev_io_start (EV_A_ &fs_w);
3304 ev_unref (EV_A);
3305 }
3306
2493 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3307 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2494 { 3308 {
2495 WL w_ = fs_hash [slot].head; 3309 WL w_ = fs_hash [slot].head;
2496 fs_hash [slot].head = 0; 3310 fs_hash [slot].head = 0;
2497 3311
2498 while (w_) 3312 while (w_)
2503 w->wd = -1; 3317 w->wd = -1;
2504 3318
2505 if (fs_fd >= 0) 3319 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */ 3320 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else 3321 else
3322 {
3323 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3324 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2508 ev_timer_start (EV_A_ &w->timer); 3325 ev_timer_again (EV_A_ &w->timer);
3326 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3327 }
2509 } 3328 }
2510
2511 } 3329 }
2512} 3330}
2513 3331
3332#endif
3333
3334#ifdef _WIN32
3335# define EV_LSTAT(p,b) _stati64 (p, b)
3336#else
3337# define EV_LSTAT(p,b) lstat (p, b)
2514#endif 3338#endif
2515 3339
2516void 3340void
2517ev_stat_stat (EV_P_ ev_stat *w) 3341ev_stat_stat (EV_P_ ev_stat *w)
2518{ 3342{
2525static void noinline 3349static void noinline
2526stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3350stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2527{ 3351{
2528 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3352 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2529 3353
2530 /* we copy this here each the time so that */ 3354 ev_statdata prev = w->attr;
2531 /* prev has the old value when the callback gets invoked */
2532 w->prev = w->attr;
2533 ev_stat_stat (EV_A_ w); 3355 ev_stat_stat (EV_A_ w);
2534 3356
2535 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3357 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2536 if ( 3358 if (
2537 w->prev.st_dev != w->attr.st_dev 3359 prev.st_dev != w->attr.st_dev
2538 || w->prev.st_ino != w->attr.st_ino 3360 || prev.st_ino != w->attr.st_ino
2539 || w->prev.st_mode != w->attr.st_mode 3361 || prev.st_mode != w->attr.st_mode
2540 || w->prev.st_nlink != w->attr.st_nlink 3362 || prev.st_nlink != w->attr.st_nlink
2541 || w->prev.st_uid != w->attr.st_uid 3363 || prev.st_uid != w->attr.st_uid
2542 || w->prev.st_gid != w->attr.st_gid 3364 || prev.st_gid != w->attr.st_gid
2543 || w->prev.st_rdev != w->attr.st_rdev 3365 || prev.st_rdev != w->attr.st_rdev
2544 || w->prev.st_size != w->attr.st_size 3366 || prev.st_size != w->attr.st_size
2545 || w->prev.st_atime != w->attr.st_atime 3367 || prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime 3368 || prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime 3369 || prev.st_ctime != w->attr.st_ctime
2548 ) { 3370 ) {
3371 /* we only update w->prev on actual differences */
3372 /* in case we test more often than invoke the callback, */
3373 /* to ensure that prev is always different to attr */
3374 w->prev = prev;
3375
2549 #if EV_USE_INOTIFY 3376 #if EV_USE_INOTIFY
3377 if (fs_fd >= 0)
3378 {
2550 infy_del (EV_A_ w); 3379 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w); 3380 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */ 3381 ev_stat_stat (EV_A_ w); /* avoid race... */
3382 }
2553 #endif 3383 #endif
2554 3384
2555 ev_feed_event (EV_A_ w, EV_STAT); 3385 ev_feed_event (EV_A_ w, EV_STAT);
2556 } 3386 }
2557} 3387}
2560ev_stat_start (EV_P_ ev_stat *w) 3390ev_stat_start (EV_P_ ev_stat *w)
2561{ 3391{
2562 if (expect_false (ev_is_active (w))) 3392 if (expect_false (ev_is_active (w)))
2563 return; 3393 return;
2564 3394
2565 /* since we use memcmp, we need to clear any padding data etc. */
2566 memset (&w->prev, 0, sizeof (ev_statdata));
2567 memset (&w->attr, 0, sizeof (ev_statdata));
2568
2569 ev_stat_stat (EV_A_ w); 3395 ev_stat_stat (EV_A_ w);
2570 3396
3397 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2571 if (w->interval < MIN_STAT_INTERVAL) 3398 w->interval = MIN_STAT_INTERVAL;
2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2573 3399
2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3400 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2575 ev_set_priority (&w->timer, ev_priority (w)); 3401 ev_set_priority (&w->timer, ev_priority (w));
2576 3402
2577#if EV_USE_INOTIFY 3403#if EV_USE_INOTIFY
2578 infy_init (EV_A); 3404 infy_init (EV_A);
2579 3405
2580 if (fs_fd >= 0) 3406 if (fs_fd >= 0)
2581 infy_add (EV_A_ w); 3407 infy_add (EV_A_ w);
2582 else 3408 else
2583#endif 3409#endif
3410 {
2584 ev_timer_start (EV_A_ &w->timer); 3411 ev_timer_again (EV_A_ &w->timer);
3412 ev_unref (EV_A);
3413 }
2585 3414
2586 ev_start (EV_A_ (W)w, 1); 3415 ev_start (EV_A_ (W)w, 1);
2587 3416
2588 EV_FREQUENT_CHECK; 3417 EV_FREQUENT_CHECK;
2589} 3418}
2598 EV_FREQUENT_CHECK; 3427 EV_FREQUENT_CHECK;
2599 3428
2600#if EV_USE_INOTIFY 3429#if EV_USE_INOTIFY
2601 infy_del (EV_A_ w); 3430 infy_del (EV_A_ w);
2602#endif 3431#endif
3432
3433 if (ev_is_active (&w->timer))
3434 {
3435 ev_ref (EV_A);
2603 ev_timer_stop (EV_A_ &w->timer); 3436 ev_timer_stop (EV_A_ &w->timer);
3437 }
2604 3438
2605 ev_stop (EV_A_ (W)w); 3439 ev_stop (EV_A_ (W)w);
2606 3440
2607 EV_FREQUENT_CHECK; 3441 EV_FREQUENT_CHECK;
2608} 3442}
2653 3487
2654 EV_FREQUENT_CHECK; 3488 EV_FREQUENT_CHECK;
2655} 3489}
2656#endif 3490#endif
2657 3491
3492#if EV_PREPARE_ENABLE
2658void 3493void
2659ev_prepare_start (EV_P_ ev_prepare *w) 3494ev_prepare_start (EV_P_ ev_prepare *w)
2660{ 3495{
2661 if (expect_false (ev_is_active (w))) 3496 if (expect_false (ev_is_active (w)))
2662 return; 3497 return;
2688 3523
2689 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
2690 3525
2691 EV_FREQUENT_CHECK; 3526 EV_FREQUENT_CHECK;
2692} 3527}
3528#endif
2693 3529
3530#if EV_CHECK_ENABLE
2694void 3531void
2695ev_check_start (EV_P_ ev_check *w) 3532ev_check_start (EV_P_ ev_check *w)
2696{ 3533{
2697 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2698 return; 3535 return;
2724 3561
2725 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
2726 3563
2727 EV_FREQUENT_CHECK; 3564 EV_FREQUENT_CHECK;
2728} 3565}
3566#endif
2729 3567
2730#if EV_EMBED_ENABLE 3568#if EV_EMBED_ENABLE
2731void noinline 3569void noinline
2732ev_embed_sweep (EV_P_ ev_embed *w) 3570ev_embed_sweep (EV_P_ ev_embed *w)
2733{ 3571{
2734 ev_loop (w->other, EVLOOP_NONBLOCK); 3572 ev_run (w->other, EVRUN_NOWAIT);
2735} 3573}
2736 3574
2737static void 3575static void
2738embed_io_cb (EV_P_ ev_io *io, int revents) 3576embed_io_cb (EV_P_ ev_io *io, int revents)
2739{ 3577{
2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3578 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2741 3579
2742 if (ev_cb (w)) 3580 if (ev_cb (w))
2743 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3581 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2744 else 3582 else
2745 ev_loop (w->other, EVLOOP_NONBLOCK); 3583 ev_run (w->other, EVRUN_NOWAIT);
2746} 3584}
2747 3585
2748static void 3586static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3587embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{ 3588{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3589 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752 3590
2753 { 3591 {
2754 struct ev_loop *loop = w->other; 3592 EV_P = w->other;
2755 3593
2756 while (fdchangecnt) 3594 while (fdchangecnt)
2757 { 3595 {
2758 fd_reify (EV_A); 3596 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3597 ev_run (EV_A_ EVRUN_NOWAIT);
2760 } 3598 }
2761 } 3599 }
3600}
3601
3602static void
3603embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3604{
3605 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3606
3607 ev_embed_stop (EV_A_ w);
3608
3609 {
3610 EV_P = w->other;
3611
3612 ev_loop_fork (EV_A);
3613 ev_run (EV_A_ EVRUN_NOWAIT);
3614 }
3615
3616 ev_embed_start (EV_A_ w);
2762} 3617}
2763 3618
2764#if 0 3619#if 0
2765static void 3620static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3621embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2774{ 3629{
2775 if (expect_false (ev_is_active (w))) 3630 if (expect_false (ev_is_active (w)))
2776 return; 3631 return;
2777 3632
2778 { 3633 {
2779 struct ev_loop *loop = w->other; 3634 EV_P = w->other;
2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3635 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3636 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2782 } 3637 }
2783 3638
2784 EV_FREQUENT_CHECK; 3639 EV_FREQUENT_CHECK;
2785 3640
2788 3643
2789 ev_prepare_init (&w->prepare, embed_prepare_cb); 3644 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI); 3645 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare); 3646 ev_prepare_start (EV_A_ &w->prepare);
2792 3647
3648 ev_fork_init (&w->fork, embed_fork_cb);
3649 ev_fork_start (EV_A_ &w->fork);
3650
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3651 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794 3652
2795 ev_start (EV_A_ (W)w, 1); 3653 ev_start (EV_A_ (W)w, 1);
2796 3654
2797 EV_FREQUENT_CHECK; 3655 EV_FREQUENT_CHECK;
2804 if (expect_false (!ev_is_active (w))) 3662 if (expect_false (!ev_is_active (w)))
2805 return; 3663 return;
2806 3664
2807 EV_FREQUENT_CHECK; 3665 EV_FREQUENT_CHECK;
2808 3666
2809 ev_io_stop (EV_A_ &w->io); 3667 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare); 3668 ev_prepare_stop (EV_A_ &w->prepare);
3669 ev_fork_stop (EV_A_ &w->fork);
2811 3670
2812 ev_stop (EV_A_ (W)w); 3671 ev_stop (EV_A_ (W)w);
2813 3672
2814 EV_FREQUENT_CHECK; 3673 EV_FREQUENT_CHECK;
2815} 3674}
2851 3710
2852 EV_FREQUENT_CHECK; 3711 EV_FREQUENT_CHECK;
2853} 3712}
2854#endif 3713#endif
2855 3714
2856#if EV_ASYNC_ENABLE 3715#if EV_CLEANUP_ENABLE
2857void 3716void
2858ev_async_start (EV_P_ ev_async *w) 3717ev_cleanup_start (EV_P_ ev_cleanup *w)
2859{ 3718{
2860 if (expect_false (ev_is_active (w))) 3719 if (expect_false (ev_is_active (w)))
2861 return; 3720 return;
3721
3722 EV_FREQUENT_CHECK;
3723
3724 ev_start (EV_A_ (W)w, ++cleanupcnt);
3725 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3726 cleanups [cleanupcnt - 1] = w;
3727
3728 /* cleanup watchers should never keep a refcount on the loop */
3729 ev_unref (EV_A);
3730 EV_FREQUENT_CHECK;
3731}
3732
3733void
3734ev_cleanup_stop (EV_P_ ev_cleanup *w)
3735{
3736 clear_pending (EV_A_ (W)w);
3737 if (expect_false (!ev_is_active (w)))
3738 return;
3739
3740 EV_FREQUENT_CHECK;
3741 ev_ref (EV_A);
3742
3743 {
3744 int active = ev_active (w);
3745
3746 cleanups [active - 1] = cleanups [--cleanupcnt];
3747 ev_active (cleanups [active - 1]) = active;
3748 }
3749
3750 ev_stop (EV_A_ (W)w);
3751
3752 EV_FREQUENT_CHECK;
3753}
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757void
3758ev_async_start (EV_P_ ev_async *w)
3759{
3760 if (expect_false (ev_is_active (w)))
3761 return;
3762
3763 w->sent = 0;
2862 3764
2863 evpipe_init (EV_A); 3765 evpipe_init (EV_A);
2864 3766
2865 EV_FREQUENT_CHECK; 3767 EV_FREQUENT_CHECK;
2866 3768
2894 3796
2895void 3797void
2896ev_async_send (EV_P_ ev_async *w) 3798ev_async_send (EV_P_ ev_async *w)
2897{ 3799{
2898 w->sent = 1; 3800 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync); 3801 evpipe_write (EV_A_ &async_pending);
2900} 3802}
2901#endif 3803#endif
2902 3804
2903/*****************************************************************************/ 3805/*****************************************************************************/
2904 3806
2914once_cb (EV_P_ struct ev_once *once, int revents) 3816once_cb (EV_P_ struct ev_once *once, int revents)
2915{ 3817{
2916 void (*cb)(int revents, void *arg) = once->cb; 3818 void (*cb)(int revents, void *arg) = once->cb;
2917 void *arg = once->arg; 3819 void *arg = once->arg;
2918 3820
2919 ev_io_stop (EV_A_ &once->io); 3821 ev_io_stop (EV_A_ &once->io);
2920 ev_timer_stop (EV_A_ &once->to); 3822 ev_timer_stop (EV_A_ &once->to);
2921 ev_free (once); 3823 ev_free (once);
2922 3824
2923 cb (revents, arg); 3825 cb (revents, arg);
2924} 3826}
2925 3827
2926static void 3828static void
2927once_cb_io (EV_P_ ev_io *w, int revents) 3829once_cb_io (EV_P_ ev_io *w, int revents)
2928{ 3830{
2929 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3831 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3832
3833 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2930} 3834}
2931 3835
2932static void 3836static void
2933once_cb_to (EV_P_ ev_timer *w, int revents) 3837once_cb_to (EV_P_ ev_timer *w, int revents)
2934{ 3838{
2935 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3839 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3840
3841 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2936} 3842}
2937 3843
2938void 3844void
2939ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3845ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2940{ 3846{
2941 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3847 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2942 3848
2943 if (expect_false (!once)) 3849 if (expect_false (!once))
2944 { 3850 {
2945 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3851 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2946 return; 3852 return;
2947 } 3853 }
2948 3854
2949 once->cb = cb; 3855 once->cb = cb;
2950 once->arg = arg; 3856 once->arg = arg;
2962 ev_timer_set (&once->to, timeout, 0.); 3868 ev_timer_set (&once->to, timeout, 0.);
2963 ev_timer_start (EV_A_ &once->to); 3869 ev_timer_start (EV_A_ &once->to);
2964 } 3870 }
2965} 3871}
2966 3872
3873/*****************************************************************************/
3874
3875#if EV_WALK_ENABLE
3876void
3877ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3878{
3879 int i, j;
3880 ev_watcher_list *wl, *wn;
3881
3882 if (types & (EV_IO | EV_EMBED))
3883 for (i = 0; i < anfdmax; ++i)
3884 for (wl = anfds [i].head; wl; )
3885 {
3886 wn = wl->next;
3887
3888#if EV_EMBED_ENABLE
3889 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3890 {
3891 if (types & EV_EMBED)
3892 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3893 }
3894 else
3895#endif
3896#if EV_USE_INOTIFY
3897 if (ev_cb ((ev_io *)wl) == infy_cb)
3898 ;
3899 else
3900#endif
3901 if ((ev_io *)wl != &pipe_w)
3902 if (types & EV_IO)
3903 cb (EV_A_ EV_IO, wl);
3904
3905 wl = wn;
3906 }
3907
3908 if (types & (EV_TIMER | EV_STAT))
3909 for (i = timercnt + HEAP0; i-- > HEAP0; )
3910#if EV_STAT_ENABLE
3911 /*TODO: timer is not always active*/
3912 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3913 {
3914 if (types & EV_STAT)
3915 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3916 }
3917 else
3918#endif
3919 if (types & EV_TIMER)
3920 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3921
3922#if EV_PERIODIC_ENABLE
3923 if (types & EV_PERIODIC)
3924 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3925 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3926#endif
3927
3928#if EV_IDLE_ENABLE
3929 if (types & EV_IDLE)
3930 for (j = NUMPRI; i--; )
3931 for (i = idlecnt [j]; i--; )
3932 cb (EV_A_ EV_IDLE, idles [j][i]);
3933#endif
3934
3935#if EV_FORK_ENABLE
3936 if (types & EV_FORK)
3937 for (i = forkcnt; i--; )
3938 if (ev_cb (forks [i]) != embed_fork_cb)
3939 cb (EV_A_ EV_FORK, forks [i]);
3940#endif
3941
3942#if EV_ASYNC_ENABLE
3943 if (types & EV_ASYNC)
3944 for (i = asynccnt; i--; )
3945 cb (EV_A_ EV_ASYNC, asyncs [i]);
3946#endif
3947
3948#if EV_PREPARE_ENABLE
3949 if (types & EV_PREPARE)
3950 for (i = preparecnt; i--; )
3951# if EV_EMBED_ENABLE
3952 if (ev_cb (prepares [i]) != embed_prepare_cb)
3953# endif
3954 cb (EV_A_ EV_PREPARE, prepares [i]);
3955#endif
3956
3957#if EV_CHECK_ENABLE
3958 if (types & EV_CHECK)
3959 for (i = checkcnt; i--; )
3960 cb (EV_A_ EV_CHECK, checks [i]);
3961#endif
3962
3963#if EV_SIGNAL_ENABLE
3964 if (types & EV_SIGNAL)
3965 for (i = 0; i < EV_NSIG - 1; ++i)
3966 for (wl = signals [i].head; wl; )
3967 {
3968 wn = wl->next;
3969 cb (EV_A_ EV_SIGNAL, wl);
3970 wl = wn;
3971 }
3972#endif
3973
3974#if EV_CHILD_ENABLE
3975 if (types & EV_CHILD)
3976 for (i = (EV_PID_HASHSIZE); i--; )
3977 for (wl = childs [i]; wl; )
3978 {
3979 wn = wl->next;
3980 cb (EV_A_ EV_CHILD, wl);
3981 wl = wn;
3982 }
3983#endif
3984/* EV_STAT 0x00001000 /* stat data changed */
3985/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3986}
3987#endif
3988
2967#if EV_MULTIPLICITY 3989#if EV_MULTIPLICITY
2968 #include "ev_wrap.h" 3990 #include "ev_wrap.h"
2969#endif 3991#endif
2970 3992
2971#ifdef __cplusplus 3993EV_CPP(})
2972}
2973#endif
2974 3994

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines