ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.78 by root, Thu Nov 8 21:08:56 2007 UTC vs.
Revision 1.378 by root, Mon Jun 13 09:52:36 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
59#include <fcntl.h> 169#include <fcntl.h>
60#include <stddef.h> 170#include <stddef.h>
61 171
62#include <stdio.h> 172#include <stdio.h>
63 173
64#include <assert.h> 174#include <assert.h>
65#include <errno.h> 175#include <errno.h>
66#include <sys/types.h> 176#include <sys/types.h>
67#include <time.h> 177#include <time.h>
178#include <limits.h>
68 179
69#include <signal.h> 180#include <signal.h>
70 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
71#ifndef WIN32 190#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 191# include <sys/time.h>
74# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
194#else
195# include <io.h>
196# define WIN32_LEAN_AND_MEAN
197# include <windows.h>
198# ifndef EV_SELECT_IS_WINSOCKET
199# define EV_SELECT_IS_WINSOCKET 1
75#endif 200# endif
76/**/ 201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
77 253
78#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
79# define EV_USE_MONOTONIC 1 258# define EV_USE_MONOTONIC 0
259# endif
260#endif
261
262#ifndef EV_USE_REALTIME
263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
80#endif 272#endif
81 273
82#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 276#endif
85 277
86#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 279# ifdef _WIN32
280# define EV_USE_POLL 0
281# else
282# define EV_USE_POLL EV_FEATURE_BACKENDS
283# endif
88#endif 284#endif
89 285
90#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
91# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
92#endif 292#endif
93 293
94#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
96#endif 296#endif
97 297
298#ifndef EV_USE_PORT
299# define EV_USE_PORT 0
300#endif
301
98#ifndef EV_USE_WIN32 302#ifndef EV_USE_INOTIFY
99# ifdef WIN32 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 304# define EV_USE_INOTIFY EV_FEATURE_OS
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else 305# else
104# define EV_USE_WIN32 0 306# define EV_USE_INOTIFY 0
105# endif 307# endif
106#endif 308#endif
107 309
310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
108#ifndef EV_USE_REALTIME 318#ifndef EV_USE_EVENTFD
109# define EV_USE_REALTIME 1 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
110#endif 323# endif
324#endif
111 325
112/**/ 326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
113 373
114#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
117#endif 377#endif
119#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
122#endif 382#endif
123 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
406#if EV_SELECT_IS_WINSOCKET
407# include <winsock.h>
408#endif
409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
124/**/ 448/**/
125 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 465
131#include "ev.h" 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 468
133#if __GNUC__ >= 3 469#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 471# define noinline __attribute__ ((noinline))
136#else 472#else
137# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
138# define inline static 474# define noinline
475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476# define inline
477# endif
139#endif 478#endif
140 479
141#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
482#define inline_size static inline
143 483
484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
487# define inline_speed static noinline
488#endif
489
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
494#else
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
146 497
498#define EMPTY /* required for microsofts broken pseudo-c compiler */
499#define EMPTY2(a,b) /* used to suppress some warnings */
500
147typedef struct ev_watcher *W; 501typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
150 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
152 517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
527
528#ifdef _WIN32
153#include "ev_win32.c" 529# include "ev_win32.c"
530#endif
154 531
155/*****************************************************************************/ 532/*****************************************************************************/
156 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
157static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
158 633
634void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 636{
161 syserr_cb = cb; 637 syserr_cb = cb;
162} 638}
163 639
164static void 640static void noinline
165syserr (const char *msg) 641ev_syserr (const char *msg)
166{ 642{
167 if (!msg) 643 if (!msg)
168 msg = "(libev) system error"; 644 msg = "(libev) system error";
169 645
170 if (syserr_cb) 646 if (syserr_cb)
171 syserr_cb (msg); 647 syserr_cb (msg);
172 else 648 else
173 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
174 perror (msg); 656 perror (msg);
657#endif
175 abort (); 658 abort ();
176 } 659 }
177} 660}
178 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
179static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 682
683void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 685{
183 alloc = cb; 686 alloc = cb;
184} 687}
185 688
186static void * 689inline_speed void *
187ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
188{ 691{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
190 693
191 if (!ptr && size) 694 if (!ptr && size)
192 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
194 abort (); 701 abort ();
195 } 702 }
196 703
197 return ptr; 704 return ptr;
198} 705}
200#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
202 709
203/*****************************************************************************/ 710/*****************************************************************************/
204 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
205typedef struct 716typedef struct
206{ 717{
207 WL head; 718 WL head;
208 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
727 SOCKET handle;
728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
210} ANFD; 732} ANFD;
211 733
734/* stores the pending event set for a given watcher */
212typedef struct 735typedef struct
213{ 736{
214 W w; 737 W w;
215 int events; 738 int events; /* the pending event set for the given watcher */
216} ANPENDING; 739} ANPENDING;
217 740
741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
743typedef struct
744{
745 WL head;
746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
767#endif
768
218#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
219 770
220struct ev_loop 771 struct ev_loop
221{ 772 {
773 ev_tstamp ev_rt_now;
774 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 775 #define VAR(name,decl) decl;
223# include "ev_vars.h" 776 #include "ev_vars.h"
224};
225# undef VAR 777 #undef VAR
778 };
226# include "ev_wrap.h" 779 #include "ev_wrap.h"
780
781 static struct ev_loop default_loop_struct;
782 struct ev_loop *ev_default_loop_ptr;
227 783
228#else 784#else
229 785
786 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 787 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 788 #include "ev_vars.h"
232# undef VAR 789 #undef VAR
233 790
791 static int ev_default_loop_ptr;
792
234#endif 793#endif
794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
235 806
236/*****************************************************************************/ 807/*****************************************************************************/
237 808
238inline ev_tstamp 809#ifndef EV_HAVE_EV_TIME
810ev_tstamp
239ev_time (void) 811ev_time (void)
240{ 812{
241#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
242 struct timespec ts; 816 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 819 }
820#endif
821
246 struct timeval tv; 822 struct timeval tv;
247 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 825}
826#endif
251 827
252inline ev_tstamp 828inline_size ev_tstamp
253get_clock (void) 829get_clock (void)
254{ 830{
255#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
257 { 833 {
262#endif 838#endif
263 839
264 return ev_time (); 840 return ev_time ();
265} 841}
266 842
843#if EV_MULTIPLICITY
267ev_tstamp 844ev_tstamp
268ev_now (EV_P) 845ev_now (EV_P)
269{ 846{
270 return rt_now; 847 return ev_rt_now;
271} 848}
849#endif
272 850
273#define array_roundsize(type,n) ((n) | 4 & ~3) 851void
852ev_sleep (ev_tstamp delay)
853{
854 if (delay > 0.)
855 {
856#if EV_USE_NANOSLEEP
857 struct timespec ts;
858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861#elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863#else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871#endif
872 }
873}
874
875/*****************************************************************************/
876
877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
882array_nextsize (int elem, int cur, int cnt)
883{
884 int ncur = cur + 1;
885
886 do
887 ncur <<= 1;
888 while (cnt > ncur);
889
890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
892 {
893 ncur *= elem;
894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
895 ncur = ncur - sizeof (void *) * 4;
896 ncur /= elem;
897 }
898
899 return ncur;
900}
901
902static noinline void *
903array_realloc (int elem, void *base, int *cur, int cnt)
904{
905 *cur = array_nextsize (elem, *cur, cnt);
906 return ev_realloc (base, elem * *cur);
907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 911
275#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 913 if (expect_false ((cnt) > (cur))) \
277 { \ 914 { \
278 int newcnt = cur; \ 915 int ocur_ = (cur); \
279 do \ 916 (base) = (type *)array_realloc \
280 { \ 917 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 918 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 919 }
289 920
921#if 0
290#define array_slim(type,stem) \ 922#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 923 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 924 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 925 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 926 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 928 }
297 929#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 930
303#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 933
306/*****************************************************************************/ 934/*****************************************************************************/
307 935
308static void 936/* dummy callback for pending events */
309anfds_init (ANFD *base, int count) 937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 939{
311 while (count--)
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316
317 ++base;
318 }
319} 940}
320 941
321void 942void noinline
322ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
323{ 944{
324 W w_ = (W)w; 945 W w_ = (W)w;
946 int pri = ABSPRI (w_);
325 947
326 if (w_->pending) 948 if (expect_false (w_->pending))
949 pendings [pri][w_->pending - 1].events |= revents;
950 else
327 { 951 {
952 w_->pending = ++pendingcnt [pri];
953 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954 pendings [pri][w_->pending - 1].w = w_;
328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 955 pendings [pri][w_->pending - 1].events = revents;
329 return;
330 } 956 }
331
332 w_->pending = ++pendingcnt [ABSPRI (w_)];
333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336} 957}
337 958
338static void 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
339queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
340{ 976{
341 int i; 977 int i;
342 978
343 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
344 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
345} 981}
346 982
347static void 983/*****************************************************************************/
984
985inline_speed void
348fd_event (EV_P_ int fd, int events) 986fd_event_nocheck (EV_P_ int fd, int revents)
349{ 987{
350 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
351 struct ev_io *w; 989 ev_io *w;
352 990
353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
354 { 992 {
355 int ev = w->events & events; 993 int ev = w->events & revents;
356 994
357 if (ev) 995 if (ev)
358 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
359 } 997 }
360} 998}
361 999
362/*****************************************************************************/ 1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
363 1006
364static void 1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
1011void
1012ev_feed_fd_event (EV_P_ int fd, int revents)
1013{
1014 if (fd >= 0 && fd < anfdmax)
1015 fd_event_nocheck (EV_A_ fd, revents);
1016}
1017
1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
365fd_reify (EV_P) 1021fd_reify (EV_P)
366{ 1022{
367 int i; 1023 int i;
368 1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
369 for (i = 0; i < fdchangecnt; ++i) 1026 for (i = 0; i < fdchangecnt; ++i)
370 { 1027 {
371 int fd = fdchanges [i]; 1028 int fd = fdchanges [i];
372 ANFD *anfd = anfds + fd; 1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
1049
1050 for (i = 0; i < fdchangecnt; ++i)
1051 {
1052 int fd = fdchanges [i];
1053 ANFD *anfd = anfds + fd;
373 struct ev_io *w; 1054 ev_io *w;
374 1055
375 int events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
376 1058
377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
378 events |= w->events;
379
380 anfd->reify = 0; 1059 anfd->reify = 0;
381 1060
382 method_modify (EV_A_ fd, anfd->events, events); 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1062 {
383 anfd->events = events; 1063 anfd->events = 0;
1064
1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
1070 }
1071
1072 if (o_reify & EV__IOFDSET)
1073 backend_modify (EV_A_ fd, o_events, anfd->events);
384 } 1074 }
385 1075
386 fdchangecnt = 0; 1076 fdchangecnt = 0;
387} 1077}
388 1078
389static void 1079/* something about the given fd changed */
1080inline_size void
390fd_change (EV_P_ int fd) 1081fd_change (EV_P_ int fd, int flags)
391{ 1082{
392 if (anfds [fd].reify) 1083 unsigned char reify = anfds [fd].reify;
393 return;
394
395 anfds [fd].reify = 1; 1084 anfds [fd].reify |= flags;
396 1085
1086 if (expect_true (!reify))
1087 {
397 ++fdchangecnt; 1088 ++fdchangecnt;
398 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
399 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
1091 }
400} 1092}
401 1093
402static void 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
403fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
404{ 1097{
405 struct ev_io *w; 1098 ev_io *w;
406 1099
407 while ((w = (struct ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
408 { 1101 {
409 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
410 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
411 } 1104 }
412} 1105}
413 1106
414static int 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
415fd_valid (int fd) 1109fd_valid (int fd)
416{ 1110{
417#ifdef WIN32 1111#ifdef _WIN32
418 return !!win32_get_osfhandle (fd); 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
419#else 1113#else
420 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
421#endif 1115#endif
422} 1116}
423 1117
424/* called on EBADF to verify fds */ 1118/* called on EBADF to verify fds */
425static void 1119static void noinline
426fd_ebadf (EV_P) 1120fd_ebadf (EV_P)
427{ 1121{
428 int fd; 1122 int fd;
429 1123
430 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
431 if (anfds [fd].events) 1125 if (anfds [fd].events)
432 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
433 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
434} 1128}
435 1129
436/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
437static void 1131static void noinline
438fd_enomem (EV_P) 1132fd_enomem (EV_P)
439{ 1133{
440 int fd; 1134 int fd;
441 1135
442 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
443 if (anfds [fd].events) 1137 if (anfds [fd].events)
444 { 1138 {
445 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
446 return; 1140 break;
447 } 1141 }
448} 1142}
449 1143
450/* usually called after fork if method needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
451static void 1145static void noinline
452fd_rearm_all (EV_P) 1146fd_rearm_all (EV_P)
453{ 1147{
454 int fd; 1148 int fd;
455 1149
456 /* this should be highly optimised to not do anything but set a flag */
457 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
458 if (anfds [fd].events) 1151 if (anfds [fd].events)
459 { 1152 {
460 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
461 fd_change (EV_A_ fd); 1154 anfds [fd].emask = 0;
1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
462 } 1156 }
463} 1157}
464 1158
1159/* used to prepare libev internal fd's */
1160/* this is not fork-safe */
1161inline_speed void
1162fd_intern (int fd)
1163{
1164#ifdef _WIN32
1165 unsigned long arg = 1;
1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1167#else
1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
1169 fcntl (fd, F_SETFL, O_NONBLOCK);
1170#endif
1171}
1172
465/*****************************************************************************/ 1173/*****************************************************************************/
466 1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
1336static void noinline
1337evpipe_init (EV_P)
1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
1358 fd_intern (evpipe [0]);
1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
1362
1363 ev_io_start (EV_A_ &pipe_w);
1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 *flag = 1;
1374
1375 pipe_write_skipped = 1;
1376
1377 if (pipe_write_wanted)
1378 {
1379 int old_errno = errno; /* save errno because write will clobber it */
1380 char dummy;
1381
1382 pipe_write_skipped = 0;
1383
1384#if EV_USE_EVENTFD
1385 if (evfd >= 0)
1386 {
1387 uint64_t counter = 1;
1388 write (evfd, &counter, sizeof (uint64_t));
1389 }
1390 else
1391#endif
1392 {
1393 /* win32 people keep sending patches that change this write() to send() */
1394 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1395 /* so when you think this write should be a send instead, please find out */
1396 /* where your send() is from - it's definitely not the microsoft send, and */
1397 /* tell me. thank you. */
1398 write (evpipe [1], &dummy, 1);
1399 }
1400
1401 errno = old_errno;
1402 }
1403 }
1404}
1405
1406/* called whenever the libev signal pipe */
1407/* got some events (signal, async) */
467static void 1408static void
468upheap (WT *heap, int k) 1409pipecb (EV_P_ ev_io *iow, int revents)
469{ 1410{
470 WT w = heap [k]; 1411 int i;
471 1412
472 while (k && heap [k >> 1]->at > w->at) 1413 if (revents & EV_READ)
473 {
474 heap [k] = heap [k >> 1];
475 ((W)heap [k])->active = k + 1;
476 k >>= 1;
477 } 1414 {
1415#if EV_USE_EVENTFD
1416 if (evfd >= 0)
1417 {
1418 uint64_t counter;
1419 read (evfd, &counter, sizeof (uint64_t));
1420 }
1421 else
1422#endif
1423 {
1424 char dummy;
1425 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1426 read (evpipe [0], &dummy, 1);
1427 }
1428 }
478 1429
479 heap [k] = w; 1430 pipe_write_skipped = 0;
480 ((W)heap [k])->active = k + 1;
481 1431
1432#if EV_SIGNAL_ENABLE
1433 if (sig_pending)
1434 {
1435 sig_pending = 0;
1436
1437 for (i = EV_NSIG - 1; i--; )
1438 if (expect_false (signals [i].pending))
1439 ev_feed_signal_event (EV_A_ i + 1);
1440 }
1441#endif
1442
1443#if EV_ASYNC_ENABLE
1444 if (async_pending)
1445 {
1446 async_pending = 0;
1447
1448 for (i = asynccnt; i--; )
1449 if (asyncs [i]->sent)
1450 {
1451 asyncs [i]->sent = 0;
1452 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1453 }
1454 }
1455#endif
1456}
1457
1458/*****************************************************************************/
1459
1460void
1461ev_feed_signal (int signum)
1462{
1463#if EV_MULTIPLICITY
1464 EV_P = signals [signum - 1].loop;
1465
1466 if (!EV_A)
1467 return;
1468#endif
1469
1470 evpipe_init (EV_A);
1471
1472 signals [signum - 1].pending = 1;
1473 evpipe_write (EV_A_ &sig_pending);
482} 1474}
483 1475
484static void 1476static void
485downheap (WT *heap, int N, int k) 1477ev_sighandler (int signum)
486{ 1478{
487 WT w = heap [k]; 1479#ifdef _WIN32
1480 signal (signum, ev_sighandler);
1481#endif
488 1482
489 while (k < (N >> 1)) 1483 ev_feed_signal (signum);
490 { 1484}
491 int j = k << 1;
492 1485
493 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1486void noinline
494 ++j; 1487ev_feed_signal_event (EV_P_ int signum)
1488{
1489 WL w;
495 1490
496 if (w->at <= heap [j]->at) 1491 if (expect_false (signum <= 0 || signum > EV_NSIG))
1492 return;
1493
1494 --signum;
1495
1496#if EV_MULTIPLICITY
1497 /* it is permissible to try to feed a signal to the wrong loop */
1498 /* or, likely more useful, feeding a signal nobody is waiting for */
1499
1500 if (expect_false (signals [signum].loop != EV_A))
1501 return;
1502#endif
1503
1504 signals [signum].pending = 0;
1505
1506 for (w = signals [signum].head; w; w = w->next)
1507 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1508}
1509
1510#if EV_USE_SIGNALFD
1511static void
1512sigfdcb (EV_P_ ev_io *iow, int revents)
1513{
1514 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1515
1516 for (;;)
1517 {
1518 ssize_t res = read (sigfd, si, sizeof (si));
1519
1520 /* not ISO-C, as res might be -1, but works with SuS */
1521 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1522 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1523
1524 if (res < (ssize_t)sizeof (si))
497 break; 1525 break;
498
499 heap [k] = heap [j];
500 ((W)heap [k])->active = k + 1;
501 k = j;
502 } 1526 }
503
504 heap [k] = w;
505 ((W)heap [k])->active = k + 1;
506} 1527}
1528#endif
1529
1530#endif
507 1531
508/*****************************************************************************/ 1532/*****************************************************************************/
509 1533
510typedef struct 1534#if EV_CHILD_ENABLE
511{ 1535static WL childs [EV_PID_HASHSIZE];
512 WL head;
513 sig_atomic_t volatile gotsig;
514} ANSIG;
515 1536
516static ANSIG *signals; 1537static ev_signal childev;
517static int signalmax;
518 1538
519static int sigpipe [2]; 1539#ifndef WIFCONTINUED
520static sig_atomic_t volatile gotsig; 1540# define WIFCONTINUED(status) 0
521static struct ev_io sigev; 1541#endif
522 1542
523static void 1543/* handle a single child status event */
524signals_init (ANSIG *base, int count) 1544inline_speed void
1545child_reap (EV_P_ int chain, int pid, int status)
525{ 1546{
526 while (count--) 1547 ev_child *w;
527 { 1548 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
528 base->head = 0;
529 base->gotsig = 0;
530 1549
531 ++base; 1550 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
532 } 1551 {
533} 1552 if ((w->pid == pid || !w->pid)
534 1553 && (!traced || (w->flags & 1)))
535static void
536sighandler (int signum)
537{
538#if WIN32
539 signal (signum, sighandler);
540#endif
541
542 signals [signum - 1].gotsig = 1;
543
544 if (!gotsig)
545 {
546 int old_errno = errno;
547 gotsig = 1;
548#ifdef WIN32
549 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
550#else
551 write (sigpipe [1], &signum, 1);
552#endif
553 errno = old_errno;
554 }
555}
556
557static void
558sigcb (EV_P_ struct ev_io *iow, int revents)
559{
560 WL w;
561 int signum;
562
563#ifdef WIN32
564 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
565#else
566 read (sigpipe [0], &revents, 1);
567#endif
568 gotsig = 0;
569
570 for (signum = signalmax; signum--; )
571 if (signals [signum].gotsig)
572 { 1554 {
573 signals [signum].gotsig = 0; 1555 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
574 1556 w->rpid = pid;
575 for (w = signals [signum].head; w; w = w->next) 1557 w->rstatus = status;
576 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1558 ev_feed_event (EV_A_ (W)w, EV_CHILD);
577 } 1559 }
1560 }
578} 1561}
579
580static void
581siginit (EV_P)
582{
583#ifndef WIN32
584 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
585 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
586
587 /* rather than sort out wether we really need nb, set it */
588 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
589 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
590#endif
591
592 ev_io_set (&sigev, sigpipe [0], EV_READ);
593 ev_io_start (EV_A_ &sigev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */
595}
596
597/*****************************************************************************/
598
599static struct ev_child *childs [PID_HASHSIZE];
600
601#ifndef WIN32
602
603static struct ev_signal childev;
604 1562
605#ifndef WCONTINUED 1563#ifndef WCONTINUED
606# define WCONTINUED 0 1564# define WCONTINUED 0
607#endif 1565#endif
608 1566
1567/* called on sigchld etc., calls waitpid */
609static void 1568static void
610child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
611{
612 struct ev_child *w;
613
614 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
615 if (w->pid == pid || !w->pid)
616 {
617 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
618 w->rpid = pid;
619 w->rstatus = status;
620 ev_feed_event (EV_A_ (W)w, EV_CHILD);
621 }
622}
623
624static void
625childcb (EV_P_ struct ev_signal *sw, int revents) 1569childcb (EV_P_ ev_signal *sw, int revents)
626{ 1570{
627 int pid, status; 1571 int pid, status;
628 1572
1573 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
629 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1574 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
630 { 1575 if (!WCONTINUED
1576 || errno != EINVAL
1577 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1578 return;
1579
631 /* make sure we are called again until all childs have been reaped */ 1580 /* make sure we are called again until all children have been reaped */
1581 /* we need to do it this way so that the callback gets called before we continue */
632 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1582 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
633 1583
634 child_reap (EV_A_ sw, pid, pid, status); 1584 child_reap (EV_A_ pid, pid, status);
1585 if ((EV_PID_HASHSIZE) > 1)
635 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1586 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
636 }
637} 1587}
638 1588
639#endif 1589#endif
640 1590
641/*****************************************************************************/ 1591/*****************************************************************************/
642 1592
1593#if EV_USE_IOCP
1594# include "ev_iocp.c"
1595#endif
1596#if EV_USE_PORT
1597# include "ev_port.c"
1598#endif
643#if EV_USE_KQUEUE 1599#if EV_USE_KQUEUE
644# include "ev_kqueue.c" 1600# include "ev_kqueue.c"
645#endif 1601#endif
646#if EV_USE_EPOLL 1602#if EV_USE_EPOLL
647# include "ev_epoll.c" 1603# include "ev_epoll.c"
664{ 1620{
665 return EV_VERSION_MINOR; 1621 return EV_VERSION_MINOR;
666} 1622}
667 1623
668/* return true if we are running with elevated privileges and should ignore env variables */ 1624/* return true if we are running with elevated privileges and should ignore env variables */
669static int 1625int inline_size
670enable_secure (void) 1626enable_secure (void)
671{ 1627{
672#ifdef WIN32 1628#ifdef _WIN32
673 return 0; 1629 return 0;
674#else 1630#else
675 return getuid () != geteuid () 1631 return getuid () != geteuid ()
676 || getgid () != getegid (); 1632 || getgid () != getegid ();
677#endif 1633#endif
678} 1634}
679 1635
680int 1636unsigned int
1637ev_supported_backends (void)
1638{
1639 unsigned int flags = 0;
1640
1641 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1642 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1643 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1644 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1645 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1646
1647 return flags;
1648}
1649
1650unsigned int
1651ev_recommended_backends (void)
1652{
1653 unsigned int flags = ev_supported_backends ();
1654
1655#ifndef __NetBSD__
1656 /* kqueue is borked on everything but netbsd apparently */
1657 /* it usually doesn't work correctly on anything but sockets and pipes */
1658 flags &= ~EVBACKEND_KQUEUE;
1659#endif
1660#ifdef __APPLE__
1661 /* only select works correctly on that "unix-certified" platform */
1662 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1663 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1664#endif
1665#ifdef __FreeBSD__
1666 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1667#endif
1668
1669 return flags;
1670}
1671
1672unsigned int
1673ev_embeddable_backends (void)
1674{
1675 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1676
1677 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1678 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1679 flags &= ~EVBACKEND_EPOLL;
1680
1681 return flags;
1682}
1683
1684unsigned int
1685ev_backend (EV_P)
1686{
1687 return backend;
1688}
1689
1690#if EV_FEATURE_API
1691unsigned int
1692ev_iteration (EV_P)
1693{
1694 return loop_count;
1695}
1696
1697unsigned int
681ev_method (EV_P) 1698ev_depth (EV_P)
682{ 1699{
683 return method; 1700 return loop_depth;
684} 1701}
685 1702
686static void 1703void
687loop_init (EV_P_ int methods) 1704ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
688{ 1705{
689 if (!method) 1706 io_blocktime = interval;
1707}
1708
1709void
1710ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1711{
1712 timeout_blocktime = interval;
1713}
1714
1715void
1716ev_set_userdata (EV_P_ void *data)
1717{
1718 userdata = data;
1719}
1720
1721void *
1722ev_userdata (EV_P)
1723{
1724 return userdata;
1725}
1726
1727void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1728{
1729 invoke_cb = invoke_pending_cb;
1730}
1731
1732void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1733{
1734 release_cb = release;
1735 acquire_cb = acquire;
1736}
1737#endif
1738
1739/* initialise a loop structure, must be zero-initialised */
1740static void noinline
1741loop_init (EV_P_ unsigned int flags)
1742{
1743 if (!backend)
690 { 1744 {
1745 origflags = flags;
1746
1747#if EV_USE_REALTIME
1748 if (!have_realtime)
1749 {
1750 struct timespec ts;
1751
1752 if (!clock_gettime (CLOCK_REALTIME, &ts))
1753 have_realtime = 1;
1754 }
1755#endif
1756
691#if EV_USE_MONOTONIC 1757#if EV_USE_MONOTONIC
1758 if (!have_monotonic)
1759 {
1760 struct timespec ts;
1761
1762 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1763 have_monotonic = 1;
1764 }
1765#endif
1766
1767 /* pid check not overridable via env */
1768#ifndef _WIN32
1769 if (flags & EVFLAG_FORKCHECK)
1770 curpid = getpid ();
1771#endif
1772
1773 if (!(flags & EVFLAG_NOENV)
1774 && !enable_secure ()
1775 && getenv ("LIBEV_FLAGS"))
1776 flags = atoi (getenv ("LIBEV_FLAGS"));
1777
1778 ev_rt_now = ev_time ();
1779 mn_now = get_clock ();
1780 now_floor = mn_now;
1781 rtmn_diff = ev_rt_now - mn_now;
1782#if EV_FEATURE_API
1783 invoke_cb = ev_invoke_pending;
1784#endif
1785
1786 io_blocktime = 0.;
1787 timeout_blocktime = 0.;
1788 backend = 0;
1789 backend_fd = -1;
1790 sig_pending = 0;
1791#if EV_ASYNC_ENABLE
1792 async_pending = 0;
1793#endif
1794 pipe_write_skipped = 0;
1795 pipe_write_wanted = 0;
1796#if EV_USE_INOTIFY
1797 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1798#endif
1799#if EV_USE_SIGNALFD
1800 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1801#endif
1802
1803 if (!(flags & EVBACKEND_MASK))
1804 flags |= ev_recommended_backends ();
1805
1806#if EV_USE_IOCP
1807 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1808#endif
1809#if EV_USE_PORT
1810 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1811#endif
1812#if EV_USE_KQUEUE
1813 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1814#endif
1815#if EV_USE_EPOLL
1816 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1817#endif
1818#if EV_USE_POLL
1819 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1820#endif
1821#if EV_USE_SELECT
1822 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1823#endif
1824
1825 ev_prepare_init (&pending_w, pendingcb);
1826
1827#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1828 ev_init (&pipe_w, pipecb);
1829 ev_set_priority (&pipe_w, EV_MAXPRI);
1830#endif
1831 }
1832}
1833
1834/* free up a loop structure */
1835void
1836ev_loop_destroy (EV_P)
1837{
1838 int i;
1839
1840#if EV_MULTIPLICITY
1841 /* mimic free (0) */
1842 if (!EV_A)
1843 return;
1844#endif
1845
1846#if EV_CLEANUP_ENABLE
1847 /* queue cleanup watchers (and execute them) */
1848 if (expect_false (cleanupcnt))
1849 {
1850 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1851 EV_INVOKE_PENDING;
1852 }
1853#endif
1854
1855#if EV_CHILD_ENABLE
1856 if (ev_is_active (&childev))
1857 {
1858 ev_ref (EV_A); /* child watcher */
1859 ev_signal_stop (EV_A_ &childev);
1860 }
1861#endif
1862
1863 if (ev_is_active (&pipe_w))
1864 {
1865 /*ev_ref (EV_A);*/
1866 /*ev_io_stop (EV_A_ &pipe_w);*/
1867
1868#if EV_USE_EVENTFD
1869 if (evfd >= 0)
1870 close (evfd);
1871#endif
1872
1873 if (evpipe [0] >= 0)
1874 {
1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1877 }
1878 }
1879
1880#if EV_USE_SIGNALFD
1881 if (ev_is_active (&sigfd_w))
1882 close (sigfd);
1883#endif
1884
1885#if EV_USE_INOTIFY
1886 if (fs_fd >= 0)
1887 close (fs_fd);
1888#endif
1889
1890 if (backend_fd >= 0)
1891 close (backend_fd);
1892
1893#if EV_USE_IOCP
1894 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1895#endif
1896#if EV_USE_PORT
1897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1898#endif
1899#if EV_USE_KQUEUE
1900 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1901#endif
1902#if EV_USE_EPOLL
1903 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1904#endif
1905#if EV_USE_POLL
1906 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1907#endif
1908#if EV_USE_SELECT
1909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1910#endif
1911
1912 for (i = NUMPRI; i--; )
1913 {
1914 array_free (pending, [i]);
1915#if EV_IDLE_ENABLE
1916 array_free (idle, [i]);
1917#endif
1918 }
1919
1920 ev_free (anfds); anfds = 0; anfdmax = 0;
1921
1922 /* have to use the microsoft-never-gets-it-right macro */
1923 array_free (rfeed, EMPTY);
1924 array_free (fdchange, EMPTY);
1925 array_free (timer, EMPTY);
1926#if EV_PERIODIC_ENABLE
1927 array_free (periodic, EMPTY);
1928#endif
1929#if EV_FORK_ENABLE
1930 array_free (fork, EMPTY);
1931#endif
1932#if EV_CLEANUP_ENABLE
1933 array_free (cleanup, EMPTY);
1934#endif
1935 array_free (prepare, EMPTY);
1936 array_free (check, EMPTY);
1937#if EV_ASYNC_ENABLE
1938 array_free (async, EMPTY);
1939#endif
1940
1941 backend = 0;
1942
1943#if EV_MULTIPLICITY
1944 if (ev_is_default_loop (EV_A))
1945#endif
1946 ev_default_loop_ptr = 0;
1947#if EV_MULTIPLICITY
1948 else
1949 ev_free (EV_A);
1950#endif
1951}
1952
1953#if EV_USE_INOTIFY
1954inline_size void infy_fork (EV_P);
1955#endif
1956
1957inline_size void
1958loop_fork (EV_P)
1959{
1960#if EV_USE_PORT
1961 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1962#endif
1963#if EV_USE_KQUEUE
1964 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1965#endif
1966#if EV_USE_EPOLL
1967 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1968#endif
1969#if EV_USE_INOTIFY
1970 infy_fork (EV_A);
1971#endif
1972
1973 if (ev_is_active (&pipe_w))
1974 {
1975 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1976
1977 ev_ref (EV_A);
1978 ev_io_stop (EV_A_ &pipe_w);
1979
1980#if EV_USE_EVENTFD
1981 if (evfd >= 0)
1982 close (evfd);
1983#endif
1984
1985 if (evpipe [0] >= 0)
1986 {
1987 EV_WIN32_CLOSE_FD (evpipe [0]);
1988 EV_WIN32_CLOSE_FD (evpipe [1]);
1989 }
1990
1991#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1992 evpipe_init (EV_A);
1993 /* now iterate over everything, in case we missed something */
1994 pipecb (EV_A_ &pipe_w, EV_READ);
1995#endif
1996 }
1997
1998 postfork = 0;
1999}
2000
2001#if EV_MULTIPLICITY
2002
2003struct ev_loop *
2004ev_loop_new (unsigned int flags)
2005{
2006 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2007
2008 memset (EV_A, 0, sizeof (struct ev_loop));
2009 loop_init (EV_A_ flags);
2010
2011 if (ev_backend (EV_A))
2012 return EV_A;
2013
2014 ev_free (EV_A);
2015 return 0;
2016}
2017
2018#endif /* multiplicity */
2019
2020#if EV_VERIFY
2021static void noinline
2022verify_watcher (EV_P_ W w)
2023{
2024 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2025
2026 if (w->pending)
2027 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2028}
2029
2030static void noinline
2031verify_heap (EV_P_ ANHE *heap, int N)
2032{
2033 int i;
2034
2035 for (i = HEAP0; i < N + HEAP0; ++i)
2036 {
2037 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2038 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2039 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2040
2041 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2042 }
2043}
2044
2045static void noinline
2046array_verify (EV_P_ W *ws, int cnt)
2047{
2048 while (cnt--)
2049 {
2050 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2051 verify_watcher (EV_A_ ws [cnt]);
2052 }
2053}
2054#endif
2055
2056#if EV_FEATURE_API
2057void
2058ev_verify (EV_P)
2059{
2060#if EV_VERIFY
2061 int i;
2062 WL w;
2063
2064 assert (activecnt >= -1);
2065
2066 assert (fdchangemax >= fdchangecnt);
2067 for (i = 0; i < fdchangecnt; ++i)
2068 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2069
2070 assert (anfdmax >= 0);
2071 for (i = 0; i < anfdmax; ++i)
2072 for (w = anfds [i].head; w; w = w->next)
692 { 2073 {
693 struct timespec ts; 2074 verify_watcher (EV_A_ (W)w);
694 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2075 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
695 have_monotonic = 1; 2076 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
696 } 2077 }
697#endif
698 2078
699 rt_now = ev_time (); 2079 assert (timermax >= timercnt);
700 mn_now = get_clock (); 2080 verify_heap (EV_A_ timers, timercnt);
701 now_floor = mn_now;
702 rtmn_diff = rt_now - mn_now;
703 2081
704 if (methods == EVMETHOD_AUTO) 2082#if EV_PERIODIC_ENABLE
705 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2083 assert (periodicmax >= periodiccnt);
706 methods = atoi (getenv ("LIBEV_METHODS")); 2084 verify_heap (EV_A_ periodics, periodiccnt);
707 else
708 methods = EVMETHOD_ANY;
709
710 method = 0;
711#if EV_USE_WIN32
712 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
713#endif
714#if EV_USE_KQUEUE
715 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
716#endif
717#if EV_USE_EPOLL
718 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
719#endif
720#if EV_USE_POLL
721 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
722#endif
723#if EV_USE_SELECT
724 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
725#endif
726
727 ev_watcher_init (&sigev, sigcb);
728 ev_set_priority (&sigev, EV_MAXPRI);
729 }
730}
731
732void
733loop_destroy (EV_P)
734{
735 int i;
736
737#if EV_USE_WIN32
738 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
739#endif
740#if EV_USE_KQUEUE
741 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
742#endif
743#if EV_USE_EPOLL
744 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
745#endif
746#if EV_USE_POLL
747 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
748#endif
749#if EV_USE_SELECT
750 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
751#endif 2085#endif
752 2086
753 for (i = NUMPRI; i--; ) 2087 for (i = NUMPRI; i--; )
754 array_free (pending, [i]); 2088 {
2089 assert (pendingmax [i] >= pendingcnt [i]);
2090#if EV_IDLE_ENABLE
2091 assert (idleall >= 0);
2092 assert (idlemax [i] >= idlecnt [i]);
2093 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2094#endif
2095 }
755 2096
756 /* have to use the microsoft-never-gets-it-right macro */ 2097#if EV_FORK_ENABLE
757 array_free_microshit (fdchange); 2098 assert (forkmax >= forkcnt);
758 array_free_microshit (timer); 2099 array_verify (EV_A_ (W *)forks, forkcnt);
759 array_free_microshit (periodic); 2100#endif
760 array_free_microshit (idle);
761 array_free_microshit (prepare);
762 array_free_microshit (check);
763 2101
764 method = 0; 2102#if EV_CLEANUP_ENABLE
765} 2103 assert (cleanupmax >= cleanupcnt);
2104 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2105#endif
766 2106
767static void 2107#if EV_ASYNC_ENABLE
768loop_fork (EV_P) 2108 assert (asyncmax >= asynccnt);
769{ 2109 array_verify (EV_A_ (W *)asyncs, asynccnt);
770#if EV_USE_EPOLL 2110#endif
771 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2111
2112#if EV_PREPARE_ENABLE
2113 assert (preparemax >= preparecnt);
2114 array_verify (EV_A_ (W *)prepares, preparecnt);
2115#endif
2116
2117#if EV_CHECK_ENABLE
2118 assert (checkmax >= checkcnt);
2119 array_verify (EV_A_ (W *)checks, checkcnt);
2120#endif
2121
2122# if 0
2123#if EV_CHILD_ENABLE
2124 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2125 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2126#endif
772#endif 2127# endif
773#if EV_USE_KQUEUE
774 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
775#endif 2128#endif
776
777 if (ev_is_active (&sigev))
778 {
779 /* default loop */
780
781 ev_ref (EV_A);
782 ev_io_stop (EV_A_ &sigev);
783 close (sigpipe [0]);
784 close (sigpipe [1]);
785
786 while (pipe (sigpipe))
787 syserr ("(libev) error creating pipe");
788
789 siginit (EV_A);
790 }
791
792 postfork = 0;
793} 2129}
2130#endif
794 2131
795#if EV_MULTIPLICITY 2132#if EV_MULTIPLICITY
796struct ev_loop * 2133struct ev_loop *
797ev_loop_new (int methods) 2134#else
798{ 2135int
799 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
800
801 memset (loop, 0, sizeof (struct ev_loop));
802
803 loop_init (EV_A_ methods);
804
805 if (ev_method (EV_A))
806 return loop;
807
808 return 0;
809}
810
811void
812ev_loop_destroy (EV_P)
813{
814 loop_destroy (EV_A);
815 ev_free (loop);
816}
817
818void
819ev_loop_fork (EV_P)
820{
821 postfork = 1;
822}
823
824#endif 2136#endif
825 2137ev_default_loop (unsigned int flags)
2138{
2139 if (!ev_default_loop_ptr)
2140 {
826#if EV_MULTIPLICITY 2141#if EV_MULTIPLICITY
827struct ev_loop default_loop_struct; 2142 EV_P = ev_default_loop_ptr = &default_loop_struct;
828static struct ev_loop *default_loop;
829
830struct ev_loop *
831#else 2143#else
832static int default_loop;
833
834int
835#endif
836ev_default_loop (int methods)
837{
838 if (sigpipe [0] == sigpipe [1])
839 if (pipe (sigpipe))
840 return 0;
841
842 if (!default_loop)
843 {
844#if EV_MULTIPLICITY
845 struct ev_loop *loop = default_loop = &default_loop_struct;
846#else
847 default_loop = 1; 2144 ev_default_loop_ptr = 1;
848#endif 2145#endif
849 2146
850 loop_init (EV_A_ methods); 2147 loop_init (EV_A_ flags);
851 2148
852 if (ev_method (EV_A)) 2149 if (ev_backend (EV_A))
853 { 2150 {
854 siginit (EV_A); 2151#if EV_CHILD_ENABLE
855
856#ifndef WIN32
857 ev_signal_init (&childev, childcb, SIGCHLD); 2152 ev_signal_init (&childev, childcb, SIGCHLD);
858 ev_set_priority (&childev, EV_MAXPRI); 2153 ev_set_priority (&childev, EV_MAXPRI);
859 ev_signal_start (EV_A_ &childev); 2154 ev_signal_start (EV_A_ &childev);
860 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2155 ev_unref (EV_A); /* child watcher should not keep loop alive */
861#endif 2156#endif
862 } 2157 }
863 else 2158 else
864 default_loop = 0; 2159 ev_default_loop_ptr = 0;
865 } 2160 }
866 2161
867 return default_loop; 2162 return ev_default_loop_ptr;
868} 2163}
869 2164
870void 2165void
871ev_default_destroy (void) 2166ev_loop_fork (EV_P)
872{ 2167{
873#if EV_MULTIPLICITY 2168 postfork = 1; /* must be in line with ev_default_fork */
874 struct ev_loop *loop = default_loop;
875#endif
876
877#ifndef WIN32
878 ev_ref (EV_A); /* child watcher */
879 ev_signal_stop (EV_A_ &childev);
880#endif
881
882 ev_ref (EV_A); /* signal watcher */
883 ev_io_stop (EV_A_ &sigev);
884
885 close (sigpipe [0]); sigpipe [0] = 0;
886 close (sigpipe [1]); sigpipe [1] = 0;
887
888 loop_destroy (EV_A);
889}
890
891void
892ev_default_fork (void)
893{
894#if EV_MULTIPLICITY
895 struct ev_loop *loop = default_loop;
896#endif
897
898 if (method)
899 postfork = 1;
900} 2169}
901 2170
902/*****************************************************************************/ 2171/*****************************************************************************/
903 2172
904static int 2173void
905any_pending (EV_P) 2174ev_invoke (EV_P_ void *w, int revents)
2175{
2176 EV_CB_INVOKE ((W)w, revents);
2177}
2178
2179unsigned int
2180ev_pending_count (EV_P)
906{ 2181{
907 int pri; 2182 int pri;
2183 unsigned int count = 0;
908 2184
909 for (pri = NUMPRI; pri--; ) 2185 for (pri = NUMPRI; pri--; )
910 if (pendingcnt [pri]) 2186 count += pendingcnt [pri];
911 return 1;
912 2187
913 return 0; 2188 return count;
914} 2189}
915 2190
916static void 2191void noinline
917call_pending (EV_P) 2192ev_invoke_pending (EV_P)
918{ 2193{
919 int pri; 2194 int pri;
920 2195
921 for (pri = NUMPRI; pri--; ) 2196 for (pri = NUMPRI; pri--; )
922 while (pendingcnt [pri]) 2197 while (pendingcnt [pri])
923 { 2198 {
924 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2199 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
925 2200
926 if (p->w)
927 {
928 p->w->pending = 0; 2201 p->w->pending = 0;
929 p->w->cb (EV_A_ p->w, p->events); 2202 EV_CB_INVOKE (p->w, p->events);
930 } 2203 EV_FREQUENT_CHECK;
931 } 2204 }
932} 2205}
933 2206
934static void 2207#if EV_IDLE_ENABLE
2208/* make idle watchers pending. this handles the "call-idle */
2209/* only when higher priorities are idle" logic */
2210inline_size void
2211idle_reify (EV_P)
2212{
2213 if (expect_false (idleall))
2214 {
2215 int pri;
2216
2217 for (pri = NUMPRI; pri--; )
2218 {
2219 if (pendingcnt [pri])
2220 break;
2221
2222 if (idlecnt [pri])
2223 {
2224 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2225 break;
2226 }
2227 }
2228 }
2229}
2230#endif
2231
2232/* make timers pending */
2233inline_size void
935timers_reify (EV_P) 2234timers_reify (EV_P)
936{ 2235{
2236 EV_FREQUENT_CHECK;
2237
937 while (timercnt && ((WT)timers [0])->at <= mn_now) 2238 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
938 { 2239 {
939 struct ev_timer *w = timers [0]; 2240 do
940
941 assert (("inactive timer on timer heap detected", ev_is_active (w)));
942
943 /* first reschedule or stop timer */
944 if (w->repeat)
945 { 2241 {
2242 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2243
2244 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2245
2246 /* first reschedule or stop timer */
2247 if (w->repeat)
2248 {
2249 ev_at (w) += w->repeat;
2250 if (ev_at (w) < mn_now)
2251 ev_at (w) = mn_now;
2252
946 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2253 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
947 ((WT)w)->at = mn_now + w->repeat; 2254
2255 ANHE_at_cache (timers [HEAP0]);
948 downheap ((WT *)timers, timercnt, 0); 2256 downheap (timers, timercnt, HEAP0);
2257 }
2258 else
2259 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2260
2261 EV_FREQUENT_CHECK;
2262 feed_reverse (EV_A_ (W)w);
949 } 2263 }
950 else 2264 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
951 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
952 2265
953 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2266 feed_reverse_done (EV_A_ EV_TIMER);
2267 }
2268}
2269
2270#if EV_PERIODIC_ENABLE
2271
2272static void noinline
2273periodic_recalc (EV_P_ ev_periodic *w)
2274{
2275 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2276 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2277
2278 /* the above almost always errs on the low side */
2279 while (at <= ev_rt_now)
954 } 2280 {
955} 2281 ev_tstamp nat = at + w->interval;
956 2282
957static void 2283 /* when resolution fails us, we use ev_rt_now */
2284 if (expect_false (nat == at))
2285 {
2286 at = ev_rt_now;
2287 break;
2288 }
2289
2290 at = nat;
2291 }
2292
2293 ev_at (w) = at;
2294}
2295
2296/* make periodics pending */
2297inline_size void
958periodics_reify (EV_P) 2298periodics_reify (EV_P)
959{ 2299{
2300 EV_FREQUENT_CHECK;
2301
960 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 2302 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
961 { 2303 {
962 struct ev_periodic *w = periodics [0]; 2304 int feed_count = 0;
963 2305
2306 do
2307 {
2308 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2309
964 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2310 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
965 2311
966 /* first reschedule or stop timer */ 2312 /* first reschedule or stop timer */
2313 if (w->reschedule_cb)
2314 {
2315 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2316
2317 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2318
2319 ANHE_at_cache (periodics [HEAP0]);
2320 downheap (periodics, periodiccnt, HEAP0);
2321 }
2322 else if (w->interval)
2323 {
2324 periodic_recalc (EV_A_ w);
2325 ANHE_at_cache (periodics [HEAP0]);
2326 downheap (periodics, periodiccnt, HEAP0);
2327 }
2328 else
2329 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2330
2331 EV_FREQUENT_CHECK;
2332 feed_reverse (EV_A_ (W)w);
2333 }
2334 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2335
2336 feed_reverse_done (EV_A_ EV_PERIODIC);
2337 }
2338}
2339
2340/* simply recalculate all periodics */
2341/* TODO: maybe ensure that at least one event happens when jumping forward? */
2342static void noinline
2343periodics_reschedule (EV_P)
2344{
2345 int i;
2346
2347 /* adjust periodics after time jump */
2348 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2349 {
2350 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2351
967 if (w->reschedule_cb) 2352 if (w->reschedule_cb)
968 {
969 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 2353 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
970
971 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
972 downheap ((WT *)periodics, periodiccnt, 0);
973 }
974 else if (w->interval) 2354 else if (w->interval)
975 { 2355 periodic_recalc (EV_A_ w);
976 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
977 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
978 downheap ((WT *)periodics, periodiccnt, 0);
979 }
980 else
981 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
982 2356
983 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2357 ANHE_at_cache (periodics [i]);
984 } 2358 }
985}
986 2359
987static void 2360 reheap (periodics, periodiccnt);
988periodics_reschedule (EV_P) 2361}
2362#endif
2363
2364/* adjust all timers by a given offset */
2365static void noinline
2366timers_reschedule (EV_P_ ev_tstamp adjust)
989{ 2367{
990 int i; 2368 int i;
991 2369
992 /* adjust periodics after time jump */
993 for (i = 0; i < periodiccnt; ++i) 2370 for (i = 0; i < timercnt; ++i)
994 {
995 struct ev_periodic *w = periodics [i];
996
997 if (w->reschedule_cb)
998 ((WT)w)->at = w->reschedule_cb (w, rt_now);
999 else if (w->interval)
1000 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1001 } 2371 {
1002 2372 ANHE *he = timers + i + HEAP0;
1003 /* now rebuild the heap */ 2373 ANHE_w (*he)->at += adjust;
1004 for (i = periodiccnt >> 1; i--; ) 2374 ANHE_at_cache (*he);
1005 downheap ((WT *)periodics, periodiccnt, i);
1006}
1007
1008inline int
1009time_update_monotonic (EV_P)
1010{
1011 mn_now = get_clock ();
1012
1013 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1014 { 2375 }
1015 rt_now = rtmn_diff + mn_now;
1016 return 0;
1017 }
1018 else
1019 {
1020 now_floor = mn_now;
1021 rt_now = ev_time ();
1022 return 1;
1023 }
1024} 2376}
1025 2377
1026static void 2378/* fetch new monotonic and realtime times from the kernel */
1027time_update (EV_P) 2379/* also detect if there was a timejump, and act accordingly */
2380inline_speed void
2381time_update (EV_P_ ev_tstamp max_block)
1028{ 2382{
1029 int i;
1030
1031#if EV_USE_MONOTONIC 2383#if EV_USE_MONOTONIC
1032 if (expect_true (have_monotonic)) 2384 if (expect_true (have_monotonic))
1033 { 2385 {
1034 if (time_update_monotonic (EV_A)) 2386 int i;
2387 ev_tstamp odiff = rtmn_diff;
2388
2389 mn_now = get_clock ();
2390
2391 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2392 /* interpolate in the meantime */
2393 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 2394 {
1036 ev_tstamp odiff = rtmn_diff; 2395 ev_rt_now = rtmn_diff + mn_now;
2396 return;
2397 }
1037 2398
2399 now_floor = mn_now;
2400 ev_rt_now = ev_time ();
2401
1038 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2402 /* loop a few times, before making important decisions.
2403 * on the choice of "4": one iteration isn't enough,
2404 * in case we get preempted during the calls to
2405 * ev_time and get_clock. a second call is almost guaranteed
2406 * to succeed in that case, though. and looping a few more times
2407 * doesn't hurt either as we only do this on time-jumps or
2408 * in the unlikely event of having been preempted here.
2409 */
2410 for (i = 4; --i; )
1039 { 2411 {
2412 ev_tstamp diff;
1040 rtmn_diff = rt_now - mn_now; 2413 rtmn_diff = ev_rt_now - mn_now;
1041 2414
1042 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2415 diff = odiff - rtmn_diff;
2416
2417 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1043 return; /* all is well */ 2418 return; /* all is well */
1044 2419
1045 rt_now = ev_time (); 2420 ev_rt_now = ev_time ();
1046 mn_now = get_clock (); 2421 mn_now = get_clock ();
1047 now_floor = mn_now; 2422 now_floor = mn_now;
1048 } 2423 }
1049 2424
2425 /* no timer adjustment, as the monotonic clock doesn't jump */
2426 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2427# if EV_PERIODIC_ENABLE
2428 periodics_reschedule (EV_A);
2429# endif
2430 }
2431 else
2432#endif
2433 {
2434 ev_rt_now = ev_time ();
2435
2436 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2437 {
2438 /* adjust timers. this is easy, as the offset is the same for all of them */
2439 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2440#if EV_PERIODIC_ENABLE
1050 periodics_reschedule (EV_A); 2441 periodics_reschedule (EV_A);
1051 /* no timer adjustment, as the monotonic clock doesn't jump */ 2442#endif
1052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1053 } 2443 }
1054 }
1055 else
1056#endif
1057 {
1058 rt_now = ev_time ();
1059 2444
1060 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1061 {
1062 periodics_reschedule (EV_A);
1063
1064 /* adjust timers. this is easy, as the offset is the same for all */
1065 for (i = 0; i < timercnt; ++i)
1066 ((WT)timers [i])->at += rt_now - mn_now;
1067 }
1068
1069 mn_now = rt_now; 2445 mn_now = ev_rt_now;
1070 } 2446 }
1071} 2447}
1072 2448
1073void 2449void
1074ev_ref (EV_P)
1075{
1076 ++activecnt;
1077}
1078
1079void
1080ev_unref (EV_P)
1081{
1082 --activecnt;
1083}
1084
1085static int loop_done;
1086
1087void
1088ev_loop (EV_P_ int flags) 2450ev_run (EV_P_ int flags)
1089{ 2451{
1090 double block; 2452#if EV_FEATURE_API
1091 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2453 ++loop_depth;
2454#endif
2455
2456 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2457
2458 loop_done = EVBREAK_CANCEL;
2459
2460 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1092 2461
1093 do 2462 do
1094 { 2463 {
2464#if EV_VERIFY >= 2
2465 ev_verify (EV_A);
2466#endif
2467
2468#ifndef _WIN32
2469 if (expect_false (curpid)) /* penalise the forking check even more */
2470 if (expect_false (getpid () != curpid))
2471 {
2472 curpid = getpid ();
2473 postfork = 1;
2474 }
2475#endif
2476
2477#if EV_FORK_ENABLE
2478 /* we might have forked, so queue fork handlers */
2479 if (expect_false (postfork))
2480 if (forkcnt)
2481 {
2482 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2483 EV_INVOKE_PENDING;
2484 }
2485#endif
2486
2487#if EV_PREPARE_ENABLE
1095 /* queue check watchers (and execute them) */ 2488 /* queue prepare watchers (and execute them) */
1096 if (expect_false (preparecnt)) 2489 if (expect_false (preparecnt))
1097 { 2490 {
1098 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2491 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1099 call_pending (EV_A); 2492 EV_INVOKE_PENDING;
1100 } 2493 }
2494#endif
2495
2496 if (expect_false (loop_done))
2497 break;
1101 2498
1102 /* we might have forked, so reify kernel state if necessary */ 2499 /* we might have forked, so reify kernel state if necessary */
1103 if (expect_false (postfork)) 2500 if (expect_false (postfork))
1104 loop_fork (EV_A); 2501 loop_fork (EV_A);
1105 2502
1106 /* update fd-related kernel structures */ 2503 /* update fd-related kernel structures */
1107 fd_reify (EV_A); 2504 fd_reify (EV_A);
1108 2505
1109 /* calculate blocking time */ 2506 /* calculate blocking time */
2507 {
2508 ev_tstamp waittime = 0.;
2509 ev_tstamp sleeptime = 0.;
1110 2510
1111 /* we only need this for !monotonic clock or timers, but as we basically 2511 /* remember old timestamp for io_blocktime calculation */
1112 always have timers, we just calculate it always */ 2512 ev_tstamp prev_mn_now = mn_now;
1113#if EV_USE_MONOTONIC 2513
1114 if (expect_true (have_monotonic)) 2514 /* update time to cancel out callback processing overhead */
1115 time_update_monotonic (EV_A); 2515 time_update (EV_A_ 1e100);
1116 else 2516
1117#endif 2517 /* from now on, we want a pipe-wake-up */
2518 pipe_write_wanted = 1;
2519
2520 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1118 { 2521 {
1119 rt_now = ev_time ();
1120 mn_now = rt_now;
1121 }
1122
1123 if (flags & EVLOOP_NONBLOCK || idlecnt)
1124 block = 0.;
1125 else
1126 {
1127 block = MAX_BLOCKTIME; 2522 waittime = MAX_BLOCKTIME;
1128 2523
1129 if (timercnt) 2524 if (timercnt)
1130 { 2525 {
1131 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2526 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1132 if (block > to) block = to; 2527 if (waittime > to) waittime = to;
1133 } 2528 }
1134 2529
2530#if EV_PERIODIC_ENABLE
1135 if (periodiccnt) 2531 if (periodiccnt)
1136 { 2532 {
1137 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2533 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1138 if (block > to) block = to; 2534 if (waittime > to) waittime = to;
1139 } 2535 }
2536#endif
1140 2537
1141 if (block < 0.) block = 0.; 2538 /* don't let timeouts decrease the waittime below timeout_blocktime */
2539 if (expect_false (waittime < timeout_blocktime))
2540 waittime = timeout_blocktime;
2541
2542 /* at this point, we NEED to wait, so we have to ensure */
2543 /* to pass a minimum nonzero value to the backend */
2544 if (expect_false (waittime < backend_mintime))
2545 waittime = backend_mintime;
2546
2547 /* extra check because io_blocktime is commonly 0 */
2548 if (expect_false (io_blocktime))
2549 {
2550 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2551
2552 if (sleeptime > waittime - backend_mintime)
2553 sleeptime = waittime - backend_mintime;
2554
2555 if (expect_true (sleeptime > 0.))
2556 {
2557 ev_sleep (sleeptime);
2558 waittime -= sleeptime;
2559 }
2560 }
1142 } 2561 }
1143 2562
1144 method_poll (EV_A_ block); 2563#if EV_FEATURE_API
2564 ++loop_count;
2565#endif
2566 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2567 backend_poll (EV_A_ waittime);
2568 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1145 2569
2570 pipe_write_wanted = 0;
2571
2572 if (pipe_write_skipped)
2573 {
2574 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2575 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2576 }
2577
2578
1146 /* update rt_now, do magic */ 2579 /* update ev_rt_now, do magic */
1147 time_update (EV_A); 2580 time_update (EV_A_ waittime + sleeptime);
2581 }
1148 2582
1149 /* queue pending timers and reschedule them */ 2583 /* queue pending timers and reschedule them */
1150 timers_reify (EV_A); /* relative timers called last */ 2584 timers_reify (EV_A); /* relative timers called last */
2585#if EV_PERIODIC_ENABLE
1151 periodics_reify (EV_A); /* absolute timers called first */ 2586 periodics_reify (EV_A); /* absolute timers called first */
2587#endif
1152 2588
2589#if EV_IDLE_ENABLE
1153 /* queue idle watchers unless io or timers are pending */ 2590 /* queue idle watchers unless other events are pending */
1154 if (idlecnt && !any_pending (EV_A)) 2591 idle_reify (EV_A);
1155 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2592#endif
1156 2593
2594#if EV_CHECK_ENABLE
1157 /* queue check watchers, to be executed first */ 2595 /* queue check watchers, to be executed first */
1158 if (checkcnt) 2596 if (expect_false (checkcnt))
1159 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2597 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2598#endif
1160 2599
1161 call_pending (EV_A); 2600 EV_INVOKE_PENDING;
1162 } 2601 }
1163 while (activecnt && !loop_done); 2602 while (expect_true (
2603 activecnt
2604 && !loop_done
2605 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2606 ));
1164 2607
1165 if (loop_done != 2) 2608 if (loop_done == EVBREAK_ONE)
1166 loop_done = 0; 2609 loop_done = EVBREAK_CANCEL;
1167}
1168 2610
2611#if EV_FEATURE_API
2612 --loop_depth;
2613#endif
2614}
2615
1169void 2616void
1170ev_unloop (EV_P_ int how) 2617ev_break (EV_P_ int how)
1171{ 2618{
1172 loop_done = how; 2619 loop_done = how;
1173} 2620}
1174 2621
2622void
2623ev_ref (EV_P)
2624{
2625 ++activecnt;
2626}
2627
2628void
2629ev_unref (EV_P)
2630{
2631 --activecnt;
2632}
2633
2634void
2635ev_now_update (EV_P)
2636{
2637 time_update (EV_A_ 1e100);
2638}
2639
2640void
2641ev_suspend (EV_P)
2642{
2643 ev_now_update (EV_A);
2644}
2645
2646void
2647ev_resume (EV_P)
2648{
2649 ev_tstamp mn_prev = mn_now;
2650
2651 ev_now_update (EV_A);
2652 timers_reschedule (EV_A_ mn_now - mn_prev);
2653#if EV_PERIODIC_ENABLE
2654 /* TODO: really do this? */
2655 periodics_reschedule (EV_A);
2656#endif
2657}
2658
1175/*****************************************************************************/ 2659/*****************************************************************************/
2660/* singly-linked list management, used when the expected list length is short */
1176 2661
1177inline void 2662inline_size void
1178wlist_add (WL *head, WL elem) 2663wlist_add (WL *head, WL elem)
1179{ 2664{
1180 elem->next = *head; 2665 elem->next = *head;
1181 *head = elem; 2666 *head = elem;
1182} 2667}
1183 2668
1184inline void 2669inline_size void
1185wlist_del (WL *head, WL elem) 2670wlist_del (WL *head, WL elem)
1186{ 2671{
1187 while (*head) 2672 while (*head)
1188 { 2673 {
1189 if (*head == elem) 2674 if (expect_true (*head == elem))
1190 { 2675 {
1191 *head = elem->next; 2676 *head = elem->next;
1192 return; 2677 break;
1193 } 2678 }
1194 2679
1195 head = &(*head)->next; 2680 head = &(*head)->next;
1196 } 2681 }
1197} 2682}
1198 2683
2684/* internal, faster, version of ev_clear_pending */
1199inline void 2685inline_speed void
1200ev_clear_pending (EV_P_ W w) 2686clear_pending (EV_P_ W w)
1201{ 2687{
1202 if (w->pending) 2688 if (w->pending)
1203 { 2689 {
1204 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2690 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1205 w->pending = 0; 2691 w->pending = 0;
1206 } 2692 }
1207} 2693}
1208 2694
2695int
2696ev_clear_pending (EV_P_ void *w)
2697{
2698 W w_ = (W)w;
2699 int pending = w_->pending;
2700
2701 if (expect_true (pending))
2702 {
2703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2704 p->w = (W)&pending_w;
2705 w_->pending = 0;
2706 return p->events;
2707 }
2708 else
2709 return 0;
2710}
2711
1209inline void 2712inline_size void
2713pri_adjust (EV_P_ W w)
2714{
2715 int pri = ev_priority (w);
2716 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2717 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2718 ev_set_priority (w, pri);
2719}
2720
2721inline_speed void
1210ev_start (EV_P_ W w, int active) 2722ev_start (EV_P_ W w, int active)
1211{ 2723{
1212 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2724 pri_adjust (EV_A_ w);
1213 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1214
1215 w->active = active; 2725 w->active = active;
1216 ev_ref (EV_A); 2726 ev_ref (EV_A);
1217} 2727}
1218 2728
1219inline void 2729inline_size void
1220ev_stop (EV_P_ W w) 2730ev_stop (EV_P_ W w)
1221{ 2731{
1222 ev_unref (EV_A); 2732 ev_unref (EV_A);
1223 w->active = 0; 2733 w->active = 0;
1224} 2734}
1225 2735
1226/*****************************************************************************/ 2736/*****************************************************************************/
1227 2737
1228void 2738void noinline
1229ev_io_start (EV_P_ struct ev_io *w) 2739ev_io_start (EV_P_ ev_io *w)
1230{ 2740{
1231 int fd = w->fd; 2741 int fd = w->fd;
1232 2742
1233 if (ev_is_active (w)) 2743 if (expect_false (ev_is_active (w)))
1234 return; 2744 return;
1235 2745
1236 assert (("ev_io_start called with negative fd", fd >= 0)); 2746 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2747 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2748
2749 EV_FREQUENT_CHECK;
1237 2750
1238 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
1239 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2752 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1240 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2753 wlist_add (&anfds[fd].head, (WL)w);
1241 2754
1242 fd_change (EV_A_ fd); 2755 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1243} 2756 w->events &= ~EV__IOFDSET;
1244 2757
1245void 2758 EV_FREQUENT_CHECK;
2759}
2760
2761void noinline
1246ev_io_stop (EV_P_ struct ev_io *w) 2762ev_io_stop (EV_P_ ev_io *w)
1247{ 2763{
1248 ev_clear_pending (EV_A_ (W)w); 2764 clear_pending (EV_A_ (W)w);
1249 if (!ev_is_active (w)) 2765 if (expect_false (!ev_is_active (w)))
1250 return; 2766 return;
1251 2767
2768 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2769
2770 EV_FREQUENT_CHECK;
2771
1252 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2772 wlist_del (&anfds[w->fd].head, (WL)w);
1253 ev_stop (EV_A_ (W)w); 2773 ev_stop (EV_A_ (W)w);
1254 2774
1255 fd_change (EV_A_ w->fd); 2775 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1256}
1257 2776
1258void 2777 EV_FREQUENT_CHECK;
2778}
2779
2780void noinline
1259ev_timer_start (EV_P_ struct ev_timer *w) 2781ev_timer_start (EV_P_ ev_timer *w)
1260{ 2782{
1261 if (ev_is_active (w)) 2783 if (expect_false (ev_is_active (w)))
1262 return; 2784 return;
1263 2785
1264 ((WT)w)->at += mn_now; 2786 ev_at (w) += mn_now;
1265 2787
1266 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2788 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1267 2789
2790 EV_FREQUENT_CHECK;
2791
2792 ++timercnt;
1268 ev_start (EV_A_ (W)w, ++timercnt); 2793 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1269 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2794 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1270 timers [timercnt - 1] = w; 2795 ANHE_w (timers [ev_active (w)]) = (WT)w;
1271 upheap ((WT *)timers, timercnt - 1); 2796 ANHE_at_cache (timers [ev_active (w)]);
2797 upheap (timers, ev_active (w));
1272 2798
2799 EV_FREQUENT_CHECK;
2800
1273 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2801 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1274} 2802}
1275 2803
1276void 2804void noinline
1277ev_timer_stop (EV_P_ struct ev_timer *w) 2805ev_timer_stop (EV_P_ ev_timer *w)
1278{ 2806{
1279 ev_clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1280 if (!ev_is_active (w)) 2808 if (expect_false (!ev_is_active (w)))
1281 return; 2809 return;
1282 2810
2811 EV_FREQUENT_CHECK;
2812
2813 {
2814 int active = ev_active (w);
2815
1283 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2816 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1284 2817
1285 if (((W)w)->active < timercnt--) 2818 --timercnt;
2819
2820 if (expect_true (active < timercnt + HEAP0))
1286 { 2821 {
1287 timers [((W)w)->active - 1] = timers [timercnt]; 2822 timers [active] = timers [timercnt + HEAP0];
1288 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2823 adjustheap (timers, timercnt, active);
1289 } 2824 }
2825 }
1290 2826
1291 ((WT)w)->at = w->repeat; 2827 ev_at (w) -= mn_now;
1292 2828
1293 ev_stop (EV_A_ (W)w); 2829 ev_stop (EV_A_ (W)w);
1294}
1295 2830
1296void 2831 EV_FREQUENT_CHECK;
2832}
2833
2834void noinline
1297ev_timer_again (EV_P_ struct ev_timer *w) 2835ev_timer_again (EV_P_ ev_timer *w)
1298{ 2836{
2837 EV_FREQUENT_CHECK;
2838
1299 if (ev_is_active (w)) 2839 if (ev_is_active (w))
1300 { 2840 {
1301 if (w->repeat) 2841 if (w->repeat)
1302 { 2842 {
1303 ((WT)w)->at = mn_now + w->repeat; 2843 ev_at (w) = mn_now + w->repeat;
1304 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2844 ANHE_at_cache (timers [ev_active (w)]);
2845 adjustheap (timers, timercnt, ev_active (w));
1305 } 2846 }
1306 else 2847 else
1307 ev_timer_stop (EV_A_ w); 2848 ev_timer_stop (EV_A_ w);
1308 } 2849 }
1309 else if (w->repeat) 2850 else if (w->repeat)
2851 {
2852 ev_at (w) = w->repeat;
1310 ev_timer_start (EV_A_ w); 2853 ev_timer_start (EV_A_ w);
1311} 2854 }
1312 2855
1313void 2856 EV_FREQUENT_CHECK;
2857}
2858
2859ev_tstamp
2860ev_timer_remaining (EV_P_ ev_timer *w)
2861{
2862 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2863}
2864
2865#if EV_PERIODIC_ENABLE
2866void noinline
1314ev_periodic_start (EV_P_ struct ev_periodic *w) 2867ev_periodic_start (EV_P_ ev_periodic *w)
1315{ 2868{
1316 if (ev_is_active (w)) 2869 if (expect_false (ev_is_active (w)))
1317 return; 2870 return;
1318 2871
1319 if (w->reschedule_cb) 2872 if (w->reschedule_cb)
1320 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2873 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1321 else if (w->interval) 2874 else if (w->interval)
1322 { 2875 {
1323 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2876 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1324 /* this formula differs from the one in periodic_reify because we do not always round up */ 2877 periodic_recalc (EV_A_ w);
1325 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1326 } 2878 }
2879 else
2880 ev_at (w) = w->offset;
1327 2881
2882 EV_FREQUENT_CHECK;
2883
2884 ++periodiccnt;
1328 ev_start (EV_A_ (W)w, ++periodiccnt); 2885 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1329 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2886 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1330 periodics [periodiccnt - 1] = w; 2887 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1331 upheap ((WT *)periodics, periodiccnt - 1); 2888 ANHE_at_cache (periodics [ev_active (w)]);
2889 upheap (periodics, ev_active (w));
1332 2890
2891 EV_FREQUENT_CHECK;
2892
1333 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2893 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1334} 2894}
1335 2895
1336void 2896void noinline
1337ev_periodic_stop (EV_P_ struct ev_periodic *w) 2897ev_periodic_stop (EV_P_ ev_periodic *w)
1338{ 2898{
1339 ev_clear_pending (EV_A_ (W)w); 2899 clear_pending (EV_A_ (W)w);
1340 if (!ev_is_active (w)) 2900 if (expect_false (!ev_is_active (w)))
1341 return; 2901 return;
1342 2902
2903 EV_FREQUENT_CHECK;
2904
2905 {
2906 int active = ev_active (w);
2907
1343 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2908 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1344 2909
1345 if (((W)w)->active < periodiccnt--) 2910 --periodiccnt;
2911
2912 if (expect_true (active < periodiccnt + HEAP0))
1346 { 2913 {
1347 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2914 periodics [active] = periodics [periodiccnt + HEAP0];
1348 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2915 adjustheap (periodics, periodiccnt, active);
1349 } 2916 }
2917 }
1350 2918
1351 ev_stop (EV_A_ (W)w); 2919 ev_stop (EV_A_ (W)w);
1352}
1353 2920
1354void 2921 EV_FREQUENT_CHECK;
2922}
2923
2924void noinline
1355ev_periodic_again (EV_P_ struct ev_periodic *w) 2925ev_periodic_again (EV_P_ ev_periodic *w)
1356{ 2926{
2927 /* TODO: use adjustheap and recalculation */
1357 ev_periodic_stop (EV_A_ w); 2928 ev_periodic_stop (EV_A_ w);
1358 ev_periodic_start (EV_A_ w); 2929 ev_periodic_start (EV_A_ w);
1359} 2930}
1360 2931#endif
1361void
1362ev_idle_start (EV_P_ struct ev_idle *w)
1363{
1364 if (ev_is_active (w))
1365 return;
1366
1367 ev_start (EV_A_ (W)w, ++idlecnt);
1368 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1369 idles [idlecnt - 1] = w;
1370}
1371
1372void
1373ev_idle_stop (EV_P_ struct ev_idle *w)
1374{
1375 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w))
1377 return;
1378
1379 idles [((W)w)->active - 1] = idles [--idlecnt];
1380 ev_stop (EV_A_ (W)w);
1381}
1382
1383void
1384ev_prepare_start (EV_P_ struct ev_prepare *w)
1385{
1386 if (ev_is_active (w))
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++preparecnt);
1390 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1391 prepares [preparecnt - 1] = w;
1392}
1393
1394void
1395ev_prepare_stop (EV_P_ struct ev_prepare *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1402 ev_stop (EV_A_ (W)w);
1403}
1404
1405void
1406ev_check_start (EV_P_ struct ev_check *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++checkcnt);
1412 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1413 checks [checkcnt - 1] = w;
1414}
1415
1416void
1417ev_check_stop (EV_P_ struct ev_check *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 checks [((W)w)->active - 1] = checks [--checkcnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426 2932
1427#ifndef SA_RESTART 2933#ifndef SA_RESTART
1428# define SA_RESTART 0 2934# define SA_RESTART 0
1429#endif 2935#endif
1430 2936
1431void 2937#if EV_SIGNAL_ENABLE
2938
2939void noinline
1432ev_signal_start (EV_P_ struct ev_signal *w) 2940ev_signal_start (EV_P_ ev_signal *w)
1433{ 2941{
2942 if (expect_false (ev_is_active (w)))
2943 return;
2944
2945 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2946
1434#if EV_MULTIPLICITY 2947#if EV_MULTIPLICITY
1435 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2948 assert (("libev: a signal must not be attached to two different loops",
2949 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2950
2951 signals [w->signum - 1].loop = EV_A;
2952#endif
2953
2954 EV_FREQUENT_CHECK;
2955
2956#if EV_USE_SIGNALFD
2957 if (sigfd == -2)
2958 {
2959 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2960 if (sigfd < 0 && errno == EINVAL)
2961 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2962
2963 if (sigfd >= 0)
2964 {
2965 fd_intern (sigfd); /* doing it twice will not hurt */
2966
2967 sigemptyset (&sigfd_set);
2968
2969 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2970 ev_set_priority (&sigfd_w, EV_MAXPRI);
2971 ev_io_start (EV_A_ &sigfd_w);
2972 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2973 }
2974 }
2975
2976 if (sigfd >= 0)
2977 {
2978 /* TODO: check .head */
2979 sigaddset (&sigfd_set, w->signum);
2980 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2981
2982 signalfd (sigfd, &sigfd_set, 0);
2983 }
2984#endif
2985
2986 ev_start (EV_A_ (W)w, 1);
2987 wlist_add (&signals [w->signum - 1].head, (WL)w);
2988
2989 if (!((WL)w)->next)
2990# if EV_USE_SIGNALFD
2991 if (sigfd < 0) /*TODO*/
1436#endif 2992# endif
1437 if (ev_is_active (w)) 2993 {
2994# ifdef _WIN32
2995 evpipe_init (EV_A);
2996
2997 signal (w->signum, ev_sighandler);
2998# else
2999 struct sigaction sa;
3000
3001 evpipe_init (EV_A);
3002
3003 sa.sa_handler = ev_sighandler;
3004 sigfillset (&sa.sa_mask);
3005 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3006 sigaction (w->signum, &sa, 0);
3007
3008 if (origflags & EVFLAG_NOSIGMASK)
3009 {
3010 sigemptyset (&sa.sa_mask);
3011 sigaddset (&sa.sa_mask, w->signum);
3012 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3013 }
3014#endif
3015 }
3016
3017 EV_FREQUENT_CHECK;
3018}
3019
3020void noinline
3021ev_signal_stop (EV_P_ ev_signal *w)
3022{
3023 clear_pending (EV_A_ (W)w);
3024 if (expect_false (!ev_is_active (w)))
1438 return; 3025 return;
1439 3026
1440 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3027 EV_FREQUENT_CHECK;
3028
3029 wlist_del (&signals [w->signum - 1].head, (WL)w);
3030 ev_stop (EV_A_ (W)w);
3031
3032 if (!signals [w->signum - 1].head)
3033 {
3034#if EV_MULTIPLICITY
3035 signals [w->signum - 1].loop = 0; /* unattach from signal */
3036#endif
3037#if EV_USE_SIGNALFD
3038 if (sigfd >= 0)
3039 {
3040 sigset_t ss;
3041
3042 sigemptyset (&ss);
3043 sigaddset (&ss, w->signum);
3044 sigdelset (&sigfd_set, w->signum);
3045
3046 signalfd (sigfd, &sigfd_set, 0);
3047 sigprocmask (SIG_UNBLOCK, &ss, 0);
3048 }
3049 else
3050#endif
3051 signal (w->signum, SIG_DFL);
3052 }
3053
3054 EV_FREQUENT_CHECK;
3055}
3056
3057#endif
3058
3059#if EV_CHILD_ENABLE
3060
3061void
3062ev_child_start (EV_P_ ev_child *w)
3063{
3064#if EV_MULTIPLICITY
3065 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3066#endif
3067 if (expect_false (ev_is_active (w)))
3068 return;
3069
3070 EV_FREQUENT_CHECK;
1441 3071
1442 ev_start (EV_A_ (W)w, 1); 3072 ev_start (EV_A_ (W)w, 1);
1443 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3073 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1444 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1445 3074
1446 if (!((WL)w)->next) 3075 EV_FREQUENT_CHECK;
3076}
3077
3078void
3079ev_child_stop (EV_P_ ev_child *w)
3080{
3081 clear_pending (EV_A_ (W)w);
3082 if (expect_false (!ev_is_active (w)))
3083 return;
3084
3085 EV_FREQUENT_CHECK;
3086
3087 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3088 ev_stop (EV_A_ (W)w);
3089
3090 EV_FREQUENT_CHECK;
3091}
3092
3093#endif
3094
3095#if EV_STAT_ENABLE
3096
3097# ifdef _WIN32
3098# undef lstat
3099# define lstat(a,b) _stati64 (a,b)
3100# endif
3101
3102#define DEF_STAT_INTERVAL 5.0074891
3103#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3104#define MIN_STAT_INTERVAL 0.1074891
3105
3106static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3107
3108#if EV_USE_INOTIFY
3109
3110/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3111# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3112
3113static void noinline
3114infy_add (EV_P_ ev_stat *w)
3115{
3116 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3117
3118 if (w->wd >= 0)
3119 {
3120 struct statfs sfs;
3121
3122 /* now local changes will be tracked by inotify, but remote changes won't */
3123 /* unless the filesystem is known to be local, we therefore still poll */
3124 /* also do poll on <2.6.25, but with normal frequency */
3125
3126 if (!fs_2625)
3127 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3128 else if (!statfs (w->path, &sfs)
3129 && (sfs.f_type == 0x1373 /* devfs */
3130 || sfs.f_type == 0xEF53 /* ext2/3 */
3131 || sfs.f_type == 0x3153464a /* jfs */
3132 || sfs.f_type == 0x52654973 /* reiser3 */
3133 || sfs.f_type == 0x01021994 /* tempfs */
3134 || sfs.f_type == 0x58465342 /* xfs */))
3135 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3136 else
3137 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1447 { 3138 }
1448#if WIN32 3139 else
1449 signal (w->signum, sighandler); 3140 {
3141 /* can't use inotify, continue to stat */
3142 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3143
3144 /* if path is not there, monitor some parent directory for speedup hints */
3145 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3146 /* but an efficiency issue only */
3147 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3148 {
3149 char path [4096];
3150 strcpy (path, w->path);
3151
3152 do
3153 {
3154 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3155 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3156
3157 char *pend = strrchr (path, '/');
3158
3159 if (!pend || pend == path)
3160 break;
3161
3162 *pend = 0;
3163 w->wd = inotify_add_watch (fs_fd, path, mask);
3164 }
3165 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3166 }
3167 }
3168
3169 if (w->wd >= 0)
3170 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3171
3172 /* now re-arm timer, if required */
3173 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3174 ev_timer_again (EV_A_ &w->timer);
3175 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3176}
3177
3178static void noinline
3179infy_del (EV_P_ ev_stat *w)
3180{
3181 int slot;
3182 int wd = w->wd;
3183
3184 if (wd < 0)
3185 return;
3186
3187 w->wd = -2;
3188 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3189 wlist_del (&fs_hash [slot].head, (WL)w);
3190
3191 /* remove this watcher, if others are watching it, they will rearm */
3192 inotify_rm_watch (fs_fd, wd);
3193}
3194
3195static void noinline
3196infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3197{
3198 if (slot < 0)
3199 /* overflow, need to check for all hash slots */
3200 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3201 infy_wd (EV_A_ slot, wd, ev);
3202 else
3203 {
3204 WL w_;
3205
3206 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3207 {
3208 ev_stat *w = (ev_stat *)w_;
3209 w_ = w_->next; /* lets us remove this watcher and all before it */
3210
3211 if (w->wd == wd || wd == -1)
3212 {
3213 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3214 {
3215 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3216 w->wd = -1;
3217 infy_add (EV_A_ w); /* re-add, no matter what */
3218 }
3219
3220 stat_timer_cb (EV_A_ &w->timer, 0);
3221 }
3222 }
3223 }
3224}
3225
3226static void
3227infy_cb (EV_P_ ev_io *w, int revents)
3228{
3229 char buf [EV_INOTIFY_BUFSIZE];
3230 int ofs;
3231 int len = read (fs_fd, buf, sizeof (buf));
3232
3233 for (ofs = 0; ofs < len; )
3234 {
3235 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3236 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3237 ofs += sizeof (struct inotify_event) + ev->len;
3238 }
3239}
3240
3241inline_size void
3242ev_check_2625 (EV_P)
3243{
3244 /* kernels < 2.6.25 are borked
3245 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3246 */
3247 if (ev_linux_version () < 0x020619)
3248 return;
3249
3250 fs_2625 = 1;
3251}
3252
3253inline_size int
3254infy_newfd (void)
3255{
3256#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3257 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3258 if (fd >= 0)
3259 return fd;
3260#endif
3261 return inotify_init ();
3262}
3263
3264inline_size void
3265infy_init (EV_P)
3266{
3267 if (fs_fd != -2)
3268 return;
3269
3270 fs_fd = -1;
3271
3272 ev_check_2625 (EV_A);
3273
3274 fs_fd = infy_newfd ();
3275
3276 if (fs_fd >= 0)
3277 {
3278 fd_intern (fs_fd);
3279 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3280 ev_set_priority (&fs_w, EV_MAXPRI);
3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
3283 }
3284}
3285
3286inline_size void
3287infy_fork (EV_P)
3288{
3289 int slot;
3290
3291 if (fs_fd < 0)
3292 return;
3293
3294 ev_ref (EV_A);
3295 ev_io_stop (EV_A_ &fs_w);
3296 close (fs_fd);
3297 fs_fd = infy_newfd ();
3298
3299 if (fs_fd >= 0)
3300 {
3301 fd_intern (fs_fd);
3302 ev_io_set (&fs_w, fs_fd, EV_READ);
3303 ev_io_start (EV_A_ &fs_w);
3304 ev_unref (EV_A);
3305 }
3306
3307 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3308 {
3309 WL w_ = fs_hash [slot].head;
3310 fs_hash [slot].head = 0;
3311
3312 while (w_)
3313 {
3314 ev_stat *w = (ev_stat *)w_;
3315 w_ = w_->next; /* lets us add this watcher */
3316
3317 w->wd = -1;
3318
3319 if (fs_fd >= 0)
3320 infy_add (EV_A_ w); /* re-add, no matter what */
3321 else
3322 {
3323 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3324 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3325 ev_timer_again (EV_A_ &w->timer);
3326 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3327 }
3328 }
3329 }
3330}
3331
3332#endif
3333
3334#ifdef _WIN32
3335# define EV_LSTAT(p,b) _stati64 (p, b)
1450#else 3336#else
1451 struct sigaction sa; 3337# define EV_LSTAT(p,b) lstat (p, b)
1452 sa.sa_handler = sighandler;
1453 sigfillset (&sa.sa_mask);
1454 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1455 sigaction (w->signum, &sa, 0);
1456#endif 3338#endif
1457 }
1458}
1459 3339
1460void 3340void
1461ev_signal_stop (EV_P_ struct ev_signal *w) 3341ev_stat_stat (EV_P_ ev_stat *w)
1462{ 3342{
1463 ev_clear_pending (EV_A_ (W)w); 3343 if (lstat (w->path, &w->attr) < 0)
1464 if (!ev_is_active (w)) 3344 w->attr.st_nlink = 0;
3345 else if (!w->attr.st_nlink)
3346 w->attr.st_nlink = 1;
3347}
3348
3349static void noinline
3350stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3351{
3352 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3353
3354 ev_statdata prev = w->attr;
3355 ev_stat_stat (EV_A_ w);
3356
3357 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3358 if (
3359 prev.st_dev != w->attr.st_dev
3360 || prev.st_ino != w->attr.st_ino
3361 || prev.st_mode != w->attr.st_mode
3362 || prev.st_nlink != w->attr.st_nlink
3363 || prev.st_uid != w->attr.st_uid
3364 || prev.st_gid != w->attr.st_gid
3365 || prev.st_rdev != w->attr.st_rdev
3366 || prev.st_size != w->attr.st_size
3367 || prev.st_atime != w->attr.st_atime
3368 || prev.st_mtime != w->attr.st_mtime
3369 || prev.st_ctime != w->attr.st_ctime
3370 ) {
3371 /* we only update w->prev on actual differences */
3372 /* in case we test more often than invoke the callback, */
3373 /* to ensure that prev is always different to attr */
3374 w->prev = prev;
3375
3376 #if EV_USE_INOTIFY
3377 if (fs_fd >= 0)
3378 {
3379 infy_del (EV_A_ w);
3380 infy_add (EV_A_ w);
3381 ev_stat_stat (EV_A_ w); /* avoid race... */
3382 }
3383 #endif
3384
3385 ev_feed_event (EV_A_ w, EV_STAT);
3386 }
3387}
3388
3389void
3390ev_stat_start (EV_P_ ev_stat *w)
3391{
3392 if (expect_false (ev_is_active (w)))
1465 return; 3393 return;
1466 3394
1467 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3395 ev_stat_stat (EV_A_ w);
3396
3397 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3398 w->interval = MIN_STAT_INTERVAL;
3399
3400 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3401 ev_set_priority (&w->timer, ev_priority (w));
3402
3403#if EV_USE_INOTIFY
3404 infy_init (EV_A);
3405
3406 if (fs_fd >= 0)
3407 infy_add (EV_A_ w);
3408 else
3409#endif
3410 {
3411 ev_timer_again (EV_A_ &w->timer);
3412 ev_unref (EV_A);
3413 }
3414
3415 ev_start (EV_A_ (W)w, 1);
3416
3417 EV_FREQUENT_CHECK;
3418}
3419
3420void
3421ev_stat_stop (EV_P_ ev_stat *w)
3422{
3423 clear_pending (EV_A_ (W)w);
3424 if (expect_false (!ev_is_active (w)))
3425 return;
3426
3427 EV_FREQUENT_CHECK;
3428
3429#if EV_USE_INOTIFY
3430 infy_del (EV_A_ w);
3431#endif
3432
3433 if (ev_is_active (&w->timer))
3434 {
3435 ev_ref (EV_A);
3436 ev_timer_stop (EV_A_ &w->timer);
3437 }
3438
1468 ev_stop (EV_A_ (W)w); 3439 ev_stop (EV_A_ (W)w);
1469 3440
1470 if (!signals [w->signum - 1].head) 3441 EV_FREQUENT_CHECK;
1471 signal (w->signum, SIG_DFL);
1472} 3442}
3443#endif
1473 3444
3445#if EV_IDLE_ENABLE
1474void 3446void
1475ev_child_start (EV_P_ struct ev_child *w) 3447ev_idle_start (EV_P_ ev_idle *w)
1476{ 3448{
1477#if EV_MULTIPLICITY
1478 assert (("child watchers are only supported in the default loop", loop == default_loop));
1479#endif
1480 if (ev_is_active (w)) 3449 if (expect_false (ev_is_active (w)))
1481 return; 3450 return;
1482 3451
3452 pri_adjust (EV_A_ (W)w);
3453
3454 EV_FREQUENT_CHECK;
3455
3456 {
3457 int active = ++idlecnt [ABSPRI (w)];
3458
3459 ++idleall;
3460 ev_start (EV_A_ (W)w, active);
3461
3462 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3463 idles [ABSPRI (w)][active - 1] = w;
3464 }
3465
3466 EV_FREQUENT_CHECK;
3467}
3468
3469void
3470ev_idle_stop (EV_P_ ev_idle *w)
3471{
3472 clear_pending (EV_A_ (W)w);
3473 if (expect_false (!ev_is_active (w)))
3474 return;
3475
3476 EV_FREQUENT_CHECK;
3477
3478 {
3479 int active = ev_active (w);
3480
3481 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3482 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3483
3484 ev_stop (EV_A_ (W)w);
3485 --idleall;
3486 }
3487
3488 EV_FREQUENT_CHECK;
3489}
3490#endif
3491
3492#if EV_PREPARE_ENABLE
3493void
3494ev_prepare_start (EV_P_ ev_prepare *w)
3495{
3496 if (expect_false (ev_is_active (w)))
3497 return;
3498
3499 EV_FREQUENT_CHECK;
3500
3501 ev_start (EV_A_ (W)w, ++preparecnt);
3502 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3503 prepares [preparecnt - 1] = w;
3504
3505 EV_FREQUENT_CHECK;
3506}
3507
3508void
3509ev_prepare_stop (EV_P_ ev_prepare *w)
3510{
3511 clear_pending (EV_A_ (W)w);
3512 if (expect_false (!ev_is_active (w)))
3513 return;
3514
3515 EV_FREQUENT_CHECK;
3516
3517 {
3518 int active = ev_active (w);
3519
3520 prepares [active - 1] = prepares [--preparecnt];
3521 ev_active (prepares [active - 1]) = active;
3522 }
3523
3524 ev_stop (EV_A_ (W)w);
3525
3526 EV_FREQUENT_CHECK;
3527}
3528#endif
3529
3530#if EV_CHECK_ENABLE
3531void
3532ev_check_start (EV_P_ ev_check *w)
3533{
3534 if (expect_false (ev_is_active (w)))
3535 return;
3536
3537 EV_FREQUENT_CHECK;
3538
3539 ev_start (EV_A_ (W)w, ++checkcnt);
3540 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3541 checks [checkcnt - 1] = w;
3542
3543 EV_FREQUENT_CHECK;
3544}
3545
3546void
3547ev_check_stop (EV_P_ ev_check *w)
3548{
3549 clear_pending (EV_A_ (W)w);
3550 if (expect_false (!ev_is_active (w)))
3551 return;
3552
3553 EV_FREQUENT_CHECK;
3554
3555 {
3556 int active = ev_active (w);
3557
3558 checks [active - 1] = checks [--checkcnt];
3559 ev_active (checks [active - 1]) = active;
3560 }
3561
3562 ev_stop (EV_A_ (W)w);
3563
3564 EV_FREQUENT_CHECK;
3565}
3566#endif
3567
3568#if EV_EMBED_ENABLE
3569void noinline
3570ev_embed_sweep (EV_P_ ev_embed *w)
3571{
3572 ev_run (w->other, EVRUN_NOWAIT);
3573}
3574
3575static void
3576embed_io_cb (EV_P_ ev_io *io, int revents)
3577{
3578 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3579
3580 if (ev_cb (w))
3581 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3582 else
3583 ev_run (w->other, EVRUN_NOWAIT);
3584}
3585
3586static void
3587embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3588{
3589 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3590
3591 {
3592 EV_P = w->other;
3593
3594 while (fdchangecnt)
3595 {
3596 fd_reify (EV_A);
3597 ev_run (EV_A_ EVRUN_NOWAIT);
3598 }
3599 }
3600}
3601
3602static void
3603embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3604{
3605 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3606
3607 ev_embed_stop (EV_A_ w);
3608
3609 {
3610 EV_P = w->other;
3611
3612 ev_loop_fork (EV_A);
3613 ev_run (EV_A_ EVRUN_NOWAIT);
3614 }
3615
3616 ev_embed_start (EV_A_ w);
3617}
3618
3619#if 0
3620static void
3621embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3622{
3623 ev_idle_stop (EV_A_ idle);
3624}
3625#endif
3626
3627void
3628ev_embed_start (EV_P_ ev_embed *w)
3629{
3630 if (expect_false (ev_is_active (w)))
3631 return;
3632
3633 {
3634 EV_P = w->other;
3635 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3636 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3637 }
3638
3639 EV_FREQUENT_CHECK;
3640
3641 ev_set_priority (&w->io, ev_priority (w));
3642 ev_io_start (EV_A_ &w->io);
3643
3644 ev_prepare_init (&w->prepare, embed_prepare_cb);
3645 ev_set_priority (&w->prepare, EV_MINPRI);
3646 ev_prepare_start (EV_A_ &w->prepare);
3647
3648 ev_fork_init (&w->fork, embed_fork_cb);
3649 ev_fork_start (EV_A_ &w->fork);
3650
3651 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3652
1483 ev_start (EV_A_ (W)w, 1); 3653 ev_start (EV_A_ (W)w, 1);
1484 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1485}
1486 3654
3655 EV_FREQUENT_CHECK;
3656}
3657
1487void 3658void
1488ev_child_stop (EV_P_ struct ev_child *w) 3659ev_embed_stop (EV_P_ ev_embed *w)
1489{ 3660{
1490 ev_clear_pending (EV_A_ (W)w); 3661 clear_pending (EV_A_ (W)w);
1491 if (ev_is_active (w)) 3662 if (expect_false (!ev_is_active (w)))
1492 return; 3663 return;
1493 3664
1494 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3665 EV_FREQUENT_CHECK;
3666
3667 ev_io_stop (EV_A_ &w->io);
3668 ev_prepare_stop (EV_A_ &w->prepare);
3669 ev_fork_stop (EV_A_ &w->fork);
3670
1495 ev_stop (EV_A_ (W)w); 3671 ev_stop (EV_A_ (W)w);
3672
3673 EV_FREQUENT_CHECK;
1496} 3674}
3675#endif
3676
3677#if EV_FORK_ENABLE
3678void
3679ev_fork_start (EV_P_ ev_fork *w)
3680{
3681 if (expect_false (ev_is_active (w)))
3682 return;
3683
3684 EV_FREQUENT_CHECK;
3685
3686 ev_start (EV_A_ (W)w, ++forkcnt);
3687 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3688 forks [forkcnt - 1] = w;
3689
3690 EV_FREQUENT_CHECK;
3691}
3692
3693void
3694ev_fork_stop (EV_P_ ev_fork *w)
3695{
3696 clear_pending (EV_A_ (W)w);
3697 if (expect_false (!ev_is_active (w)))
3698 return;
3699
3700 EV_FREQUENT_CHECK;
3701
3702 {
3703 int active = ev_active (w);
3704
3705 forks [active - 1] = forks [--forkcnt];
3706 ev_active (forks [active - 1]) = active;
3707 }
3708
3709 ev_stop (EV_A_ (W)w);
3710
3711 EV_FREQUENT_CHECK;
3712}
3713#endif
3714
3715#if EV_CLEANUP_ENABLE
3716void
3717ev_cleanup_start (EV_P_ ev_cleanup *w)
3718{
3719 if (expect_false (ev_is_active (w)))
3720 return;
3721
3722 EV_FREQUENT_CHECK;
3723
3724 ev_start (EV_A_ (W)w, ++cleanupcnt);
3725 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3726 cleanups [cleanupcnt - 1] = w;
3727
3728 /* cleanup watchers should never keep a refcount on the loop */
3729 ev_unref (EV_A);
3730 EV_FREQUENT_CHECK;
3731}
3732
3733void
3734ev_cleanup_stop (EV_P_ ev_cleanup *w)
3735{
3736 clear_pending (EV_A_ (W)w);
3737 if (expect_false (!ev_is_active (w)))
3738 return;
3739
3740 EV_FREQUENT_CHECK;
3741 ev_ref (EV_A);
3742
3743 {
3744 int active = ev_active (w);
3745
3746 cleanups [active - 1] = cleanups [--cleanupcnt];
3747 ev_active (cleanups [active - 1]) = active;
3748 }
3749
3750 ev_stop (EV_A_ (W)w);
3751
3752 EV_FREQUENT_CHECK;
3753}
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757void
3758ev_async_start (EV_P_ ev_async *w)
3759{
3760 if (expect_false (ev_is_active (w)))
3761 return;
3762
3763 w->sent = 0;
3764
3765 evpipe_init (EV_A);
3766
3767 EV_FREQUENT_CHECK;
3768
3769 ev_start (EV_A_ (W)w, ++asynccnt);
3770 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3771 asyncs [asynccnt - 1] = w;
3772
3773 EV_FREQUENT_CHECK;
3774}
3775
3776void
3777ev_async_stop (EV_P_ ev_async *w)
3778{
3779 clear_pending (EV_A_ (W)w);
3780 if (expect_false (!ev_is_active (w)))
3781 return;
3782
3783 EV_FREQUENT_CHECK;
3784
3785 {
3786 int active = ev_active (w);
3787
3788 asyncs [active - 1] = asyncs [--asynccnt];
3789 ev_active (asyncs [active - 1]) = active;
3790 }
3791
3792 ev_stop (EV_A_ (W)w);
3793
3794 EV_FREQUENT_CHECK;
3795}
3796
3797void
3798ev_async_send (EV_P_ ev_async *w)
3799{
3800 w->sent = 1;
3801 evpipe_write (EV_A_ &async_pending);
3802}
3803#endif
1497 3804
1498/*****************************************************************************/ 3805/*****************************************************************************/
1499 3806
1500struct ev_once 3807struct ev_once
1501{ 3808{
1502 struct ev_io io; 3809 ev_io io;
1503 struct ev_timer to; 3810 ev_timer to;
1504 void (*cb)(int revents, void *arg); 3811 void (*cb)(int revents, void *arg);
1505 void *arg; 3812 void *arg;
1506}; 3813};
1507 3814
1508static void 3815static void
1509once_cb (EV_P_ struct ev_once *once, int revents) 3816once_cb (EV_P_ struct ev_once *once, int revents)
1510{ 3817{
1511 void (*cb)(int revents, void *arg) = once->cb; 3818 void (*cb)(int revents, void *arg) = once->cb;
1512 void *arg = once->arg; 3819 void *arg = once->arg;
1513 3820
1514 ev_io_stop (EV_A_ &once->io); 3821 ev_io_stop (EV_A_ &once->io);
1515 ev_timer_stop (EV_A_ &once->to); 3822 ev_timer_stop (EV_A_ &once->to);
1516 ev_free (once); 3823 ev_free (once);
1517 3824
1518 cb (revents, arg); 3825 cb (revents, arg);
1519} 3826}
1520 3827
1521static void 3828static void
1522once_cb_io (EV_P_ struct ev_io *w, int revents) 3829once_cb_io (EV_P_ ev_io *w, int revents)
1523{ 3830{
1524 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3831 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3832
3833 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1525} 3834}
1526 3835
1527static void 3836static void
1528once_cb_to (EV_P_ struct ev_timer *w, int revents) 3837once_cb_to (EV_P_ ev_timer *w, int revents)
1529{ 3838{
1530 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3839 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3840
3841 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1531} 3842}
1532 3843
1533void 3844void
1534ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3845ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1535{ 3846{
1536 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3847 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1537 3848
1538 if (!once) 3849 if (expect_false (!once))
3850 {
1539 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3851 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1540 else 3852 return;
1541 { 3853 }
3854
1542 once->cb = cb; 3855 once->cb = cb;
1543 once->arg = arg; 3856 once->arg = arg;
1544 3857
1545 ev_watcher_init (&once->io, once_cb_io); 3858 ev_init (&once->io, once_cb_io);
1546 if (fd >= 0) 3859 if (fd >= 0)
3860 {
3861 ev_io_set (&once->io, fd, events);
3862 ev_io_start (EV_A_ &once->io);
3863 }
3864
3865 ev_init (&once->to, once_cb_to);
3866 if (timeout >= 0.)
3867 {
3868 ev_timer_set (&once->to, timeout, 0.);
3869 ev_timer_start (EV_A_ &once->to);
3870 }
3871}
3872
3873/*****************************************************************************/
3874
3875#if EV_WALK_ENABLE
3876void
3877ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3878{
3879 int i, j;
3880 ev_watcher_list *wl, *wn;
3881
3882 if (types & (EV_IO | EV_EMBED))
3883 for (i = 0; i < anfdmax; ++i)
3884 for (wl = anfds [i].head; wl; )
1547 { 3885 {
1548 ev_io_set (&once->io, fd, events); 3886 wn = wl->next;
1549 ev_io_start (EV_A_ &once->io); 3887
3888#if EV_EMBED_ENABLE
3889 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3890 {
3891 if (types & EV_EMBED)
3892 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3893 }
3894 else
3895#endif
3896#if EV_USE_INOTIFY
3897 if (ev_cb ((ev_io *)wl) == infy_cb)
3898 ;
3899 else
3900#endif
3901 if ((ev_io *)wl != &pipe_w)
3902 if (types & EV_IO)
3903 cb (EV_A_ EV_IO, wl);
3904
3905 wl = wn;
1550 } 3906 }
1551 3907
1552 ev_watcher_init (&once->to, once_cb_to); 3908 if (types & (EV_TIMER | EV_STAT))
1553 if (timeout >= 0.) 3909 for (i = timercnt + HEAP0; i-- > HEAP0; )
3910#if EV_STAT_ENABLE
3911 /*TODO: timer is not always active*/
3912 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1554 { 3913 {
1555 ev_timer_set (&once->to, timeout, 0.); 3914 if (types & EV_STAT)
1556 ev_timer_start (EV_A_ &once->to); 3915 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1557 } 3916 }
1558 } 3917 else
1559} 3918#endif
3919 if (types & EV_TIMER)
3920 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1560 3921
3922#if EV_PERIODIC_ENABLE
3923 if (types & EV_PERIODIC)
3924 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3925 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3926#endif
3927
3928#if EV_IDLE_ENABLE
3929 if (types & EV_IDLE)
3930 for (j = NUMPRI; i--; )
3931 for (i = idlecnt [j]; i--; )
3932 cb (EV_A_ EV_IDLE, idles [j][i]);
3933#endif
3934
3935#if EV_FORK_ENABLE
3936 if (types & EV_FORK)
3937 for (i = forkcnt; i--; )
3938 if (ev_cb (forks [i]) != embed_fork_cb)
3939 cb (EV_A_ EV_FORK, forks [i]);
3940#endif
3941
3942#if EV_ASYNC_ENABLE
3943 if (types & EV_ASYNC)
3944 for (i = asynccnt; i--; )
3945 cb (EV_A_ EV_ASYNC, asyncs [i]);
3946#endif
3947
3948#if EV_PREPARE_ENABLE
3949 if (types & EV_PREPARE)
3950 for (i = preparecnt; i--; )
3951# if EV_EMBED_ENABLE
3952 if (ev_cb (prepares [i]) != embed_prepare_cb)
3953# endif
3954 cb (EV_A_ EV_PREPARE, prepares [i]);
3955#endif
3956
3957#if EV_CHECK_ENABLE
3958 if (types & EV_CHECK)
3959 for (i = checkcnt; i--; )
3960 cb (EV_A_ EV_CHECK, checks [i]);
3961#endif
3962
3963#if EV_SIGNAL_ENABLE
3964 if (types & EV_SIGNAL)
3965 for (i = 0; i < EV_NSIG - 1; ++i)
3966 for (wl = signals [i].head; wl; )
3967 {
3968 wn = wl->next;
3969 cb (EV_A_ EV_SIGNAL, wl);
3970 wl = wn;
3971 }
3972#endif
3973
3974#if EV_CHILD_ENABLE
3975 if (types & EV_CHILD)
3976 for (i = (EV_PID_HASHSIZE); i--; )
3977 for (wl = childs [i]; wl; )
3978 {
3979 wn = wl->next;
3980 cb (EV_A_ EV_CHILD, wl);
3981 wl = wn;
3982 }
3983#endif
3984/* EV_STAT 0x00001000 /* stat data changed */
3985/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3986}
3987#endif
3988
3989#if EV_MULTIPLICITY
3990 #include "ev_wrap.h"
3991#endif
3992
3993EV_CPP(})
3994

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines