ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.38 by root, Thu Nov 1 15:21:13 2007 UTC vs.
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
42#include <stdio.h> 42#include <stdio.h>
43 43
44#include <assert.h> 44#include <assert.h>
45#include <errno.h> 45#include <errno.h>
46#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
47#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
48#include <sys/time.h> 50#include <sys/time.h>
49#include <time.h> 51#include <time.h>
50 52
53/**/
54
51#ifndef EV_USE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 1 56# define EV_USE_MONOTONIC 1
53#endif 57#endif
58
59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1
61#endif
62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
54 80
55#ifndef CLOCK_MONOTONIC 81#ifndef CLOCK_MONOTONIC
56# undef EV_USE_MONOTONIC 82# undef EV_USE_MONOTONIC
57# define EV_USE_MONOTONIC 0 83# define EV_USE_MONOTONIC 0
58#endif 84#endif
59 85
60#ifndef EV_USE_SELECT
61# define EV_USE_SELECT 1
62#endif
63
64#ifndef EV_USE_EPOLL
65# define EV_USE_EPOLL 0
66#endif
67
68#ifndef CLOCK_REALTIME 86#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME
69# define EV_USE_REALTIME 0 88# define EV_USE_REALTIME 0
70#endif 89#endif
71#ifndef EV_USE_REALTIME 90
72# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 91/**/
73#endif
74 92
75#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
76#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
77#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
78#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
79 97
80#include "ev.h" 98#include "ev.h"
99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
81 113
82typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
83typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
84typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
85 117
86static ev_tstamp now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
87ev_tstamp ev_now;
88int ev_method;
89
90static int have_monotonic; /* runtime */
91
92static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
93static void (*method_modify)(int fd, int oev, int nev);
94static void (*method_poll)(ev_tstamp timeout);
95 119
96/*****************************************************************************/ 120/*****************************************************************************/
97 121
98ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
99ev_time (void) 156ev_time (void)
100{ 157{
101#if EV_USE_REALTIME 158#if EV_USE_REALTIME
102 struct timespec ts; 159 struct timespec ts;
103 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
107 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
108 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
109#endif 166#endif
110} 167}
111 168
112static ev_tstamp 169inline ev_tstamp
113get_clock (void) 170get_clock (void)
114{ 171{
115#if EV_USE_MONOTONIC 172#if EV_USE_MONOTONIC
116 if (have_monotonic) 173 if (expect_true (have_monotonic))
117 { 174 {
118 struct timespec ts; 175 struct timespec ts;
119 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
120 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
121 } 178 }
122#endif 179#endif
123 180
124 return ev_time (); 181 return ev_time ();
125} 182}
126 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
127#define array_roundsize(base,n) ((n) | 4 & ~3) 190#define array_roundsize(base,n) ((n) | 4 & ~3)
128 191
129#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
130 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
131 { \ 194 { \
132 int newcnt = cur; \ 195 int newcnt = cur; \
133 do \ 196 do \
134 { \ 197 { \
135 newcnt = array_roundsize (base, newcnt << 1); \ 198 newcnt = array_roundsize (base, newcnt << 1); \
141 cur = newcnt; \ 204 cur = newcnt; \
142 } 205 }
143 206
144/*****************************************************************************/ 207/*****************************************************************************/
145 208
146typedef struct
147{
148 struct ev_io *head;
149 unsigned char events;
150 unsigned char reify;
151} ANFD;
152
153static ANFD *anfds;
154static int anfdmax;
155
156static void 209static void
157anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
158{ 211{
159 while (count--) 212 while (count--)
160 { 213 {
164 217
165 ++base; 218 ++base;
166 } 219 }
167} 220}
168 221
169typedef struct
170{
171 W w;
172 int events;
173} ANPENDING;
174
175static ANPENDING *pendings;
176static int pendingmax, pendingcnt;
177
178static void 222static void
179event (W w, int events) 223event (EV_P_ W w, int events)
180{ 224{
181 if (w->pending) 225 if (w->pending)
182 { 226 {
183 pendings [w->pending - 1].events |= events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
184 return; 228 return;
185 } 229 }
186 230
187 w->pending = ++pendingcnt; 231 w->pending = ++pendingcnt [ABSPRI (w)];
188 array_needsize (pendings, pendingmax, pendingcnt, ); 232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
189 pendings [pendingcnt - 1].w = w; 233 pendings [ABSPRI (w)][w->pending - 1].w = w;
190 pendings [pendingcnt - 1].events = events; 234 pendings [ABSPRI (w)][w->pending - 1].events = events;
191} 235}
192 236
193static void 237static void
194queue_events (W *events, int eventcnt, int type) 238queue_events (EV_P_ W *events, int eventcnt, int type)
195{ 239{
196 int i; 240 int i;
197 241
198 for (i = 0; i < eventcnt; ++i) 242 for (i = 0; i < eventcnt; ++i)
199 event (events [i], type); 243 event (EV_A_ events [i], type);
200} 244}
201 245
202static void 246static void
203fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
204{ 248{
205 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
206 struct ev_io *w; 250 struct ev_io *w;
207 251
208 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
209 { 253 {
210 int ev = w->events & events; 254 int ev = w->events & events;
211 255
212 if (ev) 256 if (ev)
213 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
214 } 258 }
215} 259}
216 260
217/*****************************************************************************/ 261/*****************************************************************************/
218 262
219static int *fdchanges;
220static int fdchangemax, fdchangecnt;
221
222static void 263static void
223fd_reify (void) 264fd_reify (EV_P)
224{ 265{
225 int i; 266 int i;
226 267
227 for (i = 0; i < fdchangecnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
228 { 269 {
230 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
231 struct ev_io *w; 272 struct ev_io *w;
232 273
233 int events = 0; 274 int events = 0;
234 275
235 for (w = anfd->head; w; w = w->next) 276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
236 events |= w->events; 277 events |= w->events;
237 278
238 anfd->reify = 0; 279 anfd->reify = 0;
239 280
240 if (anfd->events != events) 281 if (anfd->events != events)
241 { 282 {
242 method_modify (fd, anfd->events, events); 283 method_modify (EV_A_ fd, anfd->events, events);
243 anfd->events = events; 284 anfd->events = events;
244 } 285 }
245 } 286 }
246 287
247 fdchangecnt = 0; 288 fdchangecnt = 0;
248} 289}
249 290
250static void 291static void
251fd_change (int fd) 292fd_change (EV_P_ int fd)
252{ 293{
253 if (anfds [fd].reify || fdchangecnt < 0) 294 if (anfds [fd].reify || fdchangecnt < 0)
254 return; 295 return;
255 296
256 anfds [fd].reify = 1; 297 anfds [fd].reify = 1;
258 ++fdchangecnt; 299 ++fdchangecnt;
259 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
260 fdchanges [fdchangecnt - 1] = fd; 301 fdchanges [fdchangecnt - 1] = fd;
261} 302}
262 303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
314}
315
263/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
264static void 317static void
265fd_recheck (void) 318fd_ebadf (EV_P)
266{ 319{
267 int fd; 320 int fd;
268 321
269 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
270 if (anfds [fd].events) 323 if (anfds [fd].events)
271 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
272 while (anfds [fd].head) 325 fd_kill (EV_A_ fd);
326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
273 { 336 {
274 ev_io_stop (anfds [fd].head); 337 close (fd);
275 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 338 fd_kill (EV_A_ fd);
339 return;
276 } 340 }
341}
342
343/* susually called after fork if method needs to re-arm all fds from scratch */
344static void
345fd_rearm_all (EV_P)
346{
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
277} 356}
278 357
279/*****************************************************************************/ 358/*****************************************************************************/
280 359
281static struct ev_timer **timers;
282static int timermax, timercnt;
283
284static struct ev_periodic **periodics;
285static int periodicmax, periodiccnt;
286
287static void 360static void
288upheap (WT *timers, int k) 361upheap (WT *heap, int k)
289{ 362{
290 WT w = timers [k]; 363 WT w = heap [k];
291 364
292 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
293 { 366 {
294 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
295 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
296 k >>= 1; 369 k >>= 1;
297 } 370 }
298 371
299 timers [k] = w; 372 heap [k] = w;
300 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
301 374
302} 375}
303 376
304static void 377static void
305downheap (WT *timers, int N, int k) 378downheap (WT *heap, int N, int k)
306{ 379{
307 WT w = timers [k]; 380 WT w = heap [k];
308 381
309 while (k < (N >> 1)) 382 while (k < (N >> 1))
310 { 383 {
311 int j = k << 1; 384 int j = k << 1;
312 385
313 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
314 ++j; 387 ++j;
315 388
316 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
317 break; 390 break;
318 391
319 timers [k] = timers [j]; 392 heap [k] = heap [j];
320 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
321 k = j; 394 k = j;
322 } 395 }
323 396
324 timers [k] = w; 397 heap [k] = w;
325 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
326} 399}
327 400
328/*****************************************************************************/ 401/*****************************************************************************/
329 402
330typedef struct 403typedef struct
331{ 404{
332 struct ev_signal *head; 405 struct ev_watcher_list *head;
333 sig_atomic_t volatile gotsig; 406 sig_atomic_t volatile gotsig;
334} ANSIG; 407} ANSIG;
335 408
336static ANSIG *signals; 409static ANSIG *signals;
337static int signalmax; 410static int signalmax;
338 411
339static int sigpipe [2]; 412static int sigpipe [2];
340static sig_atomic_t volatile gotsig; 413static sig_atomic_t volatile gotsig;
341static struct ev_io sigev;
342 414
343static void 415static void
344signals_init (ANSIG *base, int count) 416signals_init (ANSIG *base, int count)
345{ 417{
346 while (count--) 418 while (count--)
357{ 429{
358 signals [signum - 1].gotsig = 1; 430 signals [signum - 1].gotsig = 1;
359 431
360 if (!gotsig) 432 if (!gotsig)
361 { 433 {
434 int old_errno = errno;
362 gotsig = 1; 435 gotsig = 1;
363 write (sigpipe [1], &signum, 1); 436 write (sigpipe [1], &signum, 1);
437 errno = old_errno;
364 } 438 }
365} 439}
366 440
367static void 441static void
368sigcb (struct ev_io *iow, int revents) 442sigcb (EV_P_ struct ev_io *iow, int revents)
369{ 443{
370 struct ev_signal *w; 444 struct ev_watcher_list *w;
371 int signum; 445 int signum;
372 446
373 read (sigpipe [0], &revents, 1); 447 read (sigpipe [0], &revents, 1);
374 gotsig = 0; 448 gotsig = 0;
375 449
377 if (signals [signum].gotsig) 451 if (signals [signum].gotsig)
378 { 452 {
379 signals [signum].gotsig = 0; 453 signals [signum].gotsig = 0;
380 454
381 for (w = signals [signum].head; w; w = w->next) 455 for (w = signals [signum].head; w; w = w->next)
382 event ((W)w, EV_SIGNAL); 456 event (EV_A_ (W)w, EV_SIGNAL);
383 } 457 }
384} 458}
385 459
386static void 460static void
387siginit (void) 461siginit (EV_P)
388{ 462{
463#ifndef WIN32
389 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
390 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
391 466
392 /* rather than sort out wether we really need nb, set it */ 467 /* rather than sort out wether we really need nb, set it */
393 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
394 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
395 471
396 ev_io_set (&sigev, sigpipe [0], EV_READ); 472 ev_io_set (&sigev, sigpipe [0], EV_READ);
397 ev_io_start (&sigev); 473 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */
398} 475}
399 476
400/*****************************************************************************/ 477/*****************************************************************************/
401 478
402static struct ev_idle **idles; 479#ifndef WIN32
403static int idlemax, idlecnt;
404
405static struct ev_prepare **prepares;
406static int preparemax, preparecnt;
407
408static struct ev_check **checks;
409static int checkmax, checkcnt;
410
411/*****************************************************************************/
412
413static struct ev_child *childs [PID_HASHSIZE];
414static struct ev_signal childev;
415 480
416#ifndef WCONTINUED 481#ifndef WCONTINUED
417# define WCONTINUED 0 482# define WCONTINUED 0
418#endif 483#endif
419 484
420static void 485static void
421childcb (struct ev_signal *sw, int revents) 486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
422{ 487{
423 struct ev_child *w; 488 struct ev_child *w;
489
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid)
492 {
493 w->priority = sw->priority; /* need to do it *now* */
494 w->rpid = pid;
495 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD);
497 }
498}
499
500static void
501childcb (EV_P_ struct ev_signal *sw, int revents)
502{
424 int pid, status; 503 int pid, status;
425 504
426 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
427 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 506 {
428 if (w->pid == pid || w->pid == -1) 507 /* make sure we are called again until all childs have been reaped */
429 { 508 event (EV_A_ (W)sw, EV_SIGNAL);
430 w->status = status; 509
431 event ((W)w, EV_CHILD); 510 child_reap (EV_A_ sw, pid, pid, status);
432 } 511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 }
433} 513}
514
515#endif
434 516
435/*****************************************************************************/ 517/*****************************************************************************/
436 518
519#if EV_USE_KQUEUE
520# include "ev_kqueue.c"
521#endif
437#if EV_USE_EPOLL 522#if EV_USE_EPOLL
438# include "ev_epoll.c" 523# include "ev_epoll.c"
439#endif 524#endif
525#if EV_USEV_POLL
526# include "ev_poll.c"
527#endif
440#if EV_USE_SELECT 528#if EV_USE_SELECT
441# include "ev_select.c" 529# include "ev_select.c"
442#endif 530#endif
443 531
444int 532int
451ev_version_minor (void) 539ev_version_minor (void)
452{ 540{
453 return EV_VERSION_MINOR; 541 return EV_VERSION_MINOR;
454} 542}
455 543
456int ev_init (int flags) 544/* return true if we are running with elevated privileges and should ignore env variables */
545static int
546enable_secure (void)
457{ 547{
548#ifdef WIN32
549 return 0;
550#else
551 return getuid () != geteuid ()
552 || getgid () != getegid ();
553#endif
554}
555
556int
557ev_method (EV_P)
558{
559 return method;
560}
561
562static void
563loop_init (EV_P_ int methods)
564{
458 if (!ev_method) 565 if (!method)
459 { 566 {
460#if EV_USE_MONOTONIC 567#if EV_USE_MONOTONIC
461 { 568 {
462 struct timespec ts; 569 struct timespec ts;
463 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 570 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
464 have_monotonic = 1; 571 have_monotonic = 1;
465 } 572 }
466#endif 573#endif
467 574
468 ev_now = ev_time (); 575 rt_now = ev_time ();
469 now = get_clock (); 576 mn_now = get_clock ();
577 now_floor = mn_now;
470 diff = ev_now - now; 578 rtmn_diff = rt_now - mn_now;
471 579
472 if (pipe (sigpipe)) 580 if (methods == EVMETHOD_AUTO)
473 return 0; 581 if (!enable_secure () && getenv ("LIBEV_METHODS"))
474 582 methods = atoi (getenv ("LIBEV_METHODS"));
583 else
475 ev_method = EVMETHOD_NONE; 584 methods = EVMETHOD_ANY;
585
586 method = 0;
587#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif
476#if EV_USE_EPOLL 590#if EV_USE_EPOLL
477 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif
593#if EV_USEV_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
478#endif 595#endif
479#if EV_USE_SELECT 596#if EV_USE_SELECT
480 if (ev_method == EVMETHOD_NONE) select_init (flags); 597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
481#endif 598#endif
599 }
600}
482 601
602void
603loop_destroy (EV_P)
604{
605#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif
608#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif
611#if EV_USEV_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif
614#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif
617
618 method = 0;
619 /*TODO*/
620}
621
622void
623loop_fork (EV_P)
624{
625 /*TODO*/
626#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif
629#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif
632}
633
634#if EV_MULTIPLICITY
635struct ev_loop *
636ev_loop_new (int methods)
637{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639
640 loop_init (EV_A_ methods);
641
642 if (ev_methods (EV_A))
643 return loop;
644
645 return 0;
646}
647
648void
649ev_loop_destroy (EV_P)
650{
651 loop_destroy (EV_A);
652 free (loop);
653}
654
655void
656ev_loop_fork (EV_P)
657{
658 loop_fork (EV_A);
659}
660
661#endif
662
663#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop *
668#else
669static int default_loop;
670
671int
672#endif
673ev_default_loop (int methods)
674{
675 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe))
677 return 0;
678
679 if (!default_loop)
680 {
681#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct;
683#else
684 default_loop = 1;
685#endif
686
687 loop_init (EV_A_ methods);
688
483 if (ev_method) 689 if (ev_method (EV_A))
484 { 690 {
485 ev_watcher_init (&sigev, sigcb); 691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
486 siginit (); 693 siginit (EV_A);
487 694
695#ifndef WIN32
488 ev_signal_init (&childev, childcb, SIGCHLD); 696 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI);
489 ev_signal_start (&childev); 698 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif
490 } 701 }
702 else
703 default_loop = 0;
491 } 704 }
492 705
493 return ev_method; 706 return default_loop;
494} 707}
495 708
496/*****************************************************************************/
497
498void 709void
499ev_fork_prepare (void) 710ev_default_destroy (void)
500{ 711{
501 /* nop */ 712#if EV_MULTIPLICITY
502} 713 struct ev_loop *loop = default_loop;
503
504void
505ev_fork_parent (void)
506{
507 /* nop */
508}
509
510void
511ev_fork_child (void)
512{
513#if EV_USE_EPOLL
514 if (ev_method == EVMETHOD_EPOLL)
515 epoll_postfork_child ();
516#endif 714#endif
517 715
716 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev);
718
719 ev_ref (EV_A); /* signal watcher */
518 ev_io_stop (&sigev); 720 ev_io_stop (EV_A_ &sigev);
721
722 close (sigpipe [0]); sigpipe [0] = 0;
723 close (sigpipe [1]); sigpipe [1] = 0;
724
725 loop_destroy (EV_A);
726}
727
728void
729ev_default_fork (EV_P)
730{
731 loop_fork (EV_A);
732
733 ev_io_stop (EV_A_ &sigev);
519 close (sigpipe [0]); 734 close (sigpipe [0]);
520 close (sigpipe [1]); 735 close (sigpipe [1]);
521 pipe (sigpipe); 736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
522 siginit (); 739 siginit (EV_A);
523} 740}
524 741
525/*****************************************************************************/ 742/*****************************************************************************/
526 743
527static void 744static void
528call_pending (void) 745call_pending (EV_P)
529{ 746{
747 int pri;
748
749 for (pri = NUMPRI; pri--; )
530 while (pendingcnt) 750 while (pendingcnt [pri])
531 { 751 {
532 ANPENDING *p = pendings + --pendingcnt; 752 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
533 753
534 if (p->w) 754 if (p->w)
535 { 755 {
536 p->w->pending = 0; 756 p->w->pending = 0;
537 p->w->cb (p->w, p->events); 757 p->w->cb (EV_A_ p->w, p->events);
538 } 758 }
539 } 759 }
540} 760}
541 761
542static void 762static void
543timers_reify (void) 763timers_reify (EV_P)
544{ 764{
545 while (timercnt && timers [0]->at <= now) 765 while (timercnt && timers [0]->at <= mn_now)
546 { 766 {
547 struct ev_timer *w = timers [0]; 767 struct ev_timer *w = timers [0];
548 768
549 /* first reschedule or stop timer */ 769 /* first reschedule or stop timer */
550 if (w->repeat) 770 if (w->repeat)
551 { 771 {
552 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
553 w->at = now + w->repeat; 773 w->at = mn_now + w->repeat;
554 downheap ((WT *)timers, timercnt, 0); 774 downheap ((WT *)timers, timercnt, 0);
555 } 775 }
556 else 776 else
557 ev_timer_stop (w); /* nonrepeating: stop timer */ 777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
558 778
559 event ((W)w, EV_TIMEOUT); 779 event (EV_A_ (W)w, EV_TIMEOUT);
560 } 780 }
561} 781}
562 782
563static void 783static void
564periodics_reify (void) 784periodics_reify (EV_P)
565{ 785{
566 while (periodiccnt && periodics [0]->at <= ev_now) 786 while (periodiccnt && periodics [0]->at <= rt_now)
567 { 787 {
568 struct ev_periodic *w = periodics [0]; 788 struct ev_periodic *w = periodics [0];
569 789
570 /* first reschedule or stop timer */ 790 /* first reschedule or stop timer */
571 if (w->interval) 791 if (w->interval)
572 { 792 {
573 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
574 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
575 downheap ((WT *)periodics, periodiccnt, 0); 795 downheap ((WT *)periodics, periodiccnt, 0);
576 } 796 }
577 else 797 else
578 ev_periodic_stop (w); /* nonrepeating: stop timer */ 798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
579 799
580 event ((W)w, EV_PERIODIC); 800 event (EV_A_ (W)w, EV_PERIODIC);
581 } 801 }
582} 802}
583 803
584static void 804static void
585periodics_reschedule (ev_tstamp diff) 805periodics_reschedule (EV_P)
586{ 806{
587 int i; 807 int i;
588 808
589 /* adjust periodics after time jump */ 809 /* adjust periodics after time jump */
590 for (i = 0; i < periodiccnt; ++i) 810 for (i = 0; i < periodiccnt; ++i)
591 { 811 {
592 struct ev_periodic *w = periodics [i]; 812 struct ev_periodic *w = periodics [i];
593 813
594 if (w->interval) 814 if (w->interval)
595 { 815 {
596 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
597 817
598 if (fabs (diff) >= 1e-4) 818 if (fabs (diff) >= 1e-4)
599 { 819 {
600 ev_periodic_stop (w); 820 ev_periodic_stop (EV_A_ w);
601 ev_periodic_start (w); 821 ev_periodic_start (EV_A_ w);
602 822
603 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
604 } 824 }
605 } 825 }
606 } 826 }
607} 827}
608 828
829inline int
830time_update_monotonic (EV_P)
831{
832 mn_now = get_clock ();
833
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 {
836 rt_now = rtmn_diff + mn_now;
837 return 0;
838 }
839 else
840 {
841 now_floor = mn_now;
842 rt_now = ev_time ();
843 return 1;
844 }
845}
846
609static void 847static void
610time_update (void) 848time_update (EV_P)
611{ 849{
612 int i; 850 int i;
613 851
614 ev_now = ev_time (); 852#if EV_USE_MONOTONIC
615
616 if (have_monotonic) 853 if (expect_true (have_monotonic))
617 { 854 {
618 ev_tstamp odiff = diff; 855 if (time_update_monotonic (EV_A))
619
620 for (i = 4; --i; ) /* loop a few times, before making important decisions */
621 { 856 {
622 now = get_clock (); 857 ev_tstamp odiff = rtmn_diff;
858
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860 {
623 diff = ev_now - now; 861 rtmn_diff = rt_now - mn_now;
624 862
625 if (fabs (odiff - diff) < MIN_TIMEJUMP) 863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
626 return; /* all is well */ 864 return; /* all is well */
627 865
628 ev_now = ev_time (); 866 rt_now = ev_time ();
867 mn_now = get_clock ();
868 now_floor = mn_now;
869 }
870
871 periodics_reschedule (EV_A);
872 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
629 } 874 }
630
631 periodics_reschedule (diff - odiff);
632 /* no timer adjustment, as the monotonic clock doesn't jump */
633 } 875 }
634 else 876 else
877#endif
635 { 878 {
636 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 879 rt_now = ev_time ();
880
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
637 { 882 {
638 periodics_reschedule (ev_now - now); 883 periodics_reschedule (EV_A);
639 884
640 /* adjust timers. this is easy, as the offset is the same for all */ 885 /* adjust timers. this is easy, as the offset is the same for all */
641 for (i = 0; i < timercnt; ++i) 886 for (i = 0; i < timercnt; ++i)
642 timers [i]->at += diff; 887 timers [i]->at += rt_now - mn_now;
643 } 888 }
644 889
645 now = ev_now; 890 mn_now = rt_now;
646 } 891 }
647} 892}
648 893
649int ev_loop_done; 894void
895ev_ref (EV_P)
896{
897 ++activecnt;
898}
650 899
900void
901ev_unref (EV_P)
902{
903 --activecnt;
904}
905
906static int loop_done;
907
908void
651void ev_loop (int flags) 909ev_loop (EV_P_ int flags)
652{ 910{
653 double block; 911 double block;
654 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
655 913
656 do 914 do
657 { 915 {
658 /* queue check watchers (and execute them) */ 916 /* queue check watchers (and execute them) */
659 if (preparecnt) 917 if (expect_false (preparecnt))
660 { 918 {
661 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
662 call_pending (); 920 call_pending (EV_A);
663 } 921 }
664 922
665 /* update fd-related kernel structures */ 923 /* update fd-related kernel structures */
666 fd_reify (); 924 fd_reify (EV_A);
667 925
668 /* calculate blocking time */ 926 /* calculate blocking time */
669 927
670 /* we only need this for !monotonic clockor timers, but as we basically 928 /* we only need this for !monotonic clockor timers, but as we basically
671 always have timers, we just calculate it always */ 929 always have timers, we just calculate it always */
930#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A);
933 else
934#endif
935 {
672 ev_now = ev_time (); 936 rt_now = ev_time ();
937 mn_now = rt_now;
938 }
673 939
674 if (flags & EVLOOP_NONBLOCK || idlecnt) 940 if (flags & EVLOOP_NONBLOCK || idlecnt)
675 block = 0.; 941 block = 0.;
676 else 942 else
677 { 943 {
678 block = MAX_BLOCKTIME; 944 block = MAX_BLOCKTIME;
679 945
680 if (timercnt) 946 if (timercnt)
681 { 947 {
682 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 948 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
683 if (block > to) block = to; 949 if (block > to) block = to;
684 } 950 }
685 951
686 if (periodiccnt) 952 if (periodiccnt)
687 { 953 {
688 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
689 if (block > to) block = to; 955 if (block > to) block = to;
690 } 956 }
691 957
692 if (block < 0.) block = 0.; 958 if (block < 0.) block = 0.;
693 } 959 }
694 960
695 method_poll (block); 961 method_poll (EV_A_ block);
696 962
697 /* update ev_now, do magic */ 963 /* update rt_now, do magic */
698 time_update (); 964 time_update (EV_A);
699 965
700 /* queue pending timers and reschedule them */ 966 /* queue pending timers and reschedule them */
701 timers_reify (); /* relative timers called last */ 967 timers_reify (EV_A); /* relative timers called last */
702 periodics_reify (); /* absolute timers called first */ 968 periodics_reify (EV_A); /* absolute timers called first */
703 969
704 /* queue idle watchers unless io or timers are pending */ 970 /* queue idle watchers unless io or timers are pending */
705 if (!pendingcnt) 971 if (!pendingcnt)
706 queue_events ((W *)idles, idlecnt, EV_IDLE); 972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
707 973
708 /* queue check watchers, to be executed first */ 974 /* queue check watchers, to be executed first */
709 if (checkcnt) 975 if (checkcnt)
710 queue_events ((W *)checks, checkcnt, EV_CHECK); 976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
711 977
712 call_pending (); 978 call_pending (EV_A);
713 } 979 }
714 while (!ev_loop_done); 980 while (activecnt && !loop_done);
715 981
716 if (ev_loop_done != 2) 982 if (loop_done != 2)
717 ev_loop_done = 0; 983 loop_done = 0;
984}
985
986void
987ev_unloop (EV_P_ int how)
988{
989 loop_done = how;
718} 990}
719 991
720/*****************************************************************************/ 992/*****************************************************************************/
721 993
722static void 994inline void
723wlist_add (WL *head, WL elem) 995wlist_add (WL *head, WL elem)
724{ 996{
725 elem->next = *head; 997 elem->next = *head;
726 *head = elem; 998 *head = elem;
727} 999}
728 1000
729static void 1001inline void
730wlist_del (WL *head, WL elem) 1002wlist_del (WL *head, WL elem)
731{ 1003{
732 while (*head) 1004 while (*head)
733 { 1005 {
734 if (*head == elem) 1006 if (*head == elem)
739 1011
740 head = &(*head)->next; 1012 head = &(*head)->next;
741 } 1013 }
742} 1014}
743 1015
744static void 1016inline void
745ev_clear_pending (W w) 1017ev_clear_pending (EV_P_ W w)
746{ 1018{
747 if (w->pending) 1019 if (w->pending)
748 { 1020 {
749 pendings [w->pending - 1].w = 0; 1021 pendings [ABSPRI (w)][w->pending - 1].w = 0;
750 w->pending = 0; 1022 w->pending = 0;
751 } 1023 }
752} 1024}
753 1025
754static void 1026inline void
755ev_start (W w, int active) 1027ev_start (EV_P_ W w, int active)
756{ 1028{
1029 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1030 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031
757 w->active = active; 1032 w->active = active;
1033 ev_ref (EV_A);
758} 1034}
759 1035
760static void 1036inline void
761ev_stop (W w) 1037ev_stop (EV_P_ W w)
762{ 1038{
1039 ev_unref (EV_A);
763 w->active = 0; 1040 w->active = 0;
764} 1041}
765 1042
766/*****************************************************************************/ 1043/*****************************************************************************/
767 1044
768void 1045void
769ev_io_start (struct ev_io *w) 1046ev_io_start (EV_P_ struct ev_io *w)
770{ 1047{
771 int fd = w->fd; 1048 int fd = w->fd;
772 1049
773 if (ev_is_active (w)) 1050 if (ev_is_active (w))
774 return; 1051 return;
775 1052
776 assert (("ev_io_start called with negative fd", fd >= 0)); 1053 assert (("ev_io_start called with negative fd", fd >= 0));
777 1054
778 ev_start ((W)w, 1); 1055 ev_start (EV_A_ (W)w, 1);
779 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
780 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1057 wlist_add ((WL *)&anfds[fd].head, (WL)w);
781 1058
782 fd_change (fd); 1059 fd_change (EV_A_ fd);
783} 1060}
784 1061
785void 1062void
786ev_io_stop (struct ev_io *w) 1063ev_io_stop (EV_P_ struct ev_io *w)
787{ 1064{
788 ev_clear_pending ((W)w); 1065 ev_clear_pending (EV_A_ (W)w);
789 if (!ev_is_active (w)) 1066 if (!ev_is_active (w))
790 return; 1067 return;
791 1068
792 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
793 ev_stop ((W)w); 1070 ev_stop (EV_A_ (W)w);
794 1071
795 fd_change (w->fd); 1072 fd_change (EV_A_ w->fd);
796} 1073}
797 1074
798void 1075void
799ev_timer_start (struct ev_timer *w) 1076ev_timer_start (EV_P_ struct ev_timer *w)
800{ 1077{
801 if (ev_is_active (w)) 1078 if (ev_is_active (w))
802 return; 1079 return;
803 1080
804 w->at += now; 1081 w->at += mn_now;
805 1082
806 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
807 1084
808 ev_start ((W)w, ++timercnt); 1085 ev_start (EV_A_ (W)w, ++timercnt);
809 array_needsize (timers, timermax, timercnt, ); 1086 array_needsize (timers, timermax, timercnt, );
810 timers [timercnt - 1] = w; 1087 timers [timercnt - 1] = w;
811 upheap ((WT *)timers, timercnt - 1); 1088 upheap ((WT *)timers, timercnt - 1);
812} 1089}
813 1090
814void 1091void
815ev_timer_stop (struct ev_timer *w) 1092ev_timer_stop (EV_P_ struct ev_timer *w)
816{ 1093{
817 ev_clear_pending ((W)w); 1094 ev_clear_pending (EV_A_ (W)w);
818 if (!ev_is_active (w)) 1095 if (!ev_is_active (w))
819 return; 1096 return;
820 1097
821 if (w->active < timercnt--) 1098 if (w->active < timercnt--)
822 { 1099 {
824 downheap ((WT *)timers, timercnt, w->active - 1); 1101 downheap ((WT *)timers, timercnt, w->active - 1);
825 } 1102 }
826 1103
827 w->at = w->repeat; 1104 w->at = w->repeat;
828 1105
829 ev_stop ((W)w); 1106 ev_stop (EV_A_ (W)w);
830} 1107}
831 1108
832void 1109void
833ev_timer_again (struct ev_timer *w) 1110ev_timer_again (EV_P_ struct ev_timer *w)
834{ 1111{
835 if (ev_is_active (w)) 1112 if (ev_is_active (w))
836 { 1113 {
837 if (w->repeat) 1114 if (w->repeat)
838 { 1115 {
839 w->at = now + w->repeat; 1116 w->at = mn_now + w->repeat;
840 downheap ((WT *)timers, timercnt, w->active - 1); 1117 downheap ((WT *)timers, timercnt, w->active - 1);
841 } 1118 }
842 else 1119 else
843 ev_timer_stop (w); 1120 ev_timer_stop (EV_A_ w);
844 } 1121 }
845 else if (w->repeat) 1122 else if (w->repeat)
846 ev_timer_start (w); 1123 ev_timer_start (EV_A_ w);
847} 1124}
848 1125
849void 1126void
850ev_periodic_start (struct ev_periodic *w) 1127ev_periodic_start (EV_P_ struct ev_periodic *w)
851{ 1128{
852 if (ev_is_active (w)) 1129 if (ev_is_active (w))
853 return; 1130 return;
854 1131
855 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
856 1133
857 /* this formula differs from the one in periodic_reify because we do not always round up */ 1134 /* this formula differs from the one in periodic_reify because we do not always round up */
858 if (w->interval) 1135 if (w->interval)
859 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
860 1137
861 ev_start ((W)w, ++periodiccnt); 1138 ev_start (EV_A_ (W)w, ++periodiccnt);
862 array_needsize (periodics, periodicmax, periodiccnt, ); 1139 array_needsize (periodics, periodicmax, periodiccnt, );
863 periodics [periodiccnt - 1] = w; 1140 periodics [periodiccnt - 1] = w;
864 upheap ((WT *)periodics, periodiccnt - 1); 1141 upheap ((WT *)periodics, periodiccnt - 1);
865} 1142}
866 1143
867void 1144void
868ev_periodic_stop (struct ev_periodic *w) 1145ev_periodic_stop (EV_P_ struct ev_periodic *w)
869{ 1146{
870 ev_clear_pending ((W)w); 1147 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1148 if (!ev_is_active (w))
872 return; 1149 return;
873 1150
874 if (w->active < periodiccnt--) 1151 if (w->active < periodiccnt--)
875 { 1152 {
876 periodics [w->active - 1] = periodics [periodiccnt]; 1153 periodics [w->active - 1] = periodics [periodiccnt];
877 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1154 downheap ((WT *)periodics, periodiccnt, w->active - 1);
878 } 1155 }
879 1156
880 ev_stop ((W)w); 1157 ev_stop (EV_A_ (W)w);
881} 1158}
882 1159
883void 1160void
884ev_signal_start (struct ev_signal *w) 1161ev_idle_start (EV_P_ struct ev_idle *w)
885{ 1162{
886 if (ev_is_active (w)) 1163 if (ev_is_active (w))
887 return; 1164 return;
888 1165
1166 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, );
1168 idles [idlecnt - 1] = w;
1169}
1170
1171void
1172ev_idle_stop (EV_P_ struct ev_idle *w)
1173{
1174 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w))
1176 return;
1177
1178 idles [w->active - 1] = idles [--idlecnt];
1179 ev_stop (EV_A_ (W)w);
1180}
1181
1182void
1183ev_prepare_start (EV_P_ struct ev_prepare *w)
1184{
1185 if (ev_is_active (w))
1186 return;
1187
1188 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, );
1190 prepares [preparecnt - 1] = w;
1191}
1192
1193void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195{
1196 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w))
1198 return;
1199
1200 prepares [w->active - 1] = prepares [--preparecnt];
1201 ev_stop (EV_A_ (W)w);
1202}
1203
1204void
1205ev_check_start (EV_P_ struct ev_check *w)
1206{
1207 if (ev_is_active (w))
1208 return;
1209
1210 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, );
1212 checks [checkcnt - 1] = w;
1213}
1214
1215void
1216ev_check_stop (EV_P_ struct ev_check *w)
1217{
1218 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w))
1220 return;
1221
1222 checks [w->active - 1] = checks [--checkcnt];
1223 ev_stop (EV_A_ (W)w);
1224}
1225
1226#ifndef SA_RESTART
1227# define SA_RESTART 0
1228#endif
1229
1230void
1231ev_signal_start (EV_P_ struct ev_signal *w)
1232{
1233#if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1235#endif
1236 if (ev_is_active (w))
1237 return;
1238
889 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
890 1240
891 ev_start ((W)w, 1); 1241 ev_start (EV_A_ (W)w, 1);
892 array_needsize (signals, signalmax, w->signum, signals_init); 1242 array_needsize (signals, signalmax, w->signum, signals_init);
893 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
894 1244
895 if (!w->next) 1245 if (!w->next)
896 { 1246 {
897 struct sigaction sa; 1247 struct sigaction sa;
898 sa.sa_handler = sighandler; 1248 sa.sa_handler = sighandler;
899 sigfillset (&sa.sa_mask); 1249 sigfillset (&sa.sa_mask);
900 sa.sa_flags = 0; 1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
901 sigaction (w->signum, &sa, 0); 1251 sigaction (w->signum, &sa, 0);
902 } 1252 }
903} 1253}
904 1254
905void 1255void
906ev_signal_stop (struct ev_signal *w) 1256ev_signal_stop (EV_P_ struct ev_signal *w)
907{ 1257{
908 ev_clear_pending ((W)w); 1258 ev_clear_pending (EV_A_ (W)w);
909 if (!ev_is_active (w)) 1259 if (!ev_is_active (w))
910 return; 1260 return;
911 1261
912 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
913 ev_stop ((W)w); 1263 ev_stop (EV_A_ (W)w);
914 1264
915 if (!signals [w->signum - 1].head) 1265 if (!signals [w->signum - 1].head)
916 signal (w->signum, SIG_DFL); 1266 signal (w->signum, SIG_DFL);
917} 1267}
918 1268
919void 1269void
920ev_idle_start (struct ev_idle *w) 1270ev_child_start (EV_P_ struct ev_child *w)
921{ 1271{
1272#if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop));
1274#endif
922 if (ev_is_active (w)) 1275 if (ev_is_active (w))
923 return; 1276 return;
924 1277
925 ev_start ((W)w, ++idlecnt); 1278 ev_start (EV_A_ (W)w, 1);
926 array_needsize (idles, idlemax, idlecnt, ); 1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
927 idles [idlecnt - 1] = w;
928} 1280}
929 1281
930void 1282void
931ev_idle_stop (struct ev_idle *w) 1283ev_child_stop (EV_P_ struct ev_child *w)
932{ 1284{
933 ev_clear_pending ((W)w); 1285 ev_clear_pending (EV_A_ (W)w);
934 if (ev_is_active (w)) 1286 if (ev_is_active (w))
935 return; 1287 return;
936 1288
937 idles [w->active - 1] = idles [--idlecnt];
938 ev_stop ((W)w);
939}
940
941void
942ev_prepare_start (struct ev_prepare *w)
943{
944 if (ev_is_active (w))
945 return;
946
947 ev_start ((W)w, ++preparecnt);
948 array_needsize (prepares, preparemax, preparecnt, );
949 prepares [preparecnt - 1] = w;
950}
951
952void
953ev_prepare_stop (struct ev_prepare *w)
954{
955 ev_clear_pending ((W)w);
956 if (ev_is_active (w))
957 return;
958
959 prepares [w->active - 1] = prepares [--preparecnt];
960 ev_stop ((W)w);
961}
962
963void
964ev_check_start (struct ev_check *w)
965{
966 if (ev_is_active (w))
967 return;
968
969 ev_start ((W)w, ++checkcnt);
970 array_needsize (checks, checkmax, checkcnt, );
971 checks [checkcnt - 1] = w;
972}
973
974void
975ev_check_stop (struct ev_check *w)
976{
977 ev_clear_pending ((W)w);
978 if (ev_is_active (w))
979 return;
980
981 checks [w->active - 1] = checks [--checkcnt];
982 ev_stop ((W)w);
983}
984
985void
986ev_child_start (struct ev_child *w)
987{
988 if (ev_is_active (w))
989 return;
990
991 ev_start ((W)w, 1);
992 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
993}
994
995void
996ev_child_stop (struct ev_child *w)
997{
998 ev_clear_pending ((W)w);
999 if (ev_is_active (w))
1000 return;
1001
1002 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1003 ev_stop ((W)w); 1290 ev_stop (EV_A_ (W)w);
1004} 1291}
1005 1292
1006/*****************************************************************************/ 1293/*****************************************************************************/
1007 1294
1008struct ev_once 1295struct ev_once
1012 void (*cb)(int revents, void *arg); 1299 void (*cb)(int revents, void *arg);
1013 void *arg; 1300 void *arg;
1014}; 1301};
1015 1302
1016static void 1303static void
1017once_cb (struct ev_once *once, int revents) 1304once_cb (EV_P_ struct ev_once *once, int revents)
1018{ 1305{
1019 void (*cb)(int revents, void *arg) = once->cb; 1306 void (*cb)(int revents, void *arg) = once->cb;
1020 void *arg = once->arg; 1307 void *arg = once->arg;
1021 1308
1022 ev_io_stop (&once->io); 1309 ev_io_stop (EV_A_ &once->io);
1023 ev_timer_stop (&once->to); 1310 ev_timer_stop (EV_A_ &once->to);
1024 free (once); 1311 free (once);
1025 1312
1026 cb (revents, arg); 1313 cb (revents, arg);
1027} 1314}
1028 1315
1029static void 1316static void
1030once_cb_io (struct ev_io *w, int revents) 1317once_cb_io (EV_P_ struct ev_io *w, int revents)
1031{ 1318{
1032 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1319 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1033} 1320}
1034 1321
1035static void 1322static void
1036once_cb_to (struct ev_timer *w, int revents) 1323once_cb_to (EV_P_ struct ev_timer *w, int revents)
1037{ 1324{
1038 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1325 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1039} 1326}
1040 1327
1041void 1328void
1042ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1043{ 1330{
1044 struct ev_once *once = malloc (sizeof (struct ev_once)); 1331 struct ev_once *once = malloc (sizeof (struct ev_once));
1045 1332
1046 if (!once) 1333 if (!once)
1047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1052 1339
1053 ev_watcher_init (&once->io, once_cb_io); 1340 ev_watcher_init (&once->io, once_cb_io);
1054 if (fd >= 0) 1341 if (fd >= 0)
1055 { 1342 {
1056 ev_io_set (&once->io, fd, events); 1343 ev_io_set (&once->io, fd, events);
1057 ev_io_start (&once->io); 1344 ev_io_start (EV_A_ &once->io);
1058 } 1345 }
1059 1346
1060 ev_watcher_init (&once->to, once_cb_to); 1347 ev_watcher_init (&once->to, once_cb_to);
1061 if (timeout >= 0.) 1348 if (timeout >= 0.)
1062 { 1349 {
1063 ev_timer_set (&once->to, timeout, 0.); 1350 ev_timer_set (&once->to, timeout, 0.);
1064 ev_timer_start (&once->to); 1351 ev_timer_start (EV_A_ &once->to);
1065 } 1352 }
1066 } 1353 }
1067} 1354}
1068 1355
1069/*****************************************************************************/
1070
1071#if 0
1072
1073struct ev_io wio;
1074
1075static void
1076sin_cb (struct ev_io *w, int revents)
1077{
1078 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1079}
1080
1081static void
1082ocb (struct ev_timer *w, int revents)
1083{
1084 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1085 ev_timer_stop (w);
1086 ev_timer_start (w);
1087}
1088
1089static void
1090scb (struct ev_signal *w, int revents)
1091{
1092 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1093 ev_io_stop (&wio);
1094 ev_io_start (&wio);
1095}
1096
1097static void
1098gcb (struct ev_signal *w, int revents)
1099{
1100 fprintf (stderr, "generic %x\n", revents);
1101
1102}
1103
1104int main (void)
1105{
1106 ev_init (0);
1107
1108 ev_io_init (&wio, sin_cb, 0, EV_READ);
1109 ev_io_start (&wio);
1110
1111 struct ev_timer t[10000];
1112
1113#if 0
1114 int i;
1115 for (i = 0; i < 10000; ++i)
1116 {
1117 struct ev_timer *w = t + i;
1118 ev_watcher_init (w, ocb, i);
1119 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1120 ev_timer_start (w);
1121 if (drand48 () < 0.5)
1122 ev_timer_stop (w);
1123 }
1124#endif
1125
1126 struct ev_timer t1;
1127 ev_timer_init (&t1, ocb, 5, 10);
1128 ev_timer_start (&t1);
1129
1130 struct ev_signal sig;
1131 ev_signal_init (&sig, scb, SIGQUIT);
1132 ev_signal_start (&sig);
1133
1134 struct ev_check cw;
1135 ev_check_init (&cw, gcb);
1136 ev_check_start (&cw);
1137
1138 struct ev_idle iw;
1139 ev_idle_init (&iw, gcb);
1140 ev_idle_start (&iw);
1141
1142 ev_loop (0);
1143
1144 return 0;
1145}
1146
1147#endif
1148
1149
1150
1151

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines