ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.38 by root, Thu Nov 1 15:21:13 2007 UTC vs.
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
75/**/
76
51#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
53#endif 79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
54 110
55#ifndef CLOCK_MONOTONIC 111#ifndef CLOCK_MONOTONIC
56# undef EV_USE_MONOTONIC 112# undef EV_USE_MONOTONIC
57# define EV_USE_MONOTONIC 0 113# define EV_USE_MONOTONIC 0
58#endif 114#endif
59 115
60#ifndef EV_USE_SELECT
61# define EV_USE_SELECT 1
62#endif
63
64#ifndef EV_USE_EPOLL
65# define EV_USE_EPOLL 0
66#endif
67
68#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
69# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
70#endif 119#endif
71#ifndef EV_USE_REALTIME 120
72# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
73#endif
74 122
75#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
76#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
77#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
78#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
79 127
80#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
81 143
82typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
83typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
84typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
85 147
86static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
87ev_tstamp ev_now;
88int ev_method;
89
90static int have_monotonic; /* runtime */
91
92static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
93static void (*method_modify)(int fd, int oev, int nev);
94static void (*method_poll)(ev_tstamp timeout);
95 149
96/*****************************************************************************/ 150/*****************************************************************************/
97 151
98ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
99ev_time (void) 186ev_time (void)
100{ 187{
101#if EV_USE_REALTIME 188#if EV_USE_REALTIME
102 struct timespec ts; 189 struct timespec ts;
103 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
107 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
108 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
109#endif 196#endif
110} 197}
111 198
112static ev_tstamp 199inline ev_tstamp
113get_clock (void) 200get_clock (void)
114{ 201{
115#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
116 if (have_monotonic) 203 if (expect_true (have_monotonic))
117 { 204 {
118 struct timespec ts; 205 struct timespec ts;
119 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
120 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
121 } 208 }
122#endif 209#endif
123 210
124 return ev_time (); 211 return ev_time ();
125} 212}
126 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
127#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
128 221
129#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
130 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
131 { \ 224 { \
132 int newcnt = cur; \ 225 int newcnt = cur; \
133 do \ 226 do \
134 { \ 227 { \
135 newcnt = array_roundsize (base, newcnt << 1); \ 228 newcnt = array_roundsize (base, newcnt << 1); \
141 cur = newcnt; \ 234 cur = newcnt; \
142 } 235 }
143 236
144/*****************************************************************************/ 237/*****************************************************************************/
145 238
146typedef struct
147{
148 struct ev_io *head;
149 unsigned char events;
150 unsigned char reify;
151} ANFD;
152
153static ANFD *anfds;
154static int anfdmax;
155
156static void 239static void
157anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
158{ 241{
159 while (count--) 242 while (count--)
160 { 243 {
164 247
165 ++base; 248 ++base;
166 } 249 }
167} 250}
168 251
169typedef struct
170{
171 W w;
172 int events;
173} ANPENDING;
174
175static ANPENDING *pendings;
176static int pendingmax, pendingcnt;
177
178static void 252static void
179event (W w, int events) 253event (EV_P_ W w, int events)
180{ 254{
181 if (w->pending) 255 if (w->pending)
182 { 256 {
183 pendings [w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
184 return; 258 return;
185 } 259 }
186 260
187 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
188 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
189 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
190 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
191} 265}
192 266
193static void 267static void
194queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
195{ 269{
196 int i; 270 int i;
197 271
198 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
199 event (events [i], type); 273 event (EV_A_ events [i], type);
200} 274}
201 275
202static void 276static void
203fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
204{ 278{
205 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
206 struct ev_io *w; 280 struct ev_io *w;
207 281
208 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
209 { 283 {
210 int ev = w->events & events; 284 int ev = w->events & events;
211 285
212 if (ev) 286 if (ev)
213 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
214 } 288 }
215} 289}
216 290
217/*****************************************************************************/ 291/*****************************************************************************/
218 292
219static int *fdchanges;
220static int fdchangemax, fdchangecnt;
221
222static void 293static void
223fd_reify (void) 294fd_reify (EV_P)
224{ 295{
225 int i; 296 int i;
226 297
227 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
228 { 299 {
230 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
231 struct ev_io *w; 302 struct ev_io *w;
232 303
233 int events = 0; 304 int events = 0;
234 305
235 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
236 events |= w->events; 307 events |= w->events;
237 308
238 anfd->reify = 0; 309 anfd->reify = 0;
239 310
240 if (anfd->events != events) 311 if (anfd->events != events)
241 { 312 {
242 method_modify (fd, anfd->events, events); 313 method_modify (EV_A_ fd, anfd->events, events);
243 anfd->events = events; 314 anfd->events = events;
244 } 315 }
245 } 316 }
246 317
247 fdchangecnt = 0; 318 fdchangecnt = 0;
248} 319}
249 320
250static void 321static void
251fd_change (int fd) 322fd_change (EV_P_ int fd)
252{ 323{
253 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
254 return; 325 return;
255 326
256 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
258 ++fdchangecnt; 329 ++fdchangecnt;
259 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
260 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
261} 332}
262 333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
263/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
264static void 347static void
265fd_recheck (void) 348fd_ebadf (EV_P)
266{ 349{
267 int fd; 350 int fd;
268 351
269 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
270 if (anfds [fd].events) 353 if (anfds [fd].events)
271 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
272 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
273 { 366 {
274 ev_io_stop (anfds [fd].head); 367 close (fd);
275 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 368 fd_kill (EV_A_ fd);
369 return;
276 } 370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
277} 386}
278 387
279/*****************************************************************************/ 388/*****************************************************************************/
280 389
281static struct ev_timer **timers;
282static int timermax, timercnt;
283
284static struct ev_periodic **periodics;
285static int periodicmax, periodiccnt;
286
287static void 390static void
288upheap (WT *timers, int k) 391upheap (WT *heap, int k)
289{ 392{
290 WT w = timers [k]; 393 WT w = heap [k];
291 394
292 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
293 { 396 {
294 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
295 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
296 k >>= 1; 399 k >>= 1;
297 } 400 }
298 401
299 timers [k] = w; 402 heap [k] = w;
300 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
301 404
302} 405}
303 406
304static void 407static void
305downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
306{ 409{
307 WT w = timers [k]; 410 WT w = heap [k];
308 411
309 while (k < (N >> 1)) 412 while (k < (N >> 1))
310 { 413 {
311 int j = k << 1; 414 int j = k << 1;
312 415
313 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
314 ++j; 417 ++j;
315 418
316 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
317 break; 420 break;
318 421
319 timers [k] = timers [j]; 422 heap [k] = heap [j];
320 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
321 k = j; 424 k = j;
322 } 425 }
323 426
324 timers [k] = w; 427 heap [k] = w;
325 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
326} 429}
327 430
328/*****************************************************************************/ 431/*****************************************************************************/
329 432
330typedef struct 433typedef struct
331{ 434{
332 struct ev_signal *head; 435 struct ev_watcher_list *head;
333 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
334} ANSIG; 437} ANSIG;
335 438
336static ANSIG *signals; 439static ANSIG *signals;
337static int signalmax; 440static int signalmax;
357{ 460{
358 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
359 462
360 if (!gotsig) 463 if (!gotsig)
361 { 464 {
465 int old_errno = errno;
362 gotsig = 1; 466 gotsig = 1;
363 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
364 } 469 }
365} 470}
366 471
367static void 472static void
368sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
369{ 474{
370 struct ev_signal *w; 475 struct ev_watcher_list *w;
371 int signum; 476 int signum;
372 477
373 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
374 gotsig = 0; 479 gotsig = 0;
375 480
377 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
378 { 483 {
379 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
380 485
381 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
382 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
383 } 488 }
384} 489}
385 490
386static void 491static void
387siginit (void) 492siginit (EV_P)
388{ 493{
494#ifndef WIN32
389 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
390 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
391 497
392 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
393 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
394 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
395 502
396 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
397 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
398} 506}
399 507
400/*****************************************************************************/ 508/*****************************************************************************/
401 509
402static struct ev_idle **idles; 510#ifndef WIN32
403static int idlemax, idlecnt;
404
405static struct ev_prepare **prepares;
406static int preparemax, preparecnt;
407
408static struct ev_check **checks;
409static int checkmax, checkcnt;
410
411/*****************************************************************************/
412 511
413static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
414static struct ev_signal childev; 513static struct ev_signal childev;
415 514
416#ifndef WCONTINUED 515#ifndef WCONTINUED
417# define WCONTINUED 0 516# define WCONTINUED 0
418#endif 517#endif
419 518
420static void 519static void
421childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
422{ 521{
423 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
424 int pid, status; 537 int pid, status;
425 538
426 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
427 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
428 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
429 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
430 w->status = status; 543
431 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
432 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
433} 547}
548
549#endif
434 550
435/*****************************************************************************/ 551/*****************************************************************************/
436 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
437#if EV_USE_EPOLL 556#if EV_USE_EPOLL
438# include "ev_epoll.c" 557# include "ev_epoll.c"
439#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
440#if EV_USE_SELECT 562#if EV_USE_SELECT
441# include "ev_select.c" 563# include "ev_select.c"
442#endif 564#endif
443 565
444int 566int
451ev_version_minor (void) 573ev_version_minor (void)
452{ 574{
453 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
454} 576}
455 577
456int ev_init (int flags) 578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
457{ 581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
458 if (!ev_method) 599 if (!method)
459 { 600 {
460#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
461 { 602 {
462 struct timespec ts; 603 struct timespec ts;
463 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
464 have_monotonic = 1; 605 have_monotonic = 1;
465 } 606 }
466#endif 607#endif
467 608
468 ev_now = ev_time (); 609 rt_now = ev_time ();
469 now = get_clock (); 610 mn_now = get_clock ();
611 now_floor = mn_now;
470 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
471 613
472 if (pipe (sigpipe)) 614 if (methods == EVMETHOD_AUTO)
473 return 0; 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
474 616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
475 ev_method = EVMETHOD_NONE; 618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
476#if EV_USE_EPOLL 627#if EV_USE_EPOLL
477 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
478#endif 632#endif
479#if EV_USE_SELECT 633#if EV_USE_SELECT
480 if (ev_method == EVMETHOD_NONE) select_init (flags); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
481#endif 635#endif
636 }
637}
482 638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
483 if (ev_method) 729 if (ev_method (EV_A))
484 { 730 {
485 ev_watcher_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
486 siginit (); 733 siginit (EV_A);
487 734
735#ifndef WIN32
488 ev_signal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI);
489 ev_signal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif
490 } 741 }
742 else
743 default_loop = 0;
491 } 744 }
492 745
493 return ev_method; 746 return default_loop;
494} 747}
495 748
496/*****************************************************************************/
497
498void 749void
499ev_fork_prepare (void) 750ev_default_destroy (void)
500{ 751{
501 /* nop */ 752#if EV_MULTIPLICITY
502} 753 struct ev_loop *loop = default_loop;
503
504void
505ev_fork_parent (void)
506{
507 /* nop */
508}
509
510void
511ev_fork_child (void)
512{
513#if EV_USE_EPOLL
514 if (ev_method == EVMETHOD_EPOLL)
515 epoll_postfork_child ();
516#endif 754#endif
517 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
518 ev_io_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
519 close (sigpipe [0]); 778 close (sigpipe [0]);
520 close (sigpipe [1]); 779 close (sigpipe [1]);
521 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
522 siginit (); 783 siginit (EV_A);
523} 784}
524 785
525/*****************************************************************************/ 786/*****************************************************************************/
526 787
527static void 788static void
528call_pending (void) 789call_pending (EV_P)
529{ 790{
791 int pri;
792
793 for (pri = NUMPRI; pri--; )
530 while (pendingcnt) 794 while (pendingcnt [pri])
531 { 795 {
532 ANPENDING *p = pendings + --pendingcnt; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
533 797
534 if (p->w) 798 if (p->w)
535 { 799 {
536 p->w->pending = 0; 800 p->w->pending = 0;
537 p->w->cb (p->w, p->events); 801
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
538 } 803 }
539 } 804 }
540} 805}
541 806
542static void 807static void
543timers_reify (void) 808timers_reify (EV_P)
544{ 809{
545 while (timercnt && timers [0]->at <= now) 810 while (timercnt && ((WT)timers [0])->at <= mn_now)
546 { 811 {
547 struct ev_timer *w = timers [0]; 812 struct ev_timer *w = timers [0];
813
814 assert (("inactive timer on timer heap detected", ev_is_active (w)));
548 815
549 /* first reschedule or stop timer */ 816 /* first reschedule or stop timer */
550 if (w->repeat) 817 if (w->repeat)
551 { 818 {
552 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
553 w->at = now + w->repeat; 820 ((WT)w)->at = mn_now + w->repeat;
554 downheap ((WT *)timers, timercnt, 0); 821 downheap ((WT *)timers, timercnt, 0);
555 } 822 }
556 else 823 else
557 ev_timer_stop (w); /* nonrepeating: stop timer */ 824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
558 825
559 event ((W)w, EV_TIMEOUT); 826 event (EV_A_ (W)w, EV_TIMEOUT);
560 } 827 }
561} 828}
562 829
563static void 830static void
564periodics_reify (void) 831periodics_reify (EV_P)
565{ 832{
566 while (periodiccnt && periodics [0]->at <= ev_now) 833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
567 { 834 {
568 struct ev_periodic *w = periodics [0]; 835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
569 838
570 /* first reschedule or stop timer */ 839 /* first reschedule or stop timer */
571 if (w->interval) 840 if (w->interval)
572 { 841 {
573 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
574 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
575 downheap ((WT *)periodics, periodiccnt, 0); 844 downheap ((WT *)periodics, periodiccnt, 0);
576 } 845 }
577 else 846 else
578 ev_periodic_stop (w); /* nonrepeating: stop timer */ 847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
579 848
580 event ((W)w, EV_PERIODIC); 849 event (EV_A_ (W)w, EV_PERIODIC);
581 } 850 }
582} 851}
583 852
584static void 853static void
585periodics_reschedule (ev_tstamp diff) 854periodics_reschedule (EV_P)
586{ 855{
587 int i; 856 int i;
588 857
589 /* adjust periodics after time jump */ 858 /* adjust periodics after time jump */
590 for (i = 0; i < periodiccnt; ++i) 859 for (i = 0; i < periodiccnt; ++i)
591 { 860 {
592 struct ev_periodic *w = periodics [i]; 861 struct ev_periodic *w = periodics [i];
593 862
594 if (w->interval) 863 if (w->interval)
595 { 864 {
596 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
597 866
598 if (fabs (diff) >= 1e-4) 867 if (fabs (diff) >= 1e-4)
599 { 868 {
600 ev_periodic_stop (w); 869 ev_periodic_stop (EV_A_ w);
601 ev_periodic_start (w); 870 ev_periodic_start (EV_A_ w);
602 871
603 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
604 } 873 }
605 } 874 }
606 } 875 }
607} 876}
608 877
878inline int
879time_update_monotonic (EV_P)
880{
881 mn_now = get_clock ();
882
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 {
885 rt_now = rtmn_diff + mn_now;
886 return 0;
887 }
888 else
889 {
890 now_floor = mn_now;
891 rt_now = ev_time ();
892 return 1;
893 }
894}
895
609static void 896static void
610time_update (void) 897time_update (EV_P)
611{ 898{
612 int i; 899 int i;
613 900
614 ev_now = ev_time (); 901#if EV_USE_MONOTONIC
615
616 if (have_monotonic) 902 if (expect_true (have_monotonic))
617 { 903 {
618 ev_tstamp odiff = diff; 904 if (time_update_monotonic (EV_A))
619
620 for (i = 4; --i; ) /* loop a few times, before making important decisions */
621 { 905 {
622 now = get_clock (); 906 ev_tstamp odiff = rtmn_diff;
907
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 {
623 diff = ev_now - now; 910 rtmn_diff = rt_now - mn_now;
624 911
625 if (fabs (odiff - diff) < MIN_TIMEJUMP) 912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
626 return; /* all is well */ 913 return; /* all is well */
627 914
628 ev_now = ev_time (); 915 rt_now = ev_time ();
916 mn_now = get_clock ();
917 now_floor = mn_now;
918 }
919
920 periodics_reschedule (EV_A);
921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
629 } 923 }
630
631 periodics_reschedule (diff - odiff);
632 /* no timer adjustment, as the monotonic clock doesn't jump */
633 } 924 }
634 else 925 else
926#endif
635 { 927 {
636 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 928 rt_now = ev_time ();
929
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
637 { 931 {
638 periodics_reschedule (ev_now - now); 932 periodics_reschedule (EV_A);
639 933
640 /* adjust timers. this is easy, as the offset is the same for all */ 934 /* adjust timers. this is easy, as the offset is the same for all */
641 for (i = 0; i < timercnt; ++i) 935 for (i = 0; i < timercnt; ++i)
642 timers [i]->at += diff; 936 ((WT)timers [i])->at += rt_now - mn_now;
643 } 937 }
644 938
645 now = ev_now; 939 mn_now = rt_now;
646 } 940 }
647} 941}
648 942
649int ev_loop_done; 943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
650 948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956
957void
651void ev_loop (int flags) 958ev_loop (EV_P_ int flags)
652{ 959{
653 double block; 960 double block;
654 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
655 962
656 do 963 do
657 { 964 {
658 /* queue check watchers (and execute them) */ 965 /* queue check watchers (and execute them) */
659 if (preparecnt) 966 if (expect_false (preparecnt))
660 { 967 {
661 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
662 call_pending (); 969 call_pending (EV_A);
663 } 970 }
664 971
665 /* update fd-related kernel structures */ 972 /* update fd-related kernel structures */
666 fd_reify (); 973 fd_reify (EV_A);
667 974
668 /* calculate blocking time */ 975 /* calculate blocking time */
669 976
670 /* we only need this for !monotonic clockor timers, but as we basically 977 /* we only need this for !monotonic clockor timers, but as we basically
671 always have timers, we just calculate it always */ 978 always have timers, we just calculate it always */
979#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A);
982 else
983#endif
984 {
672 ev_now = ev_time (); 985 rt_now = ev_time ();
986 mn_now = rt_now;
987 }
673 988
674 if (flags & EVLOOP_NONBLOCK || idlecnt) 989 if (flags & EVLOOP_NONBLOCK || idlecnt)
675 block = 0.; 990 block = 0.;
676 else 991 else
677 { 992 {
678 block = MAX_BLOCKTIME; 993 block = MAX_BLOCKTIME;
679 994
680 if (timercnt) 995 if (timercnt)
681 { 996 {
682 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
683 if (block > to) block = to; 998 if (block > to) block = to;
684 } 999 }
685 1000
686 if (periodiccnt) 1001 if (periodiccnt)
687 { 1002 {
688 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
689 if (block > to) block = to; 1004 if (block > to) block = to;
690 } 1005 }
691 1006
692 if (block < 0.) block = 0.; 1007 if (block < 0.) block = 0.;
693 } 1008 }
694 1009
695 method_poll (block); 1010 method_poll (EV_A_ block);
696 1011
697 /* update ev_now, do magic */ 1012 /* update rt_now, do magic */
698 time_update (); 1013 time_update (EV_A);
699 1014
700 /* queue pending timers and reschedule them */ 1015 /* queue pending timers and reschedule them */
701 timers_reify (); /* relative timers called last */ 1016 timers_reify (EV_A); /* relative timers called last */
702 periodics_reify (); /* absolute timers called first */ 1017 periodics_reify (EV_A); /* absolute timers called first */
703 1018
704 /* queue idle watchers unless io or timers are pending */ 1019 /* queue idle watchers unless io or timers are pending */
705 if (!pendingcnt) 1020 if (!pendingcnt)
706 queue_events ((W *)idles, idlecnt, EV_IDLE); 1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
707 1022
708 /* queue check watchers, to be executed first */ 1023 /* queue check watchers, to be executed first */
709 if (checkcnt) 1024 if (checkcnt)
710 queue_events ((W *)checks, checkcnt, EV_CHECK); 1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
711 1026
712 call_pending (); 1027 call_pending (EV_A);
713 } 1028 }
714 while (!ev_loop_done); 1029 while (activecnt && !loop_done);
715 1030
716 if (ev_loop_done != 2) 1031 if (loop_done != 2)
717 ev_loop_done = 0; 1032 loop_done = 0;
1033}
1034
1035void
1036ev_unloop (EV_P_ int how)
1037{
1038 loop_done = how;
718} 1039}
719 1040
720/*****************************************************************************/ 1041/*****************************************************************************/
721 1042
722static void 1043inline void
723wlist_add (WL *head, WL elem) 1044wlist_add (WL *head, WL elem)
724{ 1045{
725 elem->next = *head; 1046 elem->next = *head;
726 *head = elem; 1047 *head = elem;
727} 1048}
728 1049
729static void 1050inline void
730wlist_del (WL *head, WL elem) 1051wlist_del (WL *head, WL elem)
731{ 1052{
732 while (*head) 1053 while (*head)
733 { 1054 {
734 if (*head == elem) 1055 if (*head == elem)
739 1060
740 head = &(*head)->next; 1061 head = &(*head)->next;
741 } 1062 }
742} 1063}
743 1064
744static void 1065inline void
745ev_clear_pending (W w) 1066ev_clear_pending (EV_P_ W w)
746{ 1067{
747 if (w->pending) 1068 if (w->pending)
748 { 1069 {
749 pendings [w->pending - 1].w = 0; 1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
750 w->pending = 0; 1071 w->pending = 0;
751 } 1072 }
752} 1073}
753 1074
754static void 1075inline void
755ev_start (W w, int active) 1076ev_start (EV_P_ W w, int active)
756{ 1077{
1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080
757 w->active = active; 1081 w->active = active;
1082 ev_ref (EV_A);
758} 1083}
759 1084
760static void 1085inline void
761ev_stop (W w) 1086ev_stop (EV_P_ W w)
762{ 1087{
1088 ev_unref (EV_A);
763 w->active = 0; 1089 w->active = 0;
764} 1090}
765 1091
766/*****************************************************************************/ 1092/*****************************************************************************/
767 1093
768void 1094void
769ev_io_start (struct ev_io *w) 1095ev_io_start (EV_P_ struct ev_io *w)
770{ 1096{
771 int fd = w->fd; 1097 int fd = w->fd;
772 1098
773 if (ev_is_active (w)) 1099 if (ev_is_active (w))
774 return; 1100 return;
775 1101
776 assert (("ev_io_start called with negative fd", fd >= 0)); 1102 assert (("ev_io_start called with negative fd", fd >= 0));
777 1103
778 ev_start ((W)w, 1); 1104 ev_start (EV_A_ (W)w, 1);
779 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
780 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
781 1107
782 fd_change (fd); 1108 fd_change (EV_A_ fd);
783} 1109}
784 1110
785void 1111void
786ev_io_stop (struct ev_io *w) 1112ev_io_stop (EV_P_ struct ev_io *w)
787{ 1113{
788 ev_clear_pending ((W)w); 1114 ev_clear_pending (EV_A_ (W)w);
789 if (!ev_is_active (w)) 1115 if (!ev_is_active (w))
790 return; 1116 return;
791 1117
792 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
793 ev_stop ((W)w); 1119 ev_stop (EV_A_ (W)w);
794 1120
795 fd_change (w->fd); 1121 fd_change (EV_A_ w->fd);
796} 1122}
797 1123
798void 1124void
799ev_timer_start (struct ev_timer *w) 1125ev_timer_start (EV_P_ struct ev_timer *w)
800{ 1126{
801 if (ev_is_active (w)) 1127 if (ev_is_active (w))
802 return; 1128 return;
803 1129
804 w->at += now; 1130 ((WT)w)->at += mn_now;
805 1131
806 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
807 1133
808 ev_start ((W)w, ++timercnt); 1134 ev_start (EV_A_ (W)w, ++timercnt);
809 array_needsize (timers, timermax, timercnt, ); 1135 array_needsize (timers, timermax, timercnt, );
810 timers [timercnt - 1] = w; 1136 timers [timercnt - 1] = w;
811 upheap ((WT *)timers, timercnt - 1); 1137 upheap ((WT *)timers, timercnt - 1);
812}
813 1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140}
1141
814void 1142void
815ev_timer_stop (struct ev_timer *w) 1143ev_timer_stop (EV_P_ struct ev_timer *w)
816{ 1144{
817 ev_clear_pending ((W)w); 1145 ev_clear_pending (EV_A_ (W)w);
818 if (!ev_is_active (w)) 1146 if (!ev_is_active (w))
819 return; 1147 return;
820 1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
821 if (w->active < timercnt--) 1151 if (((W)w)->active < timercnt--)
822 { 1152 {
823 timers [w->active - 1] = timers [timercnt]; 1153 timers [((W)w)->active - 1] = timers [timercnt];
824 downheap ((WT *)timers, timercnt, w->active - 1); 1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
825 } 1155 }
826 1156
827 w->at = w->repeat; 1157 ((WT)w)->at = w->repeat;
828 1158
829 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
830} 1160}
831 1161
832void 1162void
833ev_timer_again (struct ev_timer *w) 1163ev_timer_again (EV_P_ struct ev_timer *w)
834{ 1164{
835 if (ev_is_active (w)) 1165 if (ev_is_active (w))
836 { 1166 {
837 if (w->repeat) 1167 if (w->repeat)
838 { 1168 {
839 w->at = now + w->repeat; 1169 ((WT)w)->at = mn_now + w->repeat;
840 downheap ((WT *)timers, timercnt, w->active - 1); 1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
841 } 1171 }
842 else 1172 else
843 ev_timer_stop (w); 1173 ev_timer_stop (EV_A_ w);
844 } 1174 }
845 else if (w->repeat) 1175 else if (w->repeat)
846 ev_timer_start (w); 1176 ev_timer_start (EV_A_ w);
847} 1177}
848 1178
849void 1179void
850ev_periodic_start (struct ev_periodic *w) 1180ev_periodic_start (EV_P_ struct ev_periodic *w)
851{ 1181{
852 if (ev_is_active (w)) 1182 if (ev_is_active (w))
853 return; 1183 return;
854 1184
855 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
856 1186
857 /* this formula differs from the one in periodic_reify because we do not always round up */ 1187 /* this formula differs from the one in periodic_reify because we do not always round up */
858 if (w->interval) 1188 if (w->interval)
859 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
860 1190
861 ev_start ((W)w, ++periodiccnt); 1191 ev_start (EV_A_ (W)w, ++periodiccnt);
862 array_needsize (periodics, periodicmax, periodiccnt, ); 1192 array_needsize (periodics, periodicmax, periodiccnt, );
863 periodics [periodiccnt - 1] = w; 1193 periodics [periodiccnt - 1] = w;
864 upheap ((WT *)periodics, periodiccnt - 1); 1194 upheap ((WT *)periodics, periodiccnt - 1);
865}
866 1195
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197}
1198
867void 1199void
868ev_periodic_stop (struct ev_periodic *w) 1200ev_periodic_stop (EV_P_ struct ev_periodic *w)
869{ 1201{
870 ev_clear_pending ((W)w); 1202 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1203 if (!ev_is_active (w))
872 return; 1204 return;
873 1205
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207
874 if (w->active < periodiccnt--) 1208 if (((W)w)->active < periodiccnt--)
875 { 1209 {
876 periodics [w->active - 1] = periodics [periodiccnt]; 1210 periodics [((W)w)->active - 1] = periodics [periodiccnt];
877 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
878 } 1212 }
879 1213
880 ev_stop ((W)w); 1214 ev_stop (EV_A_ (W)w);
881} 1215}
882 1216
883void 1217void
884ev_signal_start (struct ev_signal *w) 1218ev_idle_start (EV_P_ struct ev_idle *w)
885{ 1219{
886 if (ev_is_active (w)) 1220 if (ev_is_active (w))
887 return; 1221 return;
888 1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226}
1227
1228void
1229ev_idle_stop (EV_P_ struct ev_idle *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w);
1237}
1238
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281}
1282
1283#ifndef SA_RESTART
1284# define SA_RESTART 0
1285#endif
1286
1287void
1288ev_signal_start (EV_P_ struct ev_signal *w)
1289{
1290#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292#endif
1293 if (ev_is_active (w))
1294 return;
1295
889 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
890 1297
891 ev_start ((W)w, 1); 1298 ev_start (EV_A_ (W)w, 1);
892 array_needsize (signals, signalmax, w->signum, signals_init); 1299 array_needsize (signals, signalmax, w->signum, signals_init);
893 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
894 1301
895 if (!w->next) 1302 if (!((WL)w)->next)
896 { 1303 {
897 struct sigaction sa; 1304 struct sigaction sa;
898 sa.sa_handler = sighandler; 1305 sa.sa_handler = sighandler;
899 sigfillset (&sa.sa_mask); 1306 sigfillset (&sa.sa_mask);
900 sa.sa_flags = 0; 1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
901 sigaction (w->signum, &sa, 0); 1308 sigaction (w->signum, &sa, 0);
902 } 1309 }
903} 1310}
904 1311
905void 1312void
906ev_signal_stop (struct ev_signal *w) 1313ev_signal_stop (EV_P_ struct ev_signal *w)
907{ 1314{
908 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
909 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
910 return; 1317 return;
911 1318
912 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
913 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
914 1321
915 if (!signals [w->signum - 1].head) 1322 if (!signals [w->signum - 1].head)
916 signal (w->signum, SIG_DFL); 1323 signal (w->signum, SIG_DFL);
917} 1324}
918 1325
919void 1326void
920ev_idle_start (struct ev_idle *w) 1327ev_child_start (EV_P_ struct ev_child *w)
921{ 1328{
1329#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop));
1331#endif
922 if (ev_is_active (w)) 1332 if (ev_is_active (w))
923 return; 1333 return;
924 1334
925 ev_start ((W)w, ++idlecnt); 1335 ev_start (EV_A_ (W)w, 1);
926 array_needsize (idles, idlemax, idlecnt, ); 1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
927 idles [idlecnt - 1] = w;
928} 1337}
929 1338
930void 1339void
931ev_idle_stop (struct ev_idle *w) 1340ev_child_stop (EV_P_ struct ev_child *w)
932{ 1341{
933 ev_clear_pending ((W)w); 1342 ev_clear_pending (EV_A_ (W)w);
934 if (ev_is_active (w)) 1343 if (ev_is_active (w))
935 return; 1344 return;
936 1345
937 idles [w->active - 1] = idles [--idlecnt];
938 ev_stop ((W)w);
939}
940
941void
942ev_prepare_start (struct ev_prepare *w)
943{
944 if (ev_is_active (w))
945 return;
946
947 ev_start ((W)w, ++preparecnt);
948 array_needsize (prepares, preparemax, preparecnt, );
949 prepares [preparecnt - 1] = w;
950}
951
952void
953ev_prepare_stop (struct ev_prepare *w)
954{
955 ev_clear_pending ((W)w);
956 if (ev_is_active (w))
957 return;
958
959 prepares [w->active - 1] = prepares [--preparecnt];
960 ev_stop ((W)w);
961}
962
963void
964ev_check_start (struct ev_check *w)
965{
966 if (ev_is_active (w))
967 return;
968
969 ev_start ((W)w, ++checkcnt);
970 array_needsize (checks, checkmax, checkcnt, );
971 checks [checkcnt - 1] = w;
972}
973
974void
975ev_check_stop (struct ev_check *w)
976{
977 ev_clear_pending ((W)w);
978 if (ev_is_active (w))
979 return;
980
981 checks [w->active - 1] = checks [--checkcnt];
982 ev_stop ((W)w);
983}
984
985void
986ev_child_start (struct ev_child *w)
987{
988 if (ev_is_active (w))
989 return;
990
991 ev_start ((W)w, 1);
992 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
993}
994
995void
996ev_child_stop (struct ev_child *w)
997{
998 ev_clear_pending ((W)w);
999 if (ev_is_active (w))
1000 return;
1001
1002 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1003 ev_stop ((W)w); 1347 ev_stop (EV_A_ (W)w);
1004} 1348}
1005 1349
1006/*****************************************************************************/ 1350/*****************************************************************************/
1007 1351
1008struct ev_once 1352struct ev_once
1012 void (*cb)(int revents, void *arg); 1356 void (*cb)(int revents, void *arg);
1013 void *arg; 1357 void *arg;
1014}; 1358};
1015 1359
1016static void 1360static void
1017once_cb (struct ev_once *once, int revents) 1361once_cb (EV_P_ struct ev_once *once, int revents)
1018{ 1362{
1019 void (*cb)(int revents, void *arg) = once->cb; 1363 void (*cb)(int revents, void *arg) = once->cb;
1020 void *arg = once->arg; 1364 void *arg = once->arg;
1021 1365
1022 ev_io_stop (&once->io); 1366 ev_io_stop (EV_A_ &once->io);
1023 ev_timer_stop (&once->to); 1367 ev_timer_stop (EV_A_ &once->to);
1024 free (once); 1368 free (once);
1025 1369
1026 cb (revents, arg); 1370 cb (revents, arg);
1027} 1371}
1028 1372
1029static void 1373static void
1030once_cb_io (struct ev_io *w, int revents) 1374once_cb_io (EV_P_ struct ev_io *w, int revents)
1031{ 1375{
1032 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1033} 1377}
1034 1378
1035static void 1379static void
1036once_cb_to (struct ev_timer *w, int revents) 1380once_cb_to (EV_P_ struct ev_timer *w, int revents)
1037{ 1381{
1038 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1039} 1383}
1040 1384
1041void 1385void
1042ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1043{ 1387{
1044 struct ev_once *once = malloc (sizeof (struct ev_once)); 1388 struct ev_once *once = malloc (sizeof (struct ev_once));
1045 1389
1046 if (!once) 1390 if (!once)
1047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1052 1396
1053 ev_watcher_init (&once->io, once_cb_io); 1397 ev_watcher_init (&once->io, once_cb_io);
1054 if (fd >= 0) 1398 if (fd >= 0)
1055 { 1399 {
1056 ev_io_set (&once->io, fd, events); 1400 ev_io_set (&once->io, fd, events);
1057 ev_io_start (&once->io); 1401 ev_io_start (EV_A_ &once->io);
1058 } 1402 }
1059 1403
1060 ev_watcher_init (&once->to, once_cb_to); 1404 ev_watcher_init (&once->to, once_cb_to);
1061 if (timeout >= 0.) 1405 if (timeout >= 0.)
1062 { 1406 {
1063 ev_timer_set (&once->to, timeout, 0.); 1407 ev_timer_set (&once->to, timeout, 0.);
1064 ev_timer_start (&once->to); 1408 ev_timer_start (EV_A_ &once->to);
1065 } 1409 }
1066 } 1410 }
1067} 1411}
1068 1412
1069/*****************************************************************************/
1070
1071#if 0
1072
1073struct ev_io wio;
1074
1075static void
1076sin_cb (struct ev_io *w, int revents)
1077{
1078 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1079}
1080
1081static void
1082ocb (struct ev_timer *w, int revents)
1083{
1084 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1085 ev_timer_stop (w);
1086 ev_timer_start (w);
1087}
1088
1089static void
1090scb (struct ev_signal *w, int revents)
1091{
1092 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1093 ev_io_stop (&wio);
1094 ev_io_start (&wio);
1095}
1096
1097static void
1098gcb (struct ev_signal *w, int revents)
1099{
1100 fprintf (stderr, "generic %x\n", revents);
1101
1102}
1103
1104int main (void)
1105{
1106 ev_init (0);
1107
1108 ev_io_init (&wio, sin_cb, 0, EV_READ);
1109 ev_io_start (&wio);
1110
1111 struct ev_timer t[10000];
1112
1113#if 0
1114 int i;
1115 for (i = 0; i < 10000; ++i)
1116 {
1117 struct ev_timer *w = t + i;
1118 ev_watcher_init (w, ocb, i);
1119 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1120 ev_timer_start (w);
1121 if (drand48 () < 0.5)
1122 ev_timer_stop (w);
1123 }
1124#endif
1125
1126 struct ev_timer t1;
1127 ev_timer_init (&t1, ocb, 5, 10);
1128 ev_timer_start (&t1);
1129
1130 struct ev_signal sig;
1131 ev_signal_init (&sig, scb, SIGQUIT);
1132 ev_signal_start (&sig);
1133
1134 struct ev_check cw;
1135 ev_check_init (&cw, gcb);
1136 ev_check_start (&cw);
1137
1138 struct ev_idle iw;
1139 ev_idle_init (&iw, gcb);
1140 ev_idle_start (&iw);
1141
1142 ev_loop (0);
1143
1144 return 0;
1145}
1146
1147#endif
1148
1149
1150
1151

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines