ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.38 by root, Thu Nov 1 15:21:13 2007 UTC vs.
Revision 1.78 by root, Thu Nov 8 21:08:56 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
50 77
51#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
53#endif 80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
54 113
55#ifndef CLOCK_MONOTONIC 114#ifndef CLOCK_MONOTONIC
56# undef EV_USE_MONOTONIC 115# undef EV_USE_MONOTONIC
57# define EV_USE_MONOTONIC 0 116# define EV_USE_MONOTONIC 0
58#endif 117#endif
59 118
60#ifndef EV_USE_SELECT
61# define EV_USE_SELECT 1
62#endif
63
64#ifndef EV_USE_EPOLL
65# define EV_USE_EPOLL 0
66#endif
67
68#ifndef CLOCK_REALTIME 119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
69# define EV_USE_REALTIME 0 121# define EV_USE_REALTIME 0
70#endif 122#endif
71#ifndef EV_USE_REALTIME 123
72# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 124/**/
73#endif
74 125
75#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
76#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
77#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
78#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
79 130
80#include "ev.h" 131#include "ev.h"
132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
81 146
82typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
83typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
84typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
85 150
86static ev_tstamp now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
87ev_tstamp ev_now;
88int ev_method;
89 152
90static int have_monotonic; /* runtime */ 153#include "ev_win32.c"
91
92static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
93static void (*method_modify)(int fd, int oev, int nev);
94static void (*method_poll)(ev_tstamp timeout);
95 154
96/*****************************************************************************/ 155/*****************************************************************************/
97 156
98ev_tstamp 157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
205typedef struct
206{
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210} ANFD;
211
212typedef struct
213{
214 W w;
215 int events;
216} ANPENDING;
217
218#if EV_MULTIPLICITY
219
220struct ev_loop
221{
222# define VAR(name,decl) decl;
223# include "ev_vars.h"
224};
225# undef VAR
226# include "ev_wrap.h"
227
228#else
229
230# define VAR(name,decl) static decl;
231# include "ev_vars.h"
232# undef VAR
233
234#endif
235
236/*****************************************************************************/
237
238inline ev_tstamp
99ev_time (void) 239ev_time (void)
100{ 240{
101#if EV_USE_REALTIME 241#if EV_USE_REALTIME
102 struct timespec ts; 242 struct timespec ts;
103 clock_gettime (CLOCK_REALTIME, &ts); 243 clock_gettime (CLOCK_REALTIME, &ts);
107 gettimeofday (&tv, 0); 247 gettimeofday (&tv, 0);
108 return tv.tv_sec + tv.tv_usec * 1e-6; 248 return tv.tv_sec + tv.tv_usec * 1e-6;
109#endif 249#endif
110} 250}
111 251
112static ev_tstamp 252inline ev_tstamp
113get_clock (void) 253get_clock (void)
114{ 254{
115#if EV_USE_MONOTONIC 255#if EV_USE_MONOTONIC
116 if (have_monotonic) 256 if (expect_true (have_monotonic))
117 { 257 {
118 struct timespec ts; 258 struct timespec ts;
119 clock_gettime (CLOCK_MONOTONIC, &ts); 259 clock_gettime (CLOCK_MONOTONIC, &ts);
120 return ts.tv_sec + ts.tv_nsec * 1e-9; 260 return ts.tv_sec + ts.tv_nsec * 1e-9;
121 } 261 }
122#endif 262#endif
123 263
124 return ev_time (); 264 return ev_time ();
125} 265}
126 266
267ev_tstamp
268ev_now (EV_P)
269{
270 return rt_now;
271}
272
127#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(type,n) ((n) | 4 & ~3)
128 274
129#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
130 if ((cnt) > cur) \ 276 if (expect_false ((cnt) > cur)) \
131 { \ 277 { \
132 int newcnt = cur; \ 278 int newcnt = cur; \
133 do \ 279 do \
134 { \ 280 { \
135 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (type, newcnt << 1); \
136 } \ 282 } \
137 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
138 \ 284 \
139 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
140 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
141 cur = newcnt; \ 287 cur = newcnt; \
142 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
143 305
144/*****************************************************************************/ 306/*****************************************************************************/
145
146typedef struct
147{
148 struct ev_io *head;
149 unsigned char events;
150 unsigned char reify;
151} ANFD;
152
153static ANFD *anfds;
154static int anfdmax;
155 307
156static void 308static void
157anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
158{ 310{
159 while (count--) 311 while (count--)
164 316
165 ++base; 317 ++base;
166 } 318 }
167} 319}
168 320
169typedef struct 321void
322ev_feed_event (EV_P_ void *w, int revents)
170{ 323{
171 W w; 324 W w_ = (W)w;
172 int events;
173} ANPENDING;
174 325
175static ANPENDING *pendings;
176static int pendingmax, pendingcnt;
177
178static void
179event (W w, int events)
180{
181 if (w->pending) 326 if (w_->pending)
182 { 327 {
183 pendings [w->pending - 1].events |= events; 328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
184 return; 329 return;
185 } 330 }
186 331
187 w->pending = ++pendingcnt; 332 w_->pending = ++pendingcnt [ABSPRI (w_)];
188 array_needsize (pendings, pendingmax, pendingcnt, ); 333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
189 pendings [pendingcnt - 1].w = w; 334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
190 pendings [pendingcnt - 1].events = events; 335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
191} 336}
192 337
193static void 338static void
194queue_events (W *events, int eventcnt, int type) 339queue_events (EV_P_ W *events, int eventcnt, int type)
195{ 340{
196 int i; 341 int i;
197 342
198 for (i = 0; i < eventcnt; ++i) 343 for (i = 0; i < eventcnt; ++i)
199 event (events [i], type); 344 ev_feed_event (EV_A_ events [i], type);
200} 345}
201 346
202static void 347static void
203fd_event (int fd, int events) 348fd_event (EV_P_ int fd, int events)
204{ 349{
205 ANFD *anfd = anfds + fd; 350 ANFD *anfd = anfds + fd;
206 struct ev_io *w; 351 struct ev_io *w;
207 352
208 for (w = anfd->head; w; w = w->next) 353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
209 { 354 {
210 int ev = w->events & events; 355 int ev = w->events & events;
211 356
212 if (ev) 357 if (ev)
213 event ((W)w, ev); 358 ev_feed_event (EV_A_ (W)w, ev);
214 } 359 }
215} 360}
216 361
217/*****************************************************************************/ 362/*****************************************************************************/
218 363
219static int *fdchanges;
220static int fdchangemax, fdchangecnt;
221
222static void 364static void
223fd_reify (void) 365fd_reify (EV_P)
224{ 366{
225 int i; 367 int i;
226 368
227 for (i = 0; i < fdchangecnt; ++i) 369 for (i = 0; i < fdchangecnt; ++i)
228 { 370 {
230 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
231 struct ev_io *w; 373 struct ev_io *w;
232 374
233 int events = 0; 375 int events = 0;
234 376
235 for (w = anfd->head; w; w = w->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
236 events |= w->events; 378 events |= w->events;
237 379
238 anfd->reify = 0; 380 anfd->reify = 0;
239 381
240 if (anfd->events != events)
241 {
242 method_modify (fd, anfd->events, events); 382 method_modify (EV_A_ fd, anfd->events, events);
243 anfd->events = events; 383 anfd->events = events;
244 }
245 } 384 }
246 385
247 fdchangecnt = 0; 386 fdchangecnt = 0;
248} 387}
249 388
250static void 389static void
251fd_change (int fd) 390fd_change (EV_P_ int fd)
252{ 391{
253 if (anfds [fd].reify || fdchangecnt < 0) 392 if (anfds [fd].reify)
254 return; 393 return;
255 394
256 anfds [fd].reify = 1; 395 anfds [fd].reify = 1;
257 396
258 ++fdchangecnt; 397 ++fdchangecnt;
259 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 398 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
260 fdchanges [fdchangecnt - 1] = fd; 399 fdchanges [fdchangecnt - 1] = fd;
261} 400}
262 401
402static void
403fd_kill (EV_P_ int fd)
404{
405 struct ev_io *w;
406
407 while ((w = (struct ev_io *)anfds [fd].head))
408 {
409 ev_io_stop (EV_A_ w);
410 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
411 }
412}
413
414static int
415fd_valid (int fd)
416{
417#ifdef WIN32
418 return !!win32_get_osfhandle (fd);
419#else
420 return fcntl (fd, F_GETFD) != -1;
421#endif
422}
423
263/* called on EBADF to verify fds */ 424/* called on EBADF to verify fds */
264static void 425static void
265fd_recheck (void) 426fd_ebadf (EV_P)
266{ 427{
267 int fd; 428 int fd;
268 429
269 for (fd = 0; fd < anfdmax; ++fd) 430 for (fd = 0; fd < anfdmax; ++fd)
270 if (anfds [fd].events) 431 if (anfds [fd].events)
271 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 432 if (!fd_valid (fd) == -1 && errno == EBADF)
272 while (anfds [fd].head) 433 fd_kill (EV_A_ fd);
434}
435
436/* called on ENOMEM in select/poll to kill some fds and retry */
437static void
438fd_enomem (EV_P)
439{
440 int fd;
441
442 for (fd = anfdmax; fd--; )
443 if (anfds [fd].events)
273 { 444 {
274 ev_io_stop (anfds [fd].head); 445 fd_kill (EV_A_ fd);
275 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 446 return;
276 } 447 }
448}
449
450/* usually called after fork if method needs to re-arm all fds from scratch */
451static void
452fd_rearm_all (EV_P)
453{
454 int fd;
455
456 /* this should be highly optimised to not do anything but set a flag */
457 for (fd = 0; fd < anfdmax; ++fd)
458 if (anfds [fd].events)
459 {
460 anfds [fd].events = 0;
461 fd_change (EV_A_ fd);
462 }
277} 463}
278 464
279/*****************************************************************************/ 465/*****************************************************************************/
280 466
281static struct ev_timer **timers;
282static int timermax, timercnt;
283
284static struct ev_periodic **periodics;
285static int periodicmax, periodiccnt;
286
287static void 467static void
288upheap (WT *timers, int k) 468upheap (WT *heap, int k)
289{ 469{
290 WT w = timers [k]; 470 WT w = heap [k];
291 471
292 while (k && timers [k >> 1]->at > w->at) 472 while (k && heap [k >> 1]->at > w->at)
293 { 473 {
294 timers [k] = timers [k >> 1]; 474 heap [k] = heap [k >> 1];
295 timers [k]->active = k + 1; 475 ((W)heap [k])->active = k + 1;
296 k >>= 1; 476 k >>= 1;
297 } 477 }
298 478
299 timers [k] = w; 479 heap [k] = w;
300 timers [k]->active = k + 1; 480 ((W)heap [k])->active = k + 1;
301 481
302} 482}
303 483
304static void 484static void
305downheap (WT *timers, int N, int k) 485downheap (WT *heap, int N, int k)
306{ 486{
307 WT w = timers [k]; 487 WT w = heap [k];
308 488
309 while (k < (N >> 1)) 489 while (k < (N >> 1))
310 { 490 {
311 int j = k << 1; 491 int j = k << 1;
312 492
313 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 493 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
314 ++j; 494 ++j;
315 495
316 if (w->at <= timers [j]->at) 496 if (w->at <= heap [j]->at)
317 break; 497 break;
318 498
319 timers [k] = timers [j]; 499 heap [k] = heap [j];
320 timers [k]->active = k + 1; 500 ((W)heap [k])->active = k + 1;
321 k = j; 501 k = j;
322 } 502 }
323 503
324 timers [k] = w; 504 heap [k] = w;
325 timers [k]->active = k + 1; 505 ((W)heap [k])->active = k + 1;
326} 506}
327 507
328/*****************************************************************************/ 508/*****************************************************************************/
329 509
330typedef struct 510typedef struct
331{ 511{
332 struct ev_signal *head; 512 WL head;
333 sig_atomic_t volatile gotsig; 513 sig_atomic_t volatile gotsig;
334} ANSIG; 514} ANSIG;
335 515
336static ANSIG *signals; 516static ANSIG *signals;
337static int signalmax; 517static int signalmax;
353} 533}
354 534
355static void 535static void
356sighandler (int signum) 536sighandler (int signum)
357{ 537{
538#if WIN32
539 signal (signum, sighandler);
540#endif
541
358 signals [signum - 1].gotsig = 1; 542 signals [signum - 1].gotsig = 1;
359 543
360 if (!gotsig) 544 if (!gotsig)
361 { 545 {
546 int old_errno = errno;
362 gotsig = 1; 547 gotsig = 1;
548#ifdef WIN32
549 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
550#else
363 write (sigpipe [1], &signum, 1); 551 write (sigpipe [1], &signum, 1);
552#endif
553 errno = old_errno;
364 } 554 }
365} 555}
366 556
367static void 557static void
368sigcb (struct ev_io *iow, int revents) 558sigcb (EV_P_ struct ev_io *iow, int revents)
369{ 559{
370 struct ev_signal *w; 560 WL w;
371 int signum; 561 int signum;
372 562
563#ifdef WIN32
564 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
565#else
373 read (sigpipe [0], &revents, 1); 566 read (sigpipe [0], &revents, 1);
567#endif
374 gotsig = 0; 568 gotsig = 0;
375 569
376 for (signum = signalmax; signum--; ) 570 for (signum = signalmax; signum--; )
377 if (signals [signum].gotsig) 571 if (signals [signum].gotsig)
378 { 572 {
379 signals [signum].gotsig = 0; 573 signals [signum].gotsig = 0;
380 574
381 for (w = signals [signum].head; w; w = w->next) 575 for (w = signals [signum].head; w; w = w->next)
382 event ((W)w, EV_SIGNAL); 576 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
383 } 577 }
384} 578}
385 579
386static void 580static void
387siginit (void) 581siginit (EV_P)
388{ 582{
583#ifndef WIN32
389 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 584 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
390 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 585 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
391 586
392 /* rather than sort out wether we really need nb, set it */ 587 /* rather than sort out wether we really need nb, set it */
393 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 588 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
394 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 589 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
590#endif
395 591
396 ev_io_set (&sigev, sigpipe [0], EV_READ); 592 ev_io_set (&sigev, sigpipe [0], EV_READ);
397 ev_io_start (&sigev); 593 ev_io_start (EV_A_ &sigev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */
398} 595}
399 596
400/*****************************************************************************/ 597/*****************************************************************************/
401 598
402static struct ev_idle **idles;
403static int idlemax, idlecnt;
404
405static struct ev_prepare **prepares;
406static int preparemax, preparecnt;
407
408static struct ev_check **checks;
409static int checkmax, checkcnt;
410
411/*****************************************************************************/
412
413static struct ev_child *childs [PID_HASHSIZE]; 599static struct ev_child *childs [PID_HASHSIZE];
600
601#ifndef WIN32
602
414static struct ev_signal childev; 603static struct ev_signal childev;
415 604
416#ifndef WCONTINUED 605#ifndef WCONTINUED
417# define WCONTINUED 0 606# define WCONTINUED 0
418#endif 607#endif
419 608
420static void 609static void
421childcb (struct ev_signal *sw, int revents) 610child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
422{ 611{
423 struct ev_child *w; 612 struct ev_child *w;
613
614 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
615 if (w->pid == pid || !w->pid)
616 {
617 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
618 w->rpid = pid;
619 w->rstatus = status;
620 ev_feed_event (EV_A_ (W)w, EV_CHILD);
621 }
622}
623
624static void
625childcb (EV_P_ struct ev_signal *sw, int revents)
626{
424 int pid, status; 627 int pid, status;
425 628
426 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 629 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
427 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 630 {
428 if (w->pid == pid || w->pid == -1) 631 /* make sure we are called again until all childs have been reaped */
429 { 632 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
430 w->status = status; 633
431 event ((W)w, EV_CHILD); 634 child_reap (EV_A_ sw, pid, pid, status);
432 } 635 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
636 }
433} 637}
638
639#endif
434 640
435/*****************************************************************************/ 641/*****************************************************************************/
436 642
643#if EV_USE_KQUEUE
644# include "ev_kqueue.c"
645#endif
437#if EV_USE_EPOLL 646#if EV_USE_EPOLL
438# include "ev_epoll.c" 647# include "ev_epoll.c"
439#endif 648#endif
649#if EV_USE_POLL
650# include "ev_poll.c"
651#endif
440#if EV_USE_SELECT 652#if EV_USE_SELECT
441# include "ev_select.c" 653# include "ev_select.c"
442#endif 654#endif
443 655
444int 656int
451ev_version_minor (void) 663ev_version_minor (void)
452{ 664{
453 return EV_VERSION_MINOR; 665 return EV_VERSION_MINOR;
454} 666}
455 667
456int ev_init (int flags) 668/* return true if we are running with elevated privileges and should ignore env variables */
669static int
670enable_secure (void)
457{ 671{
672#ifdef WIN32
673 return 0;
674#else
675 return getuid () != geteuid ()
676 || getgid () != getegid ();
677#endif
678}
679
680int
681ev_method (EV_P)
682{
683 return method;
684}
685
686static void
687loop_init (EV_P_ int methods)
688{
458 if (!ev_method) 689 if (!method)
459 { 690 {
460#if EV_USE_MONOTONIC 691#if EV_USE_MONOTONIC
461 { 692 {
462 struct timespec ts; 693 struct timespec ts;
463 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 694 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
464 have_monotonic = 1; 695 have_monotonic = 1;
465 } 696 }
466#endif 697#endif
467 698
468 ev_now = ev_time (); 699 rt_now = ev_time ();
469 now = get_clock (); 700 mn_now = get_clock ();
701 now_floor = mn_now;
470 diff = ev_now - now; 702 rtmn_diff = rt_now - mn_now;
471 703
472 if (pipe (sigpipe)) 704 if (methods == EVMETHOD_AUTO)
473 return 0; 705 if (!enable_secure () && getenv ("LIBEV_METHODS"))
474 706 methods = atoi (getenv ("LIBEV_METHODS"));
707 else
475 ev_method = EVMETHOD_NONE; 708 methods = EVMETHOD_ANY;
709
710 method = 0;
711#if EV_USE_WIN32
712 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
713#endif
714#if EV_USE_KQUEUE
715 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
716#endif
476#if EV_USE_EPOLL 717#if EV_USE_EPOLL
477 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 718 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
719#endif
720#if EV_USE_POLL
721 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
478#endif 722#endif
479#if EV_USE_SELECT 723#if EV_USE_SELECT
480 if (ev_method == EVMETHOD_NONE) select_init (flags); 724 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
481#endif 725#endif
482 726
727 ev_watcher_init (&sigev, sigcb);
728 ev_set_priority (&sigev, EV_MAXPRI);
729 }
730}
731
732void
733loop_destroy (EV_P)
734{
735 int i;
736
737#if EV_USE_WIN32
738 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
739#endif
740#if EV_USE_KQUEUE
741 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
742#endif
743#if EV_USE_EPOLL
744 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
745#endif
746#if EV_USE_POLL
747 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
748#endif
749#if EV_USE_SELECT
750 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
751#endif
752
753 for (i = NUMPRI; i--; )
754 array_free (pending, [i]);
755
756 /* have to use the microsoft-never-gets-it-right macro */
757 array_free_microshit (fdchange);
758 array_free_microshit (timer);
759 array_free_microshit (periodic);
760 array_free_microshit (idle);
761 array_free_microshit (prepare);
762 array_free_microshit (check);
763
764 method = 0;
765}
766
767static void
768loop_fork (EV_P)
769{
770#if EV_USE_EPOLL
771 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
772#endif
773#if EV_USE_KQUEUE
774 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
775#endif
776
777 if (ev_is_active (&sigev))
778 {
779 /* default loop */
780
781 ev_ref (EV_A);
782 ev_io_stop (EV_A_ &sigev);
783 close (sigpipe [0]);
784 close (sigpipe [1]);
785
786 while (pipe (sigpipe))
787 syserr ("(libev) error creating pipe");
788
789 siginit (EV_A);
790 }
791
792 postfork = 0;
793}
794
795#if EV_MULTIPLICITY
796struct ev_loop *
797ev_loop_new (int methods)
798{
799 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
800
801 memset (loop, 0, sizeof (struct ev_loop));
802
803 loop_init (EV_A_ methods);
804
805 if (ev_method (EV_A))
806 return loop;
807
808 return 0;
809}
810
811void
812ev_loop_destroy (EV_P)
813{
814 loop_destroy (EV_A);
815 ev_free (loop);
816}
817
818void
819ev_loop_fork (EV_P)
820{
821 postfork = 1;
822}
823
824#endif
825
826#if EV_MULTIPLICITY
827struct ev_loop default_loop_struct;
828static struct ev_loop *default_loop;
829
830struct ev_loop *
831#else
832static int default_loop;
833
834int
835#endif
836ev_default_loop (int methods)
837{
838 if (sigpipe [0] == sigpipe [1])
839 if (pipe (sigpipe))
840 return 0;
841
842 if (!default_loop)
843 {
844#if EV_MULTIPLICITY
845 struct ev_loop *loop = default_loop = &default_loop_struct;
846#else
847 default_loop = 1;
848#endif
849
850 loop_init (EV_A_ methods);
851
483 if (ev_method) 852 if (ev_method (EV_A))
484 { 853 {
485 ev_watcher_init (&sigev, sigcb);
486 siginit (); 854 siginit (EV_A);
487 855
856#ifndef WIN32
488 ev_signal_init (&childev, childcb, SIGCHLD); 857 ev_signal_init (&childev, childcb, SIGCHLD);
858 ev_set_priority (&childev, EV_MAXPRI);
489 ev_signal_start (&childev); 859 ev_signal_start (EV_A_ &childev);
860 ev_unref (EV_A); /* child watcher should not keep loop alive */
861#endif
490 } 862 }
863 else
864 default_loop = 0;
491 } 865 }
492 866
493 return ev_method; 867 return default_loop;
868}
869
870void
871ev_default_destroy (void)
872{
873#if EV_MULTIPLICITY
874 struct ev_loop *loop = default_loop;
875#endif
876
877#ifndef WIN32
878 ev_ref (EV_A); /* child watcher */
879 ev_signal_stop (EV_A_ &childev);
880#endif
881
882 ev_ref (EV_A); /* signal watcher */
883 ev_io_stop (EV_A_ &sigev);
884
885 close (sigpipe [0]); sigpipe [0] = 0;
886 close (sigpipe [1]); sigpipe [1] = 0;
887
888 loop_destroy (EV_A);
889}
890
891void
892ev_default_fork (void)
893{
894#if EV_MULTIPLICITY
895 struct ev_loop *loop = default_loop;
896#endif
897
898 if (method)
899 postfork = 1;
494} 900}
495 901
496/*****************************************************************************/ 902/*****************************************************************************/
497 903
498void
499ev_fork_prepare (void)
500{
501 /* nop */
502}
503
504void
505ev_fork_parent (void)
506{
507 /* nop */
508}
509
510void
511ev_fork_child (void)
512{
513#if EV_USE_EPOLL
514 if (ev_method == EVMETHOD_EPOLL)
515 epoll_postfork_child ();
516#endif
517
518 ev_io_stop (&sigev);
519 close (sigpipe [0]);
520 close (sigpipe [1]);
521 pipe (sigpipe);
522 siginit ();
523}
524
525/*****************************************************************************/
526
527static void 904static int
905any_pending (EV_P)
906{
907 int pri;
908
909 for (pri = NUMPRI; pri--; )
910 if (pendingcnt [pri])
911 return 1;
912
913 return 0;
914}
915
916static void
528call_pending (void) 917call_pending (EV_P)
529{ 918{
919 int pri;
920
921 for (pri = NUMPRI; pri--; )
530 while (pendingcnt) 922 while (pendingcnt [pri])
531 { 923 {
532 ANPENDING *p = pendings + --pendingcnt; 924 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
533 925
534 if (p->w) 926 if (p->w)
535 { 927 {
536 p->w->pending = 0; 928 p->w->pending = 0;
537 p->w->cb (p->w, p->events); 929 p->w->cb (EV_A_ p->w, p->events);
538 } 930 }
539 } 931 }
540} 932}
541 933
542static void 934static void
543timers_reify (void) 935timers_reify (EV_P)
544{ 936{
545 while (timercnt && timers [0]->at <= now) 937 while (timercnt && ((WT)timers [0])->at <= mn_now)
546 { 938 {
547 struct ev_timer *w = timers [0]; 939 struct ev_timer *w = timers [0];
940
941 assert (("inactive timer on timer heap detected", ev_is_active (w)));
548 942
549 /* first reschedule or stop timer */ 943 /* first reschedule or stop timer */
550 if (w->repeat) 944 if (w->repeat)
551 { 945 {
552 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 946 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
553 w->at = now + w->repeat; 947 ((WT)w)->at = mn_now + w->repeat;
554 downheap ((WT *)timers, timercnt, 0); 948 downheap ((WT *)timers, timercnt, 0);
555 } 949 }
556 else 950 else
557 ev_timer_stop (w); /* nonrepeating: stop timer */ 951 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
558 952
559 event ((W)w, EV_TIMEOUT); 953 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
560 } 954 }
561} 955}
562 956
563static void 957static void
564periodics_reify (void) 958periodics_reify (EV_P)
565{ 959{
566 while (periodiccnt && periodics [0]->at <= ev_now) 960 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
567 { 961 {
568 struct ev_periodic *w = periodics [0]; 962 struct ev_periodic *w = periodics [0];
569 963
964 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
965
570 /* first reschedule or stop timer */ 966 /* first reschedule or stop timer */
571 if (w->interval) 967 if (w->reschedule_cb)
572 { 968 {
969 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
970
971 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
972 downheap ((WT *)periodics, periodiccnt, 0);
973 }
974 else if (w->interval)
975 {
573 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 976 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
574 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 977 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
575 downheap ((WT *)periodics, periodiccnt, 0); 978 downheap ((WT *)periodics, periodiccnt, 0);
576 } 979 }
577 else 980 else
578 ev_periodic_stop (w); /* nonrepeating: stop timer */ 981 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
579 982
580 event ((W)w, EV_PERIODIC); 983 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
581 } 984 }
582} 985}
583 986
584static void 987static void
585periodics_reschedule (ev_tstamp diff) 988periodics_reschedule (EV_P)
586{ 989{
587 int i; 990 int i;
588 991
589 /* adjust periodics after time jump */ 992 /* adjust periodics after time jump */
590 for (i = 0; i < periodiccnt; ++i) 993 for (i = 0; i < periodiccnt; ++i)
591 { 994 {
592 struct ev_periodic *w = periodics [i]; 995 struct ev_periodic *w = periodics [i];
593 996
997 if (w->reschedule_cb)
998 ((WT)w)->at = w->reschedule_cb (w, rt_now);
594 if (w->interval) 999 else if (w->interval)
1000 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1001 }
1002
1003 /* now rebuild the heap */
1004 for (i = periodiccnt >> 1; i--; )
1005 downheap ((WT *)periodics, periodiccnt, i);
1006}
1007
1008inline int
1009time_update_monotonic (EV_P)
1010{
1011 mn_now = get_clock ();
1012
1013 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1014 {
1015 rt_now = rtmn_diff + mn_now;
1016 return 0;
1017 }
1018 else
1019 {
1020 now_floor = mn_now;
1021 rt_now = ev_time ();
1022 return 1;
1023 }
1024}
1025
1026static void
1027time_update (EV_P)
1028{
1029 int i;
1030
1031#if EV_USE_MONOTONIC
1032 if (expect_true (have_monotonic))
1033 {
1034 if (time_update_monotonic (EV_A))
595 { 1035 {
596 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1036 ev_tstamp odiff = rtmn_diff;
597 1037
598 if (fabs (diff) >= 1e-4) 1038 for (i = 4; --i; ) /* loop a few times, before making important decisions */
599 { 1039 {
600 ev_periodic_stop (w); 1040 rtmn_diff = rt_now - mn_now;
601 ev_periodic_start (w);
602 1041
603 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1042 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1043 return; /* all is well */
1044
1045 rt_now = ev_time ();
1046 mn_now = get_clock ();
1047 now_floor = mn_now;
604 } 1048 }
1049
1050 periodics_reschedule (EV_A);
1051 /* no timer adjustment, as the monotonic clock doesn't jump */
1052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
605 } 1053 }
606 } 1054 }
607} 1055 else
608 1056#endif
609static void 1057 {
610time_update (void)
611{
612 int i;
613
614 ev_now = ev_time (); 1058 rt_now = ev_time ();
615 1059
616 if (have_monotonic) 1060 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
617 {
618 ev_tstamp odiff = diff;
619
620 for (i = 4; --i; ) /* loop a few times, before making important decisions */
621 { 1061 {
622 now = get_clock ();
623 diff = ev_now - now;
624
625 if (fabs (odiff - diff) < MIN_TIMEJUMP)
626 return; /* all is well */
627
628 ev_now = ev_time ();
629 }
630
631 periodics_reschedule (diff - odiff);
632 /* no timer adjustment, as the monotonic clock doesn't jump */
633 }
634 else
635 {
636 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
637 {
638 periodics_reschedule (ev_now - now); 1062 periodics_reschedule (EV_A);
639 1063
640 /* adjust timers. this is easy, as the offset is the same for all */ 1064 /* adjust timers. this is easy, as the offset is the same for all */
641 for (i = 0; i < timercnt; ++i) 1065 for (i = 0; i < timercnt; ++i)
642 timers [i]->at += diff; 1066 ((WT)timers [i])->at += rt_now - mn_now;
643 } 1067 }
644 1068
645 now = ev_now; 1069 mn_now = rt_now;
646 } 1070 }
647} 1071}
648 1072
649int ev_loop_done; 1073void
1074ev_ref (EV_P)
1075{
1076 ++activecnt;
1077}
650 1078
1079void
1080ev_unref (EV_P)
1081{
1082 --activecnt;
1083}
1084
1085static int loop_done;
1086
1087void
651void ev_loop (int flags) 1088ev_loop (EV_P_ int flags)
652{ 1089{
653 double block; 1090 double block;
654 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1091 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
655 1092
656 do 1093 do
657 { 1094 {
658 /* queue check watchers (and execute them) */ 1095 /* queue check watchers (and execute them) */
659 if (preparecnt) 1096 if (expect_false (preparecnt))
660 { 1097 {
661 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1098 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
662 call_pending (); 1099 call_pending (EV_A);
663 } 1100 }
664 1101
1102 /* we might have forked, so reify kernel state if necessary */
1103 if (expect_false (postfork))
1104 loop_fork (EV_A);
1105
665 /* update fd-related kernel structures */ 1106 /* update fd-related kernel structures */
666 fd_reify (); 1107 fd_reify (EV_A);
667 1108
668 /* calculate blocking time */ 1109 /* calculate blocking time */
669 1110
670 /* we only need this for !monotonic clockor timers, but as we basically 1111 /* we only need this for !monotonic clock or timers, but as we basically
671 always have timers, we just calculate it always */ 1112 always have timers, we just calculate it always */
1113#if EV_USE_MONOTONIC
1114 if (expect_true (have_monotonic))
1115 time_update_monotonic (EV_A);
1116 else
1117#endif
1118 {
672 ev_now = ev_time (); 1119 rt_now = ev_time ();
1120 mn_now = rt_now;
1121 }
673 1122
674 if (flags & EVLOOP_NONBLOCK || idlecnt) 1123 if (flags & EVLOOP_NONBLOCK || idlecnt)
675 block = 0.; 1124 block = 0.;
676 else 1125 else
677 { 1126 {
678 block = MAX_BLOCKTIME; 1127 block = MAX_BLOCKTIME;
679 1128
680 if (timercnt) 1129 if (timercnt)
681 { 1130 {
682 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1131 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
683 if (block > to) block = to; 1132 if (block > to) block = to;
684 } 1133 }
685 1134
686 if (periodiccnt) 1135 if (periodiccnt)
687 { 1136 {
688 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1137 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
689 if (block > to) block = to; 1138 if (block > to) block = to;
690 } 1139 }
691 1140
692 if (block < 0.) block = 0.; 1141 if (block < 0.) block = 0.;
693 } 1142 }
694 1143
695 method_poll (block); 1144 method_poll (EV_A_ block);
696 1145
697 /* update ev_now, do magic */ 1146 /* update rt_now, do magic */
698 time_update (); 1147 time_update (EV_A);
699 1148
700 /* queue pending timers and reschedule them */ 1149 /* queue pending timers and reschedule them */
701 timers_reify (); /* relative timers called last */ 1150 timers_reify (EV_A); /* relative timers called last */
702 periodics_reify (); /* absolute timers called first */ 1151 periodics_reify (EV_A); /* absolute timers called first */
703 1152
704 /* queue idle watchers unless io or timers are pending */ 1153 /* queue idle watchers unless io or timers are pending */
705 if (!pendingcnt) 1154 if (idlecnt && !any_pending (EV_A))
706 queue_events ((W *)idles, idlecnt, EV_IDLE); 1155 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
707 1156
708 /* queue check watchers, to be executed first */ 1157 /* queue check watchers, to be executed first */
709 if (checkcnt) 1158 if (checkcnt)
710 queue_events ((W *)checks, checkcnt, EV_CHECK); 1159 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
711 1160
712 call_pending (); 1161 call_pending (EV_A);
713 } 1162 }
714 while (!ev_loop_done); 1163 while (activecnt && !loop_done);
715 1164
716 if (ev_loop_done != 2) 1165 if (loop_done != 2)
717 ev_loop_done = 0; 1166 loop_done = 0;
1167}
1168
1169void
1170ev_unloop (EV_P_ int how)
1171{
1172 loop_done = how;
718} 1173}
719 1174
720/*****************************************************************************/ 1175/*****************************************************************************/
721 1176
722static void 1177inline void
723wlist_add (WL *head, WL elem) 1178wlist_add (WL *head, WL elem)
724{ 1179{
725 elem->next = *head; 1180 elem->next = *head;
726 *head = elem; 1181 *head = elem;
727} 1182}
728 1183
729static void 1184inline void
730wlist_del (WL *head, WL elem) 1185wlist_del (WL *head, WL elem)
731{ 1186{
732 while (*head) 1187 while (*head)
733 { 1188 {
734 if (*head == elem) 1189 if (*head == elem)
739 1194
740 head = &(*head)->next; 1195 head = &(*head)->next;
741 } 1196 }
742} 1197}
743 1198
744static void 1199inline void
745ev_clear_pending (W w) 1200ev_clear_pending (EV_P_ W w)
746{ 1201{
747 if (w->pending) 1202 if (w->pending)
748 { 1203 {
749 pendings [w->pending - 1].w = 0; 1204 pendings [ABSPRI (w)][w->pending - 1].w = 0;
750 w->pending = 0; 1205 w->pending = 0;
751 } 1206 }
752} 1207}
753 1208
754static void 1209inline void
755ev_start (W w, int active) 1210ev_start (EV_P_ W w, int active)
756{ 1211{
1212 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1213 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1214
757 w->active = active; 1215 w->active = active;
1216 ev_ref (EV_A);
758} 1217}
759 1218
760static void 1219inline void
761ev_stop (W w) 1220ev_stop (EV_P_ W w)
762{ 1221{
1222 ev_unref (EV_A);
763 w->active = 0; 1223 w->active = 0;
764} 1224}
765 1225
766/*****************************************************************************/ 1226/*****************************************************************************/
767 1227
768void 1228void
769ev_io_start (struct ev_io *w) 1229ev_io_start (EV_P_ struct ev_io *w)
770{ 1230{
771 int fd = w->fd; 1231 int fd = w->fd;
772 1232
773 if (ev_is_active (w)) 1233 if (ev_is_active (w))
774 return; 1234 return;
775 1235
776 assert (("ev_io_start called with negative fd", fd >= 0)); 1236 assert (("ev_io_start called with negative fd", fd >= 0));
777 1237
778 ev_start ((W)w, 1); 1238 ev_start (EV_A_ (W)w, 1);
779 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1239 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
780 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1240 wlist_add ((WL *)&anfds[fd].head, (WL)w);
781 1241
782 fd_change (fd); 1242 fd_change (EV_A_ fd);
783} 1243}
784 1244
785void 1245void
786ev_io_stop (struct ev_io *w) 1246ev_io_stop (EV_P_ struct ev_io *w)
787{ 1247{
788 ev_clear_pending ((W)w); 1248 ev_clear_pending (EV_A_ (W)w);
789 if (!ev_is_active (w)) 1249 if (!ev_is_active (w))
790 return; 1250 return;
791 1251
792 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1252 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
793 ev_stop ((W)w); 1253 ev_stop (EV_A_ (W)w);
794 1254
795 fd_change (w->fd); 1255 fd_change (EV_A_ w->fd);
796} 1256}
797 1257
798void 1258void
799ev_timer_start (struct ev_timer *w) 1259ev_timer_start (EV_P_ struct ev_timer *w)
800{ 1260{
801 if (ev_is_active (w)) 1261 if (ev_is_active (w))
802 return; 1262 return;
803 1263
804 w->at += now; 1264 ((WT)w)->at += mn_now;
805 1265
806 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1266 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
807 1267
808 ev_start ((W)w, ++timercnt); 1268 ev_start (EV_A_ (W)w, ++timercnt);
809 array_needsize (timers, timermax, timercnt, ); 1269 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
810 timers [timercnt - 1] = w; 1270 timers [timercnt - 1] = w;
811 upheap ((WT *)timers, timercnt - 1); 1271 upheap ((WT *)timers, timercnt - 1);
812}
813 1272
1273 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1274}
1275
814void 1276void
815ev_timer_stop (struct ev_timer *w) 1277ev_timer_stop (EV_P_ struct ev_timer *w)
816{ 1278{
817 ev_clear_pending ((W)w); 1279 ev_clear_pending (EV_A_ (W)w);
818 if (!ev_is_active (w)) 1280 if (!ev_is_active (w))
819 return; 1281 return;
820 1282
1283 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1284
821 if (w->active < timercnt--) 1285 if (((W)w)->active < timercnt--)
822 { 1286 {
823 timers [w->active - 1] = timers [timercnt]; 1287 timers [((W)w)->active - 1] = timers [timercnt];
824 downheap ((WT *)timers, timercnt, w->active - 1); 1288 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
825 } 1289 }
826 1290
827 w->at = w->repeat; 1291 ((WT)w)->at = w->repeat;
828 1292
829 ev_stop ((W)w); 1293 ev_stop (EV_A_ (W)w);
830} 1294}
831 1295
832void 1296void
833ev_timer_again (struct ev_timer *w) 1297ev_timer_again (EV_P_ struct ev_timer *w)
834{ 1298{
835 if (ev_is_active (w)) 1299 if (ev_is_active (w))
836 { 1300 {
837 if (w->repeat) 1301 if (w->repeat)
838 { 1302 {
839 w->at = now + w->repeat; 1303 ((WT)w)->at = mn_now + w->repeat;
840 downheap ((WT *)timers, timercnt, w->active - 1); 1304 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
841 } 1305 }
842 else 1306 else
843 ev_timer_stop (w); 1307 ev_timer_stop (EV_A_ w);
844 } 1308 }
845 else if (w->repeat) 1309 else if (w->repeat)
846 ev_timer_start (w); 1310 ev_timer_start (EV_A_ w);
847} 1311}
848 1312
849void 1313void
850ev_periodic_start (struct ev_periodic *w) 1314ev_periodic_start (EV_P_ struct ev_periodic *w)
851{ 1315{
852 if (ev_is_active (w)) 1316 if (ev_is_active (w))
853 return; 1317 return;
854 1318
1319 if (w->reschedule_cb)
1320 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1321 else if (w->interval)
1322 {
855 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1323 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
856
857 /* this formula differs from the one in periodic_reify because we do not always round up */ 1324 /* this formula differs from the one in periodic_reify because we do not always round up */
858 if (w->interval)
859 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1325 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1326 }
860 1327
861 ev_start ((W)w, ++periodiccnt); 1328 ev_start (EV_A_ (W)w, ++periodiccnt);
862 array_needsize (periodics, periodicmax, periodiccnt, ); 1329 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
863 periodics [periodiccnt - 1] = w; 1330 periodics [periodiccnt - 1] = w;
864 upheap ((WT *)periodics, periodiccnt - 1); 1331 upheap ((WT *)periodics, periodiccnt - 1);
865}
866 1332
1333 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1334}
1335
867void 1336void
868ev_periodic_stop (struct ev_periodic *w) 1337ev_periodic_stop (EV_P_ struct ev_periodic *w)
869{ 1338{
870 ev_clear_pending ((W)w); 1339 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1340 if (!ev_is_active (w))
872 return; 1341 return;
873 1342
1343 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1344
874 if (w->active < periodiccnt--) 1345 if (((W)w)->active < periodiccnt--)
875 { 1346 {
876 periodics [w->active - 1] = periodics [periodiccnt]; 1347 periodics [((W)w)->active - 1] = periodics [periodiccnt];
877 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1348 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
878 } 1349 }
879 1350
880 ev_stop ((W)w); 1351 ev_stop (EV_A_ (W)w);
881} 1352}
882 1353
883void 1354void
1355ev_periodic_again (EV_P_ struct ev_periodic *w)
1356{
1357 ev_periodic_stop (EV_A_ w);
1358 ev_periodic_start (EV_A_ w);
1359}
1360
1361void
884ev_signal_start (struct ev_signal *w) 1362ev_idle_start (EV_P_ struct ev_idle *w)
885{ 1363{
886 if (ev_is_active (w)) 1364 if (ev_is_active (w))
887 return; 1365 return;
888 1366
1367 ev_start (EV_A_ (W)w, ++idlecnt);
1368 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1369 idles [idlecnt - 1] = w;
1370}
1371
1372void
1373ev_idle_stop (EV_P_ struct ev_idle *w)
1374{
1375 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w))
1377 return;
1378
1379 idles [((W)w)->active - 1] = idles [--idlecnt];
1380 ev_stop (EV_A_ (W)w);
1381}
1382
1383void
1384ev_prepare_start (EV_P_ struct ev_prepare *w)
1385{
1386 if (ev_is_active (w))
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++preparecnt);
1390 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1391 prepares [preparecnt - 1] = w;
1392}
1393
1394void
1395ev_prepare_stop (EV_P_ struct ev_prepare *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1402 ev_stop (EV_A_ (W)w);
1403}
1404
1405void
1406ev_check_start (EV_P_ struct ev_check *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++checkcnt);
1412 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1413 checks [checkcnt - 1] = w;
1414}
1415
1416void
1417ev_check_stop (EV_P_ struct ev_check *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 checks [((W)w)->active - 1] = checks [--checkcnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427#ifndef SA_RESTART
1428# define SA_RESTART 0
1429#endif
1430
1431void
1432ev_signal_start (EV_P_ struct ev_signal *w)
1433{
1434#if EV_MULTIPLICITY
1435 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1436#endif
1437 if (ev_is_active (w))
1438 return;
1439
889 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1440 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
890 1441
891 ev_start ((W)w, 1); 1442 ev_start (EV_A_ (W)w, 1);
892 array_needsize (signals, signalmax, w->signum, signals_init); 1443 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
893 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1444 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
894 1445
895 if (!w->next) 1446 if (!((WL)w)->next)
896 { 1447 {
1448#if WIN32
1449 signal (w->signum, sighandler);
1450#else
897 struct sigaction sa; 1451 struct sigaction sa;
898 sa.sa_handler = sighandler; 1452 sa.sa_handler = sighandler;
899 sigfillset (&sa.sa_mask); 1453 sigfillset (&sa.sa_mask);
900 sa.sa_flags = 0; 1454 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
901 sigaction (w->signum, &sa, 0); 1455 sigaction (w->signum, &sa, 0);
1456#endif
902 } 1457 }
903} 1458}
904 1459
905void 1460void
906ev_signal_stop (struct ev_signal *w) 1461ev_signal_stop (EV_P_ struct ev_signal *w)
907{ 1462{
908 ev_clear_pending ((W)w); 1463 ev_clear_pending (EV_A_ (W)w);
909 if (!ev_is_active (w)) 1464 if (!ev_is_active (w))
910 return; 1465 return;
911 1466
912 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1467 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
913 ev_stop ((W)w); 1468 ev_stop (EV_A_ (W)w);
914 1469
915 if (!signals [w->signum - 1].head) 1470 if (!signals [w->signum - 1].head)
916 signal (w->signum, SIG_DFL); 1471 signal (w->signum, SIG_DFL);
917} 1472}
918 1473
919void 1474void
920ev_idle_start (struct ev_idle *w) 1475ev_child_start (EV_P_ struct ev_child *w)
921{ 1476{
1477#if EV_MULTIPLICITY
1478 assert (("child watchers are only supported in the default loop", loop == default_loop));
1479#endif
922 if (ev_is_active (w)) 1480 if (ev_is_active (w))
923 return; 1481 return;
924 1482
925 ev_start ((W)w, ++idlecnt); 1483 ev_start (EV_A_ (W)w, 1);
926 array_needsize (idles, idlemax, idlecnt, ); 1484 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
927 idles [idlecnt - 1] = w;
928} 1485}
929 1486
930void 1487void
931ev_idle_stop (struct ev_idle *w) 1488ev_child_stop (EV_P_ struct ev_child *w)
932{ 1489{
933 ev_clear_pending ((W)w); 1490 ev_clear_pending (EV_A_ (W)w);
934 if (ev_is_active (w)) 1491 if (ev_is_active (w))
935 return; 1492 return;
936 1493
937 idles [w->active - 1] = idles [--idlecnt];
938 ev_stop ((W)w);
939}
940
941void
942ev_prepare_start (struct ev_prepare *w)
943{
944 if (ev_is_active (w))
945 return;
946
947 ev_start ((W)w, ++preparecnt);
948 array_needsize (prepares, preparemax, preparecnt, );
949 prepares [preparecnt - 1] = w;
950}
951
952void
953ev_prepare_stop (struct ev_prepare *w)
954{
955 ev_clear_pending ((W)w);
956 if (ev_is_active (w))
957 return;
958
959 prepares [w->active - 1] = prepares [--preparecnt];
960 ev_stop ((W)w);
961}
962
963void
964ev_check_start (struct ev_check *w)
965{
966 if (ev_is_active (w))
967 return;
968
969 ev_start ((W)w, ++checkcnt);
970 array_needsize (checks, checkmax, checkcnt, );
971 checks [checkcnt - 1] = w;
972}
973
974void
975ev_check_stop (struct ev_check *w)
976{
977 ev_clear_pending ((W)w);
978 if (ev_is_active (w))
979 return;
980
981 checks [w->active - 1] = checks [--checkcnt];
982 ev_stop ((W)w);
983}
984
985void
986ev_child_start (struct ev_child *w)
987{
988 if (ev_is_active (w))
989 return;
990
991 ev_start ((W)w, 1);
992 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
993}
994
995void
996ev_child_stop (struct ev_child *w)
997{
998 ev_clear_pending ((W)w);
999 if (ev_is_active (w))
1000 return;
1001
1002 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1494 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1003 ev_stop ((W)w); 1495 ev_stop (EV_A_ (W)w);
1004} 1496}
1005 1497
1006/*****************************************************************************/ 1498/*****************************************************************************/
1007 1499
1008struct ev_once 1500struct ev_once
1012 void (*cb)(int revents, void *arg); 1504 void (*cb)(int revents, void *arg);
1013 void *arg; 1505 void *arg;
1014}; 1506};
1015 1507
1016static void 1508static void
1017once_cb (struct ev_once *once, int revents) 1509once_cb (EV_P_ struct ev_once *once, int revents)
1018{ 1510{
1019 void (*cb)(int revents, void *arg) = once->cb; 1511 void (*cb)(int revents, void *arg) = once->cb;
1020 void *arg = once->arg; 1512 void *arg = once->arg;
1021 1513
1022 ev_io_stop (&once->io); 1514 ev_io_stop (EV_A_ &once->io);
1023 ev_timer_stop (&once->to); 1515 ev_timer_stop (EV_A_ &once->to);
1024 free (once); 1516 ev_free (once);
1025 1517
1026 cb (revents, arg); 1518 cb (revents, arg);
1027} 1519}
1028 1520
1029static void 1521static void
1030once_cb_io (struct ev_io *w, int revents) 1522once_cb_io (EV_P_ struct ev_io *w, int revents)
1031{ 1523{
1032 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1524 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1033} 1525}
1034 1526
1035static void 1527static void
1036once_cb_to (struct ev_timer *w, int revents) 1528once_cb_to (EV_P_ struct ev_timer *w, int revents)
1037{ 1529{
1038 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1530 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1039} 1531}
1040 1532
1041void 1533void
1042ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1534ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1043{ 1535{
1044 struct ev_once *once = malloc (sizeof (struct ev_once)); 1536 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1045 1537
1046 if (!once) 1538 if (!once)
1047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1539 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1048 else 1540 else
1049 { 1541 {
1052 1544
1053 ev_watcher_init (&once->io, once_cb_io); 1545 ev_watcher_init (&once->io, once_cb_io);
1054 if (fd >= 0) 1546 if (fd >= 0)
1055 { 1547 {
1056 ev_io_set (&once->io, fd, events); 1548 ev_io_set (&once->io, fd, events);
1057 ev_io_start (&once->io); 1549 ev_io_start (EV_A_ &once->io);
1058 } 1550 }
1059 1551
1060 ev_watcher_init (&once->to, once_cb_to); 1552 ev_watcher_init (&once->to, once_cb_to);
1061 if (timeout >= 0.) 1553 if (timeout >= 0.)
1062 { 1554 {
1063 ev_timer_set (&once->to, timeout, 0.); 1555 ev_timer_set (&once->to, timeout, 0.);
1064 ev_timer_start (&once->to); 1556 ev_timer_start (EV_A_ &once->to);
1065 } 1557 }
1066 } 1558 }
1067} 1559}
1068 1560
1069/*****************************************************************************/
1070
1071#if 0
1072
1073struct ev_io wio;
1074
1075static void
1076sin_cb (struct ev_io *w, int revents)
1077{
1078 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1079}
1080
1081static void
1082ocb (struct ev_timer *w, int revents)
1083{
1084 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1085 ev_timer_stop (w);
1086 ev_timer_start (w);
1087}
1088
1089static void
1090scb (struct ev_signal *w, int revents)
1091{
1092 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1093 ev_io_stop (&wio);
1094 ev_io_start (&wio);
1095}
1096
1097static void
1098gcb (struct ev_signal *w, int revents)
1099{
1100 fprintf (stderr, "generic %x\n", revents);
1101
1102}
1103
1104int main (void)
1105{
1106 ev_init (0);
1107
1108 ev_io_init (&wio, sin_cb, 0, EV_READ);
1109 ev_io_start (&wio);
1110
1111 struct ev_timer t[10000];
1112
1113#if 0
1114 int i;
1115 for (i = 0; i < 10000; ++i)
1116 {
1117 struct ev_timer *w = t + i;
1118 ev_watcher_init (w, ocb, i);
1119 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1120 ev_timer_start (w);
1121 if (drand48 () < 0.5)
1122 ev_timer_stop (w);
1123 }
1124#endif
1125
1126 struct ev_timer t1;
1127 ev_timer_init (&t1, ocb, 5, 10);
1128 ev_timer_start (&t1);
1129
1130 struct ev_signal sig;
1131 ev_signal_init (&sig, scb, SIGQUIT);
1132 ev_signal_start (&sig);
1133
1134 struct ev_check cw;
1135 ev_check_init (&cw, gcb);
1136 ev_check_start (&cw);
1137
1138 struct ev_idle iw;
1139 ev_idle_init (&iw, gcb);
1140 ev_idle_start (&iw);
1141
1142 ev_loop (0);
1143
1144 return 0;
1145}
1146
1147#endif
1148
1149
1150
1151

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines