ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.38 by root, Thu Nov 1 15:21:13 2007 UTC vs.
Revision 1.79 by root, Fri Nov 9 15:15:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
50 77
51#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
53#endif 80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
54 113
55#ifndef CLOCK_MONOTONIC 114#ifndef CLOCK_MONOTONIC
56# undef EV_USE_MONOTONIC 115# undef EV_USE_MONOTONIC
57# define EV_USE_MONOTONIC 0 116# define EV_USE_MONOTONIC 0
58#endif 117#endif
59 118
60#ifndef EV_USE_SELECT
61# define EV_USE_SELECT 1
62#endif
63
64#ifndef EV_USE_EPOLL
65# define EV_USE_EPOLL 0
66#endif
67
68#ifndef CLOCK_REALTIME 119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
69# define EV_USE_REALTIME 0 121# define EV_USE_REALTIME 0
70#endif 122#endif
71#ifndef EV_USE_REALTIME 123
72# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 124/**/
73#endif
74 125
75#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
76#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
77#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
78#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
79 130
80#include "ev.h" 131#include "ev.h"
132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
81 146
82typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
83typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
84typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
85 150
86static ev_tstamp now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
87ev_tstamp ev_now;
88int ev_method;
89 152
90static int have_monotonic; /* runtime */ 153#include "ev_win32.c"
91
92static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
93static void (*method_modify)(int fd, int oev, int nev);
94static void (*method_poll)(ev_tstamp timeout);
95 154
96/*****************************************************************************/ 155/*****************************************************************************/
97 156
98ev_tstamp 157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
205typedef struct
206{
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210} ANFD;
211
212typedef struct
213{
214 W w;
215 int events;
216} ANPENDING;
217
218#if EV_MULTIPLICITY
219
220struct ev_loop
221{
222# define VAR(name,decl) decl;
223# include "ev_vars.h"
224};
225# undef VAR
226# include "ev_wrap.h"
227
228#else
229
230# define VAR(name,decl) static decl;
231# include "ev_vars.h"
232# undef VAR
233
234#endif
235
236/*****************************************************************************/
237
238inline ev_tstamp
99ev_time (void) 239ev_time (void)
100{ 240{
101#if EV_USE_REALTIME 241#if EV_USE_REALTIME
102 struct timespec ts; 242 struct timespec ts;
103 clock_gettime (CLOCK_REALTIME, &ts); 243 clock_gettime (CLOCK_REALTIME, &ts);
107 gettimeofday (&tv, 0); 247 gettimeofday (&tv, 0);
108 return tv.tv_sec + tv.tv_usec * 1e-6; 248 return tv.tv_sec + tv.tv_usec * 1e-6;
109#endif 249#endif
110} 250}
111 251
112static ev_tstamp 252inline ev_tstamp
113get_clock (void) 253get_clock (void)
114{ 254{
115#if EV_USE_MONOTONIC 255#if EV_USE_MONOTONIC
116 if (have_monotonic) 256 if (expect_true (have_monotonic))
117 { 257 {
118 struct timespec ts; 258 struct timespec ts;
119 clock_gettime (CLOCK_MONOTONIC, &ts); 259 clock_gettime (CLOCK_MONOTONIC, &ts);
120 return ts.tv_sec + ts.tv_nsec * 1e-9; 260 return ts.tv_sec + ts.tv_nsec * 1e-9;
121 } 261 }
122#endif 262#endif
123 263
124 return ev_time (); 264 return ev_time ();
125} 265}
126 266
267ev_tstamp
268ev_now (EV_P)
269{
270 return rt_now;
271}
272
127#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(type,n) ((n) | 4 & ~3)
128 274
129#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
130 if ((cnt) > cur) \ 276 if (expect_false ((cnt) > cur)) \
131 { \ 277 { \
132 int newcnt = cur; \ 278 int newcnt = cur; \
133 do \ 279 do \
134 { \ 280 { \
135 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (type, newcnt << 1); \
136 } \ 282 } \
137 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
138 \ 284 \
139 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
140 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
141 cur = newcnt; \ 287 cur = newcnt; \
142 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
143 305
144/*****************************************************************************/ 306/*****************************************************************************/
145
146typedef struct
147{
148 struct ev_io *head;
149 unsigned char events;
150 unsigned char reify;
151} ANFD;
152
153static ANFD *anfds;
154static int anfdmax;
155 307
156static void 308static void
157anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
158{ 310{
159 while (count--) 311 while (count--)
164 316
165 ++base; 317 ++base;
166 } 318 }
167} 319}
168 320
169typedef struct 321void
322ev_feed_event (EV_P_ void *w, int revents)
170{ 323{
171 W w; 324 W w_ = (W)w;
172 int events;
173} ANPENDING;
174 325
175static ANPENDING *pendings;
176static int pendingmax, pendingcnt;
177
178static void
179event (W w, int events)
180{
181 if (w->pending) 326 if (w_->pending)
182 { 327 {
183 pendings [w->pending - 1].events |= events; 328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
184 return; 329 return;
185 } 330 }
186 331
187 w->pending = ++pendingcnt; 332 w_->pending = ++pendingcnt [ABSPRI (w_)];
188 array_needsize (pendings, pendingmax, pendingcnt, ); 333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
189 pendings [pendingcnt - 1].w = w; 334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
190 pendings [pendingcnt - 1].events = events; 335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
191} 336}
192 337
193static void 338static void
194queue_events (W *events, int eventcnt, int type) 339queue_events (EV_P_ W *events, int eventcnt, int type)
195{ 340{
196 int i; 341 int i;
197 342
198 for (i = 0; i < eventcnt; ++i) 343 for (i = 0; i < eventcnt; ++i)
199 event (events [i], type); 344 ev_feed_event (EV_A_ events [i], type);
200} 345}
201 346
202static void 347inline void
203fd_event (int fd, int events) 348fd_event (EV_P_ int fd, int revents)
204{ 349{
205 ANFD *anfd = anfds + fd; 350 ANFD *anfd = anfds + fd;
206 struct ev_io *w; 351 struct ev_io *w;
207 352
208 for (w = anfd->head; w; w = w->next) 353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
209 { 354 {
210 int ev = w->events & events; 355 int ev = w->events & revents;
211 356
212 if (ev) 357 if (ev)
213 event ((W)w, ev); 358 ev_feed_event (EV_A_ (W)w, ev);
214 } 359 }
360}
361
362void
363ev_feed_fd_event (EV_P_ int fd, int revents)
364{
365 fd_event (EV_A_ fd, revents);
215} 366}
216 367
217/*****************************************************************************/ 368/*****************************************************************************/
218 369
219static int *fdchanges;
220static int fdchangemax, fdchangecnt;
221
222static void 370static void
223fd_reify (void) 371fd_reify (EV_P)
224{ 372{
225 int i; 373 int i;
226 374
227 for (i = 0; i < fdchangecnt; ++i) 375 for (i = 0; i < fdchangecnt; ++i)
228 { 376 {
230 ANFD *anfd = anfds + fd; 378 ANFD *anfd = anfds + fd;
231 struct ev_io *w; 379 struct ev_io *w;
232 380
233 int events = 0; 381 int events = 0;
234 382
235 for (w = anfd->head; w; w = w->next) 383 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
236 events |= w->events; 384 events |= w->events;
237 385
238 anfd->reify = 0; 386 anfd->reify = 0;
239 387
240 if (anfd->events != events)
241 {
242 method_modify (fd, anfd->events, events); 388 method_modify (EV_A_ fd, anfd->events, events);
243 anfd->events = events; 389 anfd->events = events;
244 }
245 } 390 }
246 391
247 fdchangecnt = 0; 392 fdchangecnt = 0;
248} 393}
249 394
250static void 395static void
251fd_change (int fd) 396fd_change (EV_P_ int fd)
252{ 397{
253 if (anfds [fd].reify || fdchangecnt < 0) 398 if (anfds [fd].reify)
254 return; 399 return;
255 400
256 anfds [fd].reify = 1; 401 anfds [fd].reify = 1;
257 402
258 ++fdchangecnt; 403 ++fdchangecnt;
259 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 404 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
260 fdchanges [fdchangecnt - 1] = fd; 405 fdchanges [fdchangecnt - 1] = fd;
261} 406}
262 407
408static void
409fd_kill (EV_P_ int fd)
410{
411 struct ev_io *w;
412
413 while ((w = (struct ev_io *)anfds [fd].head))
414 {
415 ev_io_stop (EV_A_ w);
416 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
417 }
418}
419
420static int
421fd_valid (int fd)
422{
423#ifdef WIN32
424 return !!win32_get_osfhandle (fd);
425#else
426 return fcntl (fd, F_GETFD) != -1;
427#endif
428}
429
263/* called on EBADF to verify fds */ 430/* called on EBADF to verify fds */
264static void 431static void
265fd_recheck (void) 432fd_ebadf (EV_P)
266{ 433{
267 int fd; 434 int fd;
268 435
269 for (fd = 0; fd < anfdmax; ++fd) 436 for (fd = 0; fd < anfdmax; ++fd)
270 if (anfds [fd].events) 437 if (anfds [fd].events)
271 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 438 if (!fd_valid (fd) == -1 && errno == EBADF)
272 while (anfds [fd].head) 439 fd_kill (EV_A_ fd);
440}
441
442/* called on ENOMEM in select/poll to kill some fds and retry */
443static void
444fd_enomem (EV_P)
445{
446 int fd;
447
448 for (fd = anfdmax; fd--; )
449 if (anfds [fd].events)
273 { 450 {
274 ev_io_stop (anfds [fd].head); 451 fd_kill (EV_A_ fd);
275 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 452 return;
276 } 453 }
454}
455
456/* usually called after fork if method needs to re-arm all fds from scratch */
457static void
458fd_rearm_all (EV_P)
459{
460 int fd;
461
462 /* this should be highly optimised to not do anything but set a flag */
463 for (fd = 0; fd < anfdmax; ++fd)
464 if (anfds [fd].events)
465 {
466 anfds [fd].events = 0;
467 fd_change (EV_A_ fd);
468 }
277} 469}
278 470
279/*****************************************************************************/ 471/*****************************************************************************/
280 472
281static struct ev_timer **timers;
282static int timermax, timercnt;
283
284static struct ev_periodic **periodics;
285static int periodicmax, periodiccnt;
286
287static void 473static void
288upheap (WT *timers, int k) 474upheap (WT *heap, int k)
289{ 475{
290 WT w = timers [k]; 476 WT w = heap [k];
291 477
292 while (k && timers [k >> 1]->at > w->at) 478 while (k && heap [k >> 1]->at > w->at)
293 { 479 {
294 timers [k] = timers [k >> 1]; 480 heap [k] = heap [k >> 1];
295 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
296 k >>= 1; 482 k >>= 1;
297 } 483 }
298 484
299 timers [k] = w; 485 heap [k] = w;
300 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
301 487
302} 488}
303 489
304static void 490static void
305downheap (WT *timers, int N, int k) 491downheap (WT *heap, int N, int k)
306{ 492{
307 WT w = timers [k]; 493 WT w = heap [k];
308 494
309 while (k < (N >> 1)) 495 while (k < (N >> 1))
310 { 496 {
311 int j = k << 1; 497 int j = k << 1;
312 498
313 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 499 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
314 ++j; 500 ++j;
315 501
316 if (w->at <= timers [j]->at) 502 if (w->at <= heap [j]->at)
317 break; 503 break;
318 504
319 timers [k] = timers [j]; 505 heap [k] = heap [j];
320 timers [k]->active = k + 1; 506 ((W)heap [k])->active = k + 1;
321 k = j; 507 k = j;
322 } 508 }
323 509
324 timers [k] = w; 510 heap [k] = w;
325 timers [k]->active = k + 1; 511 ((W)heap [k])->active = k + 1;
326} 512}
327 513
328/*****************************************************************************/ 514/*****************************************************************************/
329 515
330typedef struct 516typedef struct
331{ 517{
332 struct ev_signal *head; 518 WL head;
333 sig_atomic_t volatile gotsig; 519 sig_atomic_t volatile gotsig;
334} ANSIG; 520} ANSIG;
335 521
336static ANSIG *signals; 522static ANSIG *signals;
337static int signalmax; 523static int signalmax;
353} 539}
354 540
355static void 541static void
356sighandler (int signum) 542sighandler (int signum)
357{ 543{
544#if WIN32
545 signal (signum, sighandler);
546#endif
547
358 signals [signum - 1].gotsig = 1; 548 signals [signum - 1].gotsig = 1;
359 549
360 if (!gotsig) 550 if (!gotsig)
361 { 551 {
552 int old_errno = errno;
362 gotsig = 1; 553 gotsig = 1;
554#ifdef WIN32
555 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
556#else
363 write (sigpipe [1], &signum, 1); 557 write (sigpipe [1], &signum, 1);
558#endif
559 errno = old_errno;
364 } 560 }
365} 561}
366 562
563void
564ev_feed_signal_event (EV_P_ int signum)
565{
566#if EV_MULTIPLICITY
567 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
568#endif
569
570 --signum;
571
572 if (signum < 0 || signum >= signalmax)
573 return;
574
575 signals [signum].gotsig = 0;
576
577 for (w = signals [signum].head; w; w = w->next)
578 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
579}
580
367static void 581static void
368sigcb (struct ev_io *iow, int revents) 582sigcb (EV_P_ struct ev_io *iow, int revents)
369{ 583{
370 struct ev_signal *w; 584 WL w;
371 int signum; 585 int signum;
372 586
587#ifdef WIN32
588 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
589#else
373 read (sigpipe [0], &revents, 1); 590 read (sigpipe [0], &revents, 1);
591#endif
374 gotsig = 0; 592 gotsig = 0;
375 593
376 for (signum = signalmax; signum--; ) 594 for (signum = signalmax; signum--; )
377 if (signals [signum].gotsig) 595 if (signals [signum].gotsig)
378 { 596 sigevent (EV_A_ signum + 1);
379 signals [signum].gotsig = 0;
380
381 for (w = signals [signum].head; w; w = w->next)
382 event ((W)w, EV_SIGNAL);
383 }
384} 597}
385 598
386static void 599static void
387siginit (void) 600siginit (EV_P)
388{ 601{
602#ifndef WIN32
389 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 603 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
390 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 604 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
391 605
392 /* rather than sort out wether we really need nb, set it */ 606 /* rather than sort out wether we really need nb, set it */
393 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 607 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
394 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 608 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
609#endif
395 610
396 ev_io_set (&sigev, sigpipe [0], EV_READ); 611 ev_io_set (&sigev, sigpipe [0], EV_READ);
397 ev_io_start (&sigev); 612 ev_io_start (EV_A_ &sigev);
613 ev_unref (EV_A); /* child watcher should not keep loop alive */
398} 614}
399 615
400/*****************************************************************************/ 616/*****************************************************************************/
401 617
402static struct ev_idle **idles;
403static int idlemax, idlecnt;
404
405static struct ev_prepare **prepares;
406static int preparemax, preparecnt;
407
408static struct ev_check **checks;
409static int checkmax, checkcnt;
410
411/*****************************************************************************/
412
413static struct ev_child *childs [PID_HASHSIZE]; 618static struct ev_child *childs [PID_HASHSIZE];
619
620#ifndef WIN32
621
414static struct ev_signal childev; 622static struct ev_signal childev;
415 623
416#ifndef WCONTINUED 624#ifndef WCONTINUED
417# define WCONTINUED 0 625# define WCONTINUED 0
418#endif 626#endif
419 627
420static void 628static void
421childcb (struct ev_signal *sw, int revents) 629child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
422{ 630{
423 struct ev_child *w; 631 struct ev_child *w;
632
633 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
634 if (w->pid == pid || !w->pid)
635 {
636 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
637 w->rpid = pid;
638 w->rstatus = status;
639 ev_feed_event (EV_A_ (W)w, EV_CHILD);
640 }
641}
642
643static void
644childcb (EV_P_ struct ev_signal *sw, int revents)
645{
424 int pid, status; 646 int pid, status;
425 647
426 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 648 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
427 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 649 {
428 if (w->pid == pid || w->pid == -1) 650 /* make sure we are called again until all childs have been reaped */
429 { 651 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
430 w->status = status; 652
431 event ((W)w, EV_CHILD); 653 child_reap (EV_A_ sw, pid, pid, status);
432 } 654 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
655 }
433} 656}
657
658#endif
434 659
435/*****************************************************************************/ 660/*****************************************************************************/
436 661
662#if EV_USE_KQUEUE
663# include "ev_kqueue.c"
664#endif
437#if EV_USE_EPOLL 665#if EV_USE_EPOLL
438# include "ev_epoll.c" 666# include "ev_epoll.c"
439#endif 667#endif
668#if EV_USE_POLL
669# include "ev_poll.c"
670#endif
440#if EV_USE_SELECT 671#if EV_USE_SELECT
441# include "ev_select.c" 672# include "ev_select.c"
442#endif 673#endif
443 674
444int 675int
451ev_version_minor (void) 682ev_version_minor (void)
452{ 683{
453 return EV_VERSION_MINOR; 684 return EV_VERSION_MINOR;
454} 685}
455 686
456int ev_init (int flags) 687/* return true if we are running with elevated privileges and should ignore env variables */
688static int
689enable_secure (void)
457{ 690{
691#ifdef WIN32
692 return 0;
693#else
694 return getuid () != geteuid ()
695 || getgid () != getegid ();
696#endif
697}
698
699int
700ev_method (EV_P)
701{
702 return method;
703}
704
705static void
706loop_init (EV_P_ int methods)
707{
458 if (!ev_method) 708 if (!method)
459 { 709 {
460#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
461 { 711 {
462 struct timespec ts; 712 struct timespec ts;
463 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 713 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
464 have_monotonic = 1; 714 have_monotonic = 1;
465 } 715 }
466#endif 716#endif
467 717
468 ev_now = ev_time (); 718 rt_now = ev_time ();
469 now = get_clock (); 719 mn_now = get_clock ();
720 now_floor = mn_now;
470 diff = ev_now - now; 721 rtmn_diff = rt_now - mn_now;
471 722
472 if (pipe (sigpipe)) 723 if (methods == EVMETHOD_AUTO)
473 return 0; 724 if (!enable_secure () && getenv ("LIBEV_METHODS"))
474 725 methods = atoi (getenv ("LIBEV_METHODS"));
726 else
475 ev_method = EVMETHOD_NONE; 727 methods = EVMETHOD_ANY;
728
729 method = 0;
730#if EV_USE_WIN32
731 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
732#endif
733#if EV_USE_KQUEUE
734 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
735#endif
476#if EV_USE_EPOLL 736#if EV_USE_EPOLL
477 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 737 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
738#endif
739#if EV_USE_POLL
740 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
478#endif 741#endif
479#if EV_USE_SELECT 742#if EV_USE_SELECT
480 if (ev_method == EVMETHOD_NONE) select_init (flags); 743 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
481#endif 744#endif
482 745
746 ev_watcher_init (&sigev, sigcb);
747 ev_set_priority (&sigev, EV_MAXPRI);
748 }
749}
750
751void
752loop_destroy (EV_P)
753{
754 int i;
755
756#if EV_USE_WIN32
757 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
758#endif
759#if EV_USE_KQUEUE
760 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
761#endif
762#if EV_USE_EPOLL
763 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
764#endif
765#if EV_USE_POLL
766 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
767#endif
768#if EV_USE_SELECT
769 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
770#endif
771
772 for (i = NUMPRI; i--; )
773 array_free (pending, [i]);
774
775 /* have to use the microsoft-never-gets-it-right macro */
776 array_free_microshit (fdchange);
777 array_free_microshit (timer);
778 array_free_microshit (periodic);
779 array_free_microshit (idle);
780 array_free_microshit (prepare);
781 array_free_microshit (check);
782
783 method = 0;
784}
785
786static void
787loop_fork (EV_P)
788{
789#if EV_USE_EPOLL
790 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
791#endif
792#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
794#endif
795
796 if (ev_is_active (&sigev))
797 {
798 /* default loop */
799
800 ev_ref (EV_A);
801 ev_io_stop (EV_A_ &sigev);
802 close (sigpipe [0]);
803 close (sigpipe [1]);
804
805 while (pipe (sigpipe))
806 syserr ("(libev) error creating pipe");
807
808 siginit (EV_A);
809 }
810
811 postfork = 0;
812}
813
814#if EV_MULTIPLICITY
815struct ev_loop *
816ev_loop_new (int methods)
817{
818 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
819
820 memset (loop, 0, sizeof (struct ev_loop));
821
822 loop_init (EV_A_ methods);
823
824 if (ev_method (EV_A))
825 return loop;
826
827 return 0;
828}
829
830void
831ev_loop_destroy (EV_P)
832{
833 loop_destroy (EV_A);
834 ev_free (loop);
835}
836
837void
838ev_loop_fork (EV_P)
839{
840 postfork = 1;
841}
842
843#endif
844
845#if EV_MULTIPLICITY
846struct ev_loop default_loop_struct;
847static struct ev_loop *default_loop;
848
849struct ev_loop *
850#else
851static int default_loop;
852
853int
854#endif
855ev_default_loop (int methods)
856{
857 if (sigpipe [0] == sigpipe [1])
858 if (pipe (sigpipe))
859 return 0;
860
861 if (!default_loop)
862 {
863#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop = &default_loop_struct;
865#else
866 default_loop = 1;
867#endif
868
869 loop_init (EV_A_ methods);
870
483 if (ev_method) 871 if (ev_method (EV_A))
484 { 872 {
485 ev_watcher_init (&sigev, sigcb);
486 siginit (); 873 siginit (EV_A);
487 874
875#ifndef WIN32
488 ev_signal_init (&childev, childcb, SIGCHLD); 876 ev_signal_init (&childev, childcb, SIGCHLD);
877 ev_set_priority (&childev, EV_MAXPRI);
489 ev_signal_start (&childev); 878 ev_signal_start (EV_A_ &childev);
879 ev_unref (EV_A); /* child watcher should not keep loop alive */
880#endif
490 } 881 }
882 else
883 default_loop = 0;
491 } 884 }
492 885
493 return ev_method; 886 return default_loop;
887}
888
889void
890ev_default_destroy (void)
891{
892#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop;
894#endif
895
896#ifndef WIN32
897 ev_ref (EV_A); /* child watcher */
898 ev_signal_stop (EV_A_ &childev);
899#endif
900
901 ev_ref (EV_A); /* signal watcher */
902 ev_io_stop (EV_A_ &sigev);
903
904 close (sigpipe [0]); sigpipe [0] = 0;
905 close (sigpipe [1]); sigpipe [1] = 0;
906
907 loop_destroy (EV_A);
908}
909
910void
911ev_default_fork (void)
912{
913#if EV_MULTIPLICITY
914 struct ev_loop *loop = default_loop;
915#endif
916
917 if (method)
918 postfork = 1;
494} 919}
495 920
496/*****************************************************************************/ 921/*****************************************************************************/
497 922
498void
499ev_fork_prepare (void)
500{
501 /* nop */
502}
503
504void
505ev_fork_parent (void)
506{
507 /* nop */
508}
509
510void
511ev_fork_child (void)
512{
513#if EV_USE_EPOLL
514 if (ev_method == EVMETHOD_EPOLL)
515 epoll_postfork_child ();
516#endif
517
518 ev_io_stop (&sigev);
519 close (sigpipe [0]);
520 close (sigpipe [1]);
521 pipe (sigpipe);
522 siginit ();
523}
524
525/*****************************************************************************/
526
527static void 923static int
924any_pending (EV_P)
925{
926 int pri;
927
928 for (pri = NUMPRI; pri--; )
929 if (pendingcnt [pri])
930 return 1;
931
932 return 0;
933}
934
935static void
528call_pending (void) 936call_pending (EV_P)
529{ 937{
938 int pri;
939
940 for (pri = NUMPRI; pri--; )
530 while (pendingcnt) 941 while (pendingcnt [pri])
531 { 942 {
532 ANPENDING *p = pendings + --pendingcnt; 943 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
533 944
534 if (p->w) 945 if (p->w)
535 { 946 {
536 p->w->pending = 0; 947 p->w->pending = 0;
537 p->w->cb (p->w, p->events); 948 p->w->cb (EV_A_ p->w, p->events);
538 } 949 }
539 } 950 }
540} 951}
541 952
542static void 953static void
543timers_reify (void) 954timers_reify (EV_P)
544{ 955{
545 while (timercnt && timers [0]->at <= now) 956 while (timercnt && ((WT)timers [0])->at <= mn_now)
546 { 957 {
547 struct ev_timer *w = timers [0]; 958 struct ev_timer *w = timers [0];
959
960 assert (("inactive timer on timer heap detected", ev_is_active (w)));
548 961
549 /* first reschedule or stop timer */ 962 /* first reschedule or stop timer */
550 if (w->repeat) 963 if (w->repeat)
551 { 964 {
552 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 965 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
553 w->at = now + w->repeat; 966 ((WT)w)->at = mn_now + w->repeat;
554 downheap ((WT *)timers, timercnt, 0); 967 downheap ((WT *)timers, timercnt, 0);
555 } 968 }
556 else 969 else
557 ev_timer_stop (w); /* nonrepeating: stop timer */ 970 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
558 971
559 event ((W)w, EV_TIMEOUT); 972 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
560 } 973 }
561} 974}
562 975
563static void 976static void
564periodics_reify (void) 977periodics_reify (EV_P)
565{ 978{
566 while (periodiccnt && periodics [0]->at <= ev_now) 979 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
567 { 980 {
568 struct ev_periodic *w = periodics [0]; 981 struct ev_periodic *w = periodics [0];
569 982
983 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
984
570 /* first reschedule or stop timer */ 985 /* first reschedule or stop timer */
571 if (w->interval) 986 if (w->reschedule_cb)
572 { 987 {
988 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
989
990 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
991 downheap ((WT *)periodics, periodiccnt, 0);
992 }
993 else if (w->interval)
994 {
573 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 995 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
574 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 996 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
575 downheap ((WT *)periodics, periodiccnt, 0); 997 downheap ((WT *)periodics, periodiccnt, 0);
576 } 998 }
577 else 999 else
578 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1000 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
579 1001
580 event ((W)w, EV_PERIODIC); 1002 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
581 } 1003 }
582} 1004}
583 1005
584static void 1006static void
585periodics_reschedule (ev_tstamp diff) 1007periodics_reschedule (EV_P)
586{ 1008{
587 int i; 1009 int i;
588 1010
589 /* adjust periodics after time jump */ 1011 /* adjust periodics after time jump */
590 for (i = 0; i < periodiccnt; ++i) 1012 for (i = 0; i < periodiccnt; ++i)
591 { 1013 {
592 struct ev_periodic *w = periodics [i]; 1014 struct ev_periodic *w = periodics [i];
593 1015
1016 if (w->reschedule_cb)
1017 ((WT)w)->at = w->reschedule_cb (w, rt_now);
594 if (w->interval) 1018 else if (w->interval)
1019 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1020 }
1021
1022 /* now rebuild the heap */
1023 for (i = periodiccnt >> 1; i--; )
1024 downheap ((WT *)periodics, periodiccnt, i);
1025}
1026
1027inline int
1028time_update_monotonic (EV_P)
1029{
1030 mn_now = get_clock ();
1031
1032 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 {
1034 rt_now = rtmn_diff + mn_now;
1035 return 0;
1036 }
1037 else
1038 {
1039 now_floor = mn_now;
1040 rt_now = ev_time ();
1041 return 1;
1042 }
1043}
1044
1045static void
1046time_update (EV_P)
1047{
1048 int i;
1049
1050#if EV_USE_MONOTONIC
1051 if (expect_true (have_monotonic))
1052 {
1053 if (time_update_monotonic (EV_A))
595 { 1054 {
596 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1055 ev_tstamp odiff = rtmn_diff;
597 1056
598 if (fabs (diff) >= 1e-4) 1057 for (i = 4; --i; ) /* loop a few times, before making important decisions */
599 { 1058 {
600 ev_periodic_stop (w); 1059 rtmn_diff = rt_now - mn_now;
601 ev_periodic_start (w);
602 1060
603 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1061 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1062 return; /* all is well */
1063
1064 rt_now = ev_time ();
1065 mn_now = get_clock ();
1066 now_floor = mn_now;
604 } 1067 }
1068
1069 periodics_reschedule (EV_A);
1070 /* no timer adjustment, as the monotonic clock doesn't jump */
1071 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
605 } 1072 }
606 } 1073 }
607} 1074 else
608 1075#endif
609static void 1076 {
610time_update (void)
611{
612 int i;
613
614 ev_now = ev_time (); 1077 rt_now = ev_time ();
615 1078
616 if (have_monotonic) 1079 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
617 {
618 ev_tstamp odiff = diff;
619
620 for (i = 4; --i; ) /* loop a few times, before making important decisions */
621 { 1080 {
622 now = get_clock ();
623 diff = ev_now - now;
624
625 if (fabs (odiff - diff) < MIN_TIMEJUMP)
626 return; /* all is well */
627
628 ev_now = ev_time ();
629 }
630
631 periodics_reschedule (diff - odiff);
632 /* no timer adjustment, as the monotonic clock doesn't jump */
633 }
634 else
635 {
636 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
637 {
638 periodics_reschedule (ev_now - now); 1081 periodics_reschedule (EV_A);
639 1082
640 /* adjust timers. this is easy, as the offset is the same for all */ 1083 /* adjust timers. this is easy, as the offset is the same for all */
641 for (i = 0; i < timercnt; ++i) 1084 for (i = 0; i < timercnt; ++i)
642 timers [i]->at += diff; 1085 ((WT)timers [i])->at += rt_now - mn_now;
643 } 1086 }
644 1087
645 now = ev_now; 1088 mn_now = rt_now;
646 } 1089 }
647} 1090}
648 1091
649int ev_loop_done; 1092void
1093ev_ref (EV_P)
1094{
1095 ++activecnt;
1096}
650 1097
1098void
1099ev_unref (EV_P)
1100{
1101 --activecnt;
1102}
1103
1104static int loop_done;
1105
1106void
651void ev_loop (int flags) 1107ev_loop (EV_P_ int flags)
652{ 1108{
653 double block; 1109 double block;
654 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1110 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
655 1111
656 do 1112 do
657 { 1113 {
658 /* queue check watchers (and execute them) */ 1114 /* queue check watchers (and execute them) */
659 if (preparecnt) 1115 if (expect_false (preparecnt))
660 { 1116 {
661 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1117 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
662 call_pending (); 1118 call_pending (EV_A);
663 } 1119 }
664 1120
1121 /* we might have forked, so reify kernel state if necessary */
1122 if (expect_false (postfork))
1123 loop_fork (EV_A);
1124
665 /* update fd-related kernel structures */ 1125 /* update fd-related kernel structures */
666 fd_reify (); 1126 fd_reify (EV_A);
667 1127
668 /* calculate blocking time */ 1128 /* calculate blocking time */
669 1129
670 /* we only need this for !monotonic clockor timers, but as we basically 1130 /* we only need this for !monotonic clock or timers, but as we basically
671 always have timers, we just calculate it always */ 1131 always have timers, we just calculate it always */
1132#if EV_USE_MONOTONIC
1133 if (expect_true (have_monotonic))
1134 time_update_monotonic (EV_A);
1135 else
1136#endif
1137 {
672 ev_now = ev_time (); 1138 rt_now = ev_time ();
1139 mn_now = rt_now;
1140 }
673 1141
674 if (flags & EVLOOP_NONBLOCK || idlecnt) 1142 if (flags & EVLOOP_NONBLOCK || idlecnt)
675 block = 0.; 1143 block = 0.;
676 else 1144 else
677 { 1145 {
678 block = MAX_BLOCKTIME; 1146 block = MAX_BLOCKTIME;
679 1147
680 if (timercnt) 1148 if (timercnt)
681 { 1149 {
682 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1150 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
683 if (block > to) block = to; 1151 if (block > to) block = to;
684 } 1152 }
685 1153
686 if (periodiccnt) 1154 if (periodiccnt)
687 { 1155 {
688 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1156 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
689 if (block > to) block = to; 1157 if (block > to) block = to;
690 } 1158 }
691 1159
692 if (block < 0.) block = 0.; 1160 if (block < 0.) block = 0.;
693 } 1161 }
694 1162
695 method_poll (block); 1163 method_poll (EV_A_ block);
696 1164
697 /* update ev_now, do magic */ 1165 /* update rt_now, do magic */
698 time_update (); 1166 time_update (EV_A);
699 1167
700 /* queue pending timers and reschedule them */ 1168 /* queue pending timers and reschedule them */
701 timers_reify (); /* relative timers called last */ 1169 timers_reify (EV_A); /* relative timers called last */
702 periodics_reify (); /* absolute timers called first */ 1170 periodics_reify (EV_A); /* absolute timers called first */
703 1171
704 /* queue idle watchers unless io or timers are pending */ 1172 /* queue idle watchers unless io or timers are pending */
705 if (!pendingcnt) 1173 if (idlecnt && !any_pending (EV_A))
706 queue_events ((W *)idles, idlecnt, EV_IDLE); 1174 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
707 1175
708 /* queue check watchers, to be executed first */ 1176 /* queue check watchers, to be executed first */
709 if (checkcnt) 1177 if (checkcnt)
710 queue_events ((W *)checks, checkcnt, EV_CHECK); 1178 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
711 1179
712 call_pending (); 1180 call_pending (EV_A);
713 } 1181 }
714 while (!ev_loop_done); 1182 while (activecnt && !loop_done);
715 1183
716 if (ev_loop_done != 2) 1184 if (loop_done != 2)
717 ev_loop_done = 0; 1185 loop_done = 0;
1186}
1187
1188void
1189ev_unloop (EV_P_ int how)
1190{
1191 loop_done = how;
718} 1192}
719 1193
720/*****************************************************************************/ 1194/*****************************************************************************/
721 1195
722static void 1196inline void
723wlist_add (WL *head, WL elem) 1197wlist_add (WL *head, WL elem)
724{ 1198{
725 elem->next = *head; 1199 elem->next = *head;
726 *head = elem; 1200 *head = elem;
727} 1201}
728 1202
729static void 1203inline void
730wlist_del (WL *head, WL elem) 1204wlist_del (WL *head, WL elem)
731{ 1205{
732 while (*head) 1206 while (*head)
733 { 1207 {
734 if (*head == elem) 1208 if (*head == elem)
739 1213
740 head = &(*head)->next; 1214 head = &(*head)->next;
741 } 1215 }
742} 1216}
743 1217
744static void 1218inline void
745ev_clear_pending (W w) 1219ev_clear_pending (EV_P_ W w)
746{ 1220{
747 if (w->pending) 1221 if (w->pending)
748 { 1222 {
749 pendings [w->pending - 1].w = 0; 1223 pendings [ABSPRI (w)][w->pending - 1].w = 0;
750 w->pending = 0; 1224 w->pending = 0;
751 } 1225 }
752} 1226}
753 1227
754static void 1228inline void
755ev_start (W w, int active) 1229ev_start (EV_P_ W w, int active)
756{ 1230{
1231 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1232 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1233
757 w->active = active; 1234 w->active = active;
1235 ev_ref (EV_A);
758} 1236}
759 1237
760static void 1238inline void
761ev_stop (W w) 1239ev_stop (EV_P_ W w)
762{ 1240{
1241 ev_unref (EV_A);
763 w->active = 0; 1242 w->active = 0;
764} 1243}
765 1244
766/*****************************************************************************/ 1245/*****************************************************************************/
767 1246
768void 1247void
769ev_io_start (struct ev_io *w) 1248ev_io_start (EV_P_ struct ev_io *w)
770{ 1249{
771 int fd = w->fd; 1250 int fd = w->fd;
772 1251
773 if (ev_is_active (w)) 1252 if (ev_is_active (w))
774 return; 1253 return;
775 1254
776 assert (("ev_io_start called with negative fd", fd >= 0)); 1255 assert (("ev_io_start called with negative fd", fd >= 0));
777 1256
778 ev_start ((W)w, 1); 1257 ev_start (EV_A_ (W)w, 1);
779 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1258 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
780 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1259 wlist_add ((WL *)&anfds[fd].head, (WL)w);
781 1260
782 fd_change (fd); 1261 fd_change (EV_A_ fd);
783} 1262}
784 1263
785void 1264void
786ev_io_stop (struct ev_io *w) 1265ev_io_stop (EV_P_ struct ev_io *w)
787{ 1266{
788 ev_clear_pending ((W)w); 1267 ev_clear_pending (EV_A_ (W)w);
789 if (!ev_is_active (w)) 1268 if (!ev_is_active (w))
790 return; 1269 return;
791 1270
792 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1271 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
793 ev_stop ((W)w); 1272 ev_stop (EV_A_ (W)w);
794 1273
795 fd_change (w->fd); 1274 fd_change (EV_A_ w->fd);
796} 1275}
797 1276
798void 1277void
799ev_timer_start (struct ev_timer *w) 1278ev_timer_start (EV_P_ struct ev_timer *w)
800{ 1279{
801 if (ev_is_active (w)) 1280 if (ev_is_active (w))
802 return; 1281 return;
803 1282
804 w->at += now; 1283 ((WT)w)->at += mn_now;
805 1284
806 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1285 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
807 1286
808 ev_start ((W)w, ++timercnt); 1287 ev_start (EV_A_ (W)w, ++timercnt);
809 array_needsize (timers, timermax, timercnt, ); 1288 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
810 timers [timercnt - 1] = w; 1289 timers [timercnt - 1] = w;
811 upheap ((WT *)timers, timercnt - 1); 1290 upheap ((WT *)timers, timercnt - 1);
812}
813 1291
1292 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1293}
1294
814void 1295void
815ev_timer_stop (struct ev_timer *w) 1296ev_timer_stop (EV_P_ struct ev_timer *w)
816{ 1297{
817 ev_clear_pending ((W)w); 1298 ev_clear_pending (EV_A_ (W)w);
818 if (!ev_is_active (w)) 1299 if (!ev_is_active (w))
819 return; 1300 return;
820 1301
1302 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1303
821 if (w->active < timercnt--) 1304 if (((W)w)->active < timercnt--)
822 { 1305 {
823 timers [w->active - 1] = timers [timercnt]; 1306 timers [((W)w)->active - 1] = timers [timercnt];
824 downheap ((WT *)timers, timercnt, w->active - 1); 1307 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
825 } 1308 }
826 1309
827 w->at = w->repeat; 1310 ((WT)w)->at = w->repeat;
828 1311
829 ev_stop ((W)w); 1312 ev_stop (EV_A_ (W)w);
830} 1313}
831 1314
832void 1315void
833ev_timer_again (struct ev_timer *w) 1316ev_timer_again (EV_P_ struct ev_timer *w)
834{ 1317{
835 if (ev_is_active (w)) 1318 if (ev_is_active (w))
836 { 1319 {
837 if (w->repeat) 1320 if (w->repeat)
838 { 1321 {
839 w->at = now + w->repeat; 1322 ((WT)w)->at = mn_now + w->repeat;
840 downheap ((WT *)timers, timercnt, w->active - 1); 1323 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
841 } 1324 }
842 else 1325 else
843 ev_timer_stop (w); 1326 ev_timer_stop (EV_A_ w);
844 } 1327 }
845 else if (w->repeat) 1328 else if (w->repeat)
846 ev_timer_start (w); 1329 ev_timer_start (EV_A_ w);
847} 1330}
848 1331
849void 1332void
850ev_periodic_start (struct ev_periodic *w) 1333ev_periodic_start (EV_P_ struct ev_periodic *w)
851{ 1334{
852 if (ev_is_active (w)) 1335 if (ev_is_active (w))
853 return; 1336 return;
854 1337
1338 if (w->reschedule_cb)
1339 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1340 else if (w->interval)
1341 {
855 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1342 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
856
857 /* this formula differs from the one in periodic_reify because we do not always round up */ 1343 /* this formula differs from the one in periodic_reify because we do not always round up */
858 if (w->interval)
859 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1344 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1345 }
860 1346
861 ev_start ((W)w, ++periodiccnt); 1347 ev_start (EV_A_ (W)w, ++periodiccnt);
862 array_needsize (periodics, periodicmax, periodiccnt, ); 1348 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
863 periodics [periodiccnt - 1] = w; 1349 periodics [periodiccnt - 1] = w;
864 upheap ((WT *)periodics, periodiccnt - 1); 1350 upheap ((WT *)periodics, periodiccnt - 1);
865}
866 1351
1352 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1353}
1354
867void 1355void
868ev_periodic_stop (struct ev_periodic *w) 1356ev_periodic_stop (EV_P_ struct ev_periodic *w)
869{ 1357{
870 ev_clear_pending ((W)w); 1358 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1359 if (!ev_is_active (w))
872 return; 1360 return;
873 1361
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363
874 if (w->active < periodiccnt--) 1364 if (((W)w)->active < periodiccnt--)
875 { 1365 {
876 periodics [w->active - 1] = periodics [periodiccnt]; 1366 periodics [((W)w)->active - 1] = periodics [periodiccnt];
877 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1367 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
878 } 1368 }
879 1369
880 ev_stop ((W)w); 1370 ev_stop (EV_A_ (W)w);
881} 1371}
882 1372
883void 1373void
1374ev_periodic_again (EV_P_ struct ev_periodic *w)
1375{
1376 ev_periodic_stop (EV_A_ w);
1377 ev_periodic_start (EV_A_ w);
1378}
1379
1380void
884ev_signal_start (struct ev_signal *w) 1381ev_idle_start (EV_P_ struct ev_idle *w)
885{ 1382{
886 if (ev_is_active (w)) 1383 if (ev_is_active (w))
887 return; 1384 return;
888 1385
1386 ev_start (EV_A_ (W)w, ++idlecnt);
1387 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1388 idles [idlecnt - 1] = w;
1389}
1390
1391void
1392ev_idle_stop (EV_P_ struct ev_idle *w)
1393{
1394 ev_clear_pending (EV_A_ (W)w);
1395 if (ev_is_active (w))
1396 return;
1397
1398 idles [((W)w)->active - 1] = idles [--idlecnt];
1399 ev_stop (EV_A_ (W)w);
1400}
1401
1402void
1403ev_prepare_start (EV_P_ struct ev_prepare *w)
1404{
1405 if (ev_is_active (w))
1406 return;
1407
1408 ev_start (EV_A_ (W)w, ++preparecnt);
1409 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1410 prepares [preparecnt - 1] = w;
1411}
1412
1413void
1414ev_prepare_stop (EV_P_ struct ev_prepare *w)
1415{
1416 ev_clear_pending (EV_A_ (W)w);
1417 if (ev_is_active (w))
1418 return;
1419
1420 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1421 ev_stop (EV_A_ (W)w);
1422}
1423
1424void
1425ev_check_start (EV_P_ struct ev_check *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++checkcnt);
1431 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1432 checks [checkcnt - 1] = w;
1433}
1434
1435void
1436ev_check_stop (EV_P_ struct ev_check *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 checks [((W)w)->active - 1] = checks [--checkcnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445
1446#ifndef SA_RESTART
1447# define SA_RESTART 0
1448#endif
1449
1450void
1451ev_signal_start (EV_P_ struct ev_signal *w)
1452{
1453#if EV_MULTIPLICITY
1454 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1455#endif
1456 if (ev_is_active (w))
1457 return;
1458
889 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1459 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
890 1460
891 ev_start ((W)w, 1); 1461 ev_start (EV_A_ (W)w, 1);
892 array_needsize (signals, signalmax, w->signum, signals_init); 1462 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
893 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1463 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
894 1464
895 if (!w->next) 1465 if (!((WL)w)->next)
896 { 1466 {
1467#if WIN32
1468 signal (w->signum, sighandler);
1469#else
897 struct sigaction sa; 1470 struct sigaction sa;
898 sa.sa_handler = sighandler; 1471 sa.sa_handler = sighandler;
899 sigfillset (&sa.sa_mask); 1472 sigfillset (&sa.sa_mask);
900 sa.sa_flags = 0; 1473 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
901 sigaction (w->signum, &sa, 0); 1474 sigaction (w->signum, &sa, 0);
1475#endif
902 } 1476 }
903} 1477}
904 1478
905void 1479void
906ev_signal_stop (struct ev_signal *w) 1480ev_signal_stop (EV_P_ struct ev_signal *w)
907{ 1481{
908 ev_clear_pending ((W)w); 1482 ev_clear_pending (EV_A_ (W)w);
909 if (!ev_is_active (w)) 1483 if (!ev_is_active (w))
910 return; 1484 return;
911 1485
912 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1486 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
913 ev_stop ((W)w); 1487 ev_stop (EV_A_ (W)w);
914 1488
915 if (!signals [w->signum - 1].head) 1489 if (!signals [w->signum - 1].head)
916 signal (w->signum, SIG_DFL); 1490 signal (w->signum, SIG_DFL);
917} 1491}
918 1492
919void 1493void
920ev_idle_start (struct ev_idle *w) 1494ev_child_start (EV_P_ struct ev_child *w)
921{ 1495{
1496#if EV_MULTIPLICITY
1497 assert (("child watchers are only supported in the default loop", loop == default_loop));
1498#endif
922 if (ev_is_active (w)) 1499 if (ev_is_active (w))
923 return; 1500 return;
924 1501
925 ev_start ((W)w, ++idlecnt); 1502 ev_start (EV_A_ (W)w, 1);
926 array_needsize (idles, idlemax, idlecnt, ); 1503 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
927 idles [idlecnt - 1] = w;
928} 1504}
929 1505
930void 1506void
931ev_idle_stop (struct ev_idle *w) 1507ev_child_stop (EV_P_ struct ev_child *w)
932{ 1508{
933 ev_clear_pending ((W)w); 1509 ev_clear_pending (EV_A_ (W)w);
934 if (ev_is_active (w)) 1510 if (ev_is_active (w))
935 return; 1511 return;
936 1512
937 idles [w->active - 1] = idles [--idlecnt];
938 ev_stop ((W)w);
939}
940
941void
942ev_prepare_start (struct ev_prepare *w)
943{
944 if (ev_is_active (w))
945 return;
946
947 ev_start ((W)w, ++preparecnt);
948 array_needsize (prepares, preparemax, preparecnt, );
949 prepares [preparecnt - 1] = w;
950}
951
952void
953ev_prepare_stop (struct ev_prepare *w)
954{
955 ev_clear_pending ((W)w);
956 if (ev_is_active (w))
957 return;
958
959 prepares [w->active - 1] = prepares [--preparecnt];
960 ev_stop ((W)w);
961}
962
963void
964ev_check_start (struct ev_check *w)
965{
966 if (ev_is_active (w))
967 return;
968
969 ev_start ((W)w, ++checkcnt);
970 array_needsize (checks, checkmax, checkcnt, );
971 checks [checkcnt - 1] = w;
972}
973
974void
975ev_check_stop (struct ev_check *w)
976{
977 ev_clear_pending ((W)w);
978 if (ev_is_active (w))
979 return;
980
981 checks [w->active - 1] = checks [--checkcnt];
982 ev_stop ((W)w);
983}
984
985void
986ev_child_start (struct ev_child *w)
987{
988 if (ev_is_active (w))
989 return;
990
991 ev_start ((W)w, 1);
992 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
993}
994
995void
996ev_child_stop (struct ev_child *w)
997{
998 ev_clear_pending ((W)w);
999 if (ev_is_active (w))
1000 return;
1001
1002 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1513 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1003 ev_stop ((W)w); 1514 ev_stop (EV_A_ (W)w);
1004} 1515}
1005 1516
1006/*****************************************************************************/ 1517/*****************************************************************************/
1007 1518
1008struct ev_once 1519struct ev_once
1012 void (*cb)(int revents, void *arg); 1523 void (*cb)(int revents, void *arg);
1013 void *arg; 1524 void *arg;
1014}; 1525};
1015 1526
1016static void 1527static void
1017once_cb (struct ev_once *once, int revents) 1528once_cb (EV_P_ struct ev_once *once, int revents)
1018{ 1529{
1019 void (*cb)(int revents, void *arg) = once->cb; 1530 void (*cb)(int revents, void *arg) = once->cb;
1020 void *arg = once->arg; 1531 void *arg = once->arg;
1021 1532
1022 ev_io_stop (&once->io); 1533 ev_io_stop (EV_A_ &once->io);
1023 ev_timer_stop (&once->to); 1534 ev_timer_stop (EV_A_ &once->to);
1024 free (once); 1535 ev_free (once);
1025 1536
1026 cb (revents, arg); 1537 cb (revents, arg);
1027} 1538}
1028 1539
1029static void 1540static void
1030once_cb_io (struct ev_io *w, int revents) 1541once_cb_io (EV_P_ struct ev_io *w, int revents)
1031{ 1542{
1032 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1543 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1033} 1544}
1034 1545
1035static void 1546static void
1036once_cb_to (struct ev_timer *w, int revents) 1547once_cb_to (EV_P_ struct ev_timer *w, int revents)
1037{ 1548{
1038 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1549 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1039} 1550}
1040 1551
1041void 1552void
1042ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1553ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1043{ 1554{
1044 struct ev_once *once = malloc (sizeof (struct ev_once)); 1555 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1045 1556
1046 if (!once) 1557 if (!once)
1047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1558 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1048 else 1559 else
1049 { 1560 {
1052 1563
1053 ev_watcher_init (&once->io, once_cb_io); 1564 ev_watcher_init (&once->io, once_cb_io);
1054 if (fd >= 0) 1565 if (fd >= 0)
1055 { 1566 {
1056 ev_io_set (&once->io, fd, events); 1567 ev_io_set (&once->io, fd, events);
1057 ev_io_start (&once->io); 1568 ev_io_start (EV_A_ &once->io);
1058 } 1569 }
1059 1570
1060 ev_watcher_init (&once->to, once_cb_to); 1571 ev_watcher_init (&once->to, once_cb_to);
1061 if (timeout >= 0.) 1572 if (timeout >= 0.)
1062 { 1573 {
1063 ev_timer_set (&once->to, timeout, 0.); 1574 ev_timer_set (&once->to, timeout, 0.);
1064 ev_timer_start (&once->to); 1575 ev_timer_start (EV_A_ &once->to);
1065 } 1576 }
1066 } 1577 }
1067} 1578}
1068 1579
1069/*****************************************************************************/
1070
1071#if 0
1072
1073struct ev_io wio;
1074
1075static void
1076sin_cb (struct ev_io *w, int revents)
1077{
1078 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1079}
1080
1081static void
1082ocb (struct ev_timer *w, int revents)
1083{
1084 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1085 ev_timer_stop (w);
1086 ev_timer_start (w);
1087}
1088
1089static void
1090scb (struct ev_signal *w, int revents)
1091{
1092 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1093 ev_io_stop (&wio);
1094 ev_io_start (&wio);
1095}
1096
1097static void
1098gcb (struct ev_signal *w, int revents)
1099{
1100 fprintf (stderr, "generic %x\n", revents);
1101
1102}
1103
1104int main (void)
1105{
1106 ev_init (0);
1107
1108 ev_io_init (&wio, sin_cb, 0, EV_READ);
1109 ev_io_start (&wio);
1110
1111 struct ev_timer t[10000];
1112
1113#if 0
1114 int i;
1115 for (i = 0; i < 10000; ++i)
1116 {
1117 struct ev_timer *w = t + i;
1118 ev_watcher_init (w, ocb, i);
1119 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1120 ev_timer_start (w);
1121 if (drand48 () < 0.5)
1122 ev_timer_stop (w);
1123 }
1124#endif
1125
1126 struct ev_timer t1;
1127 ev_timer_init (&t1, ocb, 5, 10);
1128 ev_timer_start (&t1);
1129
1130 struct ev_signal sig;
1131 ev_signal_init (&sig, scb, SIGQUIT);
1132 ev_signal_start (&sig);
1133
1134 struct ev_check cw;
1135 ev_check_init (&cw, gcb);
1136 ev_check_start (&cw);
1137
1138 struct ev_idle iw;
1139 ev_idle_init (&iw, gcb);
1140 ev_idle_start (&iw);
1141
1142 ev_loop (0);
1143
1144 return 0;
1145}
1146
1147#endif
1148
1149
1150
1151

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines