ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.122 by root, Sat Nov 17 02:00:48 2007 UTC vs.
Revision 1.380 by root, Mon Jun 27 19:20:01 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
66# endif 127# endif
67 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
68#endif 136# endif
69 137
70#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
71#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
72#include <fcntl.h> 169#include <fcntl.h>
73#include <stddef.h> 170#include <stddef.h>
74 171
75#include <stdio.h> 172#include <stdio.h>
76 173
77#include <assert.h> 174#include <assert.h>
78#include <errno.h> 175#include <errno.h>
79#include <sys/types.h> 176#include <sys/types.h>
80#include <time.h> 177#include <time.h>
178#include <limits.h>
81 179
82#include <signal.h> 180#include <signal.h>
83 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
84#ifndef _WIN32 190#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 191# include <sys/time.h>
87# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
88#else 194#else
195# include <io.h>
89# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 197# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
93# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
94#endif 251# endif
95 252#endif
96/**/
97 253
98#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
99# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
100#endif 260#endif
101 261
102#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
104#endif 272#endif
105 273
106#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 276#endif
109 277
110#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
111# ifdef _WIN32 279# ifdef _WIN32
112# define EV_USE_POLL 0 280# define EV_USE_POLL 0
113# else 281# else
114# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 283# endif
116#endif 284#endif
117 285
118#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
119# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
120#endif 292#endif
121 293
122#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
124#endif 296#endif
125 297
126#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 299# define EV_USE_PORT 0
128#endif 300#endif
129 301
130/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
131 309
132/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
133#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 370# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
136#endif 372#endif
137 373
138#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
143#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
146#endif 382#endif
147 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
148#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 407# include <winsock.h>
150#endif 408#endif
151 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
152/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
153 462
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 465
159#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
160# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
161#else 493#else
162# include "ev.h" 494 #define ecb_inline static
163#endif 495#endif
164 496
165#if __GNUC__ >= 3 497#if ECB_GCC_VERSION(3,1)
498 #define ecb_attribute(attrlist) __attribute__(attrlist)
499 #define ecb_is_constant(expr) __builtin_constant_p (expr)
166# define expect(expr,value) __builtin_expect ((expr),(value)) 500 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
167# define inline inline 501 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
168#else 502#else
503 #define ecb_attribute(attrlist)
504 #define ecb_is_constant(expr) 0
169# define expect(expr,value) (expr) 505 #define ecb_expect(expr,value) (expr)
170# define inline static 506 #define ecb_prefetch(addr,rw,locality)
171#endif 507#endif
172 508
509#define ecb_noinline ecb_attribute ((__noinline__))
510#define ecb_noreturn ecb_attribute ((__noreturn__))
511#define ecb_unused ecb_attribute ((__unused__))
512#define ecb_const ecb_attribute ((__const__))
513#define ecb_pure ecb_attribute ((__pure__))
514
515#if ECB_GCC_VERSION(4,3)
516 #define ecb_artificial ecb_attribute ((__artificial__))
517 #define ecb_hot ecb_attribute ((__hot__))
518 #define ecb_cold ecb_attribute ((__cold__))
519#else
520 #define ecb_artificial
521 #define ecb_hot
522 #define ecb_cold
523#endif
524
525/* put around conditional expressions if you are very sure that the */
526/* expression is mostly true or mostly false. note that these return */
527/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 528#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 529#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
530/* ecb.h end */
175 531
532#define expect_false(cond) ecb_expect_false (cond)
533#define expect_true(cond) ecb_expect_true (cond)
534#define noinline ecb_noinline
535
536#define inline_size ecb_inline
537
538#if EV_FEATURE_CODE
539# define inline_speed ecb_inline
540#else
541# define inline_speed static noinline
542#endif
543
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 544#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
545
546#if EV_MINPRI == EV_MAXPRI
547# define ABSPRI(w) (((W)w), 0)
548#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 549# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
550#endif
178 551
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 552#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 553#define EMPTY2(a,b) /* used to suppress some warnings */
181 554
182typedef struct ev_watcher *W; 555typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 556typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 557typedef ev_watcher_time *WT;
185 558
559#define ev_active(w) ((W)(w))->active
560#define ev_at(w) ((WT)(w))->at
561
562#if EV_USE_REALTIME
563/* sig_atomic_t is used to avoid per-thread variables or locking but still */
564/* giving it a reasonably high chance of working on typical architectures */
565static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
566#endif
567
568#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 569static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
570#endif
571
572#ifndef EV_FD_TO_WIN32_HANDLE
573# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
574#endif
575#ifndef EV_WIN32_HANDLE_TO_FD
576# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
577#endif
578#ifndef EV_WIN32_CLOSE_FD
579# define EV_WIN32_CLOSE_FD(fd) close (fd)
580#endif
187 581
188#ifdef _WIN32 582#ifdef _WIN32
189# include "ev_win32.c" 583# include "ev_win32.c"
190#endif 584#endif
191 585
192/*****************************************************************************/ 586/*****************************************************************************/
193 587
588/* define a suitable floor function (only used by periodics atm) */
589
590#if EV_USE_FLOOR
591# include <math.h>
592# define ev_floor(v) floor (v)
593#else
594
595#include <float.h>
596
597/* a floor() replacement function, should be independent of ev_tstamp type */
598static ev_tstamp noinline
599ev_floor (ev_tstamp v)
600{
601 /* the choice of shift factor is not terribly important */
602#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
603 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
604#else
605 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
606#endif
607
608 /* argument too large for an unsigned long? */
609 if (expect_false (v >= shift))
610 {
611 ev_tstamp f;
612
613 if (v == v - 1.)
614 return v; /* very large number */
615
616 f = shift * ev_floor (v * (1. / shift));
617 return f + ev_floor (v - f);
618 }
619
620 /* special treatment for negative args? */
621 if (expect_false (v < 0.))
622 {
623 ev_tstamp f = -ev_floor (-v);
624
625 return f - (f == v ? 0 : 1);
626 }
627
628 /* fits into an unsigned long */
629 return (unsigned long)v;
630}
631
632#endif
633
634/*****************************************************************************/
635
636#ifdef __linux
637# include <sys/utsname.h>
638#endif
639
640static unsigned int noinline ecb_cold
641ev_linux_version (void)
642{
643#ifdef __linux
644 unsigned int v = 0;
645 struct utsname buf;
646 int i;
647 char *p = buf.release;
648
649 if (uname (&buf))
650 return 0;
651
652 for (i = 3+1; --i; )
653 {
654 unsigned int c = 0;
655
656 for (;;)
657 {
658 if (*p >= '0' && *p <= '9')
659 c = c * 10 + *p++ - '0';
660 else
661 {
662 p += *p == '.';
663 break;
664 }
665 }
666
667 v = (v << 8) | c;
668 }
669
670 return v;
671#else
672 return 0;
673#endif
674}
675
676/*****************************************************************************/
677
678#if EV_AVOID_STDIO
679static void noinline ecb_cold
680ev_printerr (const char *msg)
681{
682 write (STDERR_FILENO, msg, strlen (msg));
683}
684#endif
685
194static void (*syserr_cb)(const char *msg); 686static void (*syserr_cb)(const char *msg);
195 687
688void ecb_cold
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 689ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 690{
198 syserr_cb = cb; 691 syserr_cb = cb;
199} 692}
200 693
201static void 694static void noinline ecb_cold
202syserr (const char *msg) 695ev_syserr (const char *msg)
203{ 696{
204 if (!msg) 697 if (!msg)
205 msg = "(libev) system error"; 698 msg = "(libev) system error";
206 699
207 if (syserr_cb) 700 if (syserr_cb)
208 syserr_cb (msg); 701 syserr_cb (msg);
209 else 702 else
210 { 703 {
704#if EV_AVOID_STDIO
705 ev_printerr (msg);
706 ev_printerr (": ");
707 ev_printerr (strerror (errno));
708 ev_printerr ("\n");
709#else
211 perror (msg); 710 perror (msg);
711#endif
212 abort (); 712 abort ();
213 } 713 }
214} 714}
215 715
716static void *
717ev_realloc_emul (void *ptr, long size)
718{
719#if __GLIBC__
720 return realloc (ptr, size);
721#else
722 /* some systems, notably openbsd and darwin, fail to properly
723 * implement realloc (x, 0) (as required by both ansi c-89 and
724 * the single unix specification, so work around them here.
725 */
726
727 if (size)
728 return realloc (ptr, size);
729
730 free (ptr);
731 return 0;
732#endif
733}
734
216static void *(*alloc)(void *ptr, long size); 735static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 736
737void ecb_cold
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 738ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 739{
220 alloc = cb; 740 alloc = cb;
221} 741}
222 742
223static void * 743inline_speed void *
224ev_realloc (void *ptr, long size) 744ev_realloc (void *ptr, long size)
225{ 745{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 746 ptr = alloc (ptr, size);
227 747
228 if (!ptr && size) 748 if (!ptr && size)
229 { 749 {
750#if EV_AVOID_STDIO
751 ev_printerr ("(libev) memory allocation failed, aborting.\n");
752#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 753 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
754#endif
231 abort (); 755 abort ();
232 } 756 }
233 757
234 return ptr; 758 return ptr;
235} 759}
237#define ev_malloc(size) ev_realloc (0, (size)) 761#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 762#define ev_free(ptr) ev_realloc ((ptr), 0)
239 763
240/*****************************************************************************/ 764/*****************************************************************************/
241 765
766/* set in reify when reification needed */
767#define EV_ANFD_REIFY 1
768
769/* file descriptor info structure */
242typedef struct 770typedef struct
243{ 771{
244 WL head; 772 WL head;
245 unsigned char events; 773 unsigned char events; /* the events watched for */
774 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
775 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 776 unsigned char unused;
777#if EV_USE_EPOLL
778 unsigned int egen; /* generation counter to counter epoll bugs */
779#endif
247#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 781 SOCKET handle;
249#endif 782#endif
783#if EV_USE_IOCP
784 OVERLAPPED or, ow;
785#endif
250} ANFD; 786} ANFD;
251 787
788/* stores the pending event set for a given watcher */
252typedef struct 789typedef struct
253{ 790{
254 W w; 791 W w;
255 int events; 792 int events; /* the pending event set for the given watcher */
256} ANPENDING; 793} ANPENDING;
794
795#if EV_USE_INOTIFY
796/* hash table entry per inotify-id */
797typedef struct
798{
799 WL head;
800} ANFS;
801#endif
802
803/* Heap Entry */
804#if EV_HEAP_CACHE_AT
805 /* a heap element */
806 typedef struct {
807 ev_tstamp at;
808 WT w;
809 } ANHE;
810
811 #define ANHE_w(he) (he).w /* access watcher, read-write */
812 #define ANHE_at(he) (he).at /* access cached at, read-only */
813 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
814#else
815 /* a heap element */
816 typedef WT ANHE;
817
818 #define ANHE_w(he) (he)
819 #define ANHE_at(he) (he)->at
820 #define ANHE_at_cache(he)
821#endif
257 822
258#if EV_MULTIPLICITY 823#if EV_MULTIPLICITY
259 824
260 struct ev_loop 825 struct ev_loop
261 { 826 {
279 844
280 static int ev_default_loop_ptr; 845 static int ev_default_loop_ptr;
281 846
282#endif 847#endif
283 848
849#if EV_FEATURE_API
850# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
851# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
852# define EV_INVOKE_PENDING invoke_cb (EV_A)
853#else
854# define EV_RELEASE_CB (void)0
855# define EV_ACQUIRE_CB (void)0
856# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
857#endif
858
859#define EVBREAK_RECURSE 0x80
860
284/*****************************************************************************/ 861/*****************************************************************************/
285 862
863#ifndef EV_HAVE_EV_TIME
286ev_tstamp 864ev_tstamp
287ev_time (void) 865ev_time (void)
288{ 866{
289#if EV_USE_REALTIME 867#if EV_USE_REALTIME
868 if (expect_true (have_realtime))
869 {
290 struct timespec ts; 870 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 871 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 872 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 873 }
874#endif
875
294 struct timeval tv; 876 struct timeval tv;
295 gettimeofday (&tv, 0); 877 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 878 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 879}
880#endif
299 881
300inline ev_tstamp 882inline_size ev_tstamp
301get_clock (void) 883get_clock (void)
302{ 884{
303#if EV_USE_MONOTONIC 885#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 886 if (expect_true (have_monotonic))
305 { 887 {
318{ 900{
319 return ev_rt_now; 901 return ev_rt_now;
320} 902}
321#endif 903#endif
322 904
323#define array_roundsize(type,n) (((n) | 4) & ~3) 905void
906ev_sleep (ev_tstamp delay)
907{
908 if (delay > 0.)
909 {
910#if EV_USE_NANOSLEEP
911 struct timespec ts;
912
913 EV_TS_SET (ts, delay);
914 nanosleep (&ts, 0);
915#elif defined(_WIN32)
916 Sleep ((unsigned long)(delay * 1e3));
917#else
918 struct timeval tv;
919
920 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
921 /* something not guaranteed by newer posix versions, but guaranteed */
922 /* by older ones */
923 EV_TV_SET (tv, delay);
924 select (0, 0, 0, 0, &tv);
925#endif
926 }
927}
928
929/*****************************************************************************/
930
931#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
932
933/* find a suitable new size for the given array, */
934/* hopefully by rounding to a nice-to-malloc size */
935inline_size int
936array_nextsize (int elem, int cur, int cnt)
937{
938 int ncur = cur + 1;
939
940 do
941 ncur <<= 1;
942 while (cnt > ncur);
943
944 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
945 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
946 {
947 ncur *= elem;
948 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
949 ncur = ncur - sizeof (void *) * 4;
950 ncur /= elem;
951 }
952
953 return ncur;
954}
955
956static void * noinline ecb_cold
957array_realloc (int elem, void *base, int *cur, int cnt)
958{
959 *cur = array_nextsize (elem, *cur, cnt);
960 return ev_realloc (base, elem * *cur);
961}
962
963#define array_init_zero(base,count) \
964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 965
325#define array_needsize(type,base,cur,cnt,init) \ 966#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 967 if (expect_false ((cnt) > (cur))) \
327 { \ 968 { \
328 int newcnt = cur; \ 969 int ocur_ = (cur); \
329 do \ 970 (base) = (type *)array_realloc \
330 { \ 971 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 972 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 973 }
339 974
975#if 0
340#define array_slim(type,stem) \ 976#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 977 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 978 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 979 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 980 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 982 }
983#endif
347 984
348#define array_free(stem, idx) \ 985#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 987
351/*****************************************************************************/ 988/*****************************************************************************/
352 989
353static void 990/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 991static void noinline
992pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 993{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 994}
365 995
366void 996void noinline
367ev_feed_event (EV_P_ void *w, int revents) 997ev_feed_event (EV_P_ void *w, int revents)
368{ 998{
369 W w_ = (W)w; 999 W w_ = (W)w;
1000 int pri = ABSPRI (w_);
370 1001
371 if (w_->pending) 1002 if (expect_false (w_->pending))
1003 pendings [pri][w_->pending - 1].events |= revents;
1004 else
372 { 1005 {
1006 w_->pending = ++pendingcnt [pri];
1007 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1008 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1009 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 1010 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 1011}
382 1012
383static void 1013inline_speed void
1014feed_reverse (EV_P_ W w)
1015{
1016 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1017 rfeeds [rfeedcnt++] = w;
1018}
1019
1020inline_size void
1021feed_reverse_done (EV_P_ int revents)
1022{
1023 do
1024 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1025 while (rfeedcnt);
1026}
1027
1028inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 1029queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 1030{
386 int i; 1031 int i;
387 1032
388 for (i = 0; i < eventcnt; ++i) 1033 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 1034 ev_feed_event (EV_A_ events [i], type);
390} 1035}
391 1036
1037/*****************************************************************************/
1038
392inline void 1039inline_speed void
393fd_event (EV_P_ int fd, int revents) 1040fd_event_nocheck (EV_P_ int fd, int revents)
394{ 1041{
395 ANFD *anfd = anfds + fd; 1042 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 1043 ev_io *w;
397 1044
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1045 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 1046 {
400 int ev = w->events & revents; 1047 int ev = w->events & revents;
401 1048
402 if (ev) 1049 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 1050 ev_feed_event (EV_A_ (W)w, ev);
404 } 1051 }
405} 1052}
406 1053
1054/* do not submit kernel events for fds that have reify set */
1055/* because that means they changed while we were polling for new events */
1056inline_speed void
1057fd_event (EV_P_ int fd, int revents)
1058{
1059 ANFD *anfd = anfds + fd;
1060
1061 if (expect_true (!anfd->reify))
1062 fd_event_nocheck (EV_A_ fd, revents);
1063}
1064
407void 1065void
408ev_feed_fd_event (EV_P_ int fd, int revents) 1066ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 1067{
1068 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 1069 fd_event_nocheck (EV_A_ fd, revents);
411} 1070}
412 1071
413/*****************************************************************************/ 1072/* make sure the external fd watch events are in-sync */
414 1073/* with the kernel/libev internal state */
415static void 1074inline_size void
416fd_reify (EV_P) 1075fd_reify (EV_P)
417{ 1076{
418 int i; 1077 int i;
419 1078
1079#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 1080 for (i = 0; i < fdchangecnt; ++i)
421 { 1081 {
422 int fd = fdchanges [i]; 1082 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 1083 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 1084
426 int events = 0; 1085 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 1086 {
1087 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1088
1089 if (handle != anfd->handle)
1090 {
434 unsigned long argp; 1091 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 1092
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1093 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1094
1095 /* handle changed, but fd didn't - we need to do it in two steps */
1096 backend_modify (EV_A_ fd, anfd->events, 0);
1097 anfd->events = 0;
1098 anfd->handle = handle;
1099 }
437 } 1100 }
1101 }
438#endif 1102#endif
439 1103
1104 for (i = 0; i < fdchangecnt; ++i)
1105 {
1106 int fd = fdchanges [i];
1107 ANFD *anfd = anfds + fd;
1108 ev_io *w;
1109
1110 unsigned char o_events = anfd->events;
1111 unsigned char o_reify = anfd->reify;
1112
440 anfd->reify = 0; 1113 anfd->reify = 0;
441 1114
442 method_modify (EV_A_ fd, anfd->events, events); 1115 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1116 {
443 anfd->events = events; 1117 anfd->events = 0;
1118
1119 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1120 anfd->events |= (unsigned char)w->events;
1121
1122 if (o_events != anfd->events)
1123 o_reify = EV__IOFDSET; /* actually |= */
1124 }
1125
1126 if (o_reify & EV__IOFDSET)
1127 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 1128 }
445 1129
446 fdchangecnt = 0; 1130 fdchangecnt = 0;
447} 1131}
448 1132
449static void 1133/* something about the given fd changed */
1134inline_size void
450fd_change (EV_P_ int fd) 1135fd_change (EV_P_ int fd, int flags)
451{ 1136{
452 if (anfds [fd].reify) 1137 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 1138 anfds [fd].reify |= flags;
456 1139
1140 if (expect_true (!reify))
1141 {
457 ++fdchangecnt; 1142 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1143 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 1144 fdchanges [fdchangecnt - 1] = fd;
1145 }
460} 1146}
461 1147
462static void 1148/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1149inline_speed void ecb_cold
463fd_kill (EV_P_ int fd) 1150fd_kill (EV_P_ int fd)
464{ 1151{
465 struct ev_io *w; 1152 ev_io *w;
466 1153
467 while ((w = (struct ev_io *)anfds [fd].head)) 1154 while ((w = (ev_io *)anfds [fd].head))
468 { 1155 {
469 ev_io_stop (EV_A_ w); 1156 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1157 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 1158 }
472} 1159}
473 1160
474static int 1161/* check whether the given fd is actually valid, for error recovery */
1162inline_size int ecb_cold
475fd_valid (int fd) 1163fd_valid (int fd)
476{ 1164{
477#ifdef _WIN32 1165#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 1166 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 1167#else
480 return fcntl (fd, F_GETFD) != -1; 1168 return fcntl (fd, F_GETFD) != -1;
481#endif 1169#endif
482} 1170}
483 1171
484/* called on EBADF to verify fds */ 1172/* called on EBADF to verify fds */
485static void 1173static void noinline ecb_cold
486fd_ebadf (EV_P) 1174fd_ebadf (EV_P)
487{ 1175{
488 int fd; 1176 int fd;
489 1177
490 for (fd = 0; fd < anfdmax; ++fd) 1178 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 1179 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 1180 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 1181 fd_kill (EV_A_ fd);
494} 1182}
495 1183
496/* called on ENOMEM in select/poll to kill some fds and retry */ 1184/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 1185static void noinline ecb_cold
498fd_enomem (EV_P) 1186fd_enomem (EV_P)
499{ 1187{
500 int fd; 1188 int fd;
501 1189
502 for (fd = anfdmax; fd--; ) 1190 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 1191 if (anfds [fd].events)
504 { 1192 {
505 fd_kill (EV_A_ fd); 1193 fd_kill (EV_A_ fd);
506 return; 1194 break;
507 } 1195 }
508} 1196}
509 1197
510/* usually called after fork if method needs to re-arm all fds from scratch */ 1198/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 1199static void noinline
512fd_rearm_all (EV_P) 1200fd_rearm_all (EV_P)
513{ 1201{
514 int fd; 1202 int fd;
515 1203
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 1204 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1205 if (anfds [fd].events)
519 { 1206 {
520 anfds [fd].events = 0; 1207 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 1208 anfds [fd].emask = 0;
1209 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 1210 }
523} 1211}
524 1212
525/*****************************************************************************/ 1213/* used to prepare libev internal fd's */
526 1214/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 1215inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 1216fd_intern (int fd)
655{ 1217{
656#ifdef _WIN32 1218#ifdef _WIN32
657 int arg = 1; 1219 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1220 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 1221#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1222 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1223 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1224#endif
663} 1225}
664 1226
1227/*****************************************************************************/
1228
1229/*
1230 * the heap functions want a real array index. array index 0 is guaranteed to not
1231 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1232 * the branching factor of the d-tree.
1233 */
1234
1235/*
1236 * at the moment we allow libev the luxury of two heaps,
1237 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1238 * which is more cache-efficient.
1239 * the difference is about 5% with 50000+ watchers.
1240 */
1241#if EV_USE_4HEAP
1242
1243#define DHEAP 4
1244#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1245#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1246#define UPHEAP_DONE(p,k) ((p) == (k))
1247
1248/* away from the root */
1249inline_speed void
1250downheap (ANHE *heap, int N, int k)
1251{
1252 ANHE he = heap [k];
1253 ANHE *E = heap + N + HEAP0;
1254
1255 for (;;)
1256 {
1257 ev_tstamp minat;
1258 ANHE *minpos;
1259 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1260
1261 /* find minimum child */
1262 if (expect_true (pos + DHEAP - 1 < E))
1263 {
1264 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1265 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1266 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1267 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1268 }
1269 else if (pos < E)
1270 {
1271 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1272 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1273 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1274 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1275 }
1276 else
1277 break;
1278
1279 if (ANHE_at (he) <= minat)
1280 break;
1281
1282 heap [k] = *minpos;
1283 ev_active (ANHE_w (*minpos)) = k;
1284
1285 k = minpos - heap;
1286 }
1287
1288 heap [k] = he;
1289 ev_active (ANHE_w (he)) = k;
1290}
1291
1292#else /* 4HEAP */
1293
1294#define HEAP0 1
1295#define HPARENT(k) ((k) >> 1)
1296#define UPHEAP_DONE(p,k) (!(p))
1297
1298/* away from the root */
1299inline_speed void
1300downheap (ANHE *heap, int N, int k)
1301{
1302 ANHE he = heap [k];
1303
1304 for (;;)
1305 {
1306 int c = k << 1;
1307
1308 if (c >= N + HEAP0)
1309 break;
1310
1311 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1312 ? 1 : 0;
1313
1314 if (ANHE_at (he) <= ANHE_at (heap [c]))
1315 break;
1316
1317 heap [k] = heap [c];
1318 ev_active (ANHE_w (heap [k])) = k;
1319
1320 k = c;
1321 }
1322
1323 heap [k] = he;
1324 ev_active (ANHE_w (he)) = k;
1325}
1326#endif
1327
1328/* towards the root */
1329inline_speed void
1330upheap (ANHE *heap, int k)
1331{
1332 ANHE he = heap [k];
1333
1334 for (;;)
1335 {
1336 int p = HPARENT (k);
1337
1338 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1339 break;
1340
1341 heap [k] = heap [p];
1342 ev_active (ANHE_w (heap [k])) = k;
1343 k = p;
1344 }
1345
1346 heap [k] = he;
1347 ev_active (ANHE_w (he)) = k;
1348}
1349
1350/* move an element suitably so it is in a correct place */
1351inline_size void
1352adjustheap (ANHE *heap, int N, int k)
1353{
1354 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1355 upheap (heap, k);
1356 else
1357 downheap (heap, N, k);
1358}
1359
1360/* rebuild the heap: this function is used only once and executed rarely */
1361inline_size void
1362reheap (ANHE *heap, int N)
1363{
1364 int i;
1365
1366 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1367 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1368 for (i = 0; i < N; ++i)
1369 upheap (heap, i + HEAP0);
1370}
1371
1372/*****************************************************************************/
1373
1374/* associate signal watchers to a signal signal */
1375typedef struct
1376{
1377 EV_ATOMIC_T pending;
1378#if EV_MULTIPLICITY
1379 EV_P;
1380#endif
1381 WL head;
1382} ANSIG;
1383
1384static ANSIG signals [EV_NSIG - 1];
1385
1386/*****************************************************************************/
1387
1388#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1389
1390static void noinline ecb_cold
1391evpipe_init (EV_P)
1392{
1393 if (!ev_is_active (&pipe_w))
1394 {
1395# if EV_USE_EVENTFD
1396 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1397 if (evfd < 0 && errno == EINVAL)
1398 evfd = eventfd (0, 0);
1399
1400 if (evfd >= 0)
1401 {
1402 evpipe [0] = -1;
1403 fd_intern (evfd); /* doing it twice doesn't hurt */
1404 ev_io_set (&pipe_w, evfd, EV_READ);
1405 }
1406 else
1407# endif
1408 {
1409 while (pipe (evpipe))
1410 ev_syserr ("(libev) error creating signal/async pipe");
1411
1412 fd_intern (evpipe [0]);
1413 fd_intern (evpipe [1]);
1414 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1415 }
1416
1417 ev_io_start (EV_A_ &pipe_w);
1418 ev_unref (EV_A); /* watcher should not keep loop alive */
1419 }
1420}
1421
1422inline_speed void
1423evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1424{
1425 if (!*flag)
1426 {
1427 *flag = 1;
1428
1429 pipe_write_skipped = 1;
1430
1431 if (pipe_write_wanted)
1432 {
1433 int old_errno;
1434
1435 pipe_write_skipped = 0;
1436
1437 old_errno = errno; /* save errno because write will clobber it */
1438
1439#if EV_USE_EVENTFD
1440 if (evfd >= 0)
1441 {
1442 uint64_t counter = 1;
1443 write (evfd, &counter, sizeof (uint64_t));
1444 }
1445 else
1446#endif
1447 {
1448 /* win32 people keep sending patches that change this write() to send() */
1449 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1450 /* so when you think this write should be a send instead, please find out */
1451 /* where your send() is from - it's definitely not the microsoft send, and */
1452 /* tell me. thank you. */
1453 write (evpipe [1], &(evpipe [1]), 1);
1454 }
1455
1456 errno = old_errno;
1457 }
1458 }
1459}
1460
1461/* called whenever the libev signal pipe */
1462/* got some events (signal, async) */
665static void 1463static void
666siginit (EV_P) 1464pipecb (EV_P_ ev_io *iow, int revents)
667{ 1465{
668 fd_intern (sigpipe [0]); 1466 int i;
669 fd_intern (sigpipe [1]);
670 1467
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1468 if (revents & EV_READ)
672 ev_io_start (EV_A_ &sigev); 1469 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1470#if EV_USE_EVENTFD
1471 if (evfd >= 0)
1472 {
1473 uint64_t counter;
1474 read (evfd, &counter, sizeof (uint64_t));
1475 }
1476 else
1477#endif
1478 {
1479 char dummy;
1480 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1481 read (evpipe [0], &dummy, 1);
1482 }
1483 }
1484
1485 pipe_write_skipped = 0;
1486
1487#if EV_SIGNAL_ENABLE
1488 if (sig_pending)
1489 {
1490 sig_pending = 0;
1491
1492 for (i = EV_NSIG - 1; i--; )
1493 if (expect_false (signals [i].pending))
1494 ev_feed_signal_event (EV_A_ i + 1);
1495 }
1496#endif
1497
1498#if EV_ASYNC_ENABLE
1499 if (async_pending)
1500 {
1501 async_pending = 0;
1502
1503 for (i = asynccnt; i--; )
1504 if (asyncs [i]->sent)
1505 {
1506 asyncs [i]->sent = 0;
1507 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1508 }
1509 }
1510#endif
674} 1511}
675 1512
676/*****************************************************************************/ 1513/*****************************************************************************/
677 1514
678static struct ev_child *childs [PID_HASHSIZE]; 1515void
1516ev_feed_signal (int signum)
1517{
1518#if EV_MULTIPLICITY
1519 EV_P = signals [signum - 1].loop;
679 1520
1521 if (!EV_A)
1522 return;
1523#endif
1524
1525 evpipe_init (EV_A);
1526
1527 signals [signum - 1].pending = 1;
1528 evpipe_write (EV_A_ &sig_pending);
1529}
1530
1531static void
1532ev_sighandler (int signum)
1533{
680#ifndef _WIN32 1534#ifdef _WIN32
1535 signal (signum, ev_sighandler);
1536#endif
681 1537
1538 ev_feed_signal (signum);
1539}
1540
1541void noinline
1542ev_feed_signal_event (EV_P_ int signum)
1543{
1544 WL w;
1545
1546 if (expect_false (signum <= 0 || signum > EV_NSIG))
1547 return;
1548
1549 --signum;
1550
1551#if EV_MULTIPLICITY
1552 /* it is permissible to try to feed a signal to the wrong loop */
1553 /* or, likely more useful, feeding a signal nobody is waiting for */
1554
1555 if (expect_false (signals [signum].loop != EV_A))
1556 return;
1557#endif
1558
1559 signals [signum].pending = 0;
1560
1561 for (w = signals [signum].head; w; w = w->next)
1562 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1563}
1564
1565#if EV_USE_SIGNALFD
1566static void
1567sigfdcb (EV_P_ ev_io *iow, int revents)
1568{
1569 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1570
1571 for (;;)
1572 {
1573 ssize_t res = read (sigfd, si, sizeof (si));
1574
1575 /* not ISO-C, as res might be -1, but works with SuS */
1576 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1577 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1578
1579 if (res < (ssize_t)sizeof (si))
1580 break;
1581 }
1582}
1583#endif
1584
1585#endif
1586
1587/*****************************************************************************/
1588
1589#if EV_CHILD_ENABLE
1590static WL childs [EV_PID_HASHSIZE];
1591
682static struct ev_signal childev; 1592static ev_signal childev;
1593
1594#ifndef WIFCONTINUED
1595# define WIFCONTINUED(status) 0
1596#endif
1597
1598/* handle a single child status event */
1599inline_speed void
1600child_reap (EV_P_ int chain, int pid, int status)
1601{
1602 ev_child *w;
1603 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1604
1605 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 {
1607 if ((w->pid == pid || !w->pid)
1608 && (!traced || (w->flags & 1)))
1609 {
1610 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1611 w->rpid = pid;
1612 w->rstatus = status;
1613 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1614 }
1615 }
1616}
683 1617
684#ifndef WCONTINUED 1618#ifndef WCONTINUED
685# define WCONTINUED 0 1619# define WCONTINUED 0
686#endif 1620#endif
687 1621
1622/* called on sigchld etc., calls waitpid */
688static void 1623static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1624childcb (EV_P_ ev_signal *sw, int revents)
705{ 1625{
706 int pid, status; 1626 int pid, status;
707 1627
1628 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1629 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1630 if (!WCONTINUED
1631 || errno != EINVAL
1632 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1633 return;
1634
710 /* make sure we are called again until all childs have been reaped */ 1635 /* make sure we are called again until all children have been reaped */
1636 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1637 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1638
713 child_reap (EV_A_ sw, pid, pid, status); 1639 child_reap (EV_A_ pid, pid, status);
1640 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1641 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1642}
717 1643
718#endif 1644#endif
719 1645
720/*****************************************************************************/ 1646/*****************************************************************************/
721 1647
1648#if EV_USE_IOCP
1649# include "ev_iocp.c"
1650#endif
722#if EV_USE_PORT 1651#if EV_USE_PORT
723# include "ev_port.c" 1652# include "ev_port.c"
724#endif 1653#endif
725#if EV_USE_KQUEUE 1654#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 1655# include "ev_kqueue.c"
733#endif 1662#endif
734#if EV_USE_SELECT 1663#if EV_USE_SELECT
735# include "ev_select.c" 1664# include "ev_select.c"
736#endif 1665#endif
737 1666
738int 1667int ecb_cold
739ev_version_major (void) 1668ev_version_major (void)
740{ 1669{
741 return EV_VERSION_MAJOR; 1670 return EV_VERSION_MAJOR;
742} 1671}
743 1672
744int 1673int ecb_cold
745ev_version_minor (void) 1674ev_version_minor (void)
746{ 1675{
747 return EV_VERSION_MINOR; 1676 return EV_VERSION_MINOR;
748} 1677}
749 1678
750/* return true if we are running with elevated privileges and should ignore env variables */ 1679/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1680int inline_size ecb_cold
752enable_secure (void) 1681enable_secure (void)
753{ 1682{
754#ifdef _WIN32 1683#ifdef _WIN32
755 return 0; 1684 return 0;
756#else 1685#else
757 return getuid () != geteuid () 1686 return getuid () != geteuid ()
758 || getgid () != getegid (); 1687 || getgid () != getegid ();
759#endif 1688#endif
760} 1689}
761 1690
1691unsigned int ecb_cold
1692ev_supported_backends (void)
1693{
1694 unsigned int flags = 0;
1695
1696 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1697 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1698 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1699 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1700 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1701
1702 return flags;
1703}
1704
1705unsigned int ecb_cold
1706ev_recommended_backends (void)
1707{
1708 unsigned int flags = ev_supported_backends ();
1709
1710#ifndef __NetBSD__
1711 /* kqueue is borked on everything but netbsd apparently */
1712 /* it usually doesn't work correctly on anything but sockets and pipes */
1713 flags &= ~EVBACKEND_KQUEUE;
1714#endif
1715#ifdef __APPLE__
1716 /* only select works correctly on that "unix-certified" platform */
1717 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1718 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1719#endif
1720#ifdef __FreeBSD__
1721 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1722#endif
1723
1724 return flags;
1725}
1726
1727unsigned int ecb_cold
1728ev_embeddable_backends (void)
1729{
1730 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1731
1732 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1733 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1734 flags &= ~EVBACKEND_EPOLL;
1735
1736 return flags;
1737}
1738
762unsigned int 1739unsigned int
1740ev_backend (EV_P)
1741{
1742 return backend;
1743}
1744
1745#if EV_FEATURE_API
1746unsigned int
1747ev_iteration (EV_P)
1748{
1749 return loop_count;
1750}
1751
1752unsigned int
763ev_method (EV_P) 1753ev_depth (EV_P)
764{ 1754{
765 return method; 1755 return loop_depth;
766} 1756}
767 1757
768static void 1758void
1759ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1760{
1761 io_blocktime = interval;
1762}
1763
1764void
1765ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1766{
1767 timeout_blocktime = interval;
1768}
1769
1770void
1771ev_set_userdata (EV_P_ void *data)
1772{
1773 userdata = data;
1774}
1775
1776void *
1777ev_userdata (EV_P)
1778{
1779 return userdata;
1780}
1781
1782void
1783ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1784{
1785 invoke_cb = invoke_pending_cb;
1786}
1787
1788void
1789ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1790{
1791 release_cb = release;
1792 acquire_cb = acquire;
1793}
1794#endif
1795
1796/* initialise a loop structure, must be zero-initialised */
1797static void noinline ecb_cold
769loop_init (EV_P_ unsigned int flags) 1798loop_init (EV_P_ unsigned int flags)
770{ 1799{
771 if (!method) 1800 if (!backend)
772 { 1801 {
1802 origflags = flags;
1803
1804#if EV_USE_REALTIME
1805 if (!have_realtime)
1806 {
1807 struct timespec ts;
1808
1809 if (!clock_gettime (CLOCK_REALTIME, &ts))
1810 have_realtime = 1;
1811 }
1812#endif
1813
773#if EV_USE_MONOTONIC 1814#if EV_USE_MONOTONIC
1815 if (!have_monotonic)
1816 {
1817 struct timespec ts;
1818
1819 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1820 have_monotonic = 1;
1821 }
1822#endif
1823
1824 /* pid check not overridable via env */
1825#ifndef _WIN32
1826 if (flags & EVFLAG_FORKCHECK)
1827 curpid = getpid ();
1828#endif
1829
1830 if (!(flags & EVFLAG_NOENV)
1831 && !enable_secure ()
1832 && getenv ("LIBEV_FLAGS"))
1833 flags = atoi (getenv ("LIBEV_FLAGS"));
1834
1835 ev_rt_now = ev_time ();
1836 mn_now = get_clock ();
1837 now_floor = mn_now;
1838 rtmn_diff = ev_rt_now - mn_now;
1839#if EV_FEATURE_API
1840 invoke_cb = ev_invoke_pending;
1841#endif
1842
1843 io_blocktime = 0.;
1844 timeout_blocktime = 0.;
1845 backend = 0;
1846 backend_fd = -1;
1847 sig_pending = 0;
1848#if EV_ASYNC_ENABLE
1849 async_pending = 0;
1850#endif
1851 pipe_write_skipped = 0;
1852 pipe_write_wanted = 0;
1853#if EV_USE_INOTIFY
1854 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1855#endif
1856#if EV_USE_SIGNALFD
1857 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1858#endif
1859
1860 if (!(flags & EVBACKEND_MASK))
1861 flags |= ev_recommended_backends ();
1862
1863#if EV_USE_IOCP
1864 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1865#endif
1866#if EV_USE_PORT
1867 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1868#endif
1869#if EV_USE_KQUEUE
1870 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1871#endif
1872#if EV_USE_EPOLL
1873 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1874#endif
1875#if EV_USE_POLL
1876 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1877#endif
1878#if EV_USE_SELECT
1879 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1880#endif
1881
1882 ev_prepare_init (&pending_w, pendingcb);
1883
1884#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1885 ev_init (&pipe_w, pipecb);
1886 ev_set_priority (&pipe_w, EV_MAXPRI);
1887#endif
1888 }
1889}
1890
1891/* free up a loop structure */
1892void ecb_cold
1893ev_loop_destroy (EV_P)
1894{
1895 int i;
1896
1897#if EV_MULTIPLICITY
1898 /* mimic free (0) */
1899 if (!EV_A)
1900 return;
1901#endif
1902
1903#if EV_CLEANUP_ENABLE
1904 /* queue cleanup watchers (and execute them) */
1905 if (expect_false (cleanupcnt))
1906 {
1907 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1908 EV_INVOKE_PENDING;
1909 }
1910#endif
1911
1912#if EV_CHILD_ENABLE
1913 if (ev_is_active (&childev))
1914 {
1915 ev_ref (EV_A); /* child watcher */
1916 ev_signal_stop (EV_A_ &childev);
1917 }
1918#endif
1919
1920 if (ev_is_active (&pipe_w))
1921 {
1922 /*ev_ref (EV_A);*/
1923 /*ev_io_stop (EV_A_ &pipe_w);*/
1924
1925#if EV_USE_EVENTFD
1926 if (evfd >= 0)
1927 close (evfd);
1928#endif
1929
1930 if (evpipe [0] >= 0)
1931 {
1932 EV_WIN32_CLOSE_FD (evpipe [0]);
1933 EV_WIN32_CLOSE_FD (evpipe [1]);
1934 }
1935 }
1936
1937#if EV_USE_SIGNALFD
1938 if (ev_is_active (&sigfd_w))
1939 close (sigfd);
1940#endif
1941
1942#if EV_USE_INOTIFY
1943 if (fs_fd >= 0)
1944 close (fs_fd);
1945#endif
1946
1947 if (backend_fd >= 0)
1948 close (backend_fd);
1949
1950#if EV_USE_IOCP
1951 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1952#endif
1953#if EV_USE_PORT
1954 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1955#endif
1956#if EV_USE_KQUEUE
1957 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1958#endif
1959#if EV_USE_EPOLL
1960 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1961#endif
1962#if EV_USE_POLL
1963 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1964#endif
1965#if EV_USE_SELECT
1966 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1967#endif
1968
1969 for (i = NUMPRI; i--; )
1970 {
1971 array_free (pending, [i]);
1972#if EV_IDLE_ENABLE
1973 array_free (idle, [i]);
1974#endif
1975 }
1976
1977 ev_free (anfds); anfds = 0; anfdmax = 0;
1978
1979 /* have to use the microsoft-never-gets-it-right macro */
1980 array_free (rfeed, EMPTY);
1981 array_free (fdchange, EMPTY);
1982 array_free (timer, EMPTY);
1983#if EV_PERIODIC_ENABLE
1984 array_free (periodic, EMPTY);
1985#endif
1986#if EV_FORK_ENABLE
1987 array_free (fork, EMPTY);
1988#endif
1989#if EV_CLEANUP_ENABLE
1990 array_free (cleanup, EMPTY);
1991#endif
1992 array_free (prepare, EMPTY);
1993 array_free (check, EMPTY);
1994#if EV_ASYNC_ENABLE
1995 array_free (async, EMPTY);
1996#endif
1997
1998 backend = 0;
1999
2000#if EV_MULTIPLICITY
2001 if (ev_is_default_loop (EV_A))
2002#endif
2003 ev_default_loop_ptr = 0;
2004#if EV_MULTIPLICITY
2005 else
2006 ev_free (EV_A);
2007#endif
2008}
2009
2010#if EV_USE_INOTIFY
2011inline_size void infy_fork (EV_P);
2012#endif
2013
2014inline_size void
2015loop_fork (EV_P)
2016{
2017#if EV_USE_PORT
2018 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2019#endif
2020#if EV_USE_KQUEUE
2021 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2022#endif
2023#if EV_USE_EPOLL
2024 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2025#endif
2026#if EV_USE_INOTIFY
2027 infy_fork (EV_A);
2028#endif
2029
2030 if (ev_is_active (&pipe_w))
2031 {
2032 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2033
2034 ev_ref (EV_A);
2035 ev_io_stop (EV_A_ &pipe_w);
2036
2037#if EV_USE_EVENTFD
2038 if (evfd >= 0)
2039 close (evfd);
2040#endif
2041
2042 if (evpipe [0] >= 0)
2043 {
2044 EV_WIN32_CLOSE_FD (evpipe [0]);
2045 EV_WIN32_CLOSE_FD (evpipe [1]);
2046 }
2047
2048#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2049 evpipe_init (EV_A);
2050 /* now iterate over everything, in case we missed something */
2051 pipecb (EV_A_ &pipe_w, EV_READ);
2052#endif
2053 }
2054
2055 postfork = 0;
2056}
2057
2058#if EV_MULTIPLICITY
2059
2060struct ev_loop * ecb_cold
2061ev_loop_new (unsigned int flags)
2062{
2063 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2064
2065 memset (EV_A, 0, sizeof (struct ev_loop));
2066 loop_init (EV_A_ flags);
2067
2068 if (ev_backend (EV_A))
2069 return EV_A;
2070
2071 ev_free (EV_A);
2072 return 0;
2073}
2074
2075#endif /* multiplicity */
2076
2077#if EV_VERIFY
2078static void noinline ecb_cold
2079verify_watcher (EV_P_ W w)
2080{
2081 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2082
2083 if (w->pending)
2084 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2085}
2086
2087static void noinline ecb_cold
2088verify_heap (EV_P_ ANHE *heap, int N)
2089{
2090 int i;
2091
2092 for (i = HEAP0; i < N + HEAP0; ++i)
2093 {
2094 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2095 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2096 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2097
2098 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2099 }
2100}
2101
2102static void noinline ecb_cold
2103array_verify (EV_P_ W *ws, int cnt)
2104{
2105 while (cnt--)
2106 {
2107 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2108 verify_watcher (EV_A_ ws [cnt]);
2109 }
2110}
2111#endif
2112
2113#if EV_FEATURE_API
2114void ecb_cold
2115ev_verify (EV_P)
2116{
2117#if EV_VERIFY
2118 int i;
2119 WL w;
2120
2121 assert (activecnt >= -1);
2122
2123 assert (fdchangemax >= fdchangecnt);
2124 for (i = 0; i < fdchangecnt; ++i)
2125 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2126
2127 assert (anfdmax >= 0);
2128 for (i = 0; i < anfdmax; ++i)
2129 for (w = anfds [i].head; w; w = w->next)
774 { 2130 {
775 struct timespec ts; 2131 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2132 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 2133 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 2134 }
779#endif
780 2135
781 ev_rt_now = ev_time (); 2136 assert (timermax >= timercnt);
782 mn_now = get_clock (); 2137 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 2138
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2139#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 2140 assert (periodicmax >= periodiccnt);
788 2141 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 2142#endif
834 2143
835 for (i = NUMPRI; i--; ) 2144 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 2145 {
2146 assert (pendingmax [i] >= pendingcnt [i]);
2147#if EV_IDLE_ENABLE
2148 assert (idleall >= 0);
2149 assert (idlemax [i] >= idlecnt [i]);
2150 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2151#endif
2152 }
837 2153
838 /* have to use the microsoft-never-gets-it-right macro */ 2154#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 2155 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 2156 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 2157#endif
842 array_free (periodic, EMPTY0); 2158
2159#if EV_CLEANUP_ENABLE
2160 assert (cleanupmax >= cleanupcnt);
2161 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2162#endif
2163
2164#if EV_ASYNC_ENABLE
2165 assert (asyncmax >= asynccnt);
2166 array_verify (EV_A_ (W *)asyncs, asynccnt);
2167#endif
2168
2169#if EV_PREPARE_ENABLE
2170 assert (preparemax >= preparecnt);
2171 array_verify (EV_A_ (W *)prepares, preparecnt);
2172#endif
2173
2174#if EV_CHECK_ENABLE
2175 assert (checkmax >= checkcnt);
2176 array_verify (EV_A_ (W *)checks, checkcnt);
2177#endif
2178
2179# if 0
2180#if EV_CHILD_ENABLE
2181 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2182 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2183#endif
843#endif 2184# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 2185#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 2186}
2187#endif
881 2188
882#if EV_MULTIPLICITY 2189#if EV_MULTIPLICITY
883struct ev_loop * 2190struct ev_loop * ecb_cold
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
916#else 2191#else
917int 2192int
2193#endif
918ev_default_loop (unsigned int flags) 2194ev_default_loop (unsigned int flags)
919#endif
920{ 2195{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 2196 if (!ev_default_loop_ptr)
926 { 2197 {
927#if EV_MULTIPLICITY 2198#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2199 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 2200#else
930 ev_default_loop_ptr = 1; 2201 ev_default_loop_ptr = 1;
931#endif 2202#endif
932 2203
933 loop_init (EV_A_ flags); 2204 loop_init (EV_A_ flags);
934 2205
935 if (ev_method (EV_A)) 2206 if (ev_backend (EV_A))
936 { 2207 {
937 siginit (EV_A); 2208#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 2209 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 2210 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 2211 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2212 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 2213#endif
949 2218
950 return ev_default_loop_ptr; 2219 return ev_default_loop_ptr;
951} 2220}
952 2221
953void 2222void
954ev_default_destroy (void) 2223ev_loop_fork (EV_P)
955{ 2224{
956#if EV_MULTIPLICITY 2225 postfork = 1; /* must be in line with ev_default_fork */
957 struct ev_loop *loop = ev_default_loop_ptr;
958#endif
959
960#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev);
963#endif
964
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972} 2226}
2227
2228/*****************************************************************************/
973 2229
974void 2230void
975ev_default_fork (void) 2231ev_invoke (EV_P_ void *w, int revents)
976{ 2232{
977#if EV_MULTIPLICITY 2233 EV_CB_INVOKE ((W)w, revents);
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1;
983} 2234}
984 2235
985/*****************************************************************************/ 2236unsigned int
986 2237ev_pending_count (EV_P)
987static int
988any_pending (EV_P)
989{ 2238{
990 int pri; 2239 int pri;
2240 unsigned int count = 0;
991 2241
992 for (pri = NUMPRI; pri--; ) 2242 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 2243 count += pendingcnt [pri];
994 return 1;
995 2244
996 return 0; 2245 return count;
997} 2246}
998 2247
999inline void 2248void noinline
1000call_pending (EV_P) 2249ev_invoke_pending (EV_P)
1001{ 2250{
1002 int pri; 2251 int pri;
1003 2252
1004 for (pri = NUMPRI; pri--; ) 2253 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 2254 while (pendingcnt [pri])
1006 { 2255 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2256 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 2257
1009 if (expect_true (p->w))
1010 {
1011 p->w->pending = 0; 2258 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 2259 EV_CB_INVOKE (p->w, p->events);
1013 } 2260 EV_FREQUENT_CHECK;
1014 } 2261 }
1015} 2262}
1016 2263
1017static void 2264#if EV_IDLE_ENABLE
2265/* make idle watchers pending. this handles the "call-idle */
2266/* only when higher priorities are idle" logic */
2267inline_size void
2268idle_reify (EV_P)
2269{
2270 if (expect_false (idleall))
2271 {
2272 int pri;
2273
2274 for (pri = NUMPRI; pri--; )
2275 {
2276 if (pendingcnt [pri])
2277 break;
2278
2279 if (idlecnt [pri])
2280 {
2281 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2282 break;
2283 }
2284 }
2285 }
2286}
2287#endif
2288
2289/* make timers pending */
2290inline_size void
1018timers_reify (EV_P) 2291timers_reify (EV_P)
1019{ 2292{
2293 EV_FREQUENT_CHECK;
2294
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 2295 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 2296 {
1022 struct ev_timer *w = timers [0]; 2297 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2298 {
2299 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2300
2301 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2302
2303 /* first reschedule or stop timer */
2304 if (w->repeat)
2305 {
2306 ev_at (w) += w->repeat;
2307 if (ev_at (w) < mn_now)
2308 ev_at (w) = mn_now;
2309
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2310 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2311
1031 ((WT)w)->at += w->repeat; 2312 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2313 downheap (timers, timercnt, HEAP0);
2314 }
2315 else
2316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
1036 } 2320 }
1037 else 2321 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2322
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2323 feed_reverse_done (EV_A_ EV_TIMER);
2324 }
2325}
2326
2327#if EV_PERIODIC_ENABLE
2328
2329static void noinline
2330periodic_recalc (EV_P_ ev_periodic *w)
2331{
2332 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2333 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2334
2335 /* the above almost always errs on the low side */
2336 while (at <= ev_rt_now)
1041 } 2337 {
1042} 2338 ev_tstamp nat = at + w->interval;
1043 2339
1044#if EV_PERIODICS 2340 /* when resolution fails us, we use ev_rt_now */
1045static void 2341 if (expect_false (nat == at))
2342 {
2343 at = ev_rt_now;
2344 break;
2345 }
2346
2347 at = nat;
2348 }
2349
2350 ev_at (w) = at;
2351}
2352
2353/* make periodics pending */
2354inline_size void
1046periodics_reify (EV_P) 2355periodics_reify (EV_P)
1047{ 2356{
2357 EV_FREQUENT_CHECK;
2358
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2359 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2360 {
1050 struct ev_periodic *w = periodics [0]; 2361 int feed_count = 0;
1051 2362
2363 do
2364 {
2365 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2366
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2367 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2368
1054 /* first reschedule or stop timer */ 2369 /* first reschedule or stop timer */
2370 if (w->reschedule_cb)
2371 {
2372 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2373
2374 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2375
2376 ANHE_at_cache (periodics [HEAP0]);
2377 downheap (periodics, periodiccnt, HEAP0);
2378 }
2379 else if (w->interval)
2380 {
2381 periodic_recalc (EV_A_ w);
2382 ANHE_at_cache (periodics [HEAP0]);
2383 downheap (periodics, periodiccnt, HEAP0);
2384 }
2385 else
2386 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2387
2388 EV_FREQUENT_CHECK;
2389 feed_reverse (EV_A_ (W)w);
2390 }
2391 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2392
2393 feed_reverse_done (EV_A_ EV_PERIODIC);
2394 }
2395}
2396
2397/* simply recalculate all periodics */
2398/* TODO: maybe ensure that at least one event happens when jumping forward? */
2399static void noinline ecb_cold
2400periodics_reschedule (EV_P)
2401{
2402 int i;
2403
2404 /* adjust periodics after time jump */
2405 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2406 {
2407 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2408
1055 if (w->reschedule_cb) 2409 if (w->reschedule_cb)
2410 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2411 else if (w->interval)
2412 periodic_recalc (EV_A_ w);
2413
2414 ANHE_at_cache (periodics [i]);
2415 }
2416
2417 reheap (periodics, periodiccnt);
2418}
2419#endif
2420
2421/* adjust all timers by a given offset */
2422static void noinline ecb_cold
2423timers_reschedule (EV_P_ ev_tstamp adjust)
2424{
2425 int i;
2426
2427 for (i = 0; i < timercnt; ++i)
2428 {
2429 ANHE *he = timers + i + HEAP0;
2430 ANHE_w (*he)->at += adjust;
2431 ANHE_at_cache (*he);
2432 }
2433}
2434
2435/* fetch new monotonic and realtime times from the kernel */
2436/* also detect if there was a timejump, and act accordingly */
2437inline_speed void
2438time_update (EV_P_ ev_tstamp max_block)
2439{
2440#if EV_USE_MONOTONIC
2441 if (expect_true (have_monotonic))
2442 {
2443 int i;
2444 ev_tstamp odiff = rtmn_diff;
2445
2446 mn_now = get_clock ();
2447
2448 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2449 /* interpolate in the meantime */
2450 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2451 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2452 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2453 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2454 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2455
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2456 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2457 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2458
1114static void 2459 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2460 * on the choice of "4": one iteration isn't enough,
1116{ 2461 * in case we get preempted during the calls to
1117 int i; 2462 * ev_time and get_clock. a second call is almost guaranteed
1118 2463 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2464 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2465 * in the unlikely event of having been preempted here.
1121 { 2466 */
1122 if (time_update_monotonic (EV_A)) 2467 for (i = 4; --i; )
1123 { 2468 {
1124 ev_tstamp odiff = rtmn_diff; 2469 ev_tstamp diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2470 rtmn_diff = ev_rt_now - mn_now;
1129 2471
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2472 diff = odiff - rtmn_diff;
2473
2474 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2475 return; /* all is well */
1132 2476
1133 ev_rt_now = ev_time (); 2477 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2478 mn_now = get_clock ();
1135 now_floor = mn_now; 2479 now_floor = mn_now;
1136 } 2480 }
1137 2481
2482 /* no timer adjustment, as the monotonic clock doesn't jump */
2483 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2484# if EV_PERIODIC_ENABLE
2485 periodics_reschedule (EV_A);
2486# endif
2487 }
2488 else
2489#endif
2490 {
2491 ev_rt_now = ev_time ();
2492
2493 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2494 {
2495 /* adjust timers. this is easy, as the offset is the same for all of them */
2496 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2497#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2498 periodics_reschedule (EV_A);
1140# endif 2499#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2500 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2501
1161 mn_now = ev_rt_now; 2502 mn_now = ev_rt_now;
1162 } 2503 }
1163} 2504}
1164 2505
1165void 2506void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2507ev_run (EV_P_ int flags)
1181{ 2508{
1182 double block; 2509#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2510 ++loop_depth;
2511#endif
1184 2512
1185 while (activecnt) 2513 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2514
2515 loop_done = EVBREAK_CANCEL;
2516
2517 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2518
2519 do
1186 { 2520 {
2521#if EV_VERIFY >= 2
2522 ev_verify (EV_A);
2523#endif
2524
2525#ifndef _WIN32
2526 if (expect_false (curpid)) /* penalise the forking check even more */
2527 if (expect_false (getpid () != curpid))
2528 {
2529 curpid = getpid ();
2530 postfork = 1;
2531 }
2532#endif
2533
2534#if EV_FORK_ENABLE
2535 /* we might have forked, so queue fork handlers */
2536 if (expect_false (postfork))
2537 if (forkcnt)
2538 {
2539 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2540 EV_INVOKE_PENDING;
2541 }
2542#endif
2543
2544#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 2545 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2546 if (expect_false (preparecnt))
1189 { 2547 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2548 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2549 EV_INVOKE_PENDING;
1192 } 2550 }
2551#endif
2552
2553 if (expect_false (loop_done))
2554 break;
1193 2555
1194 /* we might have forked, so reify kernel state if necessary */ 2556 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 2557 if (expect_false (postfork))
1196 loop_fork (EV_A); 2558 loop_fork (EV_A);
1197 2559
1198 /* update fd-related kernel structures */ 2560 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2561 fd_reify (EV_A);
1200 2562
1201 /* calculate blocking time */ 2563 /* calculate blocking time */
2564 {
2565 ev_tstamp waittime = 0.;
2566 ev_tstamp sleeptime = 0.;
1202 2567
1203 /* we only need this for !monotonic clock or timers, but as we basically 2568 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 2569 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 2570
1206 if (expect_true (have_monotonic)) 2571 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 2572 time_update (EV_A_ 1e100);
1208 else 2573
1209#endif 2574 /* from now on, we want a pipe-wake-up */
2575 pipe_write_wanted = 1;
2576
2577 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1210 { 2578 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 2579 waittime = MAX_BLOCKTIME;
1220 2580
1221 if (timercnt) 2581 if (timercnt)
1222 { 2582 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2583 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1224 if (block > to) block = to; 2584 if (waittime > to) waittime = to;
1225 } 2585 }
1226 2586
1227#if EV_PERIODICS 2587#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2588 if (periodiccnt)
1229 { 2589 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2590 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1231 if (block > to) block = to; 2591 if (waittime > to) waittime = to;
1232 } 2592 }
1233#endif 2593#endif
1234 2594
1235 if (block < 0.) block = 0.; 2595 /* don't let timeouts decrease the waittime below timeout_blocktime */
2596 if (expect_false (waittime < timeout_blocktime))
2597 waittime = timeout_blocktime;
2598
2599 /* at this point, we NEED to wait, so we have to ensure */
2600 /* to pass a minimum nonzero value to the backend */
2601 if (expect_false (waittime < backend_mintime))
2602 waittime = backend_mintime;
2603
2604 /* extra check because io_blocktime is commonly 0 */
2605 if (expect_false (io_blocktime))
2606 {
2607 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2608
2609 if (sleeptime > waittime - backend_mintime)
2610 sleeptime = waittime - backend_mintime;
2611
2612 if (expect_true (sleeptime > 0.))
2613 {
2614 ev_sleep (sleeptime);
2615 waittime -= sleeptime;
2616 }
2617 }
1236 } 2618 }
1237 2619
1238 method_poll (EV_A_ block); 2620#if EV_FEATURE_API
2621 ++loop_count;
2622#endif
2623 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2624 backend_poll (EV_A_ waittime);
2625 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 2626
2627 pipe_write_wanted = 0;
2628
2629 if (pipe_write_skipped)
2630 {
2631 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2632 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2633 }
2634
2635
1240 /* update ev_rt_now, do magic */ 2636 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2637 time_update (EV_A_ waittime + sleeptime);
2638 }
1242 2639
1243 /* queue pending timers and reschedule them */ 2640 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2641 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2642#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2643 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2644#endif
1248 2645
2646#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2647 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2648 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2649#endif
1252 2650
2651#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 2652 /* queue check watchers, to be executed first */
1254 if (checkcnt) 2653 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2655#endif
1256 2656
1257 call_pending (EV_A); 2657 EV_INVOKE_PENDING;
1258
1259 if (loop_done)
1260 break;
1261 } 2658 }
2659 while (expect_true (
2660 activecnt
2661 && !loop_done
2662 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2663 ));
1262 2664
1263 if (loop_done != 2) 2665 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 2666 loop_done = EVBREAK_CANCEL;
2667
2668#if EV_FEATURE_API
2669 --loop_depth;
2670#endif
1265} 2671}
1266 2672
1267void 2673void
1268ev_unloop (EV_P_ int how) 2674ev_break (EV_P_ int how)
1269{ 2675{
1270 loop_done = how; 2676 loop_done = how;
1271} 2677}
1272 2678
2679void
2680ev_ref (EV_P)
2681{
2682 ++activecnt;
2683}
2684
2685void
2686ev_unref (EV_P)
2687{
2688 --activecnt;
2689}
2690
2691void
2692ev_now_update (EV_P)
2693{
2694 time_update (EV_A_ 1e100);
2695}
2696
2697void
2698ev_suspend (EV_P)
2699{
2700 ev_now_update (EV_A);
2701}
2702
2703void
2704ev_resume (EV_P)
2705{
2706 ev_tstamp mn_prev = mn_now;
2707
2708 ev_now_update (EV_A);
2709 timers_reschedule (EV_A_ mn_now - mn_prev);
2710#if EV_PERIODIC_ENABLE
2711 /* TODO: really do this? */
2712 periodics_reschedule (EV_A);
2713#endif
2714}
2715
1273/*****************************************************************************/ 2716/*****************************************************************************/
2717/* singly-linked list management, used when the expected list length is short */
1274 2718
1275inline void 2719inline_size void
1276wlist_add (WL *head, WL elem) 2720wlist_add (WL *head, WL elem)
1277{ 2721{
1278 elem->next = *head; 2722 elem->next = *head;
1279 *head = elem; 2723 *head = elem;
1280} 2724}
1281 2725
1282inline void 2726inline_size void
1283wlist_del (WL *head, WL elem) 2727wlist_del (WL *head, WL elem)
1284{ 2728{
1285 while (*head) 2729 while (*head)
1286 { 2730 {
1287 if (*head == elem) 2731 if (expect_true (*head == elem))
1288 { 2732 {
1289 *head = elem->next; 2733 *head = elem->next;
1290 return; 2734 break;
1291 } 2735 }
1292 2736
1293 head = &(*head)->next; 2737 head = &(*head)->next;
1294 } 2738 }
1295} 2739}
1296 2740
2741/* internal, faster, version of ev_clear_pending */
1297inline void 2742inline_speed void
1298ev_clear_pending (EV_P_ W w) 2743clear_pending (EV_P_ W w)
1299{ 2744{
1300 if (w->pending) 2745 if (w->pending)
1301 { 2746 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2747 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 2748 w->pending = 0;
1304 } 2749 }
1305} 2750}
1306 2751
2752int
2753ev_clear_pending (EV_P_ void *w)
2754{
2755 W w_ = (W)w;
2756 int pending = w_->pending;
2757
2758 if (expect_true (pending))
2759 {
2760 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2761 p->w = (W)&pending_w;
2762 w_->pending = 0;
2763 return p->events;
2764 }
2765 else
2766 return 0;
2767}
2768
1307inline void 2769inline_size void
2770pri_adjust (EV_P_ W w)
2771{
2772 int pri = ev_priority (w);
2773 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2774 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2775 ev_set_priority (w, pri);
2776}
2777
2778inline_speed void
1308ev_start (EV_P_ W w, int active) 2779ev_start (EV_P_ W w, int active)
1309{ 2780{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2781 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2782 w->active = active;
1314 ev_ref (EV_A); 2783 ev_ref (EV_A);
1315} 2784}
1316 2785
1317inline void 2786inline_size void
1318ev_stop (EV_P_ W w) 2787ev_stop (EV_P_ W w)
1319{ 2788{
1320 ev_unref (EV_A); 2789 ev_unref (EV_A);
1321 w->active = 0; 2790 w->active = 0;
1322} 2791}
1323 2792
1324/*****************************************************************************/ 2793/*****************************************************************************/
1325 2794
1326void 2795void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2796ev_io_start (EV_P_ ev_io *w)
1328{ 2797{
1329 int fd = w->fd; 2798 int fd = w->fd;
1330 2799
1331 if (ev_is_active (w)) 2800 if (expect_false (ev_is_active (w)))
1332 return; 2801 return;
1333 2802
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2803 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2804 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2805
2806 EV_FREQUENT_CHECK;
1335 2807
1336 ev_start (EV_A_ (W)w, 1); 2808 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2809 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2810 wlist_add (&anfds[fd].head, (WL)w);
1339 2811
1340 fd_change (EV_A_ fd); 2812 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1341} 2813 w->events &= ~EV__IOFDSET;
1342 2814
1343void 2815 EV_FREQUENT_CHECK;
2816}
2817
2818void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2819ev_io_stop (EV_P_ ev_io *w)
1345{ 2820{
1346 ev_clear_pending (EV_A_ (W)w); 2821 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 2822 if (expect_false (!ev_is_active (w)))
1348 return; 2823 return;
1349 2824
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2825 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2826
2827 EV_FREQUENT_CHECK;
2828
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2829 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2830 ev_stop (EV_A_ (W)w);
1354 2831
1355 fd_change (EV_A_ w->fd); 2832 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 2833
1358void 2834 EV_FREQUENT_CHECK;
2835}
2836
2837void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2838ev_timer_start (EV_P_ ev_timer *w)
1360{ 2839{
1361 if (ev_is_active (w)) 2840 if (expect_false (ev_is_active (w)))
1362 return; 2841 return;
1363 2842
1364 ((WT)w)->at += mn_now; 2843 ev_at (w) += mn_now;
1365 2844
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2845 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2846
2847 EV_FREQUENT_CHECK;
2848
2849 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2850 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2851 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2852 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2853 ANHE_at_cache (timers [ev_active (w)]);
2854 upheap (timers, ev_active (w));
1372 2855
2856 EV_FREQUENT_CHECK;
2857
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2858 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2859}
1375 2860
1376void 2861void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2862ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2863{
1379 ev_clear_pending (EV_A_ (W)w); 2864 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 2865 if (expect_false (!ev_is_active (w)))
1381 return; 2866 return;
1382 2867
2868 EV_FREQUENT_CHECK;
2869
2870 {
2871 int active = ev_active (w);
2872
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2873 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2874
1385 if (((W)w)->active < timercnt--) 2875 --timercnt;
2876
2877 if (expect_true (active < timercnt + HEAP0))
1386 { 2878 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2879 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2880 adjustheap (timers, timercnt, active);
1389 } 2881 }
2882 }
1390 2883
1391 ((WT)w)->at -= mn_now; 2884 ev_at (w) -= mn_now;
1392 2885
1393 ev_stop (EV_A_ (W)w); 2886 ev_stop (EV_A_ (W)w);
1394}
1395 2887
1396void 2888 EV_FREQUENT_CHECK;
2889}
2890
2891void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2892ev_timer_again (EV_P_ ev_timer *w)
1398{ 2893{
2894 EV_FREQUENT_CHECK;
2895
1399 if (ev_is_active (w)) 2896 if (ev_is_active (w))
1400 { 2897 {
1401 if (w->repeat) 2898 if (w->repeat)
1402 { 2899 {
1403 ((WT)w)->at = mn_now + w->repeat; 2900 ev_at (w) = mn_now + w->repeat;
2901 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2902 adjustheap (timers, timercnt, ev_active (w));
1405 } 2903 }
1406 else 2904 else
1407 ev_timer_stop (EV_A_ w); 2905 ev_timer_stop (EV_A_ w);
1408 } 2906 }
1409 else if (w->repeat) 2907 else if (w->repeat)
1410 { 2908 {
1411 w->at = w->repeat; 2909 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2910 ev_timer_start (EV_A_ w);
1413 } 2911 }
1414}
1415 2912
2913 EV_FREQUENT_CHECK;
2914}
2915
2916ev_tstamp
2917ev_timer_remaining (EV_P_ ev_timer *w)
2918{
2919 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2920}
2921
1416#if EV_PERIODICS 2922#if EV_PERIODIC_ENABLE
1417void 2923void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2924ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2925{
1420 if (ev_is_active (w)) 2926 if (expect_false (ev_is_active (w)))
1421 return; 2927 return;
1422 2928
1423 if (w->reschedule_cb) 2929 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2930 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2931 else if (w->interval)
1426 { 2932 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2933 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2934 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 2935 }
2936 else
2937 ev_at (w) = w->offset;
1431 2938
2939 EV_FREQUENT_CHECK;
2940
2941 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2942 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2943 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2944 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2945 ANHE_at_cache (periodics [ev_active (w)]);
2946 upheap (periodics, ev_active (w));
1436 2947
2948 EV_FREQUENT_CHECK;
2949
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2950 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2951}
1439 2952
1440void 2953void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2954ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2955{
1443 ev_clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 2957 if (expect_false (!ev_is_active (w)))
1445 return; 2958 return;
1446 2959
2960 EV_FREQUENT_CHECK;
2961
2962 {
2963 int active = ev_active (w);
2964
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2965 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2966
1449 if (((W)w)->active < periodiccnt--) 2967 --periodiccnt;
2968
2969 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2970 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2971 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2972 adjustheap (periodics, periodiccnt, active);
1453 } 2973 }
2974 }
1454 2975
1455 ev_stop (EV_A_ (W)w); 2976 ev_stop (EV_A_ (W)w);
1456}
1457 2977
1458void 2978 EV_FREQUENT_CHECK;
2979}
2980
2981void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2982ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2983{
1461 /* TODO: use adjustheap and recalculation */ 2984 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2985 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2986 ev_periodic_start (EV_A_ w);
1464} 2987}
1465#endif 2988#endif
1466 2989
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 2990#ifndef SA_RESTART
1534# define SA_RESTART 0 2991# define SA_RESTART 0
1535#endif 2992#endif
1536 2993
2994#if EV_SIGNAL_ENABLE
2995
2996void noinline
2997ev_signal_start (EV_P_ ev_signal *w)
2998{
2999 if (expect_false (ev_is_active (w)))
3000 return;
3001
3002 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3003
3004#if EV_MULTIPLICITY
3005 assert (("libev: a signal must not be attached to two different loops",
3006 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3007
3008 signals [w->signum - 1].loop = EV_A;
3009#endif
3010
3011 EV_FREQUENT_CHECK;
3012
3013#if EV_USE_SIGNALFD
3014 if (sigfd == -2)
3015 {
3016 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3017 if (sigfd < 0 && errno == EINVAL)
3018 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3019
3020 if (sigfd >= 0)
3021 {
3022 fd_intern (sigfd); /* doing it twice will not hurt */
3023
3024 sigemptyset (&sigfd_set);
3025
3026 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3027 ev_set_priority (&sigfd_w, EV_MAXPRI);
3028 ev_io_start (EV_A_ &sigfd_w);
3029 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3030 }
3031 }
3032
3033 if (sigfd >= 0)
3034 {
3035 /* TODO: check .head */
3036 sigaddset (&sigfd_set, w->signum);
3037 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3038
3039 signalfd (sigfd, &sigfd_set, 0);
3040 }
3041#endif
3042
3043 ev_start (EV_A_ (W)w, 1);
3044 wlist_add (&signals [w->signum - 1].head, (WL)w);
3045
3046 if (!((WL)w)->next)
3047# if EV_USE_SIGNALFD
3048 if (sigfd < 0) /*TODO*/
3049# endif
3050 {
3051# ifdef _WIN32
3052 evpipe_init (EV_A);
3053
3054 signal (w->signum, ev_sighandler);
3055# else
3056 struct sigaction sa;
3057
3058 evpipe_init (EV_A);
3059
3060 sa.sa_handler = ev_sighandler;
3061 sigfillset (&sa.sa_mask);
3062 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3063 sigaction (w->signum, &sa, 0);
3064
3065 if (origflags & EVFLAG_NOSIGMASK)
3066 {
3067 sigemptyset (&sa.sa_mask);
3068 sigaddset (&sa.sa_mask, w->signum);
3069 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3070 }
3071#endif
3072 }
3073
3074 EV_FREQUENT_CHECK;
3075}
3076
3077void noinline
3078ev_signal_stop (EV_P_ ev_signal *w)
3079{
3080 clear_pending (EV_A_ (W)w);
3081 if (expect_false (!ev_is_active (w)))
3082 return;
3083
3084 EV_FREQUENT_CHECK;
3085
3086 wlist_del (&signals [w->signum - 1].head, (WL)w);
3087 ev_stop (EV_A_ (W)w);
3088
3089 if (!signals [w->signum - 1].head)
3090 {
3091#if EV_MULTIPLICITY
3092 signals [w->signum - 1].loop = 0; /* unattach from signal */
3093#endif
3094#if EV_USE_SIGNALFD
3095 if (sigfd >= 0)
3096 {
3097 sigset_t ss;
3098
3099 sigemptyset (&ss);
3100 sigaddset (&ss, w->signum);
3101 sigdelset (&sigfd_set, w->signum);
3102
3103 signalfd (sigfd, &sigfd_set, 0);
3104 sigprocmask (SIG_UNBLOCK, &ss, 0);
3105 }
3106 else
3107#endif
3108 signal (w->signum, SIG_DFL);
3109 }
3110
3111 EV_FREQUENT_CHECK;
3112}
3113
3114#endif
3115
3116#if EV_CHILD_ENABLE
3117
1537void 3118void
1538ev_signal_start (EV_P_ struct ev_signal *w) 3119ev_child_start (EV_P_ ev_child *w)
1539{ 3120{
1540#if EV_MULTIPLICITY 3121#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3122 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 3123#endif
1543 if (ev_is_active (w)) 3124 if (expect_false (ev_is_active (w)))
1544 return; 3125 return;
1545 3126
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3127 EV_FREQUENT_CHECK;
1547 3128
1548 ev_start (EV_A_ (W)w, 1); 3129 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3130 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3131
1552 if (!((WL)w)->next) 3132 EV_FREQUENT_CHECK;
3133}
3134
3135void
3136ev_child_stop (EV_P_ ev_child *w)
3137{
3138 clear_pending (EV_A_ (W)w);
3139 if (expect_false (!ev_is_active (w)))
3140 return;
3141
3142 EV_FREQUENT_CHECK;
3143
3144 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3145 ev_stop (EV_A_ (W)w);
3146
3147 EV_FREQUENT_CHECK;
3148}
3149
3150#endif
3151
3152#if EV_STAT_ENABLE
3153
3154# ifdef _WIN32
3155# undef lstat
3156# define lstat(a,b) _stati64 (a,b)
3157# endif
3158
3159#define DEF_STAT_INTERVAL 5.0074891
3160#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3161#define MIN_STAT_INTERVAL 0.1074891
3162
3163static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3164
3165#if EV_USE_INOTIFY
3166
3167/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3168# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3169
3170static void noinline
3171infy_add (EV_P_ ev_stat *w)
3172{
3173 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3174
3175 if (w->wd >= 0)
3176 {
3177 struct statfs sfs;
3178
3179 /* now local changes will be tracked by inotify, but remote changes won't */
3180 /* unless the filesystem is known to be local, we therefore still poll */
3181 /* also do poll on <2.6.25, but with normal frequency */
3182
3183 if (!fs_2625)
3184 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3185 else if (!statfs (w->path, &sfs)
3186 && (sfs.f_type == 0x1373 /* devfs */
3187 || sfs.f_type == 0xEF53 /* ext2/3 */
3188 || sfs.f_type == 0x3153464a /* jfs */
3189 || sfs.f_type == 0x52654973 /* reiser3 */
3190 || sfs.f_type == 0x01021994 /* tempfs */
3191 || sfs.f_type == 0x58465342 /* xfs */))
3192 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3193 else
3194 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1553 { 3195 }
3196 else
3197 {
3198 /* can't use inotify, continue to stat */
3199 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3200
3201 /* if path is not there, monitor some parent directory for speedup hints */
3202 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3203 /* but an efficiency issue only */
3204 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3205 {
3206 char path [4096];
3207 strcpy (path, w->path);
3208
3209 do
3210 {
3211 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3212 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3213
3214 char *pend = strrchr (path, '/');
3215
3216 if (!pend || pend == path)
3217 break;
3218
3219 *pend = 0;
3220 w->wd = inotify_add_watch (fs_fd, path, mask);
3221 }
3222 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3223 }
3224 }
3225
3226 if (w->wd >= 0)
3227 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3228
3229 /* now re-arm timer, if required */
3230 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3231 ev_timer_again (EV_A_ &w->timer);
3232 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3233}
3234
3235static void noinline
3236infy_del (EV_P_ ev_stat *w)
3237{
3238 int slot;
3239 int wd = w->wd;
3240
3241 if (wd < 0)
3242 return;
3243
3244 w->wd = -2;
3245 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3246 wlist_del (&fs_hash [slot].head, (WL)w);
3247
3248 /* remove this watcher, if others are watching it, they will rearm */
3249 inotify_rm_watch (fs_fd, wd);
3250}
3251
3252static void noinline
3253infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3254{
3255 if (slot < 0)
3256 /* overflow, need to check for all hash slots */
3257 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3258 infy_wd (EV_A_ slot, wd, ev);
3259 else
3260 {
3261 WL w_;
3262
3263 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3264 {
3265 ev_stat *w = (ev_stat *)w_;
3266 w_ = w_->next; /* lets us remove this watcher and all before it */
3267
3268 if (w->wd == wd || wd == -1)
3269 {
3270 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3271 {
3272 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3273 w->wd = -1;
3274 infy_add (EV_A_ w); /* re-add, no matter what */
3275 }
3276
3277 stat_timer_cb (EV_A_ &w->timer, 0);
3278 }
3279 }
3280 }
3281}
3282
3283static void
3284infy_cb (EV_P_ ev_io *w, int revents)
3285{
3286 char buf [EV_INOTIFY_BUFSIZE];
3287 int ofs;
3288 int len = read (fs_fd, buf, sizeof (buf));
3289
3290 for (ofs = 0; ofs < len; )
3291 {
3292 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3293 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3294 ofs += sizeof (struct inotify_event) + ev->len;
3295 }
3296}
3297
3298inline_size void ecb_cold
3299ev_check_2625 (EV_P)
3300{
3301 /* kernels < 2.6.25 are borked
3302 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3303 */
3304 if (ev_linux_version () < 0x020619)
3305 return;
3306
3307 fs_2625 = 1;
3308}
3309
3310inline_size int
3311infy_newfd (void)
3312{
3313#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3314 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3315 if (fd >= 0)
3316 return fd;
3317#endif
3318 return inotify_init ();
3319}
3320
3321inline_size void
3322infy_init (EV_P)
3323{
3324 if (fs_fd != -2)
3325 return;
3326
3327 fs_fd = -1;
3328
3329 ev_check_2625 (EV_A);
3330
3331 fs_fd = infy_newfd ();
3332
3333 if (fs_fd >= 0)
3334 {
3335 fd_intern (fs_fd);
3336 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3337 ev_set_priority (&fs_w, EV_MAXPRI);
3338 ev_io_start (EV_A_ &fs_w);
3339 ev_unref (EV_A);
3340 }
3341}
3342
3343inline_size void
3344infy_fork (EV_P)
3345{
3346 int slot;
3347
3348 if (fs_fd < 0)
3349 return;
3350
3351 ev_ref (EV_A);
3352 ev_io_stop (EV_A_ &fs_w);
3353 close (fs_fd);
3354 fs_fd = infy_newfd ();
3355
3356 if (fs_fd >= 0)
3357 {
3358 fd_intern (fs_fd);
3359 ev_io_set (&fs_w, fs_fd, EV_READ);
3360 ev_io_start (EV_A_ &fs_w);
3361 ev_unref (EV_A);
3362 }
3363
3364 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3365 {
3366 WL w_ = fs_hash [slot].head;
3367 fs_hash [slot].head = 0;
3368
3369 while (w_)
3370 {
3371 ev_stat *w = (ev_stat *)w_;
3372 w_ = w_->next; /* lets us add this watcher */
3373
3374 w->wd = -1;
3375
3376 if (fs_fd >= 0)
3377 infy_add (EV_A_ w); /* re-add, no matter what */
3378 else
3379 {
3380 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3381 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3382 ev_timer_again (EV_A_ &w->timer);
3383 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3384 }
3385 }
3386 }
3387}
3388
3389#endif
3390
1554#if _WIN32 3391#ifdef _WIN32
1555 signal (w->signum, sighandler); 3392# define EV_LSTAT(p,b) _stati64 (p, b)
1556#else 3393#else
1557 struct sigaction sa; 3394# define EV_LSTAT(p,b) lstat (p, b)
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif 3395#endif
1563 }
1564}
1565 3396
1566void 3397void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3398ev_stat_stat (EV_P_ ev_stat *w)
1568{ 3399{
1569 ev_clear_pending (EV_A_ (W)w); 3400 if (lstat (w->path, &w->attr) < 0)
1570 if (!ev_is_active (w)) 3401 w->attr.st_nlink = 0;
3402 else if (!w->attr.st_nlink)
3403 w->attr.st_nlink = 1;
3404}
3405
3406static void noinline
3407stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3408{
3409 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3410
3411 ev_statdata prev = w->attr;
3412 ev_stat_stat (EV_A_ w);
3413
3414 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3415 if (
3416 prev.st_dev != w->attr.st_dev
3417 || prev.st_ino != w->attr.st_ino
3418 || prev.st_mode != w->attr.st_mode
3419 || prev.st_nlink != w->attr.st_nlink
3420 || prev.st_uid != w->attr.st_uid
3421 || prev.st_gid != w->attr.st_gid
3422 || prev.st_rdev != w->attr.st_rdev
3423 || prev.st_size != w->attr.st_size
3424 || prev.st_atime != w->attr.st_atime
3425 || prev.st_mtime != w->attr.st_mtime
3426 || prev.st_ctime != w->attr.st_ctime
3427 ) {
3428 /* we only update w->prev on actual differences */
3429 /* in case we test more often than invoke the callback, */
3430 /* to ensure that prev is always different to attr */
3431 w->prev = prev;
3432
3433 #if EV_USE_INOTIFY
3434 if (fs_fd >= 0)
3435 {
3436 infy_del (EV_A_ w);
3437 infy_add (EV_A_ w);
3438 ev_stat_stat (EV_A_ w); /* avoid race... */
3439 }
3440 #endif
3441
3442 ev_feed_event (EV_A_ w, EV_STAT);
3443 }
3444}
3445
3446void
3447ev_stat_start (EV_P_ ev_stat *w)
3448{
3449 if (expect_false (ev_is_active (w)))
1571 return; 3450 return;
1572 3451
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3452 ev_stat_stat (EV_A_ w);
3453
3454 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3455 w->interval = MIN_STAT_INTERVAL;
3456
3457 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3458 ev_set_priority (&w->timer, ev_priority (w));
3459
3460#if EV_USE_INOTIFY
3461 infy_init (EV_A);
3462
3463 if (fs_fd >= 0)
3464 infy_add (EV_A_ w);
3465 else
3466#endif
3467 {
3468 ev_timer_again (EV_A_ &w->timer);
3469 ev_unref (EV_A);
3470 }
3471
3472 ev_start (EV_A_ (W)w, 1);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476
3477void
3478ev_stat_stop (EV_P_ ev_stat *w)
3479{
3480 clear_pending (EV_A_ (W)w);
3481 if (expect_false (!ev_is_active (w)))
3482 return;
3483
3484 EV_FREQUENT_CHECK;
3485
3486#if EV_USE_INOTIFY
3487 infy_del (EV_A_ w);
3488#endif
3489
3490 if (ev_is_active (&w->timer))
3491 {
3492 ev_ref (EV_A);
3493 ev_timer_stop (EV_A_ &w->timer);
3494 }
3495
1574 ev_stop (EV_A_ (W)w); 3496 ev_stop (EV_A_ (W)w);
1575 3497
1576 if (!signals [w->signum - 1].head) 3498 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3499}
3500#endif
1579 3501
3502#if EV_IDLE_ENABLE
1580void 3503void
1581ev_child_start (EV_P_ struct ev_child *w) 3504ev_idle_start (EV_P_ ev_idle *w)
1582{ 3505{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif
1586 if (ev_is_active (w)) 3506 if (expect_false (ev_is_active (w)))
1587 return; 3507 return;
1588 3508
3509 pri_adjust (EV_A_ (W)w);
3510
3511 EV_FREQUENT_CHECK;
3512
3513 {
3514 int active = ++idlecnt [ABSPRI (w)];
3515
3516 ++idleall;
3517 ev_start (EV_A_ (W)w, active);
3518
3519 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3520 idles [ABSPRI (w)][active - 1] = w;
3521 }
3522
3523 EV_FREQUENT_CHECK;
3524}
3525
3526void
3527ev_idle_stop (EV_P_ ev_idle *w)
3528{
3529 clear_pending (EV_A_ (W)w);
3530 if (expect_false (!ev_is_active (w)))
3531 return;
3532
3533 EV_FREQUENT_CHECK;
3534
3535 {
3536 int active = ev_active (w);
3537
3538 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3539 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3540
3541 ev_stop (EV_A_ (W)w);
3542 --idleall;
3543 }
3544
3545 EV_FREQUENT_CHECK;
3546}
3547#endif
3548
3549#if EV_PREPARE_ENABLE
3550void
3551ev_prepare_start (EV_P_ ev_prepare *w)
3552{
3553 if (expect_false (ev_is_active (w)))
3554 return;
3555
3556 EV_FREQUENT_CHECK;
3557
3558 ev_start (EV_A_ (W)w, ++preparecnt);
3559 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3560 prepares [preparecnt - 1] = w;
3561
3562 EV_FREQUENT_CHECK;
3563}
3564
3565void
3566ev_prepare_stop (EV_P_ ev_prepare *w)
3567{
3568 clear_pending (EV_A_ (W)w);
3569 if (expect_false (!ev_is_active (w)))
3570 return;
3571
3572 EV_FREQUENT_CHECK;
3573
3574 {
3575 int active = ev_active (w);
3576
3577 prepares [active - 1] = prepares [--preparecnt];
3578 ev_active (prepares [active - 1]) = active;
3579 }
3580
3581 ev_stop (EV_A_ (W)w);
3582
3583 EV_FREQUENT_CHECK;
3584}
3585#endif
3586
3587#if EV_CHECK_ENABLE
3588void
3589ev_check_start (EV_P_ ev_check *w)
3590{
3591 if (expect_false (ev_is_active (w)))
3592 return;
3593
3594 EV_FREQUENT_CHECK;
3595
3596 ev_start (EV_A_ (W)w, ++checkcnt);
3597 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3598 checks [checkcnt - 1] = w;
3599
3600 EV_FREQUENT_CHECK;
3601}
3602
3603void
3604ev_check_stop (EV_P_ ev_check *w)
3605{
3606 clear_pending (EV_A_ (W)w);
3607 if (expect_false (!ev_is_active (w)))
3608 return;
3609
3610 EV_FREQUENT_CHECK;
3611
3612 {
3613 int active = ev_active (w);
3614
3615 checks [active - 1] = checks [--checkcnt];
3616 ev_active (checks [active - 1]) = active;
3617 }
3618
3619 ev_stop (EV_A_ (W)w);
3620
3621 EV_FREQUENT_CHECK;
3622}
3623#endif
3624
3625#if EV_EMBED_ENABLE
3626void noinline
3627ev_embed_sweep (EV_P_ ev_embed *w)
3628{
3629 ev_run (w->other, EVRUN_NOWAIT);
3630}
3631
3632static void
3633embed_io_cb (EV_P_ ev_io *io, int revents)
3634{
3635 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3636
3637 if (ev_cb (w))
3638 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3639 else
3640 ev_run (w->other, EVRUN_NOWAIT);
3641}
3642
3643static void
3644embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3645{
3646 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3647
3648 {
3649 EV_P = w->other;
3650
3651 while (fdchangecnt)
3652 {
3653 fd_reify (EV_A);
3654 ev_run (EV_A_ EVRUN_NOWAIT);
3655 }
3656 }
3657}
3658
3659static void
3660embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3661{
3662 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3663
3664 ev_embed_stop (EV_A_ w);
3665
3666 {
3667 EV_P = w->other;
3668
3669 ev_loop_fork (EV_A);
3670 ev_run (EV_A_ EVRUN_NOWAIT);
3671 }
3672
3673 ev_embed_start (EV_A_ w);
3674}
3675
3676#if 0
3677static void
3678embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3679{
3680 ev_idle_stop (EV_A_ idle);
3681}
3682#endif
3683
3684void
3685ev_embed_start (EV_P_ ev_embed *w)
3686{
3687 if (expect_false (ev_is_active (w)))
3688 return;
3689
3690 {
3691 EV_P = w->other;
3692 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3693 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3694 }
3695
3696 EV_FREQUENT_CHECK;
3697
3698 ev_set_priority (&w->io, ev_priority (w));
3699 ev_io_start (EV_A_ &w->io);
3700
3701 ev_prepare_init (&w->prepare, embed_prepare_cb);
3702 ev_set_priority (&w->prepare, EV_MINPRI);
3703 ev_prepare_start (EV_A_ &w->prepare);
3704
3705 ev_fork_init (&w->fork, embed_fork_cb);
3706 ev_fork_start (EV_A_ &w->fork);
3707
3708 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3709
1589 ev_start (EV_A_ (W)w, 1); 3710 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3711
3712 EV_FREQUENT_CHECK;
1591} 3713}
1592 3714
1593void 3715void
1594ev_child_stop (EV_P_ struct ev_child *w) 3716ev_embed_stop (EV_P_ ev_embed *w)
1595{ 3717{
1596 ev_clear_pending (EV_A_ (W)w); 3718 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 3719 if (expect_false (!ev_is_active (w)))
1598 return; 3720 return;
1599 3721
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3722 EV_FREQUENT_CHECK;
3723
3724 ev_io_stop (EV_A_ &w->io);
3725 ev_prepare_stop (EV_A_ &w->prepare);
3726 ev_fork_stop (EV_A_ &w->fork);
3727
1601 ev_stop (EV_A_ (W)w); 3728 ev_stop (EV_A_ (W)w);
3729
3730 EV_FREQUENT_CHECK;
1602} 3731}
3732#endif
3733
3734#if EV_FORK_ENABLE
3735void
3736ev_fork_start (EV_P_ ev_fork *w)
3737{
3738 if (expect_false (ev_is_active (w)))
3739 return;
3740
3741 EV_FREQUENT_CHECK;
3742
3743 ev_start (EV_A_ (W)w, ++forkcnt);
3744 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3745 forks [forkcnt - 1] = w;
3746
3747 EV_FREQUENT_CHECK;
3748}
3749
3750void
3751ev_fork_stop (EV_P_ ev_fork *w)
3752{
3753 clear_pending (EV_A_ (W)w);
3754 if (expect_false (!ev_is_active (w)))
3755 return;
3756
3757 EV_FREQUENT_CHECK;
3758
3759 {
3760 int active = ev_active (w);
3761
3762 forks [active - 1] = forks [--forkcnt];
3763 ev_active (forks [active - 1]) = active;
3764 }
3765
3766 ev_stop (EV_A_ (W)w);
3767
3768 EV_FREQUENT_CHECK;
3769}
3770#endif
3771
3772#if EV_CLEANUP_ENABLE
3773void
3774ev_cleanup_start (EV_P_ ev_cleanup *w)
3775{
3776 if (expect_false (ev_is_active (w)))
3777 return;
3778
3779 EV_FREQUENT_CHECK;
3780
3781 ev_start (EV_A_ (W)w, ++cleanupcnt);
3782 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3783 cleanups [cleanupcnt - 1] = w;
3784
3785 /* cleanup watchers should never keep a refcount on the loop */
3786 ev_unref (EV_A);
3787 EV_FREQUENT_CHECK;
3788}
3789
3790void
3791ev_cleanup_stop (EV_P_ ev_cleanup *w)
3792{
3793 clear_pending (EV_A_ (W)w);
3794 if (expect_false (!ev_is_active (w)))
3795 return;
3796
3797 EV_FREQUENT_CHECK;
3798 ev_ref (EV_A);
3799
3800 {
3801 int active = ev_active (w);
3802
3803 cleanups [active - 1] = cleanups [--cleanupcnt];
3804 ev_active (cleanups [active - 1]) = active;
3805 }
3806
3807 ev_stop (EV_A_ (W)w);
3808
3809 EV_FREQUENT_CHECK;
3810}
3811#endif
3812
3813#if EV_ASYNC_ENABLE
3814void
3815ev_async_start (EV_P_ ev_async *w)
3816{
3817 if (expect_false (ev_is_active (w)))
3818 return;
3819
3820 w->sent = 0;
3821
3822 evpipe_init (EV_A);
3823
3824 EV_FREQUENT_CHECK;
3825
3826 ev_start (EV_A_ (W)w, ++asynccnt);
3827 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3828 asyncs [asynccnt - 1] = w;
3829
3830 EV_FREQUENT_CHECK;
3831}
3832
3833void
3834ev_async_stop (EV_P_ ev_async *w)
3835{
3836 clear_pending (EV_A_ (W)w);
3837 if (expect_false (!ev_is_active (w)))
3838 return;
3839
3840 EV_FREQUENT_CHECK;
3841
3842 {
3843 int active = ev_active (w);
3844
3845 asyncs [active - 1] = asyncs [--asynccnt];
3846 ev_active (asyncs [active - 1]) = active;
3847 }
3848
3849 ev_stop (EV_A_ (W)w);
3850
3851 EV_FREQUENT_CHECK;
3852}
3853
3854void
3855ev_async_send (EV_P_ ev_async *w)
3856{
3857 w->sent = 1;
3858 evpipe_write (EV_A_ &async_pending);
3859}
3860#endif
1603 3861
1604/*****************************************************************************/ 3862/*****************************************************************************/
1605 3863
1606struct ev_once 3864struct ev_once
1607{ 3865{
1608 struct ev_io io; 3866 ev_io io;
1609 struct ev_timer to; 3867 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3868 void (*cb)(int revents, void *arg);
1611 void *arg; 3869 void *arg;
1612}; 3870};
1613 3871
1614static void 3872static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3873once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3874{
1617 void (*cb)(int revents, void *arg) = once->cb; 3875 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3876 void *arg = once->arg;
1619 3877
1620 ev_io_stop (EV_A_ &once->io); 3878 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3879 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3880 ev_free (once);
1623 3881
1624 cb (revents, arg); 3882 cb (revents, arg);
1625} 3883}
1626 3884
1627static void 3885static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3886once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3887{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3888 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3889
3890 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3891}
1632 3892
1633static void 3893static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3894once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3895{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3896 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3897
3898 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3899}
1638 3900
1639void 3901void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3902ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3903{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3904 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 3905
1644 if (!once) 3906 if (expect_false (!once))
3907 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3908 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1646 else 3909 return;
1647 { 3910 }
3911
1648 once->cb = cb; 3912 once->cb = cb;
1649 once->arg = arg; 3913 once->arg = arg;
1650 3914
1651 ev_init (&once->io, once_cb_io); 3915 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 3916 if (fd >= 0)
3917 {
3918 ev_io_set (&once->io, fd, events);
3919 ev_io_start (EV_A_ &once->io);
3920 }
3921
3922 ev_init (&once->to, once_cb_to);
3923 if (timeout >= 0.)
3924 {
3925 ev_timer_set (&once->to, timeout, 0.);
3926 ev_timer_start (EV_A_ &once->to);
3927 }
3928}
3929
3930/*****************************************************************************/
3931
3932#if EV_WALK_ENABLE
3933void ecb_cold
3934ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3935{
3936 int i, j;
3937 ev_watcher_list *wl, *wn;
3938
3939 if (types & (EV_IO | EV_EMBED))
3940 for (i = 0; i < anfdmax; ++i)
3941 for (wl = anfds [i].head; wl; )
1653 { 3942 {
1654 ev_io_set (&once->io, fd, events); 3943 wn = wl->next;
1655 ev_io_start (EV_A_ &once->io); 3944
3945#if EV_EMBED_ENABLE
3946 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3947 {
3948 if (types & EV_EMBED)
3949 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3950 }
3951 else
3952#endif
3953#if EV_USE_INOTIFY
3954 if (ev_cb ((ev_io *)wl) == infy_cb)
3955 ;
3956 else
3957#endif
3958 if ((ev_io *)wl != &pipe_w)
3959 if (types & EV_IO)
3960 cb (EV_A_ EV_IO, wl);
3961
3962 wl = wn;
1656 } 3963 }
1657 3964
1658 ev_init (&once->to, once_cb_to); 3965 if (types & (EV_TIMER | EV_STAT))
1659 if (timeout >= 0.) 3966 for (i = timercnt + HEAP0; i-- > HEAP0; )
3967#if EV_STAT_ENABLE
3968 /*TODO: timer is not always active*/
3969 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1660 { 3970 {
1661 ev_timer_set (&once->to, timeout, 0.); 3971 if (types & EV_STAT)
1662 ev_timer_start (EV_A_ &once->to); 3972 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1663 } 3973 }
1664 } 3974 else
1665} 3975#endif
3976 if (types & EV_TIMER)
3977 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1666 3978
1667#ifdef __cplusplus 3979#if EV_PERIODIC_ENABLE
1668} 3980 if (types & EV_PERIODIC)
3981 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3982 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3983#endif
3984
3985#if EV_IDLE_ENABLE
3986 if (types & EV_IDLE)
3987 for (j = NUMPRI; i--; )
3988 for (i = idlecnt [j]; i--; )
3989 cb (EV_A_ EV_IDLE, idles [j][i]);
3990#endif
3991
3992#if EV_FORK_ENABLE
3993 if (types & EV_FORK)
3994 for (i = forkcnt; i--; )
3995 if (ev_cb (forks [i]) != embed_fork_cb)
3996 cb (EV_A_ EV_FORK, forks [i]);
3997#endif
3998
3999#if EV_ASYNC_ENABLE
4000 if (types & EV_ASYNC)
4001 for (i = asynccnt; i--; )
4002 cb (EV_A_ EV_ASYNC, asyncs [i]);
4003#endif
4004
4005#if EV_PREPARE_ENABLE
4006 if (types & EV_PREPARE)
4007 for (i = preparecnt; i--; )
4008# if EV_EMBED_ENABLE
4009 if (ev_cb (prepares [i]) != embed_prepare_cb)
1669#endif 4010# endif
4011 cb (EV_A_ EV_PREPARE, prepares [i]);
4012#endif
1670 4013
4014#if EV_CHECK_ENABLE
4015 if (types & EV_CHECK)
4016 for (i = checkcnt; i--; )
4017 cb (EV_A_ EV_CHECK, checks [i]);
4018#endif
4019
4020#if EV_SIGNAL_ENABLE
4021 if (types & EV_SIGNAL)
4022 for (i = 0; i < EV_NSIG - 1; ++i)
4023 for (wl = signals [i].head; wl; )
4024 {
4025 wn = wl->next;
4026 cb (EV_A_ EV_SIGNAL, wl);
4027 wl = wn;
4028 }
4029#endif
4030
4031#if EV_CHILD_ENABLE
4032 if (types & EV_CHILD)
4033 for (i = (EV_PID_HASHSIZE); i--; )
4034 for (wl = childs [i]; wl; )
4035 {
4036 wn = wl->next;
4037 cb (EV_A_ EV_CHILD, wl);
4038 wl = wn;
4039 }
4040#endif
4041/* EV_STAT 0x00001000 /* stat data changed */
4042/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4043}
4044#endif
4045
4046#if EV_MULTIPLICITY
4047 #include "ev_wrap.h"
4048#endif
4049
4050EV_CPP(})
4051

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines