ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.380 by root, Mon Jun 27 19:20:01 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
111#ifndef _WIN32 190#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 191# include <sys/time.h>
114# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
115#else 194#else
195# include <io.h>
116# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 197# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
120# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
121#endif 251# endif
122 252#endif
123/**/
124 253
125#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
126# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
127#endif 260#endif
128 261
129#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
131#endif 272#endif
132 273
133#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 276#endif
136 277
137#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
138# ifdef _WIN32 279# ifdef _WIN32
139# define EV_USE_POLL 0 280# define EV_USE_POLL 0
140# else 281# else
141# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 283# endif
143#endif 284#endif
144 285
145#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
146# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
147#endif 292#endif
148 293
149#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
151#endif 296#endif
152 297
153#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 299# define EV_USE_PORT 0
155#endif 300#endif
156 301
157/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
158 309
159/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
160#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
161# undef EV_USE_POLL 370# undef EV_USE_POLL
162# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
163#endif 372#endif
164 373
165#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
170#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
173#endif 382#endif
174 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
175#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 407# include <winsock.h>
177#endif 408#endif
178 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
179/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
180 462
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
185 465
186#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
187# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
188#else 493#else
189# include "ev.h" 494 #define ecb_inline static
190#endif 495#endif
191 496
192#if __GNUC__ >= 3 497#if ECB_GCC_VERSION(3,1)
498 #define ecb_attribute(attrlist) __attribute__(attrlist)
499 #define ecb_is_constant(expr) __builtin_constant_p (expr)
193# define expect(expr,value) __builtin_expect ((expr),(value)) 500 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 501 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
195#else 502#else
503 #define ecb_attribute(attrlist)
504 #define ecb_is_constant(expr) 0
196# define expect(expr,value) (expr) 505 #define ecb_expect(expr,value) (expr)
197# define inline static 506 #define ecb_prefetch(addr,rw,locality)
198#endif 507#endif
199 508
509#define ecb_noinline ecb_attribute ((__noinline__))
510#define ecb_noreturn ecb_attribute ((__noreturn__))
511#define ecb_unused ecb_attribute ((__unused__))
512#define ecb_const ecb_attribute ((__const__))
513#define ecb_pure ecb_attribute ((__pure__))
514
515#if ECB_GCC_VERSION(4,3)
516 #define ecb_artificial ecb_attribute ((__artificial__))
517 #define ecb_hot ecb_attribute ((__hot__))
518 #define ecb_cold ecb_attribute ((__cold__))
519#else
520 #define ecb_artificial
521 #define ecb_hot
522 #define ecb_cold
523#endif
524
525/* put around conditional expressions if you are very sure that the */
526/* expression is mostly true or mostly false. note that these return */
527/* booleans, not the expression. */
200#define expect_false(expr) expect ((expr) != 0, 0) 528#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 529#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
530/* ecb.h end */
202 531
532#define expect_false(cond) ecb_expect_false (cond)
533#define expect_true(cond) ecb_expect_true (cond)
534#define noinline ecb_noinline
535
536#define inline_size ecb_inline
537
538#if EV_FEATURE_CODE
539# define inline_speed ecb_inline
540#else
541# define inline_speed static noinline
542#endif
543
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 544#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
545
546#if EV_MINPRI == EV_MAXPRI
547# define ABSPRI(w) (((W)w), 0)
548#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 549# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
550#endif
205 551
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 552#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 553#define EMPTY2(a,b) /* used to suppress some warnings */
208 554
209typedef struct ev_watcher *W; 555typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 556typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 557typedef ev_watcher_time *WT;
212 558
559#define ev_active(w) ((W)(w))->active
560#define ev_at(w) ((WT)(w))->at
561
562#if EV_USE_REALTIME
563/* sig_atomic_t is used to avoid per-thread variables or locking but still */
564/* giving it a reasonably high chance of working on typical architectures */
565static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
566#endif
567
568#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 569static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
570#endif
571
572#ifndef EV_FD_TO_WIN32_HANDLE
573# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
574#endif
575#ifndef EV_WIN32_HANDLE_TO_FD
576# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
577#endif
578#ifndef EV_WIN32_CLOSE_FD
579# define EV_WIN32_CLOSE_FD(fd) close (fd)
580#endif
214 581
215#ifdef _WIN32 582#ifdef _WIN32
216# include "ev_win32.c" 583# include "ev_win32.c"
217#endif 584#endif
218 585
219/*****************************************************************************/ 586/*****************************************************************************/
220 587
588/* define a suitable floor function (only used by periodics atm) */
589
590#if EV_USE_FLOOR
591# include <math.h>
592# define ev_floor(v) floor (v)
593#else
594
595#include <float.h>
596
597/* a floor() replacement function, should be independent of ev_tstamp type */
598static ev_tstamp noinline
599ev_floor (ev_tstamp v)
600{
601 /* the choice of shift factor is not terribly important */
602#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
603 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
604#else
605 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
606#endif
607
608 /* argument too large for an unsigned long? */
609 if (expect_false (v >= shift))
610 {
611 ev_tstamp f;
612
613 if (v == v - 1.)
614 return v; /* very large number */
615
616 f = shift * ev_floor (v * (1. / shift));
617 return f + ev_floor (v - f);
618 }
619
620 /* special treatment for negative args? */
621 if (expect_false (v < 0.))
622 {
623 ev_tstamp f = -ev_floor (-v);
624
625 return f - (f == v ? 0 : 1);
626 }
627
628 /* fits into an unsigned long */
629 return (unsigned long)v;
630}
631
632#endif
633
634/*****************************************************************************/
635
636#ifdef __linux
637# include <sys/utsname.h>
638#endif
639
640static unsigned int noinline ecb_cold
641ev_linux_version (void)
642{
643#ifdef __linux
644 unsigned int v = 0;
645 struct utsname buf;
646 int i;
647 char *p = buf.release;
648
649 if (uname (&buf))
650 return 0;
651
652 for (i = 3+1; --i; )
653 {
654 unsigned int c = 0;
655
656 for (;;)
657 {
658 if (*p >= '0' && *p <= '9')
659 c = c * 10 + *p++ - '0';
660 else
661 {
662 p += *p == '.';
663 break;
664 }
665 }
666
667 v = (v << 8) | c;
668 }
669
670 return v;
671#else
672 return 0;
673#endif
674}
675
676/*****************************************************************************/
677
678#if EV_AVOID_STDIO
679static void noinline ecb_cold
680ev_printerr (const char *msg)
681{
682 write (STDERR_FILENO, msg, strlen (msg));
683}
684#endif
685
221static void (*syserr_cb)(const char *msg); 686static void (*syserr_cb)(const char *msg);
222 687
688void ecb_cold
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 689ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 690{
225 syserr_cb = cb; 691 syserr_cb = cb;
226} 692}
227 693
228static void 694static void noinline ecb_cold
229syserr (const char *msg) 695ev_syserr (const char *msg)
230{ 696{
231 if (!msg) 697 if (!msg)
232 msg = "(libev) system error"; 698 msg = "(libev) system error";
233 699
234 if (syserr_cb) 700 if (syserr_cb)
235 syserr_cb (msg); 701 syserr_cb (msg);
236 else 702 else
237 { 703 {
704#if EV_AVOID_STDIO
705 ev_printerr (msg);
706 ev_printerr (": ");
707 ev_printerr (strerror (errno));
708 ev_printerr ("\n");
709#else
238 perror (msg); 710 perror (msg);
711#endif
239 abort (); 712 abort ();
240 } 713 }
241} 714}
242 715
716static void *
717ev_realloc_emul (void *ptr, long size)
718{
719#if __GLIBC__
720 return realloc (ptr, size);
721#else
722 /* some systems, notably openbsd and darwin, fail to properly
723 * implement realloc (x, 0) (as required by both ansi c-89 and
724 * the single unix specification, so work around them here.
725 */
726
727 if (size)
728 return realloc (ptr, size);
729
730 free (ptr);
731 return 0;
732#endif
733}
734
243static void *(*alloc)(void *ptr, long size); 735static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 736
737void ecb_cold
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 738ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 739{
247 alloc = cb; 740 alloc = cb;
248} 741}
249 742
250static void * 743inline_speed void *
251ev_realloc (void *ptr, long size) 744ev_realloc (void *ptr, long size)
252{ 745{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 746 ptr = alloc (ptr, size);
254 747
255 if (!ptr && size) 748 if (!ptr && size)
256 { 749 {
750#if EV_AVOID_STDIO
751 ev_printerr ("(libev) memory allocation failed, aborting.\n");
752#else
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 753 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
754#endif
258 abort (); 755 abort ();
259 } 756 }
260 757
261 return ptr; 758 return ptr;
262} 759}
264#define ev_malloc(size) ev_realloc (0, (size)) 761#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 762#define ev_free(ptr) ev_realloc ((ptr), 0)
266 763
267/*****************************************************************************/ 764/*****************************************************************************/
268 765
766/* set in reify when reification needed */
767#define EV_ANFD_REIFY 1
768
769/* file descriptor info structure */
269typedef struct 770typedef struct
270{ 771{
271 WL head; 772 WL head;
272 unsigned char events; 773 unsigned char events; /* the events watched for */
774 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
775 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 776 unsigned char unused;
777#if EV_USE_EPOLL
778 unsigned int egen; /* generation counter to counter epoll bugs */
779#endif
274#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
275 SOCKET handle; 781 SOCKET handle;
276#endif 782#endif
783#if EV_USE_IOCP
784 OVERLAPPED or, ow;
785#endif
277} ANFD; 786} ANFD;
278 787
788/* stores the pending event set for a given watcher */
279typedef struct 789typedef struct
280{ 790{
281 W w; 791 W w;
282 int events; 792 int events; /* the pending event set for the given watcher */
283} ANPENDING; 793} ANPENDING;
794
795#if EV_USE_INOTIFY
796/* hash table entry per inotify-id */
797typedef struct
798{
799 WL head;
800} ANFS;
801#endif
802
803/* Heap Entry */
804#if EV_HEAP_CACHE_AT
805 /* a heap element */
806 typedef struct {
807 ev_tstamp at;
808 WT w;
809 } ANHE;
810
811 #define ANHE_w(he) (he).w /* access watcher, read-write */
812 #define ANHE_at(he) (he).at /* access cached at, read-only */
813 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
814#else
815 /* a heap element */
816 typedef WT ANHE;
817
818 #define ANHE_w(he) (he)
819 #define ANHE_at(he) (he)->at
820 #define ANHE_at_cache(he)
821#endif
284 822
285#if EV_MULTIPLICITY 823#if EV_MULTIPLICITY
286 824
287 struct ev_loop 825 struct ev_loop
288 { 826 {
306 844
307 static int ev_default_loop_ptr; 845 static int ev_default_loop_ptr;
308 846
309#endif 847#endif
310 848
849#if EV_FEATURE_API
850# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
851# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
852# define EV_INVOKE_PENDING invoke_cb (EV_A)
853#else
854# define EV_RELEASE_CB (void)0
855# define EV_ACQUIRE_CB (void)0
856# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
857#endif
858
859#define EVBREAK_RECURSE 0x80
860
311/*****************************************************************************/ 861/*****************************************************************************/
312 862
863#ifndef EV_HAVE_EV_TIME
313ev_tstamp 864ev_tstamp
314ev_time (void) 865ev_time (void)
315{ 866{
316#if EV_USE_REALTIME 867#if EV_USE_REALTIME
868 if (expect_true (have_realtime))
869 {
317 struct timespec ts; 870 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 871 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 872 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 873 }
874#endif
875
321 struct timeval tv; 876 struct timeval tv;
322 gettimeofday (&tv, 0); 877 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 878 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 879}
880#endif
326 881
327inline ev_tstamp 882inline_size ev_tstamp
328get_clock (void) 883get_clock (void)
329{ 884{
330#if EV_USE_MONOTONIC 885#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 886 if (expect_true (have_monotonic))
332 { 887 {
345{ 900{
346 return ev_rt_now; 901 return ev_rt_now;
347} 902}
348#endif 903#endif
349 904
350#define array_roundsize(type,n) (((n) | 4) & ~3) 905void
906ev_sleep (ev_tstamp delay)
907{
908 if (delay > 0.)
909 {
910#if EV_USE_NANOSLEEP
911 struct timespec ts;
912
913 EV_TS_SET (ts, delay);
914 nanosleep (&ts, 0);
915#elif defined(_WIN32)
916 Sleep ((unsigned long)(delay * 1e3));
917#else
918 struct timeval tv;
919
920 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
921 /* something not guaranteed by newer posix versions, but guaranteed */
922 /* by older ones */
923 EV_TV_SET (tv, delay);
924 select (0, 0, 0, 0, &tv);
925#endif
926 }
927}
928
929/*****************************************************************************/
930
931#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
932
933/* find a suitable new size for the given array, */
934/* hopefully by rounding to a nice-to-malloc size */
935inline_size int
936array_nextsize (int elem, int cur, int cnt)
937{
938 int ncur = cur + 1;
939
940 do
941 ncur <<= 1;
942 while (cnt > ncur);
943
944 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
945 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
946 {
947 ncur *= elem;
948 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
949 ncur = ncur - sizeof (void *) * 4;
950 ncur /= elem;
951 }
952
953 return ncur;
954}
955
956static void * noinline ecb_cold
957array_realloc (int elem, void *base, int *cur, int cnt)
958{
959 *cur = array_nextsize (elem, *cur, cnt);
960 return ev_realloc (base, elem * *cur);
961}
962
963#define array_init_zero(base,count) \
964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 965
352#define array_needsize(type,base,cur,cnt,init) \ 966#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 967 if (expect_false ((cnt) > (cur))) \
354 { \ 968 { \
355 int newcnt = cur; \ 969 int ocur_ = (cur); \
356 do \ 970 (base) = (type *)array_realloc \
357 { \ 971 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 972 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 973 }
366 974
975#if 0
367#define array_slim(type,stem) \ 976#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 977 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 978 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 979 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 980 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 982 }
983#endif
374 984
375#define array_free(stem, idx) \ 985#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 987
378/*****************************************************************************/ 988/*****************************************************************************/
379 989
380static void 990/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 991static void noinline
992pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 993{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 994}
392 995
393void 996void noinline
394ev_feed_event (EV_P_ void *w, int revents) 997ev_feed_event (EV_P_ void *w, int revents)
395{ 998{
396 W w_ = (W)w; 999 W w_ = (W)w;
1000 int pri = ABSPRI (w_);
397 1001
398 if (expect_false (w_->pending)) 1002 if (expect_false (w_->pending))
1003 pendings [pri][w_->pending - 1].events |= revents;
1004 else
399 { 1005 {
1006 w_->pending = ++pendingcnt [pri];
1007 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1008 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1009 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 1010 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 1011}
409 1012
410static void 1013inline_speed void
1014feed_reverse (EV_P_ W w)
1015{
1016 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1017 rfeeds [rfeedcnt++] = w;
1018}
1019
1020inline_size void
1021feed_reverse_done (EV_P_ int revents)
1022{
1023 do
1024 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1025 while (rfeedcnt);
1026}
1027
1028inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 1029queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 1030{
413 int i; 1031 int i;
414 1032
415 for (i = 0; i < eventcnt; ++i) 1033 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 1034 ev_feed_event (EV_A_ events [i], type);
417} 1035}
418 1036
1037/*****************************************************************************/
1038
419inline void 1039inline_speed void
420fd_event (EV_P_ int fd, int revents) 1040fd_event_nocheck (EV_P_ int fd, int revents)
421{ 1041{
422 ANFD *anfd = anfds + fd; 1042 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 1043 ev_io *w;
424 1044
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1045 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 1046 {
427 int ev = w->events & revents; 1047 int ev = w->events & revents;
428 1048
429 if (ev) 1049 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 1050 ev_feed_event (EV_A_ (W)w, ev);
431 } 1051 }
432} 1052}
433 1053
1054/* do not submit kernel events for fds that have reify set */
1055/* because that means they changed while we were polling for new events */
1056inline_speed void
1057fd_event (EV_P_ int fd, int revents)
1058{
1059 ANFD *anfd = anfds + fd;
1060
1061 if (expect_true (!anfd->reify))
1062 fd_event_nocheck (EV_A_ fd, revents);
1063}
1064
434void 1065void
435ev_feed_fd_event (EV_P_ int fd, int revents) 1066ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 1067{
1068 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 1069 fd_event_nocheck (EV_A_ fd, revents);
438} 1070}
439 1071
440/*****************************************************************************/ 1072/* make sure the external fd watch events are in-sync */
441 1073/* with the kernel/libev internal state */
442inline void 1074inline_size void
443fd_reify (EV_P) 1075fd_reify (EV_P)
444{ 1076{
445 int i; 1077 int i;
446 1078
1079#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
447 for (i = 0; i < fdchangecnt; ++i) 1080 for (i = 0; i < fdchangecnt; ++i)
448 { 1081 {
449 int fd = fdchanges [i]; 1082 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 1083 ANFD *anfd = anfds + fd;
451 struct ev_io *w;
452 1084
453 int events = 0; 1085 if (anfd->reify & EV__IOFDSET && anfd->head)
454
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
456 events |= w->events;
457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 { 1086 {
1087 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1088
1089 if (handle != anfd->handle)
1090 {
461 unsigned long argp; 1091 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 1092
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1093 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1094
1095 /* handle changed, but fd didn't - we need to do it in two steps */
1096 backend_modify (EV_A_ fd, anfd->events, 0);
1097 anfd->events = 0;
1098 anfd->handle = handle;
1099 }
464 } 1100 }
1101 }
465#endif 1102#endif
466 1103
1104 for (i = 0; i < fdchangecnt; ++i)
1105 {
1106 int fd = fdchanges [i];
1107 ANFD *anfd = anfds + fd;
1108 ev_io *w;
1109
1110 unsigned char o_events = anfd->events;
1111 unsigned char o_reify = anfd->reify;
1112
467 anfd->reify = 0; 1113 anfd->reify = 0;
468 1114
469 method_modify (EV_A_ fd, anfd->events, events); 1115 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1116 {
470 anfd->events = events; 1117 anfd->events = 0;
1118
1119 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1120 anfd->events |= (unsigned char)w->events;
1121
1122 if (o_events != anfd->events)
1123 o_reify = EV__IOFDSET; /* actually |= */
1124 }
1125
1126 if (o_reify & EV__IOFDSET)
1127 backend_modify (EV_A_ fd, o_events, anfd->events);
471 } 1128 }
472 1129
473 fdchangecnt = 0; 1130 fdchangecnt = 0;
474} 1131}
475 1132
476static void 1133/* something about the given fd changed */
1134inline_size void
477fd_change (EV_P_ int fd) 1135fd_change (EV_P_ int fd, int flags)
478{ 1136{
479 if (expect_false (anfds [fd].reify)) 1137 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 1138 anfds [fd].reify |= flags;
483 1139
1140 if (expect_true (!reify))
1141 {
484 ++fdchangecnt; 1142 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1143 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 1144 fdchanges [fdchangecnt - 1] = fd;
1145 }
487} 1146}
488 1147
489static void 1148/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1149inline_speed void ecb_cold
490fd_kill (EV_P_ int fd) 1150fd_kill (EV_P_ int fd)
491{ 1151{
492 struct ev_io *w; 1152 ev_io *w;
493 1153
494 while ((w = (struct ev_io *)anfds [fd].head)) 1154 while ((w = (ev_io *)anfds [fd].head))
495 { 1155 {
496 ev_io_stop (EV_A_ w); 1156 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1157 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 1158 }
499} 1159}
500 1160
501inline int 1161/* check whether the given fd is actually valid, for error recovery */
1162inline_size int ecb_cold
502fd_valid (int fd) 1163fd_valid (int fd)
503{ 1164{
504#ifdef _WIN32 1165#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 1166 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
506#else 1167#else
507 return fcntl (fd, F_GETFD) != -1; 1168 return fcntl (fd, F_GETFD) != -1;
508#endif 1169#endif
509} 1170}
510 1171
511/* called on EBADF to verify fds */ 1172/* called on EBADF to verify fds */
512static void 1173static void noinline ecb_cold
513fd_ebadf (EV_P) 1174fd_ebadf (EV_P)
514{ 1175{
515 int fd; 1176 int fd;
516 1177
517 for (fd = 0; fd < anfdmax; ++fd) 1178 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1179 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 1180 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 1181 fd_kill (EV_A_ fd);
521} 1182}
522 1183
523/* called on ENOMEM in select/poll to kill some fds and retry */ 1184/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 1185static void noinline ecb_cold
525fd_enomem (EV_P) 1186fd_enomem (EV_P)
526{ 1187{
527 int fd; 1188 int fd;
528 1189
529 for (fd = anfdmax; fd--; ) 1190 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 1191 if (anfds [fd].events)
531 { 1192 {
532 fd_kill (EV_A_ fd); 1193 fd_kill (EV_A_ fd);
533 return; 1194 break;
534 } 1195 }
535} 1196}
536 1197
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1198/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1199static void noinline
539fd_rearm_all (EV_P) 1200fd_rearm_all (EV_P)
540{ 1201{
541 int fd; 1202 int fd;
542 1203
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1204 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1205 if (anfds [fd].events)
546 { 1206 {
547 anfds [fd].events = 0; 1207 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1208 anfds [fd].emask = 0;
1209 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1210 }
550} 1211}
551 1212
552/*****************************************************************************/ 1213/* used to prepare libev internal fd's */
553 1214/* this is not fork-safe */
554static void
555upheap (WT *heap, int k)
556{
557 WT w = heap [k];
558
559 while (k && heap [k >> 1]->at > w->at)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 }
565
566 heap [k] = w;
567 ((W)heap [k])->active = k + 1;
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 {
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593}
594
595inline void 1215inline_speed void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
602/*****************************************************************************/
603
604typedef struct
605{
606 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG;
609
610static ANSIG *signals;
611static int signalmax;
612
613static int sigpipe [2];
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616
617static void
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1216fd_intern (int fd)
682{ 1217{
683#ifdef _WIN32 1218#ifdef _WIN32
684 int arg = 1; 1219 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1220 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
686#else 1221#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1222 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1223 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1224#endif
690} 1225}
691 1226
1227/*****************************************************************************/
1228
1229/*
1230 * the heap functions want a real array index. array index 0 is guaranteed to not
1231 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1232 * the branching factor of the d-tree.
1233 */
1234
1235/*
1236 * at the moment we allow libev the luxury of two heaps,
1237 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1238 * which is more cache-efficient.
1239 * the difference is about 5% with 50000+ watchers.
1240 */
1241#if EV_USE_4HEAP
1242
1243#define DHEAP 4
1244#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1245#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1246#define UPHEAP_DONE(p,k) ((p) == (k))
1247
1248/* away from the root */
1249inline_speed void
1250downheap (ANHE *heap, int N, int k)
1251{
1252 ANHE he = heap [k];
1253 ANHE *E = heap + N + HEAP0;
1254
1255 for (;;)
1256 {
1257 ev_tstamp minat;
1258 ANHE *minpos;
1259 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1260
1261 /* find minimum child */
1262 if (expect_true (pos + DHEAP - 1 < E))
1263 {
1264 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1265 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1266 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1267 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1268 }
1269 else if (pos < E)
1270 {
1271 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1272 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1273 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1274 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1275 }
1276 else
1277 break;
1278
1279 if (ANHE_at (he) <= minat)
1280 break;
1281
1282 heap [k] = *minpos;
1283 ev_active (ANHE_w (*minpos)) = k;
1284
1285 k = minpos - heap;
1286 }
1287
1288 heap [k] = he;
1289 ev_active (ANHE_w (he)) = k;
1290}
1291
1292#else /* 4HEAP */
1293
1294#define HEAP0 1
1295#define HPARENT(k) ((k) >> 1)
1296#define UPHEAP_DONE(p,k) (!(p))
1297
1298/* away from the root */
1299inline_speed void
1300downheap (ANHE *heap, int N, int k)
1301{
1302 ANHE he = heap [k];
1303
1304 for (;;)
1305 {
1306 int c = k << 1;
1307
1308 if (c >= N + HEAP0)
1309 break;
1310
1311 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1312 ? 1 : 0;
1313
1314 if (ANHE_at (he) <= ANHE_at (heap [c]))
1315 break;
1316
1317 heap [k] = heap [c];
1318 ev_active (ANHE_w (heap [k])) = k;
1319
1320 k = c;
1321 }
1322
1323 heap [k] = he;
1324 ev_active (ANHE_w (he)) = k;
1325}
1326#endif
1327
1328/* towards the root */
1329inline_speed void
1330upheap (ANHE *heap, int k)
1331{
1332 ANHE he = heap [k];
1333
1334 for (;;)
1335 {
1336 int p = HPARENT (k);
1337
1338 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1339 break;
1340
1341 heap [k] = heap [p];
1342 ev_active (ANHE_w (heap [k])) = k;
1343 k = p;
1344 }
1345
1346 heap [k] = he;
1347 ev_active (ANHE_w (he)) = k;
1348}
1349
1350/* move an element suitably so it is in a correct place */
1351inline_size void
1352adjustheap (ANHE *heap, int N, int k)
1353{
1354 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1355 upheap (heap, k);
1356 else
1357 downheap (heap, N, k);
1358}
1359
1360/* rebuild the heap: this function is used only once and executed rarely */
1361inline_size void
1362reheap (ANHE *heap, int N)
1363{
1364 int i;
1365
1366 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1367 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1368 for (i = 0; i < N; ++i)
1369 upheap (heap, i + HEAP0);
1370}
1371
1372/*****************************************************************************/
1373
1374/* associate signal watchers to a signal signal */
1375typedef struct
1376{
1377 EV_ATOMIC_T pending;
1378#if EV_MULTIPLICITY
1379 EV_P;
1380#endif
1381 WL head;
1382} ANSIG;
1383
1384static ANSIG signals [EV_NSIG - 1];
1385
1386/*****************************************************************************/
1387
1388#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1389
1390static void noinline ecb_cold
1391evpipe_init (EV_P)
1392{
1393 if (!ev_is_active (&pipe_w))
1394 {
1395# if EV_USE_EVENTFD
1396 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1397 if (evfd < 0 && errno == EINVAL)
1398 evfd = eventfd (0, 0);
1399
1400 if (evfd >= 0)
1401 {
1402 evpipe [0] = -1;
1403 fd_intern (evfd); /* doing it twice doesn't hurt */
1404 ev_io_set (&pipe_w, evfd, EV_READ);
1405 }
1406 else
1407# endif
1408 {
1409 while (pipe (evpipe))
1410 ev_syserr ("(libev) error creating signal/async pipe");
1411
1412 fd_intern (evpipe [0]);
1413 fd_intern (evpipe [1]);
1414 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1415 }
1416
1417 ev_io_start (EV_A_ &pipe_w);
1418 ev_unref (EV_A); /* watcher should not keep loop alive */
1419 }
1420}
1421
1422inline_speed void
1423evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1424{
1425 if (!*flag)
1426 {
1427 *flag = 1;
1428
1429 pipe_write_skipped = 1;
1430
1431 if (pipe_write_wanted)
1432 {
1433 int old_errno;
1434
1435 pipe_write_skipped = 0;
1436
1437 old_errno = errno; /* save errno because write will clobber it */
1438
1439#if EV_USE_EVENTFD
1440 if (evfd >= 0)
1441 {
1442 uint64_t counter = 1;
1443 write (evfd, &counter, sizeof (uint64_t));
1444 }
1445 else
1446#endif
1447 {
1448 /* win32 people keep sending patches that change this write() to send() */
1449 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1450 /* so when you think this write should be a send instead, please find out */
1451 /* where your send() is from - it's definitely not the microsoft send, and */
1452 /* tell me. thank you. */
1453 write (evpipe [1], &(evpipe [1]), 1);
1454 }
1455
1456 errno = old_errno;
1457 }
1458 }
1459}
1460
1461/* called whenever the libev signal pipe */
1462/* got some events (signal, async) */
692static void 1463static void
693siginit (EV_P) 1464pipecb (EV_P_ ev_io *iow, int revents)
694{ 1465{
695 fd_intern (sigpipe [0]); 1466 int i;
696 fd_intern (sigpipe [1]);
697 1467
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1468 if (revents & EV_READ)
699 ev_io_start (EV_A_ &sigev); 1469 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1470#if EV_USE_EVENTFD
1471 if (evfd >= 0)
1472 {
1473 uint64_t counter;
1474 read (evfd, &counter, sizeof (uint64_t));
1475 }
1476 else
1477#endif
1478 {
1479 char dummy;
1480 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1481 read (evpipe [0], &dummy, 1);
1482 }
1483 }
1484
1485 pipe_write_skipped = 0;
1486
1487#if EV_SIGNAL_ENABLE
1488 if (sig_pending)
1489 {
1490 sig_pending = 0;
1491
1492 for (i = EV_NSIG - 1; i--; )
1493 if (expect_false (signals [i].pending))
1494 ev_feed_signal_event (EV_A_ i + 1);
1495 }
1496#endif
1497
1498#if EV_ASYNC_ENABLE
1499 if (async_pending)
1500 {
1501 async_pending = 0;
1502
1503 for (i = asynccnt; i--; )
1504 if (asyncs [i]->sent)
1505 {
1506 asyncs [i]->sent = 0;
1507 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1508 }
1509 }
1510#endif
701} 1511}
702 1512
703/*****************************************************************************/ 1513/*****************************************************************************/
704 1514
705static struct ev_child *childs [PID_HASHSIZE]; 1515void
1516ev_feed_signal (int signum)
1517{
1518#if EV_MULTIPLICITY
1519 EV_P = signals [signum - 1].loop;
706 1520
1521 if (!EV_A)
1522 return;
1523#endif
1524
1525 evpipe_init (EV_A);
1526
1527 signals [signum - 1].pending = 1;
1528 evpipe_write (EV_A_ &sig_pending);
1529}
1530
1531static void
1532ev_sighandler (int signum)
1533{
707#ifndef _WIN32 1534#ifdef _WIN32
1535 signal (signum, ev_sighandler);
1536#endif
708 1537
1538 ev_feed_signal (signum);
1539}
1540
1541void noinline
1542ev_feed_signal_event (EV_P_ int signum)
1543{
1544 WL w;
1545
1546 if (expect_false (signum <= 0 || signum > EV_NSIG))
1547 return;
1548
1549 --signum;
1550
1551#if EV_MULTIPLICITY
1552 /* it is permissible to try to feed a signal to the wrong loop */
1553 /* or, likely more useful, feeding a signal nobody is waiting for */
1554
1555 if (expect_false (signals [signum].loop != EV_A))
1556 return;
1557#endif
1558
1559 signals [signum].pending = 0;
1560
1561 for (w = signals [signum].head; w; w = w->next)
1562 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1563}
1564
1565#if EV_USE_SIGNALFD
1566static void
1567sigfdcb (EV_P_ ev_io *iow, int revents)
1568{
1569 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1570
1571 for (;;)
1572 {
1573 ssize_t res = read (sigfd, si, sizeof (si));
1574
1575 /* not ISO-C, as res might be -1, but works with SuS */
1576 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1577 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1578
1579 if (res < (ssize_t)sizeof (si))
1580 break;
1581 }
1582}
1583#endif
1584
1585#endif
1586
1587/*****************************************************************************/
1588
1589#if EV_CHILD_ENABLE
1590static WL childs [EV_PID_HASHSIZE];
1591
709static struct ev_signal childev; 1592static ev_signal childev;
1593
1594#ifndef WIFCONTINUED
1595# define WIFCONTINUED(status) 0
1596#endif
1597
1598/* handle a single child status event */
1599inline_speed void
1600child_reap (EV_P_ int chain, int pid, int status)
1601{
1602 ev_child *w;
1603 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1604
1605 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 {
1607 if ((w->pid == pid || !w->pid)
1608 && (!traced || (w->flags & 1)))
1609 {
1610 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1611 w->rpid = pid;
1612 w->rstatus = status;
1613 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1614 }
1615 }
1616}
710 1617
711#ifndef WCONTINUED 1618#ifndef WCONTINUED
712# define WCONTINUED 0 1619# define WCONTINUED 0
713#endif 1620#endif
714 1621
1622/* called on sigchld etc., calls waitpid */
715static void 1623static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1624childcb (EV_P_ ev_signal *sw, int revents)
732{ 1625{
733 int pid, status; 1626 int pid, status;
734 1627
1628 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1629 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1630 if (!WCONTINUED
1631 || errno != EINVAL
1632 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1633 return;
1634
737 /* make sure we are called again until all childs have been reaped */ 1635 /* make sure we are called again until all children have been reaped */
1636 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1637 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1638
740 child_reap (EV_A_ sw, pid, pid, status); 1639 child_reap (EV_A_ pid, pid, status);
1640 if ((EV_PID_HASHSIZE) > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1641 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1642}
744 1643
745#endif 1644#endif
746 1645
747/*****************************************************************************/ 1646/*****************************************************************************/
748 1647
1648#if EV_USE_IOCP
1649# include "ev_iocp.c"
1650#endif
749#if EV_USE_PORT 1651#if EV_USE_PORT
750# include "ev_port.c" 1652# include "ev_port.c"
751#endif 1653#endif
752#if EV_USE_KQUEUE 1654#if EV_USE_KQUEUE
753# include "ev_kqueue.c" 1655# include "ev_kqueue.c"
760#endif 1662#endif
761#if EV_USE_SELECT 1663#if EV_USE_SELECT
762# include "ev_select.c" 1664# include "ev_select.c"
763#endif 1665#endif
764 1666
765int 1667int ecb_cold
766ev_version_major (void) 1668ev_version_major (void)
767{ 1669{
768 return EV_VERSION_MAJOR; 1670 return EV_VERSION_MAJOR;
769} 1671}
770 1672
771int 1673int ecb_cold
772ev_version_minor (void) 1674ev_version_minor (void)
773{ 1675{
774 return EV_VERSION_MINOR; 1676 return EV_VERSION_MINOR;
775} 1677}
776 1678
777/* return true if we are running with elevated privileges and should ignore env variables */ 1679/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1680int inline_size ecb_cold
779enable_secure (void) 1681enable_secure (void)
780{ 1682{
781#ifdef _WIN32 1683#ifdef _WIN32
782 return 0; 1684 return 0;
783#else 1685#else
784 return getuid () != geteuid () 1686 return getuid () != geteuid ()
785 || getgid () != getegid (); 1687 || getgid () != getegid ();
786#endif 1688#endif
787} 1689}
788 1690
1691unsigned int ecb_cold
1692ev_supported_backends (void)
1693{
1694 unsigned int flags = 0;
1695
1696 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1697 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1698 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1699 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1700 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1701
1702 return flags;
1703}
1704
1705unsigned int ecb_cold
1706ev_recommended_backends (void)
1707{
1708 unsigned int flags = ev_supported_backends ();
1709
1710#ifndef __NetBSD__
1711 /* kqueue is borked on everything but netbsd apparently */
1712 /* it usually doesn't work correctly on anything but sockets and pipes */
1713 flags &= ~EVBACKEND_KQUEUE;
1714#endif
1715#ifdef __APPLE__
1716 /* only select works correctly on that "unix-certified" platform */
1717 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1718 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1719#endif
1720#ifdef __FreeBSD__
1721 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1722#endif
1723
1724 return flags;
1725}
1726
1727unsigned int ecb_cold
1728ev_embeddable_backends (void)
1729{
1730 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1731
1732 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1733 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1734 flags &= ~EVBACKEND_EPOLL;
1735
1736 return flags;
1737}
1738
789unsigned int 1739unsigned int
1740ev_backend (EV_P)
1741{
1742 return backend;
1743}
1744
1745#if EV_FEATURE_API
1746unsigned int
1747ev_iteration (EV_P)
1748{
1749 return loop_count;
1750}
1751
1752unsigned int
790ev_method (EV_P) 1753ev_depth (EV_P)
791{ 1754{
792 return method; 1755 return loop_depth;
793} 1756}
794 1757
795static void 1758void
1759ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1760{
1761 io_blocktime = interval;
1762}
1763
1764void
1765ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1766{
1767 timeout_blocktime = interval;
1768}
1769
1770void
1771ev_set_userdata (EV_P_ void *data)
1772{
1773 userdata = data;
1774}
1775
1776void *
1777ev_userdata (EV_P)
1778{
1779 return userdata;
1780}
1781
1782void
1783ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1784{
1785 invoke_cb = invoke_pending_cb;
1786}
1787
1788void
1789ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1790{
1791 release_cb = release;
1792 acquire_cb = acquire;
1793}
1794#endif
1795
1796/* initialise a loop structure, must be zero-initialised */
1797static void noinline ecb_cold
796loop_init (EV_P_ unsigned int flags) 1798loop_init (EV_P_ unsigned int flags)
797{ 1799{
798 if (!method) 1800 if (!backend)
799 { 1801 {
1802 origflags = flags;
1803
1804#if EV_USE_REALTIME
1805 if (!have_realtime)
1806 {
1807 struct timespec ts;
1808
1809 if (!clock_gettime (CLOCK_REALTIME, &ts))
1810 have_realtime = 1;
1811 }
1812#endif
1813
800#if EV_USE_MONOTONIC 1814#if EV_USE_MONOTONIC
1815 if (!have_monotonic)
1816 {
1817 struct timespec ts;
1818
1819 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1820 have_monotonic = 1;
1821 }
1822#endif
1823
1824 /* pid check not overridable via env */
1825#ifndef _WIN32
1826 if (flags & EVFLAG_FORKCHECK)
1827 curpid = getpid ();
1828#endif
1829
1830 if (!(flags & EVFLAG_NOENV)
1831 && !enable_secure ()
1832 && getenv ("LIBEV_FLAGS"))
1833 flags = atoi (getenv ("LIBEV_FLAGS"));
1834
1835 ev_rt_now = ev_time ();
1836 mn_now = get_clock ();
1837 now_floor = mn_now;
1838 rtmn_diff = ev_rt_now - mn_now;
1839#if EV_FEATURE_API
1840 invoke_cb = ev_invoke_pending;
1841#endif
1842
1843 io_blocktime = 0.;
1844 timeout_blocktime = 0.;
1845 backend = 0;
1846 backend_fd = -1;
1847 sig_pending = 0;
1848#if EV_ASYNC_ENABLE
1849 async_pending = 0;
1850#endif
1851 pipe_write_skipped = 0;
1852 pipe_write_wanted = 0;
1853#if EV_USE_INOTIFY
1854 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1855#endif
1856#if EV_USE_SIGNALFD
1857 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1858#endif
1859
1860 if (!(flags & EVBACKEND_MASK))
1861 flags |= ev_recommended_backends ();
1862
1863#if EV_USE_IOCP
1864 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1865#endif
1866#if EV_USE_PORT
1867 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1868#endif
1869#if EV_USE_KQUEUE
1870 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1871#endif
1872#if EV_USE_EPOLL
1873 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1874#endif
1875#if EV_USE_POLL
1876 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1877#endif
1878#if EV_USE_SELECT
1879 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1880#endif
1881
1882 ev_prepare_init (&pending_w, pendingcb);
1883
1884#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1885 ev_init (&pipe_w, pipecb);
1886 ev_set_priority (&pipe_w, EV_MAXPRI);
1887#endif
1888 }
1889}
1890
1891/* free up a loop structure */
1892void ecb_cold
1893ev_loop_destroy (EV_P)
1894{
1895 int i;
1896
1897#if EV_MULTIPLICITY
1898 /* mimic free (0) */
1899 if (!EV_A)
1900 return;
1901#endif
1902
1903#if EV_CLEANUP_ENABLE
1904 /* queue cleanup watchers (and execute them) */
1905 if (expect_false (cleanupcnt))
1906 {
1907 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1908 EV_INVOKE_PENDING;
1909 }
1910#endif
1911
1912#if EV_CHILD_ENABLE
1913 if (ev_is_active (&childev))
1914 {
1915 ev_ref (EV_A); /* child watcher */
1916 ev_signal_stop (EV_A_ &childev);
1917 }
1918#endif
1919
1920 if (ev_is_active (&pipe_w))
1921 {
1922 /*ev_ref (EV_A);*/
1923 /*ev_io_stop (EV_A_ &pipe_w);*/
1924
1925#if EV_USE_EVENTFD
1926 if (evfd >= 0)
1927 close (evfd);
1928#endif
1929
1930 if (evpipe [0] >= 0)
1931 {
1932 EV_WIN32_CLOSE_FD (evpipe [0]);
1933 EV_WIN32_CLOSE_FD (evpipe [1]);
1934 }
1935 }
1936
1937#if EV_USE_SIGNALFD
1938 if (ev_is_active (&sigfd_w))
1939 close (sigfd);
1940#endif
1941
1942#if EV_USE_INOTIFY
1943 if (fs_fd >= 0)
1944 close (fs_fd);
1945#endif
1946
1947 if (backend_fd >= 0)
1948 close (backend_fd);
1949
1950#if EV_USE_IOCP
1951 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1952#endif
1953#if EV_USE_PORT
1954 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1955#endif
1956#if EV_USE_KQUEUE
1957 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1958#endif
1959#if EV_USE_EPOLL
1960 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1961#endif
1962#if EV_USE_POLL
1963 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1964#endif
1965#if EV_USE_SELECT
1966 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1967#endif
1968
1969 for (i = NUMPRI; i--; )
1970 {
1971 array_free (pending, [i]);
1972#if EV_IDLE_ENABLE
1973 array_free (idle, [i]);
1974#endif
1975 }
1976
1977 ev_free (anfds); anfds = 0; anfdmax = 0;
1978
1979 /* have to use the microsoft-never-gets-it-right macro */
1980 array_free (rfeed, EMPTY);
1981 array_free (fdchange, EMPTY);
1982 array_free (timer, EMPTY);
1983#if EV_PERIODIC_ENABLE
1984 array_free (periodic, EMPTY);
1985#endif
1986#if EV_FORK_ENABLE
1987 array_free (fork, EMPTY);
1988#endif
1989#if EV_CLEANUP_ENABLE
1990 array_free (cleanup, EMPTY);
1991#endif
1992 array_free (prepare, EMPTY);
1993 array_free (check, EMPTY);
1994#if EV_ASYNC_ENABLE
1995 array_free (async, EMPTY);
1996#endif
1997
1998 backend = 0;
1999
2000#if EV_MULTIPLICITY
2001 if (ev_is_default_loop (EV_A))
2002#endif
2003 ev_default_loop_ptr = 0;
2004#if EV_MULTIPLICITY
2005 else
2006 ev_free (EV_A);
2007#endif
2008}
2009
2010#if EV_USE_INOTIFY
2011inline_size void infy_fork (EV_P);
2012#endif
2013
2014inline_size void
2015loop_fork (EV_P)
2016{
2017#if EV_USE_PORT
2018 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2019#endif
2020#if EV_USE_KQUEUE
2021 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2022#endif
2023#if EV_USE_EPOLL
2024 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2025#endif
2026#if EV_USE_INOTIFY
2027 infy_fork (EV_A);
2028#endif
2029
2030 if (ev_is_active (&pipe_w))
2031 {
2032 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2033
2034 ev_ref (EV_A);
2035 ev_io_stop (EV_A_ &pipe_w);
2036
2037#if EV_USE_EVENTFD
2038 if (evfd >= 0)
2039 close (evfd);
2040#endif
2041
2042 if (evpipe [0] >= 0)
2043 {
2044 EV_WIN32_CLOSE_FD (evpipe [0]);
2045 EV_WIN32_CLOSE_FD (evpipe [1]);
2046 }
2047
2048#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2049 evpipe_init (EV_A);
2050 /* now iterate over everything, in case we missed something */
2051 pipecb (EV_A_ &pipe_w, EV_READ);
2052#endif
2053 }
2054
2055 postfork = 0;
2056}
2057
2058#if EV_MULTIPLICITY
2059
2060struct ev_loop * ecb_cold
2061ev_loop_new (unsigned int flags)
2062{
2063 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2064
2065 memset (EV_A, 0, sizeof (struct ev_loop));
2066 loop_init (EV_A_ flags);
2067
2068 if (ev_backend (EV_A))
2069 return EV_A;
2070
2071 ev_free (EV_A);
2072 return 0;
2073}
2074
2075#endif /* multiplicity */
2076
2077#if EV_VERIFY
2078static void noinline ecb_cold
2079verify_watcher (EV_P_ W w)
2080{
2081 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2082
2083 if (w->pending)
2084 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2085}
2086
2087static void noinline ecb_cold
2088verify_heap (EV_P_ ANHE *heap, int N)
2089{
2090 int i;
2091
2092 for (i = HEAP0; i < N + HEAP0; ++i)
2093 {
2094 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2095 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2096 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2097
2098 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2099 }
2100}
2101
2102static void noinline ecb_cold
2103array_verify (EV_P_ W *ws, int cnt)
2104{
2105 while (cnt--)
2106 {
2107 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2108 verify_watcher (EV_A_ ws [cnt]);
2109 }
2110}
2111#endif
2112
2113#if EV_FEATURE_API
2114void ecb_cold
2115ev_verify (EV_P)
2116{
2117#if EV_VERIFY
2118 int i;
2119 WL w;
2120
2121 assert (activecnt >= -1);
2122
2123 assert (fdchangemax >= fdchangecnt);
2124 for (i = 0; i < fdchangecnt; ++i)
2125 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2126
2127 assert (anfdmax >= 0);
2128 for (i = 0; i < anfdmax; ++i)
2129 for (w = anfds [i].head; w; w = w->next)
801 { 2130 {
802 struct timespec ts; 2131 verify_watcher (EV_A_ (W)w);
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2132 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
804 have_monotonic = 1; 2133 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
805 } 2134 }
806#endif
807 2135
808 ev_rt_now = ev_time (); 2136 assert (timermax >= timercnt);
809 mn_now = get_clock (); 2137 verify_heap (EV_A_ timers, timercnt);
810 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now;
812 2138
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2139#if EV_PERIODIC_ENABLE
814 flags = atoi (getenv ("LIBEV_FLAGS")); 2140 assert (periodicmax >= periodiccnt);
815 2141 verify_heap (EV_A_ periodics, periodiccnt);
816 if (!(flags & 0x0000ffff))
817 flags |= 0x0000ffff;
818
819 method = 0;
820#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
822#endif
823#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
825#endif
826#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
828#endif
829#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
831#endif
832#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
834#endif
835
836 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI);
838 }
839}
840
841static void
842loop_destroy (EV_P)
843{
844 int i;
845
846#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
848#endif
849#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
851#endif
852#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
854#endif
855#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
857#endif
858#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
860#endif 2142#endif
861 2143
862 for (i = NUMPRI; i--; ) 2144 for (i = NUMPRI; i--; )
863 array_free (pending, [i]); 2145 {
2146 assert (pendingmax [i] >= pendingcnt [i]);
2147#if EV_IDLE_ENABLE
2148 assert (idleall >= 0);
2149 assert (idlemax [i] >= idlecnt [i]);
2150 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2151#endif
2152 }
864 2153
865 /* have to use the microsoft-never-gets-it-right macro */ 2154#if EV_FORK_ENABLE
866 array_free (fdchange, EMPTY0); 2155 assert (forkmax >= forkcnt);
867 array_free (timer, EMPTY0); 2156 array_verify (EV_A_ (W *)forks, forkcnt);
868#if EV_PERIODICS 2157#endif
869 array_free (periodic, EMPTY0); 2158
2159#if EV_CLEANUP_ENABLE
2160 assert (cleanupmax >= cleanupcnt);
2161 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2162#endif
2163
2164#if EV_ASYNC_ENABLE
2165 assert (asyncmax >= asynccnt);
2166 array_verify (EV_A_ (W *)asyncs, asynccnt);
2167#endif
2168
2169#if EV_PREPARE_ENABLE
2170 assert (preparemax >= preparecnt);
2171 array_verify (EV_A_ (W *)prepares, preparecnt);
2172#endif
2173
2174#if EV_CHECK_ENABLE
2175 assert (checkmax >= checkcnt);
2176 array_verify (EV_A_ (W *)checks, checkcnt);
2177#endif
2178
2179# if 0
2180#if EV_CHILD_ENABLE
2181 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2182 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2183#endif
870#endif 2184# endif
871 array_free (idle, EMPTY0);
872 array_free (prepare, EMPTY0);
873 array_free (check, EMPTY0);
874
875 method = 0;
876}
877
878static void
879loop_fork (EV_P)
880{
881#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A);
883#endif 2185#endif
884#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
886#endif
887#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
889#endif
890
891 if (ev_is_active (&sigev))
892 {
893 /* default loop */
894
895 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A);
904 }
905
906 postfork = 0;
907} 2186}
2187#endif
908 2188
909#if EV_MULTIPLICITY 2189#if EV_MULTIPLICITY
910struct ev_loop * 2190struct ev_loop * ecb_cold
911ev_loop_new (unsigned int flags)
912{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914
915 memset (loop, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags);
918
919 if (ev_method (EV_A))
920 return loop;
921
922 return 0;
923}
924
925void
926ev_loop_destroy (EV_P)
927{
928 loop_destroy (EV_A);
929 ev_free (loop);
930}
931
932void
933ev_loop_fork (EV_P)
934{
935 postfork = 1;
936}
937
938#endif
939
940#if EV_MULTIPLICITY
941struct ev_loop *
942ev_default_loop_init (unsigned int flags)
943#else 2191#else
944int 2192int
2193#endif
945ev_default_loop (unsigned int flags) 2194ev_default_loop (unsigned int flags)
946#endif
947{ 2195{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 2196 if (!ev_default_loop_ptr)
953 { 2197 {
954#if EV_MULTIPLICITY 2198#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2199 EV_P = ev_default_loop_ptr = &default_loop_struct;
956#else 2200#else
957 ev_default_loop_ptr = 1; 2201 ev_default_loop_ptr = 1;
958#endif 2202#endif
959 2203
960 loop_init (EV_A_ flags); 2204 loop_init (EV_A_ flags);
961 2205
962 if (ev_method (EV_A)) 2206 if (ev_backend (EV_A))
963 { 2207 {
964 siginit (EV_A); 2208#if EV_CHILD_ENABLE
965
966#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 2209 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 2210 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 2211 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2212 ev_unref (EV_A); /* child watcher should not keep loop alive */
971#endif 2213#endif
976 2218
977 return ev_default_loop_ptr; 2219 return ev_default_loop_ptr;
978} 2220}
979 2221
980void 2222void
981ev_default_destroy (void) 2223ev_loop_fork (EV_P)
982{ 2224{
983#if EV_MULTIPLICITY 2225 postfork = 1; /* must be in line with ev_default_fork */
984 struct ev_loop *loop = ev_default_loop_ptr;
985#endif
986
987#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev);
990#endif
991
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A);
999} 2226}
2227
2228/*****************************************************************************/
1000 2229
1001void 2230void
1002ev_default_fork (void) 2231ev_invoke (EV_P_ void *w, int revents)
1003{ 2232{
1004#if EV_MULTIPLICITY 2233 EV_CB_INVOKE ((W)w, revents);
1005 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif
1007
1008 if (method)
1009 postfork = 1;
1010} 2234}
1011 2235
1012/*****************************************************************************/ 2236unsigned int
1013 2237ev_pending_count (EV_P)
1014static int
1015any_pending (EV_P)
1016{ 2238{
1017 int pri; 2239 int pri;
2240 unsigned int count = 0;
1018 2241
1019 for (pri = NUMPRI; pri--; ) 2242 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 2243 count += pendingcnt [pri];
1021 return 1;
1022 2244
1023 return 0; 2245 return count;
1024} 2246}
1025 2247
1026inline void 2248void noinline
1027call_pending (EV_P) 2249ev_invoke_pending (EV_P)
1028{ 2250{
1029 int pri; 2251 int pri;
1030 2252
1031 for (pri = NUMPRI; pri--; ) 2253 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 2254 while (pendingcnt [pri])
1033 { 2255 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2256 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 2257
1036 if (expect_true (p->w))
1037 {
1038 p->w->pending = 0; 2258 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 2259 EV_CB_INVOKE (p->w, p->events);
1040 } 2260 EV_FREQUENT_CHECK;
1041 } 2261 }
1042} 2262}
1043 2263
2264#if EV_IDLE_ENABLE
2265/* make idle watchers pending. this handles the "call-idle */
2266/* only when higher priorities are idle" logic */
1044inline void 2267inline_size void
2268idle_reify (EV_P)
2269{
2270 if (expect_false (idleall))
2271 {
2272 int pri;
2273
2274 for (pri = NUMPRI; pri--; )
2275 {
2276 if (pendingcnt [pri])
2277 break;
2278
2279 if (idlecnt [pri])
2280 {
2281 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2282 break;
2283 }
2284 }
2285 }
2286}
2287#endif
2288
2289/* make timers pending */
2290inline_size void
1045timers_reify (EV_P) 2291timers_reify (EV_P)
1046{ 2292{
2293 EV_FREQUENT_CHECK;
2294
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 2295 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 2296 {
1049 struct ev_timer *w = timers [0]; 2297 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 2298 {
2299 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2300
2301 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2302
2303 /* first reschedule or stop timer */
2304 if (w->repeat)
2305 {
2306 ev_at (w) += w->repeat;
2307 if (ev_at (w) < mn_now)
2308 ev_at (w) = mn_now;
2309
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2310 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 2311
1058 ((WT)w)->at += w->repeat; 2312 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 2313 downheap (timers, timercnt, HEAP0);
2314 }
2315 else
2316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
1063 } 2320 }
1064 else 2321 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 2322
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2323 feed_reverse_done (EV_A_ EV_TIMER);
2324 }
2325}
2326
2327#if EV_PERIODIC_ENABLE
2328
2329static void noinline
2330periodic_recalc (EV_P_ ev_periodic *w)
2331{
2332 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2333 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2334
2335 /* the above almost always errs on the low side */
2336 while (at <= ev_rt_now)
1068 } 2337 {
1069} 2338 ev_tstamp nat = at + w->interval;
1070 2339
1071#if EV_PERIODICS 2340 /* when resolution fails us, we use ev_rt_now */
2341 if (expect_false (nat == at))
2342 {
2343 at = ev_rt_now;
2344 break;
2345 }
2346
2347 at = nat;
2348 }
2349
2350 ev_at (w) = at;
2351}
2352
2353/* make periodics pending */
1072inline void 2354inline_size void
1073periodics_reify (EV_P) 2355periodics_reify (EV_P)
1074{ 2356{
2357 EV_FREQUENT_CHECK;
2358
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2359 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 2360 {
1077 struct ev_periodic *w = periodics [0]; 2361 int feed_count = 0;
1078 2362
2363 do
2364 {
2365 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2366
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2367 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 2368
1081 /* first reschedule or stop timer */ 2369 /* first reschedule or stop timer */
2370 if (w->reschedule_cb)
2371 {
2372 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2373
2374 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2375
2376 ANHE_at_cache (periodics [HEAP0]);
2377 downheap (periodics, periodiccnt, HEAP0);
2378 }
2379 else if (w->interval)
2380 {
2381 periodic_recalc (EV_A_ w);
2382 ANHE_at_cache (periodics [HEAP0]);
2383 downheap (periodics, periodiccnt, HEAP0);
2384 }
2385 else
2386 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2387
2388 EV_FREQUENT_CHECK;
2389 feed_reverse (EV_A_ (W)w);
2390 }
2391 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2392
2393 feed_reverse_done (EV_A_ EV_PERIODIC);
2394 }
2395}
2396
2397/* simply recalculate all periodics */
2398/* TODO: maybe ensure that at least one event happens when jumping forward? */
2399static void noinline ecb_cold
2400periodics_reschedule (EV_P)
2401{
2402 int i;
2403
2404 /* adjust periodics after time jump */
2405 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2406 {
2407 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2408
1082 if (w->reschedule_cb) 2409 if (w->reschedule_cb)
2410 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2411 else if (w->interval)
2412 periodic_recalc (EV_A_ w);
2413
2414 ANHE_at_cache (periodics [i]);
2415 }
2416
2417 reheap (periodics, periodiccnt);
2418}
2419#endif
2420
2421/* adjust all timers by a given offset */
2422static void noinline ecb_cold
2423timers_reschedule (EV_P_ ev_tstamp adjust)
2424{
2425 int i;
2426
2427 for (i = 0; i < timercnt; ++i)
2428 {
2429 ANHE *he = timers + i + HEAP0;
2430 ANHE_w (*he)->at += adjust;
2431 ANHE_at_cache (*he);
2432 }
2433}
2434
2435/* fetch new monotonic and realtime times from the kernel */
2436/* also detect if there was a timejump, and act accordingly */
2437inline_speed void
2438time_update (EV_P_ ev_tstamp max_block)
2439{
2440#if EV_USE_MONOTONIC
2441 if (expect_true (have_monotonic))
2442 {
2443 int i;
2444 ev_tstamp odiff = rtmn_diff;
2445
2446 mn_now = get_clock ();
2447
2448 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2449 /* interpolate in the meantime */
2450 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2451 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2452 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2453 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2454 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2455
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2456 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2457 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2458
1141inline void 2459 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2460 * on the choice of "4": one iteration isn't enough,
1143{ 2461 * in case we get preempted during the calls to
1144 int i; 2462 * ev_time and get_clock. a second call is almost guaranteed
1145 2463 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2464 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2465 * in the unlikely event of having been preempted here.
1148 { 2466 */
1149 if (time_update_monotonic (EV_A)) 2467 for (i = 4; --i; )
1150 { 2468 {
1151 ev_tstamp odiff = rtmn_diff; 2469 ev_tstamp diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2470 rtmn_diff = ev_rt_now - mn_now;
1156 2471
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2472 diff = odiff - rtmn_diff;
2473
2474 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2475 return; /* all is well */
1159 2476
1160 ev_rt_now = ev_time (); 2477 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2478 mn_now = get_clock ();
1162 now_floor = mn_now; 2479 now_floor = mn_now;
1163 } 2480 }
1164 2481
2482 /* no timer adjustment, as the monotonic clock doesn't jump */
2483 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2484# if EV_PERIODIC_ENABLE
2485 periodics_reschedule (EV_A);
2486# endif
2487 }
2488 else
2489#endif
2490 {
2491 ev_rt_now = ev_time ();
2492
2493 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2494 {
2495 /* adjust timers. this is easy, as the offset is the same for all of them */
2496 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2497#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2498 periodics_reschedule (EV_A);
1167# endif 2499#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2500 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2501
1188 mn_now = ev_rt_now; 2502 mn_now = ev_rt_now;
1189 } 2503 }
1190} 2504}
1191 2505
1192void 2506void
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2507ev_run (EV_P_ int flags)
1208{ 2508{
1209 double block; 2509#if EV_FEATURE_API
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2510 ++loop_depth;
2511#endif
1211 2512
1212 while (activecnt) 2513 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2514
2515 loop_done = EVBREAK_CANCEL;
2516
2517 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2518
2519 do
1213 { 2520 {
2521#if EV_VERIFY >= 2
2522 ev_verify (EV_A);
2523#endif
2524
2525#ifndef _WIN32
2526 if (expect_false (curpid)) /* penalise the forking check even more */
2527 if (expect_false (getpid () != curpid))
2528 {
2529 curpid = getpid ();
2530 postfork = 1;
2531 }
2532#endif
2533
2534#if EV_FORK_ENABLE
2535 /* we might have forked, so queue fork handlers */
2536 if (expect_false (postfork))
2537 if (forkcnt)
2538 {
2539 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2540 EV_INVOKE_PENDING;
2541 }
2542#endif
2543
2544#if EV_PREPARE_ENABLE
1214 /* queue check watchers (and execute them) */ 2545 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2546 if (expect_false (preparecnt))
1216 { 2547 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2548 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2549 EV_INVOKE_PENDING;
1219 } 2550 }
2551#endif
2552
2553 if (expect_false (loop_done))
2554 break;
1220 2555
1221 /* we might have forked, so reify kernel state if necessary */ 2556 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2557 if (expect_false (postfork))
1223 loop_fork (EV_A); 2558 loop_fork (EV_A);
1224 2559
1225 /* update fd-related kernel structures */ 2560 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2561 fd_reify (EV_A);
1227 2562
1228 /* calculate blocking time */ 2563 /* calculate blocking time */
2564 {
2565 ev_tstamp waittime = 0.;
2566 ev_tstamp sleeptime = 0.;
1229 2567
1230 /* we only need this for !monotonic clock or timers, but as we basically 2568 /* remember old timestamp for io_blocktime calculation */
1231 always have timers, we just calculate it always */ 2569 ev_tstamp prev_mn_now = mn_now;
1232#if EV_USE_MONOTONIC 2570
1233 if (expect_true (have_monotonic)) 2571 /* update time to cancel out callback processing overhead */
1234 time_update_monotonic (EV_A); 2572 time_update (EV_A_ 1e100);
1235 else 2573
1236#endif 2574 /* from now on, we want a pipe-wake-up */
2575 pipe_write_wanted = 1;
2576
2577 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1237 { 2578 {
1238 ev_rt_now = ev_time ();
1239 mn_now = ev_rt_now;
1240 }
1241
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 2579 waittime = MAX_BLOCKTIME;
1247 2580
1248 if (timercnt) 2581 if (timercnt)
1249 { 2582 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2583 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1251 if (block > to) block = to; 2584 if (waittime > to) waittime = to;
1252 } 2585 }
1253 2586
1254#if EV_PERIODICS 2587#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2588 if (periodiccnt)
1256 { 2589 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2590 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1258 if (block > to) block = to; 2591 if (waittime > to) waittime = to;
1259 } 2592 }
1260#endif 2593#endif
1261 2594
1262 if (expect_false (block < 0.)) block = 0.; 2595 /* don't let timeouts decrease the waittime below timeout_blocktime */
2596 if (expect_false (waittime < timeout_blocktime))
2597 waittime = timeout_blocktime;
2598
2599 /* at this point, we NEED to wait, so we have to ensure */
2600 /* to pass a minimum nonzero value to the backend */
2601 if (expect_false (waittime < backend_mintime))
2602 waittime = backend_mintime;
2603
2604 /* extra check because io_blocktime is commonly 0 */
2605 if (expect_false (io_blocktime))
2606 {
2607 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2608
2609 if (sleeptime > waittime - backend_mintime)
2610 sleeptime = waittime - backend_mintime;
2611
2612 if (expect_true (sleeptime > 0.))
2613 {
2614 ev_sleep (sleeptime);
2615 waittime -= sleeptime;
2616 }
2617 }
1263 } 2618 }
1264 2619
1265 method_poll (EV_A_ block); 2620#if EV_FEATURE_API
2621 ++loop_count;
2622#endif
2623 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2624 backend_poll (EV_A_ waittime);
2625 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1266 2626
2627 pipe_write_wanted = 0;
2628
2629 if (pipe_write_skipped)
2630 {
2631 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2632 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2633 }
2634
2635
1267 /* update ev_rt_now, do magic */ 2636 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2637 time_update (EV_A_ waittime + sleeptime);
2638 }
1269 2639
1270 /* queue pending timers and reschedule them */ 2640 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2641 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2642#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2643 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2644#endif
1275 2645
2646#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2647 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2648 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2649#endif
1279 2650
2651#if EV_CHECK_ENABLE
1280 /* queue check watchers, to be executed first */ 2652 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2653 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2655#endif
1283 2656
1284 call_pending (EV_A); 2657 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2658 }
2659 while (expect_true (
2660 activecnt
2661 && !loop_done
2662 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2663 ));
1289 2664
1290 if (loop_done != 2) 2665 if (loop_done == EVBREAK_ONE)
1291 loop_done = 0; 2666 loop_done = EVBREAK_CANCEL;
2667
2668#if EV_FEATURE_API
2669 --loop_depth;
2670#endif
1292} 2671}
1293 2672
1294void 2673void
1295ev_unloop (EV_P_ int how) 2674ev_break (EV_P_ int how)
1296{ 2675{
1297 loop_done = how; 2676 loop_done = how;
1298} 2677}
1299 2678
2679void
2680ev_ref (EV_P)
2681{
2682 ++activecnt;
2683}
2684
2685void
2686ev_unref (EV_P)
2687{
2688 --activecnt;
2689}
2690
2691void
2692ev_now_update (EV_P)
2693{
2694 time_update (EV_A_ 1e100);
2695}
2696
2697void
2698ev_suspend (EV_P)
2699{
2700 ev_now_update (EV_A);
2701}
2702
2703void
2704ev_resume (EV_P)
2705{
2706 ev_tstamp mn_prev = mn_now;
2707
2708 ev_now_update (EV_A);
2709 timers_reschedule (EV_A_ mn_now - mn_prev);
2710#if EV_PERIODIC_ENABLE
2711 /* TODO: really do this? */
2712 periodics_reschedule (EV_A);
2713#endif
2714}
2715
1300/*****************************************************************************/ 2716/*****************************************************************************/
2717/* singly-linked list management, used when the expected list length is short */
1301 2718
1302inline void 2719inline_size void
1303wlist_add (WL *head, WL elem) 2720wlist_add (WL *head, WL elem)
1304{ 2721{
1305 elem->next = *head; 2722 elem->next = *head;
1306 *head = elem; 2723 *head = elem;
1307} 2724}
1308 2725
1309inline void 2726inline_size void
1310wlist_del (WL *head, WL elem) 2727wlist_del (WL *head, WL elem)
1311{ 2728{
1312 while (*head) 2729 while (*head)
1313 { 2730 {
1314 if (*head == elem) 2731 if (expect_true (*head == elem))
1315 { 2732 {
1316 *head = elem->next; 2733 *head = elem->next;
1317 return; 2734 break;
1318 } 2735 }
1319 2736
1320 head = &(*head)->next; 2737 head = &(*head)->next;
1321 } 2738 }
1322} 2739}
1323 2740
2741/* internal, faster, version of ev_clear_pending */
1324inline void 2742inline_speed void
1325ev_clear_pending (EV_P_ W w) 2743clear_pending (EV_P_ W w)
1326{ 2744{
1327 if (w->pending) 2745 if (w->pending)
1328 { 2746 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2747 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 2748 w->pending = 0;
1331 } 2749 }
1332} 2750}
1333 2751
2752int
2753ev_clear_pending (EV_P_ void *w)
2754{
2755 W w_ = (W)w;
2756 int pending = w_->pending;
2757
2758 if (expect_true (pending))
2759 {
2760 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2761 p->w = (W)&pending_w;
2762 w_->pending = 0;
2763 return p->events;
2764 }
2765 else
2766 return 0;
2767}
2768
1334inline void 2769inline_size void
2770pri_adjust (EV_P_ W w)
2771{
2772 int pri = ev_priority (w);
2773 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2774 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2775 ev_set_priority (w, pri);
2776}
2777
2778inline_speed void
1335ev_start (EV_P_ W w, int active) 2779ev_start (EV_P_ W w, int active)
1336{ 2780{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2781 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2782 w->active = active;
1341 ev_ref (EV_A); 2783 ev_ref (EV_A);
1342} 2784}
1343 2785
1344inline void 2786inline_size void
1345ev_stop (EV_P_ W w) 2787ev_stop (EV_P_ W w)
1346{ 2788{
1347 ev_unref (EV_A); 2789 ev_unref (EV_A);
1348 w->active = 0; 2790 w->active = 0;
1349} 2791}
1350 2792
1351/*****************************************************************************/ 2793/*****************************************************************************/
1352 2794
1353void 2795void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2796ev_io_start (EV_P_ ev_io *w)
1355{ 2797{
1356 int fd = w->fd; 2798 int fd = w->fd;
1357 2799
1358 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
1359 return; 2801 return;
1360 2802
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2803 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2804 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2805
2806 EV_FREQUENT_CHECK;
1362 2807
1363 ev_start (EV_A_ (W)w, 1); 2808 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2809 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2810 wlist_add (&anfds[fd].head, (WL)w);
1366 2811
1367 fd_change (EV_A_ fd); 2812 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1368} 2813 w->events &= ~EV__IOFDSET;
1369 2814
1370void 2815 EV_FREQUENT_CHECK;
2816}
2817
2818void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2819ev_io_stop (EV_P_ ev_io *w)
1372{ 2820{
1373 ev_clear_pending (EV_A_ (W)w); 2821 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2822 if (expect_false (!ev_is_active (w)))
1375 return; 2823 return;
1376 2824
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2825 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2826
2827 EV_FREQUENT_CHECK;
2828
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2829 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2830 ev_stop (EV_A_ (W)w);
1381 2831
1382 fd_change (EV_A_ w->fd); 2832 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1383}
1384 2833
1385void 2834 EV_FREQUENT_CHECK;
2835}
2836
2837void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2838ev_timer_start (EV_P_ ev_timer *w)
1387{ 2839{
1388 if (expect_false (ev_is_active (w))) 2840 if (expect_false (ev_is_active (w)))
1389 return; 2841 return;
1390 2842
1391 ((WT)w)->at += mn_now; 2843 ev_at (w) += mn_now;
1392 2844
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2845 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2846
2847 EV_FREQUENT_CHECK;
2848
2849 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2850 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2851 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2852 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2853 ANHE_at_cache (timers [ev_active (w)]);
2854 upheap (timers, ev_active (w));
1399 2855
2856 EV_FREQUENT_CHECK;
2857
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2858 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2859}
1402 2860
1403void 2861void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2862ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2863{
1406 ev_clear_pending (EV_A_ (W)w); 2864 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2865 if (expect_false (!ev_is_active (w)))
1408 return; 2866 return;
1409 2867
2868 EV_FREQUENT_CHECK;
2869
2870 {
2871 int active = ev_active (w);
2872
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2873 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2874
2875 --timercnt;
2876
1412 if (expect_true (((W)w)->active < timercnt--)) 2877 if (expect_true (active < timercnt + HEAP0))
1413 { 2878 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2879 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2880 adjustheap (timers, timercnt, active);
1416 } 2881 }
2882 }
1417 2883
1418 ((WT)w)->at -= mn_now; 2884 ev_at (w) -= mn_now;
1419 2885
1420 ev_stop (EV_A_ (W)w); 2886 ev_stop (EV_A_ (W)w);
1421}
1422 2887
1423void 2888 EV_FREQUENT_CHECK;
2889}
2890
2891void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2892ev_timer_again (EV_P_ ev_timer *w)
1425{ 2893{
2894 EV_FREQUENT_CHECK;
2895
1426 if (ev_is_active (w)) 2896 if (ev_is_active (w))
1427 { 2897 {
1428 if (w->repeat) 2898 if (w->repeat)
1429 { 2899 {
1430 ((WT)w)->at = mn_now + w->repeat; 2900 ev_at (w) = mn_now + w->repeat;
2901 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2902 adjustheap (timers, timercnt, ev_active (w));
1432 } 2903 }
1433 else 2904 else
1434 ev_timer_stop (EV_A_ w); 2905 ev_timer_stop (EV_A_ w);
1435 } 2906 }
1436 else if (w->repeat) 2907 else if (w->repeat)
1437 { 2908 {
1438 w->at = w->repeat; 2909 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2910 ev_timer_start (EV_A_ w);
1440 } 2911 }
1441}
1442 2912
2913 EV_FREQUENT_CHECK;
2914}
2915
2916ev_tstamp
2917ev_timer_remaining (EV_P_ ev_timer *w)
2918{
2919 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2920}
2921
1443#if EV_PERIODICS 2922#if EV_PERIODIC_ENABLE
1444void 2923void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2924ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2925{
1447 if (expect_false (ev_is_active (w))) 2926 if (expect_false (ev_is_active (w)))
1448 return; 2927 return;
1449 2928
1450 if (w->reschedule_cb) 2929 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2930 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2931 else if (w->interval)
1453 { 2932 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2933 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2934 periodic_recalc (EV_A_ w);
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1457 } 2935 }
2936 else
2937 ev_at (w) = w->offset;
1458 2938
2939 EV_FREQUENT_CHECK;
2940
2941 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2942 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2943 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2944 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2945 ANHE_at_cache (periodics [ev_active (w)]);
2946 upheap (periodics, ev_active (w));
1463 2947
2948 EV_FREQUENT_CHECK;
2949
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2950 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2951}
1466 2952
1467void 2953void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2954ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2955{
1470 ev_clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2957 if (expect_false (!ev_is_active (w)))
1472 return; 2958 return;
1473 2959
2960 EV_FREQUENT_CHECK;
2961
2962 {
2963 int active = ev_active (w);
2964
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2965 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2966
2967 --periodiccnt;
2968
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2969 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2970 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2971 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2972 adjustheap (periodics, periodiccnt, active);
1480 } 2973 }
2974 }
1481 2975
1482 ev_stop (EV_A_ (W)w); 2976 ev_stop (EV_A_ (W)w);
1483}
1484 2977
1485void 2978 EV_FREQUENT_CHECK;
2979}
2980
2981void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2982ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2983{
1488 /* TODO: use adjustheap and recalculation */ 2984 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2985 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2986 ev_periodic_start (EV_A_ w);
1491} 2987}
1492#endif 2988#endif
1493 2989
1494void 2990#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2991# define SA_RESTART 0
2992#endif
2993
2994#if EV_SIGNAL_ENABLE
2995
2996void noinline
2997ev_signal_start (EV_P_ ev_signal *w)
1496{ 2998{
1497 if (expect_false (ev_is_active (w))) 2999 if (expect_false (ev_is_active (w)))
1498 return; 3000 return;
1499 3001
3002 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3003
3004#if EV_MULTIPLICITY
3005 assert (("libev: a signal must not be attached to two different loops",
3006 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3007
3008 signals [w->signum - 1].loop = EV_A;
3009#endif
3010
3011 EV_FREQUENT_CHECK;
3012
3013#if EV_USE_SIGNALFD
3014 if (sigfd == -2)
3015 {
3016 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3017 if (sigfd < 0 && errno == EINVAL)
3018 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3019
3020 if (sigfd >= 0)
3021 {
3022 fd_intern (sigfd); /* doing it twice will not hurt */
3023
3024 sigemptyset (&sigfd_set);
3025
3026 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3027 ev_set_priority (&sigfd_w, EV_MAXPRI);
3028 ev_io_start (EV_A_ &sigfd_w);
3029 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3030 }
3031 }
3032
3033 if (sigfd >= 0)
3034 {
3035 /* TODO: check .head */
3036 sigaddset (&sigfd_set, w->signum);
3037 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3038
3039 signalfd (sigfd, &sigfd_set, 0);
3040 }
3041#endif
3042
1500 ev_start (EV_A_ (W)w, ++idlecnt); 3043 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3044 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 3045
1505void 3046 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 3047# if EV_USE_SIGNALFD
3048 if (sigfd < 0) /*TODO*/
3049# endif
3050 {
3051# ifdef _WIN32
3052 evpipe_init (EV_A);
3053
3054 signal (w->signum, ev_sighandler);
3055# else
3056 struct sigaction sa;
3057
3058 evpipe_init (EV_A);
3059
3060 sa.sa_handler = ev_sighandler;
3061 sigfillset (&sa.sa_mask);
3062 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3063 sigaction (w->signum, &sa, 0);
3064
3065 if (origflags & EVFLAG_NOSIGMASK)
3066 {
3067 sigemptyset (&sa.sa_mask);
3068 sigaddset (&sa.sa_mask, w->signum);
3069 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3070 }
3071#endif
3072 }
3073
3074 EV_FREQUENT_CHECK;
3075}
3076
3077void noinline
3078ev_signal_stop (EV_P_ ev_signal *w)
1507{ 3079{
1508 ev_clear_pending (EV_A_ (W)w); 3080 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 3081 if (expect_false (!ev_is_active (w)))
1510 return; 3082 return;
1511 3083
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 3084 EV_FREQUENT_CHECK;
3085
3086 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 3087 ev_stop (EV_A_ (W)w);
3088
3089 if (!signals [w->signum - 1].head)
3090 {
3091#if EV_MULTIPLICITY
3092 signals [w->signum - 1].loop = 0; /* unattach from signal */
3093#endif
3094#if EV_USE_SIGNALFD
3095 if (sigfd >= 0)
3096 {
3097 sigset_t ss;
3098
3099 sigemptyset (&ss);
3100 sigaddset (&ss, w->signum);
3101 sigdelset (&sigfd_set, w->signum);
3102
3103 signalfd (sigfd, &sigfd_set, 0);
3104 sigprocmask (SIG_UNBLOCK, &ss, 0);
3105 }
3106 else
3107#endif
3108 signal (w->signum, SIG_DFL);
3109 }
3110
3111 EV_FREQUENT_CHECK;
1514} 3112}
3113
3114#endif
3115
3116#if EV_CHILD_ENABLE
1515 3117
1516void 3118void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 3119ev_child_start (EV_P_ ev_child *w)
1518{ 3120{
3121#if EV_MULTIPLICITY
3122 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3123#endif
1519 if (expect_false (ev_is_active (w))) 3124 if (expect_false (ev_is_active (w)))
1520 return; 3125 return;
1521 3126
3127 EV_FREQUENT_CHECK;
3128
1522 ev_start (EV_A_ (W)w, ++preparecnt); 3129 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3130 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w; 3131
3132 EV_FREQUENT_CHECK;
1525} 3133}
1526 3134
1527void 3135void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 3136ev_child_stop (EV_P_ ev_child *w)
1529{ 3137{
1530 ev_clear_pending (EV_A_ (W)w); 3138 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 3139 if (expect_false (!ev_is_active (w)))
1532 return; 3140 return;
1533 3141
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3142 EV_FREQUENT_CHECK;
3143
3144 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 3145 ev_stop (EV_A_ (W)w);
3146
3147 EV_FREQUENT_CHECK;
1536} 3148}
3149
3150#endif
3151
3152#if EV_STAT_ENABLE
3153
3154# ifdef _WIN32
3155# undef lstat
3156# define lstat(a,b) _stati64 (a,b)
3157# endif
3158
3159#define DEF_STAT_INTERVAL 5.0074891
3160#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3161#define MIN_STAT_INTERVAL 0.1074891
3162
3163static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3164
3165#if EV_USE_INOTIFY
3166
3167/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3168# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3169
3170static void noinline
3171infy_add (EV_P_ ev_stat *w)
3172{
3173 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3174
3175 if (w->wd >= 0)
3176 {
3177 struct statfs sfs;
3178
3179 /* now local changes will be tracked by inotify, but remote changes won't */
3180 /* unless the filesystem is known to be local, we therefore still poll */
3181 /* also do poll on <2.6.25, but with normal frequency */
3182
3183 if (!fs_2625)
3184 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3185 else if (!statfs (w->path, &sfs)
3186 && (sfs.f_type == 0x1373 /* devfs */
3187 || sfs.f_type == 0xEF53 /* ext2/3 */
3188 || sfs.f_type == 0x3153464a /* jfs */
3189 || sfs.f_type == 0x52654973 /* reiser3 */
3190 || sfs.f_type == 0x01021994 /* tempfs */
3191 || sfs.f_type == 0x58465342 /* xfs */))
3192 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3193 else
3194 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3195 }
3196 else
3197 {
3198 /* can't use inotify, continue to stat */
3199 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3200
3201 /* if path is not there, monitor some parent directory for speedup hints */
3202 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3203 /* but an efficiency issue only */
3204 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3205 {
3206 char path [4096];
3207 strcpy (path, w->path);
3208
3209 do
3210 {
3211 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3212 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3213
3214 char *pend = strrchr (path, '/');
3215
3216 if (!pend || pend == path)
3217 break;
3218
3219 *pend = 0;
3220 w->wd = inotify_add_watch (fs_fd, path, mask);
3221 }
3222 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3223 }
3224 }
3225
3226 if (w->wd >= 0)
3227 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3228
3229 /* now re-arm timer, if required */
3230 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3231 ev_timer_again (EV_A_ &w->timer);
3232 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3233}
3234
3235static void noinline
3236infy_del (EV_P_ ev_stat *w)
3237{
3238 int slot;
3239 int wd = w->wd;
3240
3241 if (wd < 0)
3242 return;
3243
3244 w->wd = -2;
3245 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3246 wlist_del (&fs_hash [slot].head, (WL)w);
3247
3248 /* remove this watcher, if others are watching it, they will rearm */
3249 inotify_rm_watch (fs_fd, wd);
3250}
3251
3252static void noinline
3253infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3254{
3255 if (slot < 0)
3256 /* overflow, need to check for all hash slots */
3257 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3258 infy_wd (EV_A_ slot, wd, ev);
3259 else
3260 {
3261 WL w_;
3262
3263 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3264 {
3265 ev_stat *w = (ev_stat *)w_;
3266 w_ = w_->next; /* lets us remove this watcher and all before it */
3267
3268 if (w->wd == wd || wd == -1)
3269 {
3270 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3271 {
3272 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3273 w->wd = -1;
3274 infy_add (EV_A_ w); /* re-add, no matter what */
3275 }
3276
3277 stat_timer_cb (EV_A_ &w->timer, 0);
3278 }
3279 }
3280 }
3281}
3282
3283static void
3284infy_cb (EV_P_ ev_io *w, int revents)
3285{
3286 char buf [EV_INOTIFY_BUFSIZE];
3287 int ofs;
3288 int len = read (fs_fd, buf, sizeof (buf));
3289
3290 for (ofs = 0; ofs < len; )
3291 {
3292 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3293 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3294 ofs += sizeof (struct inotify_event) + ev->len;
3295 }
3296}
3297
3298inline_size void ecb_cold
3299ev_check_2625 (EV_P)
3300{
3301 /* kernels < 2.6.25 are borked
3302 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3303 */
3304 if (ev_linux_version () < 0x020619)
3305 return;
3306
3307 fs_2625 = 1;
3308}
3309
3310inline_size int
3311infy_newfd (void)
3312{
3313#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3314 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3315 if (fd >= 0)
3316 return fd;
3317#endif
3318 return inotify_init ();
3319}
3320
3321inline_size void
3322infy_init (EV_P)
3323{
3324 if (fs_fd != -2)
3325 return;
3326
3327 fs_fd = -1;
3328
3329 ev_check_2625 (EV_A);
3330
3331 fs_fd = infy_newfd ();
3332
3333 if (fs_fd >= 0)
3334 {
3335 fd_intern (fs_fd);
3336 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3337 ev_set_priority (&fs_w, EV_MAXPRI);
3338 ev_io_start (EV_A_ &fs_w);
3339 ev_unref (EV_A);
3340 }
3341}
3342
3343inline_size void
3344infy_fork (EV_P)
3345{
3346 int slot;
3347
3348 if (fs_fd < 0)
3349 return;
3350
3351 ev_ref (EV_A);
3352 ev_io_stop (EV_A_ &fs_w);
3353 close (fs_fd);
3354 fs_fd = infy_newfd ();
3355
3356 if (fs_fd >= 0)
3357 {
3358 fd_intern (fs_fd);
3359 ev_io_set (&fs_w, fs_fd, EV_READ);
3360 ev_io_start (EV_A_ &fs_w);
3361 ev_unref (EV_A);
3362 }
3363
3364 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3365 {
3366 WL w_ = fs_hash [slot].head;
3367 fs_hash [slot].head = 0;
3368
3369 while (w_)
3370 {
3371 ev_stat *w = (ev_stat *)w_;
3372 w_ = w_->next; /* lets us add this watcher */
3373
3374 w->wd = -1;
3375
3376 if (fs_fd >= 0)
3377 infy_add (EV_A_ w); /* re-add, no matter what */
3378 else
3379 {
3380 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3381 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3382 ev_timer_again (EV_A_ &w->timer);
3383 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3384 }
3385 }
3386 }
3387}
3388
3389#endif
3390
3391#ifdef _WIN32
3392# define EV_LSTAT(p,b) _stati64 (p, b)
3393#else
3394# define EV_LSTAT(p,b) lstat (p, b)
3395#endif
1537 3396
1538void 3397void
1539ev_check_start (EV_P_ struct ev_check *w) 3398ev_stat_stat (EV_P_ ev_stat *w)
3399{
3400 if (lstat (w->path, &w->attr) < 0)
3401 w->attr.st_nlink = 0;
3402 else if (!w->attr.st_nlink)
3403 w->attr.st_nlink = 1;
3404}
3405
3406static void noinline
3407stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3408{
3409 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3410
3411 ev_statdata prev = w->attr;
3412 ev_stat_stat (EV_A_ w);
3413
3414 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3415 if (
3416 prev.st_dev != w->attr.st_dev
3417 || prev.st_ino != w->attr.st_ino
3418 || prev.st_mode != w->attr.st_mode
3419 || prev.st_nlink != w->attr.st_nlink
3420 || prev.st_uid != w->attr.st_uid
3421 || prev.st_gid != w->attr.st_gid
3422 || prev.st_rdev != w->attr.st_rdev
3423 || prev.st_size != w->attr.st_size
3424 || prev.st_atime != w->attr.st_atime
3425 || prev.st_mtime != w->attr.st_mtime
3426 || prev.st_ctime != w->attr.st_ctime
3427 ) {
3428 /* we only update w->prev on actual differences */
3429 /* in case we test more often than invoke the callback, */
3430 /* to ensure that prev is always different to attr */
3431 w->prev = prev;
3432
3433 #if EV_USE_INOTIFY
3434 if (fs_fd >= 0)
3435 {
3436 infy_del (EV_A_ w);
3437 infy_add (EV_A_ w);
3438 ev_stat_stat (EV_A_ w); /* avoid race... */
3439 }
3440 #endif
3441
3442 ev_feed_event (EV_A_ w, EV_STAT);
3443 }
3444}
3445
3446void
3447ev_stat_start (EV_P_ ev_stat *w)
1540{ 3448{
1541 if (expect_false (ev_is_active (w))) 3449 if (expect_false (ev_is_active (w)))
1542 return; 3450 return;
1543 3451
3452 ev_stat_stat (EV_A_ w);
3453
3454 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3455 w->interval = MIN_STAT_INTERVAL;
3456
3457 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3458 ev_set_priority (&w->timer, ev_priority (w));
3459
3460#if EV_USE_INOTIFY
3461 infy_init (EV_A);
3462
3463 if (fs_fd >= 0)
3464 infy_add (EV_A_ w);
3465 else
3466#endif
3467 {
3468 ev_timer_again (EV_A_ &w->timer);
3469 ev_unref (EV_A);
3470 }
3471
1544 ev_start (EV_A_ (W)w, ++checkcnt); 3472 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3473
1546 checks [checkcnt - 1] = w; 3474 EV_FREQUENT_CHECK;
1547} 3475}
1548 3476
1549void 3477void
1550ev_check_stop (EV_P_ struct ev_check *w) 3478ev_stat_stop (EV_P_ ev_stat *w)
1551{ 3479{
1552 ev_clear_pending (EV_A_ (W)w); 3480 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3481 if (expect_false (!ev_is_active (w)))
1554 return; 3482 return;
1555 3483
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 3484 EV_FREQUENT_CHECK;
3485
3486#if EV_USE_INOTIFY
3487 infy_del (EV_A_ w);
3488#endif
3489
3490 if (ev_is_active (&w->timer))
3491 {
3492 ev_ref (EV_A);
3493 ev_timer_stop (EV_A_ &w->timer);
3494 }
3495
1557 ev_stop (EV_A_ (W)w); 3496 ev_stop (EV_A_ (W)w);
1558}
1559 3497
1560#ifndef SA_RESTART 3498 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 3499}
1562#endif 3500#endif
1563 3501
3502#if EV_IDLE_ENABLE
1564void 3503void
1565ev_signal_start (EV_P_ struct ev_signal *w) 3504ev_idle_start (EV_P_ ev_idle *w)
1566{ 3505{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 3506 if (expect_false (ev_is_active (w)))
1571 return; 3507 return;
1572 3508
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3509 pri_adjust (EV_A_ (W)w);
1574 3510
3511 EV_FREQUENT_CHECK;
3512
3513 {
3514 int active = ++idlecnt [ABSPRI (w)];
3515
3516 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 3517 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 3518
1579 if (!((WL)w)->next) 3519 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 3520 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 3521 }
3522
3523 EV_FREQUENT_CHECK;
1591} 3524}
1592 3525
1593void 3526void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 3527ev_idle_stop (EV_P_ ev_idle *w)
1595{ 3528{
1596 ev_clear_pending (EV_A_ (W)w); 3529 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3530 if (expect_false (!ev_is_active (w)))
1598 return; 3531 return;
1599 3532
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3533 EV_FREQUENT_CHECK;
3534
3535 {
3536 int active = ev_active (w);
3537
3538 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3539 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3540
1601 ev_stop (EV_A_ (W)w); 3541 ev_stop (EV_A_ (W)w);
3542 --idleall;
3543 }
1602 3544
1603 if (!signals [w->signum - 1].head) 3545 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 3546}
3547#endif
1606 3548
3549#if EV_PREPARE_ENABLE
1607void 3550void
1608ev_child_start (EV_P_ struct ev_child *w) 3551ev_prepare_start (EV_P_ ev_prepare *w)
1609{ 3552{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif
1613 if (expect_false (ev_is_active (w))) 3553 if (expect_false (ev_is_active (w)))
1614 return; 3554 return;
1615 3555
3556 EV_FREQUENT_CHECK;
3557
1616 ev_start (EV_A_ (W)w, 1); 3558 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3559 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3560 prepares [preparecnt - 1] = w;
3561
3562 EV_FREQUENT_CHECK;
1618} 3563}
1619 3564
1620void 3565void
1621ev_child_stop (EV_P_ struct ev_child *w) 3566ev_prepare_stop (EV_P_ ev_prepare *w)
1622{ 3567{
1623 ev_clear_pending (EV_A_ (W)w); 3568 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3569 if (expect_false (!ev_is_active (w)))
1625 return; 3570 return;
1626 3571
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3572 EV_FREQUENT_CHECK;
3573
3574 {
3575 int active = ev_active (w);
3576
3577 prepares [active - 1] = prepares [--preparecnt];
3578 ev_active (prepares [active - 1]) = active;
3579 }
3580
1628 ev_stop (EV_A_ (W)w); 3581 ev_stop (EV_A_ (W)w);
3582
3583 EV_FREQUENT_CHECK;
1629} 3584}
3585#endif
3586
3587#if EV_CHECK_ENABLE
3588void
3589ev_check_start (EV_P_ ev_check *w)
3590{
3591 if (expect_false (ev_is_active (w)))
3592 return;
3593
3594 EV_FREQUENT_CHECK;
3595
3596 ev_start (EV_A_ (W)w, ++checkcnt);
3597 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3598 checks [checkcnt - 1] = w;
3599
3600 EV_FREQUENT_CHECK;
3601}
3602
3603void
3604ev_check_stop (EV_P_ ev_check *w)
3605{
3606 clear_pending (EV_A_ (W)w);
3607 if (expect_false (!ev_is_active (w)))
3608 return;
3609
3610 EV_FREQUENT_CHECK;
3611
3612 {
3613 int active = ev_active (w);
3614
3615 checks [active - 1] = checks [--checkcnt];
3616 ev_active (checks [active - 1]) = active;
3617 }
3618
3619 ev_stop (EV_A_ (W)w);
3620
3621 EV_FREQUENT_CHECK;
3622}
3623#endif
3624
3625#if EV_EMBED_ENABLE
3626void noinline
3627ev_embed_sweep (EV_P_ ev_embed *w)
3628{
3629 ev_run (w->other, EVRUN_NOWAIT);
3630}
3631
3632static void
3633embed_io_cb (EV_P_ ev_io *io, int revents)
3634{
3635 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3636
3637 if (ev_cb (w))
3638 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3639 else
3640 ev_run (w->other, EVRUN_NOWAIT);
3641}
3642
3643static void
3644embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3645{
3646 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3647
3648 {
3649 EV_P = w->other;
3650
3651 while (fdchangecnt)
3652 {
3653 fd_reify (EV_A);
3654 ev_run (EV_A_ EVRUN_NOWAIT);
3655 }
3656 }
3657}
3658
3659static void
3660embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3661{
3662 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3663
3664 ev_embed_stop (EV_A_ w);
3665
3666 {
3667 EV_P = w->other;
3668
3669 ev_loop_fork (EV_A);
3670 ev_run (EV_A_ EVRUN_NOWAIT);
3671 }
3672
3673 ev_embed_start (EV_A_ w);
3674}
3675
3676#if 0
3677static void
3678embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3679{
3680 ev_idle_stop (EV_A_ idle);
3681}
3682#endif
3683
3684void
3685ev_embed_start (EV_P_ ev_embed *w)
3686{
3687 if (expect_false (ev_is_active (w)))
3688 return;
3689
3690 {
3691 EV_P = w->other;
3692 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3693 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3694 }
3695
3696 EV_FREQUENT_CHECK;
3697
3698 ev_set_priority (&w->io, ev_priority (w));
3699 ev_io_start (EV_A_ &w->io);
3700
3701 ev_prepare_init (&w->prepare, embed_prepare_cb);
3702 ev_set_priority (&w->prepare, EV_MINPRI);
3703 ev_prepare_start (EV_A_ &w->prepare);
3704
3705 ev_fork_init (&w->fork, embed_fork_cb);
3706 ev_fork_start (EV_A_ &w->fork);
3707
3708 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3709
3710 ev_start (EV_A_ (W)w, 1);
3711
3712 EV_FREQUENT_CHECK;
3713}
3714
3715void
3716ev_embed_stop (EV_P_ ev_embed *w)
3717{
3718 clear_pending (EV_A_ (W)w);
3719 if (expect_false (!ev_is_active (w)))
3720 return;
3721
3722 EV_FREQUENT_CHECK;
3723
3724 ev_io_stop (EV_A_ &w->io);
3725 ev_prepare_stop (EV_A_ &w->prepare);
3726 ev_fork_stop (EV_A_ &w->fork);
3727
3728 ev_stop (EV_A_ (W)w);
3729
3730 EV_FREQUENT_CHECK;
3731}
3732#endif
3733
3734#if EV_FORK_ENABLE
3735void
3736ev_fork_start (EV_P_ ev_fork *w)
3737{
3738 if (expect_false (ev_is_active (w)))
3739 return;
3740
3741 EV_FREQUENT_CHECK;
3742
3743 ev_start (EV_A_ (W)w, ++forkcnt);
3744 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3745 forks [forkcnt - 1] = w;
3746
3747 EV_FREQUENT_CHECK;
3748}
3749
3750void
3751ev_fork_stop (EV_P_ ev_fork *w)
3752{
3753 clear_pending (EV_A_ (W)w);
3754 if (expect_false (!ev_is_active (w)))
3755 return;
3756
3757 EV_FREQUENT_CHECK;
3758
3759 {
3760 int active = ev_active (w);
3761
3762 forks [active - 1] = forks [--forkcnt];
3763 ev_active (forks [active - 1]) = active;
3764 }
3765
3766 ev_stop (EV_A_ (W)w);
3767
3768 EV_FREQUENT_CHECK;
3769}
3770#endif
3771
3772#if EV_CLEANUP_ENABLE
3773void
3774ev_cleanup_start (EV_P_ ev_cleanup *w)
3775{
3776 if (expect_false (ev_is_active (w)))
3777 return;
3778
3779 EV_FREQUENT_CHECK;
3780
3781 ev_start (EV_A_ (W)w, ++cleanupcnt);
3782 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3783 cleanups [cleanupcnt - 1] = w;
3784
3785 /* cleanup watchers should never keep a refcount on the loop */
3786 ev_unref (EV_A);
3787 EV_FREQUENT_CHECK;
3788}
3789
3790void
3791ev_cleanup_stop (EV_P_ ev_cleanup *w)
3792{
3793 clear_pending (EV_A_ (W)w);
3794 if (expect_false (!ev_is_active (w)))
3795 return;
3796
3797 EV_FREQUENT_CHECK;
3798 ev_ref (EV_A);
3799
3800 {
3801 int active = ev_active (w);
3802
3803 cleanups [active - 1] = cleanups [--cleanupcnt];
3804 ev_active (cleanups [active - 1]) = active;
3805 }
3806
3807 ev_stop (EV_A_ (W)w);
3808
3809 EV_FREQUENT_CHECK;
3810}
3811#endif
3812
3813#if EV_ASYNC_ENABLE
3814void
3815ev_async_start (EV_P_ ev_async *w)
3816{
3817 if (expect_false (ev_is_active (w)))
3818 return;
3819
3820 w->sent = 0;
3821
3822 evpipe_init (EV_A);
3823
3824 EV_FREQUENT_CHECK;
3825
3826 ev_start (EV_A_ (W)w, ++asynccnt);
3827 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3828 asyncs [asynccnt - 1] = w;
3829
3830 EV_FREQUENT_CHECK;
3831}
3832
3833void
3834ev_async_stop (EV_P_ ev_async *w)
3835{
3836 clear_pending (EV_A_ (W)w);
3837 if (expect_false (!ev_is_active (w)))
3838 return;
3839
3840 EV_FREQUENT_CHECK;
3841
3842 {
3843 int active = ev_active (w);
3844
3845 asyncs [active - 1] = asyncs [--asynccnt];
3846 ev_active (asyncs [active - 1]) = active;
3847 }
3848
3849 ev_stop (EV_A_ (W)w);
3850
3851 EV_FREQUENT_CHECK;
3852}
3853
3854void
3855ev_async_send (EV_P_ ev_async *w)
3856{
3857 w->sent = 1;
3858 evpipe_write (EV_A_ &async_pending);
3859}
3860#endif
1630 3861
1631/*****************************************************************************/ 3862/*****************************************************************************/
1632 3863
1633struct ev_once 3864struct ev_once
1634{ 3865{
1635 struct ev_io io; 3866 ev_io io;
1636 struct ev_timer to; 3867 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3868 void (*cb)(int revents, void *arg);
1638 void *arg; 3869 void *arg;
1639}; 3870};
1640 3871
1641static void 3872static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3873once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3874{
1644 void (*cb)(int revents, void *arg) = once->cb; 3875 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3876 void *arg = once->arg;
1646 3877
1647 ev_io_stop (EV_A_ &once->io); 3878 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3879 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3880 ev_free (once);
1650 3881
1651 cb (revents, arg); 3882 cb (revents, arg);
1652} 3883}
1653 3884
1654static void 3885static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3886once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3887{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3888 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3889
3890 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3891}
1659 3892
1660static void 3893static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3894once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3895{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3896 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3897
3898 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3899}
1665 3900
1666void 3901void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3902ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3903{
1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3904 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1670 3905
1671 if (expect_false (!once)) 3906 if (expect_false (!once))
1672 { 3907 {
1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3908 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1674 return; 3909 return;
1675 } 3910 }
1676 3911
1677 once->cb = cb; 3912 once->cb = cb;
1678 once->arg = arg; 3913 once->arg = arg;
1690 ev_timer_set (&once->to, timeout, 0.); 3925 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3926 ev_timer_start (EV_A_ &once->to);
1692 } 3927 }
1693} 3928}
1694 3929
1695#ifdef __cplusplus 3930/*****************************************************************************/
1696} 3931
3932#if EV_WALK_ENABLE
3933void ecb_cold
3934ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3935{
3936 int i, j;
3937 ev_watcher_list *wl, *wn;
3938
3939 if (types & (EV_IO | EV_EMBED))
3940 for (i = 0; i < anfdmax; ++i)
3941 for (wl = anfds [i].head; wl; )
3942 {
3943 wn = wl->next;
3944
3945#if EV_EMBED_ENABLE
3946 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3947 {
3948 if (types & EV_EMBED)
3949 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3950 }
3951 else
3952#endif
3953#if EV_USE_INOTIFY
3954 if (ev_cb ((ev_io *)wl) == infy_cb)
3955 ;
3956 else
3957#endif
3958 if ((ev_io *)wl != &pipe_w)
3959 if (types & EV_IO)
3960 cb (EV_A_ EV_IO, wl);
3961
3962 wl = wn;
3963 }
3964
3965 if (types & (EV_TIMER | EV_STAT))
3966 for (i = timercnt + HEAP0; i-- > HEAP0; )
3967#if EV_STAT_ENABLE
3968 /*TODO: timer is not always active*/
3969 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3970 {
3971 if (types & EV_STAT)
3972 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3973 }
3974 else
3975#endif
3976 if (types & EV_TIMER)
3977 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3978
3979#if EV_PERIODIC_ENABLE
3980 if (types & EV_PERIODIC)
3981 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3982 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3983#endif
3984
3985#if EV_IDLE_ENABLE
3986 if (types & EV_IDLE)
3987 for (j = NUMPRI; i--; )
3988 for (i = idlecnt [j]; i--; )
3989 cb (EV_A_ EV_IDLE, idles [j][i]);
3990#endif
3991
3992#if EV_FORK_ENABLE
3993 if (types & EV_FORK)
3994 for (i = forkcnt; i--; )
3995 if (ev_cb (forks [i]) != embed_fork_cb)
3996 cb (EV_A_ EV_FORK, forks [i]);
3997#endif
3998
3999#if EV_ASYNC_ENABLE
4000 if (types & EV_ASYNC)
4001 for (i = asynccnt; i--; )
4002 cb (EV_A_ EV_ASYNC, asyncs [i]);
4003#endif
4004
4005#if EV_PREPARE_ENABLE
4006 if (types & EV_PREPARE)
4007 for (i = preparecnt; i--; )
4008# if EV_EMBED_ENABLE
4009 if (ev_cb (prepares [i]) != embed_prepare_cb)
1697#endif 4010# endif
4011 cb (EV_A_ EV_PREPARE, prepares [i]);
4012#endif
1698 4013
4014#if EV_CHECK_ENABLE
4015 if (types & EV_CHECK)
4016 for (i = checkcnt; i--; )
4017 cb (EV_A_ EV_CHECK, checks [i]);
4018#endif
4019
4020#if EV_SIGNAL_ENABLE
4021 if (types & EV_SIGNAL)
4022 for (i = 0; i < EV_NSIG - 1; ++i)
4023 for (wl = signals [i].head; wl; )
4024 {
4025 wn = wl->next;
4026 cb (EV_A_ EV_SIGNAL, wl);
4027 wl = wn;
4028 }
4029#endif
4030
4031#if EV_CHILD_ENABLE
4032 if (types & EV_CHILD)
4033 for (i = (EV_PID_HASHSIZE); i--; )
4034 for (wl = childs [i]; wl; )
4035 {
4036 wn = wl->next;
4037 cb (EV_A_ EV_CHILD, wl);
4038 wl = wn;
4039 }
4040#endif
4041/* EV_STAT 0x00001000 /* stat data changed */
4042/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4043}
4044#endif
4045
4046#if EV_MULTIPLICITY
4047 #include "ev_wrap.h"
4048#endif
4049
4050EV_CPP(})
4051

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines