ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.388 by root, Fri Jul 29 12:17:26 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
111#ifndef _WIN32 190#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 191# include <sys/time.h>
114# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
115#else 194#else
195# include <io.h>
116# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 197# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
120# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
121#endif 251# endif
122 252#endif
123/**/
124 253
125#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
126# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
127#endif 260#endif
128 261
129#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
131#endif 272#endif
132 273
133#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 276#endif
136 277
137#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
138# ifdef _WIN32 279# ifdef _WIN32
139# define EV_USE_POLL 0 280# define EV_USE_POLL 0
140# else 281# else
141# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 283# endif
143#endif 284#endif
144 285
145#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
146# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
147#endif 292#endif
148 293
149#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
151#endif 296#endif
152 297
153#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 299# define EV_USE_PORT 0
155#endif 300#endif
156 301
157/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
158 309
159/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
160#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
161# undef EV_USE_POLL 370# undef EV_USE_POLL
162# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
163#endif 372#endif
164 373
165#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
170#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
173#endif 382#endif
174 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
175#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 407# include <winsock.h>
177#endif 408#endif
178 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
179/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
180 462
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
185 465
186#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
187# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
188#else 493#else
189# include "ev.h" 494 #define ecb_inline static
495#endif
496
497#ifndef ECB_MEMORY_FENCE
498 #if ECB_GCC_VERSION(2,5)
499 #if __x86
500 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE /* better be safe than sorry */
503 #elif __amd64
504 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
505 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507 #endif
190#endif 508 #endif
509#endif
191 510
192#if __GNUC__ >= 3 511#ifndef ECB_MEMORY_FENCE
512 #if ECB_GCC_VERSION(4,4)
513 #define ECB_MEMORY_FENCE __sync_synchronize ()
514 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
516 #elif _MSC_VER >= 1400 && 0 /* TODO: only true when using volatiles */
517 #define ECB_MEMORY_FENCE do { } while (0)
518 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
519 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
520 #elif defined(_WIN32)
521 #include <WinNT.h>
522 #define ECB_MEMORY_FENCE MemoryBarrier ()
523 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
524 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
525 #endif
526#endif
527
528#ifndef ECB_MEMORY_FENCE
529 #include <pthread.h>
530
531 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
532 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
533 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
534 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
535#endif
536
537#if ECB_GCC_VERSION(3,1)
538 #define ecb_attribute(attrlist) __attribute__(attrlist)
539 #define ecb_is_constant(expr) __builtin_constant_p (expr)
193# define expect(expr,value) __builtin_expect ((expr),(value)) 540 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 541 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
195#else 542#else
543 #define ecb_attribute(attrlist)
544 #define ecb_is_constant(expr) 0
196# define expect(expr,value) (expr) 545 #define ecb_expect(expr,value) (expr)
197# define inline static 546 #define ecb_prefetch(addr,rw,locality)
198#endif 547#endif
199 548
549#define ecb_noinline ecb_attribute ((__noinline__))
550#define ecb_noreturn ecb_attribute ((__noreturn__))
551#define ecb_unused ecb_attribute ((__unused__))
552#define ecb_const ecb_attribute ((__const__))
553#define ecb_pure ecb_attribute ((__pure__))
554
555#if ECB_GCC_VERSION(4,3)
556 #define ecb_artificial ecb_attribute ((__artificial__))
557 #define ecb_hot ecb_attribute ((__hot__))
558 #define ecb_cold ecb_attribute ((__cold__))
559#else
560 #define ecb_artificial
561 #define ecb_hot
562 #define ecb_cold
563#endif
564
565/* put around conditional expressions if you are very sure that the */
566/* expression is mostly true or mostly false. note that these return */
567/* booleans, not the expression. */
200#define expect_false(expr) expect ((expr) != 0, 0) 568#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 569#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
570/* ecb.h end */
202 571
572#define expect_false(cond) ecb_expect_false (cond)
573#define expect_true(cond) ecb_expect_true (cond)
574#define noinline ecb_noinline
575
576#define inline_size ecb_inline
577
578#if EV_FEATURE_CODE
579# define inline_speed ecb_inline
580#else
581# define inline_speed static noinline
582#endif
583
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 584#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
585
586#if EV_MINPRI == EV_MAXPRI
587# define ABSPRI(w) (((W)w), 0)
588#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 589# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
590#endif
205 591
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 592#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 593#define EMPTY2(a,b) /* used to suppress some warnings */
208 594
209typedef struct ev_watcher *W; 595typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 596typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 597typedef ev_watcher_time *WT;
212 598
599#define ev_active(w) ((W)(w))->active
600#define ev_at(w) ((WT)(w))->at
601
602#if EV_USE_REALTIME
603/* sig_atomic_t is used to avoid per-thread variables or locking but still */
604/* giving it a reasonably high chance of working on typical architectures */
605static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
606#endif
607
608#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 609static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
610#endif
611
612#ifndef EV_FD_TO_WIN32_HANDLE
613# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
614#endif
615#ifndef EV_WIN32_HANDLE_TO_FD
616# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
617#endif
618#ifndef EV_WIN32_CLOSE_FD
619# define EV_WIN32_CLOSE_FD(fd) close (fd)
620#endif
214 621
215#ifdef _WIN32 622#ifdef _WIN32
216# include "ev_win32.c" 623# include "ev_win32.c"
217#endif 624#endif
218 625
219/*****************************************************************************/ 626/*****************************************************************************/
220 627
628/* define a suitable floor function (only used by periodics atm) */
629
630#if EV_USE_FLOOR
631# include <math.h>
632# define ev_floor(v) floor (v)
633#else
634
635#include <float.h>
636
637/* a floor() replacement function, should be independent of ev_tstamp type */
638static ev_tstamp noinline
639ev_floor (ev_tstamp v)
640{
641 /* the choice of shift factor is not terribly important */
642#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
643 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
644#else
645 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
646#endif
647
648 /* argument too large for an unsigned long? */
649 if (expect_false (v >= shift))
650 {
651 ev_tstamp f;
652
653 if (v == v - 1.)
654 return v; /* very large number */
655
656 f = shift * ev_floor (v * (1. / shift));
657 return f + ev_floor (v - f);
658 }
659
660 /* special treatment for negative args? */
661 if (expect_false (v < 0.))
662 {
663 ev_tstamp f = -ev_floor (-v);
664
665 return f - (f == v ? 0 : 1);
666 }
667
668 /* fits into an unsigned long */
669 return (unsigned long)v;
670}
671
672#endif
673
674/*****************************************************************************/
675
676#ifdef __linux
677# include <sys/utsname.h>
678#endif
679
680static unsigned int noinline ecb_cold
681ev_linux_version (void)
682{
683#ifdef __linux
684 unsigned int v = 0;
685 struct utsname buf;
686 int i;
687 char *p = buf.release;
688
689 if (uname (&buf))
690 return 0;
691
692 for (i = 3+1; --i; )
693 {
694 unsigned int c = 0;
695
696 for (;;)
697 {
698 if (*p >= '0' && *p <= '9')
699 c = c * 10 + *p++ - '0';
700 else
701 {
702 p += *p == '.';
703 break;
704 }
705 }
706
707 v = (v << 8) | c;
708 }
709
710 return v;
711#else
712 return 0;
713#endif
714}
715
716/*****************************************************************************/
717
718#if EV_AVOID_STDIO
719static void noinline ecb_cold
720ev_printerr (const char *msg)
721{
722 write (STDERR_FILENO, msg, strlen (msg));
723}
724#endif
725
221static void (*syserr_cb)(const char *msg); 726static void (*syserr_cb)(const char *msg);
222 727
728void ecb_cold
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 729ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 730{
225 syserr_cb = cb; 731 syserr_cb = cb;
226} 732}
227 733
228static void 734static void noinline ecb_cold
229syserr (const char *msg) 735ev_syserr (const char *msg)
230{ 736{
231 if (!msg) 737 if (!msg)
232 msg = "(libev) system error"; 738 msg = "(libev) system error";
233 739
234 if (syserr_cb) 740 if (syserr_cb)
235 syserr_cb (msg); 741 syserr_cb (msg);
236 else 742 else
237 { 743 {
744#if EV_AVOID_STDIO
745 ev_printerr (msg);
746 ev_printerr (": ");
747 ev_printerr (strerror (errno));
748 ev_printerr ("\n");
749#else
238 perror (msg); 750 perror (msg);
751#endif
239 abort (); 752 abort ();
240 } 753 }
241} 754}
242 755
756static void *
757ev_realloc_emul (void *ptr, long size)
758{
759#if __GLIBC__
760 return realloc (ptr, size);
761#else
762 /* some systems, notably openbsd and darwin, fail to properly
763 * implement realloc (x, 0) (as required by both ansi c-89 and
764 * the single unix specification, so work around them here.
765 */
766
767 if (size)
768 return realloc (ptr, size);
769
770 free (ptr);
771 return 0;
772#endif
773}
774
243static void *(*alloc)(void *ptr, long size); 775static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 776
777void ecb_cold
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 778ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 779{
247 alloc = cb; 780 alloc = cb;
248} 781}
249 782
250static void * 783inline_speed void *
251ev_realloc (void *ptr, long size) 784ev_realloc (void *ptr, long size)
252{ 785{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 786 ptr = alloc (ptr, size);
254 787
255 if (!ptr && size) 788 if (!ptr && size)
256 { 789 {
790#if EV_AVOID_STDIO
791 ev_printerr ("(libev) memory allocation failed, aborting.\n");
792#else
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 793 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
794#endif
258 abort (); 795 abort ();
259 } 796 }
260 797
261 return ptr; 798 return ptr;
262} 799}
264#define ev_malloc(size) ev_realloc (0, (size)) 801#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 802#define ev_free(ptr) ev_realloc ((ptr), 0)
266 803
267/*****************************************************************************/ 804/*****************************************************************************/
268 805
806/* set in reify when reification needed */
807#define EV_ANFD_REIFY 1
808
809/* file descriptor info structure */
269typedef struct 810typedef struct
270{ 811{
271 WL head; 812 WL head;
272 unsigned char events; 813 unsigned char events; /* the events watched for */
814 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
815 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 816 unsigned char unused;
817#if EV_USE_EPOLL
818 unsigned int egen; /* generation counter to counter epoll bugs */
819#endif
274#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
275 SOCKET handle; 821 SOCKET handle;
276#endif 822#endif
823#if EV_USE_IOCP
824 OVERLAPPED or, ow;
825#endif
277} ANFD; 826} ANFD;
278 827
828/* stores the pending event set for a given watcher */
279typedef struct 829typedef struct
280{ 830{
281 W w; 831 W w;
282 int events; 832 int events; /* the pending event set for the given watcher */
283} ANPENDING; 833} ANPENDING;
834
835#if EV_USE_INOTIFY
836/* hash table entry per inotify-id */
837typedef struct
838{
839 WL head;
840} ANFS;
841#endif
842
843/* Heap Entry */
844#if EV_HEAP_CACHE_AT
845 /* a heap element */
846 typedef struct {
847 ev_tstamp at;
848 WT w;
849 } ANHE;
850
851 #define ANHE_w(he) (he).w /* access watcher, read-write */
852 #define ANHE_at(he) (he).at /* access cached at, read-only */
853 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
854#else
855 /* a heap element */
856 typedef WT ANHE;
857
858 #define ANHE_w(he) (he)
859 #define ANHE_at(he) (he)->at
860 #define ANHE_at_cache(he)
861#endif
284 862
285#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
286 864
287 struct ev_loop 865 struct ev_loop
288 { 866 {
306 884
307 static int ev_default_loop_ptr; 885 static int ev_default_loop_ptr;
308 886
309#endif 887#endif
310 888
889#if EV_FEATURE_API
890# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
891# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
892# define EV_INVOKE_PENDING invoke_cb (EV_A)
893#else
894# define EV_RELEASE_CB (void)0
895# define EV_ACQUIRE_CB (void)0
896# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
897#endif
898
899#define EVBREAK_RECURSE 0x80
900
311/*****************************************************************************/ 901/*****************************************************************************/
312 902
903#ifndef EV_HAVE_EV_TIME
313ev_tstamp 904ev_tstamp
314ev_time (void) 905ev_time (void)
315{ 906{
316#if EV_USE_REALTIME 907#if EV_USE_REALTIME
908 if (expect_true (have_realtime))
909 {
317 struct timespec ts; 910 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 911 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 912 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 913 }
914#endif
915
321 struct timeval tv; 916 struct timeval tv;
322 gettimeofday (&tv, 0); 917 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 918 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 919}
920#endif
326 921
327inline ev_tstamp 922inline_size ev_tstamp
328get_clock (void) 923get_clock (void)
329{ 924{
330#if EV_USE_MONOTONIC 925#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 926 if (expect_true (have_monotonic))
332 { 927 {
345{ 940{
346 return ev_rt_now; 941 return ev_rt_now;
347} 942}
348#endif 943#endif
349 944
350#define array_roundsize(type,n) (((n) | 4) & ~3) 945void
946ev_sleep (ev_tstamp delay)
947{
948 if (delay > 0.)
949 {
950#if EV_USE_NANOSLEEP
951 struct timespec ts;
952
953 EV_TS_SET (ts, delay);
954 nanosleep (&ts, 0);
955#elif defined(_WIN32)
956 Sleep ((unsigned long)(delay * 1e3));
957#else
958 struct timeval tv;
959
960 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
961 /* something not guaranteed by newer posix versions, but guaranteed */
962 /* by older ones */
963 EV_TV_SET (tv, delay);
964 select (0, 0, 0, 0, &tv);
965#endif
966 }
967}
968
969/*****************************************************************************/
970
971#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
972
973/* find a suitable new size for the given array, */
974/* hopefully by rounding to a nice-to-malloc size */
975inline_size int
976array_nextsize (int elem, int cur, int cnt)
977{
978 int ncur = cur + 1;
979
980 do
981 ncur <<= 1;
982 while (cnt > ncur);
983
984 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
985 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
986 {
987 ncur *= elem;
988 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
989 ncur = ncur - sizeof (void *) * 4;
990 ncur /= elem;
991 }
992
993 return ncur;
994}
995
996static void * noinline ecb_cold
997array_realloc (int elem, void *base, int *cur, int cnt)
998{
999 *cur = array_nextsize (elem, *cur, cnt);
1000 return ev_realloc (base, elem * *cur);
1001}
1002
1003#define array_init_zero(base,count) \
1004 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 1005
352#define array_needsize(type,base,cur,cnt,init) \ 1006#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 1007 if (expect_false ((cnt) > (cur))) \
354 { \ 1008 { \
355 int newcnt = cur; \ 1009 int ecb_unused ocur_ = (cur); \
356 do \ 1010 (base) = (type *)array_realloc \
357 { \ 1011 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 1012 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 1013 }
366 1014
1015#if 0
367#define array_slim(type,stem) \ 1016#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1017 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 1018 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1019 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1020 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1021 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 1022 }
1023#endif
374 1024
375#define array_free(stem, idx) \ 1025#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1026 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 1027
378/*****************************************************************************/ 1028/*****************************************************************************/
379 1029
380static void 1030/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 1031static void noinline
1032pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 1033{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 1034}
392 1035
393void 1036void noinline
394ev_feed_event (EV_P_ void *w, int revents) 1037ev_feed_event (EV_P_ void *w, int revents)
395{ 1038{
396 W w_ = (W)w; 1039 W w_ = (W)w;
1040 int pri = ABSPRI (w_);
397 1041
398 if (expect_false (w_->pending)) 1042 if (expect_false (w_->pending))
1043 pendings [pri][w_->pending - 1].events |= revents;
1044 else
399 { 1045 {
1046 w_->pending = ++pendingcnt [pri];
1047 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1048 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1049 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 1050 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 1051}
409 1052
410static void 1053inline_speed void
1054feed_reverse (EV_P_ W w)
1055{
1056 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1057 rfeeds [rfeedcnt++] = w;
1058}
1059
1060inline_size void
1061feed_reverse_done (EV_P_ int revents)
1062{
1063 do
1064 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1065 while (rfeedcnt);
1066}
1067
1068inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 1069queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 1070{
413 int i; 1071 int i;
414 1072
415 for (i = 0; i < eventcnt; ++i) 1073 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 1074 ev_feed_event (EV_A_ events [i], type);
417} 1075}
418 1076
1077/*****************************************************************************/
1078
419inline void 1079inline_speed void
420fd_event (EV_P_ int fd, int revents) 1080fd_event_nocheck (EV_P_ int fd, int revents)
421{ 1081{
422 ANFD *anfd = anfds + fd; 1082 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 1083 ev_io *w;
424 1084
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1085 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 1086 {
427 int ev = w->events & revents; 1087 int ev = w->events & revents;
428 1088
429 if (ev) 1089 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 1090 ev_feed_event (EV_A_ (W)w, ev);
431 } 1091 }
432} 1092}
433 1093
1094/* do not submit kernel events for fds that have reify set */
1095/* because that means they changed while we were polling for new events */
1096inline_speed void
1097fd_event (EV_P_ int fd, int revents)
1098{
1099 ANFD *anfd = anfds + fd;
1100
1101 if (expect_true (!anfd->reify))
1102 fd_event_nocheck (EV_A_ fd, revents);
1103}
1104
434void 1105void
435ev_feed_fd_event (EV_P_ int fd, int revents) 1106ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 1107{
1108 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 1109 fd_event_nocheck (EV_A_ fd, revents);
438} 1110}
439 1111
440/*****************************************************************************/ 1112/* make sure the external fd watch events are in-sync */
441 1113/* with the kernel/libev internal state */
442inline void 1114inline_size void
443fd_reify (EV_P) 1115fd_reify (EV_P)
444{ 1116{
445 int i; 1117 int i;
446 1118
1119#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
447 for (i = 0; i < fdchangecnt; ++i) 1120 for (i = 0; i < fdchangecnt; ++i)
448 { 1121 {
449 int fd = fdchanges [i]; 1122 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 1123 ANFD *anfd = anfds + fd;
451 struct ev_io *w;
452 1124
453 int events = 0; 1125 if (anfd->reify & EV__IOFDSET && anfd->head)
454
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
456 events |= w->events;
457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 { 1126 {
1127 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1128
1129 if (handle != anfd->handle)
1130 {
461 unsigned long argp; 1131 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 1132
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1133 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1134
1135 /* handle changed, but fd didn't - we need to do it in two steps */
1136 backend_modify (EV_A_ fd, anfd->events, 0);
1137 anfd->events = 0;
1138 anfd->handle = handle;
1139 }
464 } 1140 }
1141 }
465#endif 1142#endif
466 1143
1144 for (i = 0; i < fdchangecnt; ++i)
1145 {
1146 int fd = fdchanges [i];
1147 ANFD *anfd = anfds + fd;
1148 ev_io *w;
1149
1150 unsigned char o_events = anfd->events;
1151 unsigned char o_reify = anfd->reify;
1152
467 anfd->reify = 0; 1153 anfd->reify = 0;
468 1154
469 method_modify (EV_A_ fd, anfd->events, events); 1155 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1156 {
470 anfd->events = events; 1157 anfd->events = 0;
1158
1159 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1160 anfd->events |= (unsigned char)w->events;
1161
1162 if (o_events != anfd->events)
1163 o_reify = EV__IOFDSET; /* actually |= */
1164 }
1165
1166 if (o_reify & EV__IOFDSET)
1167 backend_modify (EV_A_ fd, o_events, anfd->events);
471 } 1168 }
472 1169
473 fdchangecnt = 0; 1170 fdchangecnt = 0;
474} 1171}
475 1172
476static void 1173/* something about the given fd changed */
1174inline_size void
477fd_change (EV_P_ int fd) 1175fd_change (EV_P_ int fd, int flags)
478{ 1176{
479 if (expect_false (anfds [fd].reify)) 1177 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 1178 anfds [fd].reify |= flags;
483 1179
1180 if (expect_true (!reify))
1181 {
484 ++fdchangecnt; 1182 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1183 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 1184 fdchanges [fdchangecnt - 1] = fd;
1185 }
487} 1186}
488 1187
489static void 1188/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1189inline_speed void ecb_cold
490fd_kill (EV_P_ int fd) 1190fd_kill (EV_P_ int fd)
491{ 1191{
492 struct ev_io *w; 1192 ev_io *w;
493 1193
494 while ((w = (struct ev_io *)anfds [fd].head)) 1194 while ((w = (ev_io *)anfds [fd].head))
495 { 1195 {
496 ev_io_stop (EV_A_ w); 1196 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1197 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 1198 }
499} 1199}
500 1200
501inline int 1201/* check whether the given fd is actually valid, for error recovery */
1202inline_size int ecb_cold
502fd_valid (int fd) 1203fd_valid (int fd)
503{ 1204{
504#ifdef _WIN32 1205#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 1206 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
506#else 1207#else
507 return fcntl (fd, F_GETFD) != -1; 1208 return fcntl (fd, F_GETFD) != -1;
508#endif 1209#endif
509} 1210}
510 1211
511/* called on EBADF to verify fds */ 1212/* called on EBADF to verify fds */
512static void 1213static void noinline ecb_cold
513fd_ebadf (EV_P) 1214fd_ebadf (EV_P)
514{ 1215{
515 int fd; 1216 int fd;
516 1217
517 for (fd = 0; fd < anfdmax; ++fd) 1218 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1219 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 1220 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 1221 fd_kill (EV_A_ fd);
521} 1222}
522 1223
523/* called on ENOMEM in select/poll to kill some fds and retry */ 1224/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 1225static void noinline ecb_cold
525fd_enomem (EV_P) 1226fd_enomem (EV_P)
526{ 1227{
527 int fd; 1228 int fd;
528 1229
529 for (fd = anfdmax; fd--; ) 1230 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 1231 if (anfds [fd].events)
531 { 1232 {
532 fd_kill (EV_A_ fd); 1233 fd_kill (EV_A_ fd);
533 return; 1234 break;
534 } 1235 }
535} 1236}
536 1237
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1238/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1239static void noinline
539fd_rearm_all (EV_P) 1240fd_rearm_all (EV_P)
540{ 1241{
541 int fd; 1242 int fd;
542 1243
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1244 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1245 if (anfds [fd].events)
546 { 1246 {
547 anfds [fd].events = 0; 1247 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1248 anfds [fd].emask = 0;
1249 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1250 }
550} 1251}
551 1252
552/*****************************************************************************/ 1253/* used to prepare libev internal fd's */
553 1254/* this is not fork-safe */
554static void
555upheap (WT *heap, int k)
556{
557 WT w = heap [k];
558
559 while (k && heap [k >> 1]->at > w->at)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 }
565
566 heap [k] = w;
567 ((W)heap [k])->active = k + 1;
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 {
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593}
594
595inline void 1255inline_speed void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
602/*****************************************************************************/
603
604typedef struct
605{
606 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG;
609
610static ANSIG *signals;
611static int signalmax;
612
613static int sigpipe [2];
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616
617static void
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1256fd_intern (int fd)
682{ 1257{
683#ifdef _WIN32 1258#ifdef _WIN32
684 int arg = 1; 1259 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1260 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
686#else 1261#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1262 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1263 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1264#endif
690} 1265}
691 1266
1267/*****************************************************************************/
1268
1269/*
1270 * the heap functions want a real array index. array index 0 is guaranteed to not
1271 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1272 * the branching factor of the d-tree.
1273 */
1274
1275/*
1276 * at the moment we allow libev the luxury of two heaps,
1277 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1278 * which is more cache-efficient.
1279 * the difference is about 5% with 50000+ watchers.
1280 */
1281#if EV_USE_4HEAP
1282
1283#define DHEAP 4
1284#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1285#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1286#define UPHEAP_DONE(p,k) ((p) == (k))
1287
1288/* away from the root */
1289inline_speed void
1290downheap (ANHE *heap, int N, int k)
1291{
1292 ANHE he = heap [k];
1293 ANHE *E = heap + N + HEAP0;
1294
1295 for (;;)
1296 {
1297 ev_tstamp minat;
1298 ANHE *minpos;
1299 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1300
1301 /* find minimum child */
1302 if (expect_true (pos + DHEAP - 1 < E))
1303 {
1304 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1305 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1306 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1307 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1308 }
1309 else if (pos < E)
1310 {
1311 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1312 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1313 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1314 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1315 }
1316 else
1317 break;
1318
1319 if (ANHE_at (he) <= minat)
1320 break;
1321
1322 heap [k] = *minpos;
1323 ev_active (ANHE_w (*minpos)) = k;
1324
1325 k = minpos - heap;
1326 }
1327
1328 heap [k] = he;
1329 ev_active (ANHE_w (he)) = k;
1330}
1331
1332#else /* 4HEAP */
1333
1334#define HEAP0 1
1335#define HPARENT(k) ((k) >> 1)
1336#define UPHEAP_DONE(p,k) (!(p))
1337
1338/* away from the root */
1339inline_speed void
1340downheap (ANHE *heap, int N, int k)
1341{
1342 ANHE he = heap [k];
1343
1344 for (;;)
1345 {
1346 int c = k << 1;
1347
1348 if (c >= N + HEAP0)
1349 break;
1350
1351 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1352 ? 1 : 0;
1353
1354 if (ANHE_at (he) <= ANHE_at (heap [c]))
1355 break;
1356
1357 heap [k] = heap [c];
1358 ev_active (ANHE_w (heap [k])) = k;
1359
1360 k = c;
1361 }
1362
1363 heap [k] = he;
1364 ev_active (ANHE_w (he)) = k;
1365}
1366#endif
1367
1368/* towards the root */
1369inline_speed void
1370upheap (ANHE *heap, int k)
1371{
1372 ANHE he = heap [k];
1373
1374 for (;;)
1375 {
1376 int p = HPARENT (k);
1377
1378 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1379 break;
1380
1381 heap [k] = heap [p];
1382 ev_active (ANHE_w (heap [k])) = k;
1383 k = p;
1384 }
1385
1386 heap [k] = he;
1387 ev_active (ANHE_w (he)) = k;
1388}
1389
1390/* move an element suitably so it is in a correct place */
1391inline_size void
1392adjustheap (ANHE *heap, int N, int k)
1393{
1394 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1395 upheap (heap, k);
1396 else
1397 downheap (heap, N, k);
1398}
1399
1400/* rebuild the heap: this function is used only once and executed rarely */
1401inline_size void
1402reheap (ANHE *heap, int N)
1403{
1404 int i;
1405
1406 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1407 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1408 for (i = 0; i < N; ++i)
1409 upheap (heap, i + HEAP0);
1410}
1411
1412/*****************************************************************************/
1413
1414/* associate signal watchers to a signal signal */
1415typedef struct
1416{
1417 EV_ATOMIC_T pending;
1418#if EV_MULTIPLICITY
1419 EV_P;
1420#endif
1421 WL head;
1422} ANSIG;
1423
1424static ANSIG signals [EV_NSIG - 1];
1425
1426/*****************************************************************************/
1427
1428#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1429
1430static void noinline ecb_cold
1431evpipe_init (EV_P)
1432{
1433 if (!ev_is_active (&pipe_w))
1434 {
1435# if EV_USE_EVENTFD
1436 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1437 if (evfd < 0 && errno == EINVAL)
1438 evfd = eventfd (0, 0);
1439
1440 if (evfd >= 0)
1441 {
1442 evpipe [0] = -1;
1443 fd_intern (evfd); /* doing it twice doesn't hurt */
1444 ev_io_set (&pipe_w, evfd, EV_READ);
1445 }
1446 else
1447# endif
1448 {
1449 while (pipe (evpipe))
1450 ev_syserr ("(libev) error creating signal/async pipe");
1451
1452 fd_intern (evpipe [0]);
1453 fd_intern (evpipe [1]);
1454 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1455 }
1456
1457 ev_io_start (EV_A_ &pipe_w);
1458 ev_unref (EV_A); /* watcher should not keep loop alive */
1459 }
1460}
1461
1462inline_speed void
1463evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1464{
1465 if (expect_true (*flag))
1466 return;
1467
1468 *flag = 1;
1469
1470 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1471
1472 pipe_write_skipped = 1;
1473
1474 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1475
1476 if (pipe_write_wanted)
1477 {
1478 int old_errno;
1479
1480 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1481
1482 old_errno = errno; /* save errno because write will clobber it */
1483
1484#if EV_USE_EVENTFD
1485 if (evfd >= 0)
1486 {
1487 uint64_t counter = 1;
1488 write (evfd, &counter, sizeof (uint64_t));
1489 }
1490 else
1491#endif
1492 {
1493 /* win32 people keep sending patches that change this write() to send() */
1494 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1495 /* so when you think this write should be a send instead, please find out */
1496 /* where your send() is from - it's definitely not the microsoft send, and */
1497 /* tell me. thank you. */
1498 write (evpipe [1], &(evpipe [1]), 1);
1499 }
1500
1501 errno = old_errno;
1502 }
1503}
1504
1505/* called whenever the libev signal pipe */
1506/* got some events (signal, async) */
692static void 1507static void
693siginit (EV_P) 1508pipecb (EV_P_ ev_io *iow, int revents)
694{ 1509{
695 fd_intern (sigpipe [0]); 1510 int i;
696 fd_intern (sigpipe [1]);
697 1511
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1512 if (revents & EV_READ)
699 ev_io_start (EV_A_ &sigev); 1513 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1514#if EV_USE_EVENTFD
1515 if (evfd >= 0)
1516 {
1517 uint64_t counter;
1518 read (evfd, &counter, sizeof (uint64_t));
1519 }
1520 else
1521#endif
1522 {
1523 char dummy;
1524 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1525 read (evpipe [0], &dummy, 1);
1526 }
1527 }
1528
1529 pipe_write_skipped = 0;
1530
1531#if EV_SIGNAL_ENABLE
1532 if (sig_pending)
1533 {
1534 sig_pending = 0;
1535
1536 for (i = EV_NSIG - 1; i--; )
1537 if (expect_false (signals [i].pending))
1538 ev_feed_signal_event (EV_A_ i + 1);
1539 }
1540#endif
1541
1542#if EV_ASYNC_ENABLE
1543 if (async_pending)
1544 {
1545 async_pending = 0;
1546
1547 for (i = asynccnt; i--; )
1548 if (asyncs [i]->sent)
1549 {
1550 asyncs [i]->sent = 0;
1551 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1552 }
1553 }
1554#endif
701} 1555}
702 1556
703/*****************************************************************************/ 1557/*****************************************************************************/
704 1558
705static struct ev_child *childs [PID_HASHSIZE]; 1559void
1560ev_feed_signal (int signum)
1561{
1562#if EV_MULTIPLICITY
1563 EV_P = signals [signum - 1].loop;
706 1564
1565 if (!EV_A)
1566 return;
1567#endif
1568
1569 if (!ev_active (&pipe_w))
1570 return;
1571
1572 signals [signum - 1].pending = 1;
1573 evpipe_write (EV_A_ &sig_pending);
1574}
1575
1576static void
1577ev_sighandler (int signum)
1578{
707#ifndef _WIN32 1579#ifdef _WIN32
1580 signal (signum, ev_sighandler);
1581#endif
708 1582
1583 ev_feed_signal (signum);
1584}
1585
1586void noinline
1587ev_feed_signal_event (EV_P_ int signum)
1588{
1589 WL w;
1590
1591 if (expect_false (signum <= 0 || signum > EV_NSIG))
1592 return;
1593
1594 --signum;
1595
1596#if EV_MULTIPLICITY
1597 /* it is permissible to try to feed a signal to the wrong loop */
1598 /* or, likely more useful, feeding a signal nobody is waiting for */
1599
1600 if (expect_false (signals [signum].loop != EV_A))
1601 return;
1602#endif
1603
1604 signals [signum].pending = 0;
1605
1606 for (w = signals [signum].head; w; w = w->next)
1607 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1608}
1609
1610#if EV_USE_SIGNALFD
1611static void
1612sigfdcb (EV_P_ ev_io *iow, int revents)
1613{
1614 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1615
1616 for (;;)
1617 {
1618 ssize_t res = read (sigfd, si, sizeof (si));
1619
1620 /* not ISO-C, as res might be -1, but works with SuS */
1621 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1622 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1623
1624 if (res < (ssize_t)sizeof (si))
1625 break;
1626 }
1627}
1628#endif
1629
1630#endif
1631
1632/*****************************************************************************/
1633
1634#if EV_CHILD_ENABLE
1635static WL childs [EV_PID_HASHSIZE];
1636
709static struct ev_signal childev; 1637static ev_signal childev;
1638
1639#ifndef WIFCONTINUED
1640# define WIFCONTINUED(status) 0
1641#endif
1642
1643/* handle a single child status event */
1644inline_speed void
1645child_reap (EV_P_ int chain, int pid, int status)
1646{
1647 ev_child *w;
1648 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1649
1650 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1651 {
1652 if ((w->pid == pid || !w->pid)
1653 && (!traced || (w->flags & 1)))
1654 {
1655 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1656 w->rpid = pid;
1657 w->rstatus = status;
1658 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1659 }
1660 }
1661}
710 1662
711#ifndef WCONTINUED 1663#ifndef WCONTINUED
712# define WCONTINUED 0 1664# define WCONTINUED 0
713#endif 1665#endif
714 1666
1667/* called on sigchld etc., calls waitpid */
715static void 1668static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1669childcb (EV_P_ ev_signal *sw, int revents)
732{ 1670{
733 int pid, status; 1671 int pid, status;
734 1672
1673 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1674 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1675 if (!WCONTINUED
1676 || errno != EINVAL
1677 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1678 return;
1679
737 /* make sure we are called again until all childs have been reaped */ 1680 /* make sure we are called again until all children have been reaped */
1681 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1683
740 child_reap (EV_A_ sw, pid, pid, status); 1684 child_reap (EV_A_ pid, pid, status);
1685 if ((EV_PID_HASHSIZE) > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1686 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1687}
744 1688
745#endif 1689#endif
746 1690
747/*****************************************************************************/ 1691/*****************************************************************************/
748 1692
1693#if EV_USE_IOCP
1694# include "ev_iocp.c"
1695#endif
749#if EV_USE_PORT 1696#if EV_USE_PORT
750# include "ev_port.c" 1697# include "ev_port.c"
751#endif 1698#endif
752#if EV_USE_KQUEUE 1699#if EV_USE_KQUEUE
753# include "ev_kqueue.c" 1700# include "ev_kqueue.c"
760#endif 1707#endif
761#if EV_USE_SELECT 1708#if EV_USE_SELECT
762# include "ev_select.c" 1709# include "ev_select.c"
763#endif 1710#endif
764 1711
765int 1712int ecb_cold
766ev_version_major (void) 1713ev_version_major (void)
767{ 1714{
768 return EV_VERSION_MAJOR; 1715 return EV_VERSION_MAJOR;
769} 1716}
770 1717
771int 1718int ecb_cold
772ev_version_minor (void) 1719ev_version_minor (void)
773{ 1720{
774 return EV_VERSION_MINOR; 1721 return EV_VERSION_MINOR;
775} 1722}
776 1723
777/* return true if we are running with elevated privileges and should ignore env variables */ 1724/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1725int inline_size ecb_cold
779enable_secure (void) 1726enable_secure (void)
780{ 1727{
781#ifdef _WIN32 1728#ifdef _WIN32
782 return 0; 1729 return 0;
783#else 1730#else
784 return getuid () != geteuid () 1731 return getuid () != geteuid ()
785 || getgid () != getegid (); 1732 || getgid () != getegid ();
786#endif 1733#endif
787} 1734}
788 1735
1736unsigned int ecb_cold
1737ev_supported_backends (void)
1738{
1739 unsigned int flags = 0;
1740
1741 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1742 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1743 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1744 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1745 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1746
1747 return flags;
1748}
1749
1750unsigned int ecb_cold
1751ev_recommended_backends (void)
1752{
1753 unsigned int flags = ev_supported_backends ();
1754
1755#ifndef __NetBSD__
1756 /* kqueue is borked on everything but netbsd apparently */
1757 /* it usually doesn't work correctly on anything but sockets and pipes */
1758 flags &= ~EVBACKEND_KQUEUE;
1759#endif
1760#ifdef __APPLE__
1761 /* only select works correctly on that "unix-certified" platform */
1762 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1763 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1764#endif
1765#ifdef __FreeBSD__
1766 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1767#endif
1768
1769 return flags;
1770}
1771
1772unsigned int ecb_cold
1773ev_embeddable_backends (void)
1774{
1775 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1776
1777 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1778 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1779 flags &= ~EVBACKEND_EPOLL;
1780
1781 return flags;
1782}
1783
789unsigned int 1784unsigned int
1785ev_backend (EV_P)
1786{
1787 return backend;
1788}
1789
1790#if EV_FEATURE_API
1791unsigned int
1792ev_iteration (EV_P)
1793{
1794 return loop_count;
1795}
1796
1797unsigned int
790ev_method (EV_P) 1798ev_depth (EV_P)
791{ 1799{
792 return method; 1800 return loop_depth;
793} 1801}
794 1802
795static void 1803void
1804ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1805{
1806 io_blocktime = interval;
1807}
1808
1809void
1810ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1811{
1812 timeout_blocktime = interval;
1813}
1814
1815void
1816ev_set_userdata (EV_P_ void *data)
1817{
1818 userdata = data;
1819}
1820
1821void *
1822ev_userdata (EV_P)
1823{
1824 return userdata;
1825}
1826
1827void
1828ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1829{
1830 invoke_cb = invoke_pending_cb;
1831}
1832
1833void
1834ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1835{
1836 release_cb = release;
1837 acquire_cb = acquire;
1838}
1839#endif
1840
1841/* initialise a loop structure, must be zero-initialised */
1842static void noinline ecb_cold
796loop_init (EV_P_ unsigned int flags) 1843loop_init (EV_P_ unsigned int flags)
797{ 1844{
798 if (!method) 1845 if (!backend)
799 { 1846 {
1847 origflags = flags;
1848
1849#if EV_USE_REALTIME
1850 if (!have_realtime)
1851 {
1852 struct timespec ts;
1853
1854 if (!clock_gettime (CLOCK_REALTIME, &ts))
1855 have_realtime = 1;
1856 }
1857#endif
1858
800#if EV_USE_MONOTONIC 1859#if EV_USE_MONOTONIC
1860 if (!have_monotonic)
1861 {
1862 struct timespec ts;
1863
1864 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1865 have_monotonic = 1;
1866 }
1867#endif
1868
1869 /* pid check not overridable via env */
1870#ifndef _WIN32
1871 if (flags & EVFLAG_FORKCHECK)
1872 curpid = getpid ();
1873#endif
1874
1875 if (!(flags & EVFLAG_NOENV)
1876 && !enable_secure ()
1877 && getenv ("LIBEV_FLAGS"))
1878 flags = atoi (getenv ("LIBEV_FLAGS"));
1879
1880 ev_rt_now = ev_time ();
1881 mn_now = get_clock ();
1882 now_floor = mn_now;
1883 rtmn_diff = ev_rt_now - mn_now;
1884#if EV_FEATURE_API
1885 invoke_cb = ev_invoke_pending;
1886#endif
1887
1888 io_blocktime = 0.;
1889 timeout_blocktime = 0.;
1890 backend = 0;
1891 backend_fd = -1;
1892 sig_pending = 0;
1893#if EV_ASYNC_ENABLE
1894 async_pending = 0;
1895#endif
1896 pipe_write_skipped = 0;
1897 pipe_write_wanted = 0;
1898#if EV_USE_INOTIFY
1899 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1900#endif
1901#if EV_USE_SIGNALFD
1902 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1903#endif
1904
1905 if (!(flags & EVBACKEND_MASK))
1906 flags |= ev_recommended_backends ();
1907
1908#if EV_USE_IOCP
1909 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1910#endif
1911#if EV_USE_PORT
1912 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1913#endif
1914#if EV_USE_KQUEUE
1915 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1916#endif
1917#if EV_USE_EPOLL
1918 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1919#endif
1920#if EV_USE_POLL
1921 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1922#endif
1923#if EV_USE_SELECT
1924 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1925#endif
1926
1927 ev_prepare_init (&pending_w, pendingcb);
1928
1929#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1930 ev_init (&pipe_w, pipecb);
1931 ev_set_priority (&pipe_w, EV_MAXPRI);
1932#endif
1933 }
1934}
1935
1936/* free up a loop structure */
1937void ecb_cold
1938ev_loop_destroy (EV_P)
1939{
1940 int i;
1941
1942#if EV_MULTIPLICITY
1943 /* mimic free (0) */
1944 if (!EV_A)
1945 return;
1946#endif
1947
1948#if EV_CLEANUP_ENABLE
1949 /* queue cleanup watchers (and execute them) */
1950 if (expect_false (cleanupcnt))
1951 {
1952 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1953 EV_INVOKE_PENDING;
1954 }
1955#endif
1956
1957#if EV_CHILD_ENABLE
1958 if (ev_is_active (&childev))
1959 {
1960 ev_ref (EV_A); /* child watcher */
1961 ev_signal_stop (EV_A_ &childev);
1962 }
1963#endif
1964
1965 if (ev_is_active (&pipe_w))
1966 {
1967 /*ev_ref (EV_A);*/
1968 /*ev_io_stop (EV_A_ &pipe_w);*/
1969
1970#if EV_USE_EVENTFD
1971 if (evfd >= 0)
1972 close (evfd);
1973#endif
1974
1975 if (evpipe [0] >= 0)
1976 {
1977 EV_WIN32_CLOSE_FD (evpipe [0]);
1978 EV_WIN32_CLOSE_FD (evpipe [1]);
1979 }
1980 }
1981
1982#if EV_USE_SIGNALFD
1983 if (ev_is_active (&sigfd_w))
1984 close (sigfd);
1985#endif
1986
1987#if EV_USE_INOTIFY
1988 if (fs_fd >= 0)
1989 close (fs_fd);
1990#endif
1991
1992 if (backend_fd >= 0)
1993 close (backend_fd);
1994
1995#if EV_USE_IOCP
1996 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1997#endif
1998#if EV_USE_PORT
1999 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2000#endif
2001#if EV_USE_KQUEUE
2002 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2003#endif
2004#if EV_USE_EPOLL
2005 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2006#endif
2007#if EV_USE_POLL
2008 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2009#endif
2010#if EV_USE_SELECT
2011 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2012#endif
2013
2014 for (i = NUMPRI; i--; )
2015 {
2016 array_free (pending, [i]);
2017#if EV_IDLE_ENABLE
2018 array_free (idle, [i]);
2019#endif
2020 }
2021
2022 ev_free (anfds); anfds = 0; anfdmax = 0;
2023
2024 /* have to use the microsoft-never-gets-it-right macro */
2025 array_free (rfeed, EMPTY);
2026 array_free (fdchange, EMPTY);
2027 array_free (timer, EMPTY);
2028#if EV_PERIODIC_ENABLE
2029 array_free (periodic, EMPTY);
2030#endif
2031#if EV_FORK_ENABLE
2032 array_free (fork, EMPTY);
2033#endif
2034#if EV_CLEANUP_ENABLE
2035 array_free (cleanup, EMPTY);
2036#endif
2037 array_free (prepare, EMPTY);
2038 array_free (check, EMPTY);
2039#if EV_ASYNC_ENABLE
2040 array_free (async, EMPTY);
2041#endif
2042
2043 backend = 0;
2044
2045#if EV_MULTIPLICITY
2046 if (ev_is_default_loop (EV_A))
2047#endif
2048 ev_default_loop_ptr = 0;
2049#if EV_MULTIPLICITY
2050 else
2051 ev_free (EV_A);
2052#endif
2053}
2054
2055#if EV_USE_INOTIFY
2056inline_size void infy_fork (EV_P);
2057#endif
2058
2059inline_size void
2060loop_fork (EV_P)
2061{
2062#if EV_USE_PORT
2063 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2064#endif
2065#if EV_USE_KQUEUE
2066 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2067#endif
2068#if EV_USE_EPOLL
2069 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2070#endif
2071#if EV_USE_INOTIFY
2072 infy_fork (EV_A);
2073#endif
2074
2075 if (ev_is_active (&pipe_w))
2076 {
2077 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2078
2079 ev_ref (EV_A);
2080 ev_io_stop (EV_A_ &pipe_w);
2081
2082#if EV_USE_EVENTFD
2083 if (evfd >= 0)
2084 close (evfd);
2085#endif
2086
2087 if (evpipe [0] >= 0)
2088 {
2089 EV_WIN32_CLOSE_FD (evpipe [0]);
2090 EV_WIN32_CLOSE_FD (evpipe [1]);
2091 }
2092
2093#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2094 evpipe_init (EV_A);
2095 /* now iterate over everything, in case we missed something */
2096 pipecb (EV_A_ &pipe_w, EV_READ);
2097#endif
2098 }
2099
2100 postfork = 0;
2101}
2102
2103#if EV_MULTIPLICITY
2104
2105struct ev_loop * ecb_cold
2106ev_loop_new (unsigned int flags)
2107{
2108 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2109
2110 memset (EV_A, 0, sizeof (struct ev_loop));
2111 loop_init (EV_A_ flags);
2112
2113 if (ev_backend (EV_A))
2114 return EV_A;
2115
2116 ev_free (EV_A);
2117 return 0;
2118}
2119
2120#endif /* multiplicity */
2121
2122#if EV_VERIFY
2123static void noinline ecb_cold
2124verify_watcher (EV_P_ W w)
2125{
2126 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2127
2128 if (w->pending)
2129 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2130}
2131
2132static void noinline ecb_cold
2133verify_heap (EV_P_ ANHE *heap, int N)
2134{
2135 int i;
2136
2137 for (i = HEAP0; i < N + HEAP0; ++i)
2138 {
2139 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2140 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2141 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2142
2143 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2144 }
2145}
2146
2147static void noinline ecb_cold
2148array_verify (EV_P_ W *ws, int cnt)
2149{
2150 while (cnt--)
2151 {
2152 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2153 verify_watcher (EV_A_ ws [cnt]);
2154 }
2155}
2156#endif
2157
2158#if EV_FEATURE_API
2159void ecb_cold
2160ev_verify (EV_P)
2161{
2162#if EV_VERIFY
2163 int i;
2164 WL w;
2165
2166 assert (activecnt >= -1);
2167
2168 assert (fdchangemax >= fdchangecnt);
2169 for (i = 0; i < fdchangecnt; ++i)
2170 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2171
2172 assert (anfdmax >= 0);
2173 for (i = 0; i < anfdmax; ++i)
2174 for (w = anfds [i].head; w; w = w->next)
801 { 2175 {
802 struct timespec ts; 2176 verify_watcher (EV_A_ (W)w);
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2177 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
804 have_monotonic = 1; 2178 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
805 } 2179 }
806#endif
807 2180
808 ev_rt_now = ev_time (); 2181 assert (timermax >= timercnt);
809 mn_now = get_clock (); 2182 verify_heap (EV_A_ timers, timercnt);
810 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now;
812 2183
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2184#if EV_PERIODIC_ENABLE
814 flags = atoi (getenv ("LIBEV_FLAGS")); 2185 assert (periodicmax >= periodiccnt);
815 2186 verify_heap (EV_A_ periodics, periodiccnt);
816 if (!(flags & 0x0000ffff))
817 flags |= 0x0000ffff;
818
819 method = 0;
820#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
822#endif
823#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
825#endif
826#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
828#endif
829#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
831#endif
832#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
834#endif
835
836 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI);
838 }
839}
840
841static void
842loop_destroy (EV_P)
843{
844 int i;
845
846#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
848#endif
849#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
851#endif
852#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
854#endif
855#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
857#endif
858#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
860#endif 2187#endif
861 2188
862 for (i = NUMPRI; i--; ) 2189 for (i = NUMPRI; i--; )
863 array_free (pending, [i]); 2190 {
2191 assert (pendingmax [i] >= pendingcnt [i]);
2192#if EV_IDLE_ENABLE
2193 assert (idleall >= 0);
2194 assert (idlemax [i] >= idlecnt [i]);
2195 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2196#endif
2197 }
864 2198
865 /* have to use the microsoft-never-gets-it-right macro */ 2199#if EV_FORK_ENABLE
866 array_free (fdchange, EMPTY0); 2200 assert (forkmax >= forkcnt);
867 array_free (timer, EMPTY0); 2201 array_verify (EV_A_ (W *)forks, forkcnt);
868#if EV_PERIODICS 2202#endif
869 array_free (periodic, EMPTY0); 2203
2204#if EV_CLEANUP_ENABLE
2205 assert (cleanupmax >= cleanupcnt);
2206 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2207#endif
2208
2209#if EV_ASYNC_ENABLE
2210 assert (asyncmax >= asynccnt);
2211 array_verify (EV_A_ (W *)asyncs, asynccnt);
2212#endif
2213
2214#if EV_PREPARE_ENABLE
2215 assert (preparemax >= preparecnt);
2216 array_verify (EV_A_ (W *)prepares, preparecnt);
2217#endif
2218
2219#if EV_CHECK_ENABLE
2220 assert (checkmax >= checkcnt);
2221 array_verify (EV_A_ (W *)checks, checkcnt);
2222#endif
2223
2224# if 0
2225#if EV_CHILD_ENABLE
2226 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2227 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2228#endif
870#endif 2229# endif
871 array_free (idle, EMPTY0);
872 array_free (prepare, EMPTY0);
873 array_free (check, EMPTY0);
874
875 method = 0;
876}
877
878static void
879loop_fork (EV_P)
880{
881#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A);
883#endif 2230#endif
884#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
886#endif
887#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
889#endif
890
891 if (ev_is_active (&sigev))
892 {
893 /* default loop */
894
895 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A);
904 }
905
906 postfork = 0;
907} 2231}
2232#endif
908 2233
909#if EV_MULTIPLICITY 2234#if EV_MULTIPLICITY
910struct ev_loop * 2235struct ev_loop * ecb_cold
911ev_loop_new (unsigned int flags)
912{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914
915 memset (loop, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags);
918
919 if (ev_method (EV_A))
920 return loop;
921
922 return 0;
923}
924
925void
926ev_loop_destroy (EV_P)
927{
928 loop_destroy (EV_A);
929 ev_free (loop);
930}
931
932void
933ev_loop_fork (EV_P)
934{
935 postfork = 1;
936}
937
938#endif
939
940#if EV_MULTIPLICITY
941struct ev_loop *
942ev_default_loop_init (unsigned int flags)
943#else 2236#else
944int 2237int
2238#endif
945ev_default_loop (unsigned int flags) 2239ev_default_loop (unsigned int flags)
946#endif
947{ 2240{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 2241 if (!ev_default_loop_ptr)
953 { 2242 {
954#if EV_MULTIPLICITY 2243#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2244 EV_P = ev_default_loop_ptr = &default_loop_struct;
956#else 2245#else
957 ev_default_loop_ptr = 1; 2246 ev_default_loop_ptr = 1;
958#endif 2247#endif
959 2248
960 loop_init (EV_A_ flags); 2249 loop_init (EV_A_ flags);
961 2250
962 if (ev_method (EV_A)) 2251 if (ev_backend (EV_A))
963 { 2252 {
964 siginit (EV_A); 2253#if EV_CHILD_ENABLE
965
966#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 2254 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 2255 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 2256 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2257 ev_unref (EV_A); /* child watcher should not keep loop alive */
971#endif 2258#endif
976 2263
977 return ev_default_loop_ptr; 2264 return ev_default_loop_ptr;
978} 2265}
979 2266
980void 2267void
981ev_default_destroy (void) 2268ev_loop_fork (EV_P)
982{ 2269{
983#if EV_MULTIPLICITY 2270 postfork = 1; /* must be in line with ev_default_fork */
984 struct ev_loop *loop = ev_default_loop_ptr;
985#endif
986
987#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev);
990#endif
991
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A);
999} 2271}
2272
2273/*****************************************************************************/
1000 2274
1001void 2275void
1002ev_default_fork (void) 2276ev_invoke (EV_P_ void *w, int revents)
1003{ 2277{
1004#if EV_MULTIPLICITY 2278 EV_CB_INVOKE ((W)w, revents);
1005 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif
1007
1008 if (method)
1009 postfork = 1;
1010} 2279}
1011 2280
1012/*****************************************************************************/ 2281unsigned int
1013 2282ev_pending_count (EV_P)
1014static int
1015any_pending (EV_P)
1016{ 2283{
1017 int pri; 2284 int pri;
2285 unsigned int count = 0;
1018 2286
1019 for (pri = NUMPRI; pri--; ) 2287 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 2288 count += pendingcnt [pri];
1021 return 1;
1022 2289
1023 return 0; 2290 return count;
1024} 2291}
1025 2292
1026inline void 2293void noinline
1027call_pending (EV_P) 2294ev_invoke_pending (EV_P)
1028{ 2295{
1029 int pri; 2296 int pri;
1030 2297
1031 for (pri = NUMPRI; pri--; ) 2298 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 2299 while (pendingcnt [pri])
1033 { 2300 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2301 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 2302
1036 if (expect_true (p->w))
1037 {
1038 p->w->pending = 0; 2303 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 2304 EV_CB_INVOKE (p->w, p->events);
1040 } 2305 EV_FREQUENT_CHECK;
1041 } 2306 }
1042} 2307}
1043 2308
2309#if EV_IDLE_ENABLE
2310/* make idle watchers pending. this handles the "call-idle */
2311/* only when higher priorities are idle" logic */
1044inline void 2312inline_size void
2313idle_reify (EV_P)
2314{
2315 if (expect_false (idleall))
2316 {
2317 int pri;
2318
2319 for (pri = NUMPRI; pri--; )
2320 {
2321 if (pendingcnt [pri])
2322 break;
2323
2324 if (idlecnt [pri])
2325 {
2326 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2327 break;
2328 }
2329 }
2330 }
2331}
2332#endif
2333
2334/* make timers pending */
2335inline_size void
1045timers_reify (EV_P) 2336timers_reify (EV_P)
1046{ 2337{
2338 EV_FREQUENT_CHECK;
2339
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 2340 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 2341 {
1049 struct ev_timer *w = timers [0]; 2342 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 2343 {
2344 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2345
2346 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2347
2348 /* first reschedule or stop timer */
2349 if (w->repeat)
2350 {
2351 ev_at (w) += w->repeat;
2352 if (ev_at (w) < mn_now)
2353 ev_at (w) = mn_now;
2354
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2355 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 2356
1058 ((WT)w)->at += w->repeat; 2357 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 2358 downheap (timers, timercnt, HEAP0);
2359 }
2360 else
2361 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2362
2363 EV_FREQUENT_CHECK;
2364 feed_reverse (EV_A_ (W)w);
1063 } 2365 }
1064 else 2366 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 2367
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2368 feed_reverse_done (EV_A_ EV_TIMER);
2369 }
2370}
2371
2372#if EV_PERIODIC_ENABLE
2373
2374static void noinline
2375periodic_recalc (EV_P_ ev_periodic *w)
2376{
2377 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2378 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2379
2380 /* the above almost always errs on the low side */
2381 while (at <= ev_rt_now)
1068 } 2382 {
1069} 2383 ev_tstamp nat = at + w->interval;
1070 2384
1071#if EV_PERIODICS 2385 /* when resolution fails us, we use ev_rt_now */
2386 if (expect_false (nat == at))
2387 {
2388 at = ev_rt_now;
2389 break;
2390 }
2391
2392 at = nat;
2393 }
2394
2395 ev_at (w) = at;
2396}
2397
2398/* make periodics pending */
1072inline void 2399inline_size void
1073periodics_reify (EV_P) 2400periodics_reify (EV_P)
1074{ 2401{
2402 EV_FREQUENT_CHECK;
2403
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2404 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 2405 {
1077 struct ev_periodic *w = periodics [0]; 2406 int feed_count = 0;
1078 2407
2408 do
2409 {
2410 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2411
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2412 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 2413
1081 /* first reschedule or stop timer */ 2414 /* first reschedule or stop timer */
2415 if (w->reschedule_cb)
2416 {
2417 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2418
2419 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2420
2421 ANHE_at_cache (periodics [HEAP0]);
2422 downheap (periodics, periodiccnt, HEAP0);
2423 }
2424 else if (w->interval)
2425 {
2426 periodic_recalc (EV_A_ w);
2427 ANHE_at_cache (periodics [HEAP0]);
2428 downheap (periodics, periodiccnt, HEAP0);
2429 }
2430 else
2431 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2432
2433 EV_FREQUENT_CHECK;
2434 feed_reverse (EV_A_ (W)w);
2435 }
2436 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2437
2438 feed_reverse_done (EV_A_ EV_PERIODIC);
2439 }
2440}
2441
2442/* simply recalculate all periodics */
2443/* TODO: maybe ensure that at least one event happens when jumping forward? */
2444static void noinline ecb_cold
2445periodics_reschedule (EV_P)
2446{
2447 int i;
2448
2449 /* adjust periodics after time jump */
2450 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2451 {
2452 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2453
1082 if (w->reschedule_cb) 2454 if (w->reschedule_cb)
2455 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2456 else if (w->interval)
2457 periodic_recalc (EV_A_ w);
2458
2459 ANHE_at_cache (periodics [i]);
2460 }
2461
2462 reheap (periodics, periodiccnt);
2463}
2464#endif
2465
2466/* adjust all timers by a given offset */
2467static void noinline ecb_cold
2468timers_reschedule (EV_P_ ev_tstamp adjust)
2469{
2470 int i;
2471
2472 for (i = 0; i < timercnt; ++i)
2473 {
2474 ANHE *he = timers + i + HEAP0;
2475 ANHE_w (*he)->at += adjust;
2476 ANHE_at_cache (*he);
2477 }
2478}
2479
2480/* fetch new monotonic and realtime times from the kernel */
2481/* also detect if there was a timejump, and act accordingly */
2482inline_speed void
2483time_update (EV_P_ ev_tstamp max_block)
2484{
2485#if EV_USE_MONOTONIC
2486 if (expect_true (have_monotonic))
2487 {
2488 int i;
2489 ev_tstamp odiff = rtmn_diff;
2490
2491 mn_now = get_clock ();
2492
2493 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2494 /* interpolate in the meantime */
2495 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2496 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2497 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2498 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2499 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2500
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2501 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2502 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2503
1141inline void 2504 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2505 * on the choice of "4": one iteration isn't enough,
1143{ 2506 * in case we get preempted during the calls to
1144 int i; 2507 * ev_time and get_clock. a second call is almost guaranteed
1145 2508 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2509 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2510 * in the unlikely event of having been preempted here.
1148 { 2511 */
1149 if (time_update_monotonic (EV_A)) 2512 for (i = 4; --i; )
1150 { 2513 {
1151 ev_tstamp odiff = rtmn_diff; 2514 ev_tstamp diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2515 rtmn_diff = ev_rt_now - mn_now;
1156 2516
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2517 diff = odiff - rtmn_diff;
2518
2519 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2520 return; /* all is well */
1159 2521
1160 ev_rt_now = ev_time (); 2522 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2523 mn_now = get_clock ();
1162 now_floor = mn_now; 2524 now_floor = mn_now;
1163 } 2525 }
1164 2526
2527 /* no timer adjustment, as the monotonic clock doesn't jump */
2528 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2529# if EV_PERIODIC_ENABLE
2530 periodics_reschedule (EV_A);
2531# endif
2532 }
2533 else
2534#endif
2535 {
2536 ev_rt_now = ev_time ();
2537
2538 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2539 {
2540 /* adjust timers. this is easy, as the offset is the same for all of them */
2541 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2542#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2543 periodics_reschedule (EV_A);
1167# endif 2544#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2545 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2546
1188 mn_now = ev_rt_now; 2547 mn_now = ev_rt_now;
1189 } 2548 }
1190} 2549}
1191 2550
1192void 2551void
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2552ev_run (EV_P_ int flags)
1208{ 2553{
1209 double block; 2554#if EV_FEATURE_API
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2555 ++loop_depth;
2556#endif
1211 2557
1212 while (activecnt) 2558 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2559
2560 loop_done = EVBREAK_CANCEL;
2561
2562 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2563
2564 do
1213 { 2565 {
2566#if EV_VERIFY >= 2
2567 ev_verify (EV_A);
2568#endif
2569
2570#ifndef _WIN32
2571 if (expect_false (curpid)) /* penalise the forking check even more */
2572 if (expect_false (getpid () != curpid))
2573 {
2574 curpid = getpid ();
2575 postfork = 1;
2576 }
2577#endif
2578
2579#if EV_FORK_ENABLE
2580 /* we might have forked, so queue fork handlers */
2581 if (expect_false (postfork))
2582 if (forkcnt)
2583 {
2584 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2585 EV_INVOKE_PENDING;
2586 }
2587#endif
2588
2589#if EV_PREPARE_ENABLE
1214 /* queue check watchers (and execute them) */ 2590 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2591 if (expect_false (preparecnt))
1216 { 2592 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2593 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2594 EV_INVOKE_PENDING;
1219 } 2595 }
2596#endif
2597
2598 if (expect_false (loop_done))
2599 break;
1220 2600
1221 /* we might have forked, so reify kernel state if necessary */ 2601 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2602 if (expect_false (postfork))
1223 loop_fork (EV_A); 2603 loop_fork (EV_A);
1224 2604
1225 /* update fd-related kernel structures */ 2605 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2606 fd_reify (EV_A);
1227 2607
1228 /* calculate blocking time */ 2608 /* calculate blocking time */
2609 {
2610 ev_tstamp waittime = 0.;
2611 ev_tstamp sleeptime = 0.;
1229 2612
1230 /* we only need this for !monotonic clock or timers, but as we basically 2613 /* remember old timestamp for io_blocktime calculation */
1231 always have timers, we just calculate it always */ 2614 ev_tstamp prev_mn_now = mn_now;
1232#if EV_USE_MONOTONIC 2615
1233 if (expect_true (have_monotonic)) 2616 /* update time to cancel out callback processing overhead */
1234 time_update_monotonic (EV_A); 2617 time_update (EV_A_ 1e100);
1235 else 2618
1236#endif 2619 /* from now on, we want a pipe-wake-up */
2620 pipe_write_wanted = 1;
2621
2622 ECB_MEMORY_FENCE; /* amke sure pipe_write_wanted is visible before we check for potential skips */
2623
2624 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1237 { 2625 {
1238 ev_rt_now = ev_time ();
1239 mn_now = ev_rt_now;
1240 }
1241
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 2626 waittime = MAX_BLOCKTIME;
1247 2627
1248 if (timercnt) 2628 if (timercnt)
1249 { 2629 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2630 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1251 if (block > to) block = to; 2631 if (waittime > to) waittime = to;
1252 } 2632 }
1253 2633
1254#if EV_PERIODICS 2634#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2635 if (periodiccnt)
1256 { 2636 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2637 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1258 if (block > to) block = to; 2638 if (waittime > to) waittime = to;
1259 } 2639 }
1260#endif 2640#endif
1261 2641
1262 if (expect_false (block < 0.)) block = 0.; 2642 /* don't let timeouts decrease the waittime below timeout_blocktime */
2643 if (expect_false (waittime < timeout_blocktime))
2644 waittime = timeout_blocktime;
2645
2646 /* at this point, we NEED to wait, so we have to ensure */
2647 /* to pass a minimum nonzero value to the backend */
2648 if (expect_false (waittime < backend_mintime))
2649 waittime = backend_mintime;
2650
2651 /* extra check because io_blocktime is commonly 0 */
2652 if (expect_false (io_blocktime))
2653 {
2654 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2655
2656 if (sleeptime > waittime - backend_mintime)
2657 sleeptime = waittime - backend_mintime;
2658
2659 if (expect_true (sleeptime > 0.))
2660 {
2661 ev_sleep (sleeptime);
2662 waittime -= sleeptime;
2663 }
2664 }
1263 } 2665 }
1264 2666
1265 method_poll (EV_A_ block); 2667#if EV_FEATURE_API
2668 ++loop_count;
2669#endif
2670 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2671 backend_poll (EV_A_ waittime);
2672 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1266 2673
2674 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2675
2676 if (pipe_write_skipped)
2677 {
2678 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2679 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2680 }
2681
2682
1267 /* update ev_rt_now, do magic */ 2683 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2684 time_update (EV_A_ waittime + sleeptime);
2685 }
1269 2686
1270 /* queue pending timers and reschedule them */ 2687 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2688 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2689#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2690 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2691#endif
1275 2692
2693#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2694 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2695 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2696#endif
1279 2697
2698#if EV_CHECK_ENABLE
1280 /* queue check watchers, to be executed first */ 2699 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2700 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2701 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2702#endif
1283 2703
1284 call_pending (EV_A); 2704 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2705 }
2706 while (expect_true (
2707 activecnt
2708 && !loop_done
2709 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2710 ));
1289 2711
1290 if (loop_done != 2) 2712 if (loop_done == EVBREAK_ONE)
1291 loop_done = 0; 2713 loop_done = EVBREAK_CANCEL;
2714
2715#if EV_FEATURE_API
2716 --loop_depth;
2717#endif
1292} 2718}
1293 2719
1294void 2720void
1295ev_unloop (EV_P_ int how) 2721ev_break (EV_P_ int how)
1296{ 2722{
1297 loop_done = how; 2723 loop_done = how;
1298} 2724}
1299 2725
2726void
2727ev_ref (EV_P)
2728{
2729 ++activecnt;
2730}
2731
2732void
2733ev_unref (EV_P)
2734{
2735 --activecnt;
2736}
2737
2738void
2739ev_now_update (EV_P)
2740{
2741 time_update (EV_A_ 1e100);
2742}
2743
2744void
2745ev_suspend (EV_P)
2746{
2747 ev_now_update (EV_A);
2748}
2749
2750void
2751ev_resume (EV_P)
2752{
2753 ev_tstamp mn_prev = mn_now;
2754
2755 ev_now_update (EV_A);
2756 timers_reschedule (EV_A_ mn_now - mn_prev);
2757#if EV_PERIODIC_ENABLE
2758 /* TODO: really do this? */
2759 periodics_reschedule (EV_A);
2760#endif
2761}
2762
1300/*****************************************************************************/ 2763/*****************************************************************************/
2764/* singly-linked list management, used when the expected list length is short */
1301 2765
1302inline void 2766inline_size void
1303wlist_add (WL *head, WL elem) 2767wlist_add (WL *head, WL elem)
1304{ 2768{
1305 elem->next = *head; 2769 elem->next = *head;
1306 *head = elem; 2770 *head = elem;
1307} 2771}
1308 2772
1309inline void 2773inline_size void
1310wlist_del (WL *head, WL elem) 2774wlist_del (WL *head, WL elem)
1311{ 2775{
1312 while (*head) 2776 while (*head)
1313 { 2777 {
1314 if (*head == elem) 2778 if (expect_true (*head == elem))
1315 { 2779 {
1316 *head = elem->next; 2780 *head = elem->next;
1317 return; 2781 break;
1318 } 2782 }
1319 2783
1320 head = &(*head)->next; 2784 head = &(*head)->next;
1321 } 2785 }
1322} 2786}
1323 2787
2788/* internal, faster, version of ev_clear_pending */
1324inline void 2789inline_speed void
1325ev_clear_pending (EV_P_ W w) 2790clear_pending (EV_P_ W w)
1326{ 2791{
1327 if (w->pending) 2792 if (w->pending)
1328 { 2793 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2794 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 2795 w->pending = 0;
1331 } 2796 }
1332} 2797}
1333 2798
2799int
2800ev_clear_pending (EV_P_ void *w)
2801{
2802 W w_ = (W)w;
2803 int pending = w_->pending;
2804
2805 if (expect_true (pending))
2806 {
2807 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2808 p->w = (W)&pending_w;
2809 w_->pending = 0;
2810 return p->events;
2811 }
2812 else
2813 return 0;
2814}
2815
1334inline void 2816inline_size void
2817pri_adjust (EV_P_ W w)
2818{
2819 int pri = ev_priority (w);
2820 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2821 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2822 ev_set_priority (w, pri);
2823}
2824
2825inline_speed void
1335ev_start (EV_P_ W w, int active) 2826ev_start (EV_P_ W w, int active)
1336{ 2827{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2828 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2829 w->active = active;
1341 ev_ref (EV_A); 2830 ev_ref (EV_A);
1342} 2831}
1343 2832
1344inline void 2833inline_size void
1345ev_stop (EV_P_ W w) 2834ev_stop (EV_P_ W w)
1346{ 2835{
1347 ev_unref (EV_A); 2836 ev_unref (EV_A);
1348 w->active = 0; 2837 w->active = 0;
1349} 2838}
1350 2839
1351/*****************************************************************************/ 2840/*****************************************************************************/
1352 2841
1353void 2842void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2843ev_io_start (EV_P_ ev_io *w)
1355{ 2844{
1356 int fd = w->fd; 2845 int fd = w->fd;
1357 2846
1358 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
1359 return; 2848 return;
1360 2849
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2850 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2851 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2852
2853 EV_FREQUENT_CHECK;
1362 2854
1363 ev_start (EV_A_ (W)w, 1); 2855 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2856 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2857 wlist_add (&anfds[fd].head, (WL)w);
1366 2858
1367 fd_change (EV_A_ fd); 2859 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1368} 2860 w->events &= ~EV__IOFDSET;
1369 2861
1370void 2862 EV_FREQUENT_CHECK;
2863}
2864
2865void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2866ev_io_stop (EV_P_ ev_io *w)
1372{ 2867{
1373 ev_clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
1375 return; 2870 return;
1376 2871
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2872 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2873
2874 EV_FREQUENT_CHECK;
2875
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2876 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2877 ev_stop (EV_A_ (W)w);
1381 2878
1382 fd_change (EV_A_ w->fd); 2879 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1383}
1384 2880
1385void 2881 EV_FREQUENT_CHECK;
2882}
2883
2884void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2885ev_timer_start (EV_P_ ev_timer *w)
1387{ 2886{
1388 if (expect_false (ev_is_active (w))) 2887 if (expect_false (ev_is_active (w)))
1389 return; 2888 return;
1390 2889
1391 ((WT)w)->at += mn_now; 2890 ev_at (w) += mn_now;
1392 2891
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2892 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2893
2894 EV_FREQUENT_CHECK;
2895
2896 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2897 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2898 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2899 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2900 ANHE_at_cache (timers [ev_active (w)]);
2901 upheap (timers, ev_active (w));
1399 2902
2903 EV_FREQUENT_CHECK;
2904
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2905 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2906}
1402 2907
1403void 2908void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2909ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2910{
1406 ev_clear_pending (EV_A_ (W)w); 2911 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2912 if (expect_false (!ev_is_active (w)))
1408 return; 2913 return;
1409 2914
2915 EV_FREQUENT_CHECK;
2916
2917 {
2918 int active = ev_active (w);
2919
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2920 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2921
2922 --timercnt;
2923
1412 if (expect_true (((W)w)->active < timercnt--)) 2924 if (expect_true (active < timercnt + HEAP0))
1413 { 2925 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2926 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2927 adjustheap (timers, timercnt, active);
1416 } 2928 }
2929 }
1417 2930
1418 ((WT)w)->at -= mn_now; 2931 ev_at (w) -= mn_now;
1419 2932
1420 ev_stop (EV_A_ (W)w); 2933 ev_stop (EV_A_ (W)w);
1421}
1422 2934
1423void 2935 EV_FREQUENT_CHECK;
2936}
2937
2938void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2939ev_timer_again (EV_P_ ev_timer *w)
1425{ 2940{
2941 EV_FREQUENT_CHECK;
2942
1426 if (ev_is_active (w)) 2943 if (ev_is_active (w))
1427 { 2944 {
1428 if (w->repeat) 2945 if (w->repeat)
1429 { 2946 {
1430 ((WT)w)->at = mn_now + w->repeat; 2947 ev_at (w) = mn_now + w->repeat;
2948 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2949 adjustheap (timers, timercnt, ev_active (w));
1432 } 2950 }
1433 else 2951 else
1434 ev_timer_stop (EV_A_ w); 2952 ev_timer_stop (EV_A_ w);
1435 } 2953 }
1436 else if (w->repeat) 2954 else if (w->repeat)
1437 { 2955 {
1438 w->at = w->repeat; 2956 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2957 ev_timer_start (EV_A_ w);
1440 } 2958 }
1441}
1442 2959
2960 EV_FREQUENT_CHECK;
2961}
2962
2963ev_tstamp
2964ev_timer_remaining (EV_P_ ev_timer *w)
2965{
2966 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2967}
2968
1443#if EV_PERIODICS 2969#if EV_PERIODIC_ENABLE
1444void 2970void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2971ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2972{
1447 if (expect_false (ev_is_active (w))) 2973 if (expect_false (ev_is_active (w)))
1448 return; 2974 return;
1449 2975
1450 if (w->reschedule_cb) 2976 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2977 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2978 else if (w->interval)
1453 { 2979 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2980 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2981 periodic_recalc (EV_A_ w);
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1457 } 2982 }
2983 else
2984 ev_at (w) = w->offset;
1458 2985
2986 EV_FREQUENT_CHECK;
2987
2988 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2989 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2990 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2991 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2992 ANHE_at_cache (periodics [ev_active (w)]);
2993 upheap (periodics, ev_active (w));
1463 2994
2995 EV_FREQUENT_CHECK;
2996
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2997 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2998}
1466 2999
1467void 3000void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 3001ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 3002{
1470 ev_clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
1472 return; 3005 return;
1473 3006
3007 EV_FREQUENT_CHECK;
3008
3009 {
3010 int active = ev_active (w);
3011
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3012 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 3013
3014 --periodiccnt;
3015
1476 if (expect_true (((W)w)->active < periodiccnt--)) 3016 if (expect_true (active < periodiccnt + HEAP0))
1477 { 3017 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3018 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3019 adjustheap (periodics, periodiccnt, active);
1480 } 3020 }
3021 }
1481 3022
1482 ev_stop (EV_A_ (W)w); 3023 ev_stop (EV_A_ (W)w);
1483}
1484 3024
1485void 3025 EV_FREQUENT_CHECK;
3026}
3027
3028void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 3029ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 3030{
1488 /* TODO: use adjustheap and recalculation */ 3031 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 3032 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 3033 ev_periodic_start (EV_A_ w);
1491} 3034}
1492#endif 3035#endif
1493 3036
1494void 3037#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 3038# define SA_RESTART 0
3039#endif
3040
3041#if EV_SIGNAL_ENABLE
3042
3043void noinline
3044ev_signal_start (EV_P_ ev_signal *w)
1496{ 3045{
1497 if (expect_false (ev_is_active (w))) 3046 if (expect_false (ev_is_active (w)))
1498 return; 3047 return;
1499 3048
3049 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3050
3051#if EV_MULTIPLICITY
3052 assert (("libev: a signal must not be attached to two different loops",
3053 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3054
3055 signals [w->signum - 1].loop = EV_A;
3056#endif
3057
3058 EV_FREQUENT_CHECK;
3059
3060#if EV_USE_SIGNALFD
3061 if (sigfd == -2)
3062 {
3063 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3064 if (sigfd < 0 && errno == EINVAL)
3065 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3066
3067 if (sigfd >= 0)
3068 {
3069 fd_intern (sigfd); /* doing it twice will not hurt */
3070
3071 sigemptyset (&sigfd_set);
3072
3073 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3074 ev_set_priority (&sigfd_w, EV_MAXPRI);
3075 ev_io_start (EV_A_ &sigfd_w);
3076 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3077 }
3078 }
3079
3080 if (sigfd >= 0)
3081 {
3082 /* TODO: check .head */
3083 sigaddset (&sigfd_set, w->signum);
3084 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3085
3086 signalfd (sigfd, &sigfd_set, 0);
3087 }
3088#endif
3089
1500 ev_start (EV_A_ (W)w, ++idlecnt); 3090 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3091 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 3092
1505void 3093 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 3094# if EV_USE_SIGNALFD
3095 if (sigfd < 0) /*TODO*/
3096# endif
3097 {
3098# ifdef _WIN32
3099 evpipe_init (EV_A);
3100
3101 signal (w->signum, ev_sighandler);
3102# else
3103 struct sigaction sa;
3104
3105 evpipe_init (EV_A);
3106
3107 sa.sa_handler = ev_sighandler;
3108 sigfillset (&sa.sa_mask);
3109 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3110 sigaction (w->signum, &sa, 0);
3111
3112 if (origflags & EVFLAG_NOSIGMASK)
3113 {
3114 sigemptyset (&sa.sa_mask);
3115 sigaddset (&sa.sa_mask, w->signum);
3116 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3117 }
3118#endif
3119 }
3120
3121 EV_FREQUENT_CHECK;
3122}
3123
3124void noinline
3125ev_signal_stop (EV_P_ ev_signal *w)
1507{ 3126{
1508 ev_clear_pending (EV_A_ (W)w); 3127 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 3128 if (expect_false (!ev_is_active (w)))
1510 return; 3129 return;
1511 3130
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 3131 EV_FREQUENT_CHECK;
3132
3133 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 3134 ev_stop (EV_A_ (W)w);
3135
3136 if (!signals [w->signum - 1].head)
3137 {
3138#if EV_MULTIPLICITY
3139 signals [w->signum - 1].loop = 0; /* unattach from signal */
3140#endif
3141#if EV_USE_SIGNALFD
3142 if (sigfd >= 0)
3143 {
3144 sigset_t ss;
3145
3146 sigemptyset (&ss);
3147 sigaddset (&ss, w->signum);
3148 sigdelset (&sigfd_set, w->signum);
3149
3150 signalfd (sigfd, &sigfd_set, 0);
3151 sigprocmask (SIG_UNBLOCK, &ss, 0);
3152 }
3153 else
3154#endif
3155 signal (w->signum, SIG_DFL);
3156 }
3157
3158 EV_FREQUENT_CHECK;
1514} 3159}
3160
3161#endif
3162
3163#if EV_CHILD_ENABLE
1515 3164
1516void 3165void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 3166ev_child_start (EV_P_ ev_child *w)
1518{ 3167{
3168#if EV_MULTIPLICITY
3169 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3170#endif
1519 if (expect_false (ev_is_active (w))) 3171 if (expect_false (ev_is_active (w)))
1520 return; 3172 return;
1521 3173
3174 EV_FREQUENT_CHECK;
3175
1522 ev_start (EV_A_ (W)w, ++preparecnt); 3176 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3177 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w; 3178
3179 EV_FREQUENT_CHECK;
1525} 3180}
1526 3181
1527void 3182void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 3183ev_child_stop (EV_P_ ev_child *w)
1529{ 3184{
1530 ev_clear_pending (EV_A_ (W)w); 3185 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 3186 if (expect_false (!ev_is_active (w)))
1532 return; 3187 return;
1533 3188
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3189 EV_FREQUENT_CHECK;
3190
3191 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
1536} 3195}
3196
3197#endif
3198
3199#if EV_STAT_ENABLE
3200
3201# ifdef _WIN32
3202# undef lstat
3203# define lstat(a,b) _stati64 (a,b)
3204# endif
3205
3206#define DEF_STAT_INTERVAL 5.0074891
3207#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3208#define MIN_STAT_INTERVAL 0.1074891
3209
3210static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3211
3212#if EV_USE_INOTIFY
3213
3214/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3215# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3216
3217static void noinline
3218infy_add (EV_P_ ev_stat *w)
3219{
3220 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3221
3222 if (w->wd >= 0)
3223 {
3224 struct statfs sfs;
3225
3226 /* now local changes will be tracked by inotify, but remote changes won't */
3227 /* unless the filesystem is known to be local, we therefore still poll */
3228 /* also do poll on <2.6.25, but with normal frequency */
3229
3230 if (!fs_2625)
3231 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3232 else if (!statfs (w->path, &sfs)
3233 && (sfs.f_type == 0x1373 /* devfs */
3234 || sfs.f_type == 0xEF53 /* ext2/3 */
3235 || sfs.f_type == 0x3153464a /* jfs */
3236 || sfs.f_type == 0x52654973 /* reiser3 */
3237 || sfs.f_type == 0x01021994 /* tempfs */
3238 || sfs.f_type == 0x58465342 /* xfs */))
3239 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3240 else
3241 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3242 }
3243 else
3244 {
3245 /* can't use inotify, continue to stat */
3246 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3247
3248 /* if path is not there, monitor some parent directory for speedup hints */
3249 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3250 /* but an efficiency issue only */
3251 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3252 {
3253 char path [4096];
3254 strcpy (path, w->path);
3255
3256 do
3257 {
3258 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3259 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3260
3261 char *pend = strrchr (path, '/');
3262
3263 if (!pend || pend == path)
3264 break;
3265
3266 *pend = 0;
3267 w->wd = inotify_add_watch (fs_fd, path, mask);
3268 }
3269 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3270 }
3271 }
3272
3273 if (w->wd >= 0)
3274 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3275
3276 /* now re-arm timer, if required */
3277 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3278 ev_timer_again (EV_A_ &w->timer);
3279 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3280}
3281
3282static void noinline
3283infy_del (EV_P_ ev_stat *w)
3284{
3285 int slot;
3286 int wd = w->wd;
3287
3288 if (wd < 0)
3289 return;
3290
3291 w->wd = -2;
3292 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3293 wlist_del (&fs_hash [slot].head, (WL)w);
3294
3295 /* remove this watcher, if others are watching it, they will rearm */
3296 inotify_rm_watch (fs_fd, wd);
3297}
3298
3299static void noinline
3300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3301{
3302 if (slot < 0)
3303 /* overflow, need to check for all hash slots */
3304 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3305 infy_wd (EV_A_ slot, wd, ev);
3306 else
3307 {
3308 WL w_;
3309
3310 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3311 {
3312 ev_stat *w = (ev_stat *)w_;
3313 w_ = w_->next; /* lets us remove this watcher and all before it */
3314
3315 if (w->wd == wd || wd == -1)
3316 {
3317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3318 {
3319 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3320 w->wd = -1;
3321 infy_add (EV_A_ w); /* re-add, no matter what */
3322 }
3323
3324 stat_timer_cb (EV_A_ &w->timer, 0);
3325 }
3326 }
3327 }
3328}
3329
3330static void
3331infy_cb (EV_P_ ev_io *w, int revents)
3332{
3333 char buf [EV_INOTIFY_BUFSIZE];
3334 int ofs;
3335 int len = read (fs_fd, buf, sizeof (buf));
3336
3337 for (ofs = 0; ofs < len; )
3338 {
3339 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3340 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3341 ofs += sizeof (struct inotify_event) + ev->len;
3342 }
3343}
3344
3345inline_size void ecb_cold
3346ev_check_2625 (EV_P)
3347{
3348 /* kernels < 2.6.25 are borked
3349 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3350 */
3351 if (ev_linux_version () < 0x020619)
3352 return;
3353
3354 fs_2625 = 1;
3355}
3356
3357inline_size int
3358infy_newfd (void)
3359{
3360#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3361 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3362 if (fd >= 0)
3363 return fd;
3364#endif
3365 return inotify_init ();
3366}
3367
3368inline_size void
3369infy_init (EV_P)
3370{
3371 if (fs_fd != -2)
3372 return;
3373
3374 fs_fd = -1;
3375
3376 ev_check_2625 (EV_A);
3377
3378 fs_fd = infy_newfd ();
3379
3380 if (fs_fd >= 0)
3381 {
3382 fd_intern (fs_fd);
3383 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3384 ev_set_priority (&fs_w, EV_MAXPRI);
3385 ev_io_start (EV_A_ &fs_w);
3386 ev_unref (EV_A);
3387 }
3388}
3389
3390inline_size void
3391infy_fork (EV_P)
3392{
3393 int slot;
3394
3395 if (fs_fd < 0)
3396 return;
3397
3398 ev_ref (EV_A);
3399 ev_io_stop (EV_A_ &fs_w);
3400 close (fs_fd);
3401 fs_fd = infy_newfd ();
3402
3403 if (fs_fd >= 0)
3404 {
3405 fd_intern (fs_fd);
3406 ev_io_set (&fs_w, fs_fd, EV_READ);
3407 ev_io_start (EV_A_ &fs_w);
3408 ev_unref (EV_A);
3409 }
3410
3411 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3412 {
3413 WL w_ = fs_hash [slot].head;
3414 fs_hash [slot].head = 0;
3415
3416 while (w_)
3417 {
3418 ev_stat *w = (ev_stat *)w_;
3419 w_ = w_->next; /* lets us add this watcher */
3420
3421 w->wd = -1;
3422
3423 if (fs_fd >= 0)
3424 infy_add (EV_A_ w); /* re-add, no matter what */
3425 else
3426 {
3427 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3428 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3429 ev_timer_again (EV_A_ &w->timer);
3430 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3431 }
3432 }
3433 }
3434}
3435
3436#endif
3437
3438#ifdef _WIN32
3439# define EV_LSTAT(p,b) _stati64 (p, b)
3440#else
3441# define EV_LSTAT(p,b) lstat (p, b)
3442#endif
1537 3443
1538void 3444void
1539ev_check_start (EV_P_ struct ev_check *w) 3445ev_stat_stat (EV_P_ ev_stat *w)
3446{
3447 if (lstat (w->path, &w->attr) < 0)
3448 w->attr.st_nlink = 0;
3449 else if (!w->attr.st_nlink)
3450 w->attr.st_nlink = 1;
3451}
3452
3453static void noinline
3454stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3455{
3456 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3457
3458 ev_statdata prev = w->attr;
3459 ev_stat_stat (EV_A_ w);
3460
3461 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3462 if (
3463 prev.st_dev != w->attr.st_dev
3464 || prev.st_ino != w->attr.st_ino
3465 || prev.st_mode != w->attr.st_mode
3466 || prev.st_nlink != w->attr.st_nlink
3467 || prev.st_uid != w->attr.st_uid
3468 || prev.st_gid != w->attr.st_gid
3469 || prev.st_rdev != w->attr.st_rdev
3470 || prev.st_size != w->attr.st_size
3471 || prev.st_atime != w->attr.st_atime
3472 || prev.st_mtime != w->attr.st_mtime
3473 || prev.st_ctime != w->attr.st_ctime
3474 ) {
3475 /* we only update w->prev on actual differences */
3476 /* in case we test more often than invoke the callback, */
3477 /* to ensure that prev is always different to attr */
3478 w->prev = prev;
3479
3480 #if EV_USE_INOTIFY
3481 if (fs_fd >= 0)
3482 {
3483 infy_del (EV_A_ w);
3484 infy_add (EV_A_ w);
3485 ev_stat_stat (EV_A_ w); /* avoid race... */
3486 }
3487 #endif
3488
3489 ev_feed_event (EV_A_ w, EV_STAT);
3490 }
3491}
3492
3493void
3494ev_stat_start (EV_P_ ev_stat *w)
1540{ 3495{
1541 if (expect_false (ev_is_active (w))) 3496 if (expect_false (ev_is_active (w)))
1542 return; 3497 return;
1543 3498
3499 ev_stat_stat (EV_A_ w);
3500
3501 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3502 w->interval = MIN_STAT_INTERVAL;
3503
3504 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3505 ev_set_priority (&w->timer, ev_priority (w));
3506
3507#if EV_USE_INOTIFY
3508 infy_init (EV_A);
3509
3510 if (fs_fd >= 0)
3511 infy_add (EV_A_ w);
3512 else
3513#endif
3514 {
3515 ev_timer_again (EV_A_ &w->timer);
3516 ev_unref (EV_A);
3517 }
3518
1544 ev_start (EV_A_ (W)w, ++checkcnt); 3519 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3520
1546 checks [checkcnt - 1] = w; 3521 EV_FREQUENT_CHECK;
1547} 3522}
1548 3523
1549void 3524void
1550ev_check_stop (EV_P_ struct ev_check *w) 3525ev_stat_stop (EV_P_ ev_stat *w)
1551{ 3526{
1552 ev_clear_pending (EV_A_ (W)w); 3527 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3528 if (expect_false (!ev_is_active (w)))
1554 return; 3529 return;
1555 3530
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 3531 EV_FREQUENT_CHECK;
3532
3533#if EV_USE_INOTIFY
3534 infy_del (EV_A_ w);
3535#endif
3536
3537 if (ev_is_active (&w->timer))
3538 {
3539 ev_ref (EV_A);
3540 ev_timer_stop (EV_A_ &w->timer);
3541 }
3542
1557 ev_stop (EV_A_ (W)w); 3543 ev_stop (EV_A_ (W)w);
1558}
1559 3544
1560#ifndef SA_RESTART 3545 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 3546}
1562#endif 3547#endif
1563 3548
3549#if EV_IDLE_ENABLE
1564void 3550void
1565ev_signal_start (EV_P_ struct ev_signal *w) 3551ev_idle_start (EV_P_ ev_idle *w)
1566{ 3552{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 3553 if (expect_false (ev_is_active (w)))
1571 return; 3554 return;
1572 3555
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3556 pri_adjust (EV_A_ (W)w);
1574 3557
3558 EV_FREQUENT_CHECK;
3559
3560 {
3561 int active = ++idlecnt [ABSPRI (w)];
3562
3563 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 3564 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 3565
1579 if (!((WL)w)->next) 3566 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 3567 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 3568 }
3569
3570 EV_FREQUENT_CHECK;
1591} 3571}
1592 3572
1593void 3573void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 3574ev_idle_stop (EV_P_ ev_idle *w)
1595{ 3575{
1596 ev_clear_pending (EV_A_ (W)w); 3576 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3577 if (expect_false (!ev_is_active (w)))
1598 return; 3578 return;
1599 3579
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3580 EV_FREQUENT_CHECK;
3581
3582 {
3583 int active = ev_active (w);
3584
3585 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3586 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3587
1601 ev_stop (EV_A_ (W)w); 3588 ev_stop (EV_A_ (W)w);
3589 --idleall;
3590 }
1602 3591
1603 if (!signals [w->signum - 1].head) 3592 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 3593}
3594#endif
1606 3595
3596#if EV_PREPARE_ENABLE
1607void 3597void
1608ev_child_start (EV_P_ struct ev_child *w) 3598ev_prepare_start (EV_P_ ev_prepare *w)
1609{ 3599{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif
1613 if (expect_false (ev_is_active (w))) 3600 if (expect_false (ev_is_active (w)))
1614 return; 3601 return;
1615 3602
3603 EV_FREQUENT_CHECK;
3604
1616 ev_start (EV_A_ (W)w, 1); 3605 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3606 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3607 prepares [preparecnt - 1] = w;
3608
3609 EV_FREQUENT_CHECK;
1618} 3610}
1619 3611
1620void 3612void
1621ev_child_stop (EV_P_ struct ev_child *w) 3613ev_prepare_stop (EV_P_ ev_prepare *w)
1622{ 3614{
1623 ev_clear_pending (EV_A_ (W)w); 3615 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3616 if (expect_false (!ev_is_active (w)))
1625 return; 3617 return;
1626 3618
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3619 EV_FREQUENT_CHECK;
3620
3621 {
3622 int active = ev_active (w);
3623
3624 prepares [active - 1] = prepares [--preparecnt];
3625 ev_active (prepares [active - 1]) = active;
3626 }
3627
1628 ev_stop (EV_A_ (W)w); 3628 ev_stop (EV_A_ (W)w);
3629
3630 EV_FREQUENT_CHECK;
1629} 3631}
3632#endif
3633
3634#if EV_CHECK_ENABLE
3635void
3636ev_check_start (EV_P_ ev_check *w)
3637{
3638 if (expect_false (ev_is_active (w)))
3639 return;
3640
3641 EV_FREQUENT_CHECK;
3642
3643 ev_start (EV_A_ (W)w, ++checkcnt);
3644 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3645 checks [checkcnt - 1] = w;
3646
3647 EV_FREQUENT_CHECK;
3648}
3649
3650void
3651ev_check_stop (EV_P_ ev_check *w)
3652{
3653 clear_pending (EV_A_ (W)w);
3654 if (expect_false (!ev_is_active (w)))
3655 return;
3656
3657 EV_FREQUENT_CHECK;
3658
3659 {
3660 int active = ev_active (w);
3661
3662 checks [active - 1] = checks [--checkcnt];
3663 ev_active (checks [active - 1]) = active;
3664 }
3665
3666 ev_stop (EV_A_ (W)w);
3667
3668 EV_FREQUENT_CHECK;
3669}
3670#endif
3671
3672#if EV_EMBED_ENABLE
3673void noinline
3674ev_embed_sweep (EV_P_ ev_embed *w)
3675{
3676 ev_run (w->other, EVRUN_NOWAIT);
3677}
3678
3679static void
3680embed_io_cb (EV_P_ ev_io *io, int revents)
3681{
3682 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3683
3684 if (ev_cb (w))
3685 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3686 else
3687 ev_run (w->other, EVRUN_NOWAIT);
3688}
3689
3690static void
3691embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3692{
3693 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3694
3695 {
3696 EV_P = w->other;
3697
3698 while (fdchangecnt)
3699 {
3700 fd_reify (EV_A);
3701 ev_run (EV_A_ EVRUN_NOWAIT);
3702 }
3703 }
3704}
3705
3706static void
3707embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3708{
3709 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3710
3711 ev_embed_stop (EV_A_ w);
3712
3713 {
3714 EV_P = w->other;
3715
3716 ev_loop_fork (EV_A);
3717 ev_run (EV_A_ EVRUN_NOWAIT);
3718 }
3719
3720 ev_embed_start (EV_A_ w);
3721}
3722
3723#if 0
3724static void
3725embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3726{
3727 ev_idle_stop (EV_A_ idle);
3728}
3729#endif
3730
3731void
3732ev_embed_start (EV_P_ ev_embed *w)
3733{
3734 if (expect_false (ev_is_active (w)))
3735 return;
3736
3737 {
3738 EV_P = w->other;
3739 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3740 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3741 }
3742
3743 EV_FREQUENT_CHECK;
3744
3745 ev_set_priority (&w->io, ev_priority (w));
3746 ev_io_start (EV_A_ &w->io);
3747
3748 ev_prepare_init (&w->prepare, embed_prepare_cb);
3749 ev_set_priority (&w->prepare, EV_MINPRI);
3750 ev_prepare_start (EV_A_ &w->prepare);
3751
3752 ev_fork_init (&w->fork, embed_fork_cb);
3753 ev_fork_start (EV_A_ &w->fork);
3754
3755 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3756
3757 ev_start (EV_A_ (W)w, 1);
3758
3759 EV_FREQUENT_CHECK;
3760}
3761
3762void
3763ev_embed_stop (EV_P_ ev_embed *w)
3764{
3765 clear_pending (EV_A_ (W)w);
3766 if (expect_false (!ev_is_active (w)))
3767 return;
3768
3769 EV_FREQUENT_CHECK;
3770
3771 ev_io_stop (EV_A_ &w->io);
3772 ev_prepare_stop (EV_A_ &w->prepare);
3773 ev_fork_stop (EV_A_ &w->fork);
3774
3775 ev_stop (EV_A_ (W)w);
3776
3777 EV_FREQUENT_CHECK;
3778}
3779#endif
3780
3781#if EV_FORK_ENABLE
3782void
3783ev_fork_start (EV_P_ ev_fork *w)
3784{
3785 if (expect_false (ev_is_active (w)))
3786 return;
3787
3788 EV_FREQUENT_CHECK;
3789
3790 ev_start (EV_A_ (W)w, ++forkcnt);
3791 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3792 forks [forkcnt - 1] = w;
3793
3794 EV_FREQUENT_CHECK;
3795}
3796
3797void
3798ev_fork_stop (EV_P_ ev_fork *w)
3799{
3800 clear_pending (EV_A_ (W)w);
3801 if (expect_false (!ev_is_active (w)))
3802 return;
3803
3804 EV_FREQUENT_CHECK;
3805
3806 {
3807 int active = ev_active (w);
3808
3809 forks [active - 1] = forks [--forkcnt];
3810 ev_active (forks [active - 1]) = active;
3811 }
3812
3813 ev_stop (EV_A_ (W)w);
3814
3815 EV_FREQUENT_CHECK;
3816}
3817#endif
3818
3819#if EV_CLEANUP_ENABLE
3820void
3821ev_cleanup_start (EV_P_ ev_cleanup *w)
3822{
3823 if (expect_false (ev_is_active (w)))
3824 return;
3825
3826 EV_FREQUENT_CHECK;
3827
3828 ev_start (EV_A_ (W)w, ++cleanupcnt);
3829 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3830 cleanups [cleanupcnt - 1] = w;
3831
3832 /* cleanup watchers should never keep a refcount on the loop */
3833 ev_unref (EV_A);
3834 EV_FREQUENT_CHECK;
3835}
3836
3837void
3838ev_cleanup_stop (EV_P_ ev_cleanup *w)
3839{
3840 clear_pending (EV_A_ (W)w);
3841 if (expect_false (!ev_is_active (w)))
3842 return;
3843
3844 EV_FREQUENT_CHECK;
3845 ev_ref (EV_A);
3846
3847 {
3848 int active = ev_active (w);
3849
3850 cleanups [active - 1] = cleanups [--cleanupcnt];
3851 ev_active (cleanups [active - 1]) = active;
3852 }
3853
3854 ev_stop (EV_A_ (W)w);
3855
3856 EV_FREQUENT_CHECK;
3857}
3858#endif
3859
3860#if EV_ASYNC_ENABLE
3861void
3862ev_async_start (EV_P_ ev_async *w)
3863{
3864 if (expect_false (ev_is_active (w)))
3865 return;
3866
3867 w->sent = 0;
3868
3869 evpipe_init (EV_A);
3870
3871 EV_FREQUENT_CHECK;
3872
3873 ev_start (EV_A_ (W)w, ++asynccnt);
3874 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3875 asyncs [asynccnt - 1] = w;
3876
3877 EV_FREQUENT_CHECK;
3878}
3879
3880void
3881ev_async_stop (EV_P_ ev_async *w)
3882{
3883 clear_pending (EV_A_ (W)w);
3884 if (expect_false (!ev_is_active (w)))
3885 return;
3886
3887 EV_FREQUENT_CHECK;
3888
3889 {
3890 int active = ev_active (w);
3891
3892 asyncs [active - 1] = asyncs [--asynccnt];
3893 ev_active (asyncs [active - 1]) = active;
3894 }
3895
3896 ev_stop (EV_A_ (W)w);
3897
3898 EV_FREQUENT_CHECK;
3899}
3900
3901void
3902ev_async_send (EV_P_ ev_async *w)
3903{
3904 w->sent = 1;
3905 evpipe_write (EV_A_ &async_pending);
3906}
3907#endif
1630 3908
1631/*****************************************************************************/ 3909/*****************************************************************************/
1632 3910
1633struct ev_once 3911struct ev_once
1634{ 3912{
1635 struct ev_io io; 3913 ev_io io;
1636 struct ev_timer to; 3914 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3915 void (*cb)(int revents, void *arg);
1638 void *arg; 3916 void *arg;
1639}; 3917};
1640 3918
1641static void 3919static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3920once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3921{
1644 void (*cb)(int revents, void *arg) = once->cb; 3922 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3923 void *arg = once->arg;
1646 3924
1647 ev_io_stop (EV_A_ &once->io); 3925 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3926 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3927 ev_free (once);
1650 3928
1651 cb (revents, arg); 3929 cb (revents, arg);
1652} 3930}
1653 3931
1654static void 3932static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3933once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3934{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3935 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3936
3937 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3938}
1659 3939
1660static void 3940static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3941once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3942{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3943 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3944
3945 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3946}
1665 3947
1666void 3948void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3949ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3950{
1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3951 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1670 3952
1671 if (expect_false (!once)) 3953 if (expect_false (!once))
1672 { 3954 {
1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3955 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1674 return; 3956 return;
1675 } 3957 }
1676 3958
1677 once->cb = cb; 3959 once->cb = cb;
1678 once->arg = arg; 3960 once->arg = arg;
1690 ev_timer_set (&once->to, timeout, 0.); 3972 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3973 ev_timer_start (EV_A_ &once->to);
1692 } 3974 }
1693} 3975}
1694 3976
1695#ifdef __cplusplus 3977/*****************************************************************************/
1696} 3978
3979#if EV_WALK_ENABLE
3980void ecb_cold
3981ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3982{
3983 int i, j;
3984 ev_watcher_list *wl, *wn;
3985
3986 if (types & (EV_IO | EV_EMBED))
3987 for (i = 0; i < anfdmax; ++i)
3988 for (wl = anfds [i].head; wl; )
3989 {
3990 wn = wl->next;
3991
3992#if EV_EMBED_ENABLE
3993 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3994 {
3995 if (types & EV_EMBED)
3996 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3997 }
3998 else
3999#endif
4000#if EV_USE_INOTIFY
4001 if (ev_cb ((ev_io *)wl) == infy_cb)
4002 ;
4003 else
4004#endif
4005 if ((ev_io *)wl != &pipe_w)
4006 if (types & EV_IO)
4007 cb (EV_A_ EV_IO, wl);
4008
4009 wl = wn;
4010 }
4011
4012 if (types & (EV_TIMER | EV_STAT))
4013 for (i = timercnt + HEAP0; i-- > HEAP0; )
4014#if EV_STAT_ENABLE
4015 /*TODO: timer is not always active*/
4016 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4017 {
4018 if (types & EV_STAT)
4019 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4020 }
4021 else
4022#endif
4023 if (types & EV_TIMER)
4024 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4025
4026#if EV_PERIODIC_ENABLE
4027 if (types & EV_PERIODIC)
4028 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4029 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4030#endif
4031
4032#if EV_IDLE_ENABLE
4033 if (types & EV_IDLE)
4034 for (j = NUMPRI; i--; )
4035 for (i = idlecnt [j]; i--; )
4036 cb (EV_A_ EV_IDLE, idles [j][i]);
4037#endif
4038
4039#if EV_FORK_ENABLE
4040 if (types & EV_FORK)
4041 for (i = forkcnt; i--; )
4042 if (ev_cb (forks [i]) != embed_fork_cb)
4043 cb (EV_A_ EV_FORK, forks [i]);
4044#endif
4045
4046#if EV_ASYNC_ENABLE
4047 if (types & EV_ASYNC)
4048 for (i = asynccnt; i--; )
4049 cb (EV_A_ EV_ASYNC, asyncs [i]);
4050#endif
4051
4052#if EV_PREPARE_ENABLE
4053 if (types & EV_PREPARE)
4054 for (i = preparecnt; i--; )
4055# if EV_EMBED_ENABLE
4056 if (ev_cb (prepares [i]) != embed_prepare_cb)
1697#endif 4057# endif
4058 cb (EV_A_ EV_PREPARE, prepares [i]);
4059#endif
1698 4060
4061#if EV_CHECK_ENABLE
4062 if (types & EV_CHECK)
4063 for (i = checkcnt; i--; )
4064 cb (EV_A_ EV_CHECK, checks [i]);
4065#endif
4066
4067#if EV_SIGNAL_ENABLE
4068 if (types & EV_SIGNAL)
4069 for (i = 0; i < EV_NSIG - 1; ++i)
4070 for (wl = signals [i].head; wl; )
4071 {
4072 wn = wl->next;
4073 cb (EV_A_ EV_SIGNAL, wl);
4074 wl = wn;
4075 }
4076#endif
4077
4078#if EV_CHILD_ENABLE
4079 if (types & EV_CHILD)
4080 for (i = (EV_PID_HASHSIZE); i--; )
4081 for (wl = childs [i]; wl; )
4082 {
4083 wn = wl->next;
4084 cb (EV_A_ EV_CHILD, wl);
4085 wl = wn;
4086 }
4087#endif
4088/* EV_STAT 0x00001000 /* stat data changed */
4089/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4090}
4091#endif
4092
4093#if EV_MULTIPLICITY
4094 #include "ev_wrap.h"
4095#endif
4096
4097EV_CPP(})
4098

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines