ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.388 by root, Fri Jul 29 12:17:26 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
240#ifndef EV_USE_4HEAP 344#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 345# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 346#endif
243 347
244#ifndef EV_HEAP_CACHE_AT 348#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
246#endif 364#endif
247 365
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
249 373
250#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
253#endif 377#endif
261# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
263#endif 387#endif
264 388
265#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
267# include <sys/select.h> 392# include <sys/select.h>
268# endif 393# endif
269#endif 394#endif
270 395
271#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
272# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
273#endif 404#endif
274 405
275#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 407# include <winsock.h>
277#endif 408#endif
278 409
279#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 412# include <stdint.h>
282# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
283extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
284# endif 415# endif
285int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 417# ifdef O_CLOEXEC
287} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
288# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
289#endif 446#endif
290 447
291/**/ 448/**/
292 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
293/* 456/*
294 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 459 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 462
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 465
307#if __GNUC__ >= 4 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
308# define expect(expr,value) __builtin_expect ((expr),(value)) 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
309# define noinline __attribute__ ((noinline)) 468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
310#else 493#else
311# define expect(expr,value) (expr) 494 #define ecb_inline static
312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif 495#endif
496
497#ifndef ECB_MEMORY_FENCE
498 #if ECB_GCC_VERSION(2,5)
499 #if __x86
500 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE /* better be safe than sorry */
503 #elif __amd64
504 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
505 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507 #endif
316#endif 508 #endif
509#endif
317 510
511#ifndef ECB_MEMORY_FENCE
512 #if ECB_GCC_VERSION(4,4)
513 #define ECB_MEMORY_FENCE __sync_synchronize ()
514 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
516 #elif _MSC_VER >= 1400 && 0 /* TODO: only true when using volatiles */
517 #define ECB_MEMORY_FENCE do { } while (0)
518 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
519 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
520 #elif defined(_WIN32)
521 #include <WinNT.h>
522 #define ECB_MEMORY_FENCE MemoryBarrier ()
523 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
524 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
525 #endif
526#endif
527
528#ifndef ECB_MEMORY_FENCE
529 #include <pthread.h>
530
531 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
532 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
533 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
534 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
535#endif
536
537#if ECB_GCC_VERSION(3,1)
538 #define ecb_attribute(attrlist) __attribute__(attrlist)
539 #define ecb_is_constant(expr) __builtin_constant_p (expr)
540 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
541 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
542#else
543 #define ecb_attribute(attrlist)
544 #define ecb_is_constant(expr) 0
545 #define ecb_expect(expr,value) (expr)
546 #define ecb_prefetch(addr,rw,locality)
547#endif
548
549#define ecb_noinline ecb_attribute ((__noinline__))
550#define ecb_noreturn ecb_attribute ((__noreturn__))
551#define ecb_unused ecb_attribute ((__unused__))
552#define ecb_const ecb_attribute ((__const__))
553#define ecb_pure ecb_attribute ((__pure__))
554
555#if ECB_GCC_VERSION(4,3)
556 #define ecb_artificial ecb_attribute ((__artificial__))
557 #define ecb_hot ecb_attribute ((__hot__))
558 #define ecb_cold ecb_attribute ((__cold__))
559#else
560 #define ecb_artificial
561 #define ecb_hot
562 #define ecb_cold
563#endif
564
565/* put around conditional expressions if you are very sure that the */
566/* expression is mostly true or mostly false. note that these return */
567/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 568#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 569#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
570/* ecb.h end */
571
572#define expect_false(cond) ecb_expect_false (cond)
573#define expect_true(cond) ecb_expect_true (cond)
574#define noinline ecb_noinline
575
320#define inline_size static inline 576#define inline_size ecb_inline
321 577
322#if EV_MINIMAL 578#if EV_FEATURE_CODE
579# define inline_speed ecb_inline
580#else
323# define inline_speed static noinline 581# define inline_speed static noinline
582#endif
583
584#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
585
586#if EV_MINPRI == EV_MAXPRI
587# define ABSPRI(w) (((W)w), 0)
324#else 588#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 589# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
590#endif
330 591
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 592#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 593#define EMPTY2(a,b) /* used to suppress some warnings */
333 594
334typedef ev_watcher *W; 595typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 597typedef ev_watcher_time *WT;
337 598
338#define ev_active(w) ((W)(w))->active 599#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 600#define ev_at(w) ((WT)(w))->at
340 601
602#if EV_USE_REALTIME
603/* sig_atomic_t is used to avoid per-thread variables or locking but still */
604/* giving it a reasonably high chance of working on typical architectures */
605static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
606#endif
607
341#if EV_USE_MONOTONIC 608#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 609static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
610#endif
611
612#ifndef EV_FD_TO_WIN32_HANDLE
613# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
614#endif
615#ifndef EV_WIN32_HANDLE_TO_FD
616# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
617#endif
618#ifndef EV_WIN32_CLOSE_FD
619# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 620#endif
346 621
347#ifdef _WIN32 622#ifdef _WIN32
348# include "ev_win32.c" 623# include "ev_win32.c"
349#endif 624#endif
350 625
351/*****************************************************************************/ 626/*****************************************************************************/
352 627
628/* define a suitable floor function (only used by periodics atm) */
629
630#if EV_USE_FLOOR
631# include <math.h>
632# define ev_floor(v) floor (v)
633#else
634
635#include <float.h>
636
637/* a floor() replacement function, should be independent of ev_tstamp type */
638static ev_tstamp noinline
639ev_floor (ev_tstamp v)
640{
641 /* the choice of shift factor is not terribly important */
642#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
643 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
644#else
645 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
646#endif
647
648 /* argument too large for an unsigned long? */
649 if (expect_false (v >= shift))
650 {
651 ev_tstamp f;
652
653 if (v == v - 1.)
654 return v; /* very large number */
655
656 f = shift * ev_floor (v * (1. / shift));
657 return f + ev_floor (v - f);
658 }
659
660 /* special treatment for negative args? */
661 if (expect_false (v < 0.))
662 {
663 ev_tstamp f = -ev_floor (-v);
664
665 return f - (f == v ? 0 : 1);
666 }
667
668 /* fits into an unsigned long */
669 return (unsigned long)v;
670}
671
672#endif
673
674/*****************************************************************************/
675
676#ifdef __linux
677# include <sys/utsname.h>
678#endif
679
680static unsigned int noinline ecb_cold
681ev_linux_version (void)
682{
683#ifdef __linux
684 unsigned int v = 0;
685 struct utsname buf;
686 int i;
687 char *p = buf.release;
688
689 if (uname (&buf))
690 return 0;
691
692 for (i = 3+1; --i; )
693 {
694 unsigned int c = 0;
695
696 for (;;)
697 {
698 if (*p >= '0' && *p <= '9')
699 c = c * 10 + *p++ - '0';
700 else
701 {
702 p += *p == '.';
703 break;
704 }
705 }
706
707 v = (v << 8) | c;
708 }
709
710 return v;
711#else
712 return 0;
713#endif
714}
715
716/*****************************************************************************/
717
718#if EV_AVOID_STDIO
719static void noinline ecb_cold
720ev_printerr (const char *msg)
721{
722 write (STDERR_FILENO, msg, strlen (msg));
723}
724#endif
725
353static void (*syserr_cb)(const char *msg); 726static void (*syserr_cb)(const char *msg);
354 727
355void 728void ecb_cold
356ev_set_syserr_cb (void (*cb)(const char *msg)) 729ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 730{
358 syserr_cb = cb; 731 syserr_cb = cb;
359} 732}
360 733
361static void noinline 734static void noinline ecb_cold
362syserr (const char *msg) 735ev_syserr (const char *msg)
363{ 736{
364 if (!msg) 737 if (!msg)
365 msg = "(libev) system error"; 738 msg = "(libev) system error";
366 739
367 if (syserr_cb) 740 if (syserr_cb)
368 syserr_cb (msg); 741 syserr_cb (msg);
369 else 742 else
370 { 743 {
744#if EV_AVOID_STDIO
745 ev_printerr (msg);
746 ev_printerr (": ");
747 ev_printerr (strerror (errno));
748 ev_printerr ("\n");
749#else
371 perror (msg); 750 perror (msg);
751#endif
372 abort (); 752 abort ();
373 } 753 }
374} 754}
375 755
376static void * 756static void *
377ev_realloc_emul (void *ptr, long size) 757ev_realloc_emul (void *ptr, long size)
378{ 758{
759#if __GLIBC__
760 return realloc (ptr, size);
761#else
379 /* some systems, notably openbsd and darwin, fail to properly 762 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 763 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 764 * the single unix specification, so work around them here.
382 */ 765 */
383 766
384 if (size) 767 if (size)
385 return realloc (ptr, size); 768 return realloc (ptr, size);
386 769
387 free (ptr); 770 free (ptr);
388 return 0; 771 return 0;
772#endif
389} 773}
390 774
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 775static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 776
393void 777void ecb_cold
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 778ev_set_allocator (void *(*cb)(void *ptr, long size))
395{ 779{
396 alloc = cb; 780 alloc = cb;
397} 781}
398 782
401{ 785{
402 ptr = alloc (ptr, size); 786 ptr = alloc (ptr, size);
403 787
404 if (!ptr && size) 788 if (!ptr && size)
405 { 789 {
790#if EV_AVOID_STDIO
791 ev_printerr ("(libev) memory allocation failed, aborting.\n");
792#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 793 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
794#endif
407 abort (); 795 abort ();
408 } 796 }
409 797
410 return ptr; 798 return ptr;
411} 799}
413#define ev_malloc(size) ev_realloc (0, (size)) 801#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 802#define ev_free(ptr) ev_realloc ((ptr), 0)
415 803
416/*****************************************************************************/ 804/*****************************************************************************/
417 805
806/* set in reify when reification needed */
807#define EV_ANFD_REIFY 1
808
809/* file descriptor info structure */
418typedef struct 810typedef struct
419{ 811{
420 WL head; 812 WL head;
421 unsigned char events; 813 unsigned char events; /* the events watched for */
814 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
815 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 816 unsigned char unused;
817#if EV_USE_EPOLL
818 unsigned int egen; /* generation counter to counter epoll bugs */
819#endif
423#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 821 SOCKET handle;
425#endif 822#endif
823#if EV_USE_IOCP
824 OVERLAPPED or, ow;
825#endif
426} ANFD; 826} ANFD;
427 827
828/* stores the pending event set for a given watcher */
428typedef struct 829typedef struct
429{ 830{
430 W w; 831 W w;
431 int events; 832 int events; /* the pending event set for the given watcher */
432} ANPENDING; 833} ANPENDING;
433 834
434#if EV_USE_INOTIFY 835#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 836/* hash table entry per inotify-id */
436typedef struct 837typedef struct
439} ANFS; 840} ANFS;
440#endif 841#endif
441 842
442/* Heap Entry */ 843/* Heap Entry */
443#if EV_HEAP_CACHE_AT 844#if EV_HEAP_CACHE_AT
845 /* a heap element */
444 typedef struct { 846 typedef struct {
445 ev_tstamp at; 847 ev_tstamp at;
446 WT w; 848 WT w;
447 } ANHE; 849 } ANHE;
448 850
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 851 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 852 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 853 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 854#else
855 /* a heap element */
453 typedef WT ANHE; 856 typedef WT ANHE;
454 857
455 #define ANHE_w(he) (he) 858 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 859 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 860 #define ANHE_at_cache(he)
458#endif 861#endif
459 862
460#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
461 864
462 struct ev_loop 865 struct ev_loop
481 884
482 static int ev_default_loop_ptr; 885 static int ev_default_loop_ptr;
483 886
484#endif 887#endif
485 888
889#if EV_FEATURE_API
890# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
891# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
892# define EV_INVOKE_PENDING invoke_cb (EV_A)
893#else
894# define EV_RELEASE_CB (void)0
895# define EV_ACQUIRE_CB (void)0
896# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
897#endif
898
899#define EVBREAK_RECURSE 0x80
900
486/*****************************************************************************/ 901/*****************************************************************************/
487 902
903#ifndef EV_HAVE_EV_TIME
488ev_tstamp 904ev_tstamp
489ev_time (void) 905ev_time (void)
490{ 906{
491#if EV_USE_REALTIME 907#if EV_USE_REALTIME
908 if (expect_true (have_realtime))
909 {
492 struct timespec ts; 910 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 911 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 912 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 913 }
914#endif
915
496 struct timeval tv; 916 struct timeval tv;
497 gettimeofday (&tv, 0); 917 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 918 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 919}
920#endif
501 921
502ev_tstamp inline_size 922inline_size ev_tstamp
503get_clock (void) 923get_clock (void)
504{ 924{
505#if EV_USE_MONOTONIC 925#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 926 if (expect_true (have_monotonic))
507 { 927 {
528 if (delay > 0.) 948 if (delay > 0.)
529 { 949 {
530#if EV_USE_NANOSLEEP 950#if EV_USE_NANOSLEEP
531 struct timespec ts; 951 struct timespec ts;
532 952
533 ts.tv_sec = (time_t)delay; 953 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 954 nanosleep (&ts, 0);
537#elif defined(_WIN32) 955#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 956 Sleep ((unsigned long)(delay * 1e3));
539#else 957#else
540 struct timeval tv; 958 struct timeval tv;
541 959
542 tv.tv_sec = (time_t)delay; 960 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 961 /* something not guaranteed by newer posix versions, but guaranteed */
544 962 /* by older ones */
963 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 964 select (0, 0, 0, 0, &tv);
546#endif 965#endif
547 } 966 }
548} 967}
549 968
550/*****************************************************************************/ 969/*****************************************************************************/
551 970
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 971#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 972
554int inline_size 973/* find a suitable new size for the given array, */
974/* hopefully by rounding to a nice-to-malloc size */
975inline_size int
555array_nextsize (int elem, int cur, int cnt) 976array_nextsize (int elem, int cur, int cnt)
556{ 977{
557 int ncur = cur + 1; 978 int ncur = cur + 1;
558 979
559 do 980 do
570 } 991 }
571 992
572 return ncur; 993 return ncur;
573} 994}
574 995
575static noinline void * 996static void * noinline ecb_cold
576array_realloc (int elem, void *base, int *cur, int cnt) 997array_realloc (int elem, void *base, int *cur, int cnt)
577{ 998{
578 *cur = array_nextsize (elem, *cur, cnt); 999 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 1000 return ev_realloc (base, elem * *cur);
580} 1001}
1002
1003#define array_init_zero(base,count) \
1004 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1005
582#define array_needsize(type,base,cur,cnt,init) \ 1006#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1007 if (expect_false ((cnt) > (cur))) \
584 { \ 1008 { \
585 int ocur_ = (cur); \ 1009 int ecb_unused ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1010 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1011 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1012 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1013 }
590 1014
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1021 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1022 }
599#endif 1023#endif
600 1024
601#define array_free(stem, idx) \ 1025#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1026 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1027
604/*****************************************************************************/ 1028/*****************************************************************************/
1029
1030/* dummy callback for pending events */
1031static void noinline
1032pendingcb (EV_P_ ev_prepare *w, int revents)
1033{
1034}
605 1035
606void noinline 1036void noinline
607ev_feed_event (EV_P_ void *w, int revents) 1037ev_feed_event (EV_P_ void *w, int revents)
608{ 1038{
609 W w_ = (W)w; 1039 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 1048 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 1049 pendings [pri][w_->pending - 1].events = revents;
620 } 1050 }
621} 1051}
622 1052
623void inline_speed 1053inline_speed void
1054feed_reverse (EV_P_ W w)
1055{
1056 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1057 rfeeds [rfeedcnt++] = w;
1058}
1059
1060inline_size void
1061feed_reverse_done (EV_P_ int revents)
1062{
1063 do
1064 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1065 while (rfeedcnt);
1066}
1067
1068inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 1069queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 1070{
626 int i; 1071 int i;
627 1072
628 for (i = 0; i < eventcnt; ++i) 1073 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 1074 ev_feed_event (EV_A_ events [i], type);
630} 1075}
631 1076
632/*****************************************************************************/ 1077/*****************************************************************************/
633 1078
634void inline_size 1079inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 1080fd_event_nocheck (EV_P_ int fd, int revents)
649{ 1081{
650 ANFD *anfd = anfds + fd; 1082 ANFD *anfd = anfds + fd;
651 ev_io *w; 1083 ev_io *w;
652 1084
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1085 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 1089 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 1090 ev_feed_event (EV_A_ (W)w, ev);
659 } 1091 }
660} 1092}
661 1093
1094/* do not submit kernel events for fds that have reify set */
1095/* because that means they changed while we were polling for new events */
1096inline_speed void
1097fd_event (EV_P_ int fd, int revents)
1098{
1099 ANFD *anfd = anfds + fd;
1100
1101 if (expect_true (!anfd->reify))
1102 fd_event_nocheck (EV_A_ fd, revents);
1103}
1104
662void 1105void
663ev_feed_fd_event (EV_P_ int fd, int revents) 1106ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 1107{
665 if (fd >= 0 && fd < anfdmax) 1108 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 1109 fd_event_nocheck (EV_A_ fd, revents);
667} 1110}
668 1111
669void inline_size 1112/* make sure the external fd watch events are in-sync */
1113/* with the kernel/libev internal state */
1114inline_size void
670fd_reify (EV_P) 1115fd_reify (EV_P)
671{ 1116{
672 int i; 1117 int i;
1118
1119#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1120 for (i = 0; i < fdchangecnt; ++i)
1121 {
1122 int fd = fdchanges [i];
1123 ANFD *anfd = anfds + fd;
1124
1125 if (anfd->reify & EV__IOFDSET && anfd->head)
1126 {
1127 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1128
1129 if (handle != anfd->handle)
1130 {
1131 unsigned long arg;
1132
1133 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1134
1135 /* handle changed, but fd didn't - we need to do it in two steps */
1136 backend_modify (EV_A_ fd, anfd->events, 0);
1137 anfd->events = 0;
1138 anfd->handle = handle;
1139 }
1140 }
1141 }
1142#endif
673 1143
674 for (i = 0; i < fdchangecnt; ++i) 1144 for (i = 0; i < fdchangecnt; ++i)
675 { 1145 {
676 int fd = fdchanges [i]; 1146 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 1147 ANFD *anfd = anfds + fd;
678 ev_io *w; 1148 ev_io *w;
679 1149
680 unsigned char events = 0; 1150 unsigned char o_events = anfd->events;
1151 unsigned char o_reify = anfd->reify;
681 1152
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1153 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 1154
685#if EV_SELECT_IS_WINSOCKET 1155 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 1156 {
688 unsigned long argp; 1157 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 1158
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1159 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 1160 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 1161
693 #endif 1162 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1163 o_reify = EV__IOFDSET; /* actually |= */
695 } 1164 }
696#endif
697 1165
698 { 1166 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1167 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1168 }
709 1169
710 fdchangecnt = 0; 1170 fdchangecnt = 0;
711} 1171}
712 1172
713void inline_size 1173/* something about the given fd changed */
1174inline_size void
714fd_change (EV_P_ int fd, int flags) 1175fd_change (EV_P_ int fd, int flags)
715{ 1176{
716 unsigned char reify = anfds [fd].reify; 1177 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1178 anfds [fd].reify |= flags;
718 1179
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1183 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1184 fdchanges [fdchangecnt - 1] = fd;
724 } 1185 }
725} 1186}
726 1187
727void inline_speed 1188/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1189inline_speed void ecb_cold
728fd_kill (EV_P_ int fd) 1190fd_kill (EV_P_ int fd)
729{ 1191{
730 ev_io *w; 1192 ev_io *w;
731 1193
732 while ((w = (ev_io *)anfds [fd].head)) 1194 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1196 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1197 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1198 }
737} 1199}
738 1200
739int inline_size 1201/* check whether the given fd is actually valid, for error recovery */
1202inline_size int ecb_cold
740fd_valid (int fd) 1203fd_valid (int fd)
741{ 1204{
742#ifdef _WIN32 1205#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1206 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1207#else
745 return fcntl (fd, F_GETFD) != -1; 1208 return fcntl (fd, F_GETFD) != -1;
746#endif 1209#endif
747} 1210}
748 1211
749/* called on EBADF to verify fds */ 1212/* called on EBADF to verify fds */
750static void noinline 1213static void noinline ecb_cold
751fd_ebadf (EV_P) 1214fd_ebadf (EV_P)
752{ 1215{
753 int fd; 1216 int fd;
754 1217
755 for (fd = 0; fd < anfdmax; ++fd) 1218 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1219 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1220 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1221 fd_kill (EV_A_ fd);
759} 1222}
760 1223
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1224/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1225static void noinline ecb_cold
763fd_enomem (EV_P) 1226fd_enomem (EV_P)
764{ 1227{
765 int fd; 1228 int fd;
766 1229
767 for (fd = anfdmax; fd--; ) 1230 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1231 if (anfds [fd].events)
769 { 1232 {
770 fd_kill (EV_A_ fd); 1233 fd_kill (EV_A_ fd);
771 return; 1234 break;
772 } 1235 }
773} 1236}
774 1237
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1238/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1239static void noinline
780 1243
781 for (fd = 0; fd < anfdmax; ++fd) 1244 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1245 if (anfds [fd].events)
783 { 1246 {
784 anfds [fd].events = 0; 1247 anfds [fd].events = 0;
1248 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1249 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1250 }
787} 1251}
788 1252
1253/* used to prepare libev internal fd's */
1254/* this is not fork-safe */
1255inline_speed void
1256fd_intern (int fd)
1257{
1258#ifdef _WIN32
1259 unsigned long arg = 1;
1260 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1261#else
1262 fcntl (fd, F_SETFD, FD_CLOEXEC);
1263 fcntl (fd, F_SETFL, O_NONBLOCK);
1264#endif
1265}
1266
789/*****************************************************************************/ 1267/*****************************************************************************/
790 1268
791/* 1269/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1270 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1271 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1272 * the branching factor of the d-tree.
795 */ 1273 */
796 1274
797/* 1275/*
803#if EV_USE_4HEAP 1281#if EV_USE_4HEAP
804 1282
805#define DHEAP 4 1283#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1284#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1285#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1286#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1287
831/* away from the root */ 1288/* away from the root */
832void inline_speed 1289inline_speed void
833downheap (ANHE *heap, int N, int k) 1290downheap (ANHE *heap, int N, int k)
834{ 1291{
835 ANHE he = heap [k]; 1292 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1293 ANHE *E = heap + N + HEAP0;
837 1294
838 for (;;) 1295 for (;;)
839 { 1296 {
840 ev_tstamp minat; 1297 ev_tstamp minat;
841 ANHE *minpos; 1298 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1299 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1300
844 // find minimum child 1301 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1302 if (expect_true (pos + DHEAP - 1 < E))
846 { 1303 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1304 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1305 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1306 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1327
871 heap [k] = he; 1328 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1329 ev_active (ANHE_w (he)) = k;
873} 1330}
874 1331
875#else // 4HEAP 1332#else /* 4HEAP */
876 1333
877#define HEAP0 1 1334#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1335#define HPARENT(k) ((k) >> 1)
1336#define UPHEAP_DONE(p,k) (!(p))
879 1337
880/* towards the root */ 1338/* away from the root */
881void inline_speed 1339inline_speed void
882upheap (ANHE *heap, int k) 1340downheap (ANHE *heap, int N, int k)
883{ 1341{
884 ANHE he = heap [k]; 1342 ANHE he = heap [k];
885 1343
886 for (;;) 1344 for (;;)
887 { 1345 {
888 int p = HPARENT (k); 1346 int c = k << 1;
889 1347
890 /* maybe we could use a dummy element at heap [0]? */ 1348 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1349 break;
893 1350
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1351 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1352 ? 1 : 0;
918 1353
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1354 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1355 break;
921 1356
928 heap [k] = he; 1363 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1364 ev_active (ANHE_w (he)) = k;
930} 1365}
931#endif 1366#endif
932 1367
933void inline_size 1368/* towards the root */
1369inline_speed void
1370upheap (ANHE *heap, int k)
1371{
1372 ANHE he = heap [k];
1373
1374 for (;;)
1375 {
1376 int p = HPARENT (k);
1377
1378 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1379 break;
1380
1381 heap [k] = heap [p];
1382 ev_active (ANHE_w (heap [k])) = k;
1383 k = p;
1384 }
1385
1386 heap [k] = he;
1387 ev_active (ANHE_w (he)) = k;
1388}
1389
1390/* move an element suitably so it is in a correct place */
1391inline_size void
934adjustheap (ANHE *heap, int N, int k) 1392adjustheap (ANHE *heap, int N, int k)
935{ 1393{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1394 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1395 upheap (heap, k);
938 else 1396 else
939 downheap (heap, N, k); 1397 downheap (heap, N, k);
940} 1398}
941 1399
1400/* rebuild the heap: this function is used only once and executed rarely */
1401inline_size void
1402reheap (ANHE *heap, int N)
1403{
1404 int i;
1405
1406 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1407 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1408 for (i = 0; i < N; ++i)
1409 upheap (heap, i + HEAP0);
1410}
1411
942/*****************************************************************************/ 1412/*****************************************************************************/
943 1413
1414/* associate signal watchers to a signal signal */
944typedef struct 1415typedef struct
945{ 1416{
1417 EV_ATOMIC_T pending;
1418#if EV_MULTIPLICITY
1419 EV_P;
1420#endif
946 WL head; 1421 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1422} ANSIG;
949 1423
950static ANSIG *signals; 1424static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1425
967/*****************************************************************************/ 1426/*****************************************************************************/
968 1427
969void inline_speed 1428#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
970fd_intern (int fd)
971{
972#ifdef _WIN32
973 int arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif
979}
980 1429
981static void noinline 1430static void noinline ecb_cold
982evpipe_init (EV_P) 1431evpipe_init (EV_P)
983{ 1432{
984 if (!ev_is_active (&pipeev)) 1433 if (!ev_is_active (&pipe_w))
985 { 1434 {
986#if EV_USE_EVENTFD 1435# if EV_USE_EVENTFD
1436 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1437 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1438 evfd = eventfd (0, 0);
1439
1440 if (evfd >= 0)
988 { 1441 {
989 evpipe [0] = -1; 1442 evpipe [0] = -1;
990 fd_intern (evfd); 1443 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1444 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1445 }
993 else 1446 else
994#endif 1447# endif
995 { 1448 {
996 while (pipe (evpipe)) 1449 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1450 ev_syserr ("(libev) error creating signal/async pipe");
998 1451
999 fd_intern (evpipe [0]); 1452 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1453 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1454 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1455 }
1003 1456
1004 ev_io_start (EV_A_ &pipeev); 1457 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1458 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1459 }
1007} 1460}
1008 1461
1009void inline_size 1462inline_speed void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1463evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1464{
1012 if (!*flag) 1465 if (expect_true (*flag))
1466 return;
1467
1468 *flag = 1;
1469
1470 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1471
1472 pipe_write_skipped = 1;
1473
1474 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1475
1476 if (pipe_write_wanted)
1013 { 1477 {
1478 int old_errno;
1479
1480 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1481
1014 int old_errno = errno; /* save errno because write might clobber it */ 1482 old_errno = errno; /* save errno because write will clobber it */
1015
1016 *flag = 1;
1017 1483
1018#if EV_USE_EVENTFD 1484#if EV_USE_EVENTFD
1019 if (evfd >= 0) 1485 if (evfd >= 0)
1020 { 1486 {
1021 uint64_t counter = 1; 1487 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t)); 1488 write (evfd, &counter, sizeof (uint64_t));
1023 } 1489 }
1024 else 1490 else
1025#endif 1491#endif
1492 {
1493 /* win32 people keep sending patches that change this write() to send() */
1494 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1495 /* so when you think this write should be a send instead, please find out */
1496 /* where your send() is from - it's definitely not the microsoft send, and */
1497 /* tell me. thank you. */
1026 write (evpipe [1], &old_errno, 1); 1498 write (evpipe [1], &(evpipe [1]), 1);
1499 }
1027 1500
1028 errno = old_errno; 1501 errno = old_errno;
1029 } 1502 }
1030} 1503}
1031 1504
1505/* called whenever the libev signal pipe */
1506/* got some events (signal, async) */
1032static void 1507static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1508pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1509{
1510 int i;
1511
1512 if (revents & EV_READ)
1513 {
1035#if EV_USE_EVENTFD 1514#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1515 if (evfd >= 0)
1037 { 1516 {
1038 uint64_t counter; 1517 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1518 read (evfd, &counter, sizeof (uint64_t));
1040 } 1519 }
1041 else 1520 else
1042#endif 1521#endif
1043 { 1522 {
1044 char dummy; 1523 char dummy;
1524 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1045 read (evpipe [0], &dummy, 1); 1525 read (evpipe [0], &dummy, 1);
1526 }
1527 }
1528
1529 pipe_write_skipped = 0;
1530
1531#if EV_SIGNAL_ENABLE
1532 if (sig_pending)
1046 } 1533 {
1534 sig_pending = 0;
1047 1535
1048 if (gotsig && ev_is_default_loop (EV_A)) 1536 for (i = EV_NSIG - 1; i--; )
1049 { 1537 if (expect_false (signals [i].pending))
1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1); 1538 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1539 }
1540#endif
1057 1541
1058#if EV_ASYNC_ENABLE 1542#if EV_ASYNC_ENABLE
1059 if (gotasync) 1543 if (async_pending)
1060 { 1544 {
1061 int i; 1545 async_pending = 0;
1062 gotasync = 0;
1063 1546
1064 for (i = asynccnt; i--; ) 1547 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1548 if (asyncs [i]->sent)
1066 { 1549 {
1067 asyncs [i]->sent = 0; 1550 asyncs [i]->sent = 0;
1071#endif 1554#endif
1072} 1555}
1073 1556
1074/*****************************************************************************/ 1557/*****************************************************************************/
1075 1558
1559void
1560ev_feed_signal (int signum)
1561{
1562#if EV_MULTIPLICITY
1563 EV_P = signals [signum - 1].loop;
1564
1565 if (!EV_A)
1566 return;
1567#endif
1568
1569 if (!ev_active (&pipe_w))
1570 return;
1571
1572 signals [signum - 1].pending = 1;
1573 evpipe_write (EV_A_ &sig_pending);
1574}
1575
1076static void 1576static void
1077ev_sighandler (int signum) 1577ev_sighandler (int signum)
1078{ 1578{
1079#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081#endif
1082
1083#if _WIN32 1579#ifdef _WIN32
1084 signal (signum, ev_sighandler); 1580 signal (signum, ev_sighandler);
1085#endif 1581#endif
1086 1582
1087 signals [signum - 1].gotsig = 1; 1583 ev_feed_signal (signum);
1088 evpipe_write (EV_A_ &gotsig);
1089} 1584}
1090 1585
1091void noinline 1586void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1587ev_feed_signal_event (EV_P_ int signum)
1093{ 1588{
1094 WL w; 1589 WL w;
1095 1590
1591 if (expect_false (signum <= 0 || signum > EV_NSIG))
1592 return;
1593
1594 --signum;
1595
1096#if EV_MULTIPLICITY 1596#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1597 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1598 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1599
1100 --signum; 1600 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1601 return;
1602#endif
1104 1603
1105 signals [signum].gotsig = 0; 1604 signals [signum].pending = 0;
1106 1605
1107 for (w = signals [signum].head; w; w = w->next) 1606 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1607 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1608}
1110 1609
1610#if EV_USE_SIGNALFD
1611static void
1612sigfdcb (EV_P_ ev_io *iow, int revents)
1613{
1614 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1615
1616 for (;;)
1617 {
1618 ssize_t res = read (sigfd, si, sizeof (si));
1619
1620 /* not ISO-C, as res might be -1, but works with SuS */
1621 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1622 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1623
1624 if (res < (ssize_t)sizeof (si))
1625 break;
1626 }
1627}
1628#endif
1629
1630#endif
1631
1111/*****************************************************************************/ 1632/*****************************************************************************/
1112 1633
1634#if EV_CHILD_ENABLE
1113static WL childs [EV_PID_HASHSIZE]; 1635static WL childs [EV_PID_HASHSIZE];
1114
1115#ifndef _WIN32
1116 1636
1117static ev_signal childev; 1637static ev_signal childev;
1118 1638
1119#ifndef WIFCONTINUED 1639#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1640# define WIFCONTINUED(status) 0
1121#endif 1641#endif
1122 1642
1123void inline_speed 1643/* handle a single child status event */
1644inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1645child_reap (EV_P_ int chain, int pid, int status)
1125{ 1646{
1126 ev_child *w; 1647 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1648 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1649
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1650 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 { 1651 {
1131 if ((w->pid == pid || !w->pid) 1652 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1))) 1653 && (!traced || (w->flags & 1)))
1133 { 1654 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1655 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 1662
1142#ifndef WCONTINUED 1663#ifndef WCONTINUED
1143# define WCONTINUED 0 1664# define WCONTINUED 0
1144#endif 1665#endif
1145 1666
1667/* called on sigchld etc., calls waitpid */
1146static void 1668static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1669childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1670{
1149 int pid, status; 1671 int pid, status;
1150 1672
1158 /* make sure we are called again until all children have been reaped */ 1680 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */ 1681 /* we need to do it this way so that the callback gets called before we continue */
1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1161 1683
1162 child_reap (EV_A_ pid, pid, status); 1684 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1) 1685 if ((EV_PID_HASHSIZE) > 1)
1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1686 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1165} 1687}
1166 1688
1167#endif 1689#endif
1168 1690
1169/*****************************************************************************/ 1691/*****************************************************************************/
1170 1692
1693#if EV_USE_IOCP
1694# include "ev_iocp.c"
1695#endif
1171#if EV_USE_PORT 1696#if EV_USE_PORT
1172# include "ev_port.c" 1697# include "ev_port.c"
1173#endif 1698#endif
1174#if EV_USE_KQUEUE 1699#if EV_USE_KQUEUE
1175# include "ev_kqueue.c" 1700# include "ev_kqueue.c"
1182#endif 1707#endif
1183#if EV_USE_SELECT 1708#if EV_USE_SELECT
1184# include "ev_select.c" 1709# include "ev_select.c"
1185#endif 1710#endif
1186 1711
1187int 1712int ecb_cold
1188ev_version_major (void) 1713ev_version_major (void)
1189{ 1714{
1190 return EV_VERSION_MAJOR; 1715 return EV_VERSION_MAJOR;
1191} 1716}
1192 1717
1193int 1718int ecb_cold
1194ev_version_minor (void) 1719ev_version_minor (void)
1195{ 1720{
1196 return EV_VERSION_MINOR; 1721 return EV_VERSION_MINOR;
1197} 1722}
1198 1723
1199/* return true if we are running with elevated privileges and should ignore env variables */ 1724/* return true if we are running with elevated privileges and should ignore env variables */
1200int inline_size 1725int inline_size ecb_cold
1201enable_secure (void) 1726enable_secure (void)
1202{ 1727{
1203#ifdef _WIN32 1728#ifdef _WIN32
1204 return 0; 1729 return 0;
1205#else 1730#else
1206 return getuid () != geteuid () 1731 return getuid () != geteuid ()
1207 || getgid () != getegid (); 1732 || getgid () != getegid ();
1208#endif 1733#endif
1209} 1734}
1210 1735
1211unsigned int 1736unsigned int ecb_cold
1212ev_supported_backends (void) 1737ev_supported_backends (void)
1213{ 1738{
1214 unsigned int flags = 0; 1739 unsigned int flags = 0;
1215 1740
1216 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1741 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1220 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 1745 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1221 1746
1222 return flags; 1747 return flags;
1223} 1748}
1224 1749
1225unsigned int 1750unsigned int ecb_cold
1226ev_recommended_backends (void) 1751ev_recommended_backends (void)
1227{ 1752{
1228 unsigned int flags = ev_supported_backends (); 1753 unsigned int flags = ev_supported_backends ();
1229 1754
1230#ifndef __NetBSD__ 1755#ifndef __NetBSD__
1231 /* kqueue is borked on everything but netbsd apparently */ 1756 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1757 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1758 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1759#endif
1235#ifdef __APPLE__ 1760#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1761 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1762 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1763 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1764#endif
1765#ifdef __FreeBSD__
1766 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1238#endif 1767#endif
1239 1768
1240 return flags; 1769 return flags;
1241} 1770}
1242 1771
1243unsigned int 1772unsigned int ecb_cold
1244ev_embeddable_backends (void) 1773ev_embeddable_backends (void)
1245{ 1774{
1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1775 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1247 1776
1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1777 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */ 1778 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1250 flags &= ~EVBACKEND_EPOLL; 1779 flags &= ~EVBACKEND_EPOLL;
1251 1780
1252 return flags; 1781 return flags;
1253} 1782}
1254 1783
1255unsigned int 1784unsigned int
1256ev_backend (EV_P) 1785ev_backend (EV_P)
1257{ 1786{
1258 return backend; 1787 return backend;
1259} 1788}
1260 1789
1790#if EV_FEATURE_API
1261unsigned int 1791unsigned int
1262ev_loop_count (EV_P) 1792ev_iteration (EV_P)
1263{ 1793{
1264 return loop_count; 1794 return loop_count;
1795}
1796
1797unsigned int
1798ev_depth (EV_P)
1799{
1800 return loop_depth;
1265} 1801}
1266 1802
1267void 1803void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1804ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1805{
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1810ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1811{
1276 timeout_blocktime = interval; 1812 timeout_blocktime = interval;
1277} 1813}
1278 1814
1815void
1816ev_set_userdata (EV_P_ void *data)
1817{
1818 userdata = data;
1819}
1820
1821void *
1822ev_userdata (EV_P)
1823{
1824 return userdata;
1825}
1826
1827void
1828ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1829{
1830 invoke_cb = invoke_pending_cb;
1831}
1832
1833void
1834ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1835{
1836 release_cb = release;
1837 acquire_cb = acquire;
1838}
1839#endif
1840
1841/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1842static void noinline ecb_cold
1280loop_init (EV_P_ unsigned int flags) 1843loop_init (EV_P_ unsigned int flags)
1281{ 1844{
1282 if (!backend) 1845 if (!backend)
1283 { 1846 {
1847 origflags = flags;
1848
1849#if EV_USE_REALTIME
1850 if (!have_realtime)
1851 {
1852 struct timespec ts;
1853
1854 if (!clock_gettime (CLOCK_REALTIME, &ts))
1855 have_realtime = 1;
1856 }
1857#endif
1858
1284#if EV_USE_MONOTONIC 1859#if EV_USE_MONOTONIC
1860 if (!have_monotonic)
1285 { 1861 {
1286 struct timespec ts; 1862 struct timespec ts;
1863
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1864 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1865 have_monotonic = 1;
1289 } 1866 }
1290#endif
1291
1292 ev_rt_now = ev_time ();
1293 mn_now = get_clock ();
1294 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now;
1296
1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif 1867#endif
1305 1868
1306 /* pid check not overridable via env */ 1869 /* pid check not overridable via env */
1307#ifndef _WIN32 1870#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK) 1871 if (flags & EVFLAG_FORKCHECK)
1312 if (!(flags & EVFLAG_NOENV) 1875 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure () 1876 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS")) 1877 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS")); 1878 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1879
1317 if (!(flags & 0x0000ffffU)) 1880 ev_rt_now = ev_time ();
1881 mn_now = get_clock ();
1882 now_floor = mn_now;
1883 rtmn_diff = ev_rt_now - mn_now;
1884#if EV_FEATURE_API
1885 invoke_cb = ev_invoke_pending;
1886#endif
1887
1888 io_blocktime = 0.;
1889 timeout_blocktime = 0.;
1890 backend = 0;
1891 backend_fd = -1;
1892 sig_pending = 0;
1893#if EV_ASYNC_ENABLE
1894 async_pending = 0;
1895#endif
1896 pipe_write_skipped = 0;
1897 pipe_write_wanted = 0;
1898#if EV_USE_INOTIFY
1899 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1900#endif
1901#if EV_USE_SIGNALFD
1902 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1903#endif
1904
1905 if (!(flags & EVBACKEND_MASK))
1318 flags |= ev_recommended_backends (); 1906 flags |= ev_recommended_backends ();
1319 1907
1908#if EV_USE_IOCP
1909 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1910#endif
1320#if EV_USE_PORT 1911#if EV_USE_PORT
1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1912 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1322#endif 1913#endif
1323#if EV_USE_KQUEUE 1914#if EV_USE_KQUEUE
1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1915 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1331#endif 1922#endif
1332#if EV_USE_SELECT 1923#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1924 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1925#endif
1335 1926
1927 ev_prepare_init (&pending_w, pendingcb);
1928
1929#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 ev_init (&pipeev, pipecb); 1930 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1931 ev_set_priority (&pipe_w, EV_MAXPRI);
1932#endif
1338 } 1933 }
1339} 1934}
1340 1935
1341static void noinline 1936/* free up a loop structure */
1937void ecb_cold
1342loop_destroy (EV_P) 1938ev_loop_destroy (EV_P)
1343{ 1939{
1344 int i; 1940 int i;
1345 1941
1942#if EV_MULTIPLICITY
1943 /* mimic free (0) */
1944 if (!EV_A)
1945 return;
1946#endif
1947
1948#if EV_CLEANUP_ENABLE
1949 /* queue cleanup watchers (and execute them) */
1950 if (expect_false (cleanupcnt))
1951 {
1952 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1953 EV_INVOKE_PENDING;
1954 }
1955#endif
1956
1957#if EV_CHILD_ENABLE
1958 if (ev_is_active (&childev))
1959 {
1960 ev_ref (EV_A); /* child watcher */
1961 ev_signal_stop (EV_A_ &childev);
1962 }
1963#endif
1964
1346 if (ev_is_active (&pipeev)) 1965 if (ev_is_active (&pipe_w))
1347 { 1966 {
1348 ev_ref (EV_A); /* signal watcher */ 1967 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1968 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1969
1351#if EV_USE_EVENTFD 1970#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1971 if (evfd >= 0)
1353 close (evfd); 1972 close (evfd);
1354#endif 1973#endif
1355 1974
1356 if (evpipe [0] >= 0) 1975 if (evpipe [0] >= 0)
1357 { 1976 {
1358 close (evpipe [0]); 1977 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1978 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1979 }
1361 } 1980 }
1981
1982#if EV_USE_SIGNALFD
1983 if (ev_is_active (&sigfd_w))
1984 close (sigfd);
1985#endif
1362 1986
1363#if EV_USE_INOTIFY 1987#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1988 if (fs_fd >= 0)
1365 close (fs_fd); 1989 close (fs_fd);
1366#endif 1990#endif
1367 1991
1368 if (backend_fd >= 0) 1992 if (backend_fd >= 0)
1369 close (backend_fd); 1993 close (backend_fd);
1370 1994
1995#if EV_USE_IOCP
1996 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1997#endif
1371#if EV_USE_PORT 1998#if EV_USE_PORT
1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1999 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1373#endif 2000#endif
1374#if EV_USE_KQUEUE 2001#if EV_USE_KQUEUE
1375 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2002 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1390#if EV_IDLE_ENABLE 2017#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 2018 array_free (idle, [i]);
1392#endif 2019#endif
1393 } 2020 }
1394 2021
1395 ev_free (anfds); anfdmax = 0; 2022 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 2023
1397 /* have to use the microsoft-never-gets-it-right macro */ 2024 /* have to use the microsoft-never-gets-it-right macro */
2025 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 2026 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 2027 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 2028#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 2029 array_free (periodic, EMPTY);
1402#endif 2030#endif
1403#if EV_FORK_ENABLE 2031#if EV_FORK_ENABLE
1404 array_free (fork, EMPTY); 2032 array_free (fork, EMPTY);
1405#endif 2033#endif
2034#if EV_CLEANUP_ENABLE
2035 array_free (cleanup, EMPTY);
2036#endif
1406 array_free (prepare, EMPTY); 2037 array_free (prepare, EMPTY);
1407 array_free (check, EMPTY); 2038 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE 2039#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY); 2040 array_free (async, EMPTY);
1410#endif 2041#endif
1411 2042
1412 backend = 0; 2043 backend = 0;
2044
2045#if EV_MULTIPLICITY
2046 if (ev_is_default_loop (EV_A))
2047#endif
2048 ev_default_loop_ptr = 0;
2049#if EV_MULTIPLICITY
2050 else
2051 ev_free (EV_A);
2052#endif
1413} 2053}
1414 2054
1415#if EV_USE_INOTIFY 2055#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 2056inline_size void infy_fork (EV_P);
1417#endif 2057#endif
1418 2058
1419void inline_size 2059inline_size void
1420loop_fork (EV_P) 2060loop_fork (EV_P)
1421{ 2061{
1422#if EV_USE_PORT 2062#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2063 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 2064#endif
1430#endif 2070#endif
1431#if EV_USE_INOTIFY 2071#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 2072 infy_fork (EV_A);
1433#endif 2073#endif
1434 2074
1435 if (ev_is_active (&pipeev)) 2075 if (ev_is_active (&pipe_w))
1436 { 2076 {
1437 /* this "locks" the handlers against writing to the pipe */ 2077 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442#endif
1443 2078
1444 ev_ref (EV_A); 2079 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 2080 ev_io_stop (EV_A_ &pipe_w);
1446 2081
1447#if EV_USE_EVENTFD 2082#if EV_USE_EVENTFD
1448 if (evfd >= 0) 2083 if (evfd >= 0)
1449 close (evfd); 2084 close (evfd);
1450#endif 2085#endif
1451 2086
1452 if (evpipe [0] >= 0) 2087 if (evpipe [0] >= 0)
1453 { 2088 {
1454 close (evpipe [0]); 2089 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 2090 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 2091 }
1457 2092
2093#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1458 evpipe_init (EV_A); 2094 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 2095 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 2096 pipecb (EV_A_ &pipe_w, EV_READ);
2097#endif
1461 } 2098 }
1462 2099
1463 postfork = 0; 2100 postfork = 0;
1464} 2101}
1465 2102
1466#if EV_MULTIPLICITY 2103#if EV_MULTIPLICITY
2104
1467struct ev_loop * 2105struct ev_loop * ecb_cold
1468ev_loop_new (unsigned int flags) 2106ev_loop_new (unsigned int flags)
1469{ 2107{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2108 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 2109
1472 memset (loop, 0, sizeof (struct ev_loop)); 2110 memset (EV_A, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags); 2111 loop_init (EV_A_ flags);
1475 2112
1476 if (ev_backend (EV_A)) 2113 if (ev_backend (EV_A))
1477 return loop; 2114 return EV_A;
1478 2115
2116 ev_free (EV_A);
1479 return 0; 2117 return 0;
1480} 2118}
1481 2119
1482void 2120#endif /* multiplicity */
1483ev_loop_destroy (EV_P)
1484{
1485 loop_destroy (EV_A);
1486 ev_free (loop);
1487}
1488 2121
1489void 2122#if EV_VERIFY
1490ev_loop_fork (EV_P) 2123static void noinline ecb_cold
2124verify_watcher (EV_P_ W w)
1491{ 2125{
1492 postfork = 1; /* must be in line with ev_default_fork */ 2126 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2127
2128 if (w->pending)
2129 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2130}
2131
2132static void noinline ecb_cold
2133verify_heap (EV_P_ ANHE *heap, int N)
2134{
2135 int i;
2136
2137 for (i = HEAP0; i < N + HEAP0; ++i)
2138 {
2139 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2140 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2141 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2142
2143 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2144 }
2145}
2146
2147static void noinline ecb_cold
2148array_verify (EV_P_ W *ws, int cnt)
2149{
2150 while (cnt--)
2151 {
2152 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2153 verify_watcher (EV_A_ ws [cnt]);
2154 }
2155}
2156#endif
2157
2158#if EV_FEATURE_API
2159void ecb_cold
2160ev_verify (EV_P)
2161{
2162#if EV_VERIFY
2163 int i;
2164 WL w;
2165
2166 assert (activecnt >= -1);
2167
2168 assert (fdchangemax >= fdchangecnt);
2169 for (i = 0; i < fdchangecnt; ++i)
2170 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2171
2172 assert (anfdmax >= 0);
2173 for (i = 0; i < anfdmax; ++i)
2174 for (w = anfds [i].head; w; w = w->next)
2175 {
2176 verify_watcher (EV_A_ (W)w);
2177 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2178 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2179 }
2180
2181 assert (timermax >= timercnt);
2182 verify_heap (EV_A_ timers, timercnt);
2183
2184#if EV_PERIODIC_ENABLE
2185 assert (periodicmax >= periodiccnt);
2186 verify_heap (EV_A_ periodics, periodiccnt);
2187#endif
2188
2189 for (i = NUMPRI; i--; )
2190 {
2191 assert (pendingmax [i] >= pendingcnt [i]);
2192#if EV_IDLE_ENABLE
2193 assert (idleall >= 0);
2194 assert (idlemax [i] >= idlecnt [i]);
2195 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2196#endif
2197 }
2198
2199#if EV_FORK_ENABLE
2200 assert (forkmax >= forkcnt);
2201 array_verify (EV_A_ (W *)forks, forkcnt);
2202#endif
2203
2204#if EV_CLEANUP_ENABLE
2205 assert (cleanupmax >= cleanupcnt);
2206 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2207#endif
2208
2209#if EV_ASYNC_ENABLE
2210 assert (asyncmax >= asynccnt);
2211 array_verify (EV_A_ (W *)asyncs, asynccnt);
2212#endif
2213
2214#if EV_PREPARE_ENABLE
2215 assert (preparemax >= preparecnt);
2216 array_verify (EV_A_ (W *)prepares, preparecnt);
2217#endif
2218
2219#if EV_CHECK_ENABLE
2220 assert (checkmax >= checkcnt);
2221 array_verify (EV_A_ (W *)checks, checkcnt);
2222#endif
2223
2224# if 0
2225#if EV_CHILD_ENABLE
2226 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2227 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2228#endif
2229# endif
2230#endif
1493} 2231}
1494#endif 2232#endif
1495 2233
1496#if EV_MULTIPLICITY 2234#if EV_MULTIPLICITY
1497struct ev_loop * 2235struct ev_loop * ecb_cold
1498ev_default_loop_init (unsigned int flags)
1499#else 2236#else
1500int 2237int
2238#endif
1501ev_default_loop (unsigned int flags) 2239ev_default_loop (unsigned int flags)
1502#endif
1503{ 2240{
1504 if (!ev_default_loop_ptr) 2241 if (!ev_default_loop_ptr)
1505 { 2242 {
1506#if EV_MULTIPLICITY 2243#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2244 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 2245#else
1509 ev_default_loop_ptr = 1; 2246 ev_default_loop_ptr = 1;
1510#endif 2247#endif
1511 2248
1512 loop_init (EV_A_ flags); 2249 loop_init (EV_A_ flags);
1513 2250
1514 if (ev_backend (EV_A)) 2251 if (ev_backend (EV_A))
1515 { 2252 {
1516#ifndef _WIN32 2253#if EV_CHILD_ENABLE
1517 ev_signal_init (&childev, childcb, SIGCHLD); 2254 ev_signal_init (&childev, childcb, SIGCHLD);
1518 ev_set_priority (&childev, EV_MAXPRI); 2255 ev_set_priority (&childev, EV_MAXPRI);
1519 ev_signal_start (EV_A_ &childev); 2256 ev_signal_start (EV_A_ &childev);
1520 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2257 ev_unref (EV_A); /* child watcher should not keep loop alive */
1521#endif 2258#endif
1526 2263
1527 return ev_default_loop_ptr; 2264 return ev_default_loop_ptr;
1528} 2265}
1529 2266
1530void 2267void
1531ev_default_destroy (void) 2268ev_loop_fork (EV_P)
1532{ 2269{
1533#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr;
1535#endif
1536
1537#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev);
1540#endif
1541
1542 loop_destroy (EV_A);
1543}
1544
1545void
1546ev_default_fork (void)
1547{
1548#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr;
1550#endif
1551
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 2270 postfork = 1; /* must be in line with ev_default_fork */
1554} 2271}
1555 2272
1556/*****************************************************************************/ 2273/*****************************************************************************/
1557 2274
1558void 2275void
1559ev_invoke (EV_P_ void *w, int revents) 2276ev_invoke (EV_P_ void *w, int revents)
1560{ 2277{
1561 EV_CB_INVOKE ((W)w, revents); 2278 EV_CB_INVOKE ((W)w, revents);
1562} 2279}
1563 2280
1564void inline_speed 2281unsigned int
1565call_pending (EV_P) 2282ev_pending_count (EV_P)
2283{
2284 int pri;
2285 unsigned int count = 0;
2286
2287 for (pri = NUMPRI; pri--; )
2288 count += pendingcnt [pri];
2289
2290 return count;
2291}
2292
2293void noinline
2294ev_invoke_pending (EV_P)
1566{ 2295{
1567 int pri; 2296 int pri;
1568 2297
1569 for (pri = NUMPRI; pri--; ) 2298 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 2299 while (pendingcnt [pri])
1571 { 2300 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2301 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 2302
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1577
1578 p->w->pending = 0; 2303 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 2304 EV_CB_INVOKE (p->w, p->events);
1580 } 2305 EV_FREQUENT_CHECK;
1581 } 2306 }
1582} 2307}
1583 2308
1584#if EV_IDLE_ENABLE 2309#if EV_IDLE_ENABLE
1585void inline_size 2310/* make idle watchers pending. this handles the "call-idle */
2311/* only when higher priorities are idle" logic */
2312inline_size void
1586idle_reify (EV_P) 2313idle_reify (EV_P)
1587{ 2314{
1588 if (expect_false (idleall)) 2315 if (expect_false (idleall))
1589 { 2316 {
1590 int pri; 2317 int pri;
1602 } 2329 }
1603 } 2330 }
1604} 2331}
1605#endif 2332#endif
1606 2333
1607void inline_size 2334/* make timers pending */
2335inline_size void
1608timers_reify (EV_P) 2336timers_reify (EV_P)
1609{ 2337{
2338 EV_FREQUENT_CHECK;
2339
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2340 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2341 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2342 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2343 {
2344 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2345
2346 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2347
2348 /* first reschedule or stop timer */
2349 if (w->repeat)
2350 {
1619 ev_at (w) += w->repeat; 2351 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2352 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2353 ev_at (w) = mn_now;
1622 2354
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2355 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2356
1625 ANHE_at_set (timers [HEAP0]); 2357 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2358 downheap (timers, timercnt, HEAP0);
2359 }
2360 else
2361 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2362
2363 EV_FREQUENT_CHECK;
2364 feed_reverse (EV_A_ (W)w);
1627 } 2365 }
1628 else 2366 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2367
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2368 feed_reverse_done (EV_A_ EV_TIMER);
1632 } 2369 }
1633} 2370}
1634 2371
1635#if EV_PERIODIC_ENABLE 2372#if EV_PERIODIC_ENABLE
1636void inline_size 2373
2374static void noinline
2375periodic_recalc (EV_P_ ev_periodic *w)
2376{
2377 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2378 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2379
2380 /* the above almost always errs on the low side */
2381 while (at <= ev_rt_now)
2382 {
2383 ev_tstamp nat = at + w->interval;
2384
2385 /* when resolution fails us, we use ev_rt_now */
2386 if (expect_false (nat == at))
2387 {
2388 at = ev_rt_now;
2389 break;
2390 }
2391
2392 at = nat;
2393 }
2394
2395 ev_at (w) = at;
2396}
2397
2398/* make periodics pending */
2399inline_size void
1637periodics_reify (EV_P) 2400periodics_reify (EV_P)
1638{ 2401{
2402 EV_FREQUENT_CHECK;
2403
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2404 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2405 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2406 int feed_count = 0;
1642 2407
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2408 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2409 {
2410 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2411
2412 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2413
2414 /* first reschedule or stop timer */
2415 if (w->reschedule_cb)
2416 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2417 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2418
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2419 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2420
1652 ANHE_at_set (periodics [HEAP0]); 2421 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2422 downheap (periodics, periodiccnt, HEAP0);
2423 }
2424 else if (w->interval)
2425 {
2426 periodic_recalc (EV_A_ w);
2427 ANHE_at_cache (periodics [HEAP0]);
2428 downheap (periodics, periodiccnt, HEAP0);
2429 }
2430 else
2431 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2432
2433 EV_FREQUENT_CHECK;
2434 feed_reverse (EV_A_ (W)w);
1654 } 2435 }
1655 else if (w->interval) 2436 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2437
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2438 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2439 }
1679} 2440}
1680 2441
2442/* simply recalculate all periodics */
2443/* TODO: maybe ensure that at least one event happens when jumping forward? */
1681static void noinline 2444static void noinline ecb_cold
1682periodics_reschedule (EV_P) 2445periodics_reschedule (EV_P)
1683{ 2446{
1684 int i; 2447 int i;
1685 2448
1686 /* adjust periodics after time jump */ 2449 /* adjust periodics after time jump */
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2452 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690 2453
1691 if (w->reschedule_cb) 2454 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2455 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2456 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2457 periodic_recalc (EV_A_ w);
1695 2458
1696 ANHE_at_set (periodics [i]); 2459 ANHE_at_cache (periodics [i]);
1697 } 2460 }
1698 2461
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2462 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2463}
2464#endif
2465
2466/* adjust all timers by a given offset */
2467static void noinline ecb_cold
2468timers_reschedule (EV_P_ ev_tstamp adjust)
2469{
2470 int i;
2471
1701 for (i = 0; i < periodiccnt; ++i) 2472 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2473 {
2474 ANHE *he = timers + i + HEAP0;
2475 ANHE_w (*he)->at += adjust;
2476 ANHE_at_cache (*he);
2477 }
1703} 2478}
1704#endif
1705 2479
1706void inline_speed 2480/* fetch new monotonic and realtime times from the kernel */
2481/* also detect if there was a timejump, and act accordingly */
2482inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2483time_update (EV_P_ ev_tstamp max_block)
1708{ 2484{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2485#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2486 if (expect_true (have_monotonic))
1713 { 2487 {
2488 int i;
1714 ev_tstamp odiff = rtmn_diff; 2489 ev_tstamp odiff = rtmn_diff;
1715 2490
1716 mn_now = get_clock (); 2491 mn_now = get_clock ();
1717 2492
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2493 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1734 * doesn't hurt either as we only do this on time-jumps or 2509 * doesn't hurt either as we only do this on time-jumps or
1735 * in the unlikely event of having been preempted here. 2510 * in the unlikely event of having been preempted here.
1736 */ 2511 */
1737 for (i = 4; --i; ) 2512 for (i = 4; --i; )
1738 { 2513 {
2514 ev_tstamp diff;
1739 rtmn_diff = ev_rt_now - mn_now; 2515 rtmn_diff = ev_rt_now - mn_now;
1740 2516
2517 diff = odiff - rtmn_diff;
2518
1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2519 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1742 return; /* all is well */ 2520 return; /* all is well */
1743 2521
1744 ev_rt_now = ev_time (); 2522 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2523 mn_now = get_clock ();
1746 now_floor = mn_now; 2524 now_floor = mn_now;
1747 } 2525 }
1748 2526
2527 /* no timer adjustment, as the monotonic clock doesn't jump */
2528 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2529# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2530 periodics_reschedule (EV_A);
1751# endif 2531# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2532 }
1755 else 2533 else
1756#endif 2534#endif
1757 { 2535 {
1758 ev_rt_now = ev_time (); 2536 ev_rt_now = ev_time ();
1759 2537
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2538 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2539 {
2540 /* adjust timers. this is easy, as the offset is the same for all of them */
2541 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2542#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2543 periodics_reschedule (EV_A);
1764#endif 2544#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2545 }
1773 2546
1774 mn_now = ev_rt_now; 2547 mn_now = ev_rt_now;
1775 } 2548 }
1776} 2549}
1777 2550
1778void 2551void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2552ev_run (EV_P_ int flags)
1794{ 2553{
2554#if EV_FEATURE_API
2555 ++loop_depth;
2556#endif
2557
2558 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2559
1795 loop_done = EVUNLOOP_CANCEL; 2560 loop_done = EVBREAK_CANCEL;
1796 2561
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2562 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2563
1799 do 2564 do
1800 { 2565 {
2566#if EV_VERIFY >= 2
2567 ev_verify (EV_A);
2568#endif
2569
1801#ifndef _WIN32 2570#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2571 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2572 if (expect_false (getpid () != curpid))
1804 { 2573 {
1805 curpid = getpid (); 2574 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2580 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2581 if (expect_false (postfork))
1813 if (forkcnt) 2582 if (forkcnt)
1814 { 2583 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2584 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2585 EV_INVOKE_PENDING;
1817 } 2586 }
1818#endif 2587#endif
1819 2588
2589#if EV_PREPARE_ENABLE
1820 /* queue prepare watchers (and execute them) */ 2590 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2591 if (expect_false (preparecnt))
1822 { 2592 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2593 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2594 EV_INVOKE_PENDING;
1825 } 2595 }
2596#endif
1826 2597
1827 if (expect_false (!activecnt)) 2598 if (expect_false (loop_done))
1828 break; 2599 break;
1829 2600
1830 /* we might have forked, so reify kernel state if necessary */ 2601 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2602 if (expect_false (postfork))
1832 loop_fork (EV_A); 2603 loop_fork (EV_A);
1837 /* calculate blocking time */ 2608 /* calculate blocking time */
1838 { 2609 {
1839 ev_tstamp waittime = 0.; 2610 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2611 ev_tstamp sleeptime = 0.;
1841 2612
2613 /* remember old timestamp for io_blocktime calculation */
2614 ev_tstamp prev_mn_now = mn_now;
2615
2616 /* update time to cancel out callback processing overhead */
2617 time_update (EV_A_ 1e100);
2618
2619 /* from now on, we want a pipe-wake-up */
2620 pipe_write_wanted = 1;
2621
2622 ECB_MEMORY_FENCE; /* amke sure pipe_write_wanted is visible before we check for potential skips */
2623
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2624 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1843 { 2625 {
1844 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100);
1846
1847 waittime = MAX_BLOCKTIME; 2626 waittime = MAX_BLOCKTIME;
1848 2627
1849 if (timercnt) 2628 if (timercnt)
1850 { 2629 {
1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2630 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1852 if (waittime > to) waittime = to; 2631 if (waittime > to) waittime = to;
1853 } 2632 }
1854 2633
1855#if EV_PERIODIC_ENABLE 2634#if EV_PERIODIC_ENABLE
1856 if (periodiccnt) 2635 if (periodiccnt)
1857 { 2636 {
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2637 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1859 if (waittime > to) waittime = to; 2638 if (waittime > to) waittime = to;
1860 } 2639 }
1861#endif 2640#endif
1862 2641
2642 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2643 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2644 waittime = timeout_blocktime;
1865 2645
1866 sleeptime = waittime - backend_fudge; 2646 /* at this point, we NEED to wait, so we have to ensure */
2647 /* to pass a minimum nonzero value to the backend */
2648 if (expect_false (waittime < backend_mintime))
2649 waittime = backend_mintime;
1867 2650
2651 /* extra check because io_blocktime is commonly 0 */
1868 if (expect_true (sleeptime > io_blocktime)) 2652 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2653 {
2654 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2655
2656 if (sleeptime > waittime - backend_mintime)
2657 sleeptime = waittime - backend_mintime;
2658
2659 if (expect_true (sleeptime > 0.))
2660 {
1873 ev_sleep (sleeptime); 2661 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2662 waittime -= sleeptime;
2663 }
1875 } 2664 }
1876 } 2665 }
1877 2666
2667#if EV_FEATURE_API
1878 ++loop_count; 2668 ++loop_count;
2669#endif
2670 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2671 backend_poll (EV_A_ waittime);
2672 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2673
2674 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2675
2676 if (pipe_write_skipped)
2677 {
2678 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2679 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2680 }
2681
1880 2682
1881 /* update ev_rt_now, do magic */ 2683 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2684 time_update (EV_A_ waittime + sleeptime);
1883 } 2685 }
1884 2686
1891#if EV_IDLE_ENABLE 2693#if EV_IDLE_ENABLE
1892 /* queue idle watchers unless other events are pending */ 2694 /* queue idle watchers unless other events are pending */
1893 idle_reify (EV_A); 2695 idle_reify (EV_A);
1894#endif 2696#endif
1895 2697
2698#if EV_CHECK_ENABLE
1896 /* queue check watchers, to be executed first */ 2699 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2700 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2701 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2702#endif
1899 2703
1900 call_pending (EV_A); 2704 EV_INVOKE_PENDING;
1901 } 2705 }
1902 while (expect_true ( 2706 while (expect_true (
1903 activecnt 2707 activecnt
1904 && !loop_done 2708 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2709 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1906 )); 2710 ));
1907 2711
1908 if (loop_done == EVUNLOOP_ONE) 2712 if (loop_done == EVBREAK_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2713 loop_done = EVBREAK_CANCEL;
2714
2715#if EV_FEATURE_API
2716 --loop_depth;
2717#endif
1910} 2718}
1911 2719
1912void 2720void
1913ev_unloop (EV_P_ int how) 2721ev_break (EV_P_ int how)
1914{ 2722{
1915 loop_done = how; 2723 loop_done = how;
1916} 2724}
1917 2725
2726void
2727ev_ref (EV_P)
2728{
2729 ++activecnt;
2730}
2731
2732void
2733ev_unref (EV_P)
2734{
2735 --activecnt;
2736}
2737
2738void
2739ev_now_update (EV_P)
2740{
2741 time_update (EV_A_ 1e100);
2742}
2743
2744void
2745ev_suspend (EV_P)
2746{
2747 ev_now_update (EV_A);
2748}
2749
2750void
2751ev_resume (EV_P)
2752{
2753 ev_tstamp mn_prev = mn_now;
2754
2755 ev_now_update (EV_A);
2756 timers_reschedule (EV_A_ mn_now - mn_prev);
2757#if EV_PERIODIC_ENABLE
2758 /* TODO: really do this? */
2759 periodics_reschedule (EV_A);
2760#endif
2761}
2762
1918/*****************************************************************************/ 2763/*****************************************************************************/
2764/* singly-linked list management, used when the expected list length is short */
1919 2765
1920void inline_size 2766inline_size void
1921wlist_add (WL *head, WL elem) 2767wlist_add (WL *head, WL elem)
1922{ 2768{
1923 elem->next = *head; 2769 elem->next = *head;
1924 *head = elem; 2770 *head = elem;
1925} 2771}
1926 2772
1927void inline_size 2773inline_size void
1928wlist_del (WL *head, WL elem) 2774wlist_del (WL *head, WL elem)
1929{ 2775{
1930 while (*head) 2776 while (*head)
1931 { 2777 {
1932 if (*head == elem) 2778 if (expect_true (*head == elem))
1933 { 2779 {
1934 *head = elem->next; 2780 *head = elem->next;
1935 return; 2781 break;
1936 } 2782 }
1937 2783
1938 head = &(*head)->next; 2784 head = &(*head)->next;
1939 } 2785 }
1940} 2786}
1941 2787
1942void inline_speed 2788/* internal, faster, version of ev_clear_pending */
2789inline_speed void
1943clear_pending (EV_P_ W w) 2790clear_pending (EV_P_ W w)
1944{ 2791{
1945 if (w->pending) 2792 if (w->pending)
1946 { 2793 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2794 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2795 w->pending = 0;
1949 } 2796 }
1950} 2797}
1951 2798
1952int 2799int
1956 int pending = w_->pending; 2803 int pending = w_->pending;
1957 2804
1958 if (expect_true (pending)) 2805 if (expect_true (pending))
1959 { 2806 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2807 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2808 p->w = (W)&pending_w;
1961 w_->pending = 0; 2809 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2810 return p->events;
1964 } 2811 }
1965 else 2812 else
1966 return 0; 2813 return 0;
1967} 2814}
1968 2815
1969void inline_size 2816inline_size void
1970pri_adjust (EV_P_ W w) 2817pri_adjust (EV_P_ W w)
1971{ 2818{
1972 int pri = w->priority; 2819 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2820 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2821 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2822 ev_set_priority (w, pri);
1976} 2823}
1977 2824
1978void inline_speed 2825inline_speed void
1979ev_start (EV_P_ W w, int active) 2826ev_start (EV_P_ W w, int active)
1980{ 2827{
1981 pri_adjust (EV_A_ w); 2828 pri_adjust (EV_A_ w);
1982 w->active = active; 2829 w->active = active;
1983 ev_ref (EV_A); 2830 ev_ref (EV_A);
1984} 2831}
1985 2832
1986void inline_size 2833inline_size void
1987ev_stop (EV_P_ W w) 2834ev_stop (EV_P_ W w)
1988{ 2835{
1989 ev_unref (EV_A); 2836 ev_unref (EV_A);
1990 w->active = 0; 2837 w->active = 0;
1991} 2838}
1998 int fd = w->fd; 2845 int fd = w->fd;
1999 2846
2000 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
2001 return; 2848 return;
2002 2849
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2850 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2851 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2852
2853 EV_FREQUENT_CHECK;
2004 2854
2005 ev_start (EV_A_ (W)w, 1); 2855 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2856 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2857 wlist_add (&anfds[fd].head, (WL)w);
2008 2858
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2859 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2860 w->events &= ~EV__IOFDSET;
2861
2862 EV_FREQUENT_CHECK;
2011} 2863}
2012 2864
2013void noinline 2865void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2866ev_io_stop (EV_P_ ev_io *w)
2015{ 2867{
2016 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2018 return; 2870 return;
2019 2871
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2872 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2873
2874 EV_FREQUENT_CHECK;
2021 2875
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2876 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2877 ev_stop (EV_A_ (W)w);
2024 2878
2025 fd_change (EV_A_ w->fd, 1); 2879 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2880
2881 EV_FREQUENT_CHECK;
2026} 2882}
2027 2883
2028void noinline 2884void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2885ev_timer_start (EV_P_ ev_timer *w)
2030{ 2886{
2031 if (expect_false (ev_is_active (w))) 2887 if (expect_false (ev_is_active (w)))
2032 return; 2888 return;
2033 2889
2034 ev_at (w) += mn_now; 2890 ev_at (w) += mn_now;
2035 2891
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2892 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2893
2894 EV_FREQUENT_CHECK;
2895
2896 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2897 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2898 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2899 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2900 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2901 upheap (timers, ev_active (w));
2043 2902
2903 EV_FREQUENT_CHECK;
2904
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2905 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2906}
2046 2907
2047void noinline 2908void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2909ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2910{
2050 clear_pending (EV_A_ (W)w); 2911 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2912 if (expect_false (!ev_is_active (w)))
2052 return; 2913 return;
2053 2914
2915 EV_FREQUENT_CHECK;
2916
2054 { 2917 {
2055 int active = ev_active (w); 2918 int active = ev_active (w);
2056 2919
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2920 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2921
2922 --timercnt;
2923
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2924 if (expect_true (active < timercnt + HEAP0))
2060 { 2925 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2926 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2927 adjustheap (timers, timercnt, active);
2063 } 2928 }
2064
2065 --timercnt;
2066 } 2929 }
2067 2930
2068 ev_at (w) -= mn_now; 2931 ev_at (w) -= mn_now;
2069 2932
2070 ev_stop (EV_A_ (W)w); 2933 ev_stop (EV_A_ (W)w);
2934
2935 EV_FREQUENT_CHECK;
2071} 2936}
2072 2937
2073void noinline 2938void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2939ev_timer_again (EV_P_ ev_timer *w)
2075{ 2940{
2941 EV_FREQUENT_CHECK;
2942
2076 if (ev_is_active (w)) 2943 if (ev_is_active (w))
2077 { 2944 {
2078 if (w->repeat) 2945 if (w->repeat)
2079 { 2946 {
2080 ev_at (w) = mn_now + w->repeat; 2947 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2948 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2949 adjustheap (timers, timercnt, ev_active (w));
2083 } 2950 }
2084 else 2951 else
2085 ev_timer_stop (EV_A_ w); 2952 ev_timer_stop (EV_A_ w);
2086 } 2953 }
2087 else if (w->repeat) 2954 else if (w->repeat)
2088 { 2955 {
2089 ev_at (w) = w->repeat; 2956 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2957 ev_timer_start (EV_A_ w);
2091 } 2958 }
2959
2960 EV_FREQUENT_CHECK;
2961}
2962
2963ev_tstamp
2964ev_timer_remaining (EV_P_ ev_timer *w)
2965{
2966 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2967}
2093 2968
2094#if EV_PERIODIC_ENABLE 2969#if EV_PERIODIC_ENABLE
2095void noinline 2970void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2971ev_periodic_start (EV_P_ ev_periodic *w)
2100 2975
2101 if (w->reschedule_cb) 2976 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2977 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2978 else if (w->interval)
2104 { 2979 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2980 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2981 periodic_recalc (EV_A_ w);
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2982 }
2109 else 2983 else
2110 ev_at (w) = w->offset; 2984 ev_at (w) = w->offset;
2111 2985
2986 EV_FREQUENT_CHECK;
2987
2988 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2989 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2990 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2991 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2992 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2993 upheap (periodics, ev_active (w));
2117 2994
2995 EV_FREQUENT_CHECK;
2996
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2997 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2998}
2120 2999
2121void noinline 3000void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 3001ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 3002{
2124 clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
2126 return; 3005 return;
2127 3006
3007 EV_FREQUENT_CHECK;
3008
2128 { 3009 {
2129 int active = ev_active (w); 3010 int active = ev_active (w);
2130 3011
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3012 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 3013
3014 --periodiccnt;
3015
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3016 if (expect_true (active < periodiccnt + HEAP0))
2134 { 3017 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3018 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 3019 adjustheap (periodics, periodiccnt, active);
2137 } 3020 }
2138
2139 --periodiccnt;
2140 } 3021 }
2141 3022
2142 ev_stop (EV_A_ (W)w); 3023 ev_stop (EV_A_ (W)w);
3024
3025 EV_FREQUENT_CHECK;
2143} 3026}
2144 3027
2145void noinline 3028void noinline
2146ev_periodic_again (EV_P_ ev_periodic *w) 3029ev_periodic_again (EV_P_ ev_periodic *w)
2147{ 3030{
2153 3036
2154#ifndef SA_RESTART 3037#ifndef SA_RESTART
2155# define SA_RESTART 0 3038# define SA_RESTART 0
2156#endif 3039#endif
2157 3040
3041#if EV_SIGNAL_ENABLE
3042
2158void noinline 3043void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 3044ev_signal_start (EV_P_ ev_signal *w)
2160{ 3045{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 3046 if (expect_false (ev_is_active (w)))
2165 return; 3047 return;
2166 3048
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3049 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 3050
2169 evpipe_init (EV_A); 3051#if EV_MULTIPLICITY
3052 assert (("libev: a signal must not be attached to two different loops",
3053 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 3054
3055 signals [w->signum - 1].loop = EV_A;
3056#endif
3057
3058 EV_FREQUENT_CHECK;
3059
3060#if EV_USE_SIGNALFD
3061 if (sigfd == -2)
2171 { 3062 {
2172#ifndef _WIN32 3063 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 3064 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 3065 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 3066
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3067 if (sigfd >= 0)
3068 {
3069 fd_intern (sigfd); /* doing it twice will not hurt */
2179 3070
2180#ifndef _WIN32 3071 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 3072
2182#endif 3073 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3074 ev_set_priority (&sigfd_w, EV_MAXPRI);
3075 ev_io_start (EV_A_ &sigfd_w);
3076 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3077 }
2183 } 3078 }
3079
3080 if (sigfd >= 0)
3081 {
3082 /* TODO: check .head */
3083 sigaddset (&sigfd_set, w->signum);
3084 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3085
3086 signalfd (sigfd, &sigfd_set, 0);
3087 }
3088#endif
2184 3089
2185 ev_start (EV_A_ (W)w, 1); 3090 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 3091 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 3092
2188 if (!((WL)w)->next) 3093 if (!((WL)w)->next)
3094# if EV_USE_SIGNALFD
3095 if (sigfd < 0) /*TODO*/
3096# endif
2189 { 3097 {
2190#if _WIN32 3098# ifdef _WIN32
3099 evpipe_init (EV_A);
3100
2191 signal (w->signum, ev_sighandler); 3101 signal (w->signum, ev_sighandler);
2192#else 3102# else
2193 struct sigaction sa; 3103 struct sigaction sa;
3104
3105 evpipe_init (EV_A);
3106
2194 sa.sa_handler = ev_sighandler; 3107 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 3108 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3109 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 3110 sigaction (w->signum, &sa, 0);
3111
3112 if (origflags & EVFLAG_NOSIGMASK)
3113 {
3114 sigemptyset (&sa.sa_mask);
3115 sigaddset (&sa.sa_mask, w->signum);
3116 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3117 }
2198#endif 3118#endif
2199 } 3119 }
3120
3121 EV_FREQUENT_CHECK;
2200} 3122}
2201 3123
2202void noinline 3124void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 3125ev_signal_stop (EV_P_ ev_signal *w)
2204{ 3126{
2205 clear_pending (EV_A_ (W)w); 3127 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 3128 if (expect_false (!ev_is_active (w)))
2207 return; 3129 return;
2208 3130
3131 EV_FREQUENT_CHECK;
3132
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 3133 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 3134 ev_stop (EV_A_ (W)w);
2211 3135
2212 if (!signals [w->signum - 1].head) 3136 if (!signals [w->signum - 1].head)
3137 {
3138#if EV_MULTIPLICITY
3139 signals [w->signum - 1].loop = 0; /* unattach from signal */
3140#endif
3141#if EV_USE_SIGNALFD
3142 if (sigfd >= 0)
3143 {
3144 sigset_t ss;
3145
3146 sigemptyset (&ss);
3147 sigaddset (&ss, w->signum);
3148 sigdelset (&sigfd_set, w->signum);
3149
3150 signalfd (sigfd, &sigfd_set, 0);
3151 sigprocmask (SIG_UNBLOCK, &ss, 0);
3152 }
3153 else
3154#endif
2213 signal (w->signum, SIG_DFL); 3155 signal (w->signum, SIG_DFL);
3156 }
3157
3158 EV_FREQUENT_CHECK;
2214} 3159}
3160
3161#endif
3162
3163#if EV_CHILD_ENABLE
2215 3164
2216void 3165void
2217ev_child_start (EV_P_ ev_child *w) 3166ev_child_start (EV_P_ ev_child *w)
2218{ 3167{
2219#if EV_MULTIPLICITY 3168#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3169 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 3170#endif
2222 if (expect_false (ev_is_active (w))) 3171 if (expect_false (ev_is_active (w)))
2223 return; 3172 return;
2224 3173
3174 EV_FREQUENT_CHECK;
3175
2225 ev_start (EV_A_ (W)w, 1); 3176 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3177 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3178
3179 EV_FREQUENT_CHECK;
2227} 3180}
2228 3181
2229void 3182void
2230ev_child_stop (EV_P_ ev_child *w) 3183ev_child_stop (EV_P_ ev_child *w)
2231{ 3184{
2232 clear_pending (EV_A_ (W)w); 3185 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 3186 if (expect_false (!ev_is_active (w)))
2234 return; 3187 return;
2235 3188
3189 EV_FREQUENT_CHECK;
3190
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3191 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
2238} 3195}
3196
3197#endif
2239 3198
2240#if EV_STAT_ENABLE 3199#if EV_STAT_ENABLE
2241 3200
2242# ifdef _WIN32 3201# ifdef _WIN32
2243# undef lstat 3202# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 3203# define lstat(a,b) _stati64 (a,b)
2245# endif 3204# endif
2246 3205
2247#define DEF_STAT_INTERVAL 5.0074891 3206#define DEF_STAT_INTERVAL 5.0074891
3207#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 3208#define MIN_STAT_INTERVAL 0.1074891
2249 3209
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3210static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 3211
2252#if EV_USE_INOTIFY 3212#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 3213
3214/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3215# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2254 3216
2255static void noinline 3217static void noinline
2256infy_add (EV_P_ ev_stat *w) 3218infy_add (EV_P_ ev_stat *w)
2257{ 3219{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3220 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 3221
2260 if (w->wd < 0) 3222 if (w->wd >= 0)
3223 {
3224 struct statfs sfs;
3225
3226 /* now local changes will be tracked by inotify, but remote changes won't */
3227 /* unless the filesystem is known to be local, we therefore still poll */
3228 /* also do poll on <2.6.25, but with normal frequency */
3229
3230 if (!fs_2625)
3231 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3232 else if (!statfs (w->path, &sfs)
3233 && (sfs.f_type == 0x1373 /* devfs */
3234 || sfs.f_type == 0xEF53 /* ext2/3 */
3235 || sfs.f_type == 0x3153464a /* jfs */
3236 || sfs.f_type == 0x52654973 /* reiser3 */
3237 || sfs.f_type == 0x01021994 /* tempfs */
3238 || sfs.f_type == 0x58465342 /* xfs */))
3239 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3240 else
3241 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 3242 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3243 else
3244 {
3245 /* can't use inotify, continue to stat */
3246 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 3247
2264 /* monitor some parent directory for speedup hints */ 3248 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3249 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 3250 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3251 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 3252 {
2269 char path [4096]; 3253 char path [4096];
2270 strcpy (path, w->path); 3254 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3258 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3259 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 3260
2277 char *pend = strrchr (path, '/'); 3261 char *pend = strrchr (path, '/');
2278 3262
2279 if (!pend) 3263 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 3264 break;
2281 3265
2282 *pend = 0; 3266 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 3267 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 3268 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3269 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 3270 }
2287 } 3271 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 3272
2291 if (w->wd >= 0) 3273 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3274 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3275
3276 /* now re-arm timer, if required */
3277 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3278 ev_timer_again (EV_A_ &w->timer);
3279 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 3280}
2294 3281
2295static void noinline 3282static void noinline
2296infy_del (EV_P_ ev_stat *w) 3283infy_del (EV_P_ ev_stat *w)
2297{ 3284{
2300 3287
2301 if (wd < 0) 3288 if (wd < 0)
2302 return; 3289 return;
2303 3290
2304 w->wd = -2; 3291 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3292 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w); 3293 wlist_del (&fs_hash [slot].head, (WL)w);
2307 3294
2308 /* remove this watcher, if others are watching it, they will rearm */ 3295 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd); 3296 inotify_rm_watch (fs_fd, wd);
2310} 3297}
2311 3298
2312static void noinline 3299static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 3301{
2315 if (slot < 0) 3302 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 3303 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3304 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 3305 infy_wd (EV_A_ slot, wd, ev);
2319 else 3306 else
2320 { 3307 {
2321 WL w_; 3308 WL w_;
2322 3309
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3310 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2324 { 3311 {
2325 ev_stat *w = (ev_stat *)w_; 3312 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */ 3313 w_ = w_->next; /* lets us remove this watcher and all before it */
2327 3314
2328 if (w->wd == wd || wd == -1) 3315 if (w->wd == wd || wd == -1)
2329 { 3316 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 3318 {
3319 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2332 w->wd = -1; 3320 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 3321 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 3322 }
2335 3323
2336 stat_timer_cb (EV_A_ &w->timer, 0); 3324 stat_timer_cb (EV_A_ &w->timer, 0);
2341 3329
2342static void 3330static void
2343infy_cb (EV_P_ ev_io *w, int revents) 3331infy_cb (EV_P_ ev_io *w, int revents)
2344{ 3332{
2345 char buf [EV_INOTIFY_BUFSIZE]; 3333 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 3334 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 3335 int len = read (fs_fd, buf, sizeof (buf));
2349 3336
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3337 for (ofs = 0; ofs < len; )
3338 {
3339 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3340 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3341 ofs += sizeof (struct inotify_event) + ev->len;
3342 }
2352} 3343}
2353 3344
2354void inline_size 3345inline_size void ecb_cold
3346ev_check_2625 (EV_P)
3347{
3348 /* kernels < 2.6.25 are borked
3349 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3350 */
3351 if (ev_linux_version () < 0x020619)
3352 return;
3353
3354 fs_2625 = 1;
3355}
3356
3357inline_size int
3358infy_newfd (void)
3359{
3360#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3361 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3362 if (fd >= 0)
3363 return fd;
3364#endif
3365 return inotify_init ();
3366}
3367
3368inline_size void
2355infy_init (EV_P) 3369infy_init (EV_P)
2356{ 3370{
2357 if (fs_fd != -2) 3371 if (fs_fd != -2)
2358 return; 3372 return;
2359 3373
3374 fs_fd = -1;
3375
3376 ev_check_2625 (EV_A);
3377
2360 fs_fd = inotify_init (); 3378 fs_fd = infy_newfd ();
2361 3379
2362 if (fs_fd >= 0) 3380 if (fs_fd >= 0)
2363 { 3381 {
3382 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3383 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3384 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3385 ev_io_start (EV_A_ &fs_w);
3386 ev_unref (EV_A);
2367 } 3387 }
2368} 3388}
2369 3389
2370void inline_size 3390inline_size void
2371infy_fork (EV_P) 3391infy_fork (EV_P)
2372{ 3392{
2373 int slot; 3393 int slot;
2374 3394
2375 if (fs_fd < 0) 3395 if (fs_fd < 0)
2376 return; 3396 return;
2377 3397
3398 ev_ref (EV_A);
3399 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3400 close (fs_fd);
2379 fs_fd = inotify_init (); 3401 fs_fd = infy_newfd ();
2380 3402
3403 if (fs_fd >= 0)
3404 {
3405 fd_intern (fs_fd);
3406 ev_io_set (&fs_w, fs_fd, EV_READ);
3407 ev_io_start (EV_A_ &fs_w);
3408 ev_unref (EV_A);
3409 }
3410
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3411 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2382 { 3412 {
2383 WL w_ = fs_hash [slot].head; 3413 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3414 fs_hash [slot].head = 0;
2385 3415
2386 while (w_) 3416 while (w_)
2391 w->wd = -1; 3421 w->wd = -1;
2392 3422
2393 if (fs_fd >= 0) 3423 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3424 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3425 else
3426 {
3427 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3428 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 3429 ev_timer_again (EV_A_ &w->timer);
3430 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3431 }
2397 } 3432 }
2398
2399 } 3433 }
2400} 3434}
2401 3435
3436#endif
3437
3438#ifdef _WIN32
3439# define EV_LSTAT(p,b) _stati64 (p, b)
3440#else
3441# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3442#endif
2403 3443
2404void 3444void
2405ev_stat_stat (EV_P_ ev_stat *w) 3445ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3446{
2413static void noinline 3453static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3454stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 3455{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3456 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 3457
2418 /* we copy this here each the time so that */ 3458 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 3459 ev_stat_stat (EV_A_ w);
2422 3460
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3461 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 3462 if (
2425 w->prev.st_dev != w->attr.st_dev 3463 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 3464 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 3465 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 3466 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 3467 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 3468 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 3469 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 3470 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 3471 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3472 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3473 || prev.st_ctime != w->attr.st_ctime
2436 ) { 3474 ) {
3475 /* we only update w->prev on actual differences */
3476 /* in case we test more often than invoke the callback, */
3477 /* to ensure that prev is always different to attr */
3478 w->prev = prev;
3479
2437 #if EV_USE_INOTIFY 3480 #if EV_USE_INOTIFY
3481 if (fs_fd >= 0)
3482 {
2438 infy_del (EV_A_ w); 3483 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3484 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3485 ev_stat_stat (EV_A_ w); /* avoid race... */
3486 }
2441 #endif 3487 #endif
2442 3488
2443 ev_feed_event (EV_A_ w, EV_STAT); 3489 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3490 }
2445} 3491}
2448ev_stat_start (EV_P_ ev_stat *w) 3494ev_stat_start (EV_P_ ev_stat *w)
2449{ 3495{
2450 if (expect_false (ev_is_active (w))) 3496 if (expect_false (ev_is_active (w)))
2451 return; 3497 return;
2452 3498
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3499 ev_stat_stat (EV_A_ w);
2458 3500
3501 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3502 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3503
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3504 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3505 ev_set_priority (&w->timer, ev_priority (w));
2464 3506
2465#if EV_USE_INOTIFY 3507#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3508 infy_init (EV_A);
2467 3509
2468 if (fs_fd >= 0) 3510 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3511 infy_add (EV_A_ w);
2470 else 3512 else
2471#endif 3513#endif
3514 {
2472 ev_timer_start (EV_A_ &w->timer); 3515 ev_timer_again (EV_A_ &w->timer);
3516 ev_unref (EV_A);
3517 }
2473 3518
2474 ev_start (EV_A_ (W)w, 1); 3519 ev_start (EV_A_ (W)w, 1);
3520
3521 EV_FREQUENT_CHECK;
2475} 3522}
2476 3523
2477void 3524void
2478ev_stat_stop (EV_P_ ev_stat *w) 3525ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3526{
2480 clear_pending (EV_A_ (W)w); 3527 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3528 if (expect_false (!ev_is_active (w)))
2482 return; 3529 return;
2483 3530
3531 EV_FREQUENT_CHECK;
3532
2484#if EV_USE_INOTIFY 3533#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3534 infy_del (EV_A_ w);
2486#endif 3535#endif
3536
3537 if (ev_is_active (&w->timer))
3538 {
3539 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 3540 ev_timer_stop (EV_A_ &w->timer);
3541 }
2488 3542
2489 ev_stop (EV_A_ (W)w); 3543 ev_stop (EV_A_ (W)w);
3544
3545 EV_FREQUENT_CHECK;
2490} 3546}
2491#endif 3547#endif
2492 3548
2493#if EV_IDLE_ENABLE 3549#if EV_IDLE_ENABLE
2494void 3550void
2497 if (expect_false (ev_is_active (w))) 3553 if (expect_false (ev_is_active (w)))
2498 return; 3554 return;
2499 3555
2500 pri_adjust (EV_A_ (W)w); 3556 pri_adjust (EV_A_ (W)w);
2501 3557
3558 EV_FREQUENT_CHECK;
3559
2502 { 3560 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3561 int active = ++idlecnt [ABSPRI (w)];
2504 3562
2505 ++idleall; 3563 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3564 ev_start (EV_A_ (W)w, active);
2507 3565
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3566 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3567 idles [ABSPRI (w)][active - 1] = w;
2510 } 3568 }
3569
3570 EV_FREQUENT_CHECK;
2511} 3571}
2512 3572
2513void 3573void
2514ev_idle_stop (EV_P_ ev_idle *w) 3574ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3575{
2516 clear_pending (EV_A_ (W)w); 3576 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3577 if (expect_false (!ev_is_active (w)))
2518 return; 3578 return;
2519 3579
3580 EV_FREQUENT_CHECK;
3581
2520 { 3582 {
2521 int active = ev_active (w); 3583 int active = ev_active (w);
2522 3584
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3585 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3586 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3587
2526 ev_stop (EV_A_ (W)w); 3588 ev_stop (EV_A_ (W)w);
2527 --idleall; 3589 --idleall;
2528 } 3590 }
2529}
2530#endif
2531 3591
3592 EV_FREQUENT_CHECK;
3593}
3594#endif
3595
3596#if EV_PREPARE_ENABLE
2532void 3597void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3598ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3599{
2535 if (expect_false (ev_is_active (w))) 3600 if (expect_false (ev_is_active (w)))
2536 return; 3601 return;
3602
3603 EV_FREQUENT_CHECK;
2537 3604
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3605 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3606 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3607 prepares [preparecnt - 1] = w;
3608
3609 EV_FREQUENT_CHECK;
2541} 3610}
2542 3611
2543void 3612void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3613ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3614{
2546 clear_pending (EV_A_ (W)w); 3615 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3616 if (expect_false (!ev_is_active (w)))
2548 return; 3617 return;
2549 3618
3619 EV_FREQUENT_CHECK;
3620
2550 { 3621 {
2551 int active = ev_active (w); 3622 int active = ev_active (w);
2552 3623
2553 prepares [active - 1] = prepares [--preparecnt]; 3624 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3625 ev_active (prepares [active - 1]) = active;
2555 } 3626 }
2556 3627
2557 ev_stop (EV_A_ (W)w); 3628 ev_stop (EV_A_ (W)w);
2558}
2559 3629
3630 EV_FREQUENT_CHECK;
3631}
3632#endif
3633
3634#if EV_CHECK_ENABLE
2560void 3635void
2561ev_check_start (EV_P_ ev_check *w) 3636ev_check_start (EV_P_ ev_check *w)
2562{ 3637{
2563 if (expect_false (ev_is_active (w))) 3638 if (expect_false (ev_is_active (w)))
2564 return; 3639 return;
3640
3641 EV_FREQUENT_CHECK;
2565 3642
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3643 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3644 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3645 checks [checkcnt - 1] = w;
3646
3647 EV_FREQUENT_CHECK;
2569} 3648}
2570 3649
2571void 3650void
2572ev_check_stop (EV_P_ ev_check *w) 3651ev_check_stop (EV_P_ ev_check *w)
2573{ 3652{
2574 clear_pending (EV_A_ (W)w); 3653 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3654 if (expect_false (!ev_is_active (w)))
2576 return; 3655 return;
2577 3656
3657 EV_FREQUENT_CHECK;
3658
2578 { 3659 {
2579 int active = ev_active (w); 3660 int active = ev_active (w);
2580 3661
2581 checks [active - 1] = checks [--checkcnt]; 3662 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3663 ev_active (checks [active - 1]) = active;
2583 } 3664 }
2584 3665
2585 ev_stop (EV_A_ (W)w); 3666 ev_stop (EV_A_ (W)w);
3667
3668 EV_FREQUENT_CHECK;
2586} 3669}
3670#endif
2587 3671
2588#if EV_EMBED_ENABLE 3672#if EV_EMBED_ENABLE
2589void noinline 3673void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3674ev_embed_sweep (EV_P_ ev_embed *w)
2591{ 3675{
2592 ev_loop (w->other, EVLOOP_NONBLOCK); 3676 ev_run (w->other, EVRUN_NOWAIT);
2593} 3677}
2594 3678
2595static void 3679static void
2596embed_io_cb (EV_P_ ev_io *io, int revents) 3680embed_io_cb (EV_P_ ev_io *io, int revents)
2597{ 3681{
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3682 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599 3683
2600 if (ev_cb (w)) 3684 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3685 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else 3686 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK); 3687 ev_run (w->other, EVRUN_NOWAIT);
2604} 3688}
2605 3689
2606static void 3690static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3691embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3692{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3693 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3694
2611 { 3695 {
2612 struct ev_loop *loop = w->other; 3696 EV_P = w->other;
2613 3697
2614 while (fdchangecnt) 3698 while (fdchangecnt)
2615 { 3699 {
2616 fd_reify (EV_A); 3700 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3701 ev_run (EV_A_ EVRUN_NOWAIT);
2618 } 3702 }
2619 } 3703 }
3704}
3705
3706static void
3707embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3708{
3709 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3710
3711 ev_embed_stop (EV_A_ w);
3712
3713 {
3714 EV_P = w->other;
3715
3716 ev_loop_fork (EV_A);
3717 ev_run (EV_A_ EVRUN_NOWAIT);
3718 }
3719
3720 ev_embed_start (EV_A_ w);
2620} 3721}
2621 3722
2622#if 0 3723#if 0
2623static void 3724static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3725embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2632{ 3733{
2633 if (expect_false (ev_is_active (w))) 3734 if (expect_false (ev_is_active (w)))
2634 return; 3735 return;
2635 3736
2636 { 3737 {
2637 struct ev_loop *loop = w->other; 3738 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3739 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3740 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3741 }
3742
3743 EV_FREQUENT_CHECK;
2641 3744
2642 ev_set_priority (&w->io, ev_priority (w)); 3745 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3746 ev_io_start (EV_A_ &w->io);
2644 3747
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3748 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3749 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3750 ev_prepare_start (EV_A_ &w->prepare);
2648 3751
3752 ev_fork_init (&w->fork, embed_fork_cb);
3753 ev_fork_start (EV_A_ &w->fork);
3754
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3755 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3756
2651 ev_start (EV_A_ (W)w, 1); 3757 ev_start (EV_A_ (W)w, 1);
3758
3759 EV_FREQUENT_CHECK;
2652} 3760}
2653 3761
2654void 3762void
2655ev_embed_stop (EV_P_ ev_embed *w) 3763ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3764{
2657 clear_pending (EV_A_ (W)w); 3765 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3766 if (expect_false (!ev_is_active (w)))
2659 return; 3767 return;
2660 3768
3769 EV_FREQUENT_CHECK;
3770
2661 ev_io_stop (EV_A_ &w->io); 3771 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3772 ev_prepare_stop (EV_A_ &w->prepare);
3773 ev_fork_stop (EV_A_ &w->fork);
2663 3774
2664 ev_stop (EV_A_ (W)w); 3775 ev_stop (EV_A_ (W)w);
3776
3777 EV_FREQUENT_CHECK;
2665} 3778}
2666#endif 3779#endif
2667 3780
2668#if EV_FORK_ENABLE 3781#if EV_FORK_ENABLE
2669void 3782void
2670ev_fork_start (EV_P_ ev_fork *w) 3783ev_fork_start (EV_P_ ev_fork *w)
2671{ 3784{
2672 if (expect_false (ev_is_active (w))) 3785 if (expect_false (ev_is_active (w)))
2673 return; 3786 return;
2674 3787
3788 EV_FREQUENT_CHECK;
3789
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3790 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3791 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3792 forks [forkcnt - 1] = w;
3793
3794 EV_FREQUENT_CHECK;
2678} 3795}
2679 3796
2680void 3797void
2681ev_fork_stop (EV_P_ ev_fork *w) 3798ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3799{
2683 clear_pending (EV_A_ (W)w); 3800 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3801 if (expect_false (!ev_is_active (w)))
2685 return; 3802 return;
2686 3803
3804 EV_FREQUENT_CHECK;
3805
2687 { 3806 {
2688 int active = ev_active (w); 3807 int active = ev_active (w);
2689 3808
2690 forks [active - 1] = forks [--forkcnt]; 3809 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3810 ev_active (forks [active - 1]) = active;
2692 } 3811 }
2693 3812
2694 ev_stop (EV_A_ (W)w); 3813 ev_stop (EV_A_ (W)w);
3814
3815 EV_FREQUENT_CHECK;
3816}
3817#endif
3818
3819#if EV_CLEANUP_ENABLE
3820void
3821ev_cleanup_start (EV_P_ ev_cleanup *w)
3822{
3823 if (expect_false (ev_is_active (w)))
3824 return;
3825
3826 EV_FREQUENT_CHECK;
3827
3828 ev_start (EV_A_ (W)w, ++cleanupcnt);
3829 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3830 cleanups [cleanupcnt - 1] = w;
3831
3832 /* cleanup watchers should never keep a refcount on the loop */
3833 ev_unref (EV_A);
3834 EV_FREQUENT_CHECK;
3835}
3836
3837void
3838ev_cleanup_stop (EV_P_ ev_cleanup *w)
3839{
3840 clear_pending (EV_A_ (W)w);
3841 if (expect_false (!ev_is_active (w)))
3842 return;
3843
3844 EV_FREQUENT_CHECK;
3845 ev_ref (EV_A);
3846
3847 {
3848 int active = ev_active (w);
3849
3850 cleanups [active - 1] = cleanups [--cleanupcnt];
3851 ev_active (cleanups [active - 1]) = active;
3852 }
3853
3854 ev_stop (EV_A_ (W)w);
3855
3856 EV_FREQUENT_CHECK;
2695} 3857}
2696#endif 3858#endif
2697 3859
2698#if EV_ASYNC_ENABLE 3860#if EV_ASYNC_ENABLE
2699void 3861void
2700ev_async_start (EV_P_ ev_async *w) 3862ev_async_start (EV_P_ ev_async *w)
2701{ 3863{
2702 if (expect_false (ev_is_active (w))) 3864 if (expect_false (ev_is_active (w)))
2703 return; 3865 return;
2704 3866
3867 w->sent = 0;
3868
2705 evpipe_init (EV_A); 3869 evpipe_init (EV_A);
3870
3871 EV_FREQUENT_CHECK;
2706 3872
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3873 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3874 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3875 asyncs [asynccnt - 1] = w;
3876
3877 EV_FREQUENT_CHECK;
2710} 3878}
2711 3879
2712void 3880void
2713ev_async_stop (EV_P_ ev_async *w) 3881ev_async_stop (EV_P_ ev_async *w)
2714{ 3882{
2715 clear_pending (EV_A_ (W)w); 3883 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3884 if (expect_false (!ev_is_active (w)))
2717 return; 3885 return;
2718 3886
3887 EV_FREQUENT_CHECK;
3888
2719 { 3889 {
2720 int active = ev_active (w); 3890 int active = ev_active (w);
2721 3891
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3892 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3893 ev_active (asyncs [active - 1]) = active;
2724 } 3894 }
2725 3895
2726 ev_stop (EV_A_ (W)w); 3896 ev_stop (EV_A_ (W)w);
3897
3898 EV_FREQUENT_CHECK;
2727} 3899}
2728 3900
2729void 3901void
2730ev_async_send (EV_P_ ev_async *w) 3902ev_async_send (EV_P_ ev_async *w)
2731{ 3903{
2732 w->sent = 1; 3904 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3905 evpipe_write (EV_A_ &async_pending);
2734} 3906}
2735#endif 3907#endif
2736 3908
2737/*****************************************************************************/ 3909/*****************************************************************************/
2738 3910
2748once_cb (EV_P_ struct ev_once *once, int revents) 3920once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3921{
2750 void (*cb)(int revents, void *arg) = once->cb; 3922 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3923 void *arg = once->arg;
2752 3924
2753 ev_io_stop (EV_A_ &once->io); 3925 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3926 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3927 ev_free (once);
2756 3928
2757 cb (revents, arg); 3929 cb (revents, arg);
2758} 3930}
2759 3931
2760static void 3932static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3933once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3934{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3935 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3936
3937 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3938}
2765 3939
2766static void 3940static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3941once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3942{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3943 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3944
3945 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3946}
2771 3947
2772void 3948void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3949ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3950{
2775 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3951 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2776 3952
2777 if (expect_false (!once)) 3953 if (expect_false (!once))
2778 { 3954 {
2779 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3955 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2780 return; 3956 return;
2781 } 3957 }
2782 3958
2783 once->cb = cb; 3959 once->cb = cb;
2784 once->arg = arg; 3960 once->arg = arg;
2796 ev_timer_set (&once->to, timeout, 0.); 3972 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3973 ev_timer_start (EV_A_ &once->to);
2798 } 3974 }
2799} 3975}
2800 3976
3977/*****************************************************************************/
3978
3979#if EV_WALK_ENABLE
3980void ecb_cold
3981ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3982{
3983 int i, j;
3984 ev_watcher_list *wl, *wn;
3985
3986 if (types & (EV_IO | EV_EMBED))
3987 for (i = 0; i < anfdmax; ++i)
3988 for (wl = anfds [i].head; wl; )
3989 {
3990 wn = wl->next;
3991
3992#if EV_EMBED_ENABLE
3993 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3994 {
3995 if (types & EV_EMBED)
3996 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3997 }
3998 else
3999#endif
4000#if EV_USE_INOTIFY
4001 if (ev_cb ((ev_io *)wl) == infy_cb)
4002 ;
4003 else
4004#endif
4005 if ((ev_io *)wl != &pipe_w)
4006 if (types & EV_IO)
4007 cb (EV_A_ EV_IO, wl);
4008
4009 wl = wn;
4010 }
4011
4012 if (types & (EV_TIMER | EV_STAT))
4013 for (i = timercnt + HEAP0; i-- > HEAP0; )
4014#if EV_STAT_ENABLE
4015 /*TODO: timer is not always active*/
4016 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4017 {
4018 if (types & EV_STAT)
4019 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4020 }
4021 else
4022#endif
4023 if (types & EV_TIMER)
4024 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4025
4026#if EV_PERIODIC_ENABLE
4027 if (types & EV_PERIODIC)
4028 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4029 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4030#endif
4031
4032#if EV_IDLE_ENABLE
4033 if (types & EV_IDLE)
4034 for (j = NUMPRI; i--; )
4035 for (i = idlecnt [j]; i--; )
4036 cb (EV_A_ EV_IDLE, idles [j][i]);
4037#endif
4038
4039#if EV_FORK_ENABLE
4040 if (types & EV_FORK)
4041 for (i = forkcnt; i--; )
4042 if (ev_cb (forks [i]) != embed_fork_cb)
4043 cb (EV_A_ EV_FORK, forks [i]);
4044#endif
4045
4046#if EV_ASYNC_ENABLE
4047 if (types & EV_ASYNC)
4048 for (i = asynccnt; i--; )
4049 cb (EV_A_ EV_ASYNC, asyncs [i]);
4050#endif
4051
4052#if EV_PREPARE_ENABLE
4053 if (types & EV_PREPARE)
4054 for (i = preparecnt; i--; )
4055# if EV_EMBED_ENABLE
4056 if (ev_cb (prepares [i]) != embed_prepare_cb)
4057# endif
4058 cb (EV_A_ EV_PREPARE, prepares [i]);
4059#endif
4060
4061#if EV_CHECK_ENABLE
4062 if (types & EV_CHECK)
4063 for (i = checkcnt; i--; )
4064 cb (EV_A_ EV_CHECK, checks [i]);
4065#endif
4066
4067#if EV_SIGNAL_ENABLE
4068 if (types & EV_SIGNAL)
4069 for (i = 0; i < EV_NSIG - 1; ++i)
4070 for (wl = signals [i].head; wl; )
4071 {
4072 wn = wl->next;
4073 cb (EV_A_ EV_SIGNAL, wl);
4074 wl = wn;
4075 }
4076#endif
4077
4078#if EV_CHILD_ENABLE
4079 if (types & EV_CHILD)
4080 for (i = (EV_PID_HASHSIZE); i--; )
4081 for (wl = childs [i]; wl; )
4082 {
4083 wn = wl->next;
4084 cb (EV_A_ EV_CHILD, wl);
4085 wl = wn;
4086 }
4087#endif
4088/* EV_STAT 0x00001000 /* stat data changed */
4089/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4090}
4091#endif
4092
2801#if EV_MULTIPLICITY 4093#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 4094 #include "ev_wrap.h"
2803#endif 4095#endif
2804 4096
2805#ifdef __cplusplus 4097EV_CPP(})
2806}
2807#endif
2808 4098

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines