ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.389 by root, Wed Aug 3 15:31:23 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
111#ifndef _WIN32 190#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 191# include <sys/time.h>
114# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
115#else 194#else
195# include <io.h>
116# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 197# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
120# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
121#endif 251# endif
122 252#endif
123/**/
124 253
125#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
126# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
127#endif 260#endif
128 261
129#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
131#endif 272#endif
132 273
133#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 276#endif
136 277
137#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
138# ifdef _WIN32 279# ifdef _WIN32
139# define EV_USE_POLL 0 280# define EV_USE_POLL 0
140# else 281# else
141# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 283# endif
143#endif 284#endif
144 285
145#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
146# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
147#endif 292#endif
148 293
149#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
151#endif 296#endif
152 297
153#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 299# define EV_USE_PORT 0
155#endif 300#endif
156 301
157/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
158 309
159/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
160#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
161# undef EV_USE_POLL 370# undef EV_USE_POLL
162# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
163#endif 372#endif
164 373
165#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
170#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
173#endif 382#endif
174 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
175#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 407# include <winsock.h>
177#endif 408#endif
178 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
179/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
180 462
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
185 465
186#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
187# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
188#else 493#else
189# include "ev.h" 494 #define ecb_inline static
495#endif
496
497#ifndef ECB_MEMORY_FENCE
498 #if ECB_GCC_VERSION(2,5)
499 #if __x86
500 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE /* better be safe than sorry */
503 #elif __amd64
504 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
505 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507 #endif
190#endif 508 #endif
509#endif
191 510
192#if __GNUC__ >= 3 511#ifndef ECB_MEMORY_FENCE
512 #if ECB_GCC_VERSION(4,4)
513 #define ECB_MEMORY_FENCE __sync_synchronize ()
514 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
516 #elif _MSC_VER >= 1400 /* VC++ 2005 */
517 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
518 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
519 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
520 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
521 #elif defined(_WIN32)
522 #include <WinNT.h>
523 #define ECB_MEMORY_FENCE MemoryBarrier ()
524 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
525 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
526 #endif
527#endif
528
529#ifndef ECB_MEMORY_FENCE
530 #include <pthread.h>
531
532 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
533 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
534 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
535 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
536#endif
537
538#if ECB_GCC_VERSION(3,1)
539 #define ecb_attribute(attrlist) __attribute__(attrlist)
540 #define ecb_is_constant(expr) __builtin_constant_p (expr)
193# define expect(expr,value) __builtin_expect ((expr),(value)) 541 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 542 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
195#else 543#else
544 #define ecb_attribute(attrlist)
545 #define ecb_is_constant(expr) 0
196# define expect(expr,value) (expr) 546 #define ecb_expect(expr,value) (expr)
197# define inline static 547 #define ecb_prefetch(addr,rw,locality)
198#endif 548#endif
199 549
550#define ecb_noinline ecb_attribute ((__noinline__))
551#define ecb_noreturn ecb_attribute ((__noreturn__))
552#define ecb_unused ecb_attribute ((__unused__))
553#define ecb_const ecb_attribute ((__const__))
554#define ecb_pure ecb_attribute ((__pure__))
555
556#if ECB_GCC_VERSION(4,3)
557 #define ecb_artificial ecb_attribute ((__artificial__))
558 #define ecb_hot ecb_attribute ((__hot__))
559 #define ecb_cold ecb_attribute ((__cold__))
560#else
561 #define ecb_artificial
562 #define ecb_hot
563 #define ecb_cold
564#endif
565
566/* put around conditional expressions if you are very sure that the */
567/* expression is mostly true or mostly false. note that these return */
568/* booleans, not the expression. */
200#define expect_false(expr) expect ((expr) != 0, 0) 569#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 570#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
571/* ecb.h end */
202 572
573#define expect_false(cond) ecb_expect_false (cond)
574#define expect_true(cond) ecb_expect_true (cond)
575#define noinline ecb_noinline
576
577#define inline_size ecb_inline
578
579#if EV_FEATURE_CODE
580# define inline_speed ecb_inline
581#else
582# define inline_speed static noinline
583#endif
584
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 585#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
586
587#if EV_MINPRI == EV_MAXPRI
588# define ABSPRI(w) (((W)w), 0)
589#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 590# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
591#endif
205 592
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 593#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 594#define EMPTY2(a,b) /* used to suppress some warnings */
208 595
209typedef struct ev_watcher *W; 596typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 597typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 598typedef ev_watcher_time *WT;
212 599
600#define ev_active(w) ((W)(w))->active
601#define ev_at(w) ((WT)(w))->at
602
603#if EV_USE_REALTIME
604/* sig_atomic_t is used to avoid per-thread variables or locking but still */
605/* giving it a reasonably high chance of working on typical architectures */
606static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
607#endif
608
609#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 610static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
611#endif
612
613#ifndef EV_FD_TO_WIN32_HANDLE
614# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
615#endif
616#ifndef EV_WIN32_HANDLE_TO_FD
617# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
618#endif
619#ifndef EV_WIN32_CLOSE_FD
620# define EV_WIN32_CLOSE_FD(fd) close (fd)
621#endif
214 622
215#ifdef _WIN32 623#ifdef _WIN32
216# include "ev_win32.c" 624# include "ev_win32.c"
217#endif 625#endif
218 626
219/*****************************************************************************/ 627/*****************************************************************************/
220 628
629/* define a suitable floor function (only used by periodics atm) */
630
631#if EV_USE_FLOOR
632# include <math.h>
633# define ev_floor(v) floor (v)
634#else
635
636#include <float.h>
637
638/* a floor() replacement function, should be independent of ev_tstamp type */
639static ev_tstamp noinline
640ev_floor (ev_tstamp v)
641{
642 /* the choice of shift factor is not terribly important */
643#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
644 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
645#else
646 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
647#endif
648
649 /* argument too large for an unsigned long? */
650 if (expect_false (v >= shift))
651 {
652 ev_tstamp f;
653
654 if (v == v - 1.)
655 return v; /* very large number */
656
657 f = shift * ev_floor (v * (1. / shift));
658 return f + ev_floor (v - f);
659 }
660
661 /* special treatment for negative args? */
662 if (expect_false (v < 0.))
663 {
664 ev_tstamp f = -ev_floor (-v);
665
666 return f - (f == v ? 0 : 1);
667 }
668
669 /* fits into an unsigned long */
670 return (unsigned long)v;
671}
672
673#endif
674
675/*****************************************************************************/
676
677#ifdef __linux
678# include <sys/utsname.h>
679#endif
680
681static unsigned int noinline ecb_cold
682ev_linux_version (void)
683{
684#ifdef __linux
685 unsigned int v = 0;
686 struct utsname buf;
687 int i;
688 char *p = buf.release;
689
690 if (uname (&buf))
691 return 0;
692
693 for (i = 3+1; --i; )
694 {
695 unsigned int c = 0;
696
697 for (;;)
698 {
699 if (*p >= '0' && *p <= '9')
700 c = c * 10 + *p++ - '0';
701 else
702 {
703 p += *p == '.';
704 break;
705 }
706 }
707
708 v = (v << 8) | c;
709 }
710
711 return v;
712#else
713 return 0;
714#endif
715}
716
717/*****************************************************************************/
718
719#if EV_AVOID_STDIO
720static void noinline ecb_cold
721ev_printerr (const char *msg)
722{
723 write (STDERR_FILENO, msg, strlen (msg));
724}
725#endif
726
221static void (*syserr_cb)(const char *msg); 727static void (*syserr_cb)(const char *msg);
222 728
729void ecb_cold
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 730ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 731{
225 syserr_cb = cb; 732 syserr_cb = cb;
226} 733}
227 734
228static void 735static void noinline ecb_cold
229syserr (const char *msg) 736ev_syserr (const char *msg)
230{ 737{
231 if (!msg) 738 if (!msg)
232 msg = "(libev) system error"; 739 msg = "(libev) system error";
233 740
234 if (syserr_cb) 741 if (syserr_cb)
235 syserr_cb (msg); 742 syserr_cb (msg);
236 else 743 else
237 { 744 {
745#if EV_AVOID_STDIO
746 ev_printerr (msg);
747 ev_printerr (": ");
748 ev_printerr (strerror (errno));
749 ev_printerr ("\n");
750#else
238 perror (msg); 751 perror (msg);
752#endif
239 abort (); 753 abort ();
240 } 754 }
241} 755}
242 756
757static void *
758ev_realloc_emul (void *ptr, long size)
759{
760#if __GLIBC__
761 return realloc (ptr, size);
762#else
763 /* some systems, notably openbsd and darwin, fail to properly
764 * implement realloc (x, 0) (as required by both ansi c-89 and
765 * the single unix specification, so work around them here.
766 */
767
768 if (size)
769 return realloc (ptr, size);
770
771 free (ptr);
772 return 0;
773#endif
774}
775
243static void *(*alloc)(void *ptr, long size); 776static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 777
778void ecb_cold
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 779ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 780{
247 alloc = cb; 781 alloc = cb;
248} 782}
249 783
250static void * 784inline_speed void *
251ev_realloc (void *ptr, long size) 785ev_realloc (void *ptr, long size)
252{ 786{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 787 ptr = alloc (ptr, size);
254 788
255 if (!ptr && size) 789 if (!ptr && size)
256 { 790 {
791#if EV_AVOID_STDIO
792 ev_printerr ("(libev) memory allocation failed, aborting.\n");
793#else
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 794 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
795#endif
258 abort (); 796 abort ();
259 } 797 }
260 798
261 return ptr; 799 return ptr;
262} 800}
264#define ev_malloc(size) ev_realloc (0, (size)) 802#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 803#define ev_free(ptr) ev_realloc ((ptr), 0)
266 804
267/*****************************************************************************/ 805/*****************************************************************************/
268 806
807/* set in reify when reification needed */
808#define EV_ANFD_REIFY 1
809
810/* file descriptor info structure */
269typedef struct 811typedef struct
270{ 812{
271 WL head; 813 WL head;
272 unsigned char events; 814 unsigned char events; /* the events watched for */
815 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
816 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 817 unsigned char unused;
818#if EV_USE_EPOLL
819 unsigned int egen; /* generation counter to counter epoll bugs */
820#endif
274#if EV_SELECT_IS_WINSOCKET 821#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
275 SOCKET handle; 822 SOCKET handle;
276#endif 823#endif
824#if EV_USE_IOCP
825 OVERLAPPED or, ow;
826#endif
277} ANFD; 827} ANFD;
278 828
829/* stores the pending event set for a given watcher */
279typedef struct 830typedef struct
280{ 831{
281 W w; 832 W w;
282 int events; 833 int events; /* the pending event set for the given watcher */
283} ANPENDING; 834} ANPENDING;
835
836#if EV_USE_INOTIFY
837/* hash table entry per inotify-id */
838typedef struct
839{
840 WL head;
841} ANFS;
842#endif
843
844/* Heap Entry */
845#if EV_HEAP_CACHE_AT
846 /* a heap element */
847 typedef struct {
848 ev_tstamp at;
849 WT w;
850 } ANHE;
851
852 #define ANHE_w(he) (he).w /* access watcher, read-write */
853 #define ANHE_at(he) (he).at /* access cached at, read-only */
854 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
855#else
856 /* a heap element */
857 typedef WT ANHE;
858
859 #define ANHE_w(he) (he)
860 #define ANHE_at(he) (he)->at
861 #define ANHE_at_cache(he)
862#endif
284 863
285#if EV_MULTIPLICITY 864#if EV_MULTIPLICITY
286 865
287 struct ev_loop 866 struct ev_loop
288 { 867 {
306 885
307 static int ev_default_loop_ptr; 886 static int ev_default_loop_ptr;
308 887
309#endif 888#endif
310 889
890#if EV_FEATURE_API
891# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
892# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
893# define EV_INVOKE_PENDING invoke_cb (EV_A)
894#else
895# define EV_RELEASE_CB (void)0
896# define EV_ACQUIRE_CB (void)0
897# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
898#endif
899
900#define EVBREAK_RECURSE 0x80
901
311/*****************************************************************************/ 902/*****************************************************************************/
312 903
904#ifndef EV_HAVE_EV_TIME
313ev_tstamp 905ev_tstamp
314ev_time (void) 906ev_time (void)
315{ 907{
316#if EV_USE_REALTIME 908#if EV_USE_REALTIME
909 if (expect_true (have_realtime))
910 {
317 struct timespec ts; 911 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 912 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 913 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 914 }
915#endif
916
321 struct timeval tv; 917 struct timeval tv;
322 gettimeofday (&tv, 0); 918 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 919 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 920}
921#endif
326 922
327inline ev_tstamp 923inline_size ev_tstamp
328get_clock (void) 924get_clock (void)
329{ 925{
330#if EV_USE_MONOTONIC 926#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 927 if (expect_true (have_monotonic))
332 { 928 {
345{ 941{
346 return ev_rt_now; 942 return ev_rt_now;
347} 943}
348#endif 944#endif
349 945
350#define array_roundsize(type,n) (((n) | 4) & ~3) 946void
947ev_sleep (ev_tstamp delay)
948{
949 if (delay > 0.)
950 {
951#if EV_USE_NANOSLEEP
952 struct timespec ts;
953
954 EV_TS_SET (ts, delay);
955 nanosleep (&ts, 0);
956#elif defined(_WIN32)
957 Sleep ((unsigned long)(delay * 1e3));
958#else
959 struct timeval tv;
960
961 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
962 /* something not guaranteed by newer posix versions, but guaranteed */
963 /* by older ones */
964 EV_TV_SET (tv, delay);
965 select (0, 0, 0, 0, &tv);
966#endif
967 }
968}
969
970/*****************************************************************************/
971
972#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
973
974/* find a suitable new size for the given array, */
975/* hopefully by rounding to a nice-to-malloc size */
976inline_size int
977array_nextsize (int elem, int cur, int cnt)
978{
979 int ncur = cur + 1;
980
981 do
982 ncur <<= 1;
983 while (cnt > ncur);
984
985 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
986 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
987 {
988 ncur *= elem;
989 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
990 ncur = ncur - sizeof (void *) * 4;
991 ncur /= elem;
992 }
993
994 return ncur;
995}
996
997static void * noinline ecb_cold
998array_realloc (int elem, void *base, int *cur, int cnt)
999{
1000 *cur = array_nextsize (elem, *cur, cnt);
1001 return ev_realloc (base, elem * *cur);
1002}
1003
1004#define array_init_zero(base,count) \
1005 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 1006
352#define array_needsize(type,base,cur,cnt,init) \ 1007#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 1008 if (expect_false ((cnt) > (cur))) \
354 { \ 1009 { \
355 int newcnt = cur; \ 1010 int ecb_unused ocur_ = (cur); \
356 do \ 1011 (base) = (type *)array_realloc \
357 { \ 1012 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 1013 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 1014 }
366 1015
1016#if 0
367#define array_slim(type,stem) \ 1017#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1018 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 1019 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1020 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1021 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1022 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 1023 }
1024#endif
374 1025
375#define array_free(stem, idx) \ 1026#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1027 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 1028
378/*****************************************************************************/ 1029/*****************************************************************************/
379 1030
380static void 1031/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 1032static void noinline
1033pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 1034{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 1035}
392 1036
393void 1037void noinline
394ev_feed_event (EV_P_ void *w, int revents) 1038ev_feed_event (EV_P_ void *w, int revents)
395{ 1039{
396 W w_ = (W)w; 1040 W w_ = (W)w;
1041 int pri = ABSPRI (w_);
397 1042
398 if (expect_false (w_->pending)) 1043 if (expect_false (w_->pending))
1044 pendings [pri][w_->pending - 1].events |= revents;
1045 else
399 { 1046 {
1047 w_->pending = ++pendingcnt [pri];
1048 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1049 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1050 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 1051 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 1052}
409 1053
410static void 1054inline_speed void
1055feed_reverse (EV_P_ W w)
1056{
1057 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1058 rfeeds [rfeedcnt++] = w;
1059}
1060
1061inline_size void
1062feed_reverse_done (EV_P_ int revents)
1063{
1064 do
1065 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1066 while (rfeedcnt);
1067}
1068
1069inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 1070queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 1071{
413 int i; 1072 int i;
414 1073
415 for (i = 0; i < eventcnt; ++i) 1074 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 1075 ev_feed_event (EV_A_ events [i], type);
417} 1076}
418 1077
1078/*****************************************************************************/
1079
419inline void 1080inline_speed void
420fd_event (EV_P_ int fd, int revents) 1081fd_event_nocheck (EV_P_ int fd, int revents)
421{ 1082{
422 ANFD *anfd = anfds + fd; 1083 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 1084 ev_io *w;
424 1085
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1086 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 1087 {
427 int ev = w->events & revents; 1088 int ev = w->events & revents;
428 1089
429 if (ev) 1090 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 1091 ev_feed_event (EV_A_ (W)w, ev);
431 } 1092 }
432} 1093}
433 1094
1095/* do not submit kernel events for fds that have reify set */
1096/* because that means they changed while we were polling for new events */
1097inline_speed void
1098fd_event (EV_P_ int fd, int revents)
1099{
1100 ANFD *anfd = anfds + fd;
1101
1102 if (expect_true (!anfd->reify))
1103 fd_event_nocheck (EV_A_ fd, revents);
1104}
1105
434void 1106void
435ev_feed_fd_event (EV_P_ int fd, int revents) 1107ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 1108{
1109 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 1110 fd_event_nocheck (EV_A_ fd, revents);
438} 1111}
439 1112
440/*****************************************************************************/ 1113/* make sure the external fd watch events are in-sync */
441 1114/* with the kernel/libev internal state */
442inline void 1115inline_size void
443fd_reify (EV_P) 1116fd_reify (EV_P)
444{ 1117{
445 int i; 1118 int i;
446 1119
1120#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
447 for (i = 0; i < fdchangecnt; ++i) 1121 for (i = 0; i < fdchangecnt; ++i)
448 { 1122 {
449 int fd = fdchanges [i]; 1123 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 1124 ANFD *anfd = anfds + fd;
451 struct ev_io *w;
452 1125
453 int events = 0; 1126 if (anfd->reify & EV__IOFDSET && anfd->head)
454
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
456 events |= w->events;
457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 { 1127 {
1128 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1129
1130 if (handle != anfd->handle)
1131 {
461 unsigned long argp; 1132 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 1133
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1134 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1135
1136 /* handle changed, but fd didn't - we need to do it in two steps */
1137 backend_modify (EV_A_ fd, anfd->events, 0);
1138 anfd->events = 0;
1139 anfd->handle = handle;
1140 }
464 } 1141 }
1142 }
465#endif 1143#endif
466 1144
1145 for (i = 0; i < fdchangecnt; ++i)
1146 {
1147 int fd = fdchanges [i];
1148 ANFD *anfd = anfds + fd;
1149 ev_io *w;
1150
1151 unsigned char o_events = anfd->events;
1152 unsigned char o_reify = anfd->reify;
1153
467 anfd->reify = 0; 1154 anfd->reify = 0;
468 1155
469 method_modify (EV_A_ fd, anfd->events, events); 1156 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1157 {
470 anfd->events = events; 1158 anfd->events = 0;
1159
1160 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1161 anfd->events |= (unsigned char)w->events;
1162
1163 if (o_events != anfd->events)
1164 o_reify = EV__IOFDSET; /* actually |= */
1165 }
1166
1167 if (o_reify & EV__IOFDSET)
1168 backend_modify (EV_A_ fd, o_events, anfd->events);
471 } 1169 }
472 1170
473 fdchangecnt = 0; 1171 fdchangecnt = 0;
474} 1172}
475 1173
476static void 1174/* something about the given fd changed */
1175inline_size void
477fd_change (EV_P_ int fd) 1176fd_change (EV_P_ int fd, int flags)
478{ 1177{
479 if (expect_false (anfds [fd].reify)) 1178 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 1179 anfds [fd].reify |= flags;
483 1180
1181 if (expect_true (!reify))
1182 {
484 ++fdchangecnt; 1183 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1184 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 1185 fdchanges [fdchangecnt - 1] = fd;
1186 }
487} 1187}
488 1188
489static void 1189/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1190inline_speed void ecb_cold
490fd_kill (EV_P_ int fd) 1191fd_kill (EV_P_ int fd)
491{ 1192{
492 struct ev_io *w; 1193 ev_io *w;
493 1194
494 while ((w = (struct ev_io *)anfds [fd].head)) 1195 while ((w = (ev_io *)anfds [fd].head))
495 { 1196 {
496 ev_io_stop (EV_A_ w); 1197 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1198 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 1199 }
499} 1200}
500 1201
501inline int 1202/* check whether the given fd is actually valid, for error recovery */
1203inline_size int ecb_cold
502fd_valid (int fd) 1204fd_valid (int fd)
503{ 1205{
504#ifdef _WIN32 1206#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 1207 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
506#else 1208#else
507 return fcntl (fd, F_GETFD) != -1; 1209 return fcntl (fd, F_GETFD) != -1;
508#endif 1210#endif
509} 1211}
510 1212
511/* called on EBADF to verify fds */ 1213/* called on EBADF to verify fds */
512static void 1214static void noinline ecb_cold
513fd_ebadf (EV_P) 1215fd_ebadf (EV_P)
514{ 1216{
515 int fd; 1217 int fd;
516 1218
517 for (fd = 0; fd < anfdmax; ++fd) 1219 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1220 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 1221 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 1222 fd_kill (EV_A_ fd);
521} 1223}
522 1224
523/* called on ENOMEM in select/poll to kill some fds and retry */ 1225/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 1226static void noinline ecb_cold
525fd_enomem (EV_P) 1227fd_enomem (EV_P)
526{ 1228{
527 int fd; 1229 int fd;
528 1230
529 for (fd = anfdmax; fd--; ) 1231 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 1232 if (anfds [fd].events)
531 { 1233 {
532 fd_kill (EV_A_ fd); 1234 fd_kill (EV_A_ fd);
533 return; 1235 break;
534 } 1236 }
535} 1237}
536 1238
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1239/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1240static void noinline
539fd_rearm_all (EV_P) 1241fd_rearm_all (EV_P)
540{ 1242{
541 int fd; 1243 int fd;
542 1244
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1245 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1246 if (anfds [fd].events)
546 { 1247 {
547 anfds [fd].events = 0; 1248 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1249 anfds [fd].emask = 0;
1250 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1251 }
550} 1252}
551 1253
552/*****************************************************************************/ 1254/* used to prepare libev internal fd's */
553 1255/* this is not fork-safe */
554static void
555upheap (WT *heap, int k)
556{
557 WT w = heap [k];
558
559 while (k && heap [k >> 1]->at > w->at)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 }
565
566 heap [k] = w;
567 ((W)heap [k])->active = k + 1;
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 {
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593}
594
595inline void 1256inline_speed void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
602/*****************************************************************************/
603
604typedef struct
605{
606 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG;
609
610static ANSIG *signals;
611static int signalmax;
612
613static int sigpipe [2];
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616
617static void
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1257fd_intern (int fd)
682{ 1258{
683#ifdef _WIN32 1259#ifdef _WIN32
684 int arg = 1; 1260 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1261 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
686#else 1262#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1263 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1264 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1265#endif
690} 1266}
691 1267
1268/*****************************************************************************/
1269
1270/*
1271 * the heap functions want a real array index. array index 0 is guaranteed to not
1272 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1273 * the branching factor of the d-tree.
1274 */
1275
1276/*
1277 * at the moment we allow libev the luxury of two heaps,
1278 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1279 * which is more cache-efficient.
1280 * the difference is about 5% with 50000+ watchers.
1281 */
1282#if EV_USE_4HEAP
1283
1284#define DHEAP 4
1285#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1286#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1287#define UPHEAP_DONE(p,k) ((p) == (k))
1288
1289/* away from the root */
1290inline_speed void
1291downheap (ANHE *heap, int N, int k)
1292{
1293 ANHE he = heap [k];
1294 ANHE *E = heap + N + HEAP0;
1295
1296 for (;;)
1297 {
1298 ev_tstamp minat;
1299 ANHE *minpos;
1300 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1301
1302 /* find minimum child */
1303 if (expect_true (pos + DHEAP - 1 < E))
1304 {
1305 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1306 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1307 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1308 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1309 }
1310 else if (pos < E)
1311 {
1312 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1313 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1314 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1315 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1316 }
1317 else
1318 break;
1319
1320 if (ANHE_at (he) <= minat)
1321 break;
1322
1323 heap [k] = *minpos;
1324 ev_active (ANHE_w (*minpos)) = k;
1325
1326 k = minpos - heap;
1327 }
1328
1329 heap [k] = he;
1330 ev_active (ANHE_w (he)) = k;
1331}
1332
1333#else /* 4HEAP */
1334
1335#define HEAP0 1
1336#define HPARENT(k) ((k) >> 1)
1337#define UPHEAP_DONE(p,k) (!(p))
1338
1339/* away from the root */
1340inline_speed void
1341downheap (ANHE *heap, int N, int k)
1342{
1343 ANHE he = heap [k];
1344
1345 for (;;)
1346 {
1347 int c = k << 1;
1348
1349 if (c >= N + HEAP0)
1350 break;
1351
1352 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1353 ? 1 : 0;
1354
1355 if (ANHE_at (he) <= ANHE_at (heap [c]))
1356 break;
1357
1358 heap [k] = heap [c];
1359 ev_active (ANHE_w (heap [k])) = k;
1360
1361 k = c;
1362 }
1363
1364 heap [k] = he;
1365 ev_active (ANHE_w (he)) = k;
1366}
1367#endif
1368
1369/* towards the root */
1370inline_speed void
1371upheap (ANHE *heap, int k)
1372{
1373 ANHE he = heap [k];
1374
1375 for (;;)
1376 {
1377 int p = HPARENT (k);
1378
1379 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1380 break;
1381
1382 heap [k] = heap [p];
1383 ev_active (ANHE_w (heap [k])) = k;
1384 k = p;
1385 }
1386
1387 heap [k] = he;
1388 ev_active (ANHE_w (he)) = k;
1389}
1390
1391/* move an element suitably so it is in a correct place */
1392inline_size void
1393adjustheap (ANHE *heap, int N, int k)
1394{
1395 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1396 upheap (heap, k);
1397 else
1398 downheap (heap, N, k);
1399}
1400
1401/* rebuild the heap: this function is used only once and executed rarely */
1402inline_size void
1403reheap (ANHE *heap, int N)
1404{
1405 int i;
1406
1407 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1408 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1409 for (i = 0; i < N; ++i)
1410 upheap (heap, i + HEAP0);
1411}
1412
1413/*****************************************************************************/
1414
1415/* associate signal watchers to a signal signal */
1416typedef struct
1417{
1418 EV_ATOMIC_T pending;
1419#if EV_MULTIPLICITY
1420 EV_P;
1421#endif
1422 WL head;
1423} ANSIG;
1424
1425static ANSIG signals [EV_NSIG - 1];
1426
1427/*****************************************************************************/
1428
1429#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1430
1431static void noinline ecb_cold
1432evpipe_init (EV_P)
1433{
1434 if (!ev_is_active (&pipe_w))
1435 {
1436# if EV_USE_EVENTFD
1437 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1438 if (evfd < 0 && errno == EINVAL)
1439 evfd = eventfd (0, 0);
1440
1441 if (evfd >= 0)
1442 {
1443 evpipe [0] = -1;
1444 fd_intern (evfd); /* doing it twice doesn't hurt */
1445 ev_io_set (&pipe_w, evfd, EV_READ);
1446 }
1447 else
1448# endif
1449 {
1450 while (pipe (evpipe))
1451 ev_syserr ("(libev) error creating signal/async pipe");
1452
1453 fd_intern (evpipe [0]);
1454 fd_intern (evpipe [1]);
1455 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1456 }
1457
1458 ev_io_start (EV_A_ &pipe_w);
1459 ev_unref (EV_A); /* watcher should not keep loop alive */
1460 }
1461}
1462
1463inline_speed void
1464evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1465{
1466 if (expect_true (*flag))
1467 return;
1468
1469 *flag = 1;
1470
1471 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1472
1473 pipe_write_skipped = 1;
1474
1475 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1476
1477 if (pipe_write_wanted)
1478 {
1479 int old_errno;
1480
1481 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1482
1483 old_errno = errno; /* save errno because write will clobber it */
1484
1485#if EV_USE_EVENTFD
1486 if (evfd >= 0)
1487 {
1488 uint64_t counter = 1;
1489 write (evfd, &counter, sizeof (uint64_t));
1490 }
1491 else
1492#endif
1493 {
1494 /* win32 people keep sending patches that change this write() to send() */
1495 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1496 /* so when you think this write should be a send instead, please find out */
1497 /* where your send() is from - it's definitely not the microsoft send, and */
1498 /* tell me. thank you. */
1499 write (evpipe [1], &(evpipe [1]), 1);
1500 }
1501
1502 errno = old_errno;
1503 }
1504}
1505
1506/* called whenever the libev signal pipe */
1507/* got some events (signal, async) */
692static void 1508static void
693siginit (EV_P) 1509pipecb (EV_P_ ev_io *iow, int revents)
694{ 1510{
695 fd_intern (sigpipe [0]); 1511 int i;
696 fd_intern (sigpipe [1]);
697 1512
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1513 if (revents & EV_READ)
699 ev_io_start (EV_A_ &sigev); 1514 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1515#if EV_USE_EVENTFD
1516 if (evfd >= 0)
1517 {
1518 uint64_t counter;
1519 read (evfd, &counter, sizeof (uint64_t));
1520 }
1521 else
1522#endif
1523 {
1524 char dummy;
1525 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1526 read (evpipe [0], &dummy, 1);
1527 }
1528 }
1529
1530 pipe_write_skipped = 0;
1531
1532#if EV_SIGNAL_ENABLE
1533 if (sig_pending)
1534 {
1535 sig_pending = 0;
1536
1537 for (i = EV_NSIG - 1; i--; )
1538 if (expect_false (signals [i].pending))
1539 ev_feed_signal_event (EV_A_ i + 1);
1540 }
1541#endif
1542
1543#if EV_ASYNC_ENABLE
1544 if (async_pending)
1545 {
1546 async_pending = 0;
1547
1548 for (i = asynccnt; i--; )
1549 if (asyncs [i]->sent)
1550 {
1551 asyncs [i]->sent = 0;
1552 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1553 }
1554 }
1555#endif
701} 1556}
702 1557
703/*****************************************************************************/ 1558/*****************************************************************************/
704 1559
705static struct ev_child *childs [PID_HASHSIZE]; 1560void
1561ev_feed_signal (int signum)
1562{
1563#if EV_MULTIPLICITY
1564 EV_P = signals [signum - 1].loop;
706 1565
1566 if (!EV_A)
1567 return;
1568#endif
1569
1570 if (!ev_active (&pipe_w))
1571 return;
1572
1573 signals [signum - 1].pending = 1;
1574 evpipe_write (EV_A_ &sig_pending);
1575}
1576
1577static void
1578ev_sighandler (int signum)
1579{
707#ifndef _WIN32 1580#ifdef _WIN32
1581 signal (signum, ev_sighandler);
1582#endif
708 1583
1584 ev_feed_signal (signum);
1585}
1586
1587void noinline
1588ev_feed_signal_event (EV_P_ int signum)
1589{
1590 WL w;
1591
1592 if (expect_false (signum <= 0 || signum > EV_NSIG))
1593 return;
1594
1595 --signum;
1596
1597#if EV_MULTIPLICITY
1598 /* it is permissible to try to feed a signal to the wrong loop */
1599 /* or, likely more useful, feeding a signal nobody is waiting for */
1600
1601 if (expect_false (signals [signum].loop != EV_A))
1602 return;
1603#endif
1604
1605 signals [signum].pending = 0;
1606
1607 for (w = signals [signum].head; w; w = w->next)
1608 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1609}
1610
1611#if EV_USE_SIGNALFD
1612static void
1613sigfdcb (EV_P_ ev_io *iow, int revents)
1614{
1615 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1616
1617 for (;;)
1618 {
1619 ssize_t res = read (sigfd, si, sizeof (si));
1620
1621 /* not ISO-C, as res might be -1, but works with SuS */
1622 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1623 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1624
1625 if (res < (ssize_t)sizeof (si))
1626 break;
1627 }
1628}
1629#endif
1630
1631#endif
1632
1633/*****************************************************************************/
1634
1635#if EV_CHILD_ENABLE
1636static WL childs [EV_PID_HASHSIZE];
1637
709static struct ev_signal childev; 1638static ev_signal childev;
1639
1640#ifndef WIFCONTINUED
1641# define WIFCONTINUED(status) 0
1642#endif
1643
1644/* handle a single child status event */
1645inline_speed void
1646child_reap (EV_P_ int chain, int pid, int status)
1647{
1648 ev_child *w;
1649 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1650
1651 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1652 {
1653 if ((w->pid == pid || !w->pid)
1654 && (!traced || (w->flags & 1)))
1655 {
1656 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1657 w->rpid = pid;
1658 w->rstatus = status;
1659 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1660 }
1661 }
1662}
710 1663
711#ifndef WCONTINUED 1664#ifndef WCONTINUED
712# define WCONTINUED 0 1665# define WCONTINUED 0
713#endif 1666#endif
714 1667
1668/* called on sigchld etc., calls waitpid */
715static void 1669static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1670childcb (EV_P_ ev_signal *sw, int revents)
732{ 1671{
733 int pid, status; 1672 int pid, status;
734 1673
1674 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1675 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1676 if (!WCONTINUED
1677 || errno != EINVAL
1678 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1679 return;
1680
737 /* make sure we are called again until all childs have been reaped */ 1681 /* make sure we are called again until all children have been reaped */
1682 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1683 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1684
740 child_reap (EV_A_ sw, pid, pid, status); 1685 child_reap (EV_A_ pid, pid, status);
1686 if ((EV_PID_HASHSIZE) > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1687 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1688}
744 1689
745#endif 1690#endif
746 1691
747/*****************************************************************************/ 1692/*****************************************************************************/
748 1693
1694#if EV_USE_IOCP
1695# include "ev_iocp.c"
1696#endif
749#if EV_USE_PORT 1697#if EV_USE_PORT
750# include "ev_port.c" 1698# include "ev_port.c"
751#endif 1699#endif
752#if EV_USE_KQUEUE 1700#if EV_USE_KQUEUE
753# include "ev_kqueue.c" 1701# include "ev_kqueue.c"
760#endif 1708#endif
761#if EV_USE_SELECT 1709#if EV_USE_SELECT
762# include "ev_select.c" 1710# include "ev_select.c"
763#endif 1711#endif
764 1712
765int 1713int ecb_cold
766ev_version_major (void) 1714ev_version_major (void)
767{ 1715{
768 return EV_VERSION_MAJOR; 1716 return EV_VERSION_MAJOR;
769} 1717}
770 1718
771int 1719int ecb_cold
772ev_version_minor (void) 1720ev_version_minor (void)
773{ 1721{
774 return EV_VERSION_MINOR; 1722 return EV_VERSION_MINOR;
775} 1723}
776 1724
777/* return true if we are running with elevated privileges and should ignore env variables */ 1725/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1726int inline_size ecb_cold
779enable_secure (void) 1727enable_secure (void)
780{ 1728{
781#ifdef _WIN32 1729#ifdef _WIN32
782 return 0; 1730 return 0;
783#else 1731#else
784 return getuid () != geteuid () 1732 return getuid () != geteuid ()
785 || getgid () != getegid (); 1733 || getgid () != getegid ();
786#endif 1734#endif
787} 1735}
788 1736
1737unsigned int ecb_cold
1738ev_supported_backends (void)
1739{
1740 unsigned int flags = 0;
1741
1742 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1743 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1744 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1745 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1746 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1747
1748 return flags;
1749}
1750
1751unsigned int ecb_cold
1752ev_recommended_backends (void)
1753{
1754 unsigned int flags = ev_supported_backends ();
1755
1756#ifndef __NetBSD__
1757 /* kqueue is borked on everything but netbsd apparently */
1758 /* it usually doesn't work correctly on anything but sockets and pipes */
1759 flags &= ~EVBACKEND_KQUEUE;
1760#endif
1761#ifdef __APPLE__
1762 /* only select works correctly on that "unix-certified" platform */
1763 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1764 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1765#endif
1766#ifdef __FreeBSD__
1767 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1768#endif
1769
1770 return flags;
1771}
1772
1773unsigned int ecb_cold
1774ev_embeddable_backends (void)
1775{
1776 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1777
1778 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1779 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1780 flags &= ~EVBACKEND_EPOLL;
1781
1782 return flags;
1783}
1784
789unsigned int 1785unsigned int
1786ev_backend (EV_P)
1787{
1788 return backend;
1789}
1790
1791#if EV_FEATURE_API
1792unsigned int
1793ev_iteration (EV_P)
1794{
1795 return loop_count;
1796}
1797
1798unsigned int
790ev_method (EV_P) 1799ev_depth (EV_P)
791{ 1800{
792 return method; 1801 return loop_depth;
793} 1802}
794 1803
795static void 1804void
1805ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1806{
1807 io_blocktime = interval;
1808}
1809
1810void
1811ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1812{
1813 timeout_blocktime = interval;
1814}
1815
1816void
1817ev_set_userdata (EV_P_ void *data)
1818{
1819 userdata = data;
1820}
1821
1822void *
1823ev_userdata (EV_P)
1824{
1825 return userdata;
1826}
1827
1828void
1829ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1830{
1831 invoke_cb = invoke_pending_cb;
1832}
1833
1834void
1835ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1836{
1837 release_cb = release;
1838 acquire_cb = acquire;
1839}
1840#endif
1841
1842/* initialise a loop structure, must be zero-initialised */
1843static void noinline ecb_cold
796loop_init (EV_P_ unsigned int flags) 1844loop_init (EV_P_ unsigned int flags)
797{ 1845{
798 if (!method) 1846 if (!backend)
799 { 1847 {
1848 origflags = flags;
1849
1850#if EV_USE_REALTIME
1851 if (!have_realtime)
1852 {
1853 struct timespec ts;
1854
1855 if (!clock_gettime (CLOCK_REALTIME, &ts))
1856 have_realtime = 1;
1857 }
1858#endif
1859
800#if EV_USE_MONOTONIC 1860#if EV_USE_MONOTONIC
1861 if (!have_monotonic)
1862 {
1863 struct timespec ts;
1864
1865 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1866 have_monotonic = 1;
1867 }
1868#endif
1869
1870 /* pid check not overridable via env */
1871#ifndef _WIN32
1872 if (flags & EVFLAG_FORKCHECK)
1873 curpid = getpid ();
1874#endif
1875
1876 if (!(flags & EVFLAG_NOENV)
1877 && !enable_secure ()
1878 && getenv ("LIBEV_FLAGS"))
1879 flags = atoi (getenv ("LIBEV_FLAGS"));
1880
1881 ev_rt_now = ev_time ();
1882 mn_now = get_clock ();
1883 now_floor = mn_now;
1884 rtmn_diff = ev_rt_now - mn_now;
1885#if EV_FEATURE_API
1886 invoke_cb = ev_invoke_pending;
1887#endif
1888
1889 io_blocktime = 0.;
1890 timeout_blocktime = 0.;
1891 backend = 0;
1892 backend_fd = -1;
1893 sig_pending = 0;
1894#if EV_ASYNC_ENABLE
1895 async_pending = 0;
1896#endif
1897 pipe_write_skipped = 0;
1898 pipe_write_wanted = 0;
1899#if EV_USE_INOTIFY
1900 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1901#endif
1902#if EV_USE_SIGNALFD
1903 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1904#endif
1905
1906 if (!(flags & EVBACKEND_MASK))
1907 flags |= ev_recommended_backends ();
1908
1909#if EV_USE_IOCP
1910 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1911#endif
1912#if EV_USE_PORT
1913 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1914#endif
1915#if EV_USE_KQUEUE
1916 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1917#endif
1918#if EV_USE_EPOLL
1919 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1920#endif
1921#if EV_USE_POLL
1922 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1923#endif
1924#if EV_USE_SELECT
1925 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1926#endif
1927
1928 ev_prepare_init (&pending_w, pendingcb);
1929
1930#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1931 ev_init (&pipe_w, pipecb);
1932 ev_set_priority (&pipe_w, EV_MAXPRI);
1933#endif
1934 }
1935}
1936
1937/* free up a loop structure */
1938void ecb_cold
1939ev_loop_destroy (EV_P)
1940{
1941 int i;
1942
1943#if EV_MULTIPLICITY
1944 /* mimic free (0) */
1945 if (!EV_A)
1946 return;
1947#endif
1948
1949#if EV_CLEANUP_ENABLE
1950 /* queue cleanup watchers (and execute them) */
1951 if (expect_false (cleanupcnt))
1952 {
1953 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1954 EV_INVOKE_PENDING;
1955 }
1956#endif
1957
1958#if EV_CHILD_ENABLE
1959 if (ev_is_active (&childev))
1960 {
1961 ev_ref (EV_A); /* child watcher */
1962 ev_signal_stop (EV_A_ &childev);
1963 }
1964#endif
1965
1966 if (ev_is_active (&pipe_w))
1967 {
1968 /*ev_ref (EV_A);*/
1969 /*ev_io_stop (EV_A_ &pipe_w);*/
1970
1971#if EV_USE_EVENTFD
1972 if (evfd >= 0)
1973 close (evfd);
1974#endif
1975
1976 if (evpipe [0] >= 0)
1977 {
1978 EV_WIN32_CLOSE_FD (evpipe [0]);
1979 EV_WIN32_CLOSE_FD (evpipe [1]);
1980 }
1981 }
1982
1983#if EV_USE_SIGNALFD
1984 if (ev_is_active (&sigfd_w))
1985 close (sigfd);
1986#endif
1987
1988#if EV_USE_INOTIFY
1989 if (fs_fd >= 0)
1990 close (fs_fd);
1991#endif
1992
1993 if (backend_fd >= 0)
1994 close (backend_fd);
1995
1996#if EV_USE_IOCP
1997 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1998#endif
1999#if EV_USE_PORT
2000 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2001#endif
2002#if EV_USE_KQUEUE
2003 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2004#endif
2005#if EV_USE_EPOLL
2006 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2007#endif
2008#if EV_USE_POLL
2009 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2010#endif
2011#if EV_USE_SELECT
2012 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2013#endif
2014
2015 for (i = NUMPRI; i--; )
2016 {
2017 array_free (pending, [i]);
2018#if EV_IDLE_ENABLE
2019 array_free (idle, [i]);
2020#endif
2021 }
2022
2023 ev_free (anfds); anfds = 0; anfdmax = 0;
2024
2025 /* have to use the microsoft-never-gets-it-right macro */
2026 array_free (rfeed, EMPTY);
2027 array_free (fdchange, EMPTY);
2028 array_free (timer, EMPTY);
2029#if EV_PERIODIC_ENABLE
2030 array_free (periodic, EMPTY);
2031#endif
2032#if EV_FORK_ENABLE
2033 array_free (fork, EMPTY);
2034#endif
2035#if EV_CLEANUP_ENABLE
2036 array_free (cleanup, EMPTY);
2037#endif
2038 array_free (prepare, EMPTY);
2039 array_free (check, EMPTY);
2040#if EV_ASYNC_ENABLE
2041 array_free (async, EMPTY);
2042#endif
2043
2044 backend = 0;
2045
2046#if EV_MULTIPLICITY
2047 if (ev_is_default_loop (EV_A))
2048#endif
2049 ev_default_loop_ptr = 0;
2050#if EV_MULTIPLICITY
2051 else
2052 ev_free (EV_A);
2053#endif
2054}
2055
2056#if EV_USE_INOTIFY
2057inline_size void infy_fork (EV_P);
2058#endif
2059
2060inline_size void
2061loop_fork (EV_P)
2062{
2063#if EV_USE_PORT
2064 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2065#endif
2066#if EV_USE_KQUEUE
2067 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2068#endif
2069#if EV_USE_EPOLL
2070 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2071#endif
2072#if EV_USE_INOTIFY
2073 infy_fork (EV_A);
2074#endif
2075
2076 if (ev_is_active (&pipe_w))
2077 {
2078 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2079
2080 ev_ref (EV_A);
2081 ev_io_stop (EV_A_ &pipe_w);
2082
2083#if EV_USE_EVENTFD
2084 if (evfd >= 0)
2085 close (evfd);
2086#endif
2087
2088 if (evpipe [0] >= 0)
2089 {
2090 EV_WIN32_CLOSE_FD (evpipe [0]);
2091 EV_WIN32_CLOSE_FD (evpipe [1]);
2092 }
2093
2094#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2095 evpipe_init (EV_A);
2096 /* now iterate over everything, in case we missed something */
2097 pipecb (EV_A_ &pipe_w, EV_READ);
2098#endif
2099 }
2100
2101 postfork = 0;
2102}
2103
2104#if EV_MULTIPLICITY
2105
2106struct ev_loop * ecb_cold
2107ev_loop_new (unsigned int flags)
2108{
2109 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2110
2111 memset (EV_A, 0, sizeof (struct ev_loop));
2112 loop_init (EV_A_ flags);
2113
2114 if (ev_backend (EV_A))
2115 return EV_A;
2116
2117 ev_free (EV_A);
2118 return 0;
2119}
2120
2121#endif /* multiplicity */
2122
2123#if EV_VERIFY
2124static void noinline ecb_cold
2125verify_watcher (EV_P_ W w)
2126{
2127 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2128
2129 if (w->pending)
2130 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2131}
2132
2133static void noinline ecb_cold
2134verify_heap (EV_P_ ANHE *heap, int N)
2135{
2136 int i;
2137
2138 for (i = HEAP0; i < N + HEAP0; ++i)
2139 {
2140 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2141 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2142 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2143
2144 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2145 }
2146}
2147
2148static void noinline ecb_cold
2149array_verify (EV_P_ W *ws, int cnt)
2150{
2151 while (cnt--)
2152 {
2153 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2154 verify_watcher (EV_A_ ws [cnt]);
2155 }
2156}
2157#endif
2158
2159#if EV_FEATURE_API
2160void ecb_cold
2161ev_verify (EV_P)
2162{
2163#if EV_VERIFY
2164 int i;
2165 WL w;
2166
2167 assert (activecnt >= -1);
2168
2169 assert (fdchangemax >= fdchangecnt);
2170 for (i = 0; i < fdchangecnt; ++i)
2171 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2172
2173 assert (anfdmax >= 0);
2174 for (i = 0; i < anfdmax; ++i)
2175 for (w = anfds [i].head; w; w = w->next)
801 { 2176 {
802 struct timespec ts; 2177 verify_watcher (EV_A_ (W)w);
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2178 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
804 have_monotonic = 1; 2179 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
805 } 2180 }
806#endif
807 2181
808 ev_rt_now = ev_time (); 2182 assert (timermax >= timercnt);
809 mn_now = get_clock (); 2183 verify_heap (EV_A_ timers, timercnt);
810 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now;
812 2184
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2185#if EV_PERIODIC_ENABLE
814 flags = atoi (getenv ("LIBEV_FLAGS")); 2186 assert (periodicmax >= periodiccnt);
815 2187 verify_heap (EV_A_ periodics, periodiccnt);
816 if (!(flags & 0x0000ffff))
817 flags |= 0x0000ffff;
818
819 method = 0;
820#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
822#endif
823#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
825#endif
826#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
828#endif
829#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
831#endif
832#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
834#endif
835
836 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI);
838 }
839}
840
841static void
842loop_destroy (EV_P)
843{
844 int i;
845
846#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
848#endif
849#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
851#endif
852#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
854#endif
855#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
857#endif
858#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
860#endif 2188#endif
861 2189
862 for (i = NUMPRI; i--; ) 2190 for (i = NUMPRI; i--; )
863 array_free (pending, [i]); 2191 {
2192 assert (pendingmax [i] >= pendingcnt [i]);
2193#if EV_IDLE_ENABLE
2194 assert (idleall >= 0);
2195 assert (idlemax [i] >= idlecnt [i]);
2196 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2197#endif
2198 }
864 2199
865 /* have to use the microsoft-never-gets-it-right macro */ 2200#if EV_FORK_ENABLE
866 array_free (fdchange, EMPTY0); 2201 assert (forkmax >= forkcnt);
867 array_free (timer, EMPTY0); 2202 array_verify (EV_A_ (W *)forks, forkcnt);
868#if EV_PERIODICS 2203#endif
869 array_free (periodic, EMPTY0); 2204
2205#if EV_CLEANUP_ENABLE
2206 assert (cleanupmax >= cleanupcnt);
2207 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2208#endif
2209
2210#if EV_ASYNC_ENABLE
2211 assert (asyncmax >= asynccnt);
2212 array_verify (EV_A_ (W *)asyncs, asynccnt);
2213#endif
2214
2215#if EV_PREPARE_ENABLE
2216 assert (preparemax >= preparecnt);
2217 array_verify (EV_A_ (W *)prepares, preparecnt);
2218#endif
2219
2220#if EV_CHECK_ENABLE
2221 assert (checkmax >= checkcnt);
2222 array_verify (EV_A_ (W *)checks, checkcnt);
2223#endif
2224
2225# if 0
2226#if EV_CHILD_ENABLE
2227 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2228 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2229#endif
870#endif 2230# endif
871 array_free (idle, EMPTY0);
872 array_free (prepare, EMPTY0);
873 array_free (check, EMPTY0);
874
875 method = 0;
876}
877
878static void
879loop_fork (EV_P)
880{
881#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A);
883#endif 2231#endif
884#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
886#endif
887#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
889#endif
890
891 if (ev_is_active (&sigev))
892 {
893 /* default loop */
894
895 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A);
904 }
905
906 postfork = 0;
907} 2232}
2233#endif
908 2234
909#if EV_MULTIPLICITY 2235#if EV_MULTIPLICITY
910struct ev_loop * 2236struct ev_loop * ecb_cold
911ev_loop_new (unsigned int flags)
912{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914
915 memset (loop, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags);
918
919 if (ev_method (EV_A))
920 return loop;
921
922 return 0;
923}
924
925void
926ev_loop_destroy (EV_P)
927{
928 loop_destroy (EV_A);
929 ev_free (loop);
930}
931
932void
933ev_loop_fork (EV_P)
934{
935 postfork = 1;
936}
937
938#endif
939
940#if EV_MULTIPLICITY
941struct ev_loop *
942ev_default_loop_init (unsigned int flags)
943#else 2237#else
944int 2238int
2239#endif
945ev_default_loop (unsigned int flags) 2240ev_default_loop (unsigned int flags)
946#endif
947{ 2241{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 2242 if (!ev_default_loop_ptr)
953 { 2243 {
954#if EV_MULTIPLICITY 2244#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2245 EV_P = ev_default_loop_ptr = &default_loop_struct;
956#else 2246#else
957 ev_default_loop_ptr = 1; 2247 ev_default_loop_ptr = 1;
958#endif 2248#endif
959 2249
960 loop_init (EV_A_ flags); 2250 loop_init (EV_A_ flags);
961 2251
962 if (ev_method (EV_A)) 2252 if (ev_backend (EV_A))
963 { 2253 {
964 siginit (EV_A); 2254#if EV_CHILD_ENABLE
965
966#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 2255 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 2256 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 2257 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2258 ev_unref (EV_A); /* child watcher should not keep loop alive */
971#endif 2259#endif
976 2264
977 return ev_default_loop_ptr; 2265 return ev_default_loop_ptr;
978} 2266}
979 2267
980void 2268void
981ev_default_destroy (void) 2269ev_loop_fork (EV_P)
982{ 2270{
983#if EV_MULTIPLICITY 2271 postfork = 1; /* must be in line with ev_default_fork */
984 struct ev_loop *loop = ev_default_loop_ptr;
985#endif
986
987#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev);
990#endif
991
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A);
999} 2272}
2273
2274/*****************************************************************************/
1000 2275
1001void 2276void
1002ev_default_fork (void) 2277ev_invoke (EV_P_ void *w, int revents)
1003{ 2278{
1004#if EV_MULTIPLICITY 2279 EV_CB_INVOKE ((W)w, revents);
1005 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif
1007
1008 if (method)
1009 postfork = 1;
1010} 2280}
1011 2281
1012/*****************************************************************************/ 2282unsigned int
1013 2283ev_pending_count (EV_P)
1014static int
1015any_pending (EV_P)
1016{ 2284{
1017 int pri; 2285 int pri;
2286 unsigned int count = 0;
1018 2287
1019 for (pri = NUMPRI; pri--; ) 2288 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 2289 count += pendingcnt [pri];
1021 return 1;
1022 2290
1023 return 0; 2291 return count;
1024} 2292}
1025 2293
1026inline void 2294void noinline
1027call_pending (EV_P) 2295ev_invoke_pending (EV_P)
1028{ 2296{
1029 int pri; 2297 int pri;
1030 2298
1031 for (pri = NUMPRI; pri--; ) 2299 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 2300 while (pendingcnt [pri])
1033 { 2301 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2302 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 2303
1036 if (expect_true (p->w))
1037 {
1038 p->w->pending = 0; 2304 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 2305 EV_CB_INVOKE (p->w, p->events);
1040 } 2306 EV_FREQUENT_CHECK;
1041 } 2307 }
1042} 2308}
1043 2309
2310#if EV_IDLE_ENABLE
2311/* make idle watchers pending. this handles the "call-idle */
2312/* only when higher priorities are idle" logic */
1044inline void 2313inline_size void
2314idle_reify (EV_P)
2315{
2316 if (expect_false (idleall))
2317 {
2318 int pri;
2319
2320 for (pri = NUMPRI; pri--; )
2321 {
2322 if (pendingcnt [pri])
2323 break;
2324
2325 if (idlecnt [pri])
2326 {
2327 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2328 break;
2329 }
2330 }
2331 }
2332}
2333#endif
2334
2335/* make timers pending */
2336inline_size void
1045timers_reify (EV_P) 2337timers_reify (EV_P)
1046{ 2338{
2339 EV_FREQUENT_CHECK;
2340
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 2341 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 2342 {
1049 struct ev_timer *w = timers [0]; 2343 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 2344 {
2345 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2346
2347 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2348
2349 /* first reschedule or stop timer */
2350 if (w->repeat)
2351 {
2352 ev_at (w) += w->repeat;
2353 if (ev_at (w) < mn_now)
2354 ev_at (w) = mn_now;
2355
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2356 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 2357
1058 ((WT)w)->at += w->repeat; 2358 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 2359 downheap (timers, timercnt, HEAP0);
2360 }
2361 else
2362 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2363
2364 EV_FREQUENT_CHECK;
2365 feed_reverse (EV_A_ (W)w);
1063 } 2366 }
1064 else 2367 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 2368
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2369 feed_reverse_done (EV_A_ EV_TIMER);
2370 }
2371}
2372
2373#if EV_PERIODIC_ENABLE
2374
2375static void noinline
2376periodic_recalc (EV_P_ ev_periodic *w)
2377{
2378 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2379 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2380
2381 /* the above almost always errs on the low side */
2382 while (at <= ev_rt_now)
1068 } 2383 {
1069} 2384 ev_tstamp nat = at + w->interval;
1070 2385
1071#if EV_PERIODICS 2386 /* when resolution fails us, we use ev_rt_now */
2387 if (expect_false (nat == at))
2388 {
2389 at = ev_rt_now;
2390 break;
2391 }
2392
2393 at = nat;
2394 }
2395
2396 ev_at (w) = at;
2397}
2398
2399/* make periodics pending */
1072inline void 2400inline_size void
1073periodics_reify (EV_P) 2401periodics_reify (EV_P)
1074{ 2402{
2403 EV_FREQUENT_CHECK;
2404
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2405 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 2406 {
1077 struct ev_periodic *w = periodics [0]; 2407 int feed_count = 0;
1078 2408
2409 do
2410 {
2411 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2412
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2413 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 2414
1081 /* first reschedule or stop timer */ 2415 /* first reschedule or stop timer */
2416 if (w->reschedule_cb)
2417 {
2418 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2419
2420 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2421
2422 ANHE_at_cache (periodics [HEAP0]);
2423 downheap (periodics, periodiccnt, HEAP0);
2424 }
2425 else if (w->interval)
2426 {
2427 periodic_recalc (EV_A_ w);
2428 ANHE_at_cache (periodics [HEAP0]);
2429 downheap (periodics, periodiccnt, HEAP0);
2430 }
2431 else
2432 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2433
2434 EV_FREQUENT_CHECK;
2435 feed_reverse (EV_A_ (W)w);
2436 }
2437 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2438
2439 feed_reverse_done (EV_A_ EV_PERIODIC);
2440 }
2441}
2442
2443/* simply recalculate all periodics */
2444/* TODO: maybe ensure that at least one event happens when jumping forward? */
2445static void noinline ecb_cold
2446periodics_reschedule (EV_P)
2447{
2448 int i;
2449
2450 /* adjust periodics after time jump */
2451 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2452 {
2453 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2454
1082 if (w->reschedule_cb) 2455 if (w->reschedule_cb)
2456 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2457 else if (w->interval)
2458 periodic_recalc (EV_A_ w);
2459
2460 ANHE_at_cache (periodics [i]);
2461 }
2462
2463 reheap (periodics, periodiccnt);
2464}
2465#endif
2466
2467/* adjust all timers by a given offset */
2468static void noinline ecb_cold
2469timers_reschedule (EV_P_ ev_tstamp adjust)
2470{
2471 int i;
2472
2473 for (i = 0; i < timercnt; ++i)
2474 {
2475 ANHE *he = timers + i + HEAP0;
2476 ANHE_w (*he)->at += adjust;
2477 ANHE_at_cache (*he);
2478 }
2479}
2480
2481/* fetch new monotonic and realtime times from the kernel */
2482/* also detect if there was a timejump, and act accordingly */
2483inline_speed void
2484time_update (EV_P_ ev_tstamp max_block)
2485{
2486#if EV_USE_MONOTONIC
2487 if (expect_true (have_monotonic))
2488 {
2489 int i;
2490 ev_tstamp odiff = rtmn_diff;
2491
2492 mn_now = get_clock ();
2493
2494 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2495 /* interpolate in the meantime */
2496 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2497 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2498 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2499 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2500 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2501
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2502 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2503 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2504
1141inline void 2505 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2506 * on the choice of "4": one iteration isn't enough,
1143{ 2507 * in case we get preempted during the calls to
1144 int i; 2508 * ev_time and get_clock. a second call is almost guaranteed
1145 2509 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2510 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2511 * in the unlikely event of having been preempted here.
1148 { 2512 */
1149 if (time_update_monotonic (EV_A)) 2513 for (i = 4; --i; )
1150 { 2514 {
1151 ev_tstamp odiff = rtmn_diff; 2515 ev_tstamp diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2516 rtmn_diff = ev_rt_now - mn_now;
1156 2517
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2518 diff = odiff - rtmn_diff;
2519
2520 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2521 return; /* all is well */
1159 2522
1160 ev_rt_now = ev_time (); 2523 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2524 mn_now = get_clock ();
1162 now_floor = mn_now; 2525 now_floor = mn_now;
1163 } 2526 }
1164 2527
2528 /* no timer adjustment, as the monotonic clock doesn't jump */
2529 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2530# if EV_PERIODIC_ENABLE
2531 periodics_reschedule (EV_A);
2532# endif
2533 }
2534 else
2535#endif
2536 {
2537 ev_rt_now = ev_time ();
2538
2539 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2540 {
2541 /* adjust timers. this is easy, as the offset is the same for all of them */
2542 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2543#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2544 periodics_reschedule (EV_A);
1167# endif 2545#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2546 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2547
1188 mn_now = ev_rt_now; 2548 mn_now = ev_rt_now;
1189 } 2549 }
1190} 2550}
1191 2551
1192void 2552void
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2553ev_run (EV_P_ int flags)
1208{ 2554{
1209 double block; 2555#if EV_FEATURE_API
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2556 ++loop_depth;
2557#endif
1211 2558
1212 while (activecnt) 2559 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2560
2561 loop_done = EVBREAK_CANCEL;
2562
2563 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2564
2565 do
1213 { 2566 {
2567#if EV_VERIFY >= 2
2568 ev_verify (EV_A);
2569#endif
2570
2571#ifndef _WIN32
2572 if (expect_false (curpid)) /* penalise the forking check even more */
2573 if (expect_false (getpid () != curpid))
2574 {
2575 curpid = getpid ();
2576 postfork = 1;
2577 }
2578#endif
2579
2580#if EV_FORK_ENABLE
2581 /* we might have forked, so queue fork handlers */
2582 if (expect_false (postfork))
2583 if (forkcnt)
2584 {
2585 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2586 EV_INVOKE_PENDING;
2587 }
2588#endif
2589
2590#if EV_PREPARE_ENABLE
1214 /* queue check watchers (and execute them) */ 2591 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2592 if (expect_false (preparecnt))
1216 { 2593 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2594 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2595 EV_INVOKE_PENDING;
1219 } 2596 }
2597#endif
2598
2599 if (expect_false (loop_done))
2600 break;
1220 2601
1221 /* we might have forked, so reify kernel state if necessary */ 2602 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2603 if (expect_false (postfork))
1223 loop_fork (EV_A); 2604 loop_fork (EV_A);
1224 2605
1225 /* update fd-related kernel structures */ 2606 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2607 fd_reify (EV_A);
1227 2608
1228 /* calculate blocking time */ 2609 /* calculate blocking time */
2610 {
2611 ev_tstamp waittime = 0.;
2612 ev_tstamp sleeptime = 0.;
1229 2613
1230 /* we only need this for !monotonic clock or timers, but as we basically 2614 /* remember old timestamp for io_blocktime calculation */
1231 always have timers, we just calculate it always */ 2615 ev_tstamp prev_mn_now = mn_now;
1232#if EV_USE_MONOTONIC 2616
1233 if (expect_true (have_monotonic)) 2617 /* update time to cancel out callback processing overhead */
1234 time_update_monotonic (EV_A); 2618 time_update (EV_A_ 1e100);
1235 else 2619
1236#endif 2620 /* from now on, we want a pipe-wake-up */
2621 pipe_write_wanted = 1;
2622
2623 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2624
2625 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1237 { 2626 {
1238 ev_rt_now = ev_time ();
1239 mn_now = ev_rt_now;
1240 }
1241
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 2627 waittime = MAX_BLOCKTIME;
1247 2628
1248 if (timercnt) 2629 if (timercnt)
1249 { 2630 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2631 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1251 if (block > to) block = to; 2632 if (waittime > to) waittime = to;
1252 } 2633 }
1253 2634
1254#if EV_PERIODICS 2635#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2636 if (periodiccnt)
1256 { 2637 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2638 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1258 if (block > to) block = to; 2639 if (waittime > to) waittime = to;
1259 } 2640 }
1260#endif 2641#endif
1261 2642
1262 if (expect_false (block < 0.)) block = 0.; 2643 /* don't let timeouts decrease the waittime below timeout_blocktime */
2644 if (expect_false (waittime < timeout_blocktime))
2645 waittime = timeout_blocktime;
2646
2647 /* at this point, we NEED to wait, so we have to ensure */
2648 /* to pass a minimum nonzero value to the backend */
2649 if (expect_false (waittime < backend_mintime))
2650 waittime = backend_mintime;
2651
2652 /* extra check because io_blocktime is commonly 0 */
2653 if (expect_false (io_blocktime))
2654 {
2655 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2656
2657 if (sleeptime > waittime - backend_mintime)
2658 sleeptime = waittime - backend_mintime;
2659
2660 if (expect_true (sleeptime > 0.))
2661 {
2662 ev_sleep (sleeptime);
2663 waittime -= sleeptime;
2664 }
2665 }
1263 } 2666 }
1264 2667
1265 method_poll (EV_A_ block); 2668#if EV_FEATURE_API
2669 ++loop_count;
2670#endif
2671 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2672 backend_poll (EV_A_ waittime);
2673 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1266 2674
2675 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2676
2677 if (pipe_write_skipped)
2678 {
2679 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2680 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2681 }
2682
2683
1267 /* update ev_rt_now, do magic */ 2684 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2685 time_update (EV_A_ waittime + sleeptime);
2686 }
1269 2687
1270 /* queue pending timers and reschedule them */ 2688 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2689 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2690#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2691 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2692#endif
1275 2693
2694#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2695 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2696 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2697#endif
1279 2698
2699#if EV_CHECK_ENABLE
1280 /* queue check watchers, to be executed first */ 2700 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2701 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2702 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2703#endif
1283 2704
1284 call_pending (EV_A); 2705 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2706 }
2707 while (expect_true (
2708 activecnt
2709 && !loop_done
2710 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2711 ));
1289 2712
1290 if (loop_done != 2) 2713 if (loop_done == EVBREAK_ONE)
1291 loop_done = 0; 2714 loop_done = EVBREAK_CANCEL;
2715
2716#if EV_FEATURE_API
2717 --loop_depth;
2718#endif
1292} 2719}
1293 2720
1294void 2721void
1295ev_unloop (EV_P_ int how) 2722ev_break (EV_P_ int how)
1296{ 2723{
1297 loop_done = how; 2724 loop_done = how;
1298} 2725}
1299 2726
2727void
2728ev_ref (EV_P)
2729{
2730 ++activecnt;
2731}
2732
2733void
2734ev_unref (EV_P)
2735{
2736 --activecnt;
2737}
2738
2739void
2740ev_now_update (EV_P)
2741{
2742 time_update (EV_A_ 1e100);
2743}
2744
2745void
2746ev_suspend (EV_P)
2747{
2748 ev_now_update (EV_A);
2749}
2750
2751void
2752ev_resume (EV_P)
2753{
2754 ev_tstamp mn_prev = mn_now;
2755
2756 ev_now_update (EV_A);
2757 timers_reschedule (EV_A_ mn_now - mn_prev);
2758#if EV_PERIODIC_ENABLE
2759 /* TODO: really do this? */
2760 periodics_reschedule (EV_A);
2761#endif
2762}
2763
1300/*****************************************************************************/ 2764/*****************************************************************************/
2765/* singly-linked list management, used when the expected list length is short */
1301 2766
1302inline void 2767inline_size void
1303wlist_add (WL *head, WL elem) 2768wlist_add (WL *head, WL elem)
1304{ 2769{
1305 elem->next = *head; 2770 elem->next = *head;
1306 *head = elem; 2771 *head = elem;
1307} 2772}
1308 2773
1309inline void 2774inline_size void
1310wlist_del (WL *head, WL elem) 2775wlist_del (WL *head, WL elem)
1311{ 2776{
1312 while (*head) 2777 while (*head)
1313 { 2778 {
1314 if (*head == elem) 2779 if (expect_true (*head == elem))
1315 { 2780 {
1316 *head = elem->next; 2781 *head = elem->next;
1317 return; 2782 break;
1318 } 2783 }
1319 2784
1320 head = &(*head)->next; 2785 head = &(*head)->next;
1321 } 2786 }
1322} 2787}
1323 2788
2789/* internal, faster, version of ev_clear_pending */
1324inline void 2790inline_speed void
1325ev_clear_pending (EV_P_ W w) 2791clear_pending (EV_P_ W w)
1326{ 2792{
1327 if (w->pending) 2793 if (w->pending)
1328 { 2794 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2795 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 2796 w->pending = 0;
1331 } 2797 }
1332} 2798}
1333 2799
2800int
2801ev_clear_pending (EV_P_ void *w)
2802{
2803 W w_ = (W)w;
2804 int pending = w_->pending;
2805
2806 if (expect_true (pending))
2807 {
2808 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2809 p->w = (W)&pending_w;
2810 w_->pending = 0;
2811 return p->events;
2812 }
2813 else
2814 return 0;
2815}
2816
1334inline void 2817inline_size void
2818pri_adjust (EV_P_ W w)
2819{
2820 int pri = ev_priority (w);
2821 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2822 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2823 ev_set_priority (w, pri);
2824}
2825
2826inline_speed void
1335ev_start (EV_P_ W w, int active) 2827ev_start (EV_P_ W w, int active)
1336{ 2828{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2829 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2830 w->active = active;
1341 ev_ref (EV_A); 2831 ev_ref (EV_A);
1342} 2832}
1343 2833
1344inline void 2834inline_size void
1345ev_stop (EV_P_ W w) 2835ev_stop (EV_P_ W w)
1346{ 2836{
1347 ev_unref (EV_A); 2837 ev_unref (EV_A);
1348 w->active = 0; 2838 w->active = 0;
1349} 2839}
1350 2840
1351/*****************************************************************************/ 2841/*****************************************************************************/
1352 2842
1353void 2843void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2844ev_io_start (EV_P_ ev_io *w)
1355{ 2845{
1356 int fd = w->fd; 2846 int fd = w->fd;
1357 2847
1358 if (expect_false (ev_is_active (w))) 2848 if (expect_false (ev_is_active (w)))
1359 return; 2849 return;
1360 2850
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2851 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2852 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2853
2854 EV_FREQUENT_CHECK;
1362 2855
1363 ev_start (EV_A_ (W)w, 1); 2856 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2857 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2858 wlist_add (&anfds[fd].head, (WL)w);
1366 2859
1367 fd_change (EV_A_ fd); 2860 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1368} 2861 w->events &= ~EV__IOFDSET;
1369 2862
1370void 2863 EV_FREQUENT_CHECK;
2864}
2865
2866void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2867ev_io_stop (EV_P_ ev_io *w)
1372{ 2868{
1373 ev_clear_pending (EV_A_ (W)w); 2869 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2870 if (expect_false (!ev_is_active (w)))
1375 return; 2871 return;
1376 2872
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2873 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2874
2875 EV_FREQUENT_CHECK;
2876
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2877 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2878 ev_stop (EV_A_ (W)w);
1381 2879
1382 fd_change (EV_A_ w->fd); 2880 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1383}
1384 2881
1385void 2882 EV_FREQUENT_CHECK;
2883}
2884
2885void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2886ev_timer_start (EV_P_ ev_timer *w)
1387{ 2887{
1388 if (expect_false (ev_is_active (w))) 2888 if (expect_false (ev_is_active (w)))
1389 return; 2889 return;
1390 2890
1391 ((WT)w)->at += mn_now; 2891 ev_at (w) += mn_now;
1392 2892
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2893 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2894
2895 EV_FREQUENT_CHECK;
2896
2897 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2898 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2899 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2900 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2901 ANHE_at_cache (timers [ev_active (w)]);
2902 upheap (timers, ev_active (w));
1399 2903
2904 EV_FREQUENT_CHECK;
2905
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2906 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2907}
1402 2908
1403void 2909void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2910ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2911{
1406 ev_clear_pending (EV_A_ (W)w); 2912 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2913 if (expect_false (!ev_is_active (w)))
1408 return; 2914 return;
1409 2915
2916 EV_FREQUENT_CHECK;
2917
2918 {
2919 int active = ev_active (w);
2920
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2921 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2922
2923 --timercnt;
2924
1412 if (expect_true (((W)w)->active < timercnt--)) 2925 if (expect_true (active < timercnt + HEAP0))
1413 { 2926 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2927 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2928 adjustheap (timers, timercnt, active);
1416 } 2929 }
2930 }
1417 2931
1418 ((WT)w)->at -= mn_now; 2932 ev_at (w) -= mn_now;
1419 2933
1420 ev_stop (EV_A_ (W)w); 2934 ev_stop (EV_A_ (W)w);
1421}
1422 2935
1423void 2936 EV_FREQUENT_CHECK;
2937}
2938
2939void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2940ev_timer_again (EV_P_ ev_timer *w)
1425{ 2941{
2942 EV_FREQUENT_CHECK;
2943
1426 if (ev_is_active (w)) 2944 if (ev_is_active (w))
1427 { 2945 {
1428 if (w->repeat) 2946 if (w->repeat)
1429 { 2947 {
1430 ((WT)w)->at = mn_now + w->repeat; 2948 ev_at (w) = mn_now + w->repeat;
2949 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2950 adjustheap (timers, timercnt, ev_active (w));
1432 } 2951 }
1433 else 2952 else
1434 ev_timer_stop (EV_A_ w); 2953 ev_timer_stop (EV_A_ w);
1435 } 2954 }
1436 else if (w->repeat) 2955 else if (w->repeat)
1437 { 2956 {
1438 w->at = w->repeat; 2957 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2958 ev_timer_start (EV_A_ w);
1440 } 2959 }
1441}
1442 2960
2961 EV_FREQUENT_CHECK;
2962}
2963
2964ev_tstamp
2965ev_timer_remaining (EV_P_ ev_timer *w)
2966{
2967 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2968}
2969
1443#if EV_PERIODICS 2970#if EV_PERIODIC_ENABLE
1444void 2971void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2972ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2973{
1447 if (expect_false (ev_is_active (w))) 2974 if (expect_false (ev_is_active (w)))
1448 return; 2975 return;
1449 2976
1450 if (w->reschedule_cb) 2977 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2978 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2979 else if (w->interval)
1453 { 2980 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2981 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2982 periodic_recalc (EV_A_ w);
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1457 } 2983 }
2984 else
2985 ev_at (w) = w->offset;
1458 2986
2987 EV_FREQUENT_CHECK;
2988
2989 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2990 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2991 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2992 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2993 ANHE_at_cache (periodics [ev_active (w)]);
2994 upheap (periodics, ev_active (w));
1463 2995
2996 EV_FREQUENT_CHECK;
2997
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2998 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2999}
1466 3000
1467void 3001void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 3002ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 3003{
1470 ev_clear_pending (EV_A_ (W)w); 3004 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 3005 if (expect_false (!ev_is_active (w)))
1472 return; 3006 return;
1473 3007
3008 EV_FREQUENT_CHECK;
3009
3010 {
3011 int active = ev_active (w);
3012
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3013 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 3014
3015 --periodiccnt;
3016
1476 if (expect_true (((W)w)->active < periodiccnt--)) 3017 if (expect_true (active < periodiccnt + HEAP0))
1477 { 3018 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3019 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3020 adjustheap (periodics, periodiccnt, active);
1480 } 3021 }
3022 }
1481 3023
1482 ev_stop (EV_A_ (W)w); 3024 ev_stop (EV_A_ (W)w);
1483}
1484 3025
1485void 3026 EV_FREQUENT_CHECK;
3027}
3028
3029void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 3030ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 3031{
1488 /* TODO: use adjustheap and recalculation */ 3032 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 3033 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 3034 ev_periodic_start (EV_A_ w);
1491} 3035}
1492#endif 3036#endif
1493 3037
1494void 3038#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 3039# define SA_RESTART 0
3040#endif
3041
3042#if EV_SIGNAL_ENABLE
3043
3044void noinline
3045ev_signal_start (EV_P_ ev_signal *w)
1496{ 3046{
1497 if (expect_false (ev_is_active (w))) 3047 if (expect_false (ev_is_active (w)))
1498 return; 3048 return;
1499 3049
3050 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3051
3052#if EV_MULTIPLICITY
3053 assert (("libev: a signal must not be attached to two different loops",
3054 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3055
3056 signals [w->signum - 1].loop = EV_A;
3057#endif
3058
3059 EV_FREQUENT_CHECK;
3060
3061#if EV_USE_SIGNALFD
3062 if (sigfd == -2)
3063 {
3064 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3065 if (sigfd < 0 && errno == EINVAL)
3066 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3067
3068 if (sigfd >= 0)
3069 {
3070 fd_intern (sigfd); /* doing it twice will not hurt */
3071
3072 sigemptyset (&sigfd_set);
3073
3074 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3075 ev_set_priority (&sigfd_w, EV_MAXPRI);
3076 ev_io_start (EV_A_ &sigfd_w);
3077 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3078 }
3079 }
3080
3081 if (sigfd >= 0)
3082 {
3083 /* TODO: check .head */
3084 sigaddset (&sigfd_set, w->signum);
3085 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3086
3087 signalfd (sigfd, &sigfd_set, 0);
3088 }
3089#endif
3090
1500 ev_start (EV_A_ (W)w, ++idlecnt); 3091 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3092 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 3093
1505void 3094 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 3095# if EV_USE_SIGNALFD
3096 if (sigfd < 0) /*TODO*/
3097# endif
3098 {
3099# ifdef _WIN32
3100 evpipe_init (EV_A);
3101
3102 signal (w->signum, ev_sighandler);
3103# else
3104 struct sigaction sa;
3105
3106 evpipe_init (EV_A);
3107
3108 sa.sa_handler = ev_sighandler;
3109 sigfillset (&sa.sa_mask);
3110 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3111 sigaction (w->signum, &sa, 0);
3112
3113 if (origflags & EVFLAG_NOSIGMASK)
3114 {
3115 sigemptyset (&sa.sa_mask);
3116 sigaddset (&sa.sa_mask, w->signum);
3117 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3118 }
3119#endif
3120 }
3121
3122 EV_FREQUENT_CHECK;
3123}
3124
3125void noinline
3126ev_signal_stop (EV_P_ ev_signal *w)
1507{ 3127{
1508 ev_clear_pending (EV_A_ (W)w); 3128 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 3129 if (expect_false (!ev_is_active (w)))
1510 return; 3130 return;
1511 3131
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 3132 EV_FREQUENT_CHECK;
3133
3134 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 3135 ev_stop (EV_A_ (W)w);
3136
3137 if (!signals [w->signum - 1].head)
3138 {
3139#if EV_MULTIPLICITY
3140 signals [w->signum - 1].loop = 0; /* unattach from signal */
3141#endif
3142#if EV_USE_SIGNALFD
3143 if (sigfd >= 0)
3144 {
3145 sigset_t ss;
3146
3147 sigemptyset (&ss);
3148 sigaddset (&ss, w->signum);
3149 sigdelset (&sigfd_set, w->signum);
3150
3151 signalfd (sigfd, &sigfd_set, 0);
3152 sigprocmask (SIG_UNBLOCK, &ss, 0);
3153 }
3154 else
3155#endif
3156 signal (w->signum, SIG_DFL);
3157 }
3158
3159 EV_FREQUENT_CHECK;
1514} 3160}
3161
3162#endif
3163
3164#if EV_CHILD_ENABLE
1515 3165
1516void 3166void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 3167ev_child_start (EV_P_ ev_child *w)
1518{ 3168{
3169#if EV_MULTIPLICITY
3170 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3171#endif
1519 if (expect_false (ev_is_active (w))) 3172 if (expect_false (ev_is_active (w)))
1520 return; 3173 return;
1521 3174
3175 EV_FREQUENT_CHECK;
3176
1522 ev_start (EV_A_ (W)w, ++preparecnt); 3177 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3178 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w; 3179
3180 EV_FREQUENT_CHECK;
1525} 3181}
1526 3182
1527void 3183void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 3184ev_child_stop (EV_P_ ev_child *w)
1529{ 3185{
1530 ev_clear_pending (EV_A_ (W)w); 3186 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 3187 if (expect_false (!ev_is_active (w)))
1532 return; 3188 return;
1533 3189
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3190 EV_FREQUENT_CHECK;
3191
3192 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 3193 ev_stop (EV_A_ (W)w);
3194
3195 EV_FREQUENT_CHECK;
1536} 3196}
3197
3198#endif
3199
3200#if EV_STAT_ENABLE
3201
3202# ifdef _WIN32
3203# undef lstat
3204# define lstat(a,b) _stati64 (a,b)
3205# endif
3206
3207#define DEF_STAT_INTERVAL 5.0074891
3208#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3209#define MIN_STAT_INTERVAL 0.1074891
3210
3211static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3212
3213#if EV_USE_INOTIFY
3214
3215/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3216# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3217
3218static void noinline
3219infy_add (EV_P_ ev_stat *w)
3220{
3221 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3222
3223 if (w->wd >= 0)
3224 {
3225 struct statfs sfs;
3226
3227 /* now local changes will be tracked by inotify, but remote changes won't */
3228 /* unless the filesystem is known to be local, we therefore still poll */
3229 /* also do poll on <2.6.25, but with normal frequency */
3230
3231 if (!fs_2625)
3232 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3233 else if (!statfs (w->path, &sfs)
3234 && (sfs.f_type == 0x1373 /* devfs */
3235 || sfs.f_type == 0xEF53 /* ext2/3 */
3236 || sfs.f_type == 0x3153464a /* jfs */
3237 || sfs.f_type == 0x52654973 /* reiser3 */
3238 || sfs.f_type == 0x01021994 /* tempfs */
3239 || sfs.f_type == 0x58465342 /* xfs */))
3240 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3241 else
3242 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3243 }
3244 else
3245 {
3246 /* can't use inotify, continue to stat */
3247 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3248
3249 /* if path is not there, monitor some parent directory for speedup hints */
3250 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3251 /* but an efficiency issue only */
3252 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3253 {
3254 char path [4096];
3255 strcpy (path, w->path);
3256
3257 do
3258 {
3259 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3260 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3261
3262 char *pend = strrchr (path, '/');
3263
3264 if (!pend || pend == path)
3265 break;
3266
3267 *pend = 0;
3268 w->wd = inotify_add_watch (fs_fd, path, mask);
3269 }
3270 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3271 }
3272 }
3273
3274 if (w->wd >= 0)
3275 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3276
3277 /* now re-arm timer, if required */
3278 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3279 ev_timer_again (EV_A_ &w->timer);
3280 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3281}
3282
3283static void noinline
3284infy_del (EV_P_ ev_stat *w)
3285{
3286 int slot;
3287 int wd = w->wd;
3288
3289 if (wd < 0)
3290 return;
3291
3292 w->wd = -2;
3293 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3294 wlist_del (&fs_hash [slot].head, (WL)w);
3295
3296 /* remove this watcher, if others are watching it, they will rearm */
3297 inotify_rm_watch (fs_fd, wd);
3298}
3299
3300static void noinline
3301infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3302{
3303 if (slot < 0)
3304 /* overflow, need to check for all hash slots */
3305 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3306 infy_wd (EV_A_ slot, wd, ev);
3307 else
3308 {
3309 WL w_;
3310
3311 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3312 {
3313 ev_stat *w = (ev_stat *)w_;
3314 w_ = w_->next; /* lets us remove this watcher and all before it */
3315
3316 if (w->wd == wd || wd == -1)
3317 {
3318 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3319 {
3320 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3321 w->wd = -1;
3322 infy_add (EV_A_ w); /* re-add, no matter what */
3323 }
3324
3325 stat_timer_cb (EV_A_ &w->timer, 0);
3326 }
3327 }
3328 }
3329}
3330
3331static void
3332infy_cb (EV_P_ ev_io *w, int revents)
3333{
3334 char buf [EV_INOTIFY_BUFSIZE];
3335 int ofs;
3336 int len = read (fs_fd, buf, sizeof (buf));
3337
3338 for (ofs = 0; ofs < len; )
3339 {
3340 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3341 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3342 ofs += sizeof (struct inotify_event) + ev->len;
3343 }
3344}
3345
3346inline_size void ecb_cold
3347ev_check_2625 (EV_P)
3348{
3349 /* kernels < 2.6.25 are borked
3350 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3351 */
3352 if (ev_linux_version () < 0x020619)
3353 return;
3354
3355 fs_2625 = 1;
3356}
3357
3358inline_size int
3359infy_newfd (void)
3360{
3361#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3362 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3363 if (fd >= 0)
3364 return fd;
3365#endif
3366 return inotify_init ();
3367}
3368
3369inline_size void
3370infy_init (EV_P)
3371{
3372 if (fs_fd != -2)
3373 return;
3374
3375 fs_fd = -1;
3376
3377 ev_check_2625 (EV_A);
3378
3379 fs_fd = infy_newfd ();
3380
3381 if (fs_fd >= 0)
3382 {
3383 fd_intern (fs_fd);
3384 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3385 ev_set_priority (&fs_w, EV_MAXPRI);
3386 ev_io_start (EV_A_ &fs_w);
3387 ev_unref (EV_A);
3388 }
3389}
3390
3391inline_size void
3392infy_fork (EV_P)
3393{
3394 int slot;
3395
3396 if (fs_fd < 0)
3397 return;
3398
3399 ev_ref (EV_A);
3400 ev_io_stop (EV_A_ &fs_w);
3401 close (fs_fd);
3402 fs_fd = infy_newfd ();
3403
3404 if (fs_fd >= 0)
3405 {
3406 fd_intern (fs_fd);
3407 ev_io_set (&fs_w, fs_fd, EV_READ);
3408 ev_io_start (EV_A_ &fs_w);
3409 ev_unref (EV_A);
3410 }
3411
3412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3413 {
3414 WL w_ = fs_hash [slot].head;
3415 fs_hash [slot].head = 0;
3416
3417 while (w_)
3418 {
3419 ev_stat *w = (ev_stat *)w_;
3420 w_ = w_->next; /* lets us add this watcher */
3421
3422 w->wd = -1;
3423
3424 if (fs_fd >= 0)
3425 infy_add (EV_A_ w); /* re-add, no matter what */
3426 else
3427 {
3428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3429 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3430 ev_timer_again (EV_A_ &w->timer);
3431 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3432 }
3433 }
3434 }
3435}
3436
3437#endif
3438
3439#ifdef _WIN32
3440# define EV_LSTAT(p,b) _stati64 (p, b)
3441#else
3442# define EV_LSTAT(p,b) lstat (p, b)
3443#endif
1537 3444
1538void 3445void
1539ev_check_start (EV_P_ struct ev_check *w) 3446ev_stat_stat (EV_P_ ev_stat *w)
3447{
3448 if (lstat (w->path, &w->attr) < 0)
3449 w->attr.st_nlink = 0;
3450 else if (!w->attr.st_nlink)
3451 w->attr.st_nlink = 1;
3452}
3453
3454static void noinline
3455stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3456{
3457 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3458
3459 ev_statdata prev = w->attr;
3460 ev_stat_stat (EV_A_ w);
3461
3462 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3463 if (
3464 prev.st_dev != w->attr.st_dev
3465 || prev.st_ino != w->attr.st_ino
3466 || prev.st_mode != w->attr.st_mode
3467 || prev.st_nlink != w->attr.st_nlink
3468 || prev.st_uid != w->attr.st_uid
3469 || prev.st_gid != w->attr.st_gid
3470 || prev.st_rdev != w->attr.st_rdev
3471 || prev.st_size != w->attr.st_size
3472 || prev.st_atime != w->attr.st_atime
3473 || prev.st_mtime != w->attr.st_mtime
3474 || prev.st_ctime != w->attr.st_ctime
3475 ) {
3476 /* we only update w->prev on actual differences */
3477 /* in case we test more often than invoke the callback, */
3478 /* to ensure that prev is always different to attr */
3479 w->prev = prev;
3480
3481 #if EV_USE_INOTIFY
3482 if (fs_fd >= 0)
3483 {
3484 infy_del (EV_A_ w);
3485 infy_add (EV_A_ w);
3486 ev_stat_stat (EV_A_ w); /* avoid race... */
3487 }
3488 #endif
3489
3490 ev_feed_event (EV_A_ w, EV_STAT);
3491 }
3492}
3493
3494void
3495ev_stat_start (EV_P_ ev_stat *w)
1540{ 3496{
1541 if (expect_false (ev_is_active (w))) 3497 if (expect_false (ev_is_active (w)))
1542 return; 3498 return;
1543 3499
3500 ev_stat_stat (EV_A_ w);
3501
3502 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3503 w->interval = MIN_STAT_INTERVAL;
3504
3505 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3506 ev_set_priority (&w->timer, ev_priority (w));
3507
3508#if EV_USE_INOTIFY
3509 infy_init (EV_A);
3510
3511 if (fs_fd >= 0)
3512 infy_add (EV_A_ w);
3513 else
3514#endif
3515 {
3516 ev_timer_again (EV_A_ &w->timer);
3517 ev_unref (EV_A);
3518 }
3519
1544 ev_start (EV_A_ (W)w, ++checkcnt); 3520 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3521
1546 checks [checkcnt - 1] = w; 3522 EV_FREQUENT_CHECK;
1547} 3523}
1548 3524
1549void 3525void
1550ev_check_stop (EV_P_ struct ev_check *w) 3526ev_stat_stop (EV_P_ ev_stat *w)
1551{ 3527{
1552 ev_clear_pending (EV_A_ (W)w); 3528 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3529 if (expect_false (!ev_is_active (w)))
1554 return; 3530 return;
1555 3531
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 3532 EV_FREQUENT_CHECK;
3533
3534#if EV_USE_INOTIFY
3535 infy_del (EV_A_ w);
3536#endif
3537
3538 if (ev_is_active (&w->timer))
3539 {
3540 ev_ref (EV_A);
3541 ev_timer_stop (EV_A_ &w->timer);
3542 }
3543
1557 ev_stop (EV_A_ (W)w); 3544 ev_stop (EV_A_ (W)w);
1558}
1559 3545
1560#ifndef SA_RESTART 3546 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 3547}
1562#endif 3548#endif
1563 3549
3550#if EV_IDLE_ENABLE
1564void 3551void
1565ev_signal_start (EV_P_ struct ev_signal *w) 3552ev_idle_start (EV_P_ ev_idle *w)
1566{ 3553{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 3554 if (expect_false (ev_is_active (w)))
1571 return; 3555 return;
1572 3556
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3557 pri_adjust (EV_A_ (W)w);
1574 3558
3559 EV_FREQUENT_CHECK;
3560
3561 {
3562 int active = ++idlecnt [ABSPRI (w)];
3563
3564 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 3565 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 3566
1579 if (!((WL)w)->next) 3567 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 3568 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 3569 }
3570
3571 EV_FREQUENT_CHECK;
1591} 3572}
1592 3573
1593void 3574void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 3575ev_idle_stop (EV_P_ ev_idle *w)
1595{ 3576{
1596 ev_clear_pending (EV_A_ (W)w); 3577 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3578 if (expect_false (!ev_is_active (w)))
1598 return; 3579 return;
1599 3580
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3581 EV_FREQUENT_CHECK;
3582
3583 {
3584 int active = ev_active (w);
3585
3586 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3587 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3588
1601 ev_stop (EV_A_ (W)w); 3589 ev_stop (EV_A_ (W)w);
3590 --idleall;
3591 }
1602 3592
1603 if (!signals [w->signum - 1].head) 3593 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 3594}
3595#endif
1606 3596
3597#if EV_PREPARE_ENABLE
1607void 3598void
1608ev_child_start (EV_P_ struct ev_child *w) 3599ev_prepare_start (EV_P_ ev_prepare *w)
1609{ 3600{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif
1613 if (expect_false (ev_is_active (w))) 3601 if (expect_false (ev_is_active (w)))
1614 return; 3602 return;
1615 3603
3604 EV_FREQUENT_CHECK;
3605
1616 ev_start (EV_A_ (W)w, 1); 3606 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3607 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3608 prepares [preparecnt - 1] = w;
3609
3610 EV_FREQUENT_CHECK;
1618} 3611}
1619 3612
1620void 3613void
1621ev_child_stop (EV_P_ struct ev_child *w) 3614ev_prepare_stop (EV_P_ ev_prepare *w)
1622{ 3615{
1623 ev_clear_pending (EV_A_ (W)w); 3616 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3617 if (expect_false (!ev_is_active (w)))
1625 return; 3618 return;
1626 3619
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3620 EV_FREQUENT_CHECK;
3621
3622 {
3623 int active = ev_active (w);
3624
3625 prepares [active - 1] = prepares [--preparecnt];
3626 ev_active (prepares [active - 1]) = active;
3627 }
3628
1628 ev_stop (EV_A_ (W)w); 3629 ev_stop (EV_A_ (W)w);
3630
3631 EV_FREQUENT_CHECK;
1629} 3632}
3633#endif
3634
3635#if EV_CHECK_ENABLE
3636void
3637ev_check_start (EV_P_ ev_check *w)
3638{
3639 if (expect_false (ev_is_active (w)))
3640 return;
3641
3642 EV_FREQUENT_CHECK;
3643
3644 ev_start (EV_A_ (W)w, ++checkcnt);
3645 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3646 checks [checkcnt - 1] = w;
3647
3648 EV_FREQUENT_CHECK;
3649}
3650
3651void
3652ev_check_stop (EV_P_ ev_check *w)
3653{
3654 clear_pending (EV_A_ (W)w);
3655 if (expect_false (!ev_is_active (w)))
3656 return;
3657
3658 EV_FREQUENT_CHECK;
3659
3660 {
3661 int active = ev_active (w);
3662
3663 checks [active - 1] = checks [--checkcnt];
3664 ev_active (checks [active - 1]) = active;
3665 }
3666
3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
3670}
3671#endif
3672
3673#if EV_EMBED_ENABLE
3674void noinline
3675ev_embed_sweep (EV_P_ ev_embed *w)
3676{
3677 ev_run (w->other, EVRUN_NOWAIT);
3678}
3679
3680static void
3681embed_io_cb (EV_P_ ev_io *io, int revents)
3682{
3683 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3684
3685 if (ev_cb (w))
3686 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3687 else
3688 ev_run (w->other, EVRUN_NOWAIT);
3689}
3690
3691static void
3692embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3693{
3694 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3695
3696 {
3697 EV_P = w->other;
3698
3699 while (fdchangecnt)
3700 {
3701 fd_reify (EV_A);
3702 ev_run (EV_A_ EVRUN_NOWAIT);
3703 }
3704 }
3705}
3706
3707static void
3708embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3709{
3710 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3711
3712 ev_embed_stop (EV_A_ w);
3713
3714 {
3715 EV_P = w->other;
3716
3717 ev_loop_fork (EV_A);
3718 ev_run (EV_A_ EVRUN_NOWAIT);
3719 }
3720
3721 ev_embed_start (EV_A_ w);
3722}
3723
3724#if 0
3725static void
3726embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3727{
3728 ev_idle_stop (EV_A_ idle);
3729}
3730#endif
3731
3732void
3733ev_embed_start (EV_P_ ev_embed *w)
3734{
3735 if (expect_false (ev_is_active (w)))
3736 return;
3737
3738 {
3739 EV_P = w->other;
3740 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3741 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3742 }
3743
3744 EV_FREQUENT_CHECK;
3745
3746 ev_set_priority (&w->io, ev_priority (w));
3747 ev_io_start (EV_A_ &w->io);
3748
3749 ev_prepare_init (&w->prepare, embed_prepare_cb);
3750 ev_set_priority (&w->prepare, EV_MINPRI);
3751 ev_prepare_start (EV_A_ &w->prepare);
3752
3753 ev_fork_init (&w->fork, embed_fork_cb);
3754 ev_fork_start (EV_A_ &w->fork);
3755
3756 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3757
3758 ev_start (EV_A_ (W)w, 1);
3759
3760 EV_FREQUENT_CHECK;
3761}
3762
3763void
3764ev_embed_stop (EV_P_ ev_embed *w)
3765{
3766 clear_pending (EV_A_ (W)w);
3767 if (expect_false (!ev_is_active (w)))
3768 return;
3769
3770 EV_FREQUENT_CHECK;
3771
3772 ev_io_stop (EV_A_ &w->io);
3773 ev_prepare_stop (EV_A_ &w->prepare);
3774 ev_fork_stop (EV_A_ &w->fork);
3775
3776 ev_stop (EV_A_ (W)w);
3777
3778 EV_FREQUENT_CHECK;
3779}
3780#endif
3781
3782#if EV_FORK_ENABLE
3783void
3784ev_fork_start (EV_P_ ev_fork *w)
3785{
3786 if (expect_false (ev_is_active (w)))
3787 return;
3788
3789 EV_FREQUENT_CHECK;
3790
3791 ev_start (EV_A_ (W)w, ++forkcnt);
3792 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3793 forks [forkcnt - 1] = w;
3794
3795 EV_FREQUENT_CHECK;
3796}
3797
3798void
3799ev_fork_stop (EV_P_ ev_fork *w)
3800{
3801 clear_pending (EV_A_ (W)w);
3802 if (expect_false (!ev_is_active (w)))
3803 return;
3804
3805 EV_FREQUENT_CHECK;
3806
3807 {
3808 int active = ev_active (w);
3809
3810 forks [active - 1] = forks [--forkcnt];
3811 ev_active (forks [active - 1]) = active;
3812 }
3813
3814 ev_stop (EV_A_ (W)w);
3815
3816 EV_FREQUENT_CHECK;
3817}
3818#endif
3819
3820#if EV_CLEANUP_ENABLE
3821void
3822ev_cleanup_start (EV_P_ ev_cleanup *w)
3823{
3824 if (expect_false (ev_is_active (w)))
3825 return;
3826
3827 EV_FREQUENT_CHECK;
3828
3829 ev_start (EV_A_ (W)w, ++cleanupcnt);
3830 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3831 cleanups [cleanupcnt - 1] = w;
3832
3833 /* cleanup watchers should never keep a refcount on the loop */
3834 ev_unref (EV_A);
3835 EV_FREQUENT_CHECK;
3836}
3837
3838void
3839ev_cleanup_stop (EV_P_ ev_cleanup *w)
3840{
3841 clear_pending (EV_A_ (W)w);
3842 if (expect_false (!ev_is_active (w)))
3843 return;
3844
3845 EV_FREQUENT_CHECK;
3846 ev_ref (EV_A);
3847
3848 {
3849 int active = ev_active (w);
3850
3851 cleanups [active - 1] = cleanups [--cleanupcnt];
3852 ev_active (cleanups [active - 1]) = active;
3853 }
3854
3855 ev_stop (EV_A_ (W)w);
3856
3857 EV_FREQUENT_CHECK;
3858}
3859#endif
3860
3861#if EV_ASYNC_ENABLE
3862void
3863ev_async_start (EV_P_ ev_async *w)
3864{
3865 if (expect_false (ev_is_active (w)))
3866 return;
3867
3868 w->sent = 0;
3869
3870 evpipe_init (EV_A);
3871
3872 EV_FREQUENT_CHECK;
3873
3874 ev_start (EV_A_ (W)w, ++asynccnt);
3875 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3876 asyncs [asynccnt - 1] = w;
3877
3878 EV_FREQUENT_CHECK;
3879}
3880
3881void
3882ev_async_stop (EV_P_ ev_async *w)
3883{
3884 clear_pending (EV_A_ (W)w);
3885 if (expect_false (!ev_is_active (w)))
3886 return;
3887
3888 EV_FREQUENT_CHECK;
3889
3890 {
3891 int active = ev_active (w);
3892
3893 asyncs [active - 1] = asyncs [--asynccnt];
3894 ev_active (asyncs [active - 1]) = active;
3895 }
3896
3897 ev_stop (EV_A_ (W)w);
3898
3899 EV_FREQUENT_CHECK;
3900}
3901
3902void
3903ev_async_send (EV_P_ ev_async *w)
3904{
3905 w->sent = 1;
3906 evpipe_write (EV_A_ &async_pending);
3907}
3908#endif
1630 3909
1631/*****************************************************************************/ 3910/*****************************************************************************/
1632 3911
1633struct ev_once 3912struct ev_once
1634{ 3913{
1635 struct ev_io io; 3914 ev_io io;
1636 struct ev_timer to; 3915 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3916 void (*cb)(int revents, void *arg);
1638 void *arg; 3917 void *arg;
1639}; 3918};
1640 3919
1641static void 3920static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3921once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3922{
1644 void (*cb)(int revents, void *arg) = once->cb; 3923 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3924 void *arg = once->arg;
1646 3925
1647 ev_io_stop (EV_A_ &once->io); 3926 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3927 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3928 ev_free (once);
1650 3929
1651 cb (revents, arg); 3930 cb (revents, arg);
1652} 3931}
1653 3932
1654static void 3933static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3934once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3935{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3936 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3937
3938 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3939}
1659 3940
1660static void 3941static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3942once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3943{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3944 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3945
3946 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3947}
1665 3948
1666void 3949void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3950ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3951{
1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3952 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1670 3953
1671 if (expect_false (!once)) 3954 if (expect_false (!once))
1672 { 3955 {
1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3956 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1674 return; 3957 return;
1675 } 3958 }
1676 3959
1677 once->cb = cb; 3960 once->cb = cb;
1678 once->arg = arg; 3961 once->arg = arg;
1690 ev_timer_set (&once->to, timeout, 0.); 3973 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3974 ev_timer_start (EV_A_ &once->to);
1692 } 3975 }
1693} 3976}
1694 3977
1695#ifdef __cplusplus 3978/*****************************************************************************/
1696} 3979
3980#if EV_WALK_ENABLE
3981void ecb_cold
3982ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3983{
3984 int i, j;
3985 ev_watcher_list *wl, *wn;
3986
3987 if (types & (EV_IO | EV_EMBED))
3988 for (i = 0; i < anfdmax; ++i)
3989 for (wl = anfds [i].head; wl; )
3990 {
3991 wn = wl->next;
3992
3993#if EV_EMBED_ENABLE
3994 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3995 {
3996 if (types & EV_EMBED)
3997 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3998 }
3999 else
4000#endif
4001#if EV_USE_INOTIFY
4002 if (ev_cb ((ev_io *)wl) == infy_cb)
4003 ;
4004 else
4005#endif
4006 if ((ev_io *)wl != &pipe_w)
4007 if (types & EV_IO)
4008 cb (EV_A_ EV_IO, wl);
4009
4010 wl = wn;
4011 }
4012
4013 if (types & (EV_TIMER | EV_STAT))
4014 for (i = timercnt + HEAP0; i-- > HEAP0; )
4015#if EV_STAT_ENABLE
4016 /*TODO: timer is not always active*/
4017 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4018 {
4019 if (types & EV_STAT)
4020 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4021 }
4022 else
4023#endif
4024 if (types & EV_TIMER)
4025 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4026
4027#if EV_PERIODIC_ENABLE
4028 if (types & EV_PERIODIC)
4029 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4030 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4031#endif
4032
4033#if EV_IDLE_ENABLE
4034 if (types & EV_IDLE)
4035 for (j = NUMPRI; i--; )
4036 for (i = idlecnt [j]; i--; )
4037 cb (EV_A_ EV_IDLE, idles [j][i]);
4038#endif
4039
4040#if EV_FORK_ENABLE
4041 if (types & EV_FORK)
4042 for (i = forkcnt; i--; )
4043 if (ev_cb (forks [i]) != embed_fork_cb)
4044 cb (EV_A_ EV_FORK, forks [i]);
4045#endif
4046
4047#if EV_ASYNC_ENABLE
4048 if (types & EV_ASYNC)
4049 for (i = asynccnt; i--; )
4050 cb (EV_A_ EV_ASYNC, asyncs [i]);
4051#endif
4052
4053#if EV_PREPARE_ENABLE
4054 if (types & EV_PREPARE)
4055 for (i = preparecnt; i--; )
4056# if EV_EMBED_ENABLE
4057 if (ev_cb (prepares [i]) != embed_prepare_cb)
1697#endif 4058# endif
4059 cb (EV_A_ EV_PREPARE, prepares [i]);
4060#endif
1698 4061
4062#if EV_CHECK_ENABLE
4063 if (types & EV_CHECK)
4064 for (i = checkcnt; i--; )
4065 cb (EV_A_ EV_CHECK, checks [i]);
4066#endif
4067
4068#if EV_SIGNAL_ENABLE
4069 if (types & EV_SIGNAL)
4070 for (i = 0; i < EV_NSIG - 1; ++i)
4071 for (wl = signals [i].head; wl; )
4072 {
4073 wn = wl->next;
4074 cb (EV_A_ EV_SIGNAL, wl);
4075 wl = wn;
4076 }
4077#endif
4078
4079#if EV_CHILD_ENABLE
4080 if (types & EV_CHILD)
4081 for (i = (EV_PID_HASHSIZE); i--; )
4082 for (wl = childs [i]; wl; )
4083 {
4084 wn = wl->next;
4085 cb (EV_A_ EV_CHILD, wl);
4086 wl = wn;
4087 }
4088#endif
4089/* EV_STAT 0x00001000 /* stat data changed */
4090/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4091}
4092#endif
4093
4094#if EV_MULTIPLICITY
4095 #include "ev_wrap.h"
4096#endif
4097
4098EV_CPP(})
4099

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines