ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.39 by root, Thu Nov 1 17:17:32 2007 UTC vs.
Revision 1.77 by root, Thu Nov 8 00:44:17 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
50 77
51#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
53#endif 80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
54 113
55#ifndef CLOCK_MONOTONIC 114#ifndef CLOCK_MONOTONIC
56# undef EV_USE_MONOTONIC 115# undef EV_USE_MONOTONIC
57# define EV_USE_MONOTONIC 0 116# define EV_USE_MONOTONIC 0
58#endif 117#endif
59 118
60#ifndef EV_USE_SELECT
61# define EV_USE_SELECT 1
62#endif
63
64#ifndef EV_USE_EPOLL
65# define EV_USE_EPOLL 0
66#endif
67
68#ifndef CLOCK_REALTIME 119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
69# define EV_USE_REALTIME 0 121# define EV_USE_REALTIME 0
70#endif 122#endif
71#ifndef EV_USE_REALTIME 123
72# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 124/**/
73#endif
74 125
75#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
76#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
77#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
78#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
79 130
80#include "ev.h" 131#include "ev.h"
132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
81 146
82typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
83typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
84typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
85 150
86static ev_tstamp now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
87ev_tstamp ev_now;
88int ev_method;
89 152
90static int have_monotonic; /* runtime */ 153#include "ev_win32.c"
91
92static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
93static void (*method_modify)(int fd, int oev, int nev);
94static void (*method_poll)(ev_tstamp timeout);
95 154
96/*****************************************************************************/ 155/*****************************************************************************/
97 156
98ev_tstamp 157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
205typedef struct
206{
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210} ANFD;
211
212typedef struct
213{
214 W w;
215 int events;
216} ANPENDING;
217
218#if EV_MULTIPLICITY
219
220struct ev_loop
221{
222# define VAR(name,decl) decl;
223# include "ev_vars.h"
224};
225# undef VAR
226# include "ev_wrap.h"
227
228#else
229
230# define VAR(name,decl) static decl;
231# include "ev_vars.h"
232# undef VAR
233
234#endif
235
236/*****************************************************************************/
237
238inline ev_tstamp
99ev_time (void) 239ev_time (void)
100{ 240{
101#if EV_USE_REALTIME 241#if EV_USE_REALTIME
102 struct timespec ts; 242 struct timespec ts;
103 clock_gettime (CLOCK_REALTIME, &ts); 243 clock_gettime (CLOCK_REALTIME, &ts);
107 gettimeofday (&tv, 0); 247 gettimeofday (&tv, 0);
108 return tv.tv_sec + tv.tv_usec * 1e-6; 248 return tv.tv_sec + tv.tv_usec * 1e-6;
109#endif 249#endif
110} 250}
111 251
112static ev_tstamp 252inline ev_tstamp
113get_clock (void) 253get_clock (void)
114{ 254{
115#if EV_USE_MONOTONIC 255#if EV_USE_MONOTONIC
116 if (have_monotonic) 256 if (expect_true (have_monotonic))
117 { 257 {
118 struct timespec ts; 258 struct timespec ts;
119 clock_gettime (CLOCK_MONOTONIC, &ts); 259 clock_gettime (CLOCK_MONOTONIC, &ts);
120 return ts.tv_sec + ts.tv_nsec * 1e-9; 260 return ts.tv_sec + ts.tv_nsec * 1e-9;
121 } 261 }
122#endif 262#endif
123 263
124 return ev_time (); 264 return ev_time ();
125} 265}
126 266
267ev_tstamp
268ev_now (EV_P)
269{
270 return rt_now;
271}
272
127#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(type,n) ((n) | 4 & ~3)
128 274
129#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
130 if ((cnt) > cur) \ 276 if (expect_false ((cnt) > cur)) \
131 { \ 277 { \
132 int newcnt = cur; \ 278 int newcnt = cur; \
133 do \ 279 do \
134 { \ 280 { \
135 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (type, newcnt << 1); \
136 } \ 282 } \
137 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
138 \ 284 \
139 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
140 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
141 cur = newcnt; \ 287 cur = newcnt; \
142 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
143 305
144/*****************************************************************************/ 306/*****************************************************************************/
145
146typedef struct
147{
148 struct ev_io *head;
149 unsigned char events;
150 unsigned char reify;
151} ANFD;
152
153static ANFD *anfds;
154static int anfdmax;
155 307
156static void 308static void
157anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
158{ 310{
159 while (count--) 311 while (count--)
164 316
165 ++base; 317 ++base;
166 } 318 }
167} 319}
168 320
169typedef struct
170{
171 W w;
172 int events;
173} ANPENDING;
174
175static ANPENDING *pendings;
176static int pendingmax, pendingcnt;
177
178static void 321static void
179event (W w, int events) 322event (EV_P_ W w, int events)
180{ 323{
181 if (w->pending) 324 if (w->pending)
182 { 325 {
183 pendings [w->pending - 1].events |= events; 326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
184 return; 327 return;
185 } 328 }
186 329
187 w->pending = ++pendingcnt; 330 w->pending = ++pendingcnt [ABSPRI (w)];
188 array_needsize (pendings, pendingmax, pendingcnt, ); 331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
189 pendings [pendingcnt - 1].w = w; 332 pendings [ABSPRI (w)][w->pending - 1].w = w;
190 pendings [pendingcnt - 1].events = events; 333 pendings [ABSPRI (w)][w->pending - 1].events = events;
191} 334}
192 335
193static void 336static void
194queue_events (W *events, int eventcnt, int type) 337queue_events (EV_P_ W *events, int eventcnt, int type)
195{ 338{
196 int i; 339 int i;
197 340
198 for (i = 0; i < eventcnt; ++i) 341 for (i = 0; i < eventcnt; ++i)
199 event (events [i], type); 342 event (EV_A_ events [i], type);
200} 343}
201 344
202static void 345static void
203fd_event (int fd, int events) 346fd_event (EV_P_ int fd, int events)
204{ 347{
205 ANFD *anfd = anfds + fd; 348 ANFD *anfd = anfds + fd;
206 struct ev_io *w; 349 struct ev_io *w;
207 350
208 for (w = anfd->head; w; w = w->next) 351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
209 { 352 {
210 int ev = w->events & events; 353 int ev = w->events & events;
211 354
212 if (ev) 355 if (ev)
213 event ((W)w, ev); 356 event (EV_A_ (W)w, ev);
214 } 357 }
215} 358}
216 359
217/*****************************************************************************/ 360/*****************************************************************************/
218 361
219static int *fdchanges;
220static int fdchangemax, fdchangecnt;
221
222static void 362static void
223fd_reify (void) 363fd_reify (EV_P)
224{ 364{
225 int i; 365 int i;
226 366
227 for (i = 0; i < fdchangecnt; ++i) 367 for (i = 0; i < fdchangecnt; ++i)
228 { 368 {
230 ANFD *anfd = anfds + fd; 370 ANFD *anfd = anfds + fd;
231 struct ev_io *w; 371 struct ev_io *w;
232 372
233 int events = 0; 373 int events = 0;
234 374
235 for (w = anfd->head; w; w = w->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
236 events |= w->events; 376 events |= w->events;
237 377
238 anfd->reify = 0; 378 anfd->reify = 0;
239 379
240 if (anfd->events != events)
241 {
242 method_modify (fd, anfd->events, events); 380 method_modify (EV_A_ fd, anfd->events, events);
243 anfd->events = events; 381 anfd->events = events;
244 }
245 } 382 }
246 383
247 fdchangecnt = 0; 384 fdchangecnt = 0;
248} 385}
249 386
250static void 387static void
251fd_change (int fd) 388fd_change (EV_P_ int fd)
252{ 389{
253 if (anfds [fd].reify || fdchangecnt < 0) 390 if (anfds [fd].reify)
254 return; 391 return;
255 392
256 anfds [fd].reify = 1; 393 anfds [fd].reify = 1;
257 394
258 ++fdchangecnt; 395 ++fdchangecnt;
259 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
260 fdchanges [fdchangecnt - 1] = fd; 397 fdchanges [fdchangecnt - 1] = fd;
261} 398}
262 399
400static void
401fd_kill (EV_P_ int fd)
402{
403 struct ev_io *w;
404
405 while ((w = (struct ev_io *)anfds [fd].head))
406 {
407 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 }
410}
411
412static int
413fd_valid (int fd)
414{
415#ifdef WIN32
416 return !!win32_get_osfhandle (fd);
417#else
418 return fcntl (fd, F_GETFD) != -1;
419#endif
420}
421
263/* called on EBADF to verify fds */ 422/* called on EBADF to verify fds */
264static void 423static void
265fd_recheck (void) 424fd_ebadf (EV_P)
266{ 425{
267 int fd; 426 int fd;
268 427
269 for (fd = 0; fd < anfdmax; ++fd) 428 for (fd = 0; fd < anfdmax; ++fd)
270 if (anfds [fd].events) 429 if (anfds [fd].events)
271 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 430 if (!fd_valid (fd) == -1 && errno == EBADF)
272 while (anfds [fd].head) 431 fd_kill (EV_A_ fd);
432}
433
434/* called on ENOMEM in select/poll to kill some fds and retry */
435static void
436fd_enomem (EV_P)
437{
438 int fd;
439
440 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events)
273 { 442 {
274 ev_io_stop (anfds [fd].head); 443 fd_kill (EV_A_ fd);
275 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 444 return;
276 } 445 }
446}
447
448/* usually called after fork if method needs to re-arm all fds from scratch */
449static void
450fd_rearm_all (EV_P)
451{
452 int fd;
453
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events)
457 {
458 anfds [fd].events = 0;
459 fd_change (EV_A_ fd);
460 }
277} 461}
278 462
279/*****************************************************************************/ 463/*****************************************************************************/
280 464
281static struct ev_timer **timers;
282static int timermax, timercnt;
283
284static struct ev_periodic **periodics;
285static int periodicmax, periodiccnt;
286
287static void 465static void
288upheap (WT *timers, int k) 466upheap (WT *heap, int k)
289{ 467{
290 WT w = timers [k]; 468 WT w = heap [k];
291 469
292 while (k && timers [k >> 1]->at > w->at) 470 while (k && heap [k >> 1]->at > w->at)
293 { 471 {
294 timers [k] = timers [k >> 1]; 472 heap [k] = heap [k >> 1];
295 timers [k]->active = k + 1; 473 ((W)heap [k])->active = k + 1;
296 k >>= 1; 474 k >>= 1;
297 } 475 }
298 476
299 timers [k] = w; 477 heap [k] = w;
300 timers [k]->active = k + 1; 478 ((W)heap [k])->active = k + 1;
301 479
302} 480}
303 481
304static void 482static void
305downheap (WT *timers, int N, int k) 483downheap (WT *heap, int N, int k)
306{ 484{
307 WT w = timers [k]; 485 WT w = heap [k];
308 486
309 while (k < (N >> 1)) 487 while (k < (N >> 1))
310 { 488 {
311 int j = k << 1; 489 int j = k << 1;
312 490
313 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
314 ++j; 492 ++j;
315 493
316 if (w->at <= timers [j]->at) 494 if (w->at <= heap [j]->at)
317 break; 495 break;
318 496
319 timers [k] = timers [j]; 497 heap [k] = heap [j];
320 timers [k]->active = k + 1; 498 ((W)heap [k])->active = k + 1;
321 k = j; 499 k = j;
322 } 500 }
323 501
324 timers [k] = w; 502 heap [k] = w;
325 timers [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
326} 504}
327 505
328/*****************************************************************************/ 506/*****************************************************************************/
329 507
330typedef struct 508typedef struct
331{ 509{
332 struct ev_signal *head; 510 WL head;
333 sig_atomic_t volatile gotsig; 511 sig_atomic_t volatile gotsig;
334} ANSIG; 512} ANSIG;
335 513
336static ANSIG *signals; 514static ANSIG *signals;
337static int signalmax; 515static int signalmax;
353} 531}
354 532
355static void 533static void
356sighandler (int signum) 534sighandler (int signum)
357{ 535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
358 signals [signum - 1].gotsig = 1; 540 signals [signum - 1].gotsig = 1;
359 541
360 if (!gotsig) 542 if (!gotsig)
361 { 543 {
544 int old_errno = errno;
362 gotsig = 1; 545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
363 write (sigpipe [1], &signum, 1); 549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
364 } 552 }
365} 553}
366 554
367static void 555static void
368sigcb (struct ev_io *iow, int revents) 556sigcb (EV_P_ struct ev_io *iow, int revents)
369{ 557{
370 struct ev_signal *w; 558 WL w;
371 int signum; 559 int signum;
372 560
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
373 read (sigpipe [0], &revents, 1); 564 read (sigpipe [0], &revents, 1);
565#endif
374 gotsig = 0; 566 gotsig = 0;
375 567
376 for (signum = signalmax; signum--; ) 568 for (signum = signalmax; signum--; )
377 if (signals [signum].gotsig) 569 if (signals [signum].gotsig)
378 { 570 {
379 signals [signum].gotsig = 0; 571 signals [signum].gotsig = 0;
380 572
381 for (w = signals [signum].head; w; w = w->next) 573 for (w = signals [signum].head; w; w = w->next)
382 event ((W)w, EV_SIGNAL); 574 event (EV_A_ (W)w, EV_SIGNAL);
383 } 575 }
384} 576}
385 577
386static void 578static void
387siginit (void) 579siginit (EV_P)
388{ 580{
581#ifndef WIN32
389 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
390 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
391 584
392 /* rather than sort out wether we really need nb, set it */ 585 /* rather than sort out wether we really need nb, set it */
393 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
394 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
395 589
396 ev_io_set (&sigev, sigpipe [0], EV_READ); 590 ev_io_set (&sigev, sigpipe [0], EV_READ);
397 ev_io_start (&sigev); 591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
398} 593}
399 594
400/*****************************************************************************/ 595/*****************************************************************************/
401 596
402static struct ev_idle **idles;
403static int idlemax, idlecnt;
404
405static struct ev_prepare **prepares;
406static int preparemax, preparecnt;
407
408static struct ev_check **checks;
409static int checkmax, checkcnt;
410
411/*****************************************************************************/
412
413static struct ev_child *childs [PID_HASHSIZE]; 597static struct ev_child *childs [PID_HASHSIZE];
598
599#ifndef WIN32
600
414static struct ev_signal childev; 601static struct ev_signal childev;
415 602
416#ifndef WCONTINUED 603#ifndef WCONTINUED
417# define WCONTINUED 0 604# define WCONTINUED 0
418#endif 605#endif
419 606
420static void 607static void
421childcb (struct ev_signal *sw, int revents) 608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
422{ 609{
423 struct ev_child *w; 610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents)
624{
424 int pid, status; 625 int pid, status;
425 626
426 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
427 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 628 {
428 if (w->pid == pid || !w->pid) 629 /* make sure we are called again until all childs have been reaped */
429 { 630 event (EV_A_ (W)sw, EV_SIGNAL);
430 w->status = status; 631
431 event ((W)w, EV_CHILD); 632 child_reap (EV_A_ sw, pid, pid, status);
432 } 633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 }
433} 635}
636
637#endif
434 638
435/*****************************************************************************/ 639/*****************************************************************************/
436 640
641#if EV_USE_KQUEUE
642# include "ev_kqueue.c"
643#endif
437#if EV_USE_EPOLL 644#if EV_USE_EPOLL
438# include "ev_epoll.c" 645# include "ev_epoll.c"
439#endif 646#endif
647#if EV_USE_POLL
648# include "ev_poll.c"
649#endif
440#if EV_USE_SELECT 650#if EV_USE_SELECT
441# include "ev_select.c" 651# include "ev_select.c"
442#endif 652#endif
443 653
444int 654int
451ev_version_minor (void) 661ev_version_minor (void)
452{ 662{
453 return EV_VERSION_MINOR; 663 return EV_VERSION_MINOR;
454} 664}
455 665
456int ev_init (int flags) 666/* return true if we are running with elevated privileges and should ignore env variables */
667static int
668enable_secure (void)
457{ 669{
670#ifdef WIN32
671 return 0;
672#else
673 return getuid () != geteuid ()
674 || getgid () != getegid ();
675#endif
676}
677
678int
679ev_method (EV_P)
680{
681 return method;
682}
683
684static void
685loop_init (EV_P_ int methods)
686{
458 if (!ev_method) 687 if (!method)
459 { 688 {
460#if EV_USE_MONOTONIC 689#if EV_USE_MONOTONIC
461 { 690 {
462 struct timespec ts; 691 struct timespec ts;
463 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 692 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
464 have_monotonic = 1; 693 have_monotonic = 1;
465 } 694 }
466#endif 695#endif
467 696
468 ev_now = ev_time (); 697 rt_now = ev_time ();
469 now = get_clock (); 698 mn_now = get_clock ();
699 now_floor = mn_now;
470 diff = ev_now - now; 700 rtmn_diff = rt_now - mn_now;
471 701
472 if (pipe (sigpipe)) 702 if (methods == EVMETHOD_AUTO)
473 return 0; 703 if (!enable_secure () && getenv ("LIBEV_METHODS"))
474 704 methods = atoi (getenv ("LIBEV_METHODS"));
705 else
475 ev_method = EVMETHOD_NONE; 706 methods = EVMETHOD_ANY;
707
708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
712#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
714#endif
476#if EV_USE_EPOLL 715#if EV_USE_EPOLL
477 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
717#endif
718#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
478#endif 720#endif
479#if EV_USE_SELECT 721#if EV_USE_SELECT
480 if (ev_method == EVMETHOD_NONE) select_init (flags); 722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
481#endif 723#endif
482 724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
727 }
728}
729
730void
731loop_destroy (EV_P)
732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
738#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
740#endif
741#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
743#endif
744#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
746#endif
747#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
749#endif
750
751 for (i = NUMPRI; i--; )
752 array_free (pending, [i]);
753
754 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange);
756 array_free_microshit (timer);
757 array_free_microshit (periodic);
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761
762 method = 0;
763}
764
765static void
766loop_fork (EV_P)
767{
768#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
770#endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
791}
792
793#if EV_MULTIPLICITY
794struct ev_loop *
795ev_loop_new (int methods)
796{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif
823
824#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1;
846#endif
847
848 loop_init (EV_A_ methods);
849
483 if (ev_method) 850 if (ev_method (EV_A))
484 { 851 {
485 ev_watcher_init (&sigev, sigcb);
486 siginit (); 852 siginit (EV_A);
487 853
854#ifndef WIN32
488 ev_signal_init (&childev, childcb, SIGCHLD); 855 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI);
489 ev_signal_start (&childev); 857 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif
490 } 860 }
861 else
862 default_loop = 0;
491 } 863 }
492 864
493 return ev_method; 865 return default_loop;
866}
867
868void
869ev_default_destroy (void)
870{
871#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop;
873#endif
874
875#ifndef WIN32
876 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev);
878#endif
879
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A);
887}
888
889void
890ev_default_fork (void)
891{
892#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop;
894#endif
895
896 if (method)
897 postfork = 1;
494} 898}
495 899
496/*****************************************************************************/ 900/*****************************************************************************/
497 901
498void
499ev_fork_prepare (void)
500{
501 /* nop */
502}
503
504void
505ev_fork_parent (void)
506{
507 /* nop */
508}
509
510void
511ev_fork_child (void)
512{
513#if EV_USE_EPOLL
514 if (ev_method == EVMETHOD_EPOLL)
515 epoll_postfork_child ();
516#endif
517
518 ev_io_stop (&sigev);
519 close (sigpipe [0]);
520 close (sigpipe [1]);
521 pipe (sigpipe);
522 siginit ();
523}
524
525/*****************************************************************************/
526
527static void 902static int
903any_pending (EV_P)
904{
905 int pri;
906
907 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri])
909 return 1;
910
911 return 0;
912}
913
914static void
528call_pending (void) 915call_pending (EV_P)
529{ 916{
917 int pri;
918
919 for (pri = NUMPRI; pri--; )
530 while (pendingcnt) 920 while (pendingcnt [pri])
531 { 921 {
532 ANPENDING *p = pendings + --pendingcnt; 922 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
533 923
534 if (p->w) 924 if (p->w)
535 { 925 {
536 p->w->pending = 0; 926 p->w->pending = 0;
537 p->w->cb (p->w, p->events); 927 p->w->cb (EV_A_ p->w, p->events);
538 } 928 }
539 } 929 }
540} 930}
541 931
542static void 932static void
543timers_reify (void) 933timers_reify (EV_P)
544{ 934{
545 while (timercnt && timers [0]->at <= now) 935 while (timercnt && ((WT)timers [0])->at <= mn_now)
546 { 936 {
547 struct ev_timer *w = timers [0]; 937 struct ev_timer *w = timers [0];
938
939 assert (("inactive timer on timer heap detected", ev_is_active (w)));
548 940
549 /* first reschedule or stop timer */ 941 /* first reschedule or stop timer */
550 if (w->repeat) 942 if (w->repeat)
551 { 943 {
552 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
553 w->at = now + w->repeat; 945 ((WT)w)->at = mn_now + w->repeat;
554 downheap ((WT *)timers, timercnt, 0); 946 downheap ((WT *)timers, timercnt, 0);
555 } 947 }
556 else 948 else
557 ev_timer_stop (w); /* nonrepeating: stop timer */ 949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
558 950
559 event ((W)w, EV_TIMEOUT); 951 event (EV_A_ (W)w, EV_TIMEOUT);
560 } 952 }
561} 953}
562 954
563static void 955static void
564periodics_reify (void) 956periodics_reify (EV_P)
565{ 957{
566 while (periodiccnt && periodics [0]->at <= ev_now) 958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
567 { 959 {
568 struct ev_periodic *w = periodics [0]; 960 struct ev_periodic *w = periodics [0];
569 961
962 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
963
570 /* first reschedule or stop timer */ 964 /* first reschedule or stop timer */
571 if (w->interval) 965 if (w->reschedule_cb)
572 { 966 {
967 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
968
969 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
970 downheap ((WT *)periodics, periodiccnt, 0);
971 }
972 else if (w->interval)
973 {
573 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 974 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
574 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 975 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
575 downheap ((WT *)periodics, periodiccnt, 0); 976 downheap ((WT *)periodics, periodiccnt, 0);
576 } 977 }
577 else 978 else
578 ev_periodic_stop (w); /* nonrepeating: stop timer */ 979 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
579 980
580 event ((W)w, EV_PERIODIC); 981 event (EV_A_ (W)w, EV_PERIODIC);
581 } 982 }
582} 983}
583 984
584static void 985static void
585periodics_reschedule (ev_tstamp diff) 986periodics_reschedule (EV_P)
586{ 987{
587 int i; 988 int i;
588 989
589 /* adjust periodics after time jump */ 990 /* adjust periodics after time jump */
590 for (i = 0; i < periodiccnt; ++i) 991 for (i = 0; i < periodiccnt; ++i)
591 { 992 {
592 struct ev_periodic *w = periodics [i]; 993 struct ev_periodic *w = periodics [i];
593 994
995 if (w->reschedule_cb)
996 ((WT)w)->at = w->reschedule_cb (w, rt_now);
594 if (w->interval) 997 else if (w->interval)
998 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
999 }
1000
1001 /* now rebuild the heap */
1002 for (i = periodiccnt >> 1; i--; )
1003 downheap ((WT *)periodics, periodiccnt, i);
1004}
1005
1006inline int
1007time_update_monotonic (EV_P)
1008{
1009 mn_now = get_clock ();
1010
1011 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1012 {
1013 rt_now = rtmn_diff + mn_now;
1014 return 0;
1015 }
1016 else
1017 {
1018 now_floor = mn_now;
1019 rt_now = ev_time ();
1020 return 1;
1021 }
1022}
1023
1024static void
1025time_update (EV_P)
1026{
1027 int i;
1028
1029#if EV_USE_MONOTONIC
1030 if (expect_true (have_monotonic))
1031 {
1032 if (time_update_monotonic (EV_A))
595 { 1033 {
596 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1034 ev_tstamp odiff = rtmn_diff;
597 1035
598 if (fabs (diff) >= 1e-4) 1036 for (i = 4; --i; ) /* loop a few times, before making important decisions */
599 { 1037 {
600 ev_periodic_stop (w); 1038 rtmn_diff = rt_now - mn_now;
601 ev_periodic_start (w);
602 1039
603 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1040 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1041 return; /* all is well */
1042
1043 rt_now = ev_time ();
1044 mn_now = get_clock ();
1045 now_floor = mn_now;
604 } 1046 }
1047
1048 periodics_reschedule (EV_A);
1049 /* no timer adjustment, as the monotonic clock doesn't jump */
1050 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
605 } 1051 }
606 } 1052 }
607} 1053 else
608 1054#endif
609static void 1055 {
610time_update (void)
611{
612 int i;
613
614 ev_now = ev_time (); 1056 rt_now = ev_time ();
615 1057
616 if (have_monotonic) 1058 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
617 {
618 ev_tstamp odiff = diff;
619
620 for (i = 4; --i; ) /* loop a few times, before making important decisions */
621 { 1059 {
622 now = get_clock ();
623 diff = ev_now - now;
624
625 if (fabs (odiff - diff) < MIN_TIMEJUMP)
626 return; /* all is well */
627
628 ev_now = ev_time ();
629 }
630
631 periodics_reschedule (diff - odiff);
632 /* no timer adjustment, as the monotonic clock doesn't jump */
633 }
634 else
635 {
636 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
637 {
638 periodics_reschedule (ev_now - now); 1060 periodics_reschedule (EV_A);
639 1061
640 /* adjust timers. this is easy, as the offset is the same for all */ 1062 /* adjust timers. this is easy, as the offset is the same for all */
641 for (i = 0; i < timercnt; ++i) 1063 for (i = 0; i < timercnt; ++i)
642 timers [i]->at += diff; 1064 ((WT)timers [i])->at += rt_now - mn_now;
643 } 1065 }
644 1066
645 now = ev_now; 1067 mn_now = rt_now;
646 } 1068 }
647} 1069}
648 1070
649int ev_loop_done; 1071void
1072ev_ref (EV_P)
1073{
1074 ++activecnt;
1075}
650 1076
1077void
1078ev_unref (EV_P)
1079{
1080 --activecnt;
1081}
1082
1083static int loop_done;
1084
1085void
651void ev_loop (int flags) 1086ev_loop (EV_P_ int flags)
652{ 1087{
653 double block; 1088 double block;
654 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1089 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
655 1090
656 do 1091 do
657 { 1092 {
658 /* queue check watchers (and execute them) */ 1093 /* queue check watchers (and execute them) */
659 if (preparecnt) 1094 if (expect_false (preparecnt))
660 { 1095 {
661 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1096 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
662 call_pending (); 1097 call_pending (EV_A);
663 } 1098 }
664 1099
1100 /* we might have forked, so reify kernel state if necessary */
1101 if (expect_false (postfork))
1102 loop_fork (EV_A);
1103
665 /* update fd-related kernel structures */ 1104 /* update fd-related kernel structures */
666 fd_reify (); 1105 fd_reify (EV_A);
667 1106
668 /* calculate blocking time */ 1107 /* calculate blocking time */
669 1108
670 /* we only need this for !monotonic clockor timers, but as we basically 1109 /* we only need this for !monotonic clock or timers, but as we basically
671 always have timers, we just calculate it always */ 1110 always have timers, we just calculate it always */
1111#if EV_USE_MONOTONIC
1112 if (expect_true (have_monotonic))
1113 time_update_monotonic (EV_A);
1114 else
1115#endif
1116 {
672 ev_now = ev_time (); 1117 rt_now = ev_time ();
1118 mn_now = rt_now;
1119 }
673 1120
674 if (flags & EVLOOP_NONBLOCK || idlecnt) 1121 if (flags & EVLOOP_NONBLOCK || idlecnt)
675 block = 0.; 1122 block = 0.;
676 else 1123 else
677 { 1124 {
678 block = MAX_BLOCKTIME; 1125 block = MAX_BLOCKTIME;
679 1126
680 if (timercnt) 1127 if (timercnt)
681 { 1128 {
682 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1129 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
683 if (block > to) block = to; 1130 if (block > to) block = to;
684 } 1131 }
685 1132
686 if (periodiccnt) 1133 if (periodiccnt)
687 { 1134 {
688 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1135 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
689 if (block > to) block = to; 1136 if (block > to) block = to;
690 } 1137 }
691 1138
692 if (block < 0.) block = 0.; 1139 if (block < 0.) block = 0.;
693 } 1140 }
694 1141
695 method_poll (block); 1142 method_poll (EV_A_ block);
696 1143
697 /* update ev_now, do magic */ 1144 /* update rt_now, do magic */
698 time_update (); 1145 time_update (EV_A);
699 1146
700 /* queue pending timers and reschedule them */ 1147 /* queue pending timers and reschedule them */
701 timers_reify (); /* relative timers called last */ 1148 timers_reify (EV_A); /* relative timers called last */
702 periodics_reify (); /* absolute timers called first */ 1149 periodics_reify (EV_A); /* absolute timers called first */
703 1150
704 /* queue idle watchers unless io or timers are pending */ 1151 /* queue idle watchers unless io or timers are pending */
705 if (!pendingcnt) 1152 if (idlecnt && !any_pending (EV_A))
706 queue_events ((W *)idles, idlecnt, EV_IDLE); 1153 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
707 1154
708 /* queue check watchers, to be executed first */ 1155 /* queue check watchers, to be executed first */
709 if (checkcnt) 1156 if (checkcnt)
710 queue_events ((W *)checks, checkcnt, EV_CHECK); 1157 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
711 1158
712 call_pending (); 1159 call_pending (EV_A);
713 } 1160 }
714 while (!ev_loop_done); 1161 while (activecnt && !loop_done);
715 1162
716 if (ev_loop_done != 2) 1163 if (loop_done != 2)
717 ev_loop_done = 0; 1164 loop_done = 0;
1165}
1166
1167void
1168ev_unloop (EV_P_ int how)
1169{
1170 loop_done = how;
718} 1171}
719 1172
720/*****************************************************************************/ 1173/*****************************************************************************/
721 1174
722static void 1175inline void
723wlist_add (WL *head, WL elem) 1176wlist_add (WL *head, WL elem)
724{ 1177{
725 elem->next = *head; 1178 elem->next = *head;
726 *head = elem; 1179 *head = elem;
727} 1180}
728 1181
729static void 1182inline void
730wlist_del (WL *head, WL elem) 1183wlist_del (WL *head, WL elem)
731{ 1184{
732 while (*head) 1185 while (*head)
733 { 1186 {
734 if (*head == elem) 1187 if (*head == elem)
739 1192
740 head = &(*head)->next; 1193 head = &(*head)->next;
741 } 1194 }
742} 1195}
743 1196
744static void 1197inline void
745ev_clear_pending (W w) 1198ev_clear_pending (EV_P_ W w)
746{ 1199{
747 if (w->pending) 1200 if (w->pending)
748 { 1201 {
749 pendings [w->pending - 1].w = 0; 1202 pendings [ABSPRI (w)][w->pending - 1].w = 0;
750 w->pending = 0; 1203 w->pending = 0;
751 } 1204 }
752} 1205}
753 1206
754static void 1207inline void
755ev_start (W w, int active) 1208ev_start (EV_P_ W w, int active)
756{ 1209{
1210 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1211 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1212
757 w->active = active; 1213 w->active = active;
1214 ev_ref (EV_A);
758} 1215}
759 1216
760static void 1217inline void
761ev_stop (W w) 1218ev_stop (EV_P_ W w)
762{ 1219{
1220 ev_unref (EV_A);
763 w->active = 0; 1221 w->active = 0;
764} 1222}
765 1223
766/*****************************************************************************/ 1224/*****************************************************************************/
767 1225
768void 1226void
769ev_io_start (struct ev_io *w) 1227ev_io_start (EV_P_ struct ev_io *w)
770{ 1228{
771 int fd = w->fd; 1229 int fd = w->fd;
772 1230
773 if (ev_is_active (w)) 1231 if (ev_is_active (w))
774 return; 1232 return;
775 1233
776 assert (("ev_io_start called with negative fd", fd >= 0)); 1234 assert (("ev_io_start called with negative fd", fd >= 0));
777 1235
778 ev_start ((W)w, 1); 1236 ev_start (EV_A_ (W)w, 1);
779 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1237 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
780 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1238 wlist_add ((WL *)&anfds[fd].head, (WL)w);
781 1239
782 fd_change (fd); 1240 fd_change (EV_A_ fd);
783} 1241}
784 1242
785void 1243void
786ev_io_stop (struct ev_io *w) 1244ev_io_stop (EV_P_ struct ev_io *w)
787{ 1245{
788 ev_clear_pending ((W)w); 1246 ev_clear_pending (EV_A_ (W)w);
789 if (!ev_is_active (w)) 1247 if (!ev_is_active (w))
790 return; 1248 return;
791 1249
792 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1250 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
793 ev_stop ((W)w); 1251 ev_stop (EV_A_ (W)w);
794 1252
795 fd_change (w->fd); 1253 fd_change (EV_A_ w->fd);
796} 1254}
797 1255
798void 1256void
799ev_timer_start (struct ev_timer *w) 1257ev_timer_start (EV_P_ struct ev_timer *w)
800{ 1258{
801 if (ev_is_active (w)) 1259 if (ev_is_active (w))
802 return; 1260 return;
803 1261
804 w->at += now; 1262 ((WT)w)->at += mn_now;
805 1263
806 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1264 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
807 1265
808 ev_start ((W)w, ++timercnt); 1266 ev_start (EV_A_ (W)w, ++timercnt);
809 array_needsize (timers, timermax, timercnt, ); 1267 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
810 timers [timercnt - 1] = w; 1268 timers [timercnt - 1] = w;
811 upheap ((WT *)timers, timercnt - 1); 1269 upheap ((WT *)timers, timercnt - 1);
812}
813 1270
1271 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1272}
1273
814void 1274void
815ev_timer_stop (struct ev_timer *w) 1275ev_timer_stop (EV_P_ struct ev_timer *w)
816{ 1276{
817 ev_clear_pending ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
818 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
819 return; 1279 return;
820 1280
1281 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1282
821 if (w->active < timercnt--) 1283 if (((W)w)->active < timercnt--)
822 { 1284 {
823 timers [w->active - 1] = timers [timercnt]; 1285 timers [((W)w)->active - 1] = timers [timercnt];
824 downheap ((WT *)timers, timercnt, w->active - 1); 1286 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
825 } 1287 }
826 1288
827 w->at = w->repeat; 1289 ((WT)w)->at = w->repeat;
828 1290
829 ev_stop ((W)w); 1291 ev_stop (EV_A_ (W)w);
830} 1292}
831 1293
832void 1294void
833ev_timer_again (struct ev_timer *w) 1295ev_timer_again (EV_P_ struct ev_timer *w)
834{ 1296{
835 if (ev_is_active (w)) 1297 if (ev_is_active (w))
836 { 1298 {
837 if (w->repeat) 1299 if (w->repeat)
838 { 1300 {
839 w->at = now + w->repeat; 1301 ((WT)w)->at = mn_now + w->repeat;
840 downheap ((WT *)timers, timercnt, w->active - 1); 1302 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
841 } 1303 }
842 else 1304 else
843 ev_timer_stop (w); 1305 ev_timer_stop (EV_A_ w);
844 } 1306 }
845 else if (w->repeat) 1307 else if (w->repeat)
846 ev_timer_start (w); 1308 ev_timer_start (EV_A_ w);
847} 1309}
848 1310
849void 1311void
850ev_periodic_start (struct ev_periodic *w) 1312ev_periodic_start (EV_P_ struct ev_periodic *w)
851{ 1313{
852 if (ev_is_active (w)) 1314 if (ev_is_active (w))
853 return; 1315 return;
854 1316
1317 if (w->reschedule_cb)
1318 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1319 else if (w->interval)
1320 {
855 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1321 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
856
857 /* this formula differs from the one in periodic_reify because we do not always round up */ 1322 /* this formula differs from the one in periodic_reify because we do not always round up */
858 if (w->interval)
859 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1323 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1324 }
860 1325
861 ev_start ((W)w, ++periodiccnt); 1326 ev_start (EV_A_ (W)w, ++periodiccnt);
862 array_needsize (periodics, periodicmax, periodiccnt, ); 1327 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
863 periodics [periodiccnt - 1] = w; 1328 periodics [periodiccnt - 1] = w;
864 upheap ((WT *)periodics, periodiccnt - 1); 1329 upheap ((WT *)periodics, periodiccnt - 1);
865}
866 1330
1331 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1332}
1333
867void 1334void
868ev_periodic_stop (struct ev_periodic *w) 1335ev_periodic_stop (EV_P_ struct ev_periodic *w)
869{ 1336{
870 ev_clear_pending ((W)w); 1337 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1338 if (!ev_is_active (w))
872 return; 1339 return;
873 1340
1341 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1342
874 if (w->active < periodiccnt--) 1343 if (((W)w)->active < periodiccnt--)
875 { 1344 {
876 periodics [w->active - 1] = periodics [periodiccnt]; 1345 periodics [((W)w)->active - 1] = periodics [periodiccnt];
877 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1346 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
878 } 1347 }
879 1348
880 ev_stop ((W)w); 1349 ev_stop (EV_A_ (W)w);
881} 1350}
882 1351
883void 1352void
1353ev_periodic_again (EV_P_ struct ev_periodic *w)
1354{
1355 ev_periodic_stop (EV_A_ w);
1356 ev_periodic_start (EV_A_ w);
1357}
1358
1359void
884ev_signal_start (struct ev_signal *w) 1360ev_idle_start (EV_P_ struct ev_idle *w)
885{ 1361{
886 if (ev_is_active (w)) 1362 if (ev_is_active (w))
887 return; 1363 return;
888 1364
1365 ev_start (EV_A_ (W)w, ++idlecnt);
1366 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1367 idles [idlecnt - 1] = w;
1368}
1369
1370void
1371ev_idle_stop (EV_P_ struct ev_idle *w)
1372{
1373 ev_clear_pending (EV_A_ (W)w);
1374 if (ev_is_active (w))
1375 return;
1376
1377 idles [((W)w)->active - 1] = idles [--idlecnt];
1378 ev_stop (EV_A_ (W)w);
1379}
1380
1381void
1382ev_prepare_start (EV_P_ struct ev_prepare *w)
1383{
1384 if (ev_is_active (w))
1385 return;
1386
1387 ev_start (EV_A_ (W)w, ++preparecnt);
1388 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1389 prepares [preparecnt - 1] = w;
1390}
1391
1392void
1393ev_prepare_stop (EV_P_ struct ev_prepare *w)
1394{
1395 ev_clear_pending (EV_A_ (W)w);
1396 if (ev_is_active (w))
1397 return;
1398
1399 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1400 ev_stop (EV_A_ (W)w);
1401}
1402
1403void
1404ev_check_start (EV_P_ struct ev_check *w)
1405{
1406 if (ev_is_active (w))
1407 return;
1408
1409 ev_start (EV_A_ (W)w, ++checkcnt);
1410 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1411 checks [checkcnt - 1] = w;
1412}
1413
1414void
1415ev_check_stop (EV_P_ struct ev_check *w)
1416{
1417 ev_clear_pending (EV_A_ (W)w);
1418 if (ev_is_active (w))
1419 return;
1420
1421 checks [((W)w)->active - 1] = checks [--checkcnt];
1422 ev_stop (EV_A_ (W)w);
1423}
1424
1425#ifndef SA_RESTART
1426# define SA_RESTART 0
1427#endif
1428
1429void
1430ev_signal_start (EV_P_ struct ev_signal *w)
1431{
1432#if EV_MULTIPLICITY
1433 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1434#endif
1435 if (ev_is_active (w))
1436 return;
1437
889 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1438 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
890 1439
891 ev_start ((W)w, 1); 1440 ev_start (EV_A_ (W)w, 1);
892 array_needsize (signals, signalmax, w->signum, signals_init); 1441 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
893 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1442 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
894 1443
895 if (!w->next) 1444 if (!((WL)w)->next)
896 { 1445 {
1446#if WIN32
1447 signal (w->signum, sighandler);
1448#else
897 struct sigaction sa; 1449 struct sigaction sa;
898 sa.sa_handler = sighandler; 1450 sa.sa_handler = sighandler;
899 sigfillset (&sa.sa_mask); 1451 sigfillset (&sa.sa_mask);
900 sa.sa_flags = 0; 1452 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
901 sigaction (w->signum, &sa, 0); 1453 sigaction (w->signum, &sa, 0);
1454#endif
902 } 1455 }
903} 1456}
904 1457
905void 1458void
906ev_signal_stop (struct ev_signal *w) 1459ev_signal_stop (EV_P_ struct ev_signal *w)
907{ 1460{
908 ev_clear_pending ((W)w); 1461 ev_clear_pending (EV_A_ (W)w);
909 if (!ev_is_active (w)) 1462 if (!ev_is_active (w))
910 return; 1463 return;
911 1464
912 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1465 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
913 ev_stop ((W)w); 1466 ev_stop (EV_A_ (W)w);
914 1467
915 if (!signals [w->signum - 1].head) 1468 if (!signals [w->signum - 1].head)
916 signal (w->signum, SIG_DFL); 1469 signal (w->signum, SIG_DFL);
917} 1470}
918 1471
919void 1472void
920ev_idle_start (struct ev_idle *w) 1473ev_child_start (EV_P_ struct ev_child *w)
921{ 1474{
1475#if EV_MULTIPLICITY
1476 assert (("child watchers are only supported in the default loop", loop == default_loop));
1477#endif
922 if (ev_is_active (w)) 1478 if (ev_is_active (w))
923 return; 1479 return;
924 1480
925 ev_start ((W)w, ++idlecnt); 1481 ev_start (EV_A_ (W)w, 1);
926 array_needsize (idles, idlemax, idlecnt, ); 1482 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
927 idles [idlecnt - 1] = w;
928} 1483}
929 1484
930void 1485void
931ev_idle_stop (struct ev_idle *w) 1486ev_child_stop (EV_P_ struct ev_child *w)
932{ 1487{
933 ev_clear_pending ((W)w); 1488 ev_clear_pending (EV_A_ (W)w);
934 if (ev_is_active (w)) 1489 if (ev_is_active (w))
935 return; 1490 return;
936 1491
937 idles [w->active - 1] = idles [--idlecnt];
938 ev_stop ((W)w);
939}
940
941void
942ev_prepare_start (struct ev_prepare *w)
943{
944 if (ev_is_active (w))
945 return;
946
947 ev_start ((W)w, ++preparecnt);
948 array_needsize (prepares, preparemax, preparecnt, );
949 prepares [preparecnt - 1] = w;
950}
951
952void
953ev_prepare_stop (struct ev_prepare *w)
954{
955 ev_clear_pending ((W)w);
956 if (ev_is_active (w))
957 return;
958
959 prepares [w->active - 1] = prepares [--preparecnt];
960 ev_stop ((W)w);
961}
962
963void
964ev_check_start (struct ev_check *w)
965{
966 if (ev_is_active (w))
967 return;
968
969 ev_start ((W)w, ++checkcnt);
970 array_needsize (checks, checkmax, checkcnt, );
971 checks [checkcnt - 1] = w;
972}
973
974void
975ev_check_stop (struct ev_check *w)
976{
977 ev_clear_pending ((W)w);
978 if (ev_is_active (w))
979 return;
980
981 checks [w->active - 1] = checks [--checkcnt];
982 ev_stop ((W)w);
983}
984
985void
986ev_child_start (struct ev_child *w)
987{
988 if (ev_is_active (w))
989 return;
990
991 ev_start ((W)w, 1);
992 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
993}
994
995void
996ev_child_stop (struct ev_child *w)
997{
998 ev_clear_pending ((W)w);
999 if (ev_is_active (w))
1000 return;
1001
1002 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1492 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1003 ev_stop ((W)w); 1493 ev_stop (EV_A_ (W)w);
1004} 1494}
1005 1495
1006/*****************************************************************************/ 1496/*****************************************************************************/
1007 1497
1008struct ev_once 1498struct ev_once
1012 void (*cb)(int revents, void *arg); 1502 void (*cb)(int revents, void *arg);
1013 void *arg; 1503 void *arg;
1014}; 1504};
1015 1505
1016static void 1506static void
1017once_cb (struct ev_once *once, int revents) 1507once_cb (EV_P_ struct ev_once *once, int revents)
1018{ 1508{
1019 void (*cb)(int revents, void *arg) = once->cb; 1509 void (*cb)(int revents, void *arg) = once->cb;
1020 void *arg = once->arg; 1510 void *arg = once->arg;
1021 1511
1022 ev_io_stop (&once->io); 1512 ev_io_stop (EV_A_ &once->io);
1023 ev_timer_stop (&once->to); 1513 ev_timer_stop (EV_A_ &once->to);
1024 free (once); 1514 ev_free (once);
1025 1515
1026 cb (revents, arg); 1516 cb (revents, arg);
1027} 1517}
1028 1518
1029static void 1519static void
1030once_cb_io (struct ev_io *w, int revents) 1520once_cb_io (EV_P_ struct ev_io *w, int revents)
1031{ 1521{
1032 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1522 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1033} 1523}
1034 1524
1035static void 1525static void
1036once_cb_to (struct ev_timer *w, int revents) 1526once_cb_to (EV_P_ struct ev_timer *w, int revents)
1037{ 1527{
1038 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1528 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1039} 1529}
1040 1530
1041void 1531void
1042ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1532ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1043{ 1533{
1044 struct ev_once *once = malloc (sizeof (struct ev_once)); 1534 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1045 1535
1046 if (!once) 1536 if (!once)
1047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1537 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1048 else 1538 else
1049 { 1539 {
1052 1542
1053 ev_watcher_init (&once->io, once_cb_io); 1543 ev_watcher_init (&once->io, once_cb_io);
1054 if (fd >= 0) 1544 if (fd >= 0)
1055 { 1545 {
1056 ev_io_set (&once->io, fd, events); 1546 ev_io_set (&once->io, fd, events);
1057 ev_io_start (&once->io); 1547 ev_io_start (EV_A_ &once->io);
1058 } 1548 }
1059 1549
1060 ev_watcher_init (&once->to, once_cb_to); 1550 ev_watcher_init (&once->to, once_cb_to);
1061 if (timeout >= 0.) 1551 if (timeout >= 0.)
1062 { 1552 {
1063 ev_timer_set (&once->to, timeout, 0.); 1553 ev_timer_set (&once->to, timeout, 0.);
1064 ev_timer_start (&once->to); 1554 ev_timer_start (EV_A_ &once->to);
1065 } 1555 }
1066 } 1556 }
1067} 1557}
1068 1558
1069/*****************************************************************************/
1070
1071#if 0
1072
1073struct ev_io wio;
1074
1075static void
1076sin_cb (struct ev_io *w, int revents)
1077{
1078 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1079}
1080
1081static void
1082ocb (struct ev_timer *w, int revents)
1083{
1084 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1085 ev_timer_stop (w);
1086 ev_timer_start (w);
1087}
1088
1089static void
1090scb (struct ev_signal *w, int revents)
1091{
1092 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1093 ev_io_stop (&wio);
1094 ev_io_start (&wio);
1095}
1096
1097static void
1098gcb (struct ev_signal *w, int revents)
1099{
1100 fprintf (stderr, "generic %x\n", revents);
1101
1102}
1103
1104int main (void)
1105{
1106 ev_init (0);
1107
1108 ev_io_init (&wio, sin_cb, 0, EV_READ);
1109 ev_io_start (&wio);
1110
1111 struct ev_timer t[10000];
1112
1113#if 0
1114 int i;
1115 for (i = 0; i < 10000; ++i)
1116 {
1117 struct ev_timer *w = t + i;
1118 ev_watcher_init (w, ocb, i);
1119 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1120 ev_timer_start (w);
1121 if (drand48 () < 0.5)
1122 ev_timer_stop (w);
1123 }
1124#endif
1125
1126 struct ev_timer t1;
1127 ev_timer_init (&t1, ocb, 5, 10);
1128 ev_timer_start (&t1);
1129
1130 struct ev_signal sig;
1131 ev_signal_init (&sig, scb, SIGQUIT);
1132 ev_signal_start (&sig);
1133
1134 struct ev_check cw;
1135 ev_check_init (&cw, gcb);
1136 ev_check_start (&cw);
1137
1138 struct ev_idle iw;
1139 ev_idle_init (&iw, gcb);
1140 ev_idle_start (&iw);
1141
1142 ev_loop (0);
1143
1144 return 0;
1145}
1146
1147#endif
1148
1149
1150
1151

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines