ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC vs.
Revision 1.392 by root, Thu Aug 4 14:37:49 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
64#endif 127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
65 137
66#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
67#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
68#include <fcntl.h> 169#include <fcntl.h>
69#include <stddef.h> 170#include <stddef.h>
70 171
71#include <stdio.h> 172#include <stdio.h>
72 173
73#include <assert.h> 174#include <assert.h>
74#include <errno.h> 175#include <errno.h>
75#include <sys/types.h> 176#include <sys/types.h>
76#include <time.h> 177#include <time.h>
178#include <limits.h>
77 179
78#include <signal.h> 180#include <signal.h>
79 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
80#ifndef _WIN32 190#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 191# include <sys/time.h>
83# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
84#else 194#else
195# include <io.h>
85# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 197# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
89# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
90#endif 251# endif
91 252#endif
92/**/
93 253
94#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
95# define EV_USE_MONOTONIC 1 258# define EV_USE_MONOTONIC 0
259# endif
260#endif
261
262#ifndef EV_USE_REALTIME
263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
96#endif 272#endif
97 273
98#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
100#endif 276#endif
101 277
102#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
103# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 279# ifdef _WIN32
280# define EV_USE_POLL 0
281# else
282# define EV_USE_POLL EV_FEATURE_BACKENDS
283# endif
104#endif 284#endif
105 285
106#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
107# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
108#endif 292#endif
109 293
110#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
111# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
112#endif 296#endif
113 297
114#ifndef EV_USE_REALTIME 298#ifndef EV_USE_PORT
115# define EV_USE_REALTIME 1 299# define EV_USE_PORT 0
300#endif
301
302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
116#endif 307# endif
308#endif
117 309
118/**/ 310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
119 373
120#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
121# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
122# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
123#endif 377#endif
125#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
126# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
127# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
128#endif 382#endif
129 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
130#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h> 407# include <winsock.h>
132#endif 408#endif
133 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
134/**/ 448/**/
135 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
140 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
141#ifdef EV_H 500#ifndef ECB_H
142# include EV_H 501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
510 #if __GNUC__
511 typedef signed long long int64_t;
512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
143#else 517#else
144# include "ev.h" 518 #include <inttypes.h>
519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
145#endif 533 #endif
534#endif
146 535
147#if __GNUC__ >= 3 536/*****************************************************************************/
148# define expect(expr,value) __builtin_expect ((expr),(value)) 537
149# define inline inline 538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543 #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544 #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545#endif
546
547#ifndef ECB_MEMORY_FENCE
548 #if ECB_GCC_VERSION(2,5)
549 #if __x86
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553 #elif __amd64
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
555 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
559 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
560 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__) \
561 || defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
562 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
563 #define ECB_MEMORY_FENCE \
564 do { \
565 int null = 0; \
566 __asm__ __volatile__ ("mcr p15,0,%0,c6,c10,5", : "=&r" (null) : : "memory"); \
567 while (0)
568 #endif
569 #endif
570#endif
571
572#ifndef ECB_MEMORY_FENCE
573 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
574 #define ECB_MEMORY_FENCE __sync_synchronize ()
575 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
576 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
577 #elif _MSC_VER >= 1400 /* VC++ 2005 */
578 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
579 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
580 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
581 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
582 #elif defined(_WIN32)
583 #include <WinNT.h>
584 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if !ECB_AVOID_PTHREADS
590 /*
591 * if you get undefined symbol references to pthread_mutex_lock,
592 * or failure to find pthread.h, then you should implement
593 * the ECB_MEMORY_FENCE operations for your cpu/compiler
594 * OR provide pthread.h and link against the posix thread library
595 * of your system.
596 */
597 #include <pthread.h>
598 #define ECB_NEEDS_PTHREADS 1
599 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
600
601 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
602 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
603 #endif
604#endif
605
606#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
607 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
608#endif
609
610#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
611 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
612#endif
613
614/*****************************************************************************/
615
616#define ECB_C99 (__STDC_VERSION__ >= 199901L)
617
618#if __cplusplus
619 #define ecb_inline static inline
620#elif ECB_GCC_VERSION(2,5)
621 #define ecb_inline static __inline__
622#elif ECB_C99
623 #define ecb_inline static inline
150#else 624#else
625 #define ecb_inline static
626#endif
627
628#if ECB_GCC_VERSION(3,3)
629 #define ecb_restrict __restrict__
630#elif ECB_C99
631 #define ecb_restrict restrict
632#else
633 #define ecb_restrict
634#endif
635
636typedef int ecb_bool;
637
638#define ECB_CONCAT_(a, b) a ## b
639#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
640#define ECB_STRINGIFY_(a) # a
641#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
642
643#define ecb_function_ ecb_inline
644
645#if ECB_GCC_VERSION(3,1)
646 #define ecb_attribute(attrlist) __attribute__(attrlist)
647 #define ecb_is_constant(expr) __builtin_constant_p (expr)
648 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
649 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
650#else
651 #define ecb_attribute(attrlist)
652 #define ecb_is_constant(expr) 0
151# define expect(expr,value) (expr) 653 #define ecb_expect(expr,value) (expr)
152# define inline static 654 #define ecb_prefetch(addr,rw,locality)
153#endif 655#endif
154 656
657/* no emulation for ecb_decltype */
658#if ECB_GCC_VERSION(4,5)
659 #define ecb_decltype(x) __decltype(x)
660#elif ECB_GCC_VERSION(3,0)
661 #define ecb_decltype(x) __typeof(x)
662#endif
663
664#define ecb_noinline ecb_attribute ((__noinline__))
665#define ecb_noreturn ecb_attribute ((__noreturn__))
666#define ecb_unused ecb_attribute ((__unused__))
667#define ecb_const ecb_attribute ((__const__))
668#define ecb_pure ecb_attribute ((__pure__))
669
670#if ECB_GCC_VERSION(4,3)
671 #define ecb_artificial ecb_attribute ((__artificial__))
672 #define ecb_hot ecb_attribute ((__hot__))
673 #define ecb_cold ecb_attribute ((__cold__))
674#else
675 #define ecb_artificial
676 #define ecb_hot
677 #define ecb_cold
678#endif
679
680/* put around conditional expressions if you are very sure that the */
681/* expression is mostly true or mostly false. note that these return */
682/* booleans, not the expression. */
155#define expect_false(expr) expect ((expr) != 0, 0) 683#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
156#define expect_true(expr) expect ((expr) != 0, 1) 684#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
685/* for compatibility to the rest of the world */
686#define ecb_likely(expr) ecb_expect_true (expr)
687#define ecb_unlikely(expr) ecb_expect_false (expr)
157 688
689/* count trailing zero bits and count # of one bits */
690#if ECB_GCC_VERSION(3,4)
691 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
692 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
693 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
694 #define ecb_ctz32(x) __builtin_ctz (x)
695 #define ecb_ctz64(x) __builtin_ctzll (x)
696 #define ecb_popcount32(x) __builtin_popcount (x)
697 /* no popcountll */
698#else
699 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
700 ecb_function_ int
701 ecb_ctz32 (uint32_t x)
702 {
703 int r = 0;
704
705 x &= ~x + 1; /* this isolates the lowest bit */
706
707#if ECB_branchless_on_i386
708 r += !!(x & 0xaaaaaaaa) << 0;
709 r += !!(x & 0xcccccccc) << 1;
710 r += !!(x & 0xf0f0f0f0) << 2;
711 r += !!(x & 0xff00ff00) << 3;
712 r += !!(x & 0xffff0000) << 4;
713#else
714 if (x & 0xaaaaaaaa) r += 1;
715 if (x & 0xcccccccc) r += 2;
716 if (x & 0xf0f0f0f0) r += 4;
717 if (x & 0xff00ff00) r += 8;
718 if (x & 0xffff0000) r += 16;
719#endif
720
721 return r;
722 }
723
724 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz64 (uint64_t x)
727 {
728 int shift = x & 0xffffffffU ? 0 : 32;
729 return ecb_ctz32 (x >> shift) + shift;
730 }
731
732 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
733 ecb_function_ int
734 ecb_popcount32 (uint32_t x)
735 {
736 x -= (x >> 1) & 0x55555555;
737 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
738 x = ((x >> 4) + x) & 0x0f0f0f0f;
739 x *= 0x01010101;
740
741 return x >> 24;
742 }
743
744 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
745 ecb_function_ int ecb_ld32 (uint32_t x)
746 {
747 int r = 0;
748
749 if (x >> 16) { x >>= 16; r += 16; }
750 if (x >> 8) { x >>= 8; r += 8; }
751 if (x >> 4) { x >>= 4; r += 4; }
752 if (x >> 2) { x >>= 2; r += 2; }
753 if (x >> 1) { r += 1; }
754
755 return r;
756 }
757
758 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
759 ecb_function_ int ecb_ld64 (uint64_t x)
760 {
761 int r = 0;
762
763 if (x >> 32) { x >>= 32; r += 32; }
764
765 return r + ecb_ld32 (x);
766 }
767#endif
768
769/* popcount64 is only available on 64 bit cpus as gcc builtin */
770/* so for this version we are lazy */
771ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
772ecb_function_ int
773ecb_popcount64 (uint64_t x)
774{
775 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
776}
777
778ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
779ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
780ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
781ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
782ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
783ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
784ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
785ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
786
787ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
788ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
789ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
790ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
791ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
792ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
793ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
794ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
795
796#if ECB_GCC_VERSION(4,3)
797 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
798 #define ecb_bswap32(x) __builtin_bswap32 (x)
799 #define ecb_bswap64(x) __builtin_bswap64 (x)
800#else
801 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
802 ecb_function_ uint16_t
803 ecb_bswap16 (uint16_t x)
804 {
805 return ecb_rotl16 (x, 8);
806 }
807
808 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
809 ecb_function_ uint32_t
810 ecb_bswap32 (uint32_t x)
811 {
812 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
813 }
814
815 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
816 ecb_function_ uint64_t
817 ecb_bswap64 (uint64_t x)
818 {
819 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
820 }
821#endif
822
823#if ECB_GCC_VERSION(4,5)
824 #define ecb_unreachable() __builtin_unreachable ()
825#else
826 /* this seems to work fine, but gcc always emits a warning for it :/ */
827 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
828 ecb_function_ void ecb_unreachable (void) { }
829#endif
830
831/* try to tell the compiler that some condition is definitely true */
832#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
833
834ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
835ecb_function_ unsigned char
836ecb_byteorder_helper (void)
837{
838 const uint32_t u = 0x11223344;
839 return *(unsigned char *)&u;
840}
841
842ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
843ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
844ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
845ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
846
847#if ECB_GCC_VERSION(3,0) || ECB_C99
848 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
849#else
850 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
851#endif
852
853#if ecb_cplusplus_does_not_suck
854 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
855 template<typename T, int N>
856 static inline int ecb_array_length (const T (&arr)[N])
857 {
858 return N;
859 }
860#else
861 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
862#endif
863
864#endif
865
866/* ECB.H END */
867
868#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
869# undef ECB_MEMORY_FENCE
870# undef ECB_MEMORY_FENCE_ACQUIRE
871# undef ECB_MEMORY_FENCE_RELEASE
872#endif
873
874#define expect_false(cond) ecb_expect_false (cond)
875#define expect_true(cond) ecb_expect_true (cond)
876#define noinline ecb_noinline
877
878#define inline_size ecb_inline
879
880#if EV_FEATURE_CODE
881# define inline_speed ecb_inline
882#else
883# define inline_speed static noinline
884#endif
885
158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 886#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
887
888#if EV_MINPRI == EV_MAXPRI
889# define ABSPRI(w) (((W)w), 0)
890#else
159#define ABSPRI(w) ((w)->priority - EV_MINPRI) 891# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
892#endif
160 893
161#define EMPTY /* required for microsofts broken pseudo-c compiler */ 894#define EMPTY /* required for microsofts broken pseudo-c compiler */
895#define EMPTY2(a,b) /* used to suppress some warnings */
162 896
163typedef struct ev_watcher *W; 897typedef ev_watcher *W;
164typedef struct ev_watcher_list *WL; 898typedef ev_watcher_list *WL;
165typedef struct ev_watcher_time *WT; 899typedef ev_watcher_time *WT;
166 900
901#define ev_active(w) ((W)(w))->active
902#define ev_at(w) ((WT)(w))->at
903
904#if EV_USE_REALTIME
905/* sig_atomic_t is used to avoid per-thread variables or locking but still */
906/* giving it a reasonably high chance of working on typical architectures */
907static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
908#endif
909
910#if EV_USE_MONOTONIC
167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 911static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
912#endif
913
914#ifndef EV_FD_TO_WIN32_HANDLE
915# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
916#endif
917#ifndef EV_WIN32_HANDLE_TO_FD
918# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
919#endif
920#ifndef EV_WIN32_CLOSE_FD
921# define EV_WIN32_CLOSE_FD(fd) close (fd)
922#endif
168 923
169#ifdef _WIN32 924#ifdef _WIN32
170# include "ev_win32.c" 925# include "ev_win32.c"
171#endif 926#endif
172 927
173/*****************************************************************************/ 928/*****************************************************************************/
174 929
930/* define a suitable floor function (only used by periodics atm) */
931
932#if EV_USE_FLOOR
933# include <math.h>
934# define ev_floor(v) floor (v)
935#else
936
937#include <float.h>
938
939/* a floor() replacement function, should be independent of ev_tstamp type */
940static ev_tstamp noinline
941ev_floor (ev_tstamp v)
942{
943 /* the choice of shift factor is not terribly important */
944#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
945 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
946#else
947 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
948#endif
949
950 /* argument too large for an unsigned long? */
951 if (expect_false (v >= shift))
952 {
953 ev_tstamp f;
954
955 if (v == v - 1.)
956 return v; /* very large number */
957
958 f = shift * ev_floor (v * (1. / shift));
959 return f + ev_floor (v - f);
960 }
961
962 /* special treatment for negative args? */
963 if (expect_false (v < 0.))
964 {
965 ev_tstamp f = -ev_floor (-v);
966
967 return f - (f == v ? 0 : 1);
968 }
969
970 /* fits into an unsigned long */
971 return (unsigned long)v;
972}
973
974#endif
975
976/*****************************************************************************/
977
978#ifdef __linux
979# include <sys/utsname.h>
980#endif
981
982static unsigned int noinline ecb_cold
983ev_linux_version (void)
984{
985#ifdef __linux
986 unsigned int v = 0;
987 struct utsname buf;
988 int i;
989 char *p = buf.release;
990
991 if (uname (&buf))
992 return 0;
993
994 for (i = 3+1; --i; )
995 {
996 unsigned int c = 0;
997
998 for (;;)
999 {
1000 if (*p >= '0' && *p <= '9')
1001 c = c * 10 + *p++ - '0';
1002 else
1003 {
1004 p += *p == '.';
1005 break;
1006 }
1007 }
1008
1009 v = (v << 8) | c;
1010 }
1011
1012 return v;
1013#else
1014 return 0;
1015#endif
1016}
1017
1018/*****************************************************************************/
1019
1020#if EV_AVOID_STDIO
1021static void noinline ecb_cold
1022ev_printerr (const char *msg)
1023{
1024 write (STDERR_FILENO, msg, strlen (msg));
1025}
1026#endif
1027
175static void (*syserr_cb)(const char *msg); 1028static void (*syserr_cb)(const char *msg);
176 1029
1030void ecb_cold
177void ev_set_syserr_cb (void (*cb)(const char *msg)) 1031ev_set_syserr_cb (void (*cb)(const char *msg))
178{ 1032{
179 syserr_cb = cb; 1033 syserr_cb = cb;
180} 1034}
181 1035
182static void 1036static void noinline ecb_cold
183syserr (const char *msg) 1037ev_syserr (const char *msg)
184{ 1038{
185 if (!msg) 1039 if (!msg)
186 msg = "(libev) system error"; 1040 msg = "(libev) system error";
187 1041
188 if (syserr_cb) 1042 if (syserr_cb)
189 syserr_cb (msg); 1043 syserr_cb (msg);
190 else 1044 else
191 { 1045 {
1046#if EV_AVOID_STDIO
1047 ev_printerr (msg);
1048 ev_printerr (": ");
1049 ev_printerr (strerror (errno));
1050 ev_printerr ("\n");
1051#else
192 perror (msg); 1052 perror (msg);
1053#endif
193 abort (); 1054 abort ();
194 } 1055 }
195} 1056}
196 1057
1058static void *
1059ev_realloc_emul (void *ptr, long size)
1060{
1061#if __GLIBC__
1062 return realloc (ptr, size);
1063#else
1064 /* some systems, notably openbsd and darwin, fail to properly
1065 * implement realloc (x, 0) (as required by both ansi c-89 and
1066 * the single unix specification, so work around them here.
1067 */
1068
1069 if (size)
1070 return realloc (ptr, size);
1071
1072 free (ptr);
1073 return 0;
1074#endif
1075}
1076
197static void *(*alloc)(void *ptr, long size); 1077static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
198 1078
1079void ecb_cold
199void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1080ev_set_allocator (void *(*cb)(void *ptr, long size))
200{ 1081{
201 alloc = cb; 1082 alloc = cb;
202} 1083}
203 1084
204static void * 1085inline_speed void *
205ev_realloc (void *ptr, long size) 1086ev_realloc (void *ptr, long size)
206{ 1087{
207 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1088 ptr = alloc (ptr, size);
208 1089
209 if (!ptr && size) 1090 if (!ptr && size)
210 { 1091 {
1092#if EV_AVOID_STDIO
1093 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1094#else
211 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1095 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1096#endif
212 abort (); 1097 abort ();
213 } 1098 }
214 1099
215 return ptr; 1100 return ptr;
216} 1101}
218#define ev_malloc(size) ev_realloc (0, (size)) 1103#define ev_malloc(size) ev_realloc (0, (size))
219#define ev_free(ptr) ev_realloc ((ptr), 0) 1104#define ev_free(ptr) ev_realloc ((ptr), 0)
220 1105
221/*****************************************************************************/ 1106/*****************************************************************************/
222 1107
1108/* set in reify when reification needed */
1109#define EV_ANFD_REIFY 1
1110
1111/* file descriptor info structure */
223typedef struct 1112typedef struct
224{ 1113{
225 WL head; 1114 WL head;
226 unsigned char events; 1115 unsigned char events; /* the events watched for */
1116 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1117 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
227 unsigned char reify; 1118 unsigned char unused;
1119#if EV_USE_EPOLL
1120 unsigned int egen; /* generation counter to counter epoll bugs */
1121#endif
228#if EV_SELECT_IS_WINSOCKET 1122#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
229 SOCKET handle; 1123 SOCKET handle;
230#endif 1124#endif
1125#if EV_USE_IOCP
1126 OVERLAPPED or, ow;
1127#endif
231} ANFD; 1128} ANFD;
232 1129
1130/* stores the pending event set for a given watcher */
233typedef struct 1131typedef struct
234{ 1132{
235 W w; 1133 W w;
236 int events; 1134 int events; /* the pending event set for the given watcher */
237} ANPENDING; 1135} ANPENDING;
1136
1137#if EV_USE_INOTIFY
1138/* hash table entry per inotify-id */
1139typedef struct
1140{
1141 WL head;
1142} ANFS;
1143#endif
1144
1145/* Heap Entry */
1146#if EV_HEAP_CACHE_AT
1147 /* a heap element */
1148 typedef struct {
1149 ev_tstamp at;
1150 WT w;
1151 } ANHE;
1152
1153 #define ANHE_w(he) (he).w /* access watcher, read-write */
1154 #define ANHE_at(he) (he).at /* access cached at, read-only */
1155 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1156#else
1157 /* a heap element */
1158 typedef WT ANHE;
1159
1160 #define ANHE_w(he) (he)
1161 #define ANHE_at(he) (he)->at
1162 #define ANHE_at_cache(he)
1163#endif
238 1164
239#if EV_MULTIPLICITY 1165#if EV_MULTIPLICITY
240 1166
241 struct ev_loop 1167 struct ev_loop
242 { 1168 {
246 #include "ev_vars.h" 1172 #include "ev_vars.h"
247 #undef VAR 1173 #undef VAR
248 }; 1174 };
249 #include "ev_wrap.h" 1175 #include "ev_wrap.h"
250 1176
251 struct ev_loop default_loop_struct; 1177 static struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop; 1178 struct ev_loop *ev_default_loop_ptr;
253 1179
254#else 1180#else
255 1181
256 ev_tstamp ev_rt_now; 1182 ev_tstamp ev_rt_now;
257 #define VAR(name,decl) static decl; 1183 #define VAR(name,decl) static decl;
258 #include "ev_vars.h" 1184 #include "ev_vars.h"
259 #undef VAR 1185 #undef VAR
260 1186
261 static int default_loop; 1187 static int ev_default_loop_ptr;
262 1188
263#endif 1189#endif
1190
1191#if EV_FEATURE_API
1192# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1193# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1194# define EV_INVOKE_PENDING invoke_cb (EV_A)
1195#else
1196# define EV_RELEASE_CB (void)0
1197# define EV_ACQUIRE_CB (void)0
1198# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1199#endif
1200
1201#define EVBREAK_RECURSE 0x80
264 1202
265/*****************************************************************************/ 1203/*****************************************************************************/
266 1204
1205#ifndef EV_HAVE_EV_TIME
267ev_tstamp 1206ev_tstamp
268ev_time (void) 1207ev_time (void)
269{ 1208{
270#if EV_USE_REALTIME 1209#if EV_USE_REALTIME
1210 if (expect_true (have_realtime))
1211 {
271 struct timespec ts; 1212 struct timespec ts;
272 clock_gettime (CLOCK_REALTIME, &ts); 1213 clock_gettime (CLOCK_REALTIME, &ts);
273 return ts.tv_sec + ts.tv_nsec * 1e-9; 1214 return ts.tv_sec + ts.tv_nsec * 1e-9;
274#else 1215 }
1216#endif
1217
275 struct timeval tv; 1218 struct timeval tv;
276 gettimeofday (&tv, 0); 1219 gettimeofday (&tv, 0);
277 return tv.tv_sec + tv.tv_usec * 1e-6; 1220 return tv.tv_sec + tv.tv_usec * 1e-6;
278#endif
279} 1221}
1222#endif
280 1223
281inline ev_tstamp 1224inline_size ev_tstamp
282get_clock (void) 1225get_clock (void)
283{ 1226{
284#if EV_USE_MONOTONIC 1227#if EV_USE_MONOTONIC
285 if (expect_true (have_monotonic)) 1228 if (expect_true (have_monotonic))
286 { 1229 {
299{ 1242{
300 return ev_rt_now; 1243 return ev_rt_now;
301} 1244}
302#endif 1245#endif
303 1246
304#define array_roundsize(type,n) ((n) | 4 & ~3) 1247void
1248ev_sleep (ev_tstamp delay)
1249{
1250 if (delay > 0.)
1251 {
1252#if EV_USE_NANOSLEEP
1253 struct timespec ts;
1254
1255 EV_TS_SET (ts, delay);
1256 nanosleep (&ts, 0);
1257#elif defined(_WIN32)
1258 Sleep ((unsigned long)(delay * 1e3));
1259#else
1260 struct timeval tv;
1261
1262 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1263 /* something not guaranteed by newer posix versions, but guaranteed */
1264 /* by older ones */
1265 EV_TV_SET (tv, delay);
1266 select (0, 0, 0, 0, &tv);
1267#endif
1268 }
1269}
1270
1271/*****************************************************************************/
1272
1273#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1274
1275/* find a suitable new size for the given array, */
1276/* hopefully by rounding to a nice-to-malloc size */
1277inline_size int
1278array_nextsize (int elem, int cur, int cnt)
1279{
1280 int ncur = cur + 1;
1281
1282 do
1283 ncur <<= 1;
1284 while (cnt > ncur);
1285
1286 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1287 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1288 {
1289 ncur *= elem;
1290 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1291 ncur = ncur - sizeof (void *) * 4;
1292 ncur /= elem;
1293 }
1294
1295 return ncur;
1296}
1297
1298static void * noinline ecb_cold
1299array_realloc (int elem, void *base, int *cur, int cnt)
1300{
1301 *cur = array_nextsize (elem, *cur, cnt);
1302 return ev_realloc (base, elem * *cur);
1303}
1304
1305#define array_init_zero(base,count) \
1306 memset ((void *)(base), 0, sizeof (*(base)) * (count))
305 1307
306#define array_needsize(type,base,cur,cnt,init) \ 1308#define array_needsize(type,base,cur,cnt,init) \
307 if (expect_false ((cnt) > cur)) \ 1309 if (expect_false ((cnt) > (cur))) \
308 { \ 1310 { \
309 int newcnt = cur; \ 1311 int ecb_unused ocur_ = (cur); \
310 do \ 1312 (base) = (type *)array_realloc \
311 { \ 1313 (sizeof (type), (base), &(cur), (cnt)); \
312 newcnt = array_roundsize (type, newcnt << 1); \ 1314 init ((base) + (ocur_), (cur) - ocur_); \
313 } \
314 while ((cnt) > newcnt); \
315 \
316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
317 init (base + cur, newcnt - cur); \
318 cur = newcnt; \
319 } 1315 }
320 1316
1317#if 0
321#define array_slim(type,stem) \ 1318#define array_slim(type,stem) \
322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1319 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
323 { \ 1320 { \
324 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1321 stem ## max = array_roundsize (stem ## cnt >> 1); \
325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1322 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1323 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
327 } 1324 }
1325#endif
328 1326
329#define array_free(stem, idx) \ 1327#define array_free(stem, idx) \
330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
331 1329
332/*****************************************************************************/ 1330/*****************************************************************************/
333 1331
334static void 1332/* dummy callback for pending events */
335anfds_init (ANFD *base, int count) 1333static void noinline
1334pendingcb (EV_P_ ev_prepare *w, int revents)
336{ 1335{
337 while (count--)
338 {
339 base->head = 0;
340 base->events = EV_NONE;
341 base->reify = 0;
342
343 ++base;
344 }
345} 1336}
346 1337
347void 1338void noinline
348ev_feed_event (EV_P_ void *w, int revents) 1339ev_feed_event (EV_P_ void *w, int revents)
349{ 1340{
350 W w_ = (W)w; 1341 W w_ = (W)w;
1342 int pri = ABSPRI (w_);
351 1343
352 if (w_->pending) 1344 if (expect_false (w_->pending))
1345 pendings [pri][w_->pending - 1].events |= revents;
1346 else
353 { 1347 {
1348 w_->pending = ++pendingcnt [pri];
1349 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1350 pendings [pri][w_->pending - 1].w = w_;
354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1351 pendings [pri][w_->pending - 1].events = revents;
355 return;
356 } 1352 }
357
358 w_->pending = ++pendingcnt [ABSPRI (w_)];
359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
362} 1353}
363 1354
364static void 1355inline_speed void
1356feed_reverse (EV_P_ W w)
1357{
1358 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1359 rfeeds [rfeedcnt++] = w;
1360}
1361
1362inline_size void
1363feed_reverse_done (EV_P_ int revents)
1364{
1365 do
1366 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1367 while (rfeedcnt);
1368}
1369
1370inline_speed void
365queue_events (EV_P_ W *events, int eventcnt, int type) 1371queue_events (EV_P_ W *events, int eventcnt, int type)
366{ 1372{
367 int i; 1373 int i;
368 1374
369 for (i = 0; i < eventcnt; ++i) 1375 for (i = 0; i < eventcnt; ++i)
370 ev_feed_event (EV_A_ events [i], type); 1376 ev_feed_event (EV_A_ events [i], type);
371} 1377}
372 1378
1379/*****************************************************************************/
1380
373inline void 1381inline_speed void
374fd_event (EV_P_ int fd, int revents) 1382fd_event_nocheck (EV_P_ int fd, int revents)
375{ 1383{
376 ANFD *anfd = anfds + fd; 1384 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 1385 ev_io *w;
378 1386
379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1387 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
380 { 1388 {
381 int ev = w->events & revents; 1389 int ev = w->events & revents;
382 1390
383 if (ev) 1391 if (ev)
384 ev_feed_event (EV_A_ (W)w, ev); 1392 ev_feed_event (EV_A_ (W)w, ev);
385 } 1393 }
386} 1394}
387 1395
1396/* do not submit kernel events for fds that have reify set */
1397/* because that means they changed while we were polling for new events */
1398inline_speed void
1399fd_event (EV_P_ int fd, int revents)
1400{
1401 ANFD *anfd = anfds + fd;
1402
1403 if (expect_true (!anfd->reify))
1404 fd_event_nocheck (EV_A_ fd, revents);
1405}
1406
388void 1407void
389ev_feed_fd_event (EV_P_ int fd, int revents) 1408ev_feed_fd_event (EV_P_ int fd, int revents)
390{ 1409{
1410 if (fd >= 0 && fd < anfdmax)
391 fd_event (EV_A_ fd, revents); 1411 fd_event_nocheck (EV_A_ fd, revents);
392} 1412}
393 1413
394/*****************************************************************************/ 1414/* make sure the external fd watch events are in-sync */
395 1415/* with the kernel/libev internal state */
396static void 1416inline_size void
397fd_reify (EV_P) 1417fd_reify (EV_P)
398{ 1418{
399 int i; 1419 int i;
400 1420
1421#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
401 for (i = 0; i < fdchangecnt; ++i) 1422 for (i = 0; i < fdchangecnt; ++i)
402 { 1423 {
403 int fd = fdchanges [i]; 1424 int fd = fdchanges [i];
404 ANFD *anfd = anfds + fd; 1425 ANFD *anfd = anfds + fd;
405 struct ev_io *w;
406 1426
407 int events = 0; 1427 if (anfd->reify & EV__IOFDSET && anfd->head)
408
409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
410 events |= w->events;
411
412#if EV_SELECT_IS_WINSOCKET
413 if (events)
414 { 1428 {
1429 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1430
1431 if (handle != anfd->handle)
1432 {
415 unsigned long argp; 1433 unsigned long arg;
416 anfd->handle = _get_osfhandle (fd); 1434
417 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1435 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1436
1437 /* handle changed, but fd didn't - we need to do it in two steps */
1438 backend_modify (EV_A_ fd, anfd->events, 0);
1439 anfd->events = 0;
1440 anfd->handle = handle;
1441 }
418 } 1442 }
1443 }
419#endif 1444#endif
420 1445
1446 for (i = 0; i < fdchangecnt; ++i)
1447 {
1448 int fd = fdchanges [i];
1449 ANFD *anfd = anfds + fd;
1450 ev_io *w;
1451
1452 unsigned char o_events = anfd->events;
1453 unsigned char o_reify = anfd->reify;
1454
421 anfd->reify = 0; 1455 anfd->reify = 0;
422 1456
423 method_modify (EV_A_ fd, anfd->events, events); 1457 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1458 {
424 anfd->events = events; 1459 anfd->events = 0;
1460
1461 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1462 anfd->events |= (unsigned char)w->events;
1463
1464 if (o_events != anfd->events)
1465 o_reify = EV__IOFDSET; /* actually |= */
1466 }
1467
1468 if (o_reify & EV__IOFDSET)
1469 backend_modify (EV_A_ fd, o_events, anfd->events);
425 } 1470 }
426 1471
427 fdchangecnt = 0; 1472 fdchangecnt = 0;
428} 1473}
429 1474
430static void 1475/* something about the given fd changed */
1476inline_size void
431fd_change (EV_P_ int fd) 1477fd_change (EV_P_ int fd, int flags)
432{ 1478{
433 if (anfds [fd].reify) 1479 unsigned char reify = anfds [fd].reify;
434 return;
435
436 anfds [fd].reify = 1; 1480 anfds [fd].reify |= flags;
437 1481
1482 if (expect_true (!reify))
1483 {
438 ++fdchangecnt; 1484 ++fdchangecnt;
439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
440 fdchanges [fdchangecnt - 1] = fd; 1486 fdchanges [fdchangecnt - 1] = fd;
1487 }
441} 1488}
442 1489
443static void 1490/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1491inline_speed void ecb_cold
444fd_kill (EV_P_ int fd) 1492fd_kill (EV_P_ int fd)
445{ 1493{
446 struct ev_io *w; 1494 ev_io *w;
447 1495
448 while ((w = (struct ev_io *)anfds [fd].head)) 1496 while ((w = (ev_io *)anfds [fd].head))
449 { 1497 {
450 ev_io_stop (EV_A_ w); 1498 ev_io_stop (EV_A_ w);
451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1499 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
452 } 1500 }
453} 1501}
454 1502
455static int 1503/* check whether the given fd is actually valid, for error recovery */
1504inline_size int ecb_cold
456fd_valid (int fd) 1505fd_valid (int fd)
457{ 1506{
458#ifdef _WIN32 1507#ifdef _WIN32
459 return _get_osfhandle (fd) != -1; 1508 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
460#else 1509#else
461 return fcntl (fd, F_GETFD) != -1; 1510 return fcntl (fd, F_GETFD) != -1;
462#endif 1511#endif
463} 1512}
464 1513
465/* called on EBADF to verify fds */ 1514/* called on EBADF to verify fds */
466static void 1515static void noinline ecb_cold
467fd_ebadf (EV_P) 1516fd_ebadf (EV_P)
468{ 1517{
469 int fd; 1518 int fd;
470 1519
471 for (fd = 0; fd < anfdmax; ++fd) 1520 for (fd = 0; fd < anfdmax; ++fd)
472 if (anfds [fd].events) 1521 if (anfds [fd].events)
473 if (!fd_valid (fd) == -1 && errno == EBADF) 1522 if (!fd_valid (fd) && errno == EBADF)
474 fd_kill (EV_A_ fd); 1523 fd_kill (EV_A_ fd);
475} 1524}
476 1525
477/* called on ENOMEM in select/poll to kill some fds and retry */ 1526/* called on ENOMEM in select/poll to kill some fds and retry */
478static void 1527static void noinline ecb_cold
479fd_enomem (EV_P) 1528fd_enomem (EV_P)
480{ 1529{
481 int fd; 1530 int fd;
482 1531
483 for (fd = anfdmax; fd--; ) 1532 for (fd = anfdmax; fd--; )
484 if (anfds [fd].events) 1533 if (anfds [fd].events)
485 { 1534 {
486 fd_kill (EV_A_ fd); 1535 fd_kill (EV_A_ fd);
487 return; 1536 break;
488 } 1537 }
489} 1538}
490 1539
491/* usually called after fork if method needs to re-arm all fds from scratch */ 1540/* usually called after fork if backend needs to re-arm all fds from scratch */
492static void 1541static void noinline
493fd_rearm_all (EV_P) 1542fd_rearm_all (EV_P)
494{ 1543{
495 int fd; 1544 int fd;
496 1545
497 /* this should be highly optimised to not do anything but set a flag */
498 for (fd = 0; fd < anfdmax; ++fd) 1546 for (fd = 0; fd < anfdmax; ++fd)
499 if (anfds [fd].events) 1547 if (anfds [fd].events)
500 { 1548 {
501 anfds [fd].events = 0; 1549 anfds [fd].events = 0;
502 fd_change (EV_A_ fd); 1550 anfds [fd].emask = 0;
1551 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
503 } 1552 }
504} 1553}
505 1554
506/*****************************************************************************/ 1555/* used to prepare libev internal fd's */
507 1556/* this is not fork-safe */
508static void
509upheap (WT *heap, int k)
510{
511 WT w = heap [k];
512
513 while (k && heap [k >> 1]->at > w->at)
514 {
515 heap [k] = heap [k >> 1];
516 ((W)heap [k])->active = k + 1;
517 k >>= 1;
518 }
519
520 heap [k] = w;
521 ((W)heap [k])->active = k + 1;
522
523}
524
525static void
526downheap (WT *heap, int N, int k)
527{
528 WT w = heap [k];
529
530 while (k < (N >> 1))
531 {
532 int j = k << 1;
533
534 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
535 ++j;
536
537 if (w->at <= heap [j]->at)
538 break;
539
540 heap [k] = heap [j];
541 ((W)heap [k])->active = k + 1;
542 k = j;
543 }
544
545 heap [k] = w;
546 ((W)heap [k])->active = k + 1;
547}
548
549inline void 1557inline_speed void
550adjustheap (WT *heap, int N, int k)
551{
552 upheap (heap, k);
553 downheap (heap, N, k);
554}
555
556/*****************************************************************************/
557
558typedef struct
559{
560 WL head;
561 sig_atomic_t volatile gotsig;
562} ANSIG;
563
564static ANSIG *signals;
565static int signalmax;
566
567static int sigpipe [2];
568static sig_atomic_t volatile gotsig;
569static struct ev_io sigev;
570
571static void
572signals_init (ANSIG *base, int count)
573{
574 while (count--)
575 {
576 base->head = 0;
577 base->gotsig = 0;
578
579 ++base;
580 }
581}
582
583static void
584sighandler (int signum)
585{
586#if _WIN32
587 signal (signum, sighandler);
588#endif
589
590 signals [signum - 1].gotsig = 1;
591
592 if (!gotsig)
593 {
594 int old_errno = errno;
595 gotsig = 1;
596 write (sigpipe [1], &signum, 1);
597 errno = old_errno;
598 }
599}
600
601void
602ev_feed_signal_event (EV_P_ int signum)
603{
604 WL w;
605
606#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
608#endif
609
610 --signum;
611
612 if (signum < 0 || signum >= signalmax)
613 return;
614
615 signals [signum].gotsig = 0;
616
617 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619}
620
621static void
622sigcb (EV_P_ struct ev_io *iow, int revents)
623{
624 int signum;
625
626 read (sigpipe [0], &revents, 1);
627 gotsig = 0;
628
629 for (signum = signalmax; signum--; )
630 if (signals [signum].gotsig)
631 ev_feed_signal_event (EV_A_ signum + 1);
632}
633
634inline void
635fd_intern (int fd) 1558fd_intern (int fd)
636{ 1559{
637#ifdef _WIN32 1560#ifdef _WIN32
638 int arg = 1; 1561 unsigned long arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1562 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
640#else 1563#else
641 fcntl (fd, F_SETFD, FD_CLOEXEC); 1564 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK); 1565 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif 1566#endif
644} 1567}
645 1568
1569/*****************************************************************************/
1570
1571/*
1572 * the heap functions want a real array index. array index 0 is guaranteed to not
1573 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1574 * the branching factor of the d-tree.
1575 */
1576
1577/*
1578 * at the moment we allow libev the luxury of two heaps,
1579 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1580 * which is more cache-efficient.
1581 * the difference is about 5% with 50000+ watchers.
1582 */
1583#if EV_USE_4HEAP
1584
1585#define DHEAP 4
1586#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1587#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1588#define UPHEAP_DONE(p,k) ((p) == (k))
1589
1590/* away from the root */
1591inline_speed void
1592downheap (ANHE *heap, int N, int k)
1593{
1594 ANHE he = heap [k];
1595 ANHE *E = heap + N + HEAP0;
1596
1597 for (;;)
1598 {
1599 ev_tstamp minat;
1600 ANHE *minpos;
1601 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1602
1603 /* find minimum child */
1604 if (expect_true (pos + DHEAP - 1 < E))
1605 {
1606 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1607 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1608 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1609 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1610 }
1611 else if (pos < E)
1612 {
1613 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1614 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1615 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1616 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1617 }
1618 else
1619 break;
1620
1621 if (ANHE_at (he) <= minat)
1622 break;
1623
1624 heap [k] = *minpos;
1625 ev_active (ANHE_w (*minpos)) = k;
1626
1627 k = minpos - heap;
1628 }
1629
1630 heap [k] = he;
1631 ev_active (ANHE_w (he)) = k;
1632}
1633
1634#else /* 4HEAP */
1635
1636#define HEAP0 1
1637#define HPARENT(k) ((k) >> 1)
1638#define UPHEAP_DONE(p,k) (!(p))
1639
1640/* away from the root */
1641inline_speed void
1642downheap (ANHE *heap, int N, int k)
1643{
1644 ANHE he = heap [k];
1645
1646 for (;;)
1647 {
1648 int c = k << 1;
1649
1650 if (c >= N + HEAP0)
1651 break;
1652
1653 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1654 ? 1 : 0;
1655
1656 if (ANHE_at (he) <= ANHE_at (heap [c]))
1657 break;
1658
1659 heap [k] = heap [c];
1660 ev_active (ANHE_w (heap [k])) = k;
1661
1662 k = c;
1663 }
1664
1665 heap [k] = he;
1666 ev_active (ANHE_w (he)) = k;
1667}
1668#endif
1669
1670/* towards the root */
1671inline_speed void
1672upheap (ANHE *heap, int k)
1673{
1674 ANHE he = heap [k];
1675
1676 for (;;)
1677 {
1678 int p = HPARENT (k);
1679
1680 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1681 break;
1682
1683 heap [k] = heap [p];
1684 ev_active (ANHE_w (heap [k])) = k;
1685 k = p;
1686 }
1687
1688 heap [k] = he;
1689 ev_active (ANHE_w (he)) = k;
1690}
1691
1692/* move an element suitably so it is in a correct place */
1693inline_size void
1694adjustheap (ANHE *heap, int N, int k)
1695{
1696 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1697 upheap (heap, k);
1698 else
1699 downheap (heap, N, k);
1700}
1701
1702/* rebuild the heap: this function is used only once and executed rarely */
1703inline_size void
1704reheap (ANHE *heap, int N)
1705{
1706 int i;
1707
1708 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1709 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1710 for (i = 0; i < N; ++i)
1711 upheap (heap, i + HEAP0);
1712}
1713
1714/*****************************************************************************/
1715
1716/* associate signal watchers to a signal signal */
1717typedef struct
1718{
1719 EV_ATOMIC_T pending;
1720#if EV_MULTIPLICITY
1721 EV_P;
1722#endif
1723 WL head;
1724} ANSIG;
1725
1726static ANSIG signals [EV_NSIG - 1];
1727
1728/*****************************************************************************/
1729
1730#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1731
1732static void noinline ecb_cold
1733evpipe_init (EV_P)
1734{
1735 if (!ev_is_active (&pipe_w))
1736 {
1737# if EV_USE_EVENTFD
1738 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1739 if (evfd < 0 && errno == EINVAL)
1740 evfd = eventfd (0, 0);
1741
1742 if (evfd >= 0)
1743 {
1744 evpipe [0] = -1;
1745 fd_intern (evfd); /* doing it twice doesn't hurt */
1746 ev_io_set (&pipe_w, evfd, EV_READ);
1747 }
1748 else
1749# endif
1750 {
1751 while (pipe (evpipe))
1752 ev_syserr ("(libev) error creating signal/async pipe");
1753
1754 fd_intern (evpipe [0]);
1755 fd_intern (evpipe [1]);
1756 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1757 }
1758
1759 ev_io_start (EV_A_ &pipe_w);
1760 ev_unref (EV_A); /* watcher should not keep loop alive */
1761 }
1762}
1763
1764inline_speed void
1765evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1766{
1767 if (expect_true (*flag))
1768 return;
1769
1770 *flag = 1;
1771
1772 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1773
1774 pipe_write_skipped = 1;
1775
1776 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1777
1778 if (pipe_write_wanted)
1779 {
1780 int old_errno;
1781
1782 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1783
1784 old_errno = errno; /* save errno because write will clobber it */
1785
1786#if EV_USE_EVENTFD
1787 if (evfd >= 0)
1788 {
1789 uint64_t counter = 1;
1790 write (evfd, &counter, sizeof (uint64_t));
1791 }
1792 else
1793#endif
1794 {
1795 /* win32 people keep sending patches that change this write() to send() */
1796 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1797 /* so when you think this write should be a send instead, please find out */
1798 /* where your send() is from - it's definitely not the microsoft send, and */
1799 /* tell me. thank you. */
1800 write (evpipe [1], &(evpipe [1]), 1);
1801 }
1802
1803 errno = old_errno;
1804 }
1805}
1806
1807/* called whenever the libev signal pipe */
1808/* got some events (signal, async) */
646static void 1809static void
647siginit (EV_P) 1810pipecb (EV_P_ ev_io *iow, int revents)
648{ 1811{
649 fd_intern (sigpipe [0]); 1812 int i;
650 fd_intern (sigpipe [1]);
651 1813
652 ev_io_set (&sigev, sigpipe [0], EV_READ); 1814 if (revents & EV_READ)
653 ev_io_start (EV_A_ &sigev); 1815 {
654 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1816#if EV_USE_EVENTFD
1817 if (evfd >= 0)
1818 {
1819 uint64_t counter;
1820 read (evfd, &counter, sizeof (uint64_t));
1821 }
1822 else
1823#endif
1824 {
1825 char dummy;
1826 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1827 read (evpipe [0], &dummy, 1);
1828 }
1829 }
1830
1831 pipe_write_skipped = 0;
1832
1833#if EV_SIGNAL_ENABLE
1834 if (sig_pending)
1835 {
1836 sig_pending = 0;
1837
1838 for (i = EV_NSIG - 1; i--; )
1839 if (expect_false (signals [i].pending))
1840 ev_feed_signal_event (EV_A_ i + 1);
1841 }
1842#endif
1843
1844#if EV_ASYNC_ENABLE
1845 if (async_pending)
1846 {
1847 async_pending = 0;
1848
1849 for (i = asynccnt; i--; )
1850 if (asyncs [i]->sent)
1851 {
1852 asyncs [i]->sent = 0;
1853 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1854 }
1855 }
1856#endif
655} 1857}
656 1858
657/*****************************************************************************/ 1859/*****************************************************************************/
658 1860
659static struct ev_child *childs [PID_HASHSIZE]; 1861void
1862ev_feed_signal (int signum)
1863{
1864#if EV_MULTIPLICITY
1865 EV_P = signals [signum - 1].loop;
660 1866
1867 if (!EV_A)
1868 return;
1869#endif
1870
1871 if (!ev_active (&pipe_w))
1872 return;
1873
1874 signals [signum - 1].pending = 1;
1875 evpipe_write (EV_A_ &sig_pending);
1876}
1877
1878static void
1879ev_sighandler (int signum)
1880{
661#ifndef _WIN32 1881#ifdef _WIN32
1882 signal (signum, ev_sighandler);
1883#endif
662 1884
1885 ev_feed_signal (signum);
1886}
1887
1888void noinline
1889ev_feed_signal_event (EV_P_ int signum)
1890{
1891 WL w;
1892
1893 if (expect_false (signum <= 0 || signum > EV_NSIG))
1894 return;
1895
1896 --signum;
1897
1898#if EV_MULTIPLICITY
1899 /* it is permissible to try to feed a signal to the wrong loop */
1900 /* or, likely more useful, feeding a signal nobody is waiting for */
1901
1902 if (expect_false (signals [signum].loop != EV_A))
1903 return;
1904#endif
1905
1906 signals [signum].pending = 0;
1907
1908 for (w = signals [signum].head; w; w = w->next)
1909 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1910}
1911
1912#if EV_USE_SIGNALFD
1913static void
1914sigfdcb (EV_P_ ev_io *iow, int revents)
1915{
1916 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1917
1918 for (;;)
1919 {
1920 ssize_t res = read (sigfd, si, sizeof (si));
1921
1922 /* not ISO-C, as res might be -1, but works with SuS */
1923 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1924 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1925
1926 if (res < (ssize_t)sizeof (si))
1927 break;
1928 }
1929}
1930#endif
1931
1932#endif
1933
1934/*****************************************************************************/
1935
1936#if EV_CHILD_ENABLE
1937static WL childs [EV_PID_HASHSIZE];
1938
663static struct ev_signal childev; 1939static ev_signal childev;
1940
1941#ifndef WIFCONTINUED
1942# define WIFCONTINUED(status) 0
1943#endif
1944
1945/* handle a single child status event */
1946inline_speed void
1947child_reap (EV_P_ int chain, int pid, int status)
1948{
1949 ev_child *w;
1950 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1951
1952 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1953 {
1954 if ((w->pid == pid || !w->pid)
1955 && (!traced || (w->flags & 1)))
1956 {
1957 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1958 w->rpid = pid;
1959 w->rstatus = status;
1960 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1961 }
1962 }
1963}
664 1964
665#ifndef WCONTINUED 1965#ifndef WCONTINUED
666# define WCONTINUED 0 1966# define WCONTINUED 0
667#endif 1967#endif
668 1968
1969/* called on sigchld etc., calls waitpid */
669static void 1970static void
670child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
671{
672 struct ev_child *w;
673
674 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
675 if (w->pid == pid || !w->pid)
676 {
677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
678 w->rpid = pid;
679 w->rstatus = status;
680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
681 }
682}
683
684static void
685childcb (EV_P_ struct ev_signal *sw, int revents) 1971childcb (EV_P_ ev_signal *sw, int revents)
686{ 1972{
687 int pid, status; 1973 int pid, status;
688 1974
1975 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1976 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
690 { 1977 if (!WCONTINUED
1978 || errno != EINVAL
1979 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1980 return;
1981
691 /* make sure we are called again until all childs have been reaped */ 1982 /* make sure we are called again until all children have been reaped */
1983 /* we need to do it this way so that the callback gets called before we continue */
692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1984 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
693 1985
694 child_reap (EV_A_ sw, pid, pid, status); 1986 child_reap (EV_A_ pid, pid, status);
1987 if ((EV_PID_HASHSIZE) > 1)
695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1988 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
696 }
697} 1989}
698 1990
699#endif 1991#endif
700 1992
701/*****************************************************************************/ 1993/*****************************************************************************/
702 1994
1995#if EV_USE_IOCP
1996# include "ev_iocp.c"
1997#endif
1998#if EV_USE_PORT
1999# include "ev_port.c"
2000#endif
703#if EV_USE_KQUEUE 2001#if EV_USE_KQUEUE
704# include "ev_kqueue.c" 2002# include "ev_kqueue.c"
705#endif 2003#endif
706#if EV_USE_EPOLL 2004#if EV_USE_EPOLL
707# include "ev_epoll.c" 2005# include "ev_epoll.c"
711#endif 2009#endif
712#if EV_USE_SELECT 2010#if EV_USE_SELECT
713# include "ev_select.c" 2011# include "ev_select.c"
714#endif 2012#endif
715 2013
716int 2014int ecb_cold
717ev_version_major (void) 2015ev_version_major (void)
718{ 2016{
719 return EV_VERSION_MAJOR; 2017 return EV_VERSION_MAJOR;
720} 2018}
721 2019
722int 2020int ecb_cold
723ev_version_minor (void) 2021ev_version_minor (void)
724{ 2022{
725 return EV_VERSION_MINOR; 2023 return EV_VERSION_MINOR;
726} 2024}
727 2025
728/* return true if we are running with elevated privileges and should ignore env variables */ 2026/* return true if we are running with elevated privileges and should ignore env variables */
729static int 2027int inline_size ecb_cold
730enable_secure (void) 2028enable_secure (void)
731{ 2029{
732#ifdef _WIN32 2030#ifdef _WIN32
733 return 0; 2031 return 0;
734#else 2032#else
735 return getuid () != geteuid () 2033 return getuid () != geteuid ()
736 || getgid () != getegid (); 2034 || getgid () != getegid ();
737#endif 2035#endif
738} 2036}
739 2037
740int 2038unsigned int ecb_cold
2039ev_supported_backends (void)
2040{
2041 unsigned int flags = 0;
2042
2043 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2044 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2045 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2046 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2047 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2048
2049 return flags;
2050}
2051
2052unsigned int ecb_cold
2053ev_recommended_backends (void)
2054{
2055 unsigned int flags = ev_supported_backends ();
2056
2057#ifndef __NetBSD__
2058 /* kqueue is borked on everything but netbsd apparently */
2059 /* it usually doesn't work correctly on anything but sockets and pipes */
2060 flags &= ~EVBACKEND_KQUEUE;
2061#endif
2062#ifdef __APPLE__
2063 /* only select works correctly on that "unix-certified" platform */
2064 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2065 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2066#endif
2067#ifdef __FreeBSD__
2068 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2069#endif
2070
2071 return flags;
2072}
2073
2074unsigned int ecb_cold
2075ev_embeddable_backends (void)
2076{
2077 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2078
2079 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2080 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2081 flags &= ~EVBACKEND_EPOLL;
2082
2083 return flags;
2084}
2085
2086unsigned int
2087ev_backend (EV_P)
2088{
2089 return backend;
2090}
2091
2092#if EV_FEATURE_API
2093unsigned int
2094ev_iteration (EV_P)
2095{
2096 return loop_count;
2097}
2098
2099unsigned int
741ev_method (EV_P) 2100ev_depth (EV_P)
742{ 2101{
743 return method; 2102 return loop_depth;
744} 2103}
745 2104
746static void 2105void
747loop_init (EV_P_ int methods) 2106ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
748{ 2107{
749 if (!method) 2108 io_blocktime = interval;
2109}
2110
2111void
2112ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2113{
2114 timeout_blocktime = interval;
2115}
2116
2117void
2118ev_set_userdata (EV_P_ void *data)
2119{
2120 userdata = data;
2121}
2122
2123void *
2124ev_userdata (EV_P)
2125{
2126 return userdata;
2127}
2128
2129void
2130ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2131{
2132 invoke_cb = invoke_pending_cb;
2133}
2134
2135void
2136ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2137{
2138 release_cb = release;
2139 acquire_cb = acquire;
2140}
2141#endif
2142
2143/* initialise a loop structure, must be zero-initialised */
2144static void noinline ecb_cold
2145loop_init (EV_P_ unsigned int flags)
2146{
2147 if (!backend)
750 { 2148 {
2149 origflags = flags;
2150
2151#if EV_USE_REALTIME
2152 if (!have_realtime)
2153 {
2154 struct timespec ts;
2155
2156 if (!clock_gettime (CLOCK_REALTIME, &ts))
2157 have_realtime = 1;
2158 }
2159#endif
2160
751#if EV_USE_MONOTONIC 2161#if EV_USE_MONOTONIC
2162 if (!have_monotonic)
752 { 2163 {
753 struct timespec ts; 2164 struct timespec ts;
2165
754 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
755 have_monotonic = 1; 2167 have_monotonic = 1;
756 } 2168 }
757#endif 2169#endif
758 2170
2171 /* pid check not overridable via env */
2172#ifndef _WIN32
2173 if (flags & EVFLAG_FORKCHECK)
2174 curpid = getpid ();
2175#endif
2176
2177 if (!(flags & EVFLAG_NOENV)
2178 && !enable_secure ()
2179 && getenv ("LIBEV_FLAGS"))
2180 flags = atoi (getenv ("LIBEV_FLAGS"));
2181
759 ev_rt_now = ev_time (); 2182 ev_rt_now = ev_time ();
760 mn_now = get_clock (); 2183 mn_now = get_clock ();
761 now_floor = mn_now; 2184 now_floor = mn_now;
762 rtmn_diff = ev_rt_now - mn_now; 2185 rtmn_diff = ev_rt_now - mn_now;
2186#if EV_FEATURE_API
2187 invoke_cb = ev_invoke_pending;
2188#endif
763 2189
764 if (methods == EVMETHOD_AUTO) 2190 io_blocktime = 0.;
765 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2191 timeout_blocktime = 0.;
766 methods = atoi (getenv ("LIBEV_METHODS")); 2192 backend = 0;
767 else 2193 backend_fd = -1;
768 methods = EVMETHOD_ANY; 2194 sig_pending = 0;
2195#if EV_ASYNC_ENABLE
2196 async_pending = 0;
2197#endif
2198 pipe_write_skipped = 0;
2199 pipe_write_wanted = 0;
2200#if EV_USE_INOTIFY
2201 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2202#endif
2203#if EV_USE_SIGNALFD
2204 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2205#endif
769 2206
770 method = 0; 2207 if (!(flags & EVBACKEND_MASK))
2208 flags |= ev_recommended_backends ();
2209
2210#if EV_USE_IOCP
2211 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2212#endif
2213#if EV_USE_PORT
2214 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2215#endif
771#if EV_USE_KQUEUE 2216#if EV_USE_KQUEUE
772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2217 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
773#endif 2218#endif
774#if EV_USE_EPOLL 2219#if EV_USE_EPOLL
775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2220 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
776#endif 2221#endif
777#if EV_USE_POLL 2222#if EV_USE_POLL
778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2223 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
779#endif 2224#endif
780#if EV_USE_SELECT 2225#if EV_USE_SELECT
781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2226 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
782#endif 2227#endif
783 2228
2229 ev_prepare_init (&pending_w, pendingcb);
2230
2231#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
784 ev_init (&sigev, sigcb); 2232 ev_init (&pipe_w, pipecb);
785 ev_set_priority (&sigev, EV_MAXPRI); 2233 ev_set_priority (&pipe_w, EV_MAXPRI);
2234#endif
786 } 2235 }
787} 2236}
788 2237
789void 2238/* free up a loop structure */
2239void ecb_cold
790loop_destroy (EV_P) 2240ev_loop_destroy (EV_P)
791{ 2241{
792 int i; 2242 int i;
793 2243
2244#if EV_MULTIPLICITY
2245 /* mimic free (0) */
2246 if (!EV_A)
2247 return;
2248#endif
2249
2250#if EV_CLEANUP_ENABLE
2251 /* queue cleanup watchers (and execute them) */
2252 if (expect_false (cleanupcnt))
2253 {
2254 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2255 EV_INVOKE_PENDING;
2256 }
2257#endif
2258
2259#if EV_CHILD_ENABLE
2260 if (ev_is_active (&childev))
2261 {
2262 ev_ref (EV_A); /* child watcher */
2263 ev_signal_stop (EV_A_ &childev);
2264 }
2265#endif
2266
2267 if (ev_is_active (&pipe_w))
2268 {
2269 /*ev_ref (EV_A);*/
2270 /*ev_io_stop (EV_A_ &pipe_w);*/
2271
2272#if EV_USE_EVENTFD
2273 if (evfd >= 0)
2274 close (evfd);
2275#endif
2276
2277 if (evpipe [0] >= 0)
2278 {
2279 EV_WIN32_CLOSE_FD (evpipe [0]);
2280 EV_WIN32_CLOSE_FD (evpipe [1]);
2281 }
2282 }
2283
2284#if EV_USE_SIGNALFD
2285 if (ev_is_active (&sigfd_w))
2286 close (sigfd);
2287#endif
2288
2289#if EV_USE_INOTIFY
2290 if (fs_fd >= 0)
2291 close (fs_fd);
2292#endif
2293
2294 if (backend_fd >= 0)
2295 close (backend_fd);
2296
2297#if EV_USE_IOCP
2298 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2299#endif
2300#if EV_USE_PORT
2301 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2302#endif
794#if EV_USE_KQUEUE 2303#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2304 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
796#endif 2305#endif
797#if EV_USE_EPOLL 2306#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2307 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
799#endif 2308#endif
800#if EV_USE_POLL 2309#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2310 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
802#endif 2311#endif
803#if EV_USE_SELECT 2312#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2313 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
805#endif 2314#endif
806 2315
807 for (i = NUMPRI; i--; ) 2316 for (i = NUMPRI; i--; )
2317 {
808 array_free (pending, [i]); 2318 array_free (pending, [i]);
2319#if EV_IDLE_ENABLE
2320 array_free (idle, [i]);
2321#endif
2322 }
2323
2324 ev_free (anfds); anfds = 0; anfdmax = 0;
809 2325
810 /* have to use the microsoft-never-gets-it-right macro */ 2326 /* have to use the microsoft-never-gets-it-right macro */
2327 array_free (rfeed, EMPTY);
811 array_free (fdchange, EMPTY); 2328 array_free (fdchange, EMPTY);
812 array_free (timer, EMPTY); 2329 array_free (timer, EMPTY);
813#if EV_PERIODICS 2330#if EV_PERIODIC_ENABLE
814 array_free (periodic, EMPTY); 2331 array_free (periodic, EMPTY);
815#endif 2332#endif
2333#if EV_FORK_ENABLE
2334 array_free (fork, EMPTY);
2335#endif
2336#if EV_CLEANUP_ENABLE
816 array_free (idle, EMPTY); 2337 array_free (cleanup, EMPTY);
2338#endif
817 array_free (prepare, EMPTY); 2339 array_free (prepare, EMPTY);
818 array_free (check, EMPTY); 2340 array_free (check, EMPTY);
2341#if EV_ASYNC_ENABLE
2342 array_free (async, EMPTY);
2343#endif
819 2344
820 method = 0; 2345 backend = 0;
821}
822 2346
823static void 2347#if EV_MULTIPLICITY
2348 if (ev_is_default_loop (EV_A))
2349#endif
2350 ev_default_loop_ptr = 0;
2351#if EV_MULTIPLICITY
2352 else
2353 ev_free (EV_A);
2354#endif
2355}
2356
2357#if EV_USE_INOTIFY
2358inline_size void infy_fork (EV_P);
2359#endif
2360
2361inline_size void
824loop_fork (EV_P) 2362loop_fork (EV_P)
825{ 2363{
2364#if EV_USE_PORT
2365 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2366#endif
2367#if EV_USE_KQUEUE
2368 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2369#endif
826#if EV_USE_EPOLL 2370#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2371 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
828#endif 2372#endif
829#if EV_USE_KQUEUE 2373#if EV_USE_INOTIFY
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2374 infy_fork (EV_A);
831#endif 2375#endif
832 2376
833 if (ev_is_active (&sigev)) 2377 if (ev_is_active (&pipe_w))
834 { 2378 {
835 /* default loop */ 2379 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
836 2380
837 ev_ref (EV_A); 2381 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev); 2382 ev_io_stop (EV_A_ &pipe_w);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841 2383
842 while (pipe (sigpipe)) 2384#if EV_USE_EVENTFD
843 syserr ("(libev) error creating pipe"); 2385 if (evfd >= 0)
2386 close (evfd);
2387#endif
844 2388
2389 if (evpipe [0] >= 0)
2390 {
2391 EV_WIN32_CLOSE_FD (evpipe [0]);
2392 EV_WIN32_CLOSE_FD (evpipe [1]);
2393 }
2394
2395#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
845 siginit (EV_A); 2396 evpipe_init (EV_A);
2397 /* now iterate over everything, in case we missed something */
2398 pipecb (EV_A_ &pipe_w, EV_READ);
2399#endif
846 } 2400 }
847 2401
848 postfork = 0; 2402 postfork = 0;
849} 2403}
850 2404
851#if EV_MULTIPLICITY 2405#if EV_MULTIPLICITY
2406
852struct ev_loop * 2407struct ev_loop * ecb_cold
853ev_loop_new (int methods) 2408ev_loop_new (unsigned int flags)
854{ 2409{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2410 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856 2411
857 memset (loop, 0, sizeof (struct ev_loop)); 2412 memset (EV_A, 0, sizeof (struct ev_loop));
858
859 loop_init (EV_A_ methods); 2413 loop_init (EV_A_ flags);
860 2414
861 if (ev_method (EV_A)) 2415 if (ev_backend (EV_A))
862 return loop; 2416 return EV_A;
863 2417
2418 ev_free (EV_A);
864 return 0; 2419 return 0;
865} 2420}
866 2421
867void 2422#endif /* multiplicity */
868ev_loop_destroy (EV_P)
869{
870 loop_destroy (EV_A);
871 ev_free (loop);
872}
873 2423
874void 2424#if EV_VERIFY
875ev_loop_fork (EV_P) 2425static void noinline ecb_cold
2426verify_watcher (EV_P_ W w)
876{ 2427{
877 postfork = 1; 2428 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
878}
879 2429
2430 if (w->pending)
2431 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2432}
2433
2434static void noinline ecb_cold
2435verify_heap (EV_P_ ANHE *heap, int N)
2436{
2437 int i;
2438
2439 for (i = HEAP0; i < N + HEAP0; ++i)
2440 {
2441 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2442 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2443 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2444
2445 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2446 }
2447}
2448
2449static void noinline ecb_cold
2450array_verify (EV_P_ W *ws, int cnt)
2451{
2452 while (cnt--)
2453 {
2454 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2455 verify_watcher (EV_A_ ws [cnt]);
2456 }
2457}
2458#endif
2459
2460#if EV_FEATURE_API
2461void ecb_cold
2462ev_verify (EV_P)
2463{
2464#if EV_VERIFY
2465 int i;
2466 WL w;
2467
2468 assert (activecnt >= -1);
2469
2470 assert (fdchangemax >= fdchangecnt);
2471 for (i = 0; i < fdchangecnt; ++i)
2472 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2473
2474 assert (anfdmax >= 0);
2475 for (i = 0; i < anfdmax; ++i)
2476 for (w = anfds [i].head; w; w = w->next)
2477 {
2478 verify_watcher (EV_A_ (W)w);
2479 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2480 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2481 }
2482
2483 assert (timermax >= timercnt);
2484 verify_heap (EV_A_ timers, timercnt);
2485
2486#if EV_PERIODIC_ENABLE
2487 assert (periodicmax >= periodiccnt);
2488 verify_heap (EV_A_ periodics, periodiccnt);
2489#endif
2490
2491 for (i = NUMPRI; i--; )
2492 {
2493 assert (pendingmax [i] >= pendingcnt [i]);
2494#if EV_IDLE_ENABLE
2495 assert (idleall >= 0);
2496 assert (idlemax [i] >= idlecnt [i]);
2497 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2498#endif
2499 }
2500
2501#if EV_FORK_ENABLE
2502 assert (forkmax >= forkcnt);
2503 array_verify (EV_A_ (W *)forks, forkcnt);
2504#endif
2505
2506#if EV_CLEANUP_ENABLE
2507 assert (cleanupmax >= cleanupcnt);
2508 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2509#endif
2510
2511#if EV_ASYNC_ENABLE
2512 assert (asyncmax >= asynccnt);
2513 array_verify (EV_A_ (W *)asyncs, asynccnt);
2514#endif
2515
2516#if EV_PREPARE_ENABLE
2517 assert (preparemax >= preparecnt);
2518 array_verify (EV_A_ (W *)prepares, preparecnt);
2519#endif
2520
2521#if EV_CHECK_ENABLE
2522 assert (checkmax >= checkcnt);
2523 array_verify (EV_A_ (W *)checks, checkcnt);
2524#endif
2525
2526# if 0
2527#if EV_CHILD_ENABLE
2528 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2529 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2530#endif
2531# endif
2532#endif
2533}
880#endif 2534#endif
881 2535
882#if EV_MULTIPLICITY 2536#if EV_MULTIPLICITY
883struct ev_loop * 2537struct ev_loop * ecb_cold
884#else 2538#else
885int 2539int
886#endif 2540#endif
887ev_default_loop (int methods) 2541ev_default_loop (unsigned int flags)
888{ 2542{
889 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe))
891 return 0;
892
893 if (!default_loop) 2543 if (!ev_default_loop_ptr)
894 { 2544 {
895#if EV_MULTIPLICITY 2545#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct; 2546 EV_P = ev_default_loop_ptr = &default_loop_struct;
897#else 2547#else
898 default_loop = 1; 2548 ev_default_loop_ptr = 1;
899#endif 2549#endif
900 2550
901 loop_init (EV_A_ methods); 2551 loop_init (EV_A_ flags);
902 2552
903 if (ev_method (EV_A)) 2553 if (ev_backend (EV_A))
904 { 2554 {
905 siginit (EV_A); 2555#if EV_CHILD_ENABLE
906
907#ifndef _WIN32
908 ev_signal_init (&childev, childcb, SIGCHLD); 2556 ev_signal_init (&childev, childcb, SIGCHLD);
909 ev_set_priority (&childev, EV_MAXPRI); 2557 ev_set_priority (&childev, EV_MAXPRI);
910 ev_signal_start (EV_A_ &childev); 2558 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2559 ev_unref (EV_A); /* child watcher should not keep loop alive */
912#endif 2560#endif
913 } 2561 }
914 else 2562 else
915 default_loop = 0; 2563 ev_default_loop_ptr = 0;
916 } 2564 }
917 2565
918 return default_loop; 2566 return ev_default_loop_ptr;
919} 2567}
920 2568
921void 2569void
922ev_default_destroy (void) 2570ev_loop_fork (EV_P)
923{ 2571{
924#if EV_MULTIPLICITY 2572 postfork = 1; /* must be in line with ev_default_fork */
925 struct ev_loop *loop = default_loop;
926#endif
927
928#ifndef _WIN32
929 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev);
931#endif
932
933 ev_ref (EV_A); /* signal watcher */
934 ev_io_stop (EV_A_ &sigev);
935
936 close (sigpipe [0]); sigpipe [0] = 0;
937 close (sigpipe [1]); sigpipe [1] = 0;
938
939 loop_destroy (EV_A);
940} 2573}
2574
2575/*****************************************************************************/
941 2576
942void 2577void
943ev_default_fork (void) 2578ev_invoke (EV_P_ void *w, int revents)
944{ 2579{
945#if EV_MULTIPLICITY 2580 EV_CB_INVOKE ((W)w, revents);
946 struct ev_loop *loop = default_loop;
947#endif
948
949 if (method)
950 postfork = 1;
951} 2581}
952 2582
953/*****************************************************************************/ 2583unsigned int
954 2584ev_pending_count (EV_P)
955static int
956any_pending (EV_P)
957{ 2585{
958 int pri; 2586 int pri;
2587 unsigned int count = 0;
959 2588
960 for (pri = NUMPRI; pri--; ) 2589 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri]) 2590 count += pendingcnt [pri];
962 return 1;
963 2591
964 return 0; 2592 return count;
965} 2593}
966 2594
967static void 2595void noinline
968call_pending (EV_P) 2596ev_invoke_pending (EV_P)
969{ 2597{
970 int pri; 2598 int pri;
971 2599
972 for (pri = NUMPRI; pri--; ) 2600 for (pri = NUMPRI; pri--; )
973 while (pendingcnt [pri]) 2601 while (pendingcnt [pri])
974 { 2602 {
975 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2603 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
976 2604
977 if (p->w)
978 {
979 p->w->pending = 0; 2605 p->w->pending = 0;
980 EV_CB_INVOKE (p->w, p->events); 2606 EV_CB_INVOKE (p->w, p->events);
981 } 2607 EV_FREQUENT_CHECK;
982 } 2608 }
983} 2609}
984 2610
985static void 2611#if EV_IDLE_ENABLE
2612/* make idle watchers pending. this handles the "call-idle */
2613/* only when higher priorities are idle" logic */
2614inline_size void
2615idle_reify (EV_P)
2616{
2617 if (expect_false (idleall))
2618 {
2619 int pri;
2620
2621 for (pri = NUMPRI; pri--; )
2622 {
2623 if (pendingcnt [pri])
2624 break;
2625
2626 if (idlecnt [pri])
2627 {
2628 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2629 break;
2630 }
2631 }
2632 }
2633}
2634#endif
2635
2636/* make timers pending */
2637inline_size void
986timers_reify (EV_P) 2638timers_reify (EV_P)
987{ 2639{
2640 EV_FREQUENT_CHECK;
2641
988 while (timercnt && ((WT)timers [0])->at <= mn_now) 2642 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
989 { 2643 {
990 struct ev_timer *w = timers [0]; 2644 do
991
992 assert (("inactive timer on timer heap detected", ev_is_active (w)));
993
994 /* first reschedule or stop timer */
995 if (w->repeat)
996 { 2645 {
2646 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2647
2648 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2649
2650 /* first reschedule or stop timer */
2651 if (w->repeat)
2652 {
2653 ev_at (w) += w->repeat;
2654 if (ev_at (w) < mn_now)
2655 ev_at (w) = mn_now;
2656
997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2657 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998 2658
999 ((WT)w)->at += w->repeat; 2659 ANHE_at_cache (timers [HEAP0]);
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
1003 downheap ((WT *)timers, timercnt, 0); 2660 downheap (timers, timercnt, HEAP0);
2661 }
2662 else
2663 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2664
2665 EV_FREQUENT_CHECK;
2666 feed_reverse (EV_A_ (W)w);
1004 } 2667 }
1005 else 2668 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1007 2669
1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2670 feed_reverse_done (EV_A_ EV_TIMER);
2671 }
2672}
2673
2674#if EV_PERIODIC_ENABLE
2675
2676static void noinline
2677periodic_recalc (EV_P_ ev_periodic *w)
2678{
2679 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2680 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2681
2682 /* the above almost always errs on the low side */
2683 while (at <= ev_rt_now)
1009 } 2684 {
1010} 2685 ev_tstamp nat = at + w->interval;
1011 2686
1012#if EV_PERIODICS 2687 /* when resolution fails us, we use ev_rt_now */
1013static void 2688 if (expect_false (nat == at))
2689 {
2690 at = ev_rt_now;
2691 break;
2692 }
2693
2694 at = nat;
2695 }
2696
2697 ev_at (w) = at;
2698}
2699
2700/* make periodics pending */
2701inline_size void
1014periodics_reify (EV_P) 2702periodics_reify (EV_P)
1015{ 2703{
2704 EV_FREQUENT_CHECK;
2705
1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2706 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1017 { 2707 {
1018 struct ev_periodic *w = periodics [0]; 2708 int feed_count = 0;
1019 2709
2710 do
2711 {
2712 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2713
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2714 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1021 2715
1022 /* first reschedule or stop timer */ 2716 /* first reschedule or stop timer */
2717 if (w->reschedule_cb)
2718 {
2719 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2720
2721 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2722
2723 ANHE_at_cache (periodics [HEAP0]);
2724 downheap (periodics, periodiccnt, HEAP0);
2725 }
2726 else if (w->interval)
2727 {
2728 periodic_recalc (EV_A_ w);
2729 ANHE_at_cache (periodics [HEAP0]);
2730 downheap (periodics, periodiccnt, HEAP0);
2731 }
2732 else
2733 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2734
2735 EV_FREQUENT_CHECK;
2736 feed_reverse (EV_A_ (W)w);
2737 }
2738 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2739
2740 feed_reverse_done (EV_A_ EV_PERIODIC);
2741 }
2742}
2743
2744/* simply recalculate all periodics */
2745/* TODO: maybe ensure that at least one event happens when jumping forward? */
2746static void noinline ecb_cold
2747periodics_reschedule (EV_P)
2748{
2749 int i;
2750
2751 /* adjust periodics after time jump */
2752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2753 {
2754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2755
1023 if (w->reschedule_cb) 2756 if (w->reschedule_cb)
2757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2758 else if (w->interval)
2759 periodic_recalc (EV_A_ w);
2760
2761 ANHE_at_cache (periodics [i]);
2762 }
2763
2764 reheap (periodics, periodiccnt);
2765}
2766#endif
2767
2768/* adjust all timers by a given offset */
2769static void noinline ecb_cold
2770timers_reschedule (EV_P_ ev_tstamp adjust)
2771{
2772 int i;
2773
2774 for (i = 0; i < timercnt; ++i)
2775 {
2776 ANHE *he = timers + i + HEAP0;
2777 ANHE_w (*he)->at += adjust;
2778 ANHE_at_cache (*he);
2779 }
2780}
2781
2782/* fetch new monotonic and realtime times from the kernel */
2783/* also detect if there was a timejump, and act accordingly */
2784inline_speed void
2785time_update (EV_P_ ev_tstamp max_block)
2786{
2787#if EV_USE_MONOTONIC
2788 if (expect_true (have_monotonic))
2789 {
2790 int i;
2791 ev_tstamp odiff = rtmn_diff;
2792
2793 mn_now = get_clock ();
2794
2795 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2796 /* interpolate in the meantime */
2797 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1024 { 2798 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2799 ev_rt_now = rtmn_diff + mn_now;
1026 2800 return;
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 } 2801 }
1030 else if (w->interval)
1031 {
1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1034 downheap ((WT *)periodics, periodiccnt, 0);
1035 }
1036 else
1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1038 2802
1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1040 }
1041}
1042
1043static void
1044periodics_reschedule (EV_P)
1045{
1046 int i;
1047
1048 /* adjust periodics after time jump */
1049 for (i = 0; i < periodiccnt; ++i)
1050 {
1051 struct ev_periodic *w = periodics [i];
1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1055 else if (w->interval)
1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
1062}
1063#endif
1064
1065inline int
1066time_update_monotonic (EV_P)
1067{
1068 mn_now = get_clock ();
1069
1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 {
1072 ev_rt_now = rtmn_diff + mn_now;
1073 return 0;
1074 }
1075 else
1076 {
1077 now_floor = mn_now; 2803 now_floor = mn_now;
1078 ev_rt_now = ev_time (); 2804 ev_rt_now = ev_time ();
1079 return 1;
1080 }
1081}
1082 2805
1083static void 2806 /* loop a few times, before making important decisions.
1084time_update (EV_P) 2807 * on the choice of "4": one iteration isn't enough,
1085{ 2808 * in case we get preempted during the calls to
1086 int i; 2809 * ev_time and get_clock. a second call is almost guaranteed
1087 2810 * to succeed in that case, though. and looping a few more times
1088#if EV_USE_MONOTONIC 2811 * doesn't hurt either as we only do this on time-jumps or
1089 if (expect_true (have_monotonic)) 2812 * in the unlikely event of having been preempted here.
1090 { 2813 */
1091 if (time_update_monotonic (EV_A)) 2814 for (i = 4; --i; )
1092 { 2815 {
1093 ev_tstamp odiff = rtmn_diff; 2816 ev_tstamp diff;
1094
1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1096 {
1097 rtmn_diff = ev_rt_now - mn_now; 2817 rtmn_diff = ev_rt_now - mn_now;
1098 2818
1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2819 diff = odiff - rtmn_diff;
2820
2821 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1100 return; /* all is well */ 2822 return; /* all is well */
1101 2823
1102 ev_rt_now = ev_time (); 2824 ev_rt_now = ev_time ();
1103 mn_now = get_clock (); 2825 mn_now = get_clock ();
1104 now_floor = mn_now; 2826 now_floor = mn_now;
1105 } 2827 }
1106 2828
2829 /* no timer adjustment, as the monotonic clock doesn't jump */
2830 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1107# if EV_PERIODICS 2831# if EV_PERIODIC_ENABLE
2832 periodics_reschedule (EV_A);
2833# endif
2834 }
2835 else
2836#endif
2837 {
2838 ev_rt_now = ev_time ();
2839
2840 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2841 {
2842 /* adjust timers. this is easy, as the offset is the same for all of them */
2843 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2844#if EV_PERIODIC_ENABLE
1108 periodics_reschedule (EV_A); 2845 periodics_reschedule (EV_A);
1109# endif 2846#endif
1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112 } 2847 }
1113 }
1114 else
1115#endif
1116 {
1117 ev_rt_now = ev_time ();
1118
1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1120 {
1121#if EV_PERIODICS
1122 periodics_reschedule (EV_A);
1123#endif
1124
1125 /* adjust timers. this is easy, as the offset is the same for all */
1126 for (i = 0; i < timercnt; ++i)
1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1128 }
1129 2848
1130 mn_now = ev_rt_now; 2849 mn_now = ev_rt_now;
1131 } 2850 }
1132} 2851}
1133 2852
1134void 2853void
1135ev_ref (EV_P)
1136{
1137 ++activecnt;
1138}
1139
1140void
1141ev_unref (EV_P)
1142{
1143 --activecnt;
1144}
1145
1146static int loop_done;
1147
1148void
1149ev_loop (EV_P_ int flags) 2854ev_run (EV_P_ int flags)
1150{ 2855{
1151 double block; 2856#if EV_FEATURE_API
1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2857 ++loop_depth;
2858#endif
2859
2860 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2861
2862 loop_done = EVBREAK_CANCEL;
2863
2864 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1153 2865
1154 do 2866 do
1155 { 2867 {
2868#if EV_VERIFY >= 2
2869 ev_verify (EV_A);
2870#endif
2871
2872#ifndef _WIN32
2873 if (expect_false (curpid)) /* penalise the forking check even more */
2874 if (expect_false (getpid () != curpid))
2875 {
2876 curpid = getpid ();
2877 postfork = 1;
2878 }
2879#endif
2880
2881#if EV_FORK_ENABLE
2882 /* we might have forked, so queue fork handlers */
2883 if (expect_false (postfork))
2884 if (forkcnt)
2885 {
2886 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2887 EV_INVOKE_PENDING;
2888 }
2889#endif
2890
2891#if EV_PREPARE_ENABLE
1156 /* queue check watchers (and execute them) */ 2892 /* queue prepare watchers (and execute them) */
1157 if (expect_false (preparecnt)) 2893 if (expect_false (preparecnt))
1158 { 2894 {
1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2895 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1160 call_pending (EV_A); 2896 EV_INVOKE_PENDING;
1161 } 2897 }
2898#endif
2899
2900 if (expect_false (loop_done))
2901 break;
1162 2902
1163 /* we might have forked, so reify kernel state if necessary */ 2903 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork)) 2904 if (expect_false (postfork))
1165 loop_fork (EV_A); 2905 loop_fork (EV_A);
1166 2906
1167 /* update fd-related kernel structures */ 2907 /* update fd-related kernel structures */
1168 fd_reify (EV_A); 2908 fd_reify (EV_A);
1169 2909
1170 /* calculate blocking time */ 2910 /* calculate blocking time */
2911 {
2912 ev_tstamp waittime = 0.;
2913 ev_tstamp sleeptime = 0.;
1171 2914
1172 /* we only need this for !monotonic clock or timers, but as we basically 2915 /* remember old timestamp for io_blocktime calculation */
1173 always have timers, we just calculate it always */ 2916 ev_tstamp prev_mn_now = mn_now;
1174#if EV_USE_MONOTONIC 2917
1175 if (expect_true (have_monotonic)) 2918 /* update time to cancel out callback processing overhead */
1176 time_update_monotonic (EV_A); 2919 time_update (EV_A_ 1e100);
1177 else 2920
1178#endif 2921 /* from now on, we want a pipe-wake-up */
2922 pipe_write_wanted = 1;
2923
2924 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2925
2926 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1179 { 2927 {
1180 ev_rt_now = ev_time ();
1181 mn_now = ev_rt_now;
1182 }
1183
1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1185 block = 0.;
1186 else
1187 {
1188 block = MAX_BLOCKTIME; 2928 waittime = MAX_BLOCKTIME;
1189 2929
1190 if (timercnt) 2930 if (timercnt)
1191 { 2931 {
1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2932 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1193 if (block > to) block = to; 2933 if (waittime > to) waittime = to;
1194 } 2934 }
1195 2935
1196#if EV_PERIODICS 2936#if EV_PERIODIC_ENABLE
1197 if (periodiccnt) 2937 if (periodiccnt)
1198 { 2938 {
1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2939 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1200 if (block > to) block = to; 2940 if (waittime > to) waittime = to;
1201 } 2941 }
1202#endif 2942#endif
1203 2943
1204 if (block < 0.) block = 0.; 2944 /* don't let timeouts decrease the waittime below timeout_blocktime */
2945 if (expect_false (waittime < timeout_blocktime))
2946 waittime = timeout_blocktime;
2947
2948 /* at this point, we NEED to wait, so we have to ensure */
2949 /* to pass a minimum nonzero value to the backend */
2950 if (expect_false (waittime < backend_mintime))
2951 waittime = backend_mintime;
2952
2953 /* extra check because io_blocktime is commonly 0 */
2954 if (expect_false (io_blocktime))
2955 {
2956 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2957
2958 if (sleeptime > waittime - backend_mintime)
2959 sleeptime = waittime - backend_mintime;
2960
2961 if (expect_true (sleeptime > 0.))
2962 {
2963 ev_sleep (sleeptime);
2964 waittime -= sleeptime;
2965 }
2966 }
1205 } 2967 }
1206 2968
1207 method_poll (EV_A_ block); 2969#if EV_FEATURE_API
2970 ++loop_count;
2971#endif
2972 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2973 backend_poll (EV_A_ waittime);
2974 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1208 2975
2976 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2977
2978 if (pipe_write_skipped)
2979 {
2980 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2981 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2982 }
2983
2984
1209 /* update ev_rt_now, do magic */ 2985 /* update ev_rt_now, do magic */
1210 time_update (EV_A); 2986 time_update (EV_A_ waittime + sleeptime);
2987 }
1211 2988
1212 /* queue pending timers and reschedule them */ 2989 /* queue pending timers and reschedule them */
1213 timers_reify (EV_A); /* relative timers called last */ 2990 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS 2991#if EV_PERIODIC_ENABLE
1215 periodics_reify (EV_A); /* absolute timers called first */ 2992 periodics_reify (EV_A); /* absolute timers called first */
1216#endif 2993#endif
1217 2994
2995#if EV_IDLE_ENABLE
1218 /* queue idle watchers unless io or timers are pending */ 2996 /* queue idle watchers unless other events are pending */
1219 if (idlecnt && !any_pending (EV_A)) 2997 idle_reify (EV_A);
1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2998#endif
1221 2999
3000#if EV_CHECK_ENABLE
1222 /* queue check watchers, to be executed first */ 3001 /* queue check watchers, to be executed first */
1223 if (checkcnt) 3002 if (expect_false (checkcnt))
1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3003 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3004#endif
1225 3005
1226 call_pending (EV_A); 3006 EV_INVOKE_PENDING;
1227 } 3007 }
1228 while (activecnt && !loop_done); 3008 while (expect_true (
3009 activecnt
3010 && !loop_done
3011 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3012 ));
1229 3013
1230 if (loop_done != 2) 3014 if (loop_done == EVBREAK_ONE)
1231 loop_done = 0; 3015 loop_done = EVBREAK_CANCEL;
3016
3017#if EV_FEATURE_API
3018 --loop_depth;
3019#endif
1232} 3020}
1233 3021
1234void 3022void
1235ev_unloop (EV_P_ int how) 3023ev_break (EV_P_ int how)
1236{ 3024{
1237 loop_done = how; 3025 loop_done = how;
1238} 3026}
1239 3027
3028void
3029ev_ref (EV_P)
3030{
3031 ++activecnt;
3032}
3033
3034void
3035ev_unref (EV_P)
3036{
3037 --activecnt;
3038}
3039
3040void
3041ev_now_update (EV_P)
3042{
3043 time_update (EV_A_ 1e100);
3044}
3045
3046void
3047ev_suspend (EV_P)
3048{
3049 ev_now_update (EV_A);
3050}
3051
3052void
3053ev_resume (EV_P)
3054{
3055 ev_tstamp mn_prev = mn_now;
3056
3057 ev_now_update (EV_A);
3058 timers_reschedule (EV_A_ mn_now - mn_prev);
3059#if EV_PERIODIC_ENABLE
3060 /* TODO: really do this? */
3061 periodics_reschedule (EV_A);
3062#endif
3063}
3064
1240/*****************************************************************************/ 3065/*****************************************************************************/
3066/* singly-linked list management, used when the expected list length is short */
1241 3067
1242inline void 3068inline_size void
1243wlist_add (WL *head, WL elem) 3069wlist_add (WL *head, WL elem)
1244{ 3070{
1245 elem->next = *head; 3071 elem->next = *head;
1246 *head = elem; 3072 *head = elem;
1247} 3073}
1248 3074
1249inline void 3075inline_size void
1250wlist_del (WL *head, WL elem) 3076wlist_del (WL *head, WL elem)
1251{ 3077{
1252 while (*head) 3078 while (*head)
1253 { 3079 {
1254 if (*head == elem) 3080 if (expect_true (*head == elem))
1255 { 3081 {
1256 *head = elem->next; 3082 *head = elem->next;
1257 return; 3083 break;
1258 } 3084 }
1259 3085
1260 head = &(*head)->next; 3086 head = &(*head)->next;
1261 } 3087 }
1262} 3088}
1263 3089
3090/* internal, faster, version of ev_clear_pending */
1264inline void 3091inline_speed void
1265ev_clear_pending (EV_P_ W w) 3092clear_pending (EV_P_ W w)
1266{ 3093{
1267 if (w->pending) 3094 if (w->pending)
1268 { 3095 {
1269 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3096 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1270 w->pending = 0; 3097 w->pending = 0;
1271 } 3098 }
1272} 3099}
1273 3100
3101int
3102ev_clear_pending (EV_P_ void *w)
3103{
3104 W w_ = (W)w;
3105 int pending = w_->pending;
3106
3107 if (expect_true (pending))
3108 {
3109 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3110 p->w = (W)&pending_w;
3111 w_->pending = 0;
3112 return p->events;
3113 }
3114 else
3115 return 0;
3116}
3117
1274inline void 3118inline_size void
3119pri_adjust (EV_P_ W w)
3120{
3121 int pri = ev_priority (w);
3122 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3123 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3124 ev_set_priority (w, pri);
3125}
3126
3127inline_speed void
1275ev_start (EV_P_ W w, int active) 3128ev_start (EV_P_ W w, int active)
1276{ 3129{
1277 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3130 pri_adjust (EV_A_ w);
1278 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1279
1280 w->active = active; 3131 w->active = active;
1281 ev_ref (EV_A); 3132 ev_ref (EV_A);
1282} 3133}
1283 3134
1284inline void 3135inline_size void
1285ev_stop (EV_P_ W w) 3136ev_stop (EV_P_ W w)
1286{ 3137{
1287 ev_unref (EV_A); 3138 ev_unref (EV_A);
1288 w->active = 0; 3139 w->active = 0;
1289} 3140}
1290 3141
1291/*****************************************************************************/ 3142/*****************************************************************************/
1292 3143
1293void 3144void noinline
1294ev_io_start (EV_P_ struct ev_io *w) 3145ev_io_start (EV_P_ ev_io *w)
1295{ 3146{
1296 int fd = w->fd; 3147 int fd = w->fd;
1297 3148
1298 if (ev_is_active (w)) 3149 if (expect_false (ev_is_active (w)))
1299 return; 3150 return;
1300 3151
1301 assert (("ev_io_start called with negative fd", fd >= 0)); 3152 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3153 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3154
3155 EV_FREQUENT_CHECK;
1302 3156
1303 ev_start (EV_A_ (W)w, 1); 3157 ev_start (EV_A_ (W)w, 1);
1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3158 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1305 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3159 wlist_add (&anfds[fd].head, (WL)w);
1306 3160
1307 fd_change (EV_A_ fd); 3161 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1308} 3162 w->events &= ~EV__IOFDSET;
1309 3163
1310void 3164 EV_FREQUENT_CHECK;
3165}
3166
3167void noinline
1311ev_io_stop (EV_P_ struct ev_io *w) 3168ev_io_stop (EV_P_ ev_io *w)
1312{ 3169{
1313 ev_clear_pending (EV_A_ (W)w); 3170 clear_pending (EV_A_ (W)w);
1314 if (!ev_is_active (w)) 3171 if (expect_false (!ev_is_active (w)))
1315 return; 3172 return;
1316 3173
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3174 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318 3175
3176 EV_FREQUENT_CHECK;
3177
1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3178 wlist_del (&anfds[w->fd].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 3179 ev_stop (EV_A_ (W)w);
1321 3180
1322 fd_change (EV_A_ w->fd); 3181 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1323}
1324 3182
1325void 3183 EV_FREQUENT_CHECK;
3184}
3185
3186void noinline
1326ev_timer_start (EV_P_ struct ev_timer *w) 3187ev_timer_start (EV_P_ ev_timer *w)
1327{ 3188{
1328 if (ev_is_active (w)) 3189 if (expect_false (ev_is_active (w)))
1329 return; 3190 return;
1330 3191
1331 ((WT)w)->at += mn_now; 3192 ev_at (w) += mn_now;
1332 3193
1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3194 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1334 3195
3196 EV_FREQUENT_CHECK;
3197
3198 ++timercnt;
1335 ev_start (EV_A_ (W)w, ++timercnt); 3199 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3200 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1337 timers [timercnt - 1] = w; 3201 ANHE_w (timers [ev_active (w)]) = (WT)w;
1338 upheap ((WT *)timers, timercnt - 1); 3202 ANHE_at_cache (timers [ev_active (w)]);
3203 upheap (timers, ev_active (w));
1339 3204
3205 EV_FREQUENT_CHECK;
3206
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3207 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1341} 3208}
1342 3209
1343void 3210void noinline
1344ev_timer_stop (EV_P_ struct ev_timer *w) 3211ev_timer_stop (EV_P_ ev_timer *w)
1345{ 3212{
1346 ev_clear_pending (EV_A_ (W)w); 3213 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 3214 if (expect_false (!ev_is_active (w)))
1348 return; 3215 return;
1349 3216
3217 EV_FREQUENT_CHECK;
3218
3219 {
3220 int active = ev_active (w);
3221
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3222 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1351 3223
1352 if (((W)w)->active < timercnt--) 3224 --timercnt;
3225
3226 if (expect_true (active < timercnt + HEAP0))
1353 { 3227 {
1354 timers [((W)w)->active - 1] = timers [timercnt]; 3228 timers [active] = timers [timercnt + HEAP0];
1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3229 adjustheap (timers, timercnt, active);
1356 } 3230 }
3231 }
1357 3232
1358 ((WT)w)->at -= mn_now; 3233 ev_at (w) -= mn_now;
1359 3234
1360 ev_stop (EV_A_ (W)w); 3235 ev_stop (EV_A_ (W)w);
1361}
1362 3236
1363void 3237 EV_FREQUENT_CHECK;
3238}
3239
3240void noinline
1364ev_timer_again (EV_P_ struct ev_timer *w) 3241ev_timer_again (EV_P_ ev_timer *w)
1365{ 3242{
3243 EV_FREQUENT_CHECK;
3244
1366 if (ev_is_active (w)) 3245 if (ev_is_active (w))
1367 { 3246 {
1368 if (w->repeat) 3247 if (w->repeat)
1369 { 3248 {
1370 ((WT)w)->at = mn_now + w->repeat; 3249 ev_at (w) = mn_now + w->repeat;
3250 ANHE_at_cache (timers [ev_active (w)]);
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3251 adjustheap (timers, timercnt, ev_active (w));
1372 } 3252 }
1373 else 3253 else
1374 ev_timer_stop (EV_A_ w); 3254 ev_timer_stop (EV_A_ w);
1375 } 3255 }
1376 else if (w->repeat) 3256 else if (w->repeat)
3257 {
3258 ev_at (w) = w->repeat;
1377 ev_timer_start (EV_A_ w); 3259 ev_timer_start (EV_A_ w);
1378} 3260 }
1379 3261
3262 EV_FREQUENT_CHECK;
3263}
3264
3265ev_tstamp
3266ev_timer_remaining (EV_P_ ev_timer *w)
3267{
3268 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3269}
3270
1380#if EV_PERIODICS 3271#if EV_PERIODIC_ENABLE
1381void 3272void noinline
1382ev_periodic_start (EV_P_ struct ev_periodic *w) 3273ev_periodic_start (EV_P_ ev_periodic *w)
1383{ 3274{
1384 if (ev_is_active (w)) 3275 if (expect_false (ev_is_active (w)))
1385 return; 3276 return;
1386 3277
1387 if (w->reschedule_cb) 3278 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval) 3280 else if (w->interval)
1390 { 3281 {
1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3282 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1392 /* this formula differs from the one in periodic_reify because we do not always round up */ 3283 periodic_recalc (EV_A_ w);
1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1394 } 3284 }
3285 else
3286 ev_at (w) = w->offset;
1395 3287
3288 EV_FREQUENT_CHECK;
3289
3290 ++periodiccnt;
1396 ev_start (EV_A_ (W)w, ++periodiccnt); 3291 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3292 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1398 periodics [periodiccnt - 1] = w; 3293 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1399 upheap ((WT *)periodics, periodiccnt - 1); 3294 ANHE_at_cache (periodics [ev_active (w)]);
3295 upheap (periodics, ev_active (w));
1400 3296
3297 EV_FREQUENT_CHECK;
3298
1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3299 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1402} 3300}
1403 3301
1404void 3302void noinline
1405ev_periodic_stop (EV_P_ struct ev_periodic *w) 3303ev_periodic_stop (EV_P_ ev_periodic *w)
1406{ 3304{
1407 ev_clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
1408 if (!ev_is_active (w)) 3306 if (expect_false (!ev_is_active (w)))
1409 return; 3307 return;
1410 3308
3309 EV_FREQUENT_CHECK;
3310
3311 {
3312 int active = ev_active (w);
3313
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3314 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1412 3315
1413 if (((W)w)->active < periodiccnt--) 3316 --periodiccnt;
3317
3318 if (expect_true (active < periodiccnt + HEAP0))
1414 { 3319 {
1415 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3320 periodics [active] = periodics [periodiccnt + HEAP0];
1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3321 adjustheap (periodics, periodiccnt, active);
1417 } 3322 }
3323 }
1418 3324
1419 ev_stop (EV_A_ (W)w); 3325 ev_stop (EV_A_ (W)w);
1420}
1421 3326
1422void 3327 EV_FREQUENT_CHECK;
3328}
3329
3330void noinline
1423ev_periodic_again (EV_P_ struct ev_periodic *w) 3331ev_periodic_again (EV_P_ ev_periodic *w)
1424{ 3332{
1425 /* TODO: use adjustheap and recalculation */ 3333 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w); 3334 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w); 3335 ev_periodic_start (EV_A_ w);
1428} 3336}
1429#endif 3337#endif
1430 3338
1431void
1432ev_idle_start (EV_P_ struct ev_idle *w)
1433{
1434 if (ev_is_active (w))
1435 return;
1436
1437 ev_start (EV_A_ (W)w, ++idlecnt);
1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1439 idles [idlecnt - 1] = w;
1440}
1441
1442void
1443ev_idle_stop (EV_P_ struct ev_idle *w)
1444{
1445 ev_clear_pending (EV_A_ (W)w);
1446 if (!ev_is_active (w))
1447 return;
1448
1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1450 ev_stop (EV_A_ (W)w);
1451}
1452
1453void
1454ev_prepare_start (EV_P_ struct ev_prepare *w)
1455{
1456 if (ev_is_active (w))
1457 return;
1458
1459 ev_start (EV_A_ (W)w, ++preparecnt);
1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1461 prepares [preparecnt - 1] = w;
1462}
1463
1464void
1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1466{
1467 ev_clear_pending (EV_A_ (W)w);
1468 if (!ev_is_active (w))
1469 return;
1470
1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1472 ev_stop (EV_A_ (W)w);
1473}
1474
1475void
1476ev_check_start (EV_P_ struct ev_check *w)
1477{
1478 if (ev_is_active (w))
1479 return;
1480
1481 ev_start (EV_A_ (W)w, ++checkcnt);
1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1483 checks [checkcnt - 1] = w;
1484}
1485
1486void
1487ev_check_stop (EV_P_ struct ev_check *w)
1488{
1489 ev_clear_pending (EV_A_ (W)w);
1490 if (!ev_is_active (w))
1491 return;
1492
1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1494 ev_stop (EV_A_ (W)w);
1495}
1496
1497#ifndef SA_RESTART 3339#ifndef SA_RESTART
1498# define SA_RESTART 0 3340# define SA_RESTART 0
1499#endif 3341#endif
1500 3342
3343#if EV_SIGNAL_ENABLE
3344
3345void noinline
3346ev_signal_start (EV_P_ ev_signal *w)
3347{
3348 if (expect_false (ev_is_active (w)))
3349 return;
3350
3351 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3352
3353#if EV_MULTIPLICITY
3354 assert (("libev: a signal must not be attached to two different loops",
3355 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3356
3357 signals [w->signum - 1].loop = EV_A;
3358#endif
3359
3360 EV_FREQUENT_CHECK;
3361
3362#if EV_USE_SIGNALFD
3363 if (sigfd == -2)
3364 {
3365 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3366 if (sigfd < 0 && errno == EINVAL)
3367 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3368
3369 if (sigfd >= 0)
3370 {
3371 fd_intern (sigfd); /* doing it twice will not hurt */
3372
3373 sigemptyset (&sigfd_set);
3374
3375 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3376 ev_set_priority (&sigfd_w, EV_MAXPRI);
3377 ev_io_start (EV_A_ &sigfd_w);
3378 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3379 }
3380 }
3381
3382 if (sigfd >= 0)
3383 {
3384 /* TODO: check .head */
3385 sigaddset (&sigfd_set, w->signum);
3386 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3387
3388 signalfd (sigfd, &sigfd_set, 0);
3389 }
3390#endif
3391
3392 ev_start (EV_A_ (W)w, 1);
3393 wlist_add (&signals [w->signum - 1].head, (WL)w);
3394
3395 if (!((WL)w)->next)
3396# if EV_USE_SIGNALFD
3397 if (sigfd < 0) /*TODO*/
3398# endif
3399 {
3400# ifdef _WIN32
3401 evpipe_init (EV_A);
3402
3403 signal (w->signum, ev_sighandler);
3404# else
3405 struct sigaction sa;
3406
3407 evpipe_init (EV_A);
3408
3409 sa.sa_handler = ev_sighandler;
3410 sigfillset (&sa.sa_mask);
3411 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3412 sigaction (w->signum, &sa, 0);
3413
3414 if (origflags & EVFLAG_NOSIGMASK)
3415 {
3416 sigemptyset (&sa.sa_mask);
3417 sigaddset (&sa.sa_mask, w->signum);
3418 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3419 }
3420#endif
3421 }
3422
3423 EV_FREQUENT_CHECK;
3424}
3425
3426void noinline
3427ev_signal_stop (EV_P_ ev_signal *w)
3428{
3429 clear_pending (EV_A_ (W)w);
3430 if (expect_false (!ev_is_active (w)))
3431 return;
3432
3433 EV_FREQUENT_CHECK;
3434
3435 wlist_del (&signals [w->signum - 1].head, (WL)w);
3436 ev_stop (EV_A_ (W)w);
3437
3438 if (!signals [w->signum - 1].head)
3439 {
3440#if EV_MULTIPLICITY
3441 signals [w->signum - 1].loop = 0; /* unattach from signal */
3442#endif
3443#if EV_USE_SIGNALFD
3444 if (sigfd >= 0)
3445 {
3446 sigset_t ss;
3447
3448 sigemptyset (&ss);
3449 sigaddset (&ss, w->signum);
3450 sigdelset (&sigfd_set, w->signum);
3451
3452 signalfd (sigfd, &sigfd_set, 0);
3453 sigprocmask (SIG_UNBLOCK, &ss, 0);
3454 }
3455 else
3456#endif
3457 signal (w->signum, SIG_DFL);
3458 }
3459
3460 EV_FREQUENT_CHECK;
3461}
3462
3463#endif
3464
3465#if EV_CHILD_ENABLE
3466
1501void 3467void
1502ev_signal_start (EV_P_ struct ev_signal *w) 3468ev_child_start (EV_P_ ev_child *w)
1503{ 3469{
1504#if EV_MULTIPLICITY 3470#if EV_MULTIPLICITY
1505 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3471 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1506#endif 3472#endif
1507 if (ev_is_active (w)) 3473 if (expect_false (ev_is_active (w)))
1508 return; 3474 return;
1509 3475
1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3476 EV_FREQUENT_CHECK;
1511 3477
1512 ev_start (EV_A_ (W)w, 1); 3478 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3479 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1515 3480
1516 if (!((WL)w)->next) 3481 EV_FREQUENT_CHECK;
3482}
3483
3484void
3485ev_child_stop (EV_P_ ev_child *w)
3486{
3487 clear_pending (EV_A_ (W)w);
3488 if (expect_false (!ev_is_active (w)))
3489 return;
3490
3491 EV_FREQUENT_CHECK;
3492
3493 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3494 ev_stop (EV_A_ (W)w);
3495
3496 EV_FREQUENT_CHECK;
3497}
3498
3499#endif
3500
3501#if EV_STAT_ENABLE
3502
3503# ifdef _WIN32
3504# undef lstat
3505# define lstat(a,b) _stati64 (a,b)
3506# endif
3507
3508#define DEF_STAT_INTERVAL 5.0074891
3509#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3510#define MIN_STAT_INTERVAL 0.1074891
3511
3512static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3513
3514#if EV_USE_INOTIFY
3515
3516/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3517# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3518
3519static void noinline
3520infy_add (EV_P_ ev_stat *w)
3521{
3522 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3523
3524 if (w->wd >= 0)
3525 {
3526 struct statfs sfs;
3527
3528 /* now local changes will be tracked by inotify, but remote changes won't */
3529 /* unless the filesystem is known to be local, we therefore still poll */
3530 /* also do poll on <2.6.25, but with normal frequency */
3531
3532 if (!fs_2625)
3533 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3534 else if (!statfs (w->path, &sfs)
3535 && (sfs.f_type == 0x1373 /* devfs */
3536 || sfs.f_type == 0xEF53 /* ext2/3 */
3537 || sfs.f_type == 0x3153464a /* jfs */
3538 || sfs.f_type == 0x52654973 /* reiser3 */
3539 || sfs.f_type == 0x01021994 /* tempfs */
3540 || sfs.f_type == 0x58465342 /* xfs */))
3541 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3542 else
3543 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1517 { 3544 }
3545 else
3546 {
3547 /* can't use inotify, continue to stat */
3548 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3549
3550 /* if path is not there, monitor some parent directory for speedup hints */
3551 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3552 /* but an efficiency issue only */
3553 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3554 {
3555 char path [4096];
3556 strcpy (path, w->path);
3557
3558 do
3559 {
3560 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3561 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3562
3563 char *pend = strrchr (path, '/');
3564
3565 if (!pend || pend == path)
3566 break;
3567
3568 *pend = 0;
3569 w->wd = inotify_add_watch (fs_fd, path, mask);
3570 }
3571 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3572 }
3573 }
3574
3575 if (w->wd >= 0)
3576 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3577
3578 /* now re-arm timer, if required */
3579 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3580 ev_timer_again (EV_A_ &w->timer);
3581 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3582}
3583
3584static void noinline
3585infy_del (EV_P_ ev_stat *w)
3586{
3587 int slot;
3588 int wd = w->wd;
3589
3590 if (wd < 0)
3591 return;
3592
3593 w->wd = -2;
3594 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3595 wlist_del (&fs_hash [slot].head, (WL)w);
3596
3597 /* remove this watcher, if others are watching it, they will rearm */
3598 inotify_rm_watch (fs_fd, wd);
3599}
3600
3601static void noinline
3602infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3603{
3604 if (slot < 0)
3605 /* overflow, need to check for all hash slots */
3606 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3607 infy_wd (EV_A_ slot, wd, ev);
3608 else
3609 {
3610 WL w_;
3611
3612 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3613 {
3614 ev_stat *w = (ev_stat *)w_;
3615 w_ = w_->next; /* lets us remove this watcher and all before it */
3616
3617 if (w->wd == wd || wd == -1)
3618 {
3619 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3620 {
3621 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3622 w->wd = -1;
3623 infy_add (EV_A_ w); /* re-add, no matter what */
3624 }
3625
3626 stat_timer_cb (EV_A_ &w->timer, 0);
3627 }
3628 }
3629 }
3630}
3631
3632static void
3633infy_cb (EV_P_ ev_io *w, int revents)
3634{
3635 char buf [EV_INOTIFY_BUFSIZE];
3636 int ofs;
3637 int len = read (fs_fd, buf, sizeof (buf));
3638
3639 for (ofs = 0; ofs < len; )
3640 {
3641 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3642 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3643 ofs += sizeof (struct inotify_event) + ev->len;
3644 }
3645}
3646
3647inline_size void ecb_cold
3648ev_check_2625 (EV_P)
3649{
3650 /* kernels < 2.6.25 are borked
3651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3652 */
3653 if (ev_linux_version () < 0x020619)
3654 return;
3655
3656 fs_2625 = 1;
3657}
3658
3659inline_size int
3660infy_newfd (void)
3661{
3662#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3663 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3664 if (fd >= 0)
3665 return fd;
3666#endif
3667 return inotify_init ();
3668}
3669
3670inline_size void
3671infy_init (EV_P)
3672{
3673 if (fs_fd != -2)
3674 return;
3675
3676 fs_fd = -1;
3677
3678 ev_check_2625 (EV_A);
3679
3680 fs_fd = infy_newfd ();
3681
3682 if (fs_fd >= 0)
3683 {
3684 fd_intern (fs_fd);
3685 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3686 ev_set_priority (&fs_w, EV_MAXPRI);
3687 ev_io_start (EV_A_ &fs_w);
3688 ev_unref (EV_A);
3689 }
3690}
3691
3692inline_size void
3693infy_fork (EV_P)
3694{
3695 int slot;
3696
3697 if (fs_fd < 0)
3698 return;
3699
3700 ev_ref (EV_A);
3701 ev_io_stop (EV_A_ &fs_w);
3702 close (fs_fd);
3703 fs_fd = infy_newfd ();
3704
3705 if (fs_fd >= 0)
3706 {
3707 fd_intern (fs_fd);
3708 ev_io_set (&fs_w, fs_fd, EV_READ);
3709 ev_io_start (EV_A_ &fs_w);
3710 ev_unref (EV_A);
3711 }
3712
3713 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3714 {
3715 WL w_ = fs_hash [slot].head;
3716 fs_hash [slot].head = 0;
3717
3718 while (w_)
3719 {
3720 ev_stat *w = (ev_stat *)w_;
3721 w_ = w_->next; /* lets us add this watcher */
3722
3723 w->wd = -1;
3724
3725 if (fs_fd >= 0)
3726 infy_add (EV_A_ w); /* re-add, no matter what */
3727 else
3728 {
3729 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3730 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3731 ev_timer_again (EV_A_ &w->timer);
3732 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3733 }
3734 }
3735 }
3736}
3737
3738#endif
3739
1518#if _WIN32 3740#ifdef _WIN32
1519 signal (w->signum, sighandler); 3741# define EV_LSTAT(p,b) _stati64 (p, b)
1520#else 3742#else
1521 struct sigaction sa; 3743# define EV_LSTAT(p,b) lstat (p, b)
1522 sa.sa_handler = sighandler;
1523 sigfillset (&sa.sa_mask);
1524 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1525 sigaction (w->signum, &sa, 0);
1526#endif 3744#endif
1527 }
1528}
1529 3745
1530void 3746void
1531ev_signal_stop (EV_P_ struct ev_signal *w) 3747ev_stat_stat (EV_P_ ev_stat *w)
1532{ 3748{
1533 ev_clear_pending (EV_A_ (W)w); 3749 if (lstat (w->path, &w->attr) < 0)
1534 if (!ev_is_active (w)) 3750 w->attr.st_nlink = 0;
3751 else if (!w->attr.st_nlink)
3752 w->attr.st_nlink = 1;
3753}
3754
3755static void noinline
3756stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3757{
3758 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3759
3760 ev_statdata prev = w->attr;
3761 ev_stat_stat (EV_A_ w);
3762
3763 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3764 if (
3765 prev.st_dev != w->attr.st_dev
3766 || prev.st_ino != w->attr.st_ino
3767 || prev.st_mode != w->attr.st_mode
3768 || prev.st_nlink != w->attr.st_nlink
3769 || prev.st_uid != w->attr.st_uid
3770 || prev.st_gid != w->attr.st_gid
3771 || prev.st_rdev != w->attr.st_rdev
3772 || prev.st_size != w->attr.st_size
3773 || prev.st_atime != w->attr.st_atime
3774 || prev.st_mtime != w->attr.st_mtime
3775 || prev.st_ctime != w->attr.st_ctime
3776 ) {
3777 /* we only update w->prev on actual differences */
3778 /* in case we test more often than invoke the callback, */
3779 /* to ensure that prev is always different to attr */
3780 w->prev = prev;
3781
3782 #if EV_USE_INOTIFY
3783 if (fs_fd >= 0)
3784 {
3785 infy_del (EV_A_ w);
3786 infy_add (EV_A_ w);
3787 ev_stat_stat (EV_A_ w); /* avoid race... */
3788 }
3789 #endif
3790
3791 ev_feed_event (EV_A_ w, EV_STAT);
3792 }
3793}
3794
3795void
3796ev_stat_start (EV_P_ ev_stat *w)
3797{
3798 if (expect_false (ev_is_active (w)))
1535 return; 3799 return;
1536 3800
1537 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3801 ev_stat_stat (EV_A_ w);
3802
3803 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3804 w->interval = MIN_STAT_INTERVAL;
3805
3806 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3807 ev_set_priority (&w->timer, ev_priority (w));
3808
3809#if EV_USE_INOTIFY
3810 infy_init (EV_A);
3811
3812 if (fs_fd >= 0)
3813 infy_add (EV_A_ w);
3814 else
3815#endif
3816 {
3817 ev_timer_again (EV_A_ &w->timer);
3818 ev_unref (EV_A);
3819 }
3820
3821 ev_start (EV_A_ (W)w, 1);
3822
3823 EV_FREQUENT_CHECK;
3824}
3825
3826void
3827ev_stat_stop (EV_P_ ev_stat *w)
3828{
3829 clear_pending (EV_A_ (W)w);
3830 if (expect_false (!ev_is_active (w)))
3831 return;
3832
3833 EV_FREQUENT_CHECK;
3834
3835#if EV_USE_INOTIFY
3836 infy_del (EV_A_ w);
3837#endif
3838
3839 if (ev_is_active (&w->timer))
3840 {
3841 ev_ref (EV_A);
3842 ev_timer_stop (EV_A_ &w->timer);
3843 }
3844
1538 ev_stop (EV_A_ (W)w); 3845 ev_stop (EV_A_ (W)w);
1539 3846
1540 if (!signals [w->signum - 1].head) 3847 EV_FREQUENT_CHECK;
1541 signal (w->signum, SIG_DFL);
1542} 3848}
3849#endif
1543 3850
3851#if EV_IDLE_ENABLE
1544void 3852void
1545ev_child_start (EV_P_ struct ev_child *w) 3853ev_idle_start (EV_P_ ev_idle *w)
1546{ 3854{
1547#if EV_MULTIPLICITY
1548 assert (("child watchers are only supported in the default loop", loop == default_loop));
1549#endif
1550 if (ev_is_active (w)) 3855 if (expect_false (ev_is_active (w)))
1551 return; 3856 return;
1552 3857
3858 pri_adjust (EV_A_ (W)w);
3859
3860 EV_FREQUENT_CHECK;
3861
3862 {
3863 int active = ++idlecnt [ABSPRI (w)];
3864
3865 ++idleall;
3866 ev_start (EV_A_ (W)w, active);
3867
3868 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3869 idles [ABSPRI (w)][active - 1] = w;
3870 }
3871
3872 EV_FREQUENT_CHECK;
3873}
3874
3875void
3876ev_idle_stop (EV_P_ ev_idle *w)
3877{
3878 clear_pending (EV_A_ (W)w);
3879 if (expect_false (!ev_is_active (w)))
3880 return;
3881
3882 EV_FREQUENT_CHECK;
3883
3884 {
3885 int active = ev_active (w);
3886
3887 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3888 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3889
3890 ev_stop (EV_A_ (W)w);
3891 --idleall;
3892 }
3893
3894 EV_FREQUENT_CHECK;
3895}
3896#endif
3897
3898#if EV_PREPARE_ENABLE
3899void
3900ev_prepare_start (EV_P_ ev_prepare *w)
3901{
3902 if (expect_false (ev_is_active (w)))
3903 return;
3904
3905 EV_FREQUENT_CHECK;
3906
3907 ev_start (EV_A_ (W)w, ++preparecnt);
3908 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3909 prepares [preparecnt - 1] = w;
3910
3911 EV_FREQUENT_CHECK;
3912}
3913
3914void
3915ev_prepare_stop (EV_P_ ev_prepare *w)
3916{
3917 clear_pending (EV_A_ (W)w);
3918 if (expect_false (!ev_is_active (w)))
3919 return;
3920
3921 EV_FREQUENT_CHECK;
3922
3923 {
3924 int active = ev_active (w);
3925
3926 prepares [active - 1] = prepares [--preparecnt];
3927 ev_active (prepares [active - 1]) = active;
3928 }
3929
3930 ev_stop (EV_A_ (W)w);
3931
3932 EV_FREQUENT_CHECK;
3933}
3934#endif
3935
3936#if EV_CHECK_ENABLE
3937void
3938ev_check_start (EV_P_ ev_check *w)
3939{
3940 if (expect_false (ev_is_active (w)))
3941 return;
3942
3943 EV_FREQUENT_CHECK;
3944
3945 ev_start (EV_A_ (W)w, ++checkcnt);
3946 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3947 checks [checkcnt - 1] = w;
3948
3949 EV_FREQUENT_CHECK;
3950}
3951
3952void
3953ev_check_stop (EV_P_ ev_check *w)
3954{
3955 clear_pending (EV_A_ (W)w);
3956 if (expect_false (!ev_is_active (w)))
3957 return;
3958
3959 EV_FREQUENT_CHECK;
3960
3961 {
3962 int active = ev_active (w);
3963
3964 checks [active - 1] = checks [--checkcnt];
3965 ev_active (checks [active - 1]) = active;
3966 }
3967
3968 ev_stop (EV_A_ (W)w);
3969
3970 EV_FREQUENT_CHECK;
3971}
3972#endif
3973
3974#if EV_EMBED_ENABLE
3975void noinline
3976ev_embed_sweep (EV_P_ ev_embed *w)
3977{
3978 ev_run (w->other, EVRUN_NOWAIT);
3979}
3980
3981static void
3982embed_io_cb (EV_P_ ev_io *io, int revents)
3983{
3984 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3985
3986 if (ev_cb (w))
3987 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3988 else
3989 ev_run (w->other, EVRUN_NOWAIT);
3990}
3991
3992static void
3993embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3994{
3995 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3996
3997 {
3998 EV_P = w->other;
3999
4000 while (fdchangecnt)
4001 {
4002 fd_reify (EV_A);
4003 ev_run (EV_A_ EVRUN_NOWAIT);
4004 }
4005 }
4006}
4007
4008static void
4009embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4010{
4011 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4012
4013 ev_embed_stop (EV_A_ w);
4014
4015 {
4016 EV_P = w->other;
4017
4018 ev_loop_fork (EV_A);
4019 ev_run (EV_A_ EVRUN_NOWAIT);
4020 }
4021
4022 ev_embed_start (EV_A_ w);
4023}
4024
4025#if 0
4026static void
4027embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4028{
4029 ev_idle_stop (EV_A_ idle);
4030}
4031#endif
4032
4033void
4034ev_embed_start (EV_P_ ev_embed *w)
4035{
4036 if (expect_false (ev_is_active (w)))
4037 return;
4038
4039 {
4040 EV_P = w->other;
4041 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4042 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4043 }
4044
4045 EV_FREQUENT_CHECK;
4046
4047 ev_set_priority (&w->io, ev_priority (w));
4048 ev_io_start (EV_A_ &w->io);
4049
4050 ev_prepare_init (&w->prepare, embed_prepare_cb);
4051 ev_set_priority (&w->prepare, EV_MINPRI);
4052 ev_prepare_start (EV_A_ &w->prepare);
4053
4054 ev_fork_init (&w->fork, embed_fork_cb);
4055 ev_fork_start (EV_A_ &w->fork);
4056
4057 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4058
1553 ev_start (EV_A_ (W)w, 1); 4059 ev_start (EV_A_ (W)w, 1);
1554 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4060
4061 EV_FREQUENT_CHECK;
1555} 4062}
1556 4063
1557void 4064void
1558ev_child_stop (EV_P_ struct ev_child *w) 4065ev_embed_stop (EV_P_ ev_embed *w)
1559{ 4066{
1560 ev_clear_pending (EV_A_ (W)w); 4067 clear_pending (EV_A_ (W)w);
1561 if (!ev_is_active (w)) 4068 if (expect_false (!ev_is_active (w)))
1562 return; 4069 return;
1563 4070
1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4071 EV_FREQUENT_CHECK;
4072
4073 ev_io_stop (EV_A_ &w->io);
4074 ev_prepare_stop (EV_A_ &w->prepare);
4075 ev_fork_stop (EV_A_ &w->fork);
4076
1565 ev_stop (EV_A_ (W)w); 4077 ev_stop (EV_A_ (W)w);
4078
4079 EV_FREQUENT_CHECK;
1566} 4080}
4081#endif
4082
4083#if EV_FORK_ENABLE
4084void
4085ev_fork_start (EV_P_ ev_fork *w)
4086{
4087 if (expect_false (ev_is_active (w)))
4088 return;
4089
4090 EV_FREQUENT_CHECK;
4091
4092 ev_start (EV_A_ (W)w, ++forkcnt);
4093 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4094 forks [forkcnt - 1] = w;
4095
4096 EV_FREQUENT_CHECK;
4097}
4098
4099void
4100ev_fork_stop (EV_P_ ev_fork *w)
4101{
4102 clear_pending (EV_A_ (W)w);
4103 if (expect_false (!ev_is_active (w)))
4104 return;
4105
4106 EV_FREQUENT_CHECK;
4107
4108 {
4109 int active = ev_active (w);
4110
4111 forks [active - 1] = forks [--forkcnt];
4112 ev_active (forks [active - 1]) = active;
4113 }
4114
4115 ev_stop (EV_A_ (W)w);
4116
4117 EV_FREQUENT_CHECK;
4118}
4119#endif
4120
4121#if EV_CLEANUP_ENABLE
4122void
4123ev_cleanup_start (EV_P_ ev_cleanup *w)
4124{
4125 if (expect_false (ev_is_active (w)))
4126 return;
4127
4128 EV_FREQUENT_CHECK;
4129
4130 ev_start (EV_A_ (W)w, ++cleanupcnt);
4131 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4132 cleanups [cleanupcnt - 1] = w;
4133
4134 /* cleanup watchers should never keep a refcount on the loop */
4135 ev_unref (EV_A);
4136 EV_FREQUENT_CHECK;
4137}
4138
4139void
4140ev_cleanup_stop (EV_P_ ev_cleanup *w)
4141{
4142 clear_pending (EV_A_ (W)w);
4143 if (expect_false (!ev_is_active (w)))
4144 return;
4145
4146 EV_FREQUENT_CHECK;
4147 ev_ref (EV_A);
4148
4149 {
4150 int active = ev_active (w);
4151
4152 cleanups [active - 1] = cleanups [--cleanupcnt];
4153 ev_active (cleanups [active - 1]) = active;
4154 }
4155
4156 ev_stop (EV_A_ (W)w);
4157
4158 EV_FREQUENT_CHECK;
4159}
4160#endif
4161
4162#if EV_ASYNC_ENABLE
4163void
4164ev_async_start (EV_P_ ev_async *w)
4165{
4166 if (expect_false (ev_is_active (w)))
4167 return;
4168
4169 w->sent = 0;
4170
4171 evpipe_init (EV_A);
4172
4173 EV_FREQUENT_CHECK;
4174
4175 ev_start (EV_A_ (W)w, ++asynccnt);
4176 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4177 asyncs [asynccnt - 1] = w;
4178
4179 EV_FREQUENT_CHECK;
4180}
4181
4182void
4183ev_async_stop (EV_P_ ev_async *w)
4184{
4185 clear_pending (EV_A_ (W)w);
4186 if (expect_false (!ev_is_active (w)))
4187 return;
4188
4189 EV_FREQUENT_CHECK;
4190
4191 {
4192 int active = ev_active (w);
4193
4194 asyncs [active - 1] = asyncs [--asynccnt];
4195 ev_active (asyncs [active - 1]) = active;
4196 }
4197
4198 ev_stop (EV_A_ (W)w);
4199
4200 EV_FREQUENT_CHECK;
4201}
4202
4203void
4204ev_async_send (EV_P_ ev_async *w)
4205{
4206 w->sent = 1;
4207 evpipe_write (EV_A_ &async_pending);
4208}
4209#endif
1567 4210
1568/*****************************************************************************/ 4211/*****************************************************************************/
1569 4212
1570struct ev_once 4213struct ev_once
1571{ 4214{
1572 struct ev_io io; 4215 ev_io io;
1573 struct ev_timer to; 4216 ev_timer to;
1574 void (*cb)(int revents, void *arg); 4217 void (*cb)(int revents, void *arg);
1575 void *arg; 4218 void *arg;
1576}; 4219};
1577 4220
1578static void 4221static void
1579once_cb (EV_P_ struct ev_once *once, int revents) 4222once_cb (EV_P_ struct ev_once *once, int revents)
1580{ 4223{
1581 void (*cb)(int revents, void *arg) = once->cb; 4224 void (*cb)(int revents, void *arg) = once->cb;
1582 void *arg = once->arg; 4225 void *arg = once->arg;
1583 4226
1584 ev_io_stop (EV_A_ &once->io); 4227 ev_io_stop (EV_A_ &once->io);
1585 ev_timer_stop (EV_A_ &once->to); 4228 ev_timer_stop (EV_A_ &once->to);
1586 ev_free (once); 4229 ev_free (once);
1587 4230
1588 cb (revents, arg); 4231 cb (revents, arg);
1589} 4232}
1590 4233
1591static void 4234static void
1592once_cb_io (EV_P_ struct ev_io *w, int revents) 4235once_cb_io (EV_P_ ev_io *w, int revents)
1593{ 4236{
1594 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4237 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4238
4239 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1595} 4240}
1596 4241
1597static void 4242static void
1598once_cb_to (EV_P_ struct ev_timer *w, int revents) 4243once_cb_to (EV_P_ ev_timer *w, int revents)
1599{ 4244{
1600 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4245 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4246
4247 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1601} 4248}
1602 4249
1603void 4250void
1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4251ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1605{ 4252{
1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4253 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1607 4254
1608 if (!once) 4255 if (expect_false (!once))
4256 {
1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4257 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1610 else 4258 return;
1611 { 4259 }
4260
1612 once->cb = cb; 4261 once->cb = cb;
1613 once->arg = arg; 4262 once->arg = arg;
1614 4263
1615 ev_init (&once->io, once_cb_io); 4264 ev_init (&once->io, once_cb_io);
1616 if (fd >= 0) 4265 if (fd >= 0)
4266 {
4267 ev_io_set (&once->io, fd, events);
4268 ev_io_start (EV_A_ &once->io);
4269 }
4270
4271 ev_init (&once->to, once_cb_to);
4272 if (timeout >= 0.)
4273 {
4274 ev_timer_set (&once->to, timeout, 0.);
4275 ev_timer_start (EV_A_ &once->to);
4276 }
4277}
4278
4279/*****************************************************************************/
4280
4281#if EV_WALK_ENABLE
4282void ecb_cold
4283ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4284{
4285 int i, j;
4286 ev_watcher_list *wl, *wn;
4287
4288 if (types & (EV_IO | EV_EMBED))
4289 for (i = 0; i < anfdmax; ++i)
4290 for (wl = anfds [i].head; wl; )
1617 { 4291 {
1618 ev_io_set (&once->io, fd, events); 4292 wn = wl->next;
1619 ev_io_start (EV_A_ &once->io); 4293
4294#if EV_EMBED_ENABLE
4295 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4296 {
4297 if (types & EV_EMBED)
4298 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4299 }
4300 else
4301#endif
4302#if EV_USE_INOTIFY
4303 if (ev_cb ((ev_io *)wl) == infy_cb)
4304 ;
4305 else
4306#endif
4307 if ((ev_io *)wl != &pipe_w)
4308 if (types & EV_IO)
4309 cb (EV_A_ EV_IO, wl);
4310
4311 wl = wn;
1620 } 4312 }
1621 4313
1622 ev_init (&once->to, once_cb_to); 4314 if (types & (EV_TIMER | EV_STAT))
1623 if (timeout >= 0.) 4315 for (i = timercnt + HEAP0; i-- > HEAP0; )
4316#if EV_STAT_ENABLE
4317 /*TODO: timer is not always active*/
4318 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1624 { 4319 {
1625 ev_timer_set (&once->to, timeout, 0.); 4320 if (types & EV_STAT)
1626 ev_timer_start (EV_A_ &once->to); 4321 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1627 } 4322 }
1628 } 4323 else
1629} 4324#endif
4325 if (types & EV_TIMER)
4326 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1630 4327
1631#ifdef __cplusplus 4328#if EV_PERIODIC_ENABLE
1632} 4329 if (types & EV_PERIODIC)
4330 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4331 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4332#endif
4333
4334#if EV_IDLE_ENABLE
4335 if (types & EV_IDLE)
4336 for (j = NUMPRI; j--; )
4337 for (i = idlecnt [j]; i--; )
4338 cb (EV_A_ EV_IDLE, idles [j][i]);
4339#endif
4340
4341#if EV_FORK_ENABLE
4342 if (types & EV_FORK)
4343 for (i = forkcnt; i--; )
4344 if (ev_cb (forks [i]) != embed_fork_cb)
4345 cb (EV_A_ EV_FORK, forks [i]);
4346#endif
4347
4348#if EV_ASYNC_ENABLE
4349 if (types & EV_ASYNC)
4350 for (i = asynccnt; i--; )
4351 cb (EV_A_ EV_ASYNC, asyncs [i]);
4352#endif
4353
4354#if EV_PREPARE_ENABLE
4355 if (types & EV_PREPARE)
4356 for (i = preparecnt; i--; )
4357# if EV_EMBED_ENABLE
4358 if (ev_cb (prepares [i]) != embed_prepare_cb)
1633#endif 4359# endif
4360 cb (EV_A_ EV_PREPARE, prepares [i]);
4361#endif
1634 4362
4363#if EV_CHECK_ENABLE
4364 if (types & EV_CHECK)
4365 for (i = checkcnt; i--; )
4366 cb (EV_A_ EV_CHECK, checks [i]);
4367#endif
4368
4369#if EV_SIGNAL_ENABLE
4370 if (types & EV_SIGNAL)
4371 for (i = 0; i < EV_NSIG - 1; ++i)
4372 for (wl = signals [i].head; wl; )
4373 {
4374 wn = wl->next;
4375 cb (EV_A_ EV_SIGNAL, wl);
4376 wl = wn;
4377 }
4378#endif
4379
4380#if EV_CHILD_ENABLE
4381 if (types & EV_CHILD)
4382 for (i = (EV_PID_HASHSIZE); i--; )
4383 for (wl = childs [i]; wl; )
4384 {
4385 wn = wl->next;
4386 cb (EV_A_ EV_CHILD, wl);
4387 wl = wn;
4388 }
4389#endif
4390/* EV_STAT 0x00001000 /* stat data changed */
4391/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4392}
4393#endif
4394
4395#if EV_MULTIPLICITY
4396 #include "ev_wrap.h"
4397#endif
4398
4399EV_CPP(})
4400

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines