ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.392 by root, Thu Aug 4 14:37:49 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
274# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
275extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
276# endif 415# endif
277int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 417# ifdef O_CLOEXEC
279} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
280# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
281#endif 446#endif
282 447
283/**/ 448/**/
284 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
285/* 456/*
286 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 510 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
302#else 517#else
303# define expect(expr,value) (expr) 518 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 533 #endif
534#endif
309 535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543 #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544 #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545#endif
546
547#ifndef ECB_MEMORY_FENCE
548 #if ECB_GCC_VERSION(2,5)
549 #if __x86
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553 #elif __amd64
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
555 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
559 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
560 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__) \
561 || defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
562 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
563 #define ECB_MEMORY_FENCE \
564 do { \
565 int null = 0; \
566 __asm__ __volatile__ ("mcr p15,0,%0,c6,c10,5", : "=&r" (null) : : "memory"); \
567 while (0)
568 #endif
569 #endif
570#endif
571
572#ifndef ECB_MEMORY_FENCE
573 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
574 #define ECB_MEMORY_FENCE __sync_synchronize ()
575 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
576 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
577 #elif _MSC_VER >= 1400 /* VC++ 2005 */
578 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
579 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
580 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
581 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
582 #elif defined(_WIN32)
583 #include <WinNT.h>
584 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if !ECB_AVOID_PTHREADS
590 /*
591 * if you get undefined symbol references to pthread_mutex_lock,
592 * or failure to find pthread.h, then you should implement
593 * the ECB_MEMORY_FENCE operations for your cpu/compiler
594 * OR provide pthread.h and link against the posix thread library
595 * of your system.
596 */
597 #include <pthread.h>
598 #define ECB_NEEDS_PTHREADS 1
599 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
600
601 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
602 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
603 #endif
604#endif
605
606#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
607 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
608#endif
609
610#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
611 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
612#endif
613
614/*****************************************************************************/
615
616#define ECB_C99 (__STDC_VERSION__ >= 199901L)
617
618#if __cplusplus
619 #define ecb_inline static inline
620#elif ECB_GCC_VERSION(2,5)
621 #define ecb_inline static __inline__
622#elif ECB_C99
623 #define ecb_inline static inline
624#else
625 #define ecb_inline static
626#endif
627
628#if ECB_GCC_VERSION(3,3)
629 #define ecb_restrict __restrict__
630#elif ECB_C99
631 #define ecb_restrict restrict
632#else
633 #define ecb_restrict
634#endif
635
636typedef int ecb_bool;
637
638#define ECB_CONCAT_(a, b) a ## b
639#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
640#define ECB_STRINGIFY_(a) # a
641#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
642
643#define ecb_function_ ecb_inline
644
645#if ECB_GCC_VERSION(3,1)
646 #define ecb_attribute(attrlist) __attribute__(attrlist)
647 #define ecb_is_constant(expr) __builtin_constant_p (expr)
648 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
649 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
650#else
651 #define ecb_attribute(attrlist)
652 #define ecb_is_constant(expr) 0
653 #define ecb_expect(expr,value) (expr)
654 #define ecb_prefetch(addr,rw,locality)
655#endif
656
657/* no emulation for ecb_decltype */
658#if ECB_GCC_VERSION(4,5)
659 #define ecb_decltype(x) __decltype(x)
660#elif ECB_GCC_VERSION(3,0)
661 #define ecb_decltype(x) __typeof(x)
662#endif
663
664#define ecb_noinline ecb_attribute ((__noinline__))
665#define ecb_noreturn ecb_attribute ((__noreturn__))
666#define ecb_unused ecb_attribute ((__unused__))
667#define ecb_const ecb_attribute ((__const__))
668#define ecb_pure ecb_attribute ((__pure__))
669
670#if ECB_GCC_VERSION(4,3)
671 #define ecb_artificial ecb_attribute ((__artificial__))
672 #define ecb_hot ecb_attribute ((__hot__))
673 #define ecb_cold ecb_attribute ((__cold__))
674#else
675 #define ecb_artificial
676 #define ecb_hot
677 #define ecb_cold
678#endif
679
680/* put around conditional expressions if you are very sure that the */
681/* expression is mostly true or mostly false. note that these return */
682/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 683#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 684#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
685/* for compatibility to the rest of the world */
686#define ecb_likely(expr) ecb_expect_true (expr)
687#define ecb_unlikely(expr) ecb_expect_false (expr)
688
689/* count trailing zero bits and count # of one bits */
690#if ECB_GCC_VERSION(3,4)
691 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
692 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
693 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
694 #define ecb_ctz32(x) __builtin_ctz (x)
695 #define ecb_ctz64(x) __builtin_ctzll (x)
696 #define ecb_popcount32(x) __builtin_popcount (x)
697 /* no popcountll */
698#else
699 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
700 ecb_function_ int
701 ecb_ctz32 (uint32_t x)
702 {
703 int r = 0;
704
705 x &= ~x + 1; /* this isolates the lowest bit */
706
707#if ECB_branchless_on_i386
708 r += !!(x & 0xaaaaaaaa) << 0;
709 r += !!(x & 0xcccccccc) << 1;
710 r += !!(x & 0xf0f0f0f0) << 2;
711 r += !!(x & 0xff00ff00) << 3;
712 r += !!(x & 0xffff0000) << 4;
713#else
714 if (x & 0xaaaaaaaa) r += 1;
715 if (x & 0xcccccccc) r += 2;
716 if (x & 0xf0f0f0f0) r += 4;
717 if (x & 0xff00ff00) r += 8;
718 if (x & 0xffff0000) r += 16;
719#endif
720
721 return r;
722 }
723
724 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz64 (uint64_t x)
727 {
728 int shift = x & 0xffffffffU ? 0 : 32;
729 return ecb_ctz32 (x >> shift) + shift;
730 }
731
732 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
733 ecb_function_ int
734 ecb_popcount32 (uint32_t x)
735 {
736 x -= (x >> 1) & 0x55555555;
737 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
738 x = ((x >> 4) + x) & 0x0f0f0f0f;
739 x *= 0x01010101;
740
741 return x >> 24;
742 }
743
744 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
745 ecb_function_ int ecb_ld32 (uint32_t x)
746 {
747 int r = 0;
748
749 if (x >> 16) { x >>= 16; r += 16; }
750 if (x >> 8) { x >>= 8; r += 8; }
751 if (x >> 4) { x >>= 4; r += 4; }
752 if (x >> 2) { x >>= 2; r += 2; }
753 if (x >> 1) { r += 1; }
754
755 return r;
756 }
757
758 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
759 ecb_function_ int ecb_ld64 (uint64_t x)
760 {
761 int r = 0;
762
763 if (x >> 32) { x >>= 32; r += 32; }
764
765 return r + ecb_ld32 (x);
766 }
767#endif
768
769/* popcount64 is only available on 64 bit cpus as gcc builtin */
770/* so for this version we are lazy */
771ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
772ecb_function_ int
773ecb_popcount64 (uint64_t x)
774{
775 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
776}
777
778ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
779ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
780ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
781ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
782ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
783ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
784ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
785ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
786
787ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
788ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
789ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
790ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
791ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
792ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
793ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
794ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
795
796#if ECB_GCC_VERSION(4,3)
797 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
798 #define ecb_bswap32(x) __builtin_bswap32 (x)
799 #define ecb_bswap64(x) __builtin_bswap64 (x)
800#else
801 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
802 ecb_function_ uint16_t
803 ecb_bswap16 (uint16_t x)
804 {
805 return ecb_rotl16 (x, 8);
806 }
807
808 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
809 ecb_function_ uint32_t
810 ecb_bswap32 (uint32_t x)
811 {
812 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
813 }
814
815 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
816 ecb_function_ uint64_t
817 ecb_bswap64 (uint64_t x)
818 {
819 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
820 }
821#endif
822
823#if ECB_GCC_VERSION(4,5)
824 #define ecb_unreachable() __builtin_unreachable ()
825#else
826 /* this seems to work fine, but gcc always emits a warning for it :/ */
827 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
828 ecb_function_ void ecb_unreachable (void) { }
829#endif
830
831/* try to tell the compiler that some condition is definitely true */
832#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
833
834ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
835ecb_function_ unsigned char
836ecb_byteorder_helper (void)
837{
838 const uint32_t u = 0x11223344;
839 return *(unsigned char *)&u;
840}
841
842ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
843ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
844ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
845ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
846
847#if ECB_GCC_VERSION(3,0) || ECB_C99
848 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
849#else
850 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
851#endif
852
853#if ecb_cplusplus_does_not_suck
854 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
855 template<typename T, int N>
856 static inline int ecb_array_length (const T (&arr)[N])
857 {
858 return N;
859 }
860#else
861 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
862#endif
863
864#endif
865
866/* ECB.H END */
867
868#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
869# undef ECB_MEMORY_FENCE
870# undef ECB_MEMORY_FENCE_ACQUIRE
871# undef ECB_MEMORY_FENCE_RELEASE
872#endif
873
874#define expect_false(cond) ecb_expect_false (cond)
875#define expect_true(cond) ecb_expect_true (cond)
876#define noinline ecb_noinline
877
312#define inline_size static inline 878#define inline_size ecb_inline
313 879
314#if EV_MINIMAL 880#if EV_FEATURE_CODE
881# define inline_speed ecb_inline
882#else
315# define inline_speed static noinline 883# define inline_speed static noinline
884#endif
885
886#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
887
888#if EV_MINPRI == EV_MAXPRI
889# define ABSPRI(w) (((W)w), 0)
316#else 890#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 891# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
892#endif
322 893
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 894#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 895#define EMPTY2(a,b) /* used to suppress some warnings */
325 896
326typedef ev_watcher *W; 897typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 898typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 899typedef ev_watcher_time *WT;
329 900
901#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 902#define ev_at(w) ((WT)(w))->at
331 903
904#if EV_USE_REALTIME
905/* sig_atomic_t is used to avoid per-thread variables or locking but still */
906/* giving it a reasonably high chance of working on typical architectures */
907static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
908#endif
909
332#if EV_USE_MONOTONIC 910#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 911static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
912#endif
913
914#ifndef EV_FD_TO_WIN32_HANDLE
915# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
916#endif
917#ifndef EV_WIN32_HANDLE_TO_FD
918# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
919#endif
920#ifndef EV_WIN32_CLOSE_FD
921# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 922#endif
337 923
338#ifdef _WIN32 924#ifdef _WIN32
339# include "ev_win32.c" 925# include "ev_win32.c"
340#endif 926#endif
341 927
342/*****************************************************************************/ 928/*****************************************************************************/
343 929
930/* define a suitable floor function (only used by periodics atm) */
931
932#if EV_USE_FLOOR
933# include <math.h>
934# define ev_floor(v) floor (v)
935#else
936
937#include <float.h>
938
939/* a floor() replacement function, should be independent of ev_tstamp type */
940static ev_tstamp noinline
941ev_floor (ev_tstamp v)
942{
943 /* the choice of shift factor is not terribly important */
944#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
945 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
946#else
947 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
948#endif
949
950 /* argument too large for an unsigned long? */
951 if (expect_false (v >= shift))
952 {
953 ev_tstamp f;
954
955 if (v == v - 1.)
956 return v; /* very large number */
957
958 f = shift * ev_floor (v * (1. / shift));
959 return f + ev_floor (v - f);
960 }
961
962 /* special treatment for negative args? */
963 if (expect_false (v < 0.))
964 {
965 ev_tstamp f = -ev_floor (-v);
966
967 return f - (f == v ? 0 : 1);
968 }
969
970 /* fits into an unsigned long */
971 return (unsigned long)v;
972}
973
974#endif
975
976/*****************************************************************************/
977
978#ifdef __linux
979# include <sys/utsname.h>
980#endif
981
982static unsigned int noinline ecb_cold
983ev_linux_version (void)
984{
985#ifdef __linux
986 unsigned int v = 0;
987 struct utsname buf;
988 int i;
989 char *p = buf.release;
990
991 if (uname (&buf))
992 return 0;
993
994 for (i = 3+1; --i; )
995 {
996 unsigned int c = 0;
997
998 for (;;)
999 {
1000 if (*p >= '0' && *p <= '9')
1001 c = c * 10 + *p++ - '0';
1002 else
1003 {
1004 p += *p == '.';
1005 break;
1006 }
1007 }
1008
1009 v = (v << 8) | c;
1010 }
1011
1012 return v;
1013#else
1014 return 0;
1015#endif
1016}
1017
1018/*****************************************************************************/
1019
1020#if EV_AVOID_STDIO
1021static void noinline ecb_cold
1022ev_printerr (const char *msg)
1023{
1024 write (STDERR_FILENO, msg, strlen (msg));
1025}
1026#endif
1027
344static void (*syserr_cb)(const char *msg); 1028static void (*syserr_cb)(const char *msg);
345 1029
346void 1030void ecb_cold
347ev_set_syserr_cb (void (*cb)(const char *msg)) 1031ev_set_syserr_cb (void (*cb)(const char *msg))
348{ 1032{
349 syserr_cb = cb; 1033 syserr_cb = cb;
350} 1034}
351 1035
352static void noinline 1036static void noinline ecb_cold
353syserr (const char *msg) 1037ev_syserr (const char *msg)
354{ 1038{
355 if (!msg) 1039 if (!msg)
356 msg = "(libev) system error"; 1040 msg = "(libev) system error";
357 1041
358 if (syserr_cb) 1042 if (syserr_cb)
359 syserr_cb (msg); 1043 syserr_cb (msg);
360 else 1044 else
361 { 1045 {
1046#if EV_AVOID_STDIO
1047 ev_printerr (msg);
1048 ev_printerr (": ");
1049 ev_printerr (strerror (errno));
1050 ev_printerr ("\n");
1051#else
362 perror (msg); 1052 perror (msg);
1053#endif
363 abort (); 1054 abort ();
364 } 1055 }
365} 1056}
366 1057
367static void * 1058static void *
368ev_realloc_emul (void *ptr, long size) 1059ev_realloc_emul (void *ptr, long size)
369{ 1060{
1061#if __GLIBC__
1062 return realloc (ptr, size);
1063#else
370 /* some systems, notably openbsd and darwin, fail to properly 1064 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 1065 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 1066 * the single unix specification, so work around them here.
373 */ 1067 */
374 1068
375 if (size) 1069 if (size)
376 return realloc (ptr, size); 1070 return realloc (ptr, size);
377 1071
378 free (ptr); 1072 free (ptr);
379 return 0; 1073 return 0;
1074#endif
380} 1075}
381 1076
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1077static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
383 1078
384void 1079void ecb_cold
385ev_set_allocator (void *(*cb)(void *ptr, long size)) 1080ev_set_allocator (void *(*cb)(void *ptr, long size))
386{ 1081{
387 alloc = cb; 1082 alloc = cb;
388} 1083}
389 1084
392{ 1087{
393 ptr = alloc (ptr, size); 1088 ptr = alloc (ptr, size);
394 1089
395 if (!ptr && size) 1090 if (!ptr && size)
396 { 1091 {
1092#if EV_AVOID_STDIO
1093 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1094#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1095 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1096#endif
398 abort (); 1097 abort ();
399 } 1098 }
400 1099
401 return ptr; 1100 return ptr;
402} 1101}
404#define ev_malloc(size) ev_realloc (0, (size)) 1103#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 1104#define ev_free(ptr) ev_realloc ((ptr), 0)
406 1105
407/*****************************************************************************/ 1106/*****************************************************************************/
408 1107
1108/* set in reify when reification needed */
1109#define EV_ANFD_REIFY 1
1110
1111/* file descriptor info structure */
409typedef struct 1112typedef struct
410{ 1113{
411 WL head; 1114 WL head;
412 unsigned char events; 1115 unsigned char events; /* the events watched for */
1116 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1117 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 1118 unsigned char unused;
1119#if EV_USE_EPOLL
1120 unsigned int egen; /* generation counter to counter epoll bugs */
1121#endif
414#if EV_SELECT_IS_WINSOCKET 1122#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
415 SOCKET handle; 1123 SOCKET handle;
416#endif 1124#endif
1125#if EV_USE_IOCP
1126 OVERLAPPED or, ow;
1127#endif
417} ANFD; 1128} ANFD;
418 1129
1130/* stores the pending event set for a given watcher */
419typedef struct 1131typedef struct
420{ 1132{
421 W w; 1133 W w;
422 int events; 1134 int events; /* the pending event set for the given watcher */
423} ANPENDING; 1135} ANPENDING;
424 1136
425#if EV_USE_INOTIFY 1137#if EV_USE_INOTIFY
1138/* hash table entry per inotify-id */
426typedef struct 1139typedef struct
427{ 1140{
428 WL head; 1141 WL head;
429} ANFS; 1142} ANFS;
1143#endif
1144
1145/* Heap Entry */
1146#if EV_HEAP_CACHE_AT
1147 /* a heap element */
1148 typedef struct {
1149 ev_tstamp at;
1150 WT w;
1151 } ANHE;
1152
1153 #define ANHE_w(he) (he).w /* access watcher, read-write */
1154 #define ANHE_at(he) (he).at /* access cached at, read-only */
1155 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1156#else
1157 /* a heap element */
1158 typedef WT ANHE;
1159
1160 #define ANHE_w(he) (he)
1161 #define ANHE_at(he) (he)->at
1162 #define ANHE_at_cache(he)
430#endif 1163#endif
431 1164
432#if EV_MULTIPLICITY 1165#if EV_MULTIPLICITY
433 1166
434 struct ev_loop 1167 struct ev_loop
453 1186
454 static int ev_default_loop_ptr; 1187 static int ev_default_loop_ptr;
455 1188
456#endif 1189#endif
457 1190
1191#if EV_FEATURE_API
1192# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1193# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1194# define EV_INVOKE_PENDING invoke_cb (EV_A)
1195#else
1196# define EV_RELEASE_CB (void)0
1197# define EV_ACQUIRE_CB (void)0
1198# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1199#endif
1200
1201#define EVBREAK_RECURSE 0x80
1202
458/*****************************************************************************/ 1203/*****************************************************************************/
459 1204
1205#ifndef EV_HAVE_EV_TIME
460ev_tstamp 1206ev_tstamp
461ev_time (void) 1207ev_time (void)
462{ 1208{
463#if EV_USE_REALTIME 1209#if EV_USE_REALTIME
1210 if (expect_true (have_realtime))
1211 {
464 struct timespec ts; 1212 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 1213 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 1214 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 1215 }
1216#endif
1217
468 struct timeval tv; 1218 struct timeval tv;
469 gettimeofday (&tv, 0); 1219 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 1220 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 1221}
1222#endif
473 1223
474ev_tstamp inline_size 1224inline_size ev_tstamp
475get_clock (void) 1225get_clock (void)
476{ 1226{
477#if EV_USE_MONOTONIC 1227#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 1228 if (expect_true (have_monotonic))
479 { 1229 {
500 if (delay > 0.) 1250 if (delay > 0.)
501 { 1251 {
502#if EV_USE_NANOSLEEP 1252#if EV_USE_NANOSLEEP
503 struct timespec ts; 1253 struct timespec ts;
504 1254
505 ts.tv_sec = (time_t)delay; 1255 EV_TS_SET (ts, delay);
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0); 1256 nanosleep (&ts, 0);
509#elif defined(_WIN32) 1257#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3)); 1258 Sleep ((unsigned long)(delay * 1e3));
511#else 1259#else
512 struct timeval tv; 1260 struct timeval tv;
513 1261
514 tv.tv_sec = (time_t)delay; 1262 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1263 /* something not guaranteed by newer posix versions, but guaranteed */
516 1264 /* by older ones */
1265 EV_TV_SET (tv, delay);
517 select (0, 0, 0, 0, &tv); 1266 select (0, 0, 0, 0, &tv);
518#endif 1267#endif
519 } 1268 }
520} 1269}
521 1270
522/*****************************************************************************/ 1271/*****************************************************************************/
523 1272
524int inline_size 1273#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1274
1275/* find a suitable new size for the given array, */
1276/* hopefully by rounding to a nice-to-malloc size */
1277inline_size int
525array_nextsize (int elem, int cur, int cnt) 1278array_nextsize (int elem, int cur, int cnt)
526{ 1279{
527 int ncur = cur + 1; 1280 int ncur = cur + 1;
528 1281
529 do 1282 do
530 ncur <<= 1; 1283 ncur <<= 1;
531 while (cnt > ncur); 1284 while (cnt > ncur);
532 1285
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1286 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 1287 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 1288 {
536 ncur *= elem; 1289 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1290 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 1291 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 1292 ncur /= elem;
540 } 1293 }
541 1294
542 return ncur; 1295 return ncur;
543} 1296}
544 1297
545static noinline void * 1298static void * noinline ecb_cold
546array_realloc (int elem, void *base, int *cur, int cnt) 1299array_realloc (int elem, void *base, int *cur, int cnt)
547{ 1300{
548 *cur = array_nextsize (elem, *cur, cnt); 1301 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 1302 return ev_realloc (base, elem * *cur);
550} 1303}
1304
1305#define array_init_zero(base,count) \
1306 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 1307
552#define array_needsize(type,base,cur,cnt,init) \ 1308#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 1309 if (expect_false ((cnt) > (cur))) \
554 { \ 1310 { \
555 int ocur_ = (cur); \ 1311 int ecb_unused ocur_ = (cur); \
556 (base) = (type *)array_realloc \ 1312 (base) = (type *)array_realloc \
557 (sizeof (type), (base), &(cur), (cnt)); \ 1313 (sizeof (type), (base), &(cur), (cnt)); \
558 init ((base) + (ocur_), (cur) - ocur_); \ 1314 init ((base) + (ocur_), (cur) - ocur_); \
559 } 1315 }
560 1316
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1323 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 1324 }
569#endif 1325#endif
570 1326
571#define array_free(stem, idx) \ 1327#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 1329
574/*****************************************************************************/ 1330/*****************************************************************************/
1331
1332/* dummy callback for pending events */
1333static void noinline
1334pendingcb (EV_P_ ev_prepare *w, int revents)
1335{
1336}
575 1337
576void noinline 1338void noinline
577ev_feed_event (EV_P_ void *w, int revents) 1339ev_feed_event (EV_P_ void *w, int revents)
578{ 1340{
579 W w_ = (W)w; 1341 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 1350 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 1351 pendings [pri][w_->pending - 1].events = revents;
590 } 1352 }
591} 1353}
592 1354
593void inline_speed 1355inline_speed void
1356feed_reverse (EV_P_ W w)
1357{
1358 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1359 rfeeds [rfeedcnt++] = w;
1360}
1361
1362inline_size void
1363feed_reverse_done (EV_P_ int revents)
1364{
1365 do
1366 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1367 while (rfeedcnt);
1368}
1369
1370inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 1371queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 1372{
596 int i; 1373 int i;
597 1374
598 for (i = 0; i < eventcnt; ++i) 1375 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 1376 ev_feed_event (EV_A_ events [i], type);
600} 1377}
601 1378
602/*****************************************************************************/ 1379/*****************************************************************************/
603 1380
604void inline_size 1381inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 1382fd_event_nocheck (EV_P_ int fd, int revents)
619{ 1383{
620 ANFD *anfd = anfds + fd; 1384 ANFD *anfd = anfds + fd;
621 ev_io *w; 1385 ev_io *w;
622 1386
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1387 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 1391 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 1392 ev_feed_event (EV_A_ (W)w, ev);
629 } 1393 }
630} 1394}
631 1395
1396/* do not submit kernel events for fds that have reify set */
1397/* because that means they changed while we were polling for new events */
1398inline_speed void
1399fd_event (EV_P_ int fd, int revents)
1400{
1401 ANFD *anfd = anfds + fd;
1402
1403 if (expect_true (!anfd->reify))
1404 fd_event_nocheck (EV_A_ fd, revents);
1405}
1406
632void 1407void
633ev_feed_fd_event (EV_P_ int fd, int revents) 1408ev_feed_fd_event (EV_P_ int fd, int revents)
634{ 1409{
635 if (fd >= 0 && fd < anfdmax) 1410 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 1411 fd_event_nocheck (EV_A_ fd, revents);
637} 1412}
638 1413
639void inline_size 1414/* make sure the external fd watch events are in-sync */
1415/* with the kernel/libev internal state */
1416inline_size void
640fd_reify (EV_P) 1417fd_reify (EV_P)
641{ 1418{
642 int i; 1419 int i;
1420
1421#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1422 for (i = 0; i < fdchangecnt; ++i)
1423 {
1424 int fd = fdchanges [i];
1425 ANFD *anfd = anfds + fd;
1426
1427 if (anfd->reify & EV__IOFDSET && anfd->head)
1428 {
1429 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1430
1431 if (handle != anfd->handle)
1432 {
1433 unsigned long arg;
1434
1435 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1436
1437 /* handle changed, but fd didn't - we need to do it in two steps */
1438 backend_modify (EV_A_ fd, anfd->events, 0);
1439 anfd->events = 0;
1440 anfd->handle = handle;
1441 }
1442 }
1443 }
1444#endif
643 1445
644 for (i = 0; i < fdchangecnt; ++i) 1446 for (i = 0; i < fdchangecnt; ++i)
645 { 1447 {
646 int fd = fdchanges [i]; 1448 int fd = fdchanges [i];
647 ANFD *anfd = anfds + fd; 1449 ANFD *anfd = anfds + fd;
648 ev_io *w; 1450 ev_io *w;
649 1451
650 unsigned char events = 0; 1452 unsigned char o_events = anfd->events;
1453 unsigned char o_reify = anfd->reify;
651 1454
652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1455 anfd->reify = 0;
653 events |= (unsigned char)w->events;
654 1456
655#if EV_SELECT_IS_WINSOCKET 1457 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
656 if (events)
657 { 1458 {
658 unsigned long argp; 1459 anfd->events = 0;
659 #ifdef EV_FD_TO_WIN32_HANDLE 1460
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1461 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
661 #else 1462 anfd->events |= (unsigned char)w->events;
662 anfd->handle = _get_osfhandle (fd); 1463
663 #endif 1464 if (o_events != anfd->events)
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1465 o_reify = EV__IOFDSET; /* actually |= */
665 } 1466 }
666#endif
667 1467
668 { 1468 if (o_reify & EV__IOFDSET)
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
672 anfd->reify = 0;
673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 1469 backend_modify (EV_A_ fd, o_events, anfd->events);
677 }
678 } 1470 }
679 1471
680 fdchangecnt = 0; 1472 fdchangecnt = 0;
681} 1473}
682 1474
683void inline_size 1475/* something about the given fd changed */
1476inline_size void
684fd_change (EV_P_ int fd, int flags) 1477fd_change (EV_P_ int fd, int flags)
685{ 1478{
686 unsigned char reify = anfds [fd].reify; 1479 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 1480 anfds [fd].reify |= flags;
688 1481
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 1486 fdchanges [fdchangecnt - 1] = fd;
694 } 1487 }
695} 1488}
696 1489
697void inline_speed 1490/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1491inline_speed void ecb_cold
698fd_kill (EV_P_ int fd) 1492fd_kill (EV_P_ int fd)
699{ 1493{
700 ev_io *w; 1494 ev_io *w;
701 1495
702 while ((w = (ev_io *)anfds [fd].head)) 1496 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 1498 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1499 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 1500 }
707} 1501}
708 1502
709int inline_size 1503/* check whether the given fd is actually valid, for error recovery */
1504inline_size int ecb_cold
710fd_valid (int fd) 1505fd_valid (int fd)
711{ 1506{
712#ifdef _WIN32 1507#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 1508 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 1509#else
715 return fcntl (fd, F_GETFD) != -1; 1510 return fcntl (fd, F_GETFD) != -1;
716#endif 1511#endif
717} 1512}
718 1513
719/* called on EBADF to verify fds */ 1514/* called on EBADF to verify fds */
720static void noinline 1515static void noinline ecb_cold
721fd_ebadf (EV_P) 1516fd_ebadf (EV_P)
722{ 1517{
723 int fd; 1518 int fd;
724 1519
725 for (fd = 0; fd < anfdmax; ++fd) 1520 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1521 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1522 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1523 fd_kill (EV_A_ fd);
729} 1524}
730 1525
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1526/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1527static void noinline ecb_cold
733fd_enomem (EV_P) 1528fd_enomem (EV_P)
734{ 1529{
735 int fd; 1530 int fd;
736 1531
737 for (fd = anfdmax; fd--; ) 1532 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1533 if (anfds [fd].events)
739 { 1534 {
740 fd_kill (EV_A_ fd); 1535 fd_kill (EV_A_ fd);
741 return; 1536 break;
742 } 1537 }
743} 1538}
744 1539
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1540/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1541static void noinline
750 1545
751 for (fd = 0; fd < anfdmax; ++fd) 1546 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1547 if (anfds [fd].events)
753 { 1548 {
754 anfds [fd].events = 0; 1549 anfds [fd].events = 0;
1550 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1551 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1552 }
757} 1553}
758 1554
759/*****************************************************************************/ 1555/* used to prepare libev internal fd's */
760 1556/* this is not fork-safe */
761/* towards the root */ 1557inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1558fd_intern (int fd)
849{ 1559{
850#ifdef _WIN32 1560#ifdef _WIN32
851 int arg = 1; 1561 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1562 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1563#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1564 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1565 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1566#endif
857} 1567}
858 1568
1569/*****************************************************************************/
1570
1571/*
1572 * the heap functions want a real array index. array index 0 is guaranteed to not
1573 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1574 * the branching factor of the d-tree.
1575 */
1576
1577/*
1578 * at the moment we allow libev the luxury of two heaps,
1579 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1580 * which is more cache-efficient.
1581 * the difference is about 5% with 50000+ watchers.
1582 */
1583#if EV_USE_4HEAP
1584
1585#define DHEAP 4
1586#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1587#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1588#define UPHEAP_DONE(p,k) ((p) == (k))
1589
1590/* away from the root */
1591inline_speed void
1592downheap (ANHE *heap, int N, int k)
1593{
1594 ANHE he = heap [k];
1595 ANHE *E = heap + N + HEAP0;
1596
1597 for (;;)
1598 {
1599 ev_tstamp minat;
1600 ANHE *minpos;
1601 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1602
1603 /* find minimum child */
1604 if (expect_true (pos + DHEAP - 1 < E))
1605 {
1606 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1607 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1608 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1609 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1610 }
1611 else if (pos < E)
1612 {
1613 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1614 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1615 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1616 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1617 }
1618 else
1619 break;
1620
1621 if (ANHE_at (he) <= minat)
1622 break;
1623
1624 heap [k] = *minpos;
1625 ev_active (ANHE_w (*minpos)) = k;
1626
1627 k = minpos - heap;
1628 }
1629
1630 heap [k] = he;
1631 ev_active (ANHE_w (he)) = k;
1632}
1633
1634#else /* 4HEAP */
1635
1636#define HEAP0 1
1637#define HPARENT(k) ((k) >> 1)
1638#define UPHEAP_DONE(p,k) (!(p))
1639
1640/* away from the root */
1641inline_speed void
1642downheap (ANHE *heap, int N, int k)
1643{
1644 ANHE he = heap [k];
1645
1646 for (;;)
1647 {
1648 int c = k << 1;
1649
1650 if (c >= N + HEAP0)
1651 break;
1652
1653 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1654 ? 1 : 0;
1655
1656 if (ANHE_at (he) <= ANHE_at (heap [c]))
1657 break;
1658
1659 heap [k] = heap [c];
1660 ev_active (ANHE_w (heap [k])) = k;
1661
1662 k = c;
1663 }
1664
1665 heap [k] = he;
1666 ev_active (ANHE_w (he)) = k;
1667}
1668#endif
1669
1670/* towards the root */
1671inline_speed void
1672upheap (ANHE *heap, int k)
1673{
1674 ANHE he = heap [k];
1675
1676 for (;;)
1677 {
1678 int p = HPARENT (k);
1679
1680 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1681 break;
1682
1683 heap [k] = heap [p];
1684 ev_active (ANHE_w (heap [k])) = k;
1685 k = p;
1686 }
1687
1688 heap [k] = he;
1689 ev_active (ANHE_w (he)) = k;
1690}
1691
1692/* move an element suitably so it is in a correct place */
1693inline_size void
1694adjustheap (ANHE *heap, int N, int k)
1695{
1696 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1697 upheap (heap, k);
1698 else
1699 downheap (heap, N, k);
1700}
1701
1702/* rebuild the heap: this function is used only once and executed rarely */
1703inline_size void
1704reheap (ANHE *heap, int N)
1705{
1706 int i;
1707
1708 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1709 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1710 for (i = 0; i < N; ++i)
1711 upheap (heap, i + HEAP0);
1712}
1713
1714/*****************************************************************************/
1715
1716/* associate signal watchers to a signal signal */
1717typedef struct
1718{
1719 EV_ATOMIC_T pending;
1720#if EV_MULTIPLICITY
1721 EV_P;
1722#endif
1723 WL head;
1724} ANSIG;
1725
1726static ANSIG signals [EV_NSIG - 1];
1727
1728/*****************************************************************************/
1729
1730#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1731
859static void noinline 1732static void noinline ecb_cold
860evpipe_init (EV_P) 1733evpipe_init (EV_P)
861{ 1734{
862 if (!ev_is_active (&pipeev)) 1735 if (!ev_is_active (&pipe_w))
863 { 1736 {
864#if EV_USE_EVENTFD 1737# if EV_USE_EVENTFD
1738 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1739 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1740 evfd = eventfd (0, 0);
1741
1742 if (evfd >= 0)
866 { 1743 {
867 evpipe [0] = -1; 1744 evpipe [0] = -1;
868 fd_intern (evfd); 1745 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1746 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1747 }
871 else 1748 else
872#endif 1749# endif
873 { 1750 {
874 while (pipe (evpipe)) 1751 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1752 ev_syserr ("(libev) error creating signal/async pipe");
876 1753
877 fd_intern (evpipe [0]); 1754 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1755 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1756 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1757 }
881 1758
882 ev_io_start (EV_A_ &pipeev); 1759 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1760 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1761 }
885} 1762}
886 1763
887void inline_size 1764inline_speed void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1765evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1766{
890 if (!*flag) 1767 if (expect_true (*flag))
1768 return;
1769
1770 *flag = 1;
1771
1772 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1773
1774 pipe_write_skipped = 1;
1775
1776 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1777
1778 if (pipe_write_wanted)
891 { 1779 {
1780 int old_errno;
1781
1782 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1783
892 int old_errno = errno; /* save errno because write might clobber it */ 1784 old_errno = errno; /* save errno because write will clobber it */
893
894 *flag = 1;
895 1785
896#if EV_USE_EVENTFD 1786#if EV_USE_EVENTFD
897 if (evfd >= 0) 1787 if (evfd >= 0)
898 { 1788 {
899 uint64_t counter = 1; 1789 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t)); 1790 write (evfd, &counter, sizeof (uint64_t));
901 } 1791 }
902 else 1792 else
903#endif 1793#endif
1794 {
1795 /* win32 people keep sending patches that change this write() to send() */
1796 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1797 /* so when you think this write should be a send instead, please find out */
1798 /* where your send() is from - it's definitely not the microsoft send, and */
1799 /* tell me. thank you. */
904 write (evpipe [1], &old_errno, 1); 1800 write (evpipe [1], &(evpipe [1]), 1);
1801 }
905 1802
906 errno = old_errno; 1803 errno = old_errno;
907 } 1804 }
908} 1805}
909 1806
1807/* called whenever the libev signal pipe */
1808/* got some events (signal, async) */
910static void 1809static void
911pipecb (EV_P_ ev_io *iow, int revents) 1810pipecb (EV_P_ ev_io *iow, int revents)
912{ 1811{
1812 int i;
1813
1814 if (revents & EV_READ)
1815 {
913#if EV_USE_EVENTFD 1816#if EV_USE_EVENTFD
914 if (evfd >= 0) 1817 if (evfd >= 0)
915 { 1818 {
916 uint64_t counter = 1; 1819 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1820 read (evfd, &counter, sizeof (uint64_t));
918 } 1821 }
919 else 1822 else
920#endif 1823#endif
921 { 1824 {
922 char dummy; 1825 char dummy;
1826 /* see discussion in evpipe_write when you think this read should be recv in win32 */
923 read (evpipe [0], &dummy, 1); 1827 read (evpipe [0], &dummy, 1);
1828 }
1829 }
1830
1831 pipe_write_skipped = 0;
1832
1833#if EV_SIGNAL_ENABLE
1834 if (sig_pending)
924 } 1835 {
1836 sig_pending = 0;
925 1837
926 if (gotsig && ev_is_default_loop (EV_A)) 1838 for (i = EV_NSIG - 1; i--; )
927 { 1839 if (expect_false (signals [i].pending))
928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1); 1840 ev_feed_signal_event (EV_A_ i + 1);
934 } 1841 }
1842#endif
935 1843
936#if EV_ASYNC_ENABLE 1844#if EV_ASYNC_ENABLE
937 if (gotasync) 1845 if (async_pending)
938 { 1846 {
939 int i; 1847 async_pending = 0;
940 gotasync = 0;
941 1848
942 for (i = asynccnt; i--; ) 1849 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 1850 if (asyncs [i]->sent)
944 { 1851 {
945 asyncs [i]->sent = 0; 1852 asyncs [i]->sent = 0;
949#endif 1856#endif
950} 1857}
951 1858
952/*****************************************************************************/ 1859/*****************************************************************************/
953 1860
1861void
1862ev_feed_signal (int signum)
1863{
1864#if EV_MULTIPLICITY
1865 EV_P = signals [signum - 1].loop;
1866
1867 if (!EV_A)
1868 return;
1869#endif
1870
1871 if (!ev_active (&pipe_w))
1872 return;
1873
1874 signals [signum - 1].pending = 1;
1875 evpipe_write (EV_A_ &sig_pending);
1876}
1877
954static void 1878static void
955ev_sighandler (int signum) 1879ev_sighandler (int signum)
956{ 1880{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32 1881#ifdef _WIN32
962 signal (signum, ev_sighandler); 1882 signal (signum, ev_sighandler);
963#endif 1883#endif
964 1884
965 signals [signum - 1].gotsig = 1; 1885 ev_feed_signal (signum);
966 evpipe_write (EV_A_ &gotsig);
967} 1886}
968 1887
969void noinline 1888void noinline
970ev_feed_signal_event (EV_P_ int signum) 1889ev_feed_signal_event (EV_P_ int signum)
971{ 1890{
972 WL w; 1891 WL w;
973 1892
1893 if (expect_false (signum <= 0 || signum > EV_NSIG))
1894 return;
1895
1896 --signum;
1897
974#if EV_MULTIPLICITY 1898#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1899 /* it is permissible to try to feed a signal to the wrong loop */
976#endif 1900 /* or, likely more useful, feeding a signal nobody is waiting for */
977 1901
978 --signum; 1902 if (expect_false (signals [signum].loop != EV_A))
979
980 if (signum < 0 || signum >= signalmax)
981 return; 1903 return;
1904#endif
982 1905
983 signals [signum].gotsig = 0; 1906 signals [signum].pending = 0;
984 1907
985 for (w = signals [signum].head; w; w = w->next) 1908 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1909 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 1910}
988 1911
1912#if EV_USE_SIGNALFD
1913static void
1914sigfdcb (EV_P_ ev_io *iow, int revents)
1915{
1916 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1917
1918 for (;;)
1919 {
1920 ssize_t res = read (sigfd, si, sizeof (si));
1921
1922 /* not ISO-C, as res might be -1, but works with SuS */
1923 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1924 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1925
1926 if (res < (ssize_t)sizeof (si))
1927 break;
1928 }
1929}
1930#endif
1931
1932#endif
1933
989/*****************************************************************************/ 1934/*****************************************************************************/
990 1935
1936#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 1937static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 1938
995static ev_signal childev; 1939static ev_signal childev;
996 1940
997#ifndef WIFCONTINUED 1941#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 1942# define WIFCONTINUED(status) 0
999#endif 1943#endif
1000 1944
1001void inline_speed 1945/* handle a single child status event */
1946inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 1947child_reap (EV_P_ int chain, int pid, int status)
1003{ 1948{
1004 ev_child *w; 1949 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1950 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 1951
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1952 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 { 1953 {
1009 if ((w->pid == pid || !w->pid) 1954 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1))) 1955 && (!traced || (w->flags & 1)))
1011 { 1956 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1957 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1019 1964
1020#ifndef WCONTINUED 1965#ifndef WCONTINUED
1021# define WCONTINUED 0 1966# define WCONTINUED 0
1022#endif 1967#endif
1023 1968
1969/* called on sigchld etc., calls waitpid */
1024static void 1970static void
1025childcb (EV_P_ ev_signal *sw, int revents) 1971childcb (EV_P_ ev_signal *sw, int revents)
1026{ 1972{
1027 int pid, status; 1973 int pid, status;
1028 1974
1036 /* make sure we are called again until all children have been reaped */ 1982 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */ 1983 /* we need to do it this way so that the callback gets called before we continue */
1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1984 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1039 1985
1040 child_reap (EV_A_ pid, pid, status); 1986 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1) 1987 if ((EV_PID_HASHSIZE) > 1)
1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1988 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1043} 1989}
1044 1990
1045#endif 1991#endif
1046 1992
1047/*****************************************************************************/ 1993/*****************************************************************************/
1048 1994
1995#if EV_USE_IOCP
1996# include "ev_iocp.c"
1997#endif
1049#if EV_USE_PORT 1998#if EV_USE_PORT
1050# include "ev_port.c" 1999# include "ev_port.c"
1051#endif 2000#endif
1052#if EV_USE_KQUEUE 2001#if EV_USE_KQUEUE
1053# include "ev_kqueue.c" 2002# include "ev_kqueue.c"
1060#endif 2009#endif
1061#if EV_USE_SELECT 2010#if EV_USE_SELECT
1062# include "ev_select.c" 2011# include "ev_select.c"
1063#endif 2012#endif
1064 2013
1065int 2014int ecb_cold
1066ev_version_major (void) 2015ev_version_major (void)
1067{ 2016{
1068 return EV_VERSION_MAJOR; 2017 return EV_VERSION_MAJOR;
1069} 2018}
1070 2019
1071int 2020int ecb_cold
1072ev_version_minor (void) 2021ev_version_minor (void)
1073{ 2022{
1074 return EV_VERSION_MINOR; 2023 return EV_VERSION_MINOR;
1075} 2024}
1076 2025
1077/* return true if we are running with elevated privileges and should ignore env variables */ 2026/* return true if we are running with elevated privileges and should ignore env variables */
1078int inline_size 2027int inline_size ecb_cold
1079enable_secure (void) 2028enable_secure (void)
1080{ 2029{
1081#ifdef _WIN32 2030#ifdef _WIN32
1082 return 0; 2031 return 0;
1083#else 2032#else
1084 return getuid () != geteuid () 2033 return getuid () != geteuid ()
1085 || getgid () != getegid (); 2034 || getgid () != getegid ();
1086#endif 2035#endif
1087} 2036}
1088 2037
1089unsigned int 2038unsigned int ecb_cold
1090ev_supported_backends (void) 2039ev_supported_backends (void)
1091{ 2040{
1092 unsigned int flags = 0; 2041 unsigned int flags = 0;
1093 2042
1094 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2043 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1098 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2047 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1099 2048
1100 return flags; 2049 return flags;
1101} 2050}
1102 2051
1103unsigned int 2052unsigned int ecb_cold
1104ev_recommended_backends (void) 2053ev_recommended_backends (void)
1105{ 2054{
1106 unsigned int flags = ev_supported_backends (); 2055 unsigned int flags = ev_supported_backends ();
1107 2056
1108#ifndef __NetBSD__ 2057#ifndef __NetBSD__
1109 /* kqueue is borked on everything but netbsd apparently */ 2058 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 2059 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 2060 flags &= ~EVBACKEND_KQUEUE;
1112#endif 2061#endif
1113#ifdef __APPLE__ 2062#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 2063 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 2064 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2065 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2066#endif
2067#ifdef __FreeBSD__
2068 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1116#endif 2069#endif
1117 2070
1118 return flags; 2071 return flags;
1119} 2072}
1120 2073
1121unsigned int 2074unsigned int ecb_cold
1122ev_embeddable_backends (void) 2075ev_embeddable_backends (void)
1123{ 2076{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2077 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1125 2078
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2079 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */ 2080 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1128 flags &= ~EVBACKEND_EPOLL; 2081 flags &= ~EVBACKEND_EPOLL;
1129 2082
1130 return flags; 2083 return flags;
1131} 2084}
1132 2085
1133unsigned int 2086unsigned int
1134ev_backend (EV_P) 2087ev_backend (EV_P)
1135{ 2088{
1136 return backend; 2089 return backend;
1137} 2090}
1138 2091
2092#if EV_FEATURE_API
1139unsigned int 2093unsigned int
1140ev_loop_count (EV_P) 2094ev_iteration (EV_P)
1141{ 2095{
1142 return loop_count; 2096 return loop_count;
2097}
2098
2099unsigned int
2100ev_depth (EV_P)
2101{
2102 return loop_depth;
1143} 2103}
1144 2104
1145void 2105void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2106ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{ 2107{
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2112ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 2113{
1154 timeout_blocktime = interval; 2114 timeout_blocktime = interval;
1155} 2115}
1156 2116
2117void
2118ev_set_userdata (EV_P_ void *data)
2119{
2120 userdata = data;
2121}
2122
2123void *
2124ev_userdata (EV_P)
2125{
2126 return userdata;
2127}
2128
2129void
2130ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2131{
2132 invoke_cb = invoke_pending_cb;
2133}
2134
2135void
2136ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2137{
2138 release_cb = release;
2139 acquire_cb = acquire;
2140}
2141#endif
2142
2143/* initialise a loop structure, must be zero-initialised */
1157static void noinline 2144static void noinline ecb_cold
1158loop_init (EV_P_ unsigned int flags) 2145loop_init (EV_P_ unsigned int flags)
1159{ 2146{
1160 if (!backend) 2147 if (!backend)
1161 { 2148 {
2149 origflags = flags;
2150
2151#if EV_USE_REALTIME
2152 if (!have_realtime)
2153 {
2154 struct timespec ts;
2155
2156 if (!clock_gettime (CLOCK_REALTIME, &ts))
2157 have_realtime = 1;
2158 }
2159#endif
2160
1162#if EV_USE_MONOTONIC 2161#if EV_USE_MONOTONIC
2162 if (!have_monotonic)
1163 { 2163 {
1164 struct timespec ts; 2164 struct timespec ts;
2165
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 2167 have_monotonic = 1;
1167 } 2168 }
1168#endif
1169
1170 ev_rt_now = ev_time ();
1171 mn_now = get_clock ();
1172 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif 2169#endif
1183 2170
1184 /* pid check not overridable via env */ 2171 /* pid check not overridable via env */
1185#ifndef _WIN32 2172#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK) 2173 if (flags & EVFLAG_FORKCHECK)
1190 if (!(flags & EVFLAG_NOENV) 2177 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure () 2178 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS")) 2179 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS")); 2180 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 2181
1195 if (!(flags & 0x0000ffffU)) 2182 ev_rt_now = ev_time ();
2183 mn_now = get_clock ();
2184 now_floor = mn_now;
2185 rtmn_diff = ev_rt_now - mn_now;
2186#if EV_FEATURE_API
2187 invoke_cb = ev_invoke_pending;
2188#endif
2189
2190 io_blocktime = 0.;
2191 timeout_blocktime = 0.;
2192 backend = 0;
2193 backend_fd = -1;
2194 sig_pending = 0;
2195#if EV_ASYNC_ENABLE
2196 async_pending = 0;
2197#endif
2198 pipe_write_skipped = 0;
2199 pipe_write_wanted = 0;
2200#if EV_USE_INOTIFY
2201 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2202#endif
2203#if EV_USE_SIGNALFD
2204 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2205#endif
2206
2207 if (!(flags & EVBACKEND_MASK))
1196 flags |= ev_recommended_backends (); 2208 flags |= ev_recommended_backends ();
1197 2209
2210#if EV_USE_IOCP
2211 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2212#endif
1198#if EV_USE_PORT 2213#if EV_USE_PORT
1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2214 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1200#endif 2215#endif
1201#if EV_USE_KQUEUE 2216#if EV_USE_KQUEUE
1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2217 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1209#endif 2224#endif
1210#if EV_USE_SELECT 2225#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2226 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 2227#endif
1213 2228
2229 ev_prepare_init (&pending_w, pendingcb);
2230
2231#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 2232 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 2233 ev_set_priority (&pipe_w, EV_MAXPRI);
2234#endif
1216 } 2235 }
1217} 2236}
1218 2237
1219static void noinline 2238/* free up a loop structure */
2239void ecb_cold
1220loop_destroy (EV_P) 2240ev_loop_destroy (EV_P)
1221{ 2241{
1222 int i; 2242 int i;
1223 2243
2244#if EV_MULTIPLICITY
2245 /* mimic free (0) */
2246 if (!EV_A)
2247 return;
2248#endif
2249
2250#if EV_CLEANUP_ENABLE
2251 /* queue cleanup watchers (and execute them) */
2252 if (expect_false (cleanupcnt))
2253 {
2254 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2255 EV_INVOKE_PENDING;
2256 }
2257#endif
2258
2259#if EV_CHILD_ENABLE
2260 if (ev_is_active (&childev))
2261 {
2262 ev_ref (EV_A); /* child watcher */
2263 ev_signal_stop (EV_A_ &childev);
2264 }
2265#endif
2266
1224 if (ev_is_active (&pipeev)) 2267 if (ev_is_active (&pipe_w))
1225 { 2268 {
1226 ev_ref (EV_A); /* signal watcher */ 2269 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 2270 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 2271
1229#if EV_USE_EVENTFD 2272#if EV_USE_EVENTFD
1230 if (evfd >= 0) 2273 if (evfd >= 0)
1231 close (evfd); 2274 close (evfd);
1232#endif 2275#endif
1233 2276
1234 if (evpipe [0] >= 0) 2277 if (evpipe [0] >= 0)
1235 { 2278 {
1236 close (evpipe [0]); 2279 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 2280 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 2281 }
1239 } 2282 }
2283
2284#if EV_USE_SIGNALFD
2285 if (ev_is_active (&sigfd_w))
2286 close (sigfd);
2287#endif
1240 2288
1241#if EV_USE_INOTIFY 2289#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 2290 if (fs_fd >= 0)
1243 close (fs_fd); 2291 close (fs_fd);
1244#endif 2292#endif
1245 2293
1246 if (backend_fd >= 0) 2294 if (backend_fd >= 0)
1247 close (backend_fd); 2295 close (backend_fd);
1248 2296
2297#if EV_USE_IOCP
2298 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2299#endif
1249#if EV_USE_PORT 2300#if EV_USE_PORT
1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2301 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1251#endif 2302#endif
1252#if EV_USE_KQUEUE 2303#if EV_USE_KQUEUE
1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2304 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1268#if EV_IDLE_ENABLE 2319#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 2320 array_free (idle, [i]);
1270#endif 2321#endif
1271 } 2322 }
1272 2323
1273 ev_free (anfds); anfdmax = 0; 2324 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 2325
1275 /* have to use the microsoft-never-gets-it-right macro */ 2326 /* have to use the microsoft-never-gets-it-right macro */
2327 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 2328 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 2329 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 2330#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 2331 array_free (periodic, EMPTY);
1280#endif 2332#endif
1281#if EV_FORK_ENABLE 2333#if EV_FORK_ENABLE
1282 array_free (fork, EMPTY); 2334 array_free (fork, EMPTY);
1283#endif 2335#endif
2336#if EV_CLEANUP_ENABLE
2337 array_free (cleanup, EMPTY);
2338#endif
1284 array_free (prepare, EMPTY); 2339 array_free (prepare, EMPTY);
1285 array_free (check, EMPTY); 2340 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE 2341#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY); 2342 array_free (async, EMPTY);
1288#endif 2343#endif
1289 2344
1290 backend = 0; 2345 backend = 0;
2346
2347#if EV_MULTIPLICITY
2348 if (ev_is_default_loop (EV_A))
2349#endif
2350 ev_default_loop_ptr = 0;
2351#if EV_MULTIPLICITY
2352 else
2353 ev_free (EV_A);
2354#endif
1291} 2355}
1292 2356
1293#if EV_USE_INOTIFY 2357#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 2358inline_size void infy_fork (EV_P);
1295#endif 2359#endif
1296 2360
1297void inline_size 2361inline_size void
1298loop_fork (EV_P) 2362loop_fork (EV_P)
1299{ 2363{
1300#if EV_USE_PORT 2364#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2365 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 2366#endif
1308#endif 2372#endif
1309#if EV_USE_INOTIFY 2373#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 2374 infy_fork (EV_A);
1311#endif 2375#endif
1312 2376
1313 if (ev_is_active (&pipeev)) 2377 if (ev_is_active (&pipe_w))
1314 { 2378 {
1315 /* this "locks" the handlers against writing to the pipe */ 2379 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
1321 2380
1322 ev_ref (EV_A); 2381 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 2382 ev_io_stop (EV_A_ &pipe_w);
1324 2383
1325#if EV_USE_EVENTFD 2384#if EV_USE_EVENTFD
1326 if (evfd >= 0) 2385 if (evfd >= 0)
1327 close (evfd); 2386 close (evfd);
1328#endif 2387#endif
1329 2388
1330 if (evpipe [0] >= 0) 2389 if (evpipe [0] >= 0)
1331 { 2390 {
1332 close (evpipe [0]); 2391 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 2392 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 2393 }
1335 2394
2395#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 evpipe_init (EV_A); 2396 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 2397 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 2398 pipecb (EV_A_ &pipe_w, EV_READ);
2399#endif
1339 } 2400 }
1340 2401
1341 postfork = 0; 2402 postfork = 0;
1342} 2403}
1343 2404
1344#if EV_MULTIPLICITY 2405#if EV_MULTIPLICITY
2406
1345struct ev_loop * 2407struct ev_loop * ecb_cold
1346ev_loop_new (unsigned int flags) 2408ev_loop_new (unsigned int flags)
1347{ 2409{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2410 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 2411
1350 memset (loop, 0, sizeof (struct ev_loop)); 2412 memset (EV_A, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags); 2413 loop_init (EV_A_ flags);
1353 2414
1354 if (ev_backend (EV_A)) 2415 if (ev_backend (EV_A))
1355 return loop; 2416 return EV_A;
1356 2417
2418 ev_free (EV_A);
1357 return 0; 2419 return 0;
1358} 2420}
1359 2421
1360void 2422#endif /* multiplicity */
1361ev_loop_destroy (EV_P)
1362{
1363 loop_destroy (EV_A);
1364 ev_free (loop);
1365}
1366 2423
1367void 2424#if EV_VERIFY
1368ev_loop_fork (EV_P) 2425static void noinline ecb_cold
2426verify_watcher (EV_P_ W w)
1369{ 2427{
1370 postfork = 1; /* must be in line with ev_default_fork */ 2428 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1371}
1372 2429
2430 if (w->pending)
2431 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2432}
2433
2434static void noinline ecb_cold
2435verify_heap (EV_P_ ANHE *heap, int N)
2436{
2437 int i;
2438
2439 for (i = HEAP0; i < N + HEAP0; ++i)
2440 {
2441 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2442 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2443 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2444
2445 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2446 }
2447}
2448
2449static void noinline ecb_cold
2450array_verify (EV_P_ W *ws, int cnt)
2451{
2452 while (cnt--)
2453 {
2454 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2455 verify_watcher (EV_A_ ws [cnt]);
2456 }
2457}
2458#endif
2459
2460#if EV_FEATURE_API
2461void ecb_cold
2462ev_verify (EV_P)
2463{
2464#if EV_VERIFY
2465 int i;
2466 WL w;
2467
2468 assert (activecnt >= -1);
2469
2470 assert (fdchangemax >= fdchangecnt);
2471 for (i = 0; i < fdchangecnt; ++i)
2472 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2473
2474 assert (anfdmax >= 0);
2475 for (i = 0; i < anfdmax; ++i)
2476 for (w = anfds [i].head; w; w = w->next)
2477 {
2478 verify_watcher (EV_A_ (W)w);
2479 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2480 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2481 }
2482
2483 assert (timermax >= timercnt);
2484 verify_heap (EV_A_ timers, timercnt);
2485
2486#if EV_PERIODIC_ENABLE
2487 assert (periodicmax >= periodiccnt);
2488 verify_heap (EV_A_ periodics, periodiccnt);
2489#endif
2490
2491 for (i = NUMPRI; i--; )
2492 {
2493 assert (pendingmax [i] >= pendingcnt [i]);
2494#if EV_IDLE_ENABLE
2495 assert (idleall >= 0);
2496 assert (idlemax [i] >= idlecnt [i]);
2497 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2498#endif
2499 }
2500
2501#if EV_FORK_ENABLE
2502 assert (forkmax >= forkcnt);
2503 array_verify (EV_A_ (W *)forks, forkcnt);
2504#endif
2505
2506#if EV_CLEANUP_ENABLE
2507 assert (cleanupmax >= cleanupcnt);
2508 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2509#endif
2510
2511#if EV_ASYNC_ENABLE
2512 assert (asyncmax >= asynccnt);
2513 array_verify (EV_A_ (W *)asyncs, asynccnt);
2514#endif
2515
2516#if EV_PREPARE_ENABLE
2517 assert (preparemax >= preparecnt);
2518 array_verify (EV_A_ (W *)prepares, preparecnt);
2519#endif
2520
2521#if EV_CHECK_ENABLE
2522 assert (checkmax >= checkcnt);
2523 array_verify (EV_A_ (W *)checks, checkcnt);
2524#endif
2525
2526# if 0
2527#if EV_CHILD_ENABLE
2528 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2529 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2530#endif
2531# endif
2532#endif
2533}
1373#endif 2534#endif
1374 2535
1375#if EV_MULTIPLICITY 2536#if EV_MULTIPLICITY
1376struct ev_loop * 2537struct ev_loop * ecb_cold
1377ev_default_loop_init (unsigned int flags)
1378#else 2538#else
1379int 2539int
2540#endif
1380ev_default_loop (unsigned int flags) 2541ev_default_loop (unsigned int flags)
1381#endif
1382{ 2542{
1383 if (!ev_default_loop_ptr) 2543 if (!ev_default_loop_ptr)
1384 { 2544 {
1385#if EV_MULTIPLICITY 2545#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2546 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 2547#else
1388 ev_default_loop_ptr = 1; 2548 ev_default_loop_ptr = 1;
1389#endif 2549#endif
1390 2550
1391 loop_init (EV_A_ flags); 2551 loop_init (EV_A_ flags);
1392 2552
1393 if (ev_backend (EV_A)) 2553 if (ev_backend (EV_A))
1394 { 2554 {
1395#ifndef _WIN32 2555#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 2556 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 2557 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 2558 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2559 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 2560#endif
1405 2565
1406 return ev_default_loop_ptr; 2566 return ev_default_loop_ptr;
1407} 2567}
1408 2568
1409void 2569void
1410ev_default_destroy (void) 2570ev_loop_fork (EV_P)
1411{ 2571{
1412#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr;
1414#endif
1415
1416#ifndef _WIN32
1417 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev);
1419#endif
1420
1421 loop_destroy (EV_A);
1422}
1423
1424void
1425ev_default_fork (void)
1426{
1427#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr;
1429#endif
1430
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 2572 postfork = 1; /* must be in line with ev_default_fork */
1433} 2573}
1434 2574
1435/*****************************************************************************/ 2575/*****************************************************************************/
1436 2576
1437void 2577void
1438ev_invoke (EV_P_ void *w, int revents) 2578ev_invoke (EV_P_ void *w, int revents)
1439{ 2579{
1440 EV_CB_INVOKE ((W)w, revents); 2580 EV_CB_INVOKE ((W)w, revents);
1441} 2581}
1442 2582
1443void inline_speed 2583unsigned int
1444call_pending (EV_P) 2584ev_pending_count (EV_P)
2585{
2586 int pri;
2587 unsigned int count = 0;
2588
2589 for (pri = NUMPRI; pri--; )
2590 count += pendingcnt [pri];
2591
2592 return count;
2593}
2594
2595void noinline
2596ev_invoke_pending (EV_P)
1445{ 2597{
1446 int pri; 2598 int pri;
1447 2599
1448 for (pri = NUMPRI; pri--; ) 2600 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 2601 while (pendingcnt [pri])
1450 { 2602 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2603 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 2604
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
1457 p->w->pending = 0; 2605 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 2606 EV_CB_INVOKE (p->w, p->events);
1459 } 2607 EV_FREQUENT_CHECK;
1460 } 2608 }
1461} 2609}
1462 2610
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
1544void inline_size 2612/* make idle watchers pending. this handles the "call-idle */
2613/* only when higher priorities are idle" logic */
2614inline_size void
1545idle_reify (EV_P) 2615idle_reify (EV_P)
1546{ 2616{
1547 if (expect_false (idleall)) 2617 if (expect_false (idleall))
1548 { 2618 {
1549 int pri; 2619 int pri;
1561 } 2631 }
1562 } 2632 }
1563} 2633}
1564#endif 2634#endif
1565 2635
1566void inline_speed 2636/* make timers pending */
2637inline_size void
2638timers_reify (EV_P)
2639{
2640 EV_FREQUENT_CHECK;
2641
2642 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2643 {
2644 do
2645 {
2646 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2647
2648 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2649
2650 /* first reschedule or stop timer */
2651 if (w->repeat)
2652 {
2653 ev_at (w) += w->repeat;
2654 if (ev_at (w) < mn_now)
2655 ev_at (w) = mn_now;
2656
2657 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2658
2659 ANHE_at_cache (timers [HEAP0]);
2660 downheap (timers, timercnt, HEAP0);
2661 }
2662 else
2663 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2664
2665 EV_FREQUENT_CHECK;
2666 feed_reverse (EV_A_ (W)w);
2667 }
2668 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2669
2670 feed_reverse_done (EV_A_ EV_TIMER);
2671 }
2672}
2673
2674#if EV_PERIODIC_ENABLE
2675
2676static void noinline
2677periodic_recalc (EV_P_ ev_periodic *w)
2678{
2679 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2680 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2681
2682 /* the above almost always errs on the low side */
2683 while (at <= ev_rt_now)
2684 {
2685 ev_tstamp nat = at + w->interval;
2686
2687 /* when resolution fails us, we use ev_rt_now */
2688 if (expect_false (nat == at))
2689 {
2690 at = ev_rt_now;
2691 break;
2692 }
2693
2694 at = nat;
2695 }
2696
2697 ev_at (w) = at;
2698}
2699
2700/* make periodics pending */
2701inline_size void
2702periodics_reify (EV_P)
2703{
2704 EV_FREQUENT_CHECK;
2705
2706 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2707 {
2708 int feed_count = 0;
2709
2710 do
2711 {
2712 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2713
2714 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2715
2716 /* first reschedule or stop timer */
2717 if (w->reschedule_cb)
2718 {
2719 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2720
2721 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2722
2723 ANHE_at_cache (periodics [HEAP0]);
2724 downheap (periodics, periodiccnt, HEAP0);
2725 }
2726 else if (w->interval)
2727 {
2728 periodic_recalc (EV_A_ w);
2729 ANHE_at_cache (periodics [HEAP0]);
2730 downheap (periodics, periodiccnt, HEAP0);
2731 }
2732 else
2733 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2734
2735 EV_FREQUENT_CHECK;
2736 feed_reverse (EV_A_ (W)w);
2737 }
2738 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2739
2740 feed_reverse_done (EV_A_ EV_PERIODIC);
2741 }
2742}
2743
2744/* simply recalculate all periodics */
2745/* TODO: maybe ensure that at least one event happens when jumping forward? */
2746static void noinline ecb_cold
2747periodics_reschedule (EV_P)
2748{
2749 int i;
2750
2751 /* adjust periodics after time jump */
2752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2753 {
2754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2755
2756 if (w->reschedule_cb)
2757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2758 else if (w->interval)
2759 periodic_recalc (EV_A_ w);
2760
2761 ANHE_at_cache (periodics [i]);
2762 }
2763
2764 reheap (periodics, periodiccnt);
2765}
2766#endif
2767
2768/* adjust all timers by a given offset */
2769static void noinline ecb_cold
2770timers_reschedule (EV_P_ ev_tstamp adjust)
2771{
2772 int i;
2773
2774 for (i = 0; i < timercnt; ++i)
2775 {
2776 ANHE *he = timers + i + HEAP0;
2777 ANHE_w (*he)->at += adjust;
2778 ANHE_at_cache (*he);
2779 }
2780}
2781
2782/* fetch new monotonic and realtime times from the kernel */
2783/* also detect if there was a timejump, and act accordingly */
2784inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2785time_update (EV_P_ ev_tstamp max_block)
1568{ 2786{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2787#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2788 if (expect_true (have_monotonic))
1573 { 2789 {
2790 int i;
1574 ev_tstamp odiff = rtmn_diff; 2791 ev_tstamp odiff = rtmn_diff;
1575 2792
1576 mn_now = get_clock (); 2793 mn_now = get_clock ();
1577 2794
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2795 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1594 * doesn't hurt either as we only do this on time-jumps or 2811 * doesn't hurt either as we only do this on time-jumps or
1595 * in the unlikely event of having been preempted here. 2812 * in the unlikely event of having been preempted here.
1596 */ 2813 */
1597 for (i = 4; --i; ) 2814 for (i = 4; --i; )
1598 { 2815 {
2816 ev_tstamp diff;
1599 rtmn_diff = ev_rt_now - mn_now; 2817 rtmn_diff = ev_rt_now - mn_now;
1600 2818
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2819 diff = odiff - rtmn_diff;
2820
2821 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2822 return; /* all is well */
1603 2823
1604 ev_rt_now = ev_time (); 2824 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2825 mn_now = get_clock ();
1606 now_floor = mn_now; 2826 now_floor = mn_now;
1607 } 2827 }
1608 2828
2829 /* no timer adjustment, as the monotonic clock doesn't jump */
2830 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2831# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2832 periodics_reschedule (EV_A);
1611# endif 2833# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2834 }
1615 else 2835 else
1616#endif 2836#endif
1617 { 2837 {
1618 ev_rt_now = ev_time (); 2838 ev_rt_now = ev_time ();
1619 2839
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2840 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2841 {
2842 /* adjust timers. this is easy, as the offset is the same for all of them */
2843 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2844#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2845 periodics_reschedule (EV_A);
1624#endif 2846#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2847 }
1629 2848
1630 mn_now = ev_rt_now; 2849 mn_now = ev_rt_now;
1631 } 2850 }
1632} 2851}
1633 2852
1634void 2853void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2854ev_run (EV_P_ int flags)
1650{ 2855{
2856#if EV_FEATURE_API
2857 ++loop_depth;
2858#endif
2859
2860 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2861
1651 loop_done = EVUNLOOP_CANCEL; 2862 loop_done = EVBREAK_CANCEL;
1652 2863
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2864 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2865
1655 do 2866 do
1656 { 2867 {
2868#if EV_VERIFY >= 2
2869 ev_verify (EV_A);
2870#endif
2871
1657#ifndef _WIN32 2872#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2873 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2874 if (expect_false (getpid () != curpid))
1660 { 2875 {
1661 curpid = getpid (); 2876 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2882 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2883 if (expect_false (postfork))
1669 if (forkcnt) 2884 if (forkcnt)
1670 { 2885 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2886 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2887 EV_INVOKE_PENDING;
1673 } 2888 }
1674#endif 2889#endif
1675 2890
2891#if EV_PREPARE_ENABLE
1676 /* queue prepare watchers (and execute them) */ 2892 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 2893 if (expect_false (preparecnt))
1678 { 2894 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2895 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2896 EV_INVOKE_PENDING;
1681 } 2897 }
2898#endif
1682 2899
1683 if (expect_false (!activecnt)) 2900 if (expect_false (loop_done))
1684 break; 2901 break;
1685 2902
1686 /* we might have forked, so reify kernel state if necessary */ 2903 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2904 if (expect_false (postfork))
1688 loop_fork (EV_A); 2905 loop_fork (EV_A);
1693 /* calculate blocking time */ 2910 /* calculate blocking time */
1694 { 2911 {
1695 ev_tstamp waittime = 0.; 2912 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 2913 ev_tstamp sleeptime = 0.;
1697 2914
2915 /* remember old timestamp for io_blocktime calculation */
2916 ev_tstamp prev_mn_now = mn_now;
2917
2918 /* update time to cancel out callback processing overhead */
2919 time_update (EV_A_ 1e100);
2920
2921 /* from now on, we want a pipe-wake-up */
2922 pipe_write_wanted = 1;
2923
2924 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2925
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2926 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1699 { 2927 {
1700 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100);
1702
1703 waittime = MAX_BLOCKTIME; 2928 waittime = MAX_BLOCKTIME;
1704 2929
1705 if (timercnt) 2930 if (timercnt)
1706 { 2931 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2932 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1708 if (waittime > to) waittime = to; 2933 if (waittime > to) waittime = to;
1709 } 2934 }
1710 2935
1711#if EV_PERIODIC_ENABLE 2936#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 2937 if (periodiccnt)
1713 { 2938 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2939 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1715 if (waittime > to) waittime = to; 2940 if (waittime > to) waittime = to;
1716 } 2941 }
1717#endif 2942#endif
1718 2943
2944 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 2945 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 2946 waittime = timeout_blocktime;
1721 2947
1722 sleeptime = waittime - backend_fudge; 2948 /* at this point, we NEED to wait, so we have to ensure */
2949 /* to pass a minimum nonzero value to the backend */
2950 if (expect_false (waittime < backend_mintime))
2951 waittime = backend_mintime;
1723 2952
2953 /* extra check because io_blocktime is commonly 0 */
1724 if (expect_true (sleeptime > io_blocktime)) 2954 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 2955 {
2956 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2957
2958 if (sleeptime > waittime - backend_mintime)
2959 sleeptime = waittime - backend_mintime;
2960
2961 if (expect_true (sleeptime > 0.))
2962 {
1729 ev_sleep (sleeptime); 2963 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 2964 waittime -= sleeptime;
2965 }
1731 } 2966 }
1732 } 2967 }
1733 2968
2969#if EV_FEATURE_API
1734 ++loop_count; 2970 ++loop_count;
2971#endif
2972 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 2973 backend_poll (EV_A_ waittime);
2974 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2975
2976 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2977
2978 if (pipe_write_skipped)
2979 {
2980 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2981 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2982 }
2983
1736 2984
1737 /* update ev_rt_now, do magic */ 2985 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 2986 time_update (EV_A_ waittime + sleeptime);
1739 } 2987 }
1740 2988
1747#if EV_IDLE_ENABLE 2995#if EV_IDLE_ENABLE
1748 /* queue idle watchers unless other events are pending */ 2996 /* queue idle watchers unless other events are pending */
1749 idle_reify (EV_A); 2997 idle_reify (EV_A);
1750#endif 2998#endif
1751 2999
3000#if EV_CHECK_ENABLE
1752 /* queue check watchers, to be executed first */ 3001 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 3002 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3003 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3004#endif
1755 3005
1756 call_pending (EV_A); 3006 EV_INVOKE_PENDING;
1757 } 3007 }
1758 while (expect_true ( 3008 while (expect_true (
1759 activecnt 3009 activecnt
1760 && !loop_done 3010 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3011 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1762 )); 3012 ));
1763 3013
1764 if (loop_done == EVUNLOOP_ONE) 3014 if (loop_done == EVBREAK_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 3015 loop_done = EVBREAK_CANCEL;
3016
3017#if EV_FEATURE_API
3018 --loop_depth;
3019#endif
1766} 3020}
1767 3021
1768void 3022void
1769ev_unloop (EV_P_ int how) 3023ev_break (EV_P_ int how)
1770{ 3024{
1771 loop_done = how; 3025 loop_done = how;
1772} 3026}
1773 3027
3028void
3029ev_ref (EV_P)
3030{
3031 ++activecnt;
3032}
3033
3034void
3035ev_unref (EV_P)
3036{
3037 --activecnt;
3038}
3039
3040void
3041ev_now_update (EV_P)
3042{
3043 time_update (EV_A_ 1e100);
3044}
3045
3046void
3047ev_suspend (EV_P)
3048{
3049 ev_now_update (EV_A);
3050}
3051
3052void
3053ev_resume (EV_P)
3054{
3055 ev_tstamp mn_prev = mn_now;
3056
3057 ev_now_update (EV_A);
3058 timers_reschedule (EV_A_ mn_now - mn_prev);
3059#if EV_PERIODIC_ENABLE
3060 /* TODO: really do this? */
3061 periodics_reschedule (EV_A);
3062#endif
3063}
3064
1774/*****************************************************************************/ 3065/*****************************************************************************/
3066/* singly-linked list management, used when the expected list length is short */
1775 3067
1776void inline_size 3068inline_size void
1777wlist_add (WL *head, WL elem) 3069wlist_add (WL *head, WL elem)
1778{ 3070{
1779 elem->next = *head; 3071 elem->next = *head;
1780 *head = elem; 3072 *head = elem;
1781} 3073}
1782 3074
1783void inline_size 3075inline_size void
1784wlist_del (WL *head, WL elem) 3076wlist_del (WL *head, WL elem)
1785{ 3077{
1786 while (*head) 3078 while (*head)
1787 { 3079 {
1788 if (*head == elem) 3080 if (expect_true (*head == elem))
1789 { 3081 {
1790 *head = elem->next; 3082 *head = elem->next;
1791 return; 3083 break;
1792 } 3084 }
1793 3085
1794 head = &(*head)->next; 3086 head = &(*head)->next;
1795 } 3087 }
1796} 3088}
1797 3089
1798void inline_speed 3090/* internal, faster, version of ev_clear_pending */
3091inline_speed void
1799clear_pending (EV_P_ W w) 3092clear_pending (EV_P_ W w)
1800{ 3093{
1801 if (w->pending) 3094 if (w->pending)
1802 { 3095 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3096 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 3097 w->pending = 0;
1805 } 3098 }
1806} 3099}
1807 3100
1808int 3101int
1812 int pending = w_->pending; 3105 int pending = w_->pending;
1813 3106
1814 if (expect_true (pending)) 3107 if (expect_true (pending))
1815 { 3108 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3109 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3110 p->w = (W)&pending_w;
1817 w_->pending = 0; 3111 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 3112 return p->events;
1820 } 3113 }
1821 else 3114 else
1822 return 0; 3115 return 0;
1823} 3116}
1824 3117
1825void inline_size 3118inline_size void
1826pri_adjust (EV_P_ W w) 3119pri_adjust (EV_P_ W w)
1827{ 3120{
1828 int pri = w->priority; 3121 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3122 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3123 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 3124 ev_set_priority (w, pri);
1832} 3125}
1833 3126
1834void inline_speed 3127inline_speed void
1835ev_start (EV_P_ W w, int active) 3128ev_start (EV_P_ W w, int active)
1836{ 3129{
1837 pri_adjust (EV_A_ w); 3130 pri_adjust (EV_A_ w);
1838 w->active = active; 3131 w->active = active;
1839 ev_ref (EV_A); 3132 ev_ref (EV_A);
1840} 3133}
1841 3134
1842void inline_size 3135inline_size void
1843ev_stop (EV_P_ W w) 3136ev_stop (EV_P_ W w)
1844{ 3137{
1845 ev_unref (EV_A); 3138 ev_unref (EV_A);
1846 w->active = 0; 3139 w->active = 0;
1847} 3140}
1854 int fd = w->fd; 3147 int fd = w->fd;
1855 3148
1856 if (expect_false (ev_is_active (w))) 3149 if (expect_false (ev_is_active (w)))
1857 return; 3150 return;
1858 3151
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 3152 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3153 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3154
3155 EV_FREQUENT_CHECK;
1860 3156
1861 ev_start (EV_A_ (W)w, 1); 3157 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3158 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 3159 wlist_add (&anfds[fd].head, (WL)w);
1864 3160
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3161 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 3162 w->events &= ~EV__IOFDSET;
3163
3164 EV_FREQUENT_CHECK;
1867} 3165}
1868 3166
1869void noinline 3167void noinline
1870ev_io_stop (EV_P_ ev_io *w) 3168ev_io_stop (EV_P_ ev_io *w)
1871{ 3169{
1872 clear_pending (EV_A_ (W)w); 3170 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 3171 if (expect_false (!ev_is_active (w)))
1874 return; 3172 return;
1875 3173
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3174 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3175
3176 EV_FREQUENT_CHECK;
1877 3177
1878 wlist_del (&anfds[w->fd].head, (WL)w); 3178 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 3179 ev_stop (EV_A_ (W)w);
1880 3180
1881 fd_change (EV_A_ w->fd, 1); 3181 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3182
3183 EV_FREQUENT_CHECK;
1882} 3184}
1883 3185
1884void noinline 3186void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 3187ev_timer_start (EV_P_ ev_timer *w)
1886{ 3188{
1887 if (expect_false (ev_is_active (w))) 3189 if (expect_false (ev_is_active (w)))
1888 return; 3190 return;
1889 3191
1890 ev_at (w) += mn_now; 3192 ev_at (w) += mn_now;
1891 3193
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3194 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 3195
3196 EV_FREQUENT_CHECK;
3197
3198 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 3199 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 3200 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 3201 ANHE_w (timers [ev_active (w)]) = (WT)w;
3202 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 3203 upheap (timers, ev_active (w));
1898 3204
3205 EV_FREQUENT_CHECK;
3206
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 3207 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 3208}
1901 3209
1902void noinline 3210void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 3211ev_timer_stop (EV_P_ ev_timer *w)
1904{ 3212{
1905 clear_pending (EV_A_ (W)w); 3213 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 3214 if (expect_false (!ev_is_active (w)))
1907 return; 3215 return;
1908 3216
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 3217 EV_FREQUENT_CHECK;
1910 3218
1911 { 3219 {
1912 int active = ((W)w)->active; 3220 int active = ev_active (w);
1913 3221
3222 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3223
3224 --timercnt;
3225
1914 if (expect_true (active < timercnt)) 3226 if (expect_true (active < timercnt + HEAP0))
1915 { 3227 {
1916 timers [active] = timers [timercnt]; 3228 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 3229 adjustheap (timers, timercnt, active);
1918 } 3230 }
1919
1920 --timercnt;
1921 } 3231 }
1922 3232
1923 ev_at (w) -= mn_now; 3233 ev_at (w) -= mn_now;
1924 3234
1925 ev_stop (EV_A_ (W)w); 3235 ev_stop (EV_A_ (W)w);
3236
3237 EV_FREQUENT_CHECK;
1926} 3238}
1927 3239
1928void noinline 3240void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 3241ev_timer_again (EV_P_ ev_timer *w)
1930{ 3242{
3243 EV_FREQUENT_CHECK;
3244
1931 if (ev_is_active (w)) 3245 if (ev_is_active (w))
1932 { 3246 {
1933 if (w->repeat) 3247 if (w->repeat)
1934 { 3248 {
1935 ev_at (w) = mn_now + w->repeat; 3249 ev_at (w) = mn_now + w->repeat;
3250 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 3251 adjustheap (timers, timercnt, ev_active (w));
1937 } 3252 }
1938 else 3253 else
1939 ev_timer_stop (EV_A_ w); 3254 ev_timer_stop (EV_A_ w);
1940 } 3255 }
1941 else if (w->repeat) 3256 else if (w->repeat)
1942 { 3257 {
1943 w->at = w->repeat; 3258 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 3259 ev_timer_start (EV_A_ w);
1945 } 3260 }
3261
3262 EV_FREQUENT_CHECK;
3263}
3264
3265ev_tstamp
3266ev_timer_remaining (EV_P_ ev_timer *w)
3267{
3268 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 3269}
1947 3270
1948#if EV_PERIODIC_ENABLE 3271#if EV_PERIODIC_ENABLE
1949void noinline 3272void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 3273ev_periodic_start (EV_P_ ev_periodic *w)
1954 3277
1955 if (w->reschedule_cb) 3278 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 3280 else if (w->interval)
1958 { 3281 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3282 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 3283 periodic_recalc (EV_A_ w);
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 3284 }
1963 else 3285 else
1964 ev_at (w) = w->offset; 3286 ev_at (w) = w->offset;
1965 3287
3288 EV_FREQUENT_CHECK;
3289
3290 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 3291 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 3292 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 3293 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 3294 ANHE_at_cache (periodics [ev_active (w)]);
3295 upheap (periodics, ev_active (w));
1970 3296
3297 EV_FREQUENT_CHECK;
3298
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3299 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 3300}
1973 3301
1974void noinline 3302void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 3303ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 3304{
1977 clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 3306 if (expect_false (!ev_is_active (w)))
1979 return; 3307 return;
1980 3308
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 3309 EV_FREQUENT_CHECK;
1982 3310
1983 { 3311 {
1984 int active = ((W)w)->active; 3312 int active = ev_active (w);
1985 3313
3314 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3315
3316 --periodiccnt;
3317
1986 if (expect_true (active < periodiccnt)) 3318 if (expect_true (active < periodiccnt + HEAP0))
1987 { 3319 {
1988 periodics [active] = periodics [periodiccnt]; 3320 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 3321 adjustheap (periodics, periodiccnt, active);
1990 } 3322 }
1991
1992 --periodiccnt;
1993 } 3323 }
1994 3324
1995 ev_stop (EV_A_ (W)w); 3325 ev_stop (EV_A_ (W)w);
3326
3327 EV_FREQUENT_CHECK;
1996} 3328}
1997 3329
1998void noinline 3330void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 3331ev_periodic_again (EV_P_ ev_periodic *w)
2000{ 3332{
2006 3338
2007#ifndef SA_RESTART 3339#ifndef SA_RESTART
2008# define SA_RESTART 0 3340# define SA_RESTART 0
2009#endif 3341#endif
2010 3342
3343#if EV_SIGNAL_ENABLE
3344
2011void noinline 3345void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 3346ev_signal_start (EV_P_ ev_signal *w)
2013{ 3347{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
2018 return; 3349 return;
2019 3350
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3351 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 3352
2022 evpipe_init (EV_A); 3353#if EV_MULTIPLICITY
3354 assert (("libev: a signal must not be attached to two different loops",
3355 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 3356
3357 signals [w->signum - 1].loop = EV_A;
3358#endif
3359
3360 EV_FREQUENT_CHECK;
3361
3362#if EV_USE_SIGNALFD
3363 if (sigfd == -2)
2024 { 3364 {
2025#ifndef _WIN32 3365 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 3366 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 3367 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 3368
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3369 if (sigfd >= 0)
3370 {
3371 fd_intern (sigfd); /* doing it twice will not hurt */
2032 3372
2033#ifndef _WIN32 3373 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 3374
2035#endif 3375 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3376 ev_set_priority (&sigfd_w, EV_MAXPRI);
3377 ev_io_start (EV_A_ &sigfd_w);
3378 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3379 }
2036 } 3380 }
3381
3382 if (sigfd >= 0)
3383 {
3384 /* TODO: check .head */
3385 sigaddset (&sigfd_set, w->signum);
3386 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3387
3388 signalfd (sigfd, &sigfd_set, 0);
3389 }
3390#endif
2037 3391
2038 ev_start (EV_A_ (W)w, 1); 3392 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 3393 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 3394
2041 if (!((WL)w)->next) 3395 if (!((WL)w)->next)
3396# if EV_USE_SIGNALFD
3397 if (sigfd < 0) /*TODO*/
3398# endif
2042 { 3399 {
2043#if _WIN32 3400# ifdef _WIN32
3401 evpipe_init (EV_A);
3402
2044 signal (w->signum, ev_sighandler); 3403 signal (w->signum, ev_sighandler);
2045#else 3404# else
2046 struct sigaction sa; 3405 struct sigaction sa;
3406
3407 evpipe_init (EV_A);
3408
2047 sa.sa_handler = ev_sighandler; 3409 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 3410 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3411 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 3412 sigaction (w->signum, &sa, 0);
3413
3414 if (origflags & EVFLAG_NOSIGMASK)
3415 {
3416 sigemptyset (&sa.sa_mask);
3417 sigaddset (&sa.sa_mask, w->signum);
3418 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3419 }
2051#endif 3420#endif
2052 } 3421 }
3422
3423 EV_FREQUENT_CHECK;
2053} 3424}
2054 3425
2055void noinline 3426void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 3427ev_signal_stop (EV_P_ ev_signal *w)
2057{ 3428{
2058 clear_pending (EV_A_ (W)w); 3429 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 3430 if (expect_false (!ev_is_active (w)))
2060 return; 3431 return;
2061 3432
3433 EV_FREQUENT_CHECK;
3434
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 3435 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 3436 ev_stop (EV_A_ (W)w);
2064 3437
2065 if (!signals [w->signum - 1].head) 3438 if (!signals [w->signum - 1].head)
3439 {
3440#if EV_MULTIPLICITY
3441 signals [w->signum - 1].loop = 0; /* unattach from signal */
3442#endif
3443#if EV_USE_SIGNALFD
3444 if (sigfd >= 0)
3445 {
3446 sigset_t ss;
3447
3448 sigemptyset (&ss);
3449 sigaddset (&ss, w->signum);
3450 sigdelset (&sigfd_set, w->signum);
3451
3452 signalfd (sigfd, &sigfd_set, 0);
3453 sigprocmask (SIG_UNBLOCK, &ss, 0);
3454 }
3455 else
3456#endif
2066 signal (w->signum, SIG_DFL); 3457 signal (w->signum, SIG_DFL);
3458 }
3459
3460 EV_FREQUENT_CHECK;
2067} 3461}
3462
3463#endif
3464
3465#if EV_CHILD_ENABLE
2068 3466
2069void 3467void
2070ev_child_start (EV_P_ ev_child *w) 3468ev_child_start (EV_P_ ev_child *w)
2071{ 3469{
2072#if EV_MULTIPLICITY 3470#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3471 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 3472#endif
2075 if (expect_false (ev_is_active (w))) 3473 if (expect_false (ev_is_active (w)))
2076 return; 3474 return;
2077 3475
3476 EV_FREQUENT_CHECK;
3477
2078 ev_start (EV_A_ (W)w, 1); 3478 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3479 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3480
3481 EV_FREQUENT_CHECK;
2080} 3482}
2081 3483
2082void 3484void
2083ev_child_stop (EV_P_ ev_child *w) 3485ev_child_stop (EV_P_ ev_child *w)
2084{ 3486{
2085 clear_pending (EV_A_ (W)w); 3487 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 3488 if (expect_false (!ev_is_active (w)))
2087 return; 3489 return;
2088 3490
3491 EV_FREQUENT_CHECK;
3492
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3493 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
3495
3496 EV_FREQUENT_CHECK;
2091} 3497}
3498
3499#endif
2092 3500
2093#if EV_STAT_ENABLE 3501#if EV_STAT_ENABLE
2094 3502
2095# ifdef _WIN32 3503# ifdef _WIN32
2096# undef lstat 3504# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 3505# define lstat(a,b) _stati64 (a,b)
2098# endif 3506# endif
2099 3507
2100#define DEF_STAT_INTERVAL 5.0074891 3508#define DEF_STAT_INTERVAL 5.0074891
3509#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 3510#define MIN_STAT_INTERVAL 0.1074891
2102 3511
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3512static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 3513
2105#if EV_USE_INOTIFY 3514#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 3515
3516/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3517# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 3518
2108static void noinline 3519static void noinline
2109infy_add (EV_P_ ev_stat *w) 3520infy_add (EV_P_ ev_stat *w)
2110{ 3521{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3522 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 3523
2113 if (w->wd < 0) 3524 if (w->wd >= 0)
3525 {
3526 struct statfs sfs;
3527
3528 /* now local changes will be tracked by inotify, but remote changes won't */
3529 /* unless the filesystem is known to be local, we therefore still poll */
3530 /* also do poll on <2.6.25, but with normal frequency */
3531
3532 if (!fs_2625)
3533 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3534 else if (!statfs (w->path, &sfs)
3535 && (sfs.f_type == 0x1373 /* devfs */
3536 || sfs.f_type == 0xEF53 /* ext2/3 */
3537 || sfs.f_type == 0x3153464a /* jfs */
3538 || sfs.f_type == 0x52654973 /* reiser3 */
3539 || sfs.f_type == 0x01021994 /* tempfs */
3540 || sfs.f_type == 0x58465342 /* xfs */))
3541 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3542 else
3543 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 3544 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3545 else
3546 {
3547 /* can't use inotify, continue to stat */
3548 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 3549
2117 /* monitor some parent directory for speedup hints */ 3550 /* if path is not there, monitor some parent directory for speedup hints */
3551 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3552 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3553 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 3554 {
2120 char path [4096]; 3555 char path [4096];
2121 strcpy (path, w->path); 3556 strcpy (path, w->path);
2122 3557
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3560 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3561 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 3562
2128 char *pend = strrchr (path, '/'); 3563 char *pend = strrchr (path, '/');
2129 3564
2130 if (!pend) 3565 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 3566 break;
2132 3567
2133 *pend = 0; 3568 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 3569 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 3570 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3571 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 3572 }
2138 } 3573 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 3574
2142 if (w->wd >= 0) 3575 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3576 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3577
3578 /* now re-arm timer, if required */
3579 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3580 ev_timer_again (EV_A_ &w->timer);
3581 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 3582}
2145 3583
2146static void noinline 3584static void noinline
2147infy_del (EV_P_ ev_stat *w) 3585infy_del (EV_P_ ev_stat *w)
2148{ 3586{
2151 3589
2152 if (wd < 0) 3590 if (wd < 0)
2153 return; 3591 return;
2154 3592
2155 w->wd = -2; 3593 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3594 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w); 3595 wlist_del (&fs_hash [slot].head, (WL)w);
2158 3596
2159 /* remove this watcher, if others are watching it, they will rearm */ 3597 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd); 3598 inotify_rm_watch (fs_fd, wd);
2161} 3599}
2162 3600
2163static void noinline 3601static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3602infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 3603{
2166 if (slot < 0) 3604 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 3605 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3606 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3607 infy_wd (EV_A_ slot, wd, ev);
2170 else 3608 else
2171 { 3609 {
2172 WL w_; 3610 WL w_;
2173 3611
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3612 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2175 { 3613 {
2176 ev_stat *w = (ev_stat *)w_; 3614 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */ 3615 w_ = w_->next; /* lets us remove this watcher and all before it */
2178 3616
2179 if (w->wd == wd || wd == -1) 3617 if (w->wd == wd || wd == -1)
2180 { 3618 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3619 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3620 {
3621 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2183 w->wd = -1; 3622 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3623 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3624 }
2186 3625
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3626 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3631
2193static void 3632static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3633infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3634{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3635 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3636 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3637 int len = read (fs_fd, buf, sizeof (buf));
2200 3638
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3639 for (ofs = 0; ofs < len; )
3640 {
3641 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3642 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3643 ofs += sizeof (struct inotify_event) + ev->len;
3644 }
2203} 3645}
2204 3646
2205void inline_size 3647inline_size void ecb_cold
3648ev_check_2625 (EV_P)
3649{
3650 /* kernels < 2.6.25 are borked
3651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3652 */
3653 if (ev_linux_version () < 0x020619)
3654 return;
3655
3656 fs_2625 = 1;
3657}
3658
3659inline_size int
3660infy_newfd (void)
3661{
3662#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3663 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3664 if (fd >= 0)
3665 return fd;
3666#endif
3667 return inotify_init ();
3668}
3669
3670inline_size void
2206infy_init (EV_P) 3671infy_init (EV_P)
2207{ 3672{
2208 if (fs_fd != -2) 3673 if (fs_fd != -2)
2209 return; 3674 return;
2210 3675
3676 fs_fd = -1;
3677
3678 ev_check_2625 (EV_A);
3679
2211 fs_fd = inotify_init (); 3680 fs_fd = infy_newfd ();
2212 3681
2213 if (fs_fd >= 0) 3682 if (fs_fd >= 0)
2214 { 3683 {
3684 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3685 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3686 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3687 ev_io_start (EV_A_ &fs_w);
3688 ev_unref (EV_A);
2218 } 3689 }
2219} 3690}
2220 3691
2221void inline_size 3692inline_size void
2222infy_fork (EV_P) 3693infy_fork (EV_P)
2223{ 3694{
2224 int slot; 3695 int slot;
2225 3696
2226 if (fs_fd < 0) 3697 if (fs_fd < 0)
2227 return; 3698 return;
2228 3699
3700 ev_ref (EV_A);
3701 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3702 close (fs_fd);
2230 fs_fd = inotify_init (); 3703 fs_fd = infy_newfd ();
2231 3704
3705 if (fs_fd >= 0)
3706 {
3707 fd_intern (fs_fd);
3708 ev_io_set (&fs_w, fs_fd, EV_READ);
3709 ev_io_start (EV_A_ &fs_w);
3710 ev_unref (EV_A);
3711 }
3712
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3713 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2233 { 3714 {
2234 WL w_ = fs_hash [slot].head; 3715 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3716 fs_hash [slot].head = 0;
2236 3717
2237 while (w_) 3718 while (w_)
2242 w->wd = -1; 3723 w->wd = -1;
2243 3724
2244 if (fs_fd >= 0) 3725 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3726 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3727 else
3728 {
3729 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3730 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3731 ev_timer_again (EV_A_ &w->timer);
3732 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3733 }
2248 } 3734 }
2249
2250 } 3735 }
2251} 3736}
2252 3737
3738#endif
3739
3740#ifdef _WIN32
3741# define EV_LSTAT(p,b) _stati64 (p, b)
3742#else
3743# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3744#endif
2254 3745
2255void 3746void
2256ev_stat_stat (EV_P_ ev_stat *w) 3747ev_stat_stat (EV_P_ ev_stat *w)
2257{ 3748{
2264static void noinline 3755static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3756stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3757{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3758 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3759
2269 /* we copy this here each the time so that */ 3760 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3761 ev_stat_stat (EV_A_ w);
2273 3762
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3763 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3764 if (
2276 w->prev.st_dev != w->attr.st_dev 3765 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3766 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3767 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3768 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3769 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3770 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3771 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3772 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3773 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3774 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3775 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3776 ) {
3777 /* we only update w->prev on actual differences */
3778 /* in case we test more often than invoke the callback, */
3779 /* to ensure that prev is always different to attr */
3780 w->prev = prev;
3781
2288 #if EV_USE_INOTIFY 3782 #if EV_USE_INOTIFY
3783 if (fs_fd >= 0)
3784 {
2289 infy_del (EV_A_ w); 3785 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3786 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3787 ev_stat_stat (EV_A_ w); /* avoid race... */
3788 }
2292 #endif 3789 #endif
2293 3790
2294 ev_feed_event (EV_A_ w, EV_STAT); 3791 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3792 }
2296} 3793}
2299ev_stat_start (EV_P_ ev_stat *w) 3796ev_stat_start (EV_P_ ev_stat *w)
2300{ 3797{
2301 if (expect_false (ev_is_active (w))) 3798 if (expect_false (ev_is_active (w)))
2302 return; 3799 return;
2303 3800
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3801 ev_stat_stat (EV_A_ w);
2309 3802
3803 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3804 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3805
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3806 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3807 ev_set_priority (&w->timer, ev_priority (w));
2315 3808
2316#if EV_USE_INOTIFY 3809#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3810 infy_init (EV_A);
2318 3811
2319 if (fs_fd >= 0) 3812 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3813 infy_add (EV_A_ w);
2321 else 3814 else
2322#endif 3815#endif
3816 {
2323 ev_timer_start (EV_A_ &w->timer); 3817 ev_timer_again (EV_A_ &w->timer);
3818 ev_unref (EV_A);
3819 }
2324 3820
2325 ev_start (EV_A_ (W)w, 1); 3821 ev_start (EV_A_ (W)w, 1);
3822
3823 EV_FREQUENT_CHECK;
2326} 3824}
2327 3825
2328void 3826void
2329ev_stat_stop (EV_P_ ev_stat *w) 3827ev_stat_stop (EV_P_ ev_stat *w)
2330{ 3828{
2331 clear_pending (EV_A_ (W)w); 3829 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3830 if (expect_false (!ev_is_active (w)))
2333 return; 3831 return;
2334 3832
3833 EV_FREQUENT_CHECK;
3834
2335#if EV_USE_INOTIFY 3835#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 3836 infy_del (EV_A_ w);
2337#endif 3837#endif
3838
3839 if (ev_is_active (&w->timer))
3840 {
3841 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 3842 ev_timer_stop (EV_A_ &w->timer);
3843 }
2339 3844
2340 ev_stop (EV_A_ (W)w); 3845 ev_stop (EV_A_ (W)w);
3846
3847 EV_FREQUENT_CHECK;
2341} 3848}
2342#endif 3849#endif
2343 3850
2344#if EV_IDLE_ENABLE 3851#if EV_IDLE_ENABLE
2345void 3852void
2348 if (expect_false (ev_is_active (w))) 3855 if (expect_false (ev_is_active (w)))
2349 return; 3856 return;
2350 3857
2351 pri_adjust (EV_A_ (W)w); 3858 pri_adjust (EV_A_ (W)w);
2352 3859
3860 EV_FREQUENT_CHECK;
3861
2353 { 3862 {
2354 int active = ++idlecnt [ABSPRI (w)]; 3863 int active = ++idlecnt [ABSPRI (w)];
2355 3864
2356 ++idleall; 3865 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 3866 ev_start (EV_A_ (W)w, active);
2358 3867
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3868 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 3869 idles [ABSPRI (w)][active - 1] = w;
2361 } 3870 }
3871
3872 EV_FREQUENT_CHECK;
2362} 3873}
2363 3874
2364void 3875void
2365ev_idle_stop (EV_P_ ev_idle *w) 3876ev_idle_stop (EV_P_ ev_idle *w)
2366{ 3877{
2367 clear_pending (EV_A_ (W)w); 3878 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3879 if (expect_false (!ev_is_active (w)))
2369 return; 3880 return;
2370 3881
3882 EV_FREQUENT_CHECK;
3883
2371 { 3884 {
2372 int active = ((W)w)->active; 3885 int active = ev_active (w);
2373 3886
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3887 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3888 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 3889
2377 ev_stop (EV_A_ (W)w); 3890 ev_stop (EV_A_ (W)w);
2378 --idleall; 3891 --idleall;
2379 } 3892 }
2380}
2381#endif
2382 3893
3894 EV_FREQUENT_CHECK;
3895}
3896#endif
3897
3898#if EV_PREPARE_ENABLE
2383void 3899void
2384ev_prepare_start (EV_P_ ev_prepare *w) 3900ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 3901{
2386 if (expect_false (ev_is_active (w))) 3902 if (expect_false (ev_is_active (w)))
2387 return; 3903 return;
3904
3905 EV_FREQUENT_CHECK;
2388 3906
2389 ev_start (EV_A_ (W)w, ++preparecnt); 3907 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3908 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 3909 prepares [preparecnt - 1] = w;
3910
3911 EV_FREQUENT_CHECK;
2392} 3912}
2393 3913
2394void 3914void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 3915ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 3916{
2397 clear_pending (EV_A_ (W)w); 3917 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3918 if (expect_false (!ev_is_active (w)))
2399 return; 3919 return;
2400 3920
3921 EV_FREQUENT_CHECK;
3922
2401 { 3923 {
2402 int active = ((W)w)->active; 3924 int active = ev_active (w);
3925
2403 prepares [active - 1] = prepares [--preparecnt]; 3926 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 3927 ev_active (prepares [active - 1]) = active;
2405 } 3928 }
2406 3929
2407 ev_stop (EV_A_ (W)w); 3930 ev_stop (EV_A_ (W)w);
2408}
2409 3931
3932 EV_FREQUENT_CHECK;
3933}
3934#endif
3935
3936#if EV_CHECK_ENABLE
2410void 3937void
2411ev_check_start (EV_P_ ev_check *w) 3938ev_check_start (EV_P_ ev_check *w)
2412{ 3939{
2413 if (expect_false (ev_is_active (w))) 3940 if (expect_false (ev_is_active (w)))
2414 return; 3941 return;
3942
3943 EV_FREQUENT_CHECK;
2415 3944
2416 ev_start (EV_A_ (W)w, ++checkcnt); 3945 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3946 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 3947 checks [checkcnt - 1] = w;
3948
3949 EV_FREQUENT_CHECK;
2419} 3950}
2420 3951
2421void 3952void
2422ev_check_stop (EV_P_ ev_check *w) 3953ev_check_stop (EV_P_ ev_check *w)
2423{ 3954{
2424 clear_pending (EV_A_ (W)w); 3955 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 3956 if (expect_false (!ev_is_active (w)))
2426 return; 3957 return;
2427 3958
3959 EV_FREQUENT_CHECK;
3960
2428 { 3961 {
2429 int active = ((W)w)->active; 3962 int active = ev_active (w);
3963
2430 checks [active - 1] = checks [--checkcnt]; 3964 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 3965 ev_active (checks [active - 1]) = active;
2432 } 3966 }
2433 3967
2434 ev_stop (EV_A_ (W)w); 3968 ev_stop (EV_A_ (W)w);
3969
3970 EV_FREQUENT_CHECK;
2435} 3971}
3972#endif
2436 3973
2437#if EV_EMBED_ENABLE 3974#if EV_EMBED_ENABLE
2438void noinline 3975void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 3976ev_embed_sweep (EV_P_ ev_embed *w)
2440{ 3977{
2441 ev_loop (w->other, EVLOOP_NONBLOCK); 3978 ev_run (w->other, EVRUN_NOWAIT);
2442} 3979}
2443 3980
2444static void 3981static void
2445embed_io_cb (EV_P_ ev_io *io, int revents) 3982embed_io_cb (EV_P_ ev_io *io, int revents)
2446{ 3983{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3984 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448 3985
2449 if (ev_cb (w)) 3986 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3987 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else 3988 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK); 3989 ev_run (w->other, EVRUN_NOWAIT);
2453} 3990}
2454 3991
2455static void 3992static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3993embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 3994{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3995 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 3996
2460 { 3997 {
2461 struct ev_loop *loop = w->other; 3998 EV_P = w->other;
2462 3999
2463 while (fdchangecnt) 4000 while (fdchangecnt)
2464 { 4001 {
2465 fd_reify (EV_A); 4002 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4003 ev_run (EV_A_ EVRUN_NOWAIT);
2467 } 4004 }
2468 } 4005 }
4006}
4007
4008static void
4009embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4010{
4011 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4012
4013 ev_embed_stop (EV_A_ w);
4014
4015 {
4016 EV_P = w->other;
4017
4018 ev_loop_fork (EV_A);
4019 ev_run (EV_A_ EVRUN_NOWAIT);
4020 }
4021
4022 ev_embed_start (EV_A_ w);
2469} 4023}
2470 4024
2471#if 0 4025#if 0
2472static void 4026static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4027embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2481{ 4035{
2482 if (expect_false (ev_is_active (w))) 4036 if (expect_false (ev_is_active (w)))
2483 return; 4037 return;
2484 4038
2485 { 4039 {
2486 struct ev_loop *loop = w->other; 4040 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4041 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4042 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 4043 }
4044
4045 EV_FREQUENT_CHECK;
2490 4046
2491 ev_set_priority (&w->io, ev_priority (w)); 4047 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 4048 ev_io_start (EV_A_ &w->io);
2493 4049
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 4050 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 4051 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 4052 ev_prepare_start (EV_A_ &w->prepare);
2497 4053
4054 ev_fork_init (&w->fork, embed_fork_cb);
4055 ev_fork_start (EV_A_ &w->fork);
4056
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4057 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 4058
2500 ev_start (EV_A_ (W)w, 1); 4059 ev_start (EV_A_ (W)w, 1);
4060
4061 EV_FREQUENT_CHECK;
2501} 4062}
2502 4063
2503void 4064void
2504ev_embed_stop (EV_P_ ev_embed *w) 4065ev_embed_stop (EV_P_ ev_embed *w)
2505{ 4066{
2506 clear_pending (EV_A_ (W)w); 4067 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 4068 if (expect_false (!ev_is_active (w)))
2508 return; 4069 return;
2509 4070
4071 EV_FREQUENT_CHECK;
4072
2510 ev_io_stop (EV_A_ &w->io); 4073 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 4074 ev_prepare_stop (EV_A_ &w->prepare);
4075 ev_fork_stop (EV_A_ &w->fork);
2512 4076
2513 ev_stop (EV_A_ (W)w); 4077 ev_stop (EV_A_ (W)w);
4078
4079 EV_FREQUENT_CHECK;
2514} 4080}
2515#endif 4081#endif
2516 4082
2517#if EV_FORK_ENABLE 4083#if EV_FORK_ENABLE
2518void 4084void
2519ev_fork_start (EV_P_ ev_fork *w) 4085ev_fork_start (EV_P_ ev_fork *w)
2520{ 4086{
2521 if (expect_false (ev_is_active (w))) 4087 if (expect_false (ev_is_active (w)))
2522 return; 4088 return;
2523 4089
4090 EV_FREQUENT_CHECK;
4091
2524 ev_start (EV_A_ (W)w, ++forkcnt); 4092 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4093 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 4094 forks [forkcnt - 1] = w;
4095
4096 EV_FREQUENT_CHECK;
2527} 4097}
2528 4098
2529void 4099void
2530ev_fork_stop (EV_P_ ev_fork *w) 4100ev_fork_stop (EV_P_ ev_fork *w)
2531{ 4101{
2532 clear_pending (EV_A_ (W)w); 4102 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 4103 if (expect_false (!ev_is_active (w)))
2534 return; 4104 return;
2535 4105
4106 EV_FREQUENT_CHECK;
4107
2536 { 4108 {
2537 int active = ((W)w)->active; 4109 int active = ev_active (w);
4110
2538 forks [active - 1] = forks [--forkcnt]; 4111 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 4112 ev_active (forks [active - 1]) = active;
2540 } 4113 }
2541 4114
2542 ev_stop (EV_A_ (W)w); 4115 ev_stop (EV_A_ (W)w);
4116
4117 EV_FREQUENT_CHECK;
4118}
4119#endif
4120
4121#if EV_CLEANUP_ENABLE
4122void
4123ev_cleanup_start (EV_P_ ev_cleanup *w)
4124{
4125 if (expect_false (ev_is_active (w)))
4126 return;
4127
4128 EV_FREQUENT_CHECK;
4129
4130 ev_start (EV_A_ (W)w, ++cleanupcnt);
4131 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4132 cleanups [cleanupcnt - 1] = w;
4133
4134 /* cleanup watchers should never keep a refcount on the loop */
4135 ev_unref (EV_A);
4136 EV_FREQUENT_CHECK;
4137}
4138
4139void
4140ev_cleanup_stop (EV_P_ ev_cleanup *w)
4141{
4142 clear_pending (EV_A_ (W)w);
4143 if (expect_false (!ev_is_active (w)))
4144 return;
4145
4146 EV_FREQUENT_CHECK;
4147 ev_ref (EV_A);
4148
4149 {
4150 int active = ev_active (w);
4151
4152 cleanups [active - 1] = cleanups [--cleanupcnt];
4153 ev_active (cleanups [active - 1]) = active;
4154 }
4155
4156 ev_stop (EV_A_ (W)w);
4157
4158 EV_FREQUENT_CHECK;
2543} 4159}
2544#endif 4160#endif
2545 4161
2546#if EV_ASYNC_ENABLE 4162#if EV_ASYNC_ENABLE
2547void 4163void
2548ev_async_start (EV_P_ ev_async *w) 4164ev_async_start (EV_P_ ev_async *w)
2549{ 4165{
2550 if (expect_false (ev_is_active (w))) 4166 if (expect_false (ev_is_active (w)))
2551 return; 4167 return;
2552 4168
4169 w->sent = 0;
4170
2553 evpipe_init (EV_A); 4171 evpipe_init (EV_A);
4172
4173 EV_FREQUENT_CHECK;
2554 4174
2555 ev_start (EV_A_ (W)w, ++asynccnt); 4175 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4176 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 4177 asyncs [asynccnt - 1] = w;
4178
4179 EV_FREQUENT_CHECK;
2558} 4180}
2559 4181
2560void 4182void
2561ev_async_stop (EV_P_ ev_async *w) 4183ev_async_stop (EV_P_ ev_async *w)
2562{ 4184{
2563 clear_pending (EV_A_ (W)w); 4185 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 4186 if (expect_false (!ev_is_active (w)))
2565 return; 4187 return;
2566 4188
4189 EV_FREQUENT_CHECK;
4190
2567 { 4191 {
2568 int active = ((W)w)->active; 4192 int active = ev_active (w);
4193
2569 asyncs [active - 1] = asyncs [--asynccnt]; 4194 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 4195 ev_active (asyncs [active - 1]) = active;
2571 } 4196 }
2572 4197
2573 ev_stop (EV_A_ (W)w); 4198 ev_stop (EV_A_ (W)w);
4199
4200 EV_FREQUENT_CHECK;
2574} 4201}
2575 4202
2576void 4203void
2577ev_async_send (EV_P_ ev_async *w) 4204ev_async_send (EV_P_ ev_async *w)
2578{ 4205{
2579 w->sent = 1; 4206 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 4207 evpipe_write (EV_A_ &async_pending);
2581} 4208}
2582#endif 4209#endif
2583 4210
2584/*****************************************************************************/ 4211/*****************************************************************************/
2585 4212
2595once_cb (EV_P_ struct ev_once *once, int revents) 4222once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 4223{
2597 void (*cb)(int revents, void *arg) = once->cb; 4224 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 4225 void *arg = once->arg;
2599 4226
2600 ev_io_stop (EV_A_ &once->io); 4227 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 4228 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 4229 ev_free (once);
2603 4230
2604 cb (revents, arg); 4231 cb (revents, arg);
2605} 4232}
2606 4233
2607static void 4234static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 4235once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 4236{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4237 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4238
4239 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 4240}
2612 4241
2613static void 4242static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 4243once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 4244{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4245 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4246
4247 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 4248}
2618 4249
2619void 4250void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4251ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 4252{
2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4253 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2623 4254
2624 if (expect_false (!once)) 4255 if (expect_false (!once))
2625 { 4256 {
2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4257 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2627 return; 4258 return;
2628 } 4259 }
2629 4260
2630 once->cb = cb; 4261 once->cb = cb;
2631 once->arg = arg; 4262 once->arg = arg;
2643 ev_timer_set (&once->to, timeout, 0.); 4274 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 4275 ev_timer_start (EV_A_ &once->to);
2645 } 4276 }
2646} 4277}
2647 4278
4279/*****************************************************************************/
4280
4281#if EV_WALK_ENABLE
4282void ecb_cold
4283ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4284{
4285 int i, j;
4286 ev_watcher_list *wl, *wn;
4287
4288 if (types & (EV_IO | EV_EMBED))
4289 for (i = 0; i < anfdmax; ++i)
4290 for (wl = anfds [i].head; wl; )
4291 {
4292 wn = wl->next;
4293
4294#if EV_EMBED_ENABLE
4295 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4296 {
4297 if (types & EV_EMBED)
4298 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4299 }
4300 else
4301#endif
4302#if EV_USE_INOTIFY
4303 if (ev_cb ((ev_io *)wl) == infy_cb)
4304 ;
4305 else
4306#endif
4307 if ((ev_io *)wl != &pipe_w)
4308 if (types & EV_IO)
4309 cb (EV_A_ EV_IO, wl);
4310
4311 wl = wn;
4312 }
4313
4314 if (types & (EV_TIMER | EV_STAT))
4315 for (i = timercnt + HEAP0; i-- > HEAP0; )
4316#if EV_STAT_ENABLE
4317 /*TODO: timer is not always active*/
4318 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4319 {
4320 if (types & EV_STAT)
4321 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4322 }
4323 else
4324#endif
4325 if (types & EV_TIMER)
4326 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4327
4328#if EV_PERIODIC_ENABLE
4329 if (types & EV_PERIODIC)
4330 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4331 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4332#endif
4333
4334#if EV_IDLE_ENABLE
4335 if (types & EV_IDLE)
4336 for (j = NUMPRI; j--; )
4337 for (i = idlecnt [j]; i--; )
4338 cb (EV_A_ EV_IDLE, idles [j][i]);
4339#endif
4340
4341#if EV_FORK_ENABLE
4342 if (types & EV_FORK)
4343 for (i = forkcnt; i--; )
4344 if (ev_cb (forks [i]) != embed_fork_cb)
4345 cb (EV_A_ EV_FORK, forks [i]);
4346#endif
4347
4348#if EV_ASYNC_ENABLE
4349 if (types & EV_ASYNC)
4350 for (i = asynccnt; i--; )
4351 cb (EV_A_ EV_ASYNC, asyncs [i]);
4352#endif
4353
4354#if EV_PREPARE_ENABLE
4355 if (types & EV_PREPARE)
4356 for (i = preparecnt; i--; )
4357# if EV_EMBED_ENABLE
4358 if (ev_cb (prepares [i]) != embed_prepare_cb)
4359# endif
4360 cb (EV_A_ EV_PREPARE, prepares [i]);
4361#endif
4362
4363#if EV_CHECK_ENABLE
4364 if (types & EV_CHECK)
4365 for (i = checkcnt; i--; )
4366 cb (EV_A_ EV_CHECK, checks [i]);
4367#endif
4368
4369#if EV_SIGNAL_ENABLE
4370 if (types & EV_SIGNAL)
4371 for (i = 0; i < EV_NSIG - 1; ++i)
4372 for (wl = signals [i].head; wl; )
4373 {
4374 wn = wl->next;
4375 cb (EV_A_ EV_SIGNAL, wl);
4376 wl = wn;
4377 }
4378#endif
4379
4380#if EV_CHILD_ENABLE
4381 if (types & EV_CHILD)
4382 for (i = (EV_PID_HASHSIZE); i--; )
4383 for (wl = childs [i]; wl; )
4384 {
4385 wn = wl->next;
4386 cb (EV_A_ EV_CHILD, wl);
4387 wl = wn;
4388 }
4389#endif
4390/* EV_STAT 0x00001000 /* stat data changed */
4391/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4392}
4393#endif
4394
2648#if EV_MULTIPLICITY 4395#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 4396 #include "ev_wrap.h"
2650#endif 4397#endif
2651 4398
2652#ifdef __cplusplus 4399EV_CPP(})
2653}
2654#endif
2655 4400

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines