ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.260 by root, Mon Sep 8 17:24:39 2008 UTC vs.
Revision 1.394 by root, Thu Aug 4 14:49:27 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
160# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 197# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
164# endif 200# endif
201# undef EV_AVOID_STDIO
165#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
166 211
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
168 253
169#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 256# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 257# else
173# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
174# endif 259# endif
175#endif 260#endif
176 261
177#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 264#endif
180 265
181#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 267# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 268# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 269# else
185# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
186# endif 271# endif
187#endif 272#endif
188 273
189#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 276#endif
192 277
193#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
194# ifdef _WIN32 279# ifdef _WIN32
195# define EV_USE_POLL 0 280# define EV_USE_POLL 0
196# else 281# else
197# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 283# endif
199#endif 284#endif
200 285
201#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 289# else
205# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
206# endif 291# endif
207#endif 292#endif
208 293
214# define EV_USE_PORT 0 299# define EV_USE_PORT 0
215#endif 300#endif
216 301
217#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 305# else
221# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
222# endif 307# endif
223#endif 308#endif
224 309
225#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 312#endif
232 313
233#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 316#endif
240 317
241#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 321# else
245# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
246# endif 331# endif
247#endif 332#endif
248 333
249#if 0 /* debugging */ 334#if 0 /* debugging */
250# define EV_VERIFY 3 335# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 336# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 337# define EV_HEAP_CACHE_AT 1
253#endif 338#endif
254 339
255#ifndef EV_VERIFY 340#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 342#endif
258 343
259#ifndef EV_USE_4HEAP 344#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 345# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 346#endif
262 347
263#ifndef EV_HEAP_CACHE_AT 348#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
265#endif 364#endif
266 365
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
268 373
269#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
272#endif 377#endif
280# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
282#endif 387#endif
283 388
284#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
286# include <sys/select.h> 392# include <sys/select.h>
287# endif 393# endif
288#endif 394#endif
289 395
290#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
291# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
292#endif 404#endif
293 405
294#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h> 407# include <winsock.h>
296#endif 408#endif
297 409
298#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 412# include <stdint.h>
301# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
302extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
303# endif 415# endif
304int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 417# ifdef O_CLOEXEC
306} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
307# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
308#endif 446#endif
309 447
310/**/ 448/**/
311 449
312#if EV_VERIFY >= 3 450#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 451# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 452#else
315# define EV_FREQUENT_CHECK do { } while (0) 453# define EV_FREQUENT_CHECK do { } while (0)
316#endif 454#endif
317 455
318/* 456/*
319 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */ 459 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
327 462
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
331 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
332#if __GNUC__ >= 4 510 #if __GNUC__
333# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
334# define noinline __attribute__ ((noinline)) 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
335#else 517#else
336# define expect(expr,value) (expr) 518 #include <inttypes.h>
337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
341#endif 533 #endif
534#endif
342 535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543#endif
544
545#ifndef ECB_MEMORY_FENCE
546 #if ECB_GCC_VERSION(2,5)
547 #if __x86
548 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 #elif __amd64
552 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 #endif
564 #endif
565#endif
566
567#ifndef ECB_MEMORY_FENCE
568 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
569 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 #elif defined(_WIN32)
578 #include <WinNT.h>
579 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 #endif
581#endif
582
583#ifndef ECB_MEMORY_FENCE
584 #if !ECB_AVOID_PTHREADS
585 /*
586 * if you get undefined symbol references to pthread_mutex_lock,
587 * or failure to find pthread.h, then you should implement
588 * the ECB_MEMORY_FENCE operations for your cpu/compiler
589 * OR provide pthread.h and link against the posix thread library
590 * of your system.
591 */
592 #include <pthread.h>
593 #define ECB_NEEDS_PTHREADS 1
594 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595
596 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598 #endif
599#endif
600
601#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603#endif
604
605#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607#endif
608
609/*****************************************************************************/
610
611#define ECB_C99 (__STDC_VERSION__ >= 199901L)
612
613#if __cplusplus
614 #define ecb_inline static inline
615#elif ECB_GCC_VERSION(2,5)
616 #define ecb_inline static __inline__
617#elif ECB_C99
618 #define ecb_inline static inline
619#else
620 #define ecb_inline static
621#endif
622
623#if ECB_GCC_VERSION(3,3)
624 #define ecb_restrict __restrict__
625#elif ECB_C99
626 #define ecb_restrict restrict
627#else
628 #define ecb_restrict
629#endif
630
631typedef int ecb_bool;
632
633#define ECB_CONCAT_(a, b) a ## b
634#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635#define ECB_STRINGIFY_(a) # a
636#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637
638#define ecb_function_ ecb_inline
639
640#if ECB_GCC_VERSION(3,1)
641 #define ecb_attribute(attrlist) __attribute__(attrlist)
642 #define ecb_is_constant(expr) __builtin_constant_p (expr)
643 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645#else
646 #define ecb_attribute(attrlist)
647 #define ecb_is_constant(expr) 0
648 #define ecb_expect(expr,value) (expr)
649 #define ecb_prefetch(addr,rw,locality)
650#endif
651
652/* no emulation for ecb_decltype */
653#if ECB_GCC_VERSION(4,5)
654 #define ecb_decltype(x) __decltype(x)
655#elif ECB_GCC_VERSION(3,0)
656 #define ecb_decltype(x) __typeof(x)
657#endif
658
659#define ecb_noinline ecb_attribute ((__noinline__))
660#define ecb_noreturn ecb_attribute ((__noreturn__))
661#define ecb_unused ecb_attribute ((__unused__))
662#define ecb_const ecb_attribute ((__const__))
663#define ecb_pure ecb_attribute ((__pure__))
664
665#if ECB_GCC_VERSION(4,3)
666 #define ecb_artificial ecb_attribute ((__artificial__))
667 #define ecb_hot ecb_attribute ((__hot__))
668 #define ecb_cold ecb_attribute ((__cold__))
669#else
670 #define ecb_artificial
671 #define ecb_hot
672 #define ecb_cold
673#endif
674
675/* put around conditional expressions if you are very sure that the */
676/* expression is mostly true or mostly false. note that these return */
677/* booleans, not the expression. */
343#define expect_false(expr) expect ((expr) != 0, 0) 678#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 679#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680/* for compatibility to the rest of the world */
681#define ecb_likely(expr) ecb_expect_true (expr)
682#define ecb_unlikely(expr) ecb_expect_false (expr)
683
684/* count trailing zero bits and count # of one bits */
685#if ECB_GCC_VERSION(3,4)
686 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689 #define ecb_ctz32(x) __builtin_ctz (x)
690 #define ecb_ctz64(x) __builtin_ctzll (x)
691 #define ecb_popcount32(x) __builtin_popcount (x)
692 /* no popcountll */
693#else
694 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695 ecb_function_ int
696 ecb_ctz32 (uint32_t x)
697 {
698 int r = 0;
699
700 x &= ~x + 1; /* this isolates the lowest bit */
701
702#if ECB_branchless_on_i386
703 r += !!(x & 0xaaaaaaaa) << 0;
704 r += !!(x & 0xcccccccc) << 1;
705 r += !!(x & 0xf0f0f0f0) << 2;
706 r += !!(x & 0xff00ff00) << 3;
707 r += !!(x & 0xffff0000) << 4;
708#else
709 if (x & 0xaaaaaaaa) r += 1;
710 if (x & 0xcccccccc) r += 2;
711 if (x & 0xf0f0f0f0) r += 4;
712 if (x & 0xff00ff00) r += 8;
713 if (x & 0xffff0000) r += 16;
714#endif
715
716 return r;
717 }
718
719 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720 ecb_function_ int
721 ecb_ctz64 (uint64_t x)
722 {
723 int shift = x & 0xffffffffU ? 0 : 32;
724 return ecb_ctz32 (x >> shift) + shift;
725 }
726
727 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728 ecb_function_ int
729 ecb_popcount32 (uint32_t x)
730 {
731 x -= (x >> 1) & 0x55555555;
732 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733 x = ((x >> 4) + x) & 0x0f0f0f0f;
734 x *= 0x01010101;
735
736 return x >> 24;
737 }
738
739 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740 ecb_function_ int ecb_ld32 (uint32_t x)
741 {
742 int r = 0;
743
744 if (x >> 16) { x >>= 16; r += 16; }
745 if (x >> 8) { x >>= 8; r += 8; }
746 if (x >> 4) { x >>= 4; r += 4; }
747 if (x >> 2) { x >>= 2; r += 2; }
748 if (x >> 1) { r += 1; }
749
750 return r;
751 }
752
753 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754 ecb_function_ int ecb_ld64 (uint64_t x)
755 {
756 int r = 0;
757
758 if (x >> 32) { x >>= 32; r += 32; }
759
760 return r + ecb_ld32 (x);
761 }
762#endif
763
764/* popcount64 is only available on 64 bit cpus as gcc builtin */
765/* so for this version we are lazy */
766ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767ecb_function_ int
768ecb_popcount64 (uint64_t x)
769{
770 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771}
772
773ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781
782ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790
791#if ECB_GCC_VERSION(4,3)
792 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793 #define ecb_bswap32(x) __builtin_bswap32 (x)
794 #define ecb_bswap64(x) __builtin_bswap64 (x)
795#else
796 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797 ecb_function_ uint16_t
798 ecb_bswap16 (uint16_t x)
799 {
800 return ecb_rotl16 (x, 8);
801 }
802
803 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804 ecb_function_ uint32_t
805 ecb_bswap32 (uint32_t x)
806 {
807 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808 }
809
810 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811 ecb_function_ uint64_t
812 ecb_bswap64 (uint64_t x)
813 {
814 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815 }
816#endif
817
818#if ECB_GCC_VERSION(4,5)
819 #define ecb_unreachable() __builtin_unreachable ()
820#else
821 /* this seems to work fine, but gcc always emits a warning for it :/ */
822 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823 ecb_function_ void ecb_unreachable (void) { }
824#endif
825
826/* try to tell the compiler that some condition is definitely true */
827#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828
829ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830ecb_function_ unsigned char
831ecb_byteorder_helper (void)
832{
833 const uint32_t u = 0x11223344;
834 return *(unsigned char *)&u;
835}
836
837ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841
842#if ECB_GCC_VERSION(3,0) || ECB_C99
843 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844#else
845 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846#endif
847
848#if ecb_cplusplus_does_not_suck
849 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
850 template<typename T, int N>
851 static inline int ecb_array_length (const T (&arr)[N])
852 {
853 return N;
854 }
855#else
856 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
857#endif
858
859#endif
860
861/* ECB.H END */
862
863#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
864# undef ECB_MEMORY_FENCE
865# undef ECB_MEMORY_FENCE_ACQUIRE
866# undef ECB_MEMORY_FENCE_RELEASE
867#endif
868
869#define expect_false(cond) ecb_expect_false (cond)
870#define expect_true(cond) ecb_expect_true (cond)
871#define noinline ecb_noinline
872
345#define inline_size static inline 873#define inline_size ecb_inline
346 874
347#if EV_MINIMAL 875#if EV_FEATURE_CODE
876# define inline_speed ecb_inline
877#else
348# define inline_speed static noinline 878# define inline_speed static noinline
879#endif
880
881#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
882
883#if EV_MINPRI == EV_MAXPRI
884# define ABSPRI(w) (((W)w), 0)
349#else 885#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 886# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
887#endif
355 888
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 889#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 890#define EMPTY2(a,b) /* used to suppress some warnings */
358 891
359typedef ev_watcher *W; 892typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 894typedef ev_watcher_time *WT;
362 895
363#define ev_active(w) ((W)(w))->active 896#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 897#define ev_at(w) ((WT)(w))->at
365 898
899#if EV_USE_REALTIME
900/* sig_atomic_t is used to avoid per-thread variables or locking but still */
901/* giving it a reasonably high chance of working on typical architectures */
902static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
903#endif
904
366#if EV_USE_MONOTONIC 905#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 906static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
907#endif
908
909#ifndef EV_FD_TO_WIN32_HANDLE
910# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
911#endif
912#ifndef EV_WIN32_HANDLE_TO_FD
913# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
914#endif
915#ifndef EV_WIN32_CLOSE_FD
916# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 917#endif
371 918
372#ifdef _WIN32 919#ifdef _WIN32
373# include "ev_win32.c" 920# include "ev_win32.c"
374#endif 921#endif
375 922
376/*****************************************************************************/ 923/*****************************************************************************/
377 924
925/* define a suitable floor function (only used by periodics atm) */
926
927#if EV_USE_FLOOR
928# include <math.h>
929# define ev_floor(v) floor (v)
930#else
931
932#include <float.h>
933
934/* a floor() replacement function, should be independent of ev_tstamp type */
935static ev_tstamp noinline
936ev_floor (ev_tstamp v)
937{
938 /* the choice of shift factor is not terribly important */
939#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
940 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
941#else
942 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
943#endif
944
945 /* argument too large for an unsigned long? */
946 if (expect_false (v >= shift))
947 {
948 ev_tstamp f;
949
950 if (v == v - 1.)
951 return v; /* very large number */
952
953 f = shift * ev_floor (v * (1. / shift));
954 return f + ev_floor (v - f);
955 }
956
957 /* special treatment for negative args? */
958 if (expect_false (v < 0.))
959 {
960 ev_tstamp f = -ev_floor (-v);
961
962 return f - (f == v ? 0 : 1);
963 }
964
965 /* fits into an unsigned long */
966 return (unsigned long)v;
967}
968
969#endif
970
971/*****************************************************************************/
972
973#ifdef __linux
974# include <sys/utsname.h>
975#endif
976
977static unsigned int noinline ecb_cold
978ev_linux_version (void)
979{
980#ifdef __linux
981 unsigned int v = 0;
982 struct utsname buf;
983 int i;
984 char *p = buf.release;
985
986 if (uname (&buf))
987 return 0;
988
989 for (i = 3+1; --i; )
990 {
991 unsigned int c = 0;
992
993 for (;;)
994 {
995 if (*p >= '0' && *p <= '9')
996 c = c * 10 + *p++ - '0';
997 else
998 {
999 p += *p == '.';
1000 break;
1001 }
1002 }
1003
1004 v = (v << 8) | c;
1005 }
1006
1007 return v;
1008#else
1009 return 0;
1010#endif
1011}
1012
1013/*****************************************************************************/
1014
1015#if EV_AVOID_STDIO
1016static void noinline ecb_cold
1017ev_printerr (const char *msg)
1018{
1019 write (STDERR_FILENO, msg, strlen (msg));
1020}
1021#endif
1022
378static void (*syserr_cb)(const char *msg); 1023static void (*syserr_cb)(const char *msg);
379 1024
380void 1025void ecb_cold
381ev_set_syserr_cb (void (*cb)(const char *msg)) 1026ev_set_syserr_cb (void (*cb)(const char *msg))
382{ 1027{
383 syserr_cb = cb; 1028 syserr_cb = cb;
384} 1029}
385 1030
386static void noinline 1031static void noinline ecb_cold
387syserr (const char *msg) 1032ev_syserr (const char *msg)
388{ 1033{
389 if (!msg) 1034 if (!msg)
390 msg = "(libev) system error"; 1035 msg = "(libev) system error";
391 1036
392 if (syserr_cb) 1037 if (syserr_cb)
393 syserr_cb (msg); 1038 syserr_cb (msg);
394 else 1039 else
395 { 1040 {
1041#if EV_AVOID_STDIO
1042 ev_printerr (msg);
1043 ev_printerr (": ");
1044 ev_printerr (strerror (errno));
1045 ev_printerr ("\n");
1046#else
396 perror (msg); 1047 perror (msg);
1048#endif
397 abort (); 1049 abort ();
398 } 1050 }
399} 1051}
400 1052
401static void * 1053static void *
402ev_realloc_emul (void *ptr, long size) 1054ev_realloc_emul (void *ptr, long size)
403{ 1055{
1056#if __GLIBC__
1057 return realloc (ptr, size);
1058#else
404 /* some systems, notably openbsd and darwin, fail to properly 1059 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 1060 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 1061 * the single unix specification, so work around them here.
407 */ 1062 */
408 1063
409 if (size) 1064 if (size)
410 return realloc (ptr, size); 1065 return realloc (ptr, size);
411 1066
412 free (ptr); 1067 free (ptr);
413 return 0; 1068 return 0;
1069#endif
414} 1070}
415 1071
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1072static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
417 1073
418void 1074void ecb_cold
419ev_set_allocator (void *(*cb)(void *ptr, long size)) 1075ev_set_allocator (void *(*cb)(void *ptr, long size))
420{ 1076{
421 alloc = cb; 1077 alloc = cb;
422} 1078}
423 1079
426{ 1082{
427 ptr = alloc (ptr, size); 1083 ptr = alloc (ptr, size);
428 1084
429 if (!ptr && size) 1085 if (!ptr && size)
430 { 1086 {
1087#if EV_AVOID_STDIO
1088 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1089#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1090 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1091#endif
432 abort (); 1092 abort ();
433 } 1093 }
434 1094
435 return ptr; 1095 return ptr;
436} 1096}
438#define ev_malloc(size) ev_realloc (0, (size)) 1098#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 1099#define ev_free(ptr) ev_realloc ((ptr), 0)
440 1100
441/*****************************************************************************/ 1101/*****************************************************************************/
442 1102
1103/* set in reify when reification needed */
1104#define EV_ANFD_REIFY 1
1105
1106/* file descriptor info structure */
443typedef struct 1107typedef struct
444{ 1108{
445 WL head; 1109 WL head;
446 unsigned char events; 1110 unsigned char events; /* the events watched for */
1111 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1112 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 1113 unsigned char unused;
1114#if EV_USE_EPOLL
1115 unsigned int egen; /* generation counter to counter epoll bugs */
1116#endif
448#if EV_SELECT_IS_WINSOCKET 1117#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 1118 SOCKET handle;
450#endif 1119#endif
1120#if EV_USE_IOCP
1121 OVERLAPPED or, ow;
1122#endif
451} ANFD; 1123} ANFD;
452 1124
1125/* stores the pending event set for a given watcher */
453typedef struct 1126typedef struct
454{ 1127{
455 W w; 1128 W w;
456 int events; 1129 int events; /* the pending event set for the given watcher */
457} ANPENDING; 1130} ANPENDING;
458 1131
459#if EV_USE_INOTIFY 1132#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 1133/* hash table entry per inotify-id */
461typedef struct 1134typedef struct
464} ANFS; 1137} ANFS;
465#endif 1138#endif
466 1139
467/* Heap Entry */ 1140/* Heap Entry */
468#if EV_HEAP_CACHE_AT 1141#if EV_HEAP_CACHE_AT
1142 /* a heap element */
469 typedef struct { 1143 typedef struct {
470 ev_tstamp at; 1144 ev_tstamp at;
471 WT w; 1145 WT w;
472 } ANHE; 1146 } ANHE;
473 1147
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1148 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1149 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1150 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 1151#else
1152 /* a heap element */
478 typedef WT ANHE; 1153 typedef WT ANHE;
479 1154
480 #define ANHE_w(he) (he) 1155 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 1156 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 1157 #define ANHE_at_cache(he)
506 1181
507 static int ev_default_loop_ptr; 1182 static int ev_default_loop_ptr;
508 1183
509#endif 1184#endif
510 1185
1186#if EV_FEATURE_API
1187# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1188# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1189# define EV_INVOKE_PENDING invoke_cb (EV_A)
1190#else
1191# define EV_RELEASE_CB (void)0
1192# define EV_ACQUIRE_CB (void)0
1193# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1194#endif
1195
1196#define EVBREAK_RECURSE 0x80
1197
511/*****************************************************************************/ 1198/*****************************************************************************/
512 1199
1200#ifndef EV_HAVE_EV_TIME
513ev_tstamp 1201ev_tstamp
514ev_time (void) 1202ev_time (void)
515{ 1203{
516#if EV_USE_REALTIME 1204#if EV_USE_REALTIME
1205 if (expect_true (have_realtime))
1206 {
517 struct timespec ts; 1207 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 1208 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 1209 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 1210 }
1211#endif
1212
521 struct timeval tv; 1213 struct timeval tv;
522 gettimeofday (&tv, 0); 1214 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 1215 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 1216}
1217#endif
526 1218
527ev_tstamp inline_size 1219inline_size ev_tstamp
528get_clock (void) 1220get_clock (void)
529{ 1221{
530#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
532 { 1224 {
553 if (delay > 0.) 1245 if (delay > 0.)
554 { 1246 {
555#if EV_USE_NANOSLEEP 1247#if EV_USE_NANOSLEEP
556 struct timespec ts; 1248 struct timespec ts;
557 1249
558 ts.tv_sec = (time_t)delay; 1250 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 1251 nanosleep (&ts, 0);
562#elif defined(_WIN32) 1252#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3)); 1253 Sleep ((unsigned long)(delay * 1e3));
564#else 1254#else
565 struct timeval tv; 1255 struct timeval tv;
566 1256
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1258 /* something not guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */ 1259 /* by older ones */
1260 EV_TV_SET (tv, delay);
573 select (0, 0, 0, 0, &tv); 1261 select (0, 0, 0, 0, &tv);
574#endif 1262#endif
575 } 1263 }
576} 1264}
577 1265
578/*****************************************************************************/ 1266/*****************************************************************************/
579 1267
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1268#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581 1269
582int inline_size 1270/* find a suitable new size for the given array, */
1271/* hopefully by rounding to a nice-to-malloc size */
1272inline_size int
583array_nextsize (int elem, int cur, int cnt) 1273array_nextsize (int elem, int cur, int cnt)
584{ 1274{
585 int ncur = cur + 1; 1275 int ncur = cur + 1;
586 1276
587 do 1277 do
598 } 1288 }
599 1289
600 return ncur; 1290 return ncur;
601} 1291}
602 1292
603static noinline void * 1293static void * noinline ecb_cold
604array_realloc (int elem, void *base, int *cur, int cnt) 1294array_realloc (int elem, void *base, int *cur, int cnt)
605{ 1295{
606 *cur = array_nextsize (elem, *cur, cnt); 1296 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur); 1297 return ev_realloc (base, elem * *cur);
608} 1298}
1299
1300#define array_init_zero(base,count) \
1301 memset ((void *)(base), 0, sizeof (*(base)) * (count))
609 1302
610#define array_needsize(type,base,cur,cnt,init) \ 1303#define array_needsize(type,base,cur,cnt,init) \
611 if (expect_false ((cnt) > (cur))) \ 1304 if (expect_false ((cnt) > (cur))) \
612 { \ 1305 { \
613 int ocur_ = (cur); \ 1306 int ecb_unused ocur_ = (cur); \
614 (base) = (type *)array_realloc \ 1307 (base) = (type *)array_realloc \
615 (sizeof (type), (base), &(cur), (cnt)); \ 1308 (sizeof (type), (base), &(cur), (cnt)); \
616 init ((base) + (ocur_), (cur) - ocur_); \ 1309 init ((base) + (ocur_), (cur) - ocur_); \
617 } 1310 }
618 1311
625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1318 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626 } 1319 }
627#endif 1320#endif
628 1321
629#define array_free(stem, idx) \ 1322#define array_free(stem, idx) \
630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1323 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
631 1324
632/*****************************************************************************/ 1325/*****************************************************************************/
1326
1327/* dummy callback for pending events */
1328static void noinline
1329pendingcb (EV_P_ ev_prepare *w, int revents)
1330{
1331}
633 1332
634void noinline 1333void noinline
635ev_feed_event (EV_P_ void *w, int revents) 1334ev_feed_event (EV_P_ void *w, int revents)
636{ 1335{
637 W w_ = (W)w; 1336 W w_ = (W)w;
646 pendings [pri][w_->pending - 1].w = w_; 1345 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents; 1346 pendings [pri][w_->pending - 1].events = revents;
648 } 1347 }
649} 1348}
650 1349
651void inline_speed 1350inline_speed void
1351feed_reverse (EV_P_ W w)
1352{
1353 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1354 rfeeds [rfeedcnt++] = w;
1355}
1356
1357inline_size void
1358feed_reverse_done (EV_P_ int revents)
1359{
1360 do
1361 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1362 while (rfeedcnt);
1363}
1364
1365inline_speed void
652queue_events (EV_P_ W *events, int eventcnt, int type) 1366queue_events (EV_P_ W *events, int eventcnt, int type)
653{ 1367{
654 int i; 1368 int i;
655 1369
656 for (i = 0; i < eventcnt; ++i) 1370 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type); 1371 ev_feed_event (EV_A_ events [i], type);
658} 1372}
659 1373
660/*****************************************************************************/ 1374/*****************************************************************************/
661 1375
662void inline_size 1376inline_speed void
663anfds_init (ANFD *base, int count)
664{
665 while (count--)
666 {
667 base->head = 0;
668 base->events = EV_NONE;
669 base->reify = 0;
670
671 ++base;
672 }
673}
674
675void inline_speed
676fd_event (EV_P_ int fd, int revents) 1377fd_event_nocheck (EV_P_ int fd, int revents)
677{ 1378{
678 ANFD *anfd = anfds + fd; 1379 ANFD *anfd = anfds + fd;
679 ev_io *w; 1380 ev_io *w;
680 1381
681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1382 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
685 if (ev) 1386 if (ev)
686 ev_feed_event (EV_A_ (W)w, ev); 1387 ev_feed_event (EV_A_ (W)w, ev);
687 } 1388 }
688} 1389}
689 1390
1391/* do not submit kernel events for fds that have reify set */
1392/* because that means they changed while we were polling for new events */
1393inline_speed void
1394fd_event (EV_P_ int fd, int revents)
1395{
1396 ANFD *anfd = anfds + fd;
1397
1398 if (expect_true (!anfd->reify))
1399 fd_event_nocheck (EV_A_ fd, revents);
1400}
1401
690void 1402void
691ev_feed_fd_event (EV_P_ int fd, int revents) 1403ev_feed_fd_event (EV_P_ int fd, int revents)
692{ 1404{
693 if (fd >= 0 && fd < anfdmax) 1405 if (fd >= 0 && fd < anfdmax)
694 fd_event (EV_A_ fd, revents); 1406 fd_event_nocheck (EV_A_ fd, revents);
695} 1407}
696 1408
697void inline_size 1409/* make sure the external fd watch events are in-sync */
1410/* with the kernel/libev internal state */
1411inline_size void
698fd_reify (EV_P) 1412fd_reify (EV_P)
699{ 1413{
700 int i; 1414 int i;
1415
1416#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1417 for (i = 0; i < fdchangecnt; ++i)
1418 {
1419 int fd = fdchanges [i];
1420 ANFD *anfd = anfds + fd;
1421
1422 if (anfd->reify & EV__IOFDSET && anfd->head)
1423 {
1424 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1425
1426 if (handle != anfd->handle)
1427 {
1428 unsigned long arg;
1429
1430 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1431
1432 /* handle changed, but fd didn't - we need to do it in two steps */
1433 backend_modify (EV_A_ fd, anfd->events, 0);
1434 anfd->events = 0;
1435 anfd->handle = handle;
1436 }
1437 }
1438 }
1439#endif
701 1440
702 for (i = 0; i < fdchangecnt; ++i) 1441 for (i = 0; i < fdchangecnt; ++i)
703 { 1442 {
704 int fd = fdchanges [i]; 1443 int fd = fdchanges [i];
705 ANFD *anfd = anfds + fd; 1444 ANFD *anfd = anfds + fd;
706 ev_io *w; 1445 ev_io *w;
707 1446
708 unsigned char events = 0; 1447 unsigned char o_events = anfd->events;
1448 unsigned char o_reify = anfd->reify;
709 1449
710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1450 anfd->reify = 0;
711 events |= (unsigned char)w->events;
712 1451
713#if EV_SELECT_IS_WINSOCKET 1452 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
714 if (events)
715 { 1453 {
716 unsigned long arg; 1454 anfd->events = 0;
717 #ifdef EV_FD_TO_WIN32_HANDLE 1455
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1456 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
719 #else 1457 anfd->events |= (unsigned char)w->events;
720 anfd->handle = _get_osfhandle (fd); 1458
721 #endif 1459 if (o_events != anfd->events)
722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1460 o_reify = EV__IOFDSET; /* actually |= */
723 } 1461 }
724#endif
725 1462
726 { 1463 if (o_reify & EV__IOFDSET)
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
730 anfd->reify = 0;
731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events); 1464 backend_modify (EV_A_ fd, o_events, anfd->events);
735 }
736 } 1465 }
737 1466
738 fdchangecnt = 0; 1467 fdchangecnt = 0;
739} 1468}
740 1469
741void inline_size 1470/* something about the given fd changed */
1471inline_size void
742fd_change (EV_P_ int fd, int flags) 1472fd_change (EV_P_ int fd, int flags)
743{ 1473{
744 unsigned char reify = anfds [fd].reify; 1474 unsigned char reify = anfds [fd].reify;
745 anfds [fd].reify |= flags; 1475 anfds [fd].reify |= flags;
746 1476
750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1480 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751 fdchanges [fdchangecnt - 1] = fd; 1481 fdchanges [fdchangecnt - 1] = fd;
752 } 1482 }
753} 1483}
754 1484
755void inline_speed 1485/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1486inline_speed void ecb_cold
756fd_kill (EV_P_ int fd) 1487fd_kill (EV_P_ int fd)
757{ 1488{
758 ev_io *w; 1489 ev_io *w;
759 1490
760 while ((w = (ev_io *)anfds [fd].head)) 1491 while ((w = (ev_io *)anfds [fd].head))
762 ev_io_stop (EV_A_ w); 1493 ev_io_stop (EV_A_ w);
763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1494 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 } 1495 }
765} 1496}
766 1497
767int inline_size 1498/* check whether the given fd is actually valid, for error recovery */
1499inline_size int ecb_cold
768fd_valid (int fd) 1500fd_valid (int fd)
769{ 1501{
770#ifdef _WIN32 1502#ifdef _WIN32
771 return _get_osfhandle (fd) != -1; 1503 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
772#else 1504#else
773 return fcntl (fd, F_GETFD) != -1; 1505 return fcntl (fd, F_GETFD) != -1;
774#endif 1506#endif
775} 1507}
776 1508
777/* called on EBADF to verify fds */ 1509/* called on EBADF to verify fds */
778static void noinline 1510static void noinline ecb_cold
779fd_ebadf (EV_P) 1511fd_ebadf (EV_P)
780{ 1512{
781 int fd; 1513 int fd;
782 1514
783 for (fd = 0; fd < anfdmax; ++fd) 1515 for (fd = 0; fd < anfdmax; ++fd)
785 if (!fd_valid (fd) && errno == EBADF) 1517 if (!fd_valid (fd) && errno == EBADF)
786 fd_kill (EV_A_ fd); 1518 fd_kill (EV_A_ fd);
787} 1519}
788 1520
789/* called on ENOMEM in select/poll to kill some fds and retry */ 1521/* called on ENOMEM in select/poll to kill some fds and retry */
790static void noinline 1522static void noinline ecb_cold
791fd_enomem (EV_P) 1523fd_enomem (EV_P)
792{ 1524{
793 int fd; 1525 int fd;
794 1526
795 for (fd = anfdmax; fd--; ) 1527 for (fd = anfdmax; fd--; )
796 if (anfds [fd].events) 1528 if (anfds [fd].events)
797 { 1529 {
798 fd_kill (EV_A_ fd); 1530 fd_kill (EV_A_ fd);
799 return; 1531 break;
800 } 1532 }
801} 1533}
802 1534
803/* usually called after fork if backend needs to re-arm all fds from scratch */ 1535/* usually called after fork if backend needs to re-arm all fds from scratch */
804static void noinline 1536static void noinline
808 1540
809 for (fd = 0; fd < anfdmax; ++fd) 1541 for (fd = 0; fd < anfdmax; ++fd)
810 if (anfds [fd].events) 1542 if (anfds [fd].events)
811 { 1543 {
812 anfds [fd].events = 0; 1544 anfds [fd].events = 0;
1545 anfds [fd].emask = 0;
813 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1546 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
814 } 1547 }
815} 1548}
816 1549
1550/* used to prepare libev internal fd's */
1551/* this is not fork-safe */
1552inline_speed void
1553fd_intern (int fd)
1554{
1555#ifdef _WIN32
1556 unsigned long arg = 1;
1557 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1558#else
1559 fcntl (fd, F_SETFD, FD_CLOEXEC);
1560 fcntl (fd, F_SETFL, O_NONBLOCK);
1561#endif
1562}
1563
817/*****************************************************************************/ 1564/*****************************************************************************/
818 1565
819/* 1566/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not 1567 * the heap functions want a real array index. array index 0 is guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1568 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree. 1569 * the branching factor of the d-tree.
823 */ 1570 */
824 1571
825/* 1572/*
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1581#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1582#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k)) 1583#define UPHEAP_DONE(p,k) ((p) == (k))
837 1584
838/* away from the root */ 1585/* away from the root */
839void inline_speed 1586inline_speed void
840downheap (ANHE *heap, int N, int k) 1587downheap (ANHE *heap, int N, int k)
841{ 1588{
842 ANHE he = heap [k]; 1589 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0; 1590 ANHE *E = heap + N + HEAP0;
844 1591
884#define HEAP0 1 1631#define HEAP0 1
885#define HPARENT(k) ((k) >> 1) 1632#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p)) 1633#define UPHEAP_DONE(p,k) (!(p))
887 1634
888/* away from the root */ 1635/* away from the root */
889void inline_speed 1636inline_speed void
890downheap (ANHE *heap, int N, int k) 1637downheap (ANHE *heap, int N, int k)
891{ 1638{
892 ANHE he = heap [k]; 1639 ANHE he = heap [k];
893 1640
894 for (;;) 1641 for (;;)
895 { 1642 {
896 int c = k << 1; 1643 int c = k << 1;
897 1644
898 if (c > N + HEAP0 - 1) 1645 if (c >= N + HEAP0)
899 break; 1646 break;
900 1647
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1648 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0; 1649 ? 1 : 0;
903 1650
914 ev_active (ANHE_w (he)) = k; 1661 ev_active (ANHE_w (he)) = k;
915} 1662}
916#endif 1663#endif
917 1664
918/* towards the root */ 1665/* towards the root */
919void inline_speed 1666inline_speed void
920upheap (ANHE *heap, int k) 1667upheap (ANHE *heap, int k)
921{ 1668{
922 ANHE he = heap [k]; 1669 ANHE he = heap [k];
923 1670
924 for (;;) 1671 for (;;)
935 1682
936 heap [k] = he; 1683 heap [k] = he;
937 ev_active (ANHE_w (he)) = k; 1684 ev_active (ANHE_w (he)) = k;
938} 1685}
939 1686
940void inline_size 1687/* move an element suitably so it is in a correct place */
1688inline_size void
941adjustheap (ANHE *heap, int N, int k) 1689adjustheap (ANHE *heap, int N, int k)
942{ 1690{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1691 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
944 upheap (heap, k); 1692 upheap (heap, k);
945 else 1693 else
946 downheap (heap, N, k); 1694 downheap (heap, N, k);
947} 1695}
948 1696
949/* rebuild the heap: this function is used only once and executed rarely */ 1697/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size 1698inline_size void
951reheap (ANHE *heap, int N) 1699reheap (ANHE *heap, int N)
952{ 1700{
953 int i; 1701 int i;
954 1702
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1703 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 upheap (heap, i + HEAP0); 1706 upheap (heap, i + HEAP0);
959} 1707}
960 1708
961/*****************************************************************************/ 1709/*****************************************************************************/
962 1710
1711/* associate signal watchers to a signal signal */
963typedef struct 1712typedef struct
964{ 1713{
1714 EV_ATOMIC_T pending;
1715#if EV_MULTIPLICITY
1716 EV_P;
1717#endif
965 WL head; 1718 WL head;
966 EV_ATOMIC_T gotsig;
967} ANSIG; 1719} ANSIG;
968 1720
969static ANSIG *signals; 1721static ANSIG signals [EV_NSIG - 1];
970static int signalmax;
971
972static EV_ATOMIC_T gotsig;
973
974void inline_size
975signals_init (ANSIG *base, int count)
976{
977 while (count--)
978 {
979 base->head = 0;
980 base->gotsig = 0;
981
982 ++base;
983 }
984}
985 1722
986/*****************************************************************************/ 1723/*****************************************************************************/
987 1724
988void inline_speed 1725#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
989fd_intern (int fd)
990{
991#ifdef _WIN32
992 unsigned long arg = 1;
993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994#else
995 fcntl (fd, F_SETFD, FD_CLOEXEC);
996 fcntl (fd, F_SETFL, O_NONBLOCK);
997#endif
998}
999 1726
1000static void noinline 1727static void noinline ecb_cold
1001evpipe_init (EV_P) 1728evpipe_init (EV_P)
1002{ 1729{
1003 if (!ev_is_active (&pipeev)) 1730 if (!ev_is_active (&pipe_w))
1004 { 1731 {
1005#if EV_USE_EVENTFD 1732# if EV_USE_EVENTFD
1733 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1734 if (evfd < 0 && errno == EINVAL)
1006 if ((evfd = eventfd (0, 0)) >= 0) 1735 evfd = eventfd (0, 0);
1736
1737 if (evfd >= 0)
1007 { 1738 {
1008 evpipe [0] = -1; 1739 evpipe [0] = -1;
1009 fd_intern (evfd); 1740 fd_intern (evfd); /* doing it twice doesn't hurt */
1010 ev_io_set (&pipeev, evfd, EV_READ); 1741 ev_io_set (&pipe_w, evfd, EV_READ);
1011 } 1742 }
1012 else 1743 else
1013#endif 1744# endif
1014 { 1745 {
1015 while (pipe (evpipe)) 1746 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe"); 1747 ev_syserr ("(libev) error creating signal/async pipe");
1017 1748
1018 fd_intern (evpipe [0]); 1749 fd_intern (evpipe [0]);
1019 fd_intern (evpipe [1]); 1750 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ); 1751 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1021 } 1752 }
1022 1753
1023 ev_io_start (EV_A_ &pipeev); 1754 ev_io_start (EV_A_ &pipe_w);
1024 ev_unref (EV_A); /* watcher should not keep loop alive */ 1755 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 } 1756 }
1026} 1757}
1027 1758
1028void inline_size 1759inline_speed void
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1760evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{ 1761{
1031 if (!*flag) 1762 if (expect_true (*flag))
1763 return;
1764
1765 *flag = 1;
1766
1767 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1768
1769 pipe_write_skipped = 1;
1770
1771 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1772
1773 if (pipe_write_wanted)
1032 { 1774 {
1775 int old_errno;
1776
1777 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1778
1033 int old_errno = errno; /* save errno because write might clobber it */ 1779 old_errno = errno; /* save errno because write will clobber it */
1034
1035 *flag = 1;
1036 1780
1037#if EV_USE_EVENTFD 1781#if EV_USE_EVENTFD
1038 if (evfd >= 0) 1782 if (evfd >= 0)
1039 { 1783 {
1040 uint64_t counter = 1; 1784 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t)); 1785 write (evfd, &counter, sizeof (uint64_t));
1042 } 1786 }
1043 else 1787 else
1044#endif 1788#endif
1789 {
1790 /* win32 people keep sending patches that change this write() to send() */
1791 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1792 /* so when you think this write should be a send instead, please find out */
1793 /* where your send() is from - it's definitely not the microsoft send, and */
1794 /* tell me. thank you. */
1045 write (evpipe [1], &old_errno, 1); 1795 write (evpipe [1], &(evpipe [1]), 1);
1796 }
1046 1797
1047 errno = old_errno; 1798 errno = old_errno;
1048 } 1799 }
1049} 1800}
1050 1801
1802/* called whenever the libev signal pipe */
1803/* got some events (signal, async) */
1051static void 1804static void
1052pipecb (EV_P_ ev_io *iow, int revents) 1805pipecb (EV_P_ ev_io *iow, int revents)
1053{ 1806{
1807 int i;
1808
1809 if (revents & EV_READ)
1810 {
1054#if EV_USE_EVENTFD 1811#if EV_USE_EVENTFD
1055 if (evfd >= 0) 1812 if (evfd >= 0)
1056 { 1813 {
1057 uint64_t counter; 1814 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t)); 1815 read (evfd, &counter, sizeof (uint64_t));
1059 } 1816 }
1060 else 1817 else
1061#endif 1818#endif
1062 { 1819 {
1063 char dummy; 1820 char dummy;
1821 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1064 read (evpipe [0], &dummy, 1); 1822 read (evpipe [0], &dummy, 1);
1823 }
1824 }
1825
1826 pipe_write_skipped = 0;
1827
1828#if EV_SIGNAL_ENABLE
1829 if (sig_pending)
1065 } 1830 {
1831 sig_pending = 0;
1066 1832
1067 if (gotsig && ev_is_default_loop (EV_A)) 1833 for (i = EV_NSIG - 1; i--; )
1068 { 1834 if (expect_false (signals [i].pending))
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1); 1835 ev_feed_signal_event (EV_A_ i + 1);
1075 } 1836 }
1837#endif
1076 1838
1077#if EV_ASYNC_ENABLE 1839#if EV_ASYNC_ENABLE
1078 if (gotasync) 1840 if (async_pending)
1079 { 1841 {
1080 int i; 1842 async_pending = 0;
1081 gotasync = 0;
1082 1843
1083 for (i = asynccnt; i--; ) 1844 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent) 1845 if (asyncs [i]->sent)
1085 { 1846 {
1086 asyncs [i]->sent = 0; 1847 asyncs [i]->sent = 0;
1090#endif 1851#endif
1091} 1852}
1092 1853
1093/*****************************************************************************/ 1854/*****************************************************************************/
1094 1855
1856void
1857ev_feed_signal (int signum)
1858{
1859#if EV_MULTIPLICITY
1860 EV_P = signals [signum - 1].loop;
1861
1862 if (!EV_A)
1863 return;
1864#endif
1865
1866 if (!ev_active (&pipe_w))
1867 return;
1868
1869 signals [signum - 1].pending = 1;
1870 evpipe_write (EV_A_ &sig_pending);
1871}
1872
1095static void 1873static void
1096ev_sighandler (int signum) 1874ev_sighandler (int signum)
1097{ 1875{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32 1876#ifdef _WIN32
1103 signal (signum, ev_sighandler); 1877 signal (signum, ev_sighandler);
1104#endif 1878#endif
1105 1879
1106 signals [signum - 1].gotsig = 1; 1880 ev_feed_signal (signum);
1107 evpipe_write (EV_A_ &gotsig);
1108} 1881}
1109 1882
1110void noinline 1883void noinline
1111ev_feed_signal_event (EV_P_ int signum) 1884ev_feed_signal_event (EV_P_ int signum)
1112{ 1885{
1113 WL w; 1886 WL w;
1114 1887
1888 if (expect_false (signum <= 0 || signum > EV_NSIG))
1889 return;
1890
1891 --signum;
1892
1115#if EV_MULTIPLICITY 1893#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1894 /* it is permissible to try to feed a signal to the wrong loop */
1117#endif 1895 /* or, likely more useful, feeding a signal nobody is waiting for */
1118 1896
1119 --signum; 1897 if (expect_false (signals [signum].loop != EV_A))
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return; 1898 return;
1899#endif
1123 1900
1124 signals [signum].gotsig = 0; 1901 signals [signum].pending = 0;
1125 1902
1126 for (w = signals [signum].head; w; w = w->next) 1903 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1904 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128} 1905}
1129 1906
1907#if EV_USE_SIGNALFD
1908static void
1909sigfdcb (EV_P_ ev_io *iow, int revents)
1910{
1911 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1912
1913 for (;;)
1914 {
1915 ssize_t res = read (sigfd, si, sizeof (si));
1916
1917 /* not ISO-C, as res might be -1, but works with SuS */
1918 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1919 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1920
1921 if (res < (ssize_t)sizeof (si))
1922 break;
1923 }
1924}
1925#endif
1926
1927#endif
1928
1130/*****************************************************************************/ 1929/*****************************************************************************/
1131 1930
1931#if EV_CHILD_ENABLE
1132static WL childs [EV_PID_HASHSIZE]; 1932static WL childs [EV_PID_HASHSIZE];
1133
1134#ifndef _WIN32
1135 1933
1136static ev_signal childev; 1934static ev_signal childev;
1137 1935
1138#ifndef WIFCONTINUED 1936#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0 1937# define WIFCONTINUED(status) 0
1140#endif 1938#endif
1141 1939
1142void inline_speed 1940/* handle a single child status event */
1941inline_speed void
1143child_reap (EV_P_ int chain, int pid, int status) 1942child_reap (EV_P_ int chain, int pid, int status)
1144{ 1943{
1145 ev_child *w; 1944 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1945 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147 1946
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1947 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 { 1948 {
1150 if ((w->pid == pid || !w->pid) 1949 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1))) 1950 && (!traced || (w->flags & 1)))
1152 { 1951 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1952 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 1959
1161#ifndef WCONTINUED 1960#ifndef WCONTINUED
1162# define WCONTINUED 0 1961# define WCONTINUED 0
1163#endif 1962#endif
1164 1963
1964/* called on sigchld etc., calls waitpid */
1165static void 1965static void
1166childcb (EV_P_ ev_signal *sw, int revents) 1966childcb (EV_P_ ev_signal *sw, int revents)
1167{ 1967{
1168 int pid, status; 1968 int pid, status;
1169 1969
1177 /* make sure we are called again until all children have been reaped */ 1977 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */ 1978 /* we need to do it this way so that the callback gets called before we continue */
1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1979 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1180 1980
1181 child_reap (EV_A_ pid, pid, status); 1981 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1) 1982 if ((EV_PID_HASHSIZE) > 1)
1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1983 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1184} 1984}
1185 1985
1186#endif 1986#endif
1187 1987
1188/*****************************************************************************/ 1988/*****************************************************************************/
1189 1989
1990#if EV_USE_IOCP
1991# include "ev_iocp.c"
1992#endif
1190#if EV_USE_PORT 1993#if EV_USE_PORT
1191# include "ev_port.c" 1994# include "ev_port.c"
1192#endif 1995#endif
1193#if EV_USE_KQUEUE 1996#if EV_USE_KQUEUE
1194# include "ev_kqueue.c" 1997# include "ev_kqueue.c"
1201#endif 2004#endif
1202#if EV_USE_SELECT 2005#if EV_USE_SELECT
1203# include "ev_select.c" 2006# include "ev_select.c"
1204#endif 2007#endif
1205 2008
1206int 2009int ecb_cold
1207ev_version_major (void) 2010ev_version_major (void)
1208{ 2011{
1209 return EV_VERSION_MAJOR; 2012 return EV_VERSION_MAJOR;
1210} 2013}
1211 2014
1212int 2015int ecb_cold
1213ev_version_minor (void) 2016ev_version_minor (void)
1214{ 2017{
1215 return EV_VERSION_MINOR; 2018 return EV_VERSION_MINOR;
1216} 2019}
1217 2020
1218/* return true if we are running with elevated privileges and should ignore env variables */ 2021/* return true if we are running with elevated privileges and should ignore env variables */
1219int inline_size 2022int inline_size ecb_cold
1220enable_secure (void) 2023enable_secure (void)
1221{ 2024{
1222#ifdef _WIN32 2025#ifdef _WIN32
1223 return 0; 2026 return 0;
1224#else 2027#else
1225 return getuid () != geteuid () 2028 return getuid () != geteuid ()
1226 || getgid () != getegid (); 2029 || getgid () != getegid ();
1227#endif 2030#endif
1228} 2031}
1229 2032
1230unsigned int 2033unsigned int ecb_cold
1231ev_supported_backends (void) 2034ev_supported_backends (void)
1232{ 2035{
1233 unsigned int flags = 0; 2036 unsigned int flags = 0;
1234 2037
1235 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2038 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1239 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2042 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240 2043
1241 return flags; 2044 return flags;
1242} 2045}
1243 2046
1244unsigned int 2047unsigned int ecb_cold
1245ev_recommended_backends (void) 2048ev_recommended_backends (void)
1246{ 2049{
1247 unsigned int flags = ev_supported_backends (); 2050 unsigned int flags = ev_supported_backends ();
1248 2051
1249#ifndef __NetBSD__ 2052#ifndef __NetBSD__
1250 /* kqueue is borked on everything but netbsd apparently */ 2053 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */ 2054 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE; 2055 flags &= ~EVBACKEND_KQUEUE;
1253#endif 2056#endif
1254#ifdef __APPLE__ 2057#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation 2058 /* only select works correctly on that "unix-certified" platform */
1256 flags &= ~EVBACKEND_POLL; 2059 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2060 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2061#endif
2062#ifdef __FreeBSD__
2063 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1257#endif 2064#endif
1258 2065
1259 return flags; 2066 return flags;
1260} 2067}
1261 2068
1262unsigned int 2069unsigned int ecb_cold
1263ev_embeddable_backends (void) 2070ev_embeddable_backends (void)
1264{ 2071{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2072 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1266 2073
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2074 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */ 2075 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1269 flags &= ~EVBACKEND_EPOLL; 2076 flags &= ~EVBACKEND_EPOLL;
1270 2077
1271 return flags; 2078 return flags;
1272} 2079}
1273 2080
1274unsigned int 2081unsigned int
1275ev_backend (EV_P) 2082ev_backend (EV_P)
1276{ 2083{
1277 return backend; 2084 return backend;
1278} 2085}
1279 2086
2087#if EV_FEATURE_API
1280unsigned int 2088unsigned int
1281ev_loop_count (EV_P) 2089ev_iteration (EV_P)
1282{ 2090{
1283 return loop_count; 2091 return loop_count;
2092}
2093
2094unsigned int
2095ev_depth (EV_P)
2096{
2097 return loop_depth;
1284} 2098}
1285 2099
1286void 2100void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2101ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{ 2102{
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2107ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{ 2108{
1295 timeout_blocktime = interval; 2109 timeout_blocktime = interval;
1296} 2110}
1297 2111
2112void
2113ev_set_userdata (EV_P_ void *data)
2114{
2115 userdata = data;
2116}
2117
2118void *
2119ev_userdata (EV_P)
2120{
2121 return userdata;
2122}
2123
2124void
2125ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2126{
2127 invoke_cb = invoke_pending_cb;
2128}
2129
2130void
2131ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2132{
2133 release_cb = release;
2134 acquire_cb = acquire;
2135}
2136#endif
2137
2138/* initialise a loop structure, must be zero-initialised */
1298static void noinline 2139static void noinline ecb_cold
1299loop_init (EV_P_ unsigned int flags) 2140loop_init (EV_P_ unsigned int flags)
1300{ 2141{
1301 if (!backend) 2142 if (!backend)
1302 { 2143 {
2144 origflags = flags;
2145
2146#if EV_USE_REALTIME
2147 if (!have_realtime)
2148 {
2149 struct timespec ts;
2150
2151 if (!clock_gettime (CLOCK_REALTIME, &ts))
2152 have_realtime = 1;
2153 }
2154#endif
2155
1303#if EV_USE_MONOTONIC 2156#if EV_USE_MONOTONIC
2157 if (!have_monotonic)
1304 { 2158 {
1305 struct timespec ts; 2159 struct timespec ts;
2160
1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2161 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1307 have_monotonic = 1; 2162 have_monotonic = 1;
1308 } 2163 }
1309#endif
1310
1311 ev_rt_now = ev_time ();
1312 mn_now = get_clock ();
1313 now_floor = mn_now;
1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif 2164#endif
1324 2165
1325 /* pid check not overridable via env */ 2166 /* pid check not overridable via env */
1326#ifndef _WIN32 2167#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK) 2168 if (flags & EVFLAG_FORKCHECK)
1331 if (!(flags & EVFLAG_NOENV) 2172 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure () 2173 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS")) 2174 && getenv ("LIBEV_FLAGS"))
1334 flags = atoi (getenv ("LIBEV_FLAGS")); 2175 flags = atoi (getenv ("LIBEV_FLAGS"));
1335 2176
1336 if (!(flags & 0x0000ffffU)) 2177 ev_rt_now = ev_time ();
2178 mn_now = get_clock ();
2179 now_floor = mn_now;
2180 rtmn_diff = ev_rt_now - mn_now;
2181#if EV_FEATURE_API
2182 invoke_cb = ev_invoke_pending;
2183#endif
2184
2185 io_blocktime = 0.;
2186 timeout_blocktime = 0.;
2187 backend = 0;
2188 backend_fd = -1;
2189 sig_pending = 0;
2190#if EV_ASYNC_ENABLE
2191 async_pending = 0;
2192#endif
2193 pipe_write_skipped = 0;
2194 pipe_write_wanted = 0;
2195#if EV_USE_INOTIFY
2196 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2197#endif
2198#if EV_USE_SIGNALFD
2199 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2200#endif
2201
2202 if (!(flags & EVBACKEND_MASK))
1337 flags |= ev_recommended_backends (); 2203 flags |= ev_recommended_backends ();
1338 2204
2205#if EV_USE_IOCP
2206 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2207#endif
1339#if EV_USE_PORT 2208#if EV_USE_PORT
1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2209 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1341#endif 2210#endif
1342#if EV_USE_KQUEUE 2211#if EV_USE_KQUEUE
1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2212 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1350#endif 2219#endif
1351#if EV_USE_SELECT 2220#if EV_USE_SELECT
1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2221 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1353#endif 2222#endif
1354 2223
2224 ev_prepare_init (&pending_w, pendingcb);
2225
2226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1355 ev_init (&pipeev, pipecb); 2227 ev_init (&pipe_w, pipecb);
1356 ev_set_priority (&pipeev, EV_MAXPRI); 2228 ev_set_priority (&pipe_w, EV_MAXPRI);
2229#endif
1357 } 2230 }
1358} 2231}
1359 2232
1360static void noinline 2233/* free up a loop structure */
2234void ecb_cold
1361loop_destroy (EV_P) 2235ev_loop_destroy (EV_P)
1362{ 2236{
1363 int i; 2237 int i;
1364 2238
2239#if EV_MULTIPLICITY
2240 /* mimic free (0) */
2241 if (!EV_A)
2242 return;
2243#endif
2244
2245#if EV_CLEANUP_ENABLE
2246 /* queue cleanup watchers (and execute them) */
2247 if (expect_false (cleanupcnt))
2248 {
2249 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2250 EV_INVOKE_PENDING;
2251 }
2252#endif
2253
2254#if EV_CHILD_ENABLE
2255 if (ev_is_active (&childev))
2256 {
2257 ev_ref (EV_A); /* child watcher */
2258 ev_signal_stop (EV_A_ &childev);
2259 }
2260#endif
2261
1365 if (ev_is_active (&pipeev)) 2262 if (ev_is_active (&pipe_w))
1366 { 2263 {
1367 ev_ref (EV_A); /* signal watcher */ 2264 /*ev_ref (EV_A);*/
1368 ev_io_stop (EV_A_ &pipeev); 2265 /*ev_io_stop (EV_A_ &pipe_w);*/
1369 2266
1370#if EV_USE_EVENTFD 2267#if EV_USE_EVENTFD
1371 if (evfd >= 0) 2268 if (evfd >= 0)
1372 close (evfd); 2269 close (evfd);
1373#endif 2270#endif
1374 2271
1375 if (evpipe [0] >= 0) 2272 if (evpipe [0] >= 0)
1376 { 2273 {
1377 close (evpipe [0]); 2274 EV_WIN32_CLOSE_FD (evpipe [0]);
1378 close (evpipe [1]); 2275 EV_WIN32_CLOSE_FD (evpipe [1]);
1379 } 2276 }
1380 } 2277 }
2278
2279#if EV_USE_SIGNALFD
2280 if (ev_is_active (&sigfd_w))
2281 close (sigfd);
2282#endif
1381 2283
1382#if EV_USE_INOTIFY 2284#if EV_USE_INOTIFY
1383 if (fs_fd >= 0) 2285 if (fs_fd >= 0)
1384 close (fs_fd); 2286 close (fs_fd);
1385#endif 2287#endif
1386 2288
1387 if (backend_fd >= 0) 2289 if (backend_fd >= 0)
1388 close (backend_fd); 2290 close (backend_fd);
1389 2291
2292#if EV_USE_IOCP
2293 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2294#endif
1390#if EV_USE_PORT 2295#if EV_USE_PORT
1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2296 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1392#endif 2297#endif
1393#if EV_USE_KQUEUE 2298#if EV_USE_KQUEUE
1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2299 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1409#if EV_IDLE_ENABLE 2314#if EV_IDLE_ENABLE
1410 array_free (idle, [i]); 2315 array_free (idle, [i]);
1411#endif 2316#endif
1412 } 2317 }
1413 2318
1414 ev_free (anfds); anfdmax = 0; 2319 ev_free (anfds); anfds = 0; anfdmax = 0;
1415 2320
1416 /* have to use the microsoft-never-gets-it-right macro */ 2321 /* have to use the microsoft-never-gets-it-right macro */
2322 array_free (rfeed, EMPTY);
1417 array_free (fdchange, EMPTY); 2323 array_free (fdchange, EMPTY);
1418 array_free (timer, EMPTY); 2324 array_free (timer, EMPTY);
1419#if EV_PERIODIC_ENABLE 2325#if EV_PERIODIC_ENABLE
1420 array_free (periodic, EMPTY); 2326 array_free (periodic, EMPTY);
1421#endif 2327#endif
1422#if EV_FORK_ENABLE 2328#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY); 2329 array_free (fork, EMPTY);
1424#endif 2330#endif
2331#if EV_CLEANUP_ENABLE
2332 array_free (cleanup, EMPTY);
2333#endif
1425 array_free (prepare, EMPTY); 2334 array_free (prepare, EMPTY);
1426 array_free (check, EMPTY); 2335 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE 2336#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY); 2337 array_free (async, EMPTY);
1429#endif 2338#endif
1430 2339
1431 backend = 0; 2340 backend = 0;
2341
2342#if EV_MULTIPLICITY
2343 if (ev_is_default_loop (EV_A))
2344#endif
2345 ev_default_loop_ptr = 0;
2346#if EV_MULTIPLICITY
2347 else
2348 ev_free (EV_A);
2349#endif
1432} 2350}
1433 2351
1434#if EV_USE_INOTIFY 2352#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P); 2353inline_size void infy_fork (EV_P);
1436#endif 2354#endif
1437 2355
1438void inline_size 2356inline_size void
1439loop_fork (EV_P) 2357loop_fork (EV_P)
1440{ 2358{
1441#if EV_USE_PORT 2359#if EV_USE_PORT
1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2360 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443#endif 2361#endif
1449#endif 2367#endif
1450#if EV_USE_INOTIFY 2368#if EV_USE_INOTIFY
1451 infy_fork (EV_A); 2369 infy_fork (EV_A);
1452#endif 2370#endif
1453 2371
1454 if (ev_is_active (&pipeev)) 2372 if (ev_is_active (&pipe_w))
1455 { 2373 {
1456 /* this "locks" the handlers against writing to the pipe */ 2374 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1462 2375
1463 ev_ref (EV_A); 2376 ev_ref (EV_A);
1464 ev_io_stop (EV_A_ &pipeev); 2377 ev_io_stop (EV_A_ &pipe_w);
1465 2378
1466#if EV_USE_EVENTFD 2379#if EV_USE_EVENTFD
1467 if (evfd >= 0) 2380 if (evfd >= 0)
1468 close (evfd); 2381 close (evfd);
1469#endif 2382#endif
1470 2383
1471 if (evpipe [0] >= 0) 2384 if (evpipe [0] >= 0)
1472 { 2385 {
1473 close (evpipe [0]); 2386 EV_WIN32_CLOSE_FD (evpipe [0]);
1474 close (evpipe [1]); 2387 EV_WIN32_CLOSE_FD (evpipe [1]);
1475 } 2388 }
1476 2389
2390#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1477 evpipe_init (EV_A); 2391 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */ 2392 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ); 2393 pipecb (EV_A_ &pipe_w, EV_READ);
2394#endif
1480 } 2395 }
1481 2396
1482 postfork = 0; 2397 postfork = 0;
1483} 2398}
1484 2399
1485#if EV_MULTIPLICITY 2400#if EV_MULTIPLICITY
1486 2401
1487struct ev_loop * 2402struct ev_loop * ecb_cold
1488ev_loop_new (unsigned int flags) 2403ev_loop_new (unsigned int flags)
1489{ 2404{
1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2405 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491 2406
1492 memset (loop, 0, sizeof (struct ev_loop)); 2407 memset (EV_A, 0, sizeof (struct ev_loop));
1493
1494 loop_init (EV_A_ flags); 2408 loop_init (EV_A_ flags);
1495 2409
1496 if (ev_backend (EV_A)) 2410 if (ev_backend (EV_A))
1497 return loop; 2411 return EV_A;
1498 2412
2413 ev_free (EV_A);
1499 return 0; 2414 return 0;
1500} 2415}
1501 2416
1502void 2417#endif /* multiplicity */
1503ev_loop_destroy (EV_P)
1504{
1505 loop_destroy (EV_A);
1506 ev_free (loop);
1507}
1508
1509void
1510ev_loop_fork (EV_P)
1511{
1512 postfork = 1; /* must be in line with ev_default_fork */
1513}
1514 2418
1515#if EV_VERIFY 2419#if EV_VERIFY
1516static void noinline 2420static void noinline ecb_cold
1517verify_watcher (EV_P_ W w) 2421verify_watcher (EV_P_ W w)
1518{ 2422{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2423 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520 2424
1521 if (w->pending) 2425 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2426 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523} 2427}
1524 2428
1525static void noinline 2429static void noinline ecb_cold
1526verify_heap (EV_P_ ANHE *heap, int N) 2430verify_heap (EV_P_ ANHE *heap, int N)
1527{ 2431{
1528 int i; 2432 int i;
1529 2433
1530 for (i = HEAP0; i < N + HEAP0; ++i) 2434 for (i = HEAP0; i < N + HEAP0; ++i)
1531 { 2435 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2436 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2437 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2438 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535 2439
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2440 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 } 2441 }
1538} 2442}
1539 2443
1540static void noinline 2444static void noinline ecb_cold
1541array_verify (EV_P_ W *ws, int cnt) 2445array_verify (EV_P_ W *ws, int cnt)
1542{ 2446{
1543 while (cnt--) 2447 while (cnt--)
1544 { 2448 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2449 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]); 2450 verify_watcher (EV_A_ ws [cnt]);
1547 } 2451 }
1548} 2452}
1549#endif 2453#endif
1550 2454
1551void 2455#if EV_FEATURE_API
2456void ecb_cold
1552ev_loop_verify (EV_P) 2457ev_verify (EV_P)
1553{ 2458{
1554#if EV_VERIFY 2459#if EV_VERIFY
1555 int i; 2460 int i;
1556 WL w; 2461 WL w;
1557 2462
1558 assert (activecnt >= -1); 2463 assert (activecnt >= -1);
1559 2464
1560 assert (fdchangemax >= fdchangecnt); 2465 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i) 2466 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2467 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1563 2468
1564 assert (anfdmax >= 0); 2469 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i) 2470 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next) 2471 for (w = anfds [i].head; w; w = w->next)
1567 { 2472 {
1568 verify_watcher (EV_A_ (W)w); 2473 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2474 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2475 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 } 2476 }
1572 2477
1573 assert (timermax >= timercnt); 2478 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt); 2479 verify_heap (EV_A_ timers, timercnt);
1575 2480
1591#if EV_FORK_ENABLE 2496#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt); 2497 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt); 2498 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif 2499#endif
1595 2500
2501#if EV_CLEANUP_ENABLE
2502 assert (cleanupmax >= cleanupcnt);
2503 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2504#endif
2505
1596#if EV_ASYNC_ENABLE 2506#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt); 2507 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt); 2508 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif 2509#endif
1600 2510
2511#if EV_PREPARE_ENABLE
1601 assert (preparemax >= preparecnt); 2512 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt); 2513 array_verify (EV_A_ (W *)prepares, preparecnt);
2514#endif
1603 2515
2516#if EV_CHECK_ENABLE
1604 assert (checkmax >= checkcnt); 2517 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt); 2518 array_verify (EV_A_ (W *)checks, checkcnt);
2519#endif
1606 2520
1607# if 0 2521# if 0
2522#if EV_CHILD_ENABLE
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2523 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2524 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2525#endif
1610# endif 2526# endif
1611#endif 2527#endif
1612} 2528}
1613 2529#endif
1614#endif /* multiplicity */
1615 2530
1616#if EV_MULTIPLICITY 2531#if EV_MULTIPLICITY
1617struct ev_loop * 2532struct ev_loop * ecb_cold
1618ev_default_loop_init (unsigned int flags)
1619#else 2533#else
1620int 2534int
2535#endif
1621ev_default_loop (unsigned int flags) 2536ev_default_loop (unsigned int flags)
1622#endif
1623{ 2537{
1624 if (!ev_default_loop_ptr) 2538 if (!ev_default_loop_ptr)
1625 { 2539 {
1626#if EV_MULTIPLICITY 2540#if EV_MULTIPLICITY
1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2541 EV_P = ev_default_loop_ptr = &default_loop_struct;
1628#else 2542#else
1629 ev_default_loop_ptr = 1; 2543 ev_default_loop_ptr = 1;
1630#endif 2544#endif
1631 2545
1632 loop_init (EV_A_ flags); 2546 loop_init (EV_A_ flags);
1633 2547
1634 if (ev_backend (EV_A)) 2548 if (ev_backend (EV_A))
1635 { 2549 {
1636#ifndef _WIN32 2550#if EV_CHILD_ENABLE
1637 ev_signal_init (&childev, childcb, SIGCHLD); 2551 ev_signal_init (&childev, childcb, SIGCHLD);
1638 ev_set_priority (&childev, EV_MAXPRI); 2552 ev_set_priority (&childev, EV_MAXPRI);
1639 ev_signal_start (EV_A_ &childev); 2553 ev_signal_start (EV_A_ &childev);
1640 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2554 ev_unref (EV_A); /* child watcher should not keep loop alive */
1641#endif 2555#endif
1646 2560
1647 return ev_default_loop_ptr; 2561 return ev_default_loop_ptr;
1648} 2562}
1649 2563
1650void 2564void
1651ev_default_destroy (void) 2565ev_loop_fork (EV_P)
1652{ 2566{
1653#if EV_MULTIPLICITY
1654 struct ev_loop *loop = ev_default_loop_ptr;
1655#endif
1656
1657#ifndef _WIN32
1658 ev_ref (EV_A); /* child watcher */
1659 ev_signal_stop (EV_A_ &childev);
1660#endif
1661
1662 loop_destroy (EV_A);
1663}
1664
1665void
1666ev_default_fork (void)
1667{
1668#if EV_MULTIPLICITY
1669 struct ev_loop *loop = ev_default_loop_ptr;
1670#endif
1671
1672 if (backend)
1673 postfork = 1; /* must be in line with ev_loop_fork */ 2567 postfork = 1; /* must be in line with ev_default_fork */
1674} 2568}
1675 2569
1676/*****************************************************************************/ 2570/*****************************************************************************/
1677 2571
1678void 2572void
1679ev_invoke (EV_P_ void *w, int revents) 2573ev_invoke (EV_P_ void *w, int revents)
1680{ 2574{
1681 EV_CB_INVOKE ((W)w, revents); 2575 EV_CB_INVOKE ((W)w, revents);
1682} 2576}
1683 2577
1684void inline_speed 2578unsigned int
1685call_pending (EV_P) 2579ev_pending_count (EV_P)
2580{
2581 int pri;
2582 unsigned int count = 0;
2583
2584 for (pri = NUMPRI; pri--; )
2585 count += pendingcnt [pri];
2586
2587 return count;
2588}
2589
2590void noinline
2591ev_invoke_pending (EV_P)
1686{ 2592{
1687 int pri; 2593 int pri;
1688 2594
1689 for (pri = NUMPRI; pri--; ) 2595 for (pri = NUMPRI; pri--; )
1690 while (pendingcnt [pri]) 2596 while (pendingcnt [pri])
1691 { 2597 {
1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2598 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1693 2599
1694 if (expect_true (p->w))
1695 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1697
1698 p->w->pending = 0; 2600 p->w->pending = 0;
1699 EV_CB_INVOKE (p->w, p->events); 2601 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK; 2602 EV_FREQUENT_CHECK;
1701 }
1702 } 2603 }
1703} 2604}
1704 2605
1705#if EV_IDLE_ENABLE 2606#if EV_IDLE_ENABLE
1706void inline_size 2607/* make idle watchers pending. this handles the "call-idle */
2608/* only when higher priorities are idle" logic */
2609inline_size void
1707idle_reify (EV_P) 2610idle_reify (EV_P)
1708{ 2611{
1709 if (expect_false (idleall)) 2612 if (expect_false (idleall))
1710 { 2613 {
1711 int pri; 2614 int pri;
1723 } 2626 }
1724 } 2627 }
1725} 2628}
1726#endif 2629#endif
1727 2630
1728void inline_size 2631/* make timers pending */
2632inline_size void
1729timers_reify (EV_P) 2633timers_reify (EV_P)
1730{ 2634{
1731 EV_FREQUENT_CHECK; 2635 EV_FREQUENT_CHECK;
1732 2636
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2637 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 { 2638 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2639 do
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 { 2640 {
2641 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2642
2643 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2644
2645 /* first reschedule or stop timer */
2646 if (w->repeat)
2647 {
1742 ev_at (w) += w->repeat; 2648 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now) 2649 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now; 2650 ev_at (w) = mn_now;
1745 2651
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2652 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747 2653
1748 ANHE_at_cache (timers [HEAP0]); 2654 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0); 2655 downheap (timers, timercnt, HEAP0);
2656 }
2657 else
2658 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2659
2660 EV_FREQUENT_CHECK;
2661 feed_reverse (EV_A_ (W)w);
1750 } 2662 }
1751 else 2663 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753 2664
1754 EV_FREQUENT_CHECK; 2665 feed_reverse_done (EV_A_ EV_TIMER);
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 } 2666 }
1757} 2667}
1758 2668
1759#if EV_PERIODIC_ENABLE 2669#if EV_PERIODIC_ENABLE
1760void inline_size 2670
2671static void noinline
2672periodic_recalc (EV_P_ ev_periodic *w)
2673{
2674 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2675 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2676
2677 /* the above almost always errs on the low side */
2678 while (at <= ev_rt_now)
2679 {
2680 ev_tstamp nat = at + w->interval;
2681
2682 /* when resolution fails us, we use ev_rt_now */
2683 if (expect_false (nat == at))
2684 {
2685 at = ev_rt_now;
2686 break;
2687 }
2688
2689 at = nat;
2690 }
2691
2692 ev_at (w) = at;
2693}
2694
2695/* make periodics pending */
2696inline_size void
1761periodics_reify (EV_P) 2697periodics_reify (EV_P)
1762{ 2698{
1763 EV_FREQUENT_CHECK; 2699 EV_FREQUENT_CHECK;
1764 2700
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2701 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 { 2702 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2703 int feed_count = 0;
1768 2704
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2705 do
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 { 2706 {
2707 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2708
2709 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2710
2711 /* first reschedule or stop timer */
2712 if (w->reschedule_cb)
2713 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2714 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775 2715
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2716 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777 2717
1778 ANHE_at_cache (periodics [HEAP0]); 2718 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0); 2719 downheap (periodics, periodiccnt, HEAP0);
2720 }
2721 else if (w->interval)
2722 {
2723 periodic_recalc (EV_A_ w);
2724 ANHE_at_cache (periodics [HEAP0]);
2725 downheap (periodics, periodiccnt, HEAP0);
2726 }
2727 else
2728 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2729
2730 EV_FREQUENT_CHECK;
2731 feed_reverse (EV_A_ (W)w);
1780 } 2732 }
1781 else if (w->interval) 2733 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789 2734
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2735 feed_reverse_done (EV_A_ EV_PERIODIC);
1805 } 2736 }
1806} 2737}
1807 2738
2739/* simply recalculate all periodics */
2740/* TODO: maybe ensure that at least one event happens when jumping forward? */
1808static void noinline 2741static void noinline ecb_cold
1809periodics_reschedule (EV_P) 2742periodics_reschedule (EV_P)
1810{ 2743{
1811 int i; 2744 int i;
1812 2745
1813 /* adjust periodics after time jump */ 2746 /* adjust periodics after time jump */
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817 2750
1818 if (w->reschedule_cb) 2751 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval) 2753 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2754 periodic_recalc (EV_A_ w);
1822 2755
1823 ANHE_at_cache (periodics [i]); 2756 ANHE_at_cache (periodics [i]);
1824 } 2757 }
1825 2758
1826 reheap (periodics, periodiccnt); 2759 reheap (periodics, periodiccnt);
1827} 2760}
1828#endif 2761#endif
1829 2762
1830void inline_speed 2763/* adjust all timers by a given offset */
2764static void noinline ecb_cold
2765timers_reschedule (EV_P_ ev_tstamp adjust)
2766{
2767 int i;
2768
2769 for (i = 0; i < timercnt; ++i)
2770 {
2771 ANHE *he = timers + i + HEAP0;
2772 ANHE_w (*he)->at += adjust;
2773 ANHE_at_cache (*he);
2774 }
2775}
2776
2777/* fetch new monotonic and realtime times from the kernel */
2778/* also detect if there was a timejump, and act accordingly */
2779inline_speed void
1831time_update (EV_P_ ev_tstamp max_block) 2780time_update (EV_P_ ev_tstamp max_block)
1832{ 2781{
1833 int i;
1834
1835#if EV_USE_MONOTONIC 2782#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic)) 2783 if (expect_true (have_monotonic))
1837 { 2784 {
2785 int i;
1838 ev_tstamp odiff = rtmn_diff; 2786 ev_tstamp odiff = rtmn_diff;
1839 2787
1840 mn_now = get_clock (); 2788 mn_now = get_clock ();
1841 2789
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2790 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1858 * doesn't hurt either as we only do this on time-jumps or 2806 * doesn't hurt either as we only do this on time-jumps or
1859 * in the unlikely event of having been preempted here. 2807 * in the unlikely event of having been preempted here.
1860 */ 2808 */
1861 for (i = 4; --i; ) 2809 for (i = 4; --i; )
1862 { 2810 {
2811 ev_tstamp diff;
1863 rtmn_diff = ev_rt_now - mn_now; 2812 rtmn_diff = ev_rt_now - mn_now;
1864 2813
2814 diff = odiff - rtmn_diff;
2815
1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2816 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1866 return; /* all is well */ 2817 return; /* all is well */
1867 2818
1868 ev_rt_now = ev_time (); 2819 ev_rt_now = ev_time ();
1869 mn_now = get_clock (); 2820 mn_now = get_clock ();
1870 now_floor = mn_now; 2821 now_floor = mn_now;
1871 } 2822 }
1872 2823
2824 /* no timer adjustment, as the monotonic clock doesn't jump */
2825 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1873# if EV_PERIODIC_ENABLE 2826# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 2827 periodics_reschedule (EV_A);
1875# endif 2828# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 } 2829 }
1879 else 2830 else
1880#endif 2831#endif
1881 { 2832 {
1882 ev_rt_now = ev_time (); 2833 ev_rt_now = ev_time ();
1883 2834
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2835 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 { 2836 {
2837 /* adjust timers. this is easy, as the offset is the same for all of them */
2838 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1886#if EV_PERIODIC_ENABLE 2839#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A); 2840 periodics_reschedule (EV_A);
1888#endif 2841#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1896 } 2842 }
1897 2843
1898 mn_now = ev_rt_now; 2844 mn_now = ev_rt_now;
1899 } 2845 }
1900} 2846}
1901 2847
1902void 2848void
1903ev_ref (EV_P)
1904{
1905 ++activecnt;
1906}
1907
1908void
1909ev_unref (EV_P)
1910{
1911 --activecnt;
1912}
1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1920static int loop_done;
1921
1922void
1923ev_loop (EV_P_ int flags) 2849ev_run (EV_P_ int flags)
1924{ 2850{
2851#if EV_FEATURE_API
2852 ++loop_depth;
2853#endif
2854
2855 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2856
1925 loop_done = EVUNLOOP_CANCEL; 2857 loop_done = EVBREAK_CANCEL;
1926 2858
1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2859 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1928 2860
1929 do 2861 do
1930 { 2862 {
1931#if EV_VERIFY >= 2 2863#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A); 2864 ev_verify (EV_A);
1933#endif 2865#endif
1934 2866
1935#ifndef _WIN32 2867#ifndef _WIN32
1936 if (expect_false (curpid)) /* penalise the forking check even more */ 2868 if (expect_false (curpid)) /* penalise the forking check even more */
1937 if (expect_false (getpid () != curpid)) 2869 if (expect_false (getpid () != curpid))
1945 /* we might have forked, so queue fork handlers */ 2877 /* we might have forked, so queue fork handlers */
1946 if (expect_false (postfork)) 2878 if (expect_false (postfork))
1947 if (forkcnt) 2879 if (forkcnt)
1948 { 2880 {
1949 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1950 call_pending (EV_A); 2882 EV_INVOKE_PENDING;
1951 } 2883 }
1952#endif 2884#endif
1953 2885
2886#if EV_PREPARE_ENABLE
1954 /* queue prepare watchers (and execute them) */ 2887 /* queue prepare watchers (and execute them) */
1955 if (expect_false (preparecnt)) 2888 if (expect_false (preparecnt))
1956 { 2889 {
1957 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2890 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1958 call_pending (EV_A); 2891 EV_INVOKE_PENDING;
1959 } 2892 }
2893#endif
1960 2894
1961 if (expect_false (!activecnt)) 2895 if (expect_false (loop_done))
1962 break; 2896 break;
1963 2897
1964 /* we might have forked, so reify kernel state if necessary */ 2898 /* we might have forked, so reify kernel state if necessary */
1965 if (expect_false (postfork)) 2899 if (expect_false (postfork))
1966 loop_fork (EV_A); 2900 loop_fork (EV_A);
1971 /* calculate blocking time */ 2905 /* calculate blocking time */
1972 { 2906 {
1973 ev_tstamp waittime = 0.; 2907 ev_tstamp waittime = 0.;
1974 ev_tstamp sleeptime = 0.; 2908 ev_tstamp sleeptime = 0.;
1975 2909
2910 /* remember old timestamp for io_blocktime calculation */
2911 ev_tstamp prev_mn_now = mn_now;
2912
2913 /* update time to cancel out callback processing overhead */
2914 time_update (EV_A_ 1e100);
2915
2916 /* from now on, we want a pipe-wake-up */
2917 pipe_write_wanted = 1;
2918
2919 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2920
1976 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2921 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1977 { 2922 {
1978 /* update time to cancel out callback processing overhead */
1979 time_update (EV_A_ 1e100);
1980
1981 waittime = MAX_BLOCKTIME; 2923 waittime = MAX_BLOCKTIME;
1982 2924
1983 if (timercnt) 2925 if (timercnt)
1984 { 2926 {
1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2927 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1986 if (waittime > to) waittime = to; 2928 if (waittime > to) waittime = to;
1987 } 2929 }
1988 2930
1989#if EV_PERIODIC_ENABLE 2931#if EV_PERIODIC_ENABLE
1990 if (periodiccnt) 2932 if (periodiccnt)
1991 { 2933 {
1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2934 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1993 if (waittime > to) waittime = to; 2935 if (waittime > to) waittime = to;
1994 } 2936 }
1995#endif 2937#endif
1996 2938
2939 /* don't let timeouts decrease the waittime below timeout_blocktime */
1997 if (expect_false (waittime < timeout_blocktime)) 2940 if (expect_false (waittime < timeout_blocktime))
1998 waittime = timeout_blocktime; 2941 waittime = timeout_blocktime;
1999 2942
2000 sleeptime = waittime - backend_fudge; 2943 /* at this point, we NEED to wait, so we have to ensure */
2944 /* to pass a minimum nonzero value to the backend */
2945 if (expect_false (waittime < backend_mintime))
2946 waittime = backend_mintime;
2001 2947
2948 /* extra check because io_blocktime is commonly 0 */
2002 if (expect_true (sleeptime > io_blocktime)) 2949 if (expect_false (io_blocktime))
2003 sleeptime = io_blocktime;
2004
2005 if (sleeptime)
2006 { 2950 {
2951 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2952
2953 if (sleeptime > waittime - backend_mintime)
2954 sleeptime = waittime - backend_mintime;
2955
2956 if (expect_true (sleeptime > 0.))
2957 {
2007 ev_sleep (sleeptime); 2958 ev_sleep (sleeptime);
2008 waittime -= sleeptime; 2959 waittime -= sleeptime;
2960 }
2009 } 2961 }
2010 } 2962 }
2011 2963
2964#if EV_FEATURE_API
2012 ++loop_count; 2965 ++loop_count;
2966#endif
2967 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2013 backend_poll (EV_A_ waittime); 2968 backend_poll (EV_A_ waittime);
2969 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2970
2971 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2972
2973 if (pipe_write_skipped)
2974 {
2975 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2976 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2977 }
2978
2014 2979
2015 /* update ev_rt_now, do magic */ 2980 /* update ev_rt_now, do magic */
2016 time_update (EV_A_ waittime + sleeptime); 2981 time_update (EV_A_ waittime + sleeptime);
2017 } 2982 }
2018 2983
2025#if EV_IDLE_ENABLE 2990#if EV_IDLE_ENABLE
2026 /* queue idle watchers unless other events are pending */ 2991 /* queue idle watchers unless other events are pending */
2027 idle_reify (EV_A); 2992 idle_reify (EV_A);
2028#endif 2993#endif
2029 2994
2995#if EV_CHECK_ENABLE
2030 /* queue check watchers, to be executed first */ 2996 /* queue check watchers, to be executed first */
2031 if (expect_false (checkcnt)) 2997 if (expect_false (checkcnt))
2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2998 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2999#endif
2033 3000
2034 call_pending (EV_A); 3001 EV_INVOKE_PENDING;
2035 } 3002 }
2036 while (expect_true ( 3003 while (expect_true (
2037 activecnt 3004 activecnt
2038 && !loop_done 3005 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3006 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2040 )); 3007 ));
2041 3008
2042 if (loop_done == EVUNLOOP_ONE) 3009 if (loop_done == EVBREAK_ONE)
2043 loop_done = EVUNLOOP_CANCEL; 3010 loop_done = EVBREAK_CANCEL;
3011
3012#if EV_FEATURE_API
3013 --loop_depth;
3014#endif
2044} 3015}
2045 3016
2046void 3017void
2047ev_unloop (EV_P_ int how) 3018ev_break (EV_P_ int how)
2048{ 3019{
2049 loop_done = how; 3020 loop_done = how;
2050} 3021}
2051 3022
3023void
3024ev_ref (EV_P)
3025{
3026 ++activecnt;
3027}
3028
3029void
3030ev_unref (EV_P)
3031{
3032 --activecnt;
3033}
3034
3035void
3036ev_now_update (EV_P)
3037{
3038 time_update (EV_A_ 1e100);
3039}
3040
3041void
3042ev_suspend (EV_P)
3043{
3044 ev_now_update (EV_A);
3045}
3046
3047void
3048ev_resume (EV_P)
3049{
3050 ev_tstamp mn_prev = mn_now;
3051
3052 ev_now_update (EV_A);
3053 timers_reschedule (EV_A_ mn_now - mn_prev);
3054#if EV_PERIODIC_ENABLE
3055 /* TODO: really do this? */
3056 periodics_reschedule (EV_A);
3057#endif
3058}
3059
2052/*****************************************************************************/ 3060/*****************************************************************************/
3061/* singly-linked list management, used when the expected list length is short */
2053 3062
2054void inline_size 3063inline_size void
2055wlist_add (WL *head, WL elem) 3064wlist_add (WL *head, WL elem)
2056{ 3065{
2057 elem->next = *head; 3066 elem->next = *head;
2058 *head = elem; 3067 *head = elem;
2059} 3068}
2060 3069
2061void inline_size 3070inline_size void
2062wlist_del (WL *head, WL elem) 3071wlist_del (WL *head, WL elem)
2063{ 3072{
2064 while (*head) 3073 while (*head)
2065 { 3074 {
2066 if (*head == elem) 3075 if (expect_true (*head == elem))
2067 { 3076 {
2068 *head = elem->next; 3077 *head = elem->next;
2069 return; 3078 break;
2070 } 3079 }
2071 3080
2072 head = &(*head)->next; 3081 head = &(*head)->next;
2073 } 3082 }
2074} 3083}
2075 3084
2076void inline_speed 3085/* internal, faster, version of ev_clear_pending */
3086inline_speed void
2077clear_pending (EV_P_ W w) 3087clear_pending (EV_P_ W w)
2078{ 3088{
2079 if (w->pending) 3089 if (w->pending)
2080 { 3090 {
2081 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3091 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2082 w->pending = 0; 3092 w->pending = 0;
2083 } 3093 }
2084} 3094}
2085 3095
2086int 3096int
2090 int pending = w_->pending; 3100 int pending = w_->pending;
2091 3101
2092 if (expect_true (pending)) 3102 if (expect_true (pending))
2093 { 3103 {
2094 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3104 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3105 p->w = (W)&pending_w;
2095 w_->pending = 0; 3106 w_->pending = 0;
2096 p->w = 0;
2097 return p->events; 3107 return p->events;
2098 } 3108 }
2099 else 3109 else
2100 return 0; 3110 return 0;
2101} 3111}
2102 3112
2103void inline_size 3113inline_size void
2104pri_adjust (EV_P_ W w) 3114pri_adjust (EV_P_ W w)
2105{ 3115{
2106 int pri = w->priority; 3116 int pri = ev_priority (w);
2107 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3117 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2108 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3118 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2109 w->priority = pri; 3119 ev_set_priority (w, pri);
2110} 3120}
2111 3121
2112void inline_speed 3122inline_speed void
2113ev_start (EV_P_ W w, int active) 3123ev_start (EV_P_ W w, int active)
2114{ 3124{
2115 pri_adjust (EV_A_ w); 3125 pri_adjust (EV_A_ w);
2116 w->active = active; 3126 w->active = active;
2117 ev_ref (EV_A); 3127 ev_ref (EV_A);
2118} 3128}
2119 3129
2120void inline_size 3130inline_size void
2121ev_stop (EV_P_ W w) 3131ev_stop (EV_P_ W w)
2122{ 3132{
2123 ev_unref (EV_A); 3133 ev_unref (EV_A);
2124 w->active = 0; 3134 w->active = 0;
2125} 3135}
2132 int fd = w->fd; 3142 int fd = w->fd;
2133 3143
2134 if (expect_false (ev_is_active (w))) 3144 if (expect_false (ev_is_active (w)))
2135 return; 3145 return;
2136 3146
2137 assert (("ev_io_start called with negative fd", fd >= 0)); 3147 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3148 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2138 3149
2139 EV_FREQUENT_CHECK; 3150 EV_FREQUENT_CHECK;
2140 3151
2141 ev_start (EV_A_ (W)w, 1); 3152 ev_start (EV_A_ (W)w, 1);
2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3153 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2143 wlist_add (&anfds[fd].head, (WL)w); 3154 wlist_add (&anfds[fd].head, (WL)w);
2144 3155
2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3156 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2146 w->events &= ~EV_IOFDSET; 3157 w->events &= ~EV__IOFDSET;
2147 3158
2148 EV_FREQUENT_CHECK; 3159 EV_FREQUENT_CHECK;
2149} 3160}
2150 3161
2151void noinline 3162void noinline
2153{ 3164{
2154 clear_pending (EV_A_ (W)w); 3165 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 3166 if (expect_false (!ev_is_active (w)))
2156 return; 3167 return;
2157 3168
2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3169 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159 3170
2160 EV_FREQUENT_CHECK; 3171 EV_FREQUENT_CHECK;
2161 3172
2162 wlist_del (&anfds[w->fd].head, (WL)w); 3173 wlist_del (&anfds[w->fd].head, (WL)w);
2163 ev_stop (EV_A_ (W)w); 3174 ev_stop (EV_A_ (W)w);
2164 3175
2165 fd_change (EV_A_ w->fd, 1); 3176 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2166 3177
2167 EV_FREQUENT_CHECK; 3178 EV_FREQUENT_CHECK;
2168} 3179}
2169 3180
2170void noinline 3181void noinline
2173 if (expect_false (ev_is_active (w))) 3184 if (expect_false (ev_is_active (w)))
2174 return; 3185 return;
2175 3186
2176 ev_at (w) += mn_now; 3187 ev_at (w) += mn_now;
2177 3188
2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3189 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2179 3190
2180 EV_FREQUENT_CHECK; 3191 EV_FREQUENT_CHECK;
2181 3192
2182 ++timercnt; 3193 ++timercnt;
2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3194 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2186 ANHE_at_cache (timers [ev_active (w)]); 3197 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w)); 3198 upheap (timers, ev_active (w));
2188 3199
2189 EV_FREQUENT_CHECK; 3200 EV_FREQUENT_CHECK;
2190 3201
2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3202 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2192} 3203}
2193 3204
2194void noinline 3205void noinline
2195ev_timer_stop (EV_P_ ev_timer *w) 3206ev_timer_stop (EV_P_ ev_timer *w)
2196{ 3207{
2201 EV_FREQUENT_CHECK; 3212 EV_FREQUENT_CHECK;
2202 3213
2203 { 3214 {
2204 int active = ev_active (w); 3215 int active = ev_active (w);
2205 3216
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3217 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207 3218
2208 --timercnt; 3219 --timercnt;
2209 3220
2210 if (expect_true (active < timercnt + HEAP0)) 3221 if (expect_true (active < timercnt + HEAP0))
2211 { 3222 {
2212 timers [active] = timers [timercnt + HEAP0]; 3223 timers [active] = timers [timercnt + HEAP0];
2213 adjustheap (timers, timercnt, active); 3224 adjustheap (timers, timercnt, active);
2214 } 3225 }
2215 } 3226 }
2216 3227
2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now; 3228 ev_at (w) -= mn_now;
2220 3229
2221 ev_stop (EV_A_ (W)w); 3230 ev_stop (EV_A_ (W)w);
3231
3232 EV_FREQUENT_CHECK;
2222} 3233}
2223 3234
2224void noinline 3235void noinline
2225ev_timer_again (EV_P_ ev_timer *w) 3236ev_timer_again (EV_P_ ev_timer *w)
2226{ 3237{
2244 } 3255 }
2245 3256
2246 EV_FREQUENT_CHECK; 3257 EV_FREQUENT_CHECK;
2247} 3258}
2248 3259
3260ev_tstamp
3261ev_timer_remaining (EV_P_ ev_timer *w)
3262{
3263 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3264}
3265
2249#if EV_PERIODIC_ENABLE 3266#if EV_PERIODIC_ENABLE
2250void noinline 3267void noinline
2251ev_periodic_start (EV_P_ ev_periodic *w) 3268ev_periodic_start (EV_P_ ev_periodic *w)
2252{ 3269{
2253 if (expect_false (ev_is_active (w))) 3270 if (expect_false (ev_is_active (w)))
2255 3272
2256 if (w->reschedule_cb) 3273 if (w->reschedule_cb)
2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3274 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2258 else if (w->interval) 3275 else if (w->interval)
2259 { 3276 {
2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3277 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2261 /* this formula differs from the one in periodic_reify because we do not always round up */ 3278 periodic_recalc (EV_A_ w);
2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2263 } 3279 }
2264 else 3280 else
2265 ev_at (w) = w->offset; 3281 ev_at (w) = w->offset;
2266 3282
2267 EV_FREQUENT_CHECK; 3283 EV_FREQUENT_CHECK;
2273 ANHE_at_cache (periodics [ev_active (w)]); 3289 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w)); 3290 upheap (periodics, ev_active (w));
2275 3291
2276 EV_FREQUENT_CHECK; 3292 EV_FREQUENT_CHECK;
2277 3293
2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3294 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2279} 3295}
2280 3296
2281void noinline 3297void noinline
2282ev_periodic_stop (EV_P_ ev_periodic *w) 3298ev_periodic_stop (EV_P_ ev_periodic *w)
2283{ 3299{
2288 EV_FREQUENT_CHECK; 3304 EV_FREQUENT_CHECK;
2289 3305
2290 { 3306 {
2291 int active = ev_active (w); 3307 int active = ev_active (w);
2292 3308
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3309 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294 3310
2295 --periodiccnt; 3311 --periodiccnt;
2296 3312
2297 if (expect_true (active < periodiccnt + HEAP0)) 3313 if (expect_true (active < periodiccnt + HEAP0))
2298 { 3314 {
2299 periodics [active] = periodics [periodiccnt + HEAP0]; 3315 periodics [active] = periodics [periodiccnt + HEAP0];
2300 adjustheap (periodics, periodiccnt, active); 3316 adjustheap (periodics, periodiccnt, active);
2301 } 3317 }
2302 } 3318 }
2303 3319
2304 EV_FREQUENT_CHECK;
2305
2306 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
2307} 3323}
2308 3324
2309void noinline 3325void noinline
2310ev_periodic_again (EV_P_ ev_periodic *w) 3326ev_periodic_again (EV_P_ ev_periodic *w)
2311{ 3327{
2317 3333
2318#ifndef SA_RESTART 3334#ifndef SA_RESTART
2319# define SA_RESTART 0 3335# define SA_RESTART 0
2320#endif 3336#endif
2321 3337
3338#if EV_SIGNAL_ENABLE
3339
2322void noinline 3340void noinline
2323ev_signal_start (EV_P_ ev_signal *w) 3341ev_signal_start (EV_P_ ev_signal *w)
2324{ 3342{
2325#if EV_MULTIPLICITY
2326 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2327#endif
2328 if (expect_false (ev_is_active (w))) 3343 if (expect_false (ev_is_active (w)))
2329 return; 3344 return;
2330 3345
2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3346 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2332 3347
2333 evpipe_init (EV_A); 3348#if EV_MULTIPLICITY
3349 assert (("libev: a signal must not be attached to two different loops",
3350 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2334 3351
2335 EV_FREQUENT_CHECK; 3352 signals [w->signum - 1].loop = EV_A;
3353#endif
2336 3354
3355 EV_FREQUENT_CHECK;
3356
3357#if EV_USE_SIGNALFD
3358 if (sigfd == -2)
2337 { 3359 {
2338#ifndef _WIN32 3360 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2339 sigset_t full, prev; 3361 if (sigfd < 0 && errno == EINVAL)
2340 sigfillset (&full); 3362 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2341 sigprocmask (SIG_SETMASK, &full, &prev);
2342#endif
2343 3363
2344 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3364 if (sigfd >= 0)
3365 {
3366 fd_intern (sigfd); /* doing it twice will not hurt */
2345 3367
2346#ifndef _WIN32 3368 sigemptyset (&sigfd_set);
2347 sigprocmask (SIG_SETMASK, &prev, 0); 3369
2348#endif 3370 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3371 ev_set_priority (&sigfd_w, EV_MAXPRI);
3372 ev_io_start (EV_A_ &sigfd_w);
3373 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3374 }
2349 } 3375 }
3376
3377 if (sigfd >= 0)
3378 {
3379 /* TODO: check .head */
3380 sigaddset (&sigfd_set, w->signum);
3381 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3382
3383 signalfd (sigfd, &sigfd_set, 0);
3384 }
3385#endif
2350 3386
2351 ev_start (EV_A_ (W)w, 1); 3387 ev_start (EV_A_ (W)w, 1);
2352 wlist_add (&signals [w->signum - 1].head, (WL)w); 3388 wlist_add (&signals [w->signum - 1].head, (WL)w);
2353 3389
2354 if (!((WL)w)->next) 3390 if (!((WL)w)->next)
3391# if EV_USE_SIGNALFD
3392 if (sigfd < 0) /*TODO*/
3393# endif
2355 { 3394 {
2356#if _WIN32 3395# ifdef _WIN32
3396 evpipe_init (EV_A);
3397
2357 signal (w->signum, ev_sighandler); 3398 signal (w->signum, ev_sighandler);
2358#else 3399# else
2359 struct sigaction sa; 3400 struct sigaction sa;
3401
3402 evpipe_init (EV_A);
3403
2360 sa.sa_handler = ev_sighandler; 3404 sa.sa_handler = ev_sighandler;
2361 sigfillset (&sa.sa_mask); 3405 sigfillset (&sa.sa_mask);
2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3406 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2363 sigaction (w->signum, &sa, 0); 3407 sigaction (w->signum, &sa, 0);
3408
3409 if (origflags & EVFLAG_NOSIGMASK)
3410 {
3411 sigemptyset (&sa.sa_mask);
3412 sigaddset (&sa.sa_mask, w->signum);
3413 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3414 }
2364#endif 3415#endif
2365 } 3416 }
2366 3417
2367 EV_FREQUENT_CHECK; 3418 EV_FREQUENT_CHECK;
2368} 3419}
2369 3420
2370void noinline 3421void noinline
2378 3429
2379 wlist_del (&signals [w->signum - 1].head, (WL)w); 3430 wlist_del (&signals [w->signum - 1].head, (WL)w);
2380 ev_stop (EV_A_ (W)w); 3431 ev_stop (EV_A_ (W)w);
2381 3432
2382 if (!signals [w->signum - 1].head) 3433 if (!signals [w->signum - 1].head)
3434 {
3435#if EV_MULTIPLICITY
3436 signals [w->signum - 1].loop = 0; /* unattach from signal */
3437#endif
3438#if EV_USE_SIGNALFD
3439 if (sigfd >= 0)
3440 {
3441 sigset_t ss;
3442
3443 sigemptyset (&ss);
3444 sigaddset (&ss, w->signum);
3445 sigdelset (&sigfd_set, w->signum);
3446
3447 signalfd (sigfd, &sigfd_set, 0);
3448 sigprocmask (SIG_UNBLOCK, &ss, 0);
3449 }
3450 else
3451#endif
2383 signal (w->signum, SIG_DFL); 3452 signal (w->signum, SIG_DFL);
3453 }
2384 3454
2385 EV_FREQUENT_CHECK; 3455 EV_FREQUENT_CHECK;
2386} 3456}
3457
3458#endif
3459
3460#if EV_CHILD_ENABLE
2387 3461
2388void 3462void
2389ev_child_start (EV_P_ ev_child *w) 3463ev_child_start (EV_P_ ev_child *w)
2390{ 3464{
2391#if EV_MULTIPLICITY 3465#if EV_MULTIPLICITY
2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3466 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2393#endif 3467#endif
2394 if (expect_false (ev_is_active (w))) 3468 if (expect_false (ev_is_active (w)))
2395 return; 3469 return;
2396 3470
2397 EV_FREQUENT_CHECK; 3471 EV_FREQUENT_CHECK;
2398 3472
2399 ev_start (EV_A_ (W)w, 1); 3473 ev_start (EV_A_ (W)w, 1);
2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3474 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2401 3475
2402 EV_FREQUENT_CHECK; 3476 EV_FREQUENT_CHECK;
2403} 3477}
2404 3478
2405void 3479void
2409 if (expect_false (!ev_is_active (w))) 3483 if (expect_false (!ev_is_active (w)))
2410 return; 3484 return;
2411 3485
2412 EV_FREQUENT_CHECK; 3486 EV_FREQUENT_CHECK;
2413 3487
2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3488 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2415 ev_stop (EV_A_ (W)w); 3489 ev_stop (EV_A_ (W)w);
2416 3490
2417 EV_FREQUENT_CHECK; 3491 EV_FREQUENT_CHECK;
2418} 3492}
3493
3494#endif
2419 3495
2420#if EV_STAT_ENABLE 3496#if EV_STAT_ENABLE
2421 3497
2422# ifdef _WIN32 3498# ifdef _WIN32
2423# undef lstat 3499# undef lstat
2424# define lstat(a,b) _stati64 (a,b) 3500# define lstat(a,b) _stati64 (a,b)
2425# endif 3501# endif
2426 3502
2427#define DEF_STAT_INTERVAL 5.0074891 3503#define DEF_STAT_INTERVAL 5.0074891
3504#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2428#define MIN_STAT_INTERVAL 0.1074891 3505#define MIN_STAT_INTERVAL 0.1074891
2429 3506
2430static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3507static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2431 3508
2432#if EV_USE_INOTIFY 3509#if EV_USE_INOTIFY
2433# define EV_INOTIFY_BUFSIZE 8192 3510
3511/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3512# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2434 3513
2435static void noinline 3514static void noinline
2436infy_add (EV_P_ ev_stat *w) 3515infy_add (EV_P_ ev_stat *w)
2437{ 3516{
2438 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3517 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2439 3518
2440 if (w->wd < 0) 3519 if (w->wd >= 0)
3520 {
3521 struct statfs sfs;
3522
3523 /* now local changes will be tracked by inotify, but remote changes won't */
3524 /* unless the filesystem is known to be local, we therefore still poll */
3525 /* also do poll on <2.6.25, but with normal frequency */
3526
3527 if (!fs_2625)
3528 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3529 else if (!statfs (w->path, &sfs)
3530 && (sfs.f_type == 0x1373 /* devfs */
3531 || sfs.f_type == 0xEF53 /* ext2/3 */
3532 || sfs.f_type == 0x3153464a /* jfs */
3533 || sfs.f_type == 0x52654973 /* reiser3 */
3534 || sfs.f_type == 0x01021994 /* tempfs */
3535 || sfs.f_type == 0x58465342 /* xfs */))
3536 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3537 else
3538 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2441 { 3539 }
2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3540 else
3541 {
3542 /* can't use inotify, continue to stat */
3543 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2443 3544
2444 /* monitor some parent directory for speedup hints */ 3545 /* if path is not there, monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3546 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2446 /* but an efficiency issue only */ 3547 /* but an efficiency issue only */
2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3548 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2448 { 3549 {
2449 char path [4096]; 3550 char path [4096];
2450 strcpy (path, w->path); 3551 strcpy (path, w->path);
2454 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3555 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2455 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3556 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2456 3557
2457 char *pend = strrchr (path, '/'); 3558 char *pend = strrchr (path, '/');
2458 3559
2459 if (!pend) 3560 if (!pend || pend == path)
2460 break; /* whoops, no '/', complain to your admin */ 3561 break;
2461 3562
2462 *pend = 0; 3563 *pend = 0;
2463 w->wd = inotify_add_watch (fs_fd, path, mask); 3564 w->wd = inotify_add_watch (fs_fd, path, mask);
2464 } 3565 }
2465 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3566 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2466 } 3567 }
2467 } 3568 }
2468 else
2469 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2470 3569
2471 if (w->wd >= 0) 3570 if (w->wd >= 0)
2472 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3571 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3572
3573 /* now re-arm timer, if required */
3574 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3575 ev_timer_again (EV_A_ &w->timer);
3576 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2473} 3577}
2474 3578
2475static void noinline 3579static void noinline
2476infy_del (EV_P_ ev_stat *w) 3580infy_del (EV_P_ ev_stat *w)
2477{ 3581{
2480 3584
2481 if (wd < 0) 3585 if (wd < 0)
2482 return; 3586 return;
2483 3587
2484 w->wd = -2; 3588 w->wd = -2;
2485 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3589 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2486 wlist_del (&fs_hash [slot].head, (WL)w); 3590 wlist_del (&fs_hash [slot].head, (WL)w);
2487 3591
2488 /* remove this watcher, if others are watching it, they will rearm */ 3592 /* remove this watcher, if others are watching it, they will rearm */
2489 inotify_rm_watch (fs_fd, wd); 3593 inotify_rm_watch (fs_fd, wd);
2490} 3594}
2491 3595
2492static void noinline 3596static void noinline
2493infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3597infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2494{ 3598{
2495 if (slot < 0) 3599 if (slot < 0)
2496 /* overflow, need to check for all hahs slots */ 3600 /* overflow, need to check for all hash slots */
2497 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3601 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2498 infy_wd (EV_A_ slot, wd, ev); 3602 infy_wd (EV_A_ slot, wd, ev);
2499 else 3603 else
2500 { 3604 {
2501 WL w_; 3605 WL w_;
2502 3606
2503 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3607 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2504 { 3608 {
2505 ev_stat *w = (ev_stat *)w_; 3609 ev_stat *w = (ev_stat *)w_;
2506 w_ = w_->next; /* lets us remove this watcher and all before it */ 3610 w_ = w_->next; /* lets us remove this watcher and all before it */
2507 3611
2508 if (w->wd == wd || wd == -1) 3612 if (w->wd == wd || wd == -1)
2509 { 3613 {
2510 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3614 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2511 { 3615 {
3616 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2512 w->wd = -1; 3617 w->wd = -1;
2513 infy_add (EV_A_ w); /* re-add, no matter what */ 3618 infy_add (EV_A_ w); /* re-add, no matter what */
2514 } 3619 }
2515 3620
2516 stat_timer_cb (EV_A_ &w->timer, 0); 3621 stat_timer_cb (EV_A_ &w->timer, 0);
2521 3626
2522static void 3627static void
2523infy_cb (EV_P_ ev_io *w, int revents) 3628infy_cb (EV_P_ ev_io *w, int revents)
2524{ 3629{
2525 char buf [EV_INOTIFY_BUFSIZE]; 3630 char buf [EV_INOTIFY_BUFSIZE];
2526 struct inotify_event *ev = (struct inotify_event *)buf;
2527 int ofs; 3631 int ofs;
2528 int len = read (fs_fd, buf, sizeof (buf)); 3632 int len = read (fs_fd, buf, sizeof (buf));
2529 3633
2530 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3634 for (ofs = 0; ofs < len; )
3635 {
3636 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2531 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3637 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3638 ofs += sizeof (struct inotify_event) + ev->len;
3639 }
2532} 3640}
2533 3641
2534void inline_size 3642inline_size void ecb_cold
3643ev_check_2625 (EV_P)
3644{
3645 /* kernels < 2.6.25 are borked
3646 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3647 */
3648 if (ev_linux_version () < 0x020619)
3649 return;
3650
3651 fs_2625 = 1;
3652}
3653
3654inline_size int
3655infy_newfd (void)
3656{
3657#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3658 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3659 if (fd >= 0)
3660 return fd;
3661#endif
3662 return inotify_init ();
3663}
3664
3665inline_size void
2535infy_init (EV_P) 3666infy_init (EV_P)
2536{ 3667{
2537 if (fs_fd != -2) 3668 if (fs_fd != -2)
2538 return; 3669 return;
2539 3670
3671 fs_fd = -1;
3672
3673 ev_check_2625 (EV_A);
3674
2540 fs_fd = inotify_init (); 3675 fs_fd = infy_newfd ();
2541 3676
2542 if (fs_fd >= 0) 3677 if (fs_fd >= 0)
2543 { 3678 {
3679 fd_intern (fs_fd);
2544 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3680 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2545 ev_set_priority (&fs_w, EV_MAXPRI); 3681 ev_set_priority (&fs_w, EV_MAXPRI);
2546 ev_io_start (EV_A_ &fs_w); 3682 ev_io_start (EV_A_ &fs_w);
3683 ev_unref (EV_A);
2547 } 3684 }
2548} 3685}
2549 3686
2550void inline_size 3687inline_size void
2551infy_fork (EV_P) 3688infy_fork (EV_P)
2552{ 3689{
2553 int slot; 3690 int slot;
2554 3691
2555 if (fs_fd < 0) 3692 if (fs_fd < 0)
2556 return; 3693 return;
2557 3694
3695 ev_ref (EV_A);
3696 ev_io_stop (EV_A_ &fs_w);
2558 close (fs_fd); 3697 close (fs_fd);
2559 fs_fd = inotify_init (); 3698 fs_fd = infy_newfd ();
2560 3699
3700 if (fs_fd >= 0)
3701 {
3702 fd_intern (fs_fd);
3703 ev_io_set (&fs_w, fs_fd, EV_READ);
3704 ev_io_start (EV_A_ &fs_w);
3705 ev_unref (EV_A);
3706 }
3707
2561 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3708 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2562 { 3709 {
2563 WL w_ = fs_hash [slot].head; 3710 WL w_ = fs_hash [slot].head;
2564 fs_hash [slot].head = 0; 3711 fs_hash [slot].head = 0;
2565 3712
2566 while (w_) 3713 while (w_)
2571 w->wd = -1; 3718 w->wd = -1;
2572 3719
2573 if (fs_fd >= 0) 3720 if (fs_fd >= 0)
2574 infy_add (EV_A_ w); /* re-add, no matter what */ 3721 infy_add (EV_A_ w); /* re-add, no matter what */
2575 else 3722 else
3723 {
3724 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3725 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2576 ev_timer_start (EV_A_ &w->timer); 3726 ev_timer_again (EV_A_ &w->timer);
3727 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3728 }
2577 } 3729 }
2578
2579 } 3730 }
2580} 3731}
2581 3732
2582#endif 3733#endif
2583 3734
2599static void noinline 3750static void noinline
2600stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3751stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2601{ 3752{
2602 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3753 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2603 3754
2604 /* we copy this here each the time so that */ 3755 ev_statdata prev = w->attr;
2605 /* prev has the old value when the callback gets invoked */
2606 w->prev = w->attr;
2607 ev_stat_stat (EV_A_ w); 3756 ev_stat_stat (EV_A_ w);
2608 3757
2609 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3758 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2610 if ( 3759 if (
2611 w->prev.st_dev != w->attr.st_dev 3760 prev.st_dev != w->attr.st_dev
2612 || w->prev.st_ino != w->attr.st_ino 3761 || prev.st_ino != w->attr.st_ino
2613 || w->prev.st_mode != w->attr.st_mode 3762 || prev.st_mode != w->attr.st_mode
2614 || w->prev.st_nlink != w->attr.st_nlink 3763 || prev.st_nlink != w->attr.st_nlink
2615 || w->prev.st_uid != w->attr.st_uid 3764 || prev.st_uid != w->attr.st_uid
2616 || w->prev.st_gid != w->attr.st_gid 3765 || prev.st_gid != w->attr.st_gid
2617 || w->prev.st_rdev != w->attr.st_rdev 3766 || prev.st_rdev != w->attr.st_rdev
2618 || w->prev.st_size != w->attr.st_size 3767 || prev.st_size != w->attr.st_size
2619 || w->prev.st_atime != w->attr.st_atime 3768 || prev.st_atime != w->attr.st_atime
2620 || w->prev.st_mtime != w->attr.st_mtime 3769 || prev.st_mtime != w->attr.st_mtime
2621 || w->prev.st_ctime != w->attr.st_ctime 3770 || prev.st_ctime != w->attr.st_ctime
2622 ) { 3771 ) {
3772 /* we only update w->prev on actual differences */
3773 /* in case we test more often than invoke the callback, */
3774 /* to ensure that prev is always different to attr */
3775 w->prev = prev;
3776
2623 #if EV_USE_INOTIFY 3777 #if EV_USE_INOTIFY
3778 if (fs_fd >= 0)
3779 {
2624 infy_del (EV_A_ w); 3780 infy_del (EV_A_ w);
2625 infy_add (EV_A_ w); 3781 infy_add (EV_A_ w);
2626 ev_stat_stat (EV_A_ w); /* avoid race... */ 3782 ev_stat_stat (EV_A_ w); /* avoid race... */
3783 }
2627 #endif 3784 #endif
2628 3785
2629 ev_feed_event (EV_A_ w, EV_STAT); 3786 ev_feed_event (EV_A_ w, EV_STAT);
2630 } 3787 }
2631} 3788}
2634ev_stat_start (EV_P_ ev_stat *w) 3791ev_stat_start (EV_P_ ev_stat *w)
2635{ 3792{
2636 if (expect_false (ev_is_active (w))) 3793 if (expect_false (ev_is_active (w)))
2637 return; 3794 return;
2638 3795
2639 /* since we use memcmp, we need to clear any padding data etc. */
2640 memset (&w->prev, 0, sizeof (ev_statdata));
2641 memset (&w->attr, 0, sizeof (ev_statdata));
2642
2643 ev_stat_stat (EV_A_ w); 3796 ev_stat_stat (EV_A_ w);
2644 3797
3798 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2645 if (w->interval < MIN_STAT_INTERVAL) 3799 w->interval = MIN_STAT_INTERVAL;
2646 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2647 3800
2648 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3801 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2649 ev_set_priority (&w->timer, ev_priority (w)); 3802 ev_set_priority (&w->timer, ev_priority (w));
2650 3803
2651#if EV_USE_INOTIFY 3804#if EV_USE_INOTIFY
2652 infy_init (EV_A); 3805 infy_init (EV_A);
2653 3806
2654 if (fs_fd >= 0) 3807 if (fs_fd >= 0)
2655 infy_add (EV_A_ w); 3808 infy_add (EV_A_ w);
2656 else 3809 else
2657#endif 3810#endif
3811 {
2658 ev_timer_start (EV_A_ &w->timer); 3812 ev_timer_again (EV_A_ &w->timer);
3813 ev_unref (EV_A);
3814 }
2659 3815
2660 ev_start (EV_A_ (W)w, 1); 3816 ev_start (EV_A_ (W)w, 1);
2661 3817
2662 EV_FREQUENT_CHECK; 3818 EV_FREQUENT_CHECK;
2663} 3819}
2672 EV_FREQUENT_CHECK; 3828 EV_FREQUENT_CHECK;
2673 3829
2674#if EV_USE_INOTIFY 3830#if EV_USE_INOTIFY
2675 infy_del (EV_A_ w); 3831 infy_del (EV_A_ w);
2676#endif 3832#endif
3833
3834 if (ev_is_active (&w->timer))
3835 {
3836 ev_ref (EV_A);
2677 ev_timer_stop (EV_A_ &w->timer); 3837 ev_timer_stop (EV_A_ &w->timer);
3838 }
2678 3839
2679 ev_stop (EV_A_ (W)w); 3840 ev_stop (EV_A_ (W)w);
2680 3841
2681 EV_FREQUENT_CHECK; 3842 EV_FREQUENT_CHECK;
2682} 3843}
2727 3888
2728 EV_FREQUENT_CHECK; 3889 EV_FREQUENT_CHECK;
2729} 3890}
2730#endif 3891#endif
2731 3892
3893#if EV_PREPARE_ENABLE
2732void 3894void
2733ev_prepare_start (EV_P_ ev_prepare *w) 3895ev_prepare_start (EV_P_ ev_prepare *w)
2734{ 3896{
2735 if (expect_false (ev_is_active (w))) 3897 if (expect_false (ev_is_active (w)))
2736 return; 3898 return;
2762 3924
2763 ev_stop (EV_A_ (W)w); 3925 ev_stop (EV_A_ (W)w);
2764 3926
2765 EV_FREQUENT_CHECK; 3927 EV_FREQUENT_CHECK;
2766} 3928}
3929#endif
2767 3930
3931#if EV_CHECK_ENABLE
2768void 3932void
2769ev_check_start (EV_P_ ev_check *w) 3933ev_check_start (EV_P_ ev_check *w)
2770{ 3934{
2771 if (expect_false (ev_is_active (w))) 3935 if (expect_false (ev_is_active (w)))
2772 return; 3936 return;
2798 3962
2799 ev_stop (EV_A_ (W)w); 3963 ev_stop (EV_A_ (W)w);
2800 3964
2801 EV_FREQUENT_CHECK; 3965 EV_FREQUENT_CHECK;
2802} 3966}
3967#endif
2803 3968
2804#if EV_EMBED_ENABLE 3969#if EV_EMBED_ENABLE
2805void noinline 3970void noinline
2806ev_embed_sweep (EV_P_ ev_embed *w) 3971ev_embed_sweep (EV_P_ ev_embed *w)
2807{ 3972{
2808 ev_loop (w->other, EVLOOP_NONBLOCK); 3973 ev_run (w->other, EVRUN_NOWAIT);
2809} 3974}
2810 3975
2811static void 3976static void
2812embed_io_cb (EV_P_ ev_io *io, int revents) 3977embed_io_cb (EV_P_ ev_io *io, int revents)
2813{ 3978{
2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3979 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2815 3980
2816 if (ev_cb (w)) 3981 if (ev_cb (w))
2817 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3982 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2818 else 3983 else
2819 ev_loop (w->other, EVLOOP_NONBLOCK); 3984 ev_run (w->other, EVRUN_NOWAIT);
2820} 3985}
2821 3986
2822static void 3987static void
2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3988embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2824{ 3989{
2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3990 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2826 3991
2827 { 3992 {
2828 struct ev_loop *loop = w->other; 3993 EV_P = w->other;
2829 3994
2830 while (fdchangecnt) 3995 while (fdchangecnt)
2831 { 3996 {
2832 fd_reify (EV_A); 3997 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3998 ev_run (EV_A_ EVRUN_NOWAIT);
2834 } 3999 }
2835 } 4000 }
4001}
4002
4003static void
4004embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4005{
4006 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4007
4008 ev_embed_stop (EV_A_ w);
4009
4010 {
4011 EV_P = w->other;
4012
4013 ev_loop_fork (EV_A);
4014 ev_run (EV_A_ EVRUN_NOWAIT);
4015 }
4016
4017 ev_embed_start (EV_A_ w);
2836} 4018}
2837 4019
2838#if 0 4020#if 0
2839static void 4021static void
2840embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4022embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2848{ 4030{
2849 if (expect_false (ev_is_active (w))) 4031 if (expect_false (ev_is_active (w)))
2850 return; 4032 return;
2851 4033
2852 { 4034 {
2853 struct ev_loop *loop = w->other; 4035 EV_P = w->other;
2854 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4036 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2855 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4037 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2856 } 4038 }
2857 4039
2858 EV_FREQUENT_CHECK; 4040 EV_FREQUENT_CHECK;
2859 4041
2862 4044
2863 ev_prepare_init (&w->prepare, embed_prepare_cb); 4045 ev_prepare_init (&w->prepare, embed_prepare_cb);
2864 ev_set_priority (&w->prepare, EV_MINPRI); 4046 ev_set_priority (&w->prepare, EV_MINPRI);
2865 ev_prepare_start (EV_A_ &w->prepare); 4047 ev_prepare_start (EV_A_ &w->prepare);
2866 4048
4049 ev_fork_init (&w->fork, embed_fork_cb);
4050 ev_fork_start (EV_A_ &w->fork);
4051
2867 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4052 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2868 4053
2869 ev_start (EV_A_ (W)w, 1); 4054 ev_start (EV_A_ (W)w, 1);
2870 4055
2871 EV_FREQUENT_CHECK; 4056 EV_FREQUENT_CHECK;
2878 if (expect_false (!ev_is_active (w))) 4063 if (expect_false (!ev_is_active (w)))
2879 return; 4064 return;
2880 4065
2881 EV_FREQUENT_CHECK; 4066 EV_FREQUENT_CHECK;
2882 4067
2883 ev_io_stop (EV_A_ &w->io); 4068 ev_io_stop (EV_A_ &w->io);
2884 ev_prepare_stop (EV_A_ &w->prepare); 4069 ev_prepare_stop (EV_A_ &w->prepare);
4070 ev_fork_stop (EV_A_ &w->fork);
2885 4071
2886 ev_stop (EV_A_ (W)w); 4072 ev_stop (EV_A_ (W)w);
2887 4073
2888 EV_FREQUENT_CHECK; 4074 EV_FREQUENT_CHECK;
2889} 4075}
2925 4111
2926 EV_FREQUENT_CHECK; 4112 EV_FREQUENT_CHECK;
2927} 4113}
2928#endif 4114#endif
2929 4115
4116#if EV_CLEANUP_ENABLE
4117void
4118ev_cleanup_start (EV_P_ ev_cleanup *w)
4119{
4120 if (expect_false (ev_is_active (w)))
4121 return;
4122
4123 EV_FREQUENT_CHECK;
4124
4125 ev_start (EV_A_ (W)w, ++cleanupcnt);
4126 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4127 cleanups [cleanupcnt - 1] = w;
4128
4129 /* cleanup watchers should never keep a refcount on the loop */
4130 ev_unref (EV_A);
4131 EV_FREQUENT_CHECK;
4132}
4133
4134void
4135ev_cleanup_stop (EV_P_ ev_cleanup *w)
4136{
4137 clear_pending (EV_A_ (W)w);
4138 if (expect_false (!ev_is_active (w)))
4139 return;
4140
4141 EV_FREQUENT_CHECK;
4142 ev_ref (EV_A);
4143
4144 {
4145 int active = ev_active (w);
4146
4147 cleanups [active - 1] = cleanups [--cleanupcnt];
4148 ev_active (cleanups [active - 1]) = active;
4149 }
4150
4151 ev_stop (EV_A_ (W)w);
4152
4153 EV_FREQUENT_CHECK;
4154}
4155#endif
4156
2930#if EV_ASYNC_ENABLE 4157#if EV_ASYNC_ENABLE
2931void 4158void
2932ev_async_start (EV_P_ ev_async *w) 4159ev_async_start (EV_P_ ev_async *w)
2933{ 4160{
2934 if (expect_false (ev_is_active (w))) 4161 if (expect_false (ev_is_active (w)))
2935 return; 4162 return;
2936 4163
4164 w->sent = 0;
4165
2937 evpipe_init (EV_A); 4166 evpipe_init (EV_A);
2938 4167
2939 EV_FREQUENT_CHECK; 4168 EV_FREQUENT_CHECK;
2940 4169
2941 ev_start (EV_A_ (W)w, ++asynccnt); 4170 ev_start (EV_A_ (W)w, ++asynccnt);
2968 4197
2969void 4198void
2970ev_async_send (EV_P_ ev_async *w) 4199ev_async_send (EV_P_ ev_async *w)
2971{ 4200{
2972 w->sent = 1; 4201 w->sent = 1;
2973 evpipe_write (EV_A_ &gotasync); 4202 evpipe_write (EV_A_ &async_pending);
2974} 4203}
2975#endif 4204#endif
2976 4205
2977/*****************************************************************************/ 4206/*****************************************************************************/
2978 4207
2998} 4227}
2999 4228
3000static void 4229static void
3001once_cb_io (EV_P_ ev_io *w, int revents) 4230once_cb_io (EV_P_ ev_io *w, int revents)
3002{ 4231{
3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4232 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4233
4234 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3004} 4235}
3005 4236
3006static void 4237static void
3007once_cb_to (EV_P_ ev_timer *w, int revents) 4238once_cb_to (EV_P_ ev_timer *w, int revents)
3008{ 4239{
3009 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4240 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4241
4242 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3010} 4243}
3011 4244
3012void 4245void
3013ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4246ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3014{ 4247{
3015 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4248 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3016 4249
3017 if (expect_false (!once)) 4250 if (expect_false (!once))
3018 { 4251 {
3019 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4252 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3020 return; 4253 return;
3021 } 4254 }
3022 4255
3023 once->cb = cb; 4256 once->cb = cb;
3024 once->arg = arg; 4257 once->arg = arg;
3036 ev_timer_set (&once->to, timeout, 0.); 4269 ev_timer_set (&once->to, timeout, 0.);
3037 ev_timer_start (EV_A_ &once->to); 4270 ev_timer_start (EV_A_ &once->to);
3038 } 4271 }
3039} 4272}
3040 4273
4274/*****************************************************************************/
4275
4276#if EV_WALK_ENABLE
4277void ecb_cold
4278ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4279{
4280 int i, j;
4281 ev_watcher_list *wl, *wn;
4282
4283 if (types & (EV_IO | EV_EMBED))
4284 for (i = 0; i < anfdmax; ++i)
4285 for (wl = anfds [i].head; wl; )
4286 {
4287 wn = wl->next;
4288
4289#if EV_EMBED_ENABLE
4290 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4291 {
4292 if (types & EV_EMBED)
4293 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4294 }
4295 else
4296#endif
4297#if EV_USE_INOTIFY
4298 if (ev_cb ((ev_io *)wl) == infy_cb)
4299 ;
4300 else
4301#endif
4302 if ((ev_io *)wl != &pipe_w)
4303 if (types & EV_IO)
4304 cb (EV_A_ EV_IO, wl);
4305
4306 wl = wn;
4307 }
4308
4309 if (types & (EV_TIMER | EV_STAT))
4310 for (i = timercnt + HEAP0; i-- > HEAP0; )
4311#if EV_STAT_ENABLE
4312 /*TODO: timer is not always active*/
4313 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4314 {
4315 if (types & EV_STAT)
4316 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4317 }
4318 else
4319#endif
4320 if (types & EV_TIMER)
4321 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4322
4323#if EV_PERIODIC_ENABLE
4324 if (types & EV_PERIODIC)
4325 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4326 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4327#endif
4328
4329#if EV_IDLE_ENABLE
4330 if (types & EV_IDLE)
4331 for (j = NUMPRI; j--; )
4332 for (i = idlecnt [j]; i--; )
4333 cb (EV_A_ EV_IDLE, idles [j][i]);
4334#endif
4335
4336#if EV_FORK_ENABLE
4337 if (types & EV_FORK)
4338 for (i = forkcnt; i--; )
4339 if (ev_cb (forks [i]) != embed_fork_cb)
4340 cb (EV_A_ EV_FORK, forks [i]);
4341#endif
4342
4343#if EV_ASYNC_ENABLE
4344 if (types & EV_ASYNC)
4345 for (i = asynccnt; i--; )
4346 cb (EV_A_ EV_ASYNC, asyncs [i]);
4347#endif
4348
4349#if EV_PREPARE_ENABLE
4350 if (types & EV_PREPARE)
4351 for (i = preparecnt; i--; )
4352# if EV_EMBED_ENABLE
4353 if (ev_cb (prepares [i]) != embed_prepare_cb)
4354# endif
4355 cb (EV_A_ EV_PREPARE, prepares [i]);
4356#endif
4357
4358#if EV_CHECK_ENABLE
4359 if (types & EV_CHECK)
4360 for (i = checkcnt; i--; )
4361 cb (EV_A_ EV_CHECK, checks [i]);
4362#endif
4363
4364#if EV_SIGNAL_ENABLE
4365 if (types & EV_SIGNAL)
4366 for (i = 0; i < EV_NSIG - 1; ++i)
4367 for (wl = signals [i].head; wl; )
4368 {
4369 wn = wl->next;
4370 cb (EV_A_ EV_SIGNAL, wl);
4371 wl = wn;
4372 }
4373#endif
4374
4375#if EV_CHILD_ENABLE
4376 if (types & EV_CHILD)
4377 for (i = (EV_PID_HASHSIZE); i--; )
4378 for (wl = childs [i]; wl; )
4379 {
4380 wn = wl->next;
4381 cb (EV_A_ EV_CHILD, wl);
4382 wl = wn;
4383 }
4384#endif
4385/* EV_STAT 0x00001000 /* stat data changed */
4386/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4387}
4388#endif
4389
3041#if EV_MULTIPLICITY 4390#if EV_MULTIPLICITY
3042 #include "ev_wrap.h" 4391 #include "ev_wrap.h"
3043#endif 4392#endif
3044 4393
3045#ifdef __cplusplus 4394EV_CPP(})
3046}
3047#endif
3048 4395

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines