ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.395 by root, Wed Aug 24 16:08:17 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
57# else 88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
58# define EV_USE_SELECT 0 99# define EV_USE_SELECT 0
59# endif 100# endif
60 101
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 102# if HAVE_POLL && HAVE_POLL_H
62# define EV_USE_POLL 1 103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
63# else 106# else
107# undef EV_USE_POLL
64# define EV_USE_POLL 0 108# define EV_USE_POLL 0
65# endif 109# endif
66 110
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
68# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
69# else 115# else
116# undef EV_USE_EPOLL
70# define EV_USE_EPOLL 0 117# define EV_USE_EPOLL 0
71# endif 118# endif
72 119
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
74# define EV_USE_KQUEUE 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
75# else 124# else
125# undef EV_USE_KQUEUE
76# define EV_USE_KQUEUE 0 126# define EV_USE_KQUEUE 0
77# endif 127# endif
78 128
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 129# if HAVE_PORT_H && HAVE_PORT_CREATE
80# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
81# else 133# else
134# undef EV_USE_PORT
82# define EV_USE_PORT 0 135# define EV_USE_PORT 0
83# endif 136# endif
84 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
85#endif 145# endif
86 146
87#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
88#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
89#include <fcntl.h> 169#include <fcntl.h>
90#include <stddef.h> 170#include <stddef.h>
91 171
92#include <stdio.h> 172#include <stdio.h>
93 173
94#include <assert.h> 174#include <assert.h>
95#include <errno.h> 175#include <errno.h>
96#include <sys/types.h> 176#include <sys/types.h>
97#include <time.h> 177#include <time.h>
178#include <limits.h>
98 179
99#include <signal.h> 180#include <signal.h>
100 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
101#ifndef _WIN32 190#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 191# include <sys/time.h>
104# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
105#else 194#else
195# include <io.h>
106# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 197# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
110# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
111#endif 251# endif
112 252#endif
113/**/
114 253
115#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
116# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
117#endif 260#endif
118 261
119#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
121#endif 272#endif
122 273
123#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
125#endif 276#endif
126 277
127#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
128# ifdef _WIN32 279# ifdef _WIN32
129# define EV_USE_POLL 0 280# define EV_USE_POLL 0
130# else 281# else
131# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
132# endif 283# endif
133#endif 284#endif
134 285
135#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
136# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
137#endif 292#endif
138 293
139#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
141#endif 296#endif
142 297
143#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 299# define EV_USE_PORT 0
145#endif 300#endif
146 301
147/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
148 309
149/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
150#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
151# undef EV_USE_POLL 370# undef EV_USE_POLL
152# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
153#endif 372#endif
154 373
155#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
160#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
163#endif 382#endif
164 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
165#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 407# include <winsock.h>
167#endif 408#endif
168 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
169/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
170 462
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
175 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
176#ifdef EV_H 500#ifndef ECB_H
177# include EV_H 501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
510 #if __GNUC__
511 typedef signed long long int64_t;
512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
178#else 517#else
179# include "ev.h" 518 #include <inttypes.h>
519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
180#endif 533 #endif
534#endif
181 535
182#if __GNUC__ >= 3 536/*****************************************************************************/
183# define expect(expr,value) __builtin_expect ((expr),(value)) 537
184# define inline static inline 538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543#endif
544
545#ifndef ECB_MEMORY_FENCE
546 #if ECB_GCC_VERSION(2,5)
547 #if __i386__
548 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 #elif __amd64
552 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 #endif
564 #endif
565#endif
566
567#ifndef ECB_MEMORY_FENCE
568 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
569 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 #elif defined(_WIN32)
578 #include <WinNT.h>
579 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 #endif
581#endif
582
583#ifndef ECB_MEMORY_FENCE
584 #if !ECB_AVOID_PTHREADS
585 /*
586 * if you get undefined symbol references to pthread_mutex_lock,
587 * or failure to find pthread.h, then you should implement
588 * the ECB_MEMORY_FENCE operations for your cpu/compiler
589 * OR provide pthread.h and link against the posix thread library
590 * of your system.
591 */
592 #include <pthread.h>
593 #define ECB_NEEDS_PTHREADS 1
594 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595
596 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598 #endif
599#endif
600
601#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603#endif
604
605#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607#endif
608
609/*****************************************************************************/
610
611#define ECB_C99 (__STDC_VERSION__ >= 199901L)
612
613#if __cplusplus
614 #define ecb_inline static inline
615#elif ECB_GCC_VERSION(2,5)
616 #define ecb_inline static __inline__
617#elif ECB_C99
618 #define ecb_inline static inline
185#else 619#else
620 #define ecb_inline static
621#endif
622
623#if ECB_GCC_VERSION(3,3)
624 #define ecb_restrict __restrict__
625#elif ECB_C99
626 #define ecb_restrict restrict
627#else
628 #define ecb_restrict
629#endif
630
631typedef int ecb_bool;
632
633#define ECB_CONCAT_(a, b) a ## b
634#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635#define ECB_STRINGIFY_(a) # a
636#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637
638#define ecb_function_ ecb_inline
639
640#if ECB_GCC_VERSION(3,1)
641 #define ecb_attribute(attrlist) __attribute__(attrlist)
642 #define ecb_is_constant(expr) __builtin_constant_p (expr)
643 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645#else
646 #define ecb_attribute(attrlist)
647 #define ecb_is_constant(expr) 0
186# define expect(expr,value) (expr) 648 #define ecb_expect(expr,value) (expr)
187# define inline static 649 #define ecb_prefetch(addr,rw,locality)
188#endif 650#endif
189 651
652/* no emulation for ecb_decltype */
653#if ECB_GCC_VERSION(4,5)
654 #define ecb_decltype(x) __decltype(x)
655#elif ECB_GCC_VERSION(3,0)
656 #define ecb_decltype(x) __typeof(x)
657#endif
658
659#define ecb_noinline ecb_attribute ((__noinline__))
660#define ecb_noreturn ecb_attribute ((__noreturn__))
661#define ecb_unused ecb_attribute ((__unused__))
662#define ecb_const ecb_attribute ((__const__))
663#define ecb_pure ecb_attribute ((__pure__))
664
665#if ECB_GCC_VERSION(4,3)
666 #define ecb_artificial ecb_attribute ((__artificial__))
667 #define ecb_hot ecb_attribute ((__hot__))
668 #define ecb_cold ecb_attribute ((__cold__))
669#else
670 #define ecb_artificial
671 #define ecb_hot
672 #define ecb_cold
673#endif
674
675/* put around conditional expressions if you are very sure that the */
676/* expression is mostly true or mostly false. note that these return */
677/* booleans, not the expression. */
190#define expect_false(expr) expect ((expr) != 0, 0) 678#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 679#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680/* for compatibility to the rest of the world */
681#define ecb_likely(expr) ecb_expect_true (expr)
682#define ecb_unlikely(expr) ecb_expect_false (expr)
192 683
684/* count trailing zero bits and count # of one bits */
685#if ECB_GCC_VERSION(3,4)
686 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689 #define ecb_ctz32(x) __builtin_ctz (x)
690 #define ecb_ctz64(x) __builtin_ctzll (x)
691 #define ecb_popcount32(x) __builtin_popcount (x)
692 /* no popcountll */
693#else
694 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695 ecb_function_ int
696 ecb_ctz32 (uint32_t x)
697 {
698 int r = 0;
699
700 x &= ~x + 1; /* this isolates the lowest bit */
701
702#if ECB_branchless_on_i386
703 r += !!(x & 0xaaaaaaaa) << 0;
704 r += !!(x & 0xcccccccc) << 1;
705 r += !!(x & 0xf0f0f0f0) << 2;
706 r += !!(x & 0xff00ff00) << 3;
707 r += !!(x & 0xffff0000) << 4;
708#else
709 if (x & 0xaaaaaaaa) r += 1;
710 if (x & 0xcccccccc) r += 2;
711 if (x & 0xf0f0f0f0) r += 4;
712 if (x & 0xff00ff00) r += 8;
713 if (x & 0xffff0000) r += 16;
714#endif
715
716 return r;
717 }
718
719 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720 ecb_function_ int
721 ecb_ctz64 (uint64_t x)
722 {
723 int shift = x & 0xffffffffU ? 0 : 32;
724 return ecb_ctz32 (x >> shift) + shift;
725 }
726
727 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728 ecb_function_ int
729 ecb_popcount32 (uint32_t x)
730 {
731 x -= (x >> 1) & 0x55555555;
732 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733 x = ((x >> 4) + x) & 0x0f0f0f0f;
734 x *= 0x01010101;
735
736 return x >> 24;
737 }
738
739 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740 ecb_function_ int ecb_ld32 (uint32_t x)
741 {
742 int r = 0;
743
744 if (x >> 16) { x >>= 16; r += 16; }
745 if (x >> 8) { x >>= 8; r += 8; }
746 if (x >> 4) { x >>= 4; r += 4; }
747 if (x >> 2) { x >>= 2; r += 2; }
748 if (x >> 1) { r += 1; }
749
750 return r;
751 }
752
753 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754 ecb_function_ int ecb_ld64 (uint64_t x)
755 {
756 int r = 0;
757
758 if (x >> 32) { x >>= 32; r += 32; }
759
760 return r + ecb_ld32 (x);
761 }
762#endif
763
764/* popcount64 is only available on 64 bit cpus as gcc builtin */
765/* so for this version we are lazy */
766ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767ecb_function_ int
768ecb_popcount64 (uint64_t x)
769{
770 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771}
772
773ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781
782ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790
791#if ECB_GCC_VERSION(4,3)
792 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793 #define ecb_bswap32(x) __builtin_bswap32 (x)
794 #define ecb_bswap64(x) __builtin_bswap64 (x)
795#else
796 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797 ecb_function_ uint16_t
798 ecb_bswap16 (uint16_t x)
799 {
800 return ecb_rotl16 (x, 8);
801 }
802
803 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804 ecb_function_ uint32_t
805 ecb_bswap32 (uint32_t x)
806 {
807 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808 }
809
810 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811 ecb_function_ uint64_t
812 ecb_bswap64 (uint64_t x)
813 {
814 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815 }
816#endif
817
818#if ECB_GCC_VERSION(4,5)
819 #define ecb_unreachable() __builtin_unreachable ()
820#else
821 /* this seems to work fine, but gcc always emits a warning for it :/ */
822 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823 ecb_function_ void ecb_unreachable (void) { }
824#endif
825
826/* try to tell the compiler that some condition is definitely true */
827#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828
829ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830ecb_function_ unsigned char
831ecb_byteorder_helper (void)
832{
833 const uint32_t u = 0x11223344;
834 return *(unsigned char *)&u;
835}
836
837ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841
842#if ECB_GCC_VERSION(3,0) || ECB_C99
843 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844#else
845 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846#endif
847
848#if ecb_cplusplus_does_not_suck
849 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
850 template<typename T, int N>
851 static inline int ecb_array_length (const T (&arr)[N])
852 {
853 return N;
854 }
855#else
856 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
857#endif
858
859#endif
860
861/* ECB.H END */
862
863#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
864# undef ECB_MEMORY_FENCE
865# undef ECB_MEMORY_FENCE_ACQUIRE
866# undef ECB_MEMORY_FENCE_RELEASE
867#endif
868
869#define expect_false(cond) ecb_expect_false (cond)
870#define expect_true(cond) ecb_expect_true (cond)
871#define noinline ecb_noinline
872
873#define inline_size ecb_inline
874
875#if EV_FEATURE_CODE
876# define inline_speed ecb_inline
877#else
878# define inline_speed static noinline
879#endif
880
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 881#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
882
883#if EV_MINPRI == EV_MAXPRI
884# define ABSPRI(w) (((W)w), 0)
885#else
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 886# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
887#endif
195 888
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 889#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 890#define EMPTY2(a,b) /* used to suppress some warnings */
198 891
199typedef struct ev_watcher *W; 892typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 893typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 894typedef ev_watcher_time *WT;
202 895
896#define ev_active(w) ((W)(w))->active
897#define ev_at(w) ((WT)(w))->at
898
899#if EV_USE_REALTIME
900/* sig_atomic_t is used to avoid per-thread variables or locking but still */
901/* giving it a reasonably high chance of working on typical architectures */
902static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
903#endif
904
905#if EV_USE_MONOTONIC
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 906static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
907#endif
908
909#ifndef EV_FD_TO_WIN32_HANDLE
910# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
911#endif
912#ifndef EV_WIN32_HANDLE_TO_FD
913# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
914#endif
915#ifndef EV_WIN32_CLOSE_FD
916# define EV_WIN32_CLOSE_FD(fd) close (fd)
917#endif
204 918
205#ifdef _WIN32 919#ifdef _WIN32
206# include "ev_win32.c" 920# include "ev_win32.c"
207#endif 921#endif
208 922
209/*****************************************************************************/ 923/*****************************************************************************/
210 924
925/* define a suitable floor function (only used by periodics atm) */
926
927#if EV_USE_FLOOR
928# include <math.h>
929# define ev_floor(v) floor (v)
930#else
931
932#include <float.h>
933
934/* a floor() replacement function, should be independent of ev_tstamp type */
935static ev_tstamp noinline
936ev_floor (ev_tstamp v)
937{
938 /* the choice of shift factor is not terribly important */
939#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
940 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
941#else
942 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
943#endif
944
945 /* argument too large for an unsigned long? */
946 if (expect_false (v >= shift))
947 {
948 ev_tstamp f;
949
950 if (v == v - 1.)
951 return v; /* very large number */
952
953 f = shift * ev_floor (v * (1. / shift));
954 return f + ev_floor (v - f);
955 }
956
957 /* special treatment for negative args? */
958 if (expect_false (v < 0.))
959 {
960 ev_tstamp f = -ev_floor (-v);
961
962 return f - (f == v ? 0 : 1);
963 }
964
965 /* fits into an unsigned long */
966 return (unsigned long)v;
967}
968
969#endif
970
971/*****************************************************************************/
972
973#ifdef __linux
974# include <sys/utsname.h>
975#endif
976
977static unsigned int noinline ecb_cold
978ev_linux_version (void)
979{
980#ifdef __linux
981 unsigned int v = 0;
982 struct utsname buf;
983 int i;
984 char *p = buf.release;
985
986 if (uname (&buf))
987 return 0;
988
989 for (i = 3+1; --i; )
990 {
991 unsigned int c = 0;
992
993 for (;;)
994 {
995 if (*p >= '0' && *p <= '9')
996 c = c * 10 + *p++ - '0';
997 else
998 {
999 p += *p == '.';
1000 break;
1001 }
1002 }
1003
1004 v = (v << 8) | c;
1005 }
1006
1007 return v;
1008#else
1009 return 0;
1010#endif
1011}
1012
1013/*****************************************************************************/
1014
1015#if EV_AVOID_STDIO
1016static void noinline ecb_cold
1017ev_printerr (const char *msg)
1018{
1019 write (STDERR_FILENO, msg, strlen (msg));
1020}
1021#endif
1022
211static void (*syserr_cb)(const char *msg); 1023static void (*syserr_cb)(const char *msg);
212 1024
1025void ecb_cold
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 1026ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 1027{
215 syserr_cb = cb; 1028 syserr_cb = cb;
216} 1029}
217 1030
218static void 1031static void noinline ecb_cold
219syserr (const char *msg) 1032ev_syserr (const char *msg)
220{ 1033{
221 if (!msg) 1034 if (!msg)
222 msg = "(libev) system error"; 1035 msg = "(libev) system error";
223 1036
224 if (syserr_cb) 1037 if (syserr_cb)
225 syserr_cb (msg); 1038 syserr_cb (msg);
226 else 1039 else
227 { 1040 {
1041#if EV_AVOID_STDIO
1042 ev_printerr (msg);
1043 ev_printerr (": ");
1044 ev_printerr (strerror (errno));
1045 ev_printerr ("\n");
1046#else
228 perror (msg); 1047 perror (msg);
1048#endif
229 abort (); 1049 abort ();
230 } 1050 }
231} 1051}
232 1052
1053static void *
1054ev_realloc_emul (void *ptr, long size)
1055{
1056#if __GLIBC__
1057 return realloc (ptr, size);
1058#else
1059 /* some systems, notably openbsd and darwin, fail to properly
1060 * implement realloc (x, 0) (as required by both ansi c-89 and
1061 * the single unix specification, so work around them here.
1062 */
1063
1064 if (size)
1065 return realloc (ptr, size);
1066
1067 free (ptr);
1068 return 0;
1069#endif
1070}
1071
233static void *(*alloc)(void *ptr, long size); 1072static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 1073
1074void ecb_cold
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1075ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 1076{
237 alloc = cb; 1077 alloc = cb;
238} 1078}
239 1079
240static void * 1080inline_speed void *
241ev_realloc (void *ptr, long size) 1081ev_realloc (void *ptr, long size)
242{ 1082{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1083 ptr = alloc (ptr, size);
244 1084
245 if (!ptr && size) 1085 if (!ptr && size)
246 { 1086 {
1087#if EV_AVOID_STDIO
1088 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1089#else
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1090 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1091#endif
248 abort (); 1092 abort ();
249 } 1093 }
250 1094
251 return ptr; 1095 return ptr;
252} 1096}
254#define ev_malloc(size) ev_realloc (0, (size)) 1098#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0) 1099#define ev_free(ptr) ev_realloc ((ptr), 0)
256 1100
257/*****************************************************************************/ 1101/*****************************************************************************/
258 1102
1103/* set in reify when reification needed */
1104#define EV_ANFD_REIFY 1
1105
1106/* file descriptor info structure */
259typedef struct 1107typedef struct
260{ 1108{
261 WL head; 1109 WL head;
262 unsigned char events; 1110 unsigned char events; /* the events watched for */
1111 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1112 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
263 unsigned char reify; 1113 unsigned char unused;
1114#if EV_USE_EPOLL
1115 unsigned int egen; /* generation counter to counter epoll bugs */
1116#endif
264#if EV_SELECT_IS_WINSOCKET 1117#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
265 SOCKET handle; 1118 SOCKET handle;
266#endif 1119#endif
1120#if EV_USE_IOCP
1121 OVERLAPPED or, ow;
1122#endif
267} ANFD; 1123} ANFD;
268 1124
1125/* stores the pending event set for a given watcher */
269typedef struct 1126typedef struct
270{ 1127{
271 W w; 1128 W w;
272 int events; 1129 int events; /* the pending event set for the given watcher */
273} ANPENDING; 1130} ANPENDING;
1131
1132#if EV_USE_INOTIFY
1133/* hash table entry per inotify-id */
1134typedef struct
1135{
1136 WL head;
1137} ANFS;
1138#endif
1139
1140/* Heap Entry */
1141#if EV_HEAP_CACHE_AT
1142 /* a heap element */
1143 typedef struct {
1144 ev_tstamp at;
1145 WT w;
1146 } ANHE;
1147
1148 #define ANHE_w(he) (he).w /* access watcher, read-write */
1149 #define ANHE_at(he) (he).at /* access cached at, read-only */
1150 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1151#else
1152 /* a heap element */
1153 typedef WT ANHE;
1154
1155 #define ANHE_w(he) (he)
1156 #define ANHE_at(he) (he)->at
1157 #define ANHE_at_cache(he)
1158#endif
274 1159
275#if EV_MULTIPLICITY 1160#if EV_MULTIPLICITY
276 1161
277 struct ev_loop 1162 struct ev_loop
278 { 1163 {
296 1181
297 static int ev_default_loop_ptr; 1182 static int ev_default_loop_ptr;
298 1183
299#endif 1184#endif
300 1185
1186#if EV_FEATURE_API
1187# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1188# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1189# define EV_INVOKE_PENDING invoke_cb (EV_A)
1190#else
1191# define EV_RELEASE_CB (void)0
1192# define EV_ACQUIRE_CB (void)0
1193# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1194#endif
1195
1196#define EVBREAK_RECURSE 0x80
1197
301/*****************************************************************************/ 1198/*****************************************************************************/
302 1199
1200#ifndef EV_HAVE_EV_TIME
303ev_tstamp 1201ev_tstamp
304ev_time (void) 1202ev_time (void)
305{ 1203{
306#if EV_USE_REALTIME 1204#if EV_USE_REALTIME
1205 if (expect_true (have_realtime))
1206 {
307 struct timespec ts; 1207 struct timespec ts;
308 clock_gettime (CLOCK_REALTIME, &ts); 1208 clock_gettime (CLOCK_REALTIME, &ts);
309 return ts.tv_sec + ts.tv_nsec * 1e-9; 1209 return ts.tv_sec + ts.tv_nsec * 1e-9;
310#else 1210 }
1211#endif
1212
311 struct timeval tv; 1213 struct timeval tv;
312 gettimeofday (&tv, 0); 1214 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 1215 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif
315} 1216}
1217#endif
316 1218
317inline ev_tstamp 1219inline_size ev_tstamp
318get_clock (void) 1220get_clock (void)
319{ 1221{
320#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
322 { 1224 {
335{ 1237{
336 return ev_rt_now; 1238 return ev_rt_now;
337} 1239}
338#endif 1240#endif
339 1241
340#define array_roundsize(type,n) (((n) | 4) & ~3) 1242void
1243ev_sleep (ev_tstamp delay)
1244{
1245 if (delay > 0.)
1246 {
1247#if EV_USE_NANOSLEEP
1248 struct timespec ts;
1249
1250 EV_TS_SET (ts, delay);
1251 nanosleep (&ts, 0);
1252#elif defined(_WIN32)
1253 Sleep ((unsigned long)(delay * 1e3));
1254#else
1255 struct timeval tv;
1256
1257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1258 /* something not guaranteed by newer posix versions, but guaranteed */
1259 /* by older ones */
1260 EV_TV_SET (tv, delay);
1261 select (0, 0, 0, 0, &tv);
1262#endif
1263 }
1264}
1265
1266/*****************************************************************************/
1267
1268#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1269
1270/* find a suitable new size for the given array, */
1271/* hopefully by rounding to a nice-to-malloc size */
1272inline_size int
1273array_nextsize (int elem, int cur, int cnt)
1274{
1275 int ncur = cur + 1;
1276
1277 do
1278 ncur <<= 1;
1279 while (cnt > ncur);
1280
1281 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1282 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1283 {
1284 ncur *= elem;
1285 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1286 ncur = ncur - sizeof (void *) * 4;
1287 ncur /= elem;
1288 }
1289
1290 return ncur;
1291}
1292
1293static void * noinline ecb_cold
1294array_realloc (int elem, void *base, int *cur, int cnt)
1295{
1296 *cur = array_nextsize (elem, *cur, cnt);
1297 return ev_realloc (base, elem * *cur);
1298}
1299
1300#define array_init_zero(base,count) \
1301 memset ((void *)(base), 0, sizeof (*(base)) * (count))
341 1302
342#define array_needsize(type,base,cur,cnt,init) \ 1303#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 1304 if (expect_false ((cnt) > (cur))) \
344 { \ 1305 { \
345 int newcnt = cur; \ 1306 int ecb_unused ocur_ = (cur); \
346 do \ 1307 (base) = (type *)array_realloc \
347 { \ 1308 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 1309 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 1310 }
356 1311
1312#if 0
357#define array_slim(type,stem) \ 1313#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1314 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 1315 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1316 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1317 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1318 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 1319 }
1320#endif
364 1321
365#define array_free(stem, idx) \ 1322#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1323 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
367 1324
368/*****************************************************************************/ 1325/*****************************************************************************/
369 1326
370static void 1327/* dummy callback for pending events */
371anfds_init (ANFD *base, int count) 1328static void noinline
1329pendingcb (EV_P_ ev_prepare *w, int revents)
372{ 1330{
373 while (count--)
374 {
375 base->head = 0;
376 base->events = EV_NONE;
377 base->reify = 0;
378
379 ++base;
380 }
381} 1331}
382 1332
383void 1333void noinline
384ev_feed_event (EV_P_ void *w, int revents) 1334ev_feed_event (EV_P_ void *w, int revents)
385{ 1335{
386 W w_ = (W)w; 1336 W w_ = (W)w;
1337 int pri = ABSPRI (w_);
387 1338
388 if (expect_false (w_->pending)) 1339 if (expect_false (w_->pending))
1340 pendings [pri][w_->pending - 1].events |= revents;
1341 else
389 { 1342 {
1343 w_->pending = ++pendingcnt [pri];
1344 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1345 pendings [pri][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1346 pendings [pri][w_->pending - 1].events = revents;
391 return;
392 } 1347 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398} 1348}
399 1349
400static void 1350inline_speed void
1351feed_reverse (EV_P_ W w)
1352{
1353 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1354 rfeeds [rfeedcnt++] = w;
1355}
1356
1357inline_size void
1358feed_reverse_done (EV_P_ int revents)
1359{
1360 do
1361 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1362 while (rfeedcnt);
1363}
1364
1365inline_speed void
401queue_events (EV_P_ W *events, int eventcnt, int type) 1366queue_events (EV_P_ W *events, int eventcnt, int type)
402{ 1367{
403 int i; 1368 int i;
404 1369
405 for (i = 0; i < eventcnt; ++i) 1370 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type); 1371 ev_feed_event (EV_A_ events [i], type);
407} 1372}
408 1373
1374/*****************************************************************************/
1375
409inline void 1376inline_speed void
410fd_event (EV_P_ int fd, int revents) 1377fd_event_nocheck (EV_P_ int fd, int revents)
411{ 1378{
412 ANFD *anfd = anfds + fd; 1379 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 1380 ev_io *w;
414 1381
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1382 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 1383 {
417 int ev = w->events & revents; 1384 int ev = w->events & revents;
418 1385
419 if (ev) 1386 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 1387 ev_feed_event (EV_A_ (W)w, ev);
421 } 1388 }
422} 1389}
423 1390
1391/* do not submit kernel events for fds that have reify set */
1392/* because that means they changed while we were polling for new events */
1393inline_speed void
1394fd_event (EV_P_ int fd, int revents)
1395{
1396 ANFD *anfd = anfds + fd;
1397
1398 if (expect_true (!anfd->reify))
1399 fd_event_nocheck (EV_A_ fd, revents);
1400}
1401
424void 1402void
425ev_feed_fd_event (EV_P_ int fd, int revents) 1403ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 1404{
1405 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 1406 fd_event_nocheck (EV_A_ fd, revents);
428} 1407}
429 1408
430/*****************************************************************************/ 1409/* make sure the external fd watch events are in-sync */
431 1410/* with the kernel/libev internal state */
432inline void 1411inline_size void
433fd_reify (EV_P) 1412fd_reify (EV_P)
434{ 1413{
435 int i; 1414 int i;
436 1415
1416#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
437 for (i = 0; i < fdchangecnt; ++i) 1417 for (i = 0; i < fdchangecnt; ++i)
438 { 1418 {
439 int fd = fdchanges [i]; 1419 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 1420 ANFD *anfd = anfds + fd;
441 struct ev_io *w;
442 1421
443 int events = 0; 1422 if (anfd->reify & EV__IOFDSET && anfd->head)
444
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
446 events |= w->events;
447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 { 1423 {
1424 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1425
1426 if (handle != anfd->handle)
1427 {
451 unsigned long argp; 1428 unsigned long arg;
452 anfd->handle = _get_osfhandle (fd); 1429
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1430 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1431
1432 /* handle changed, but fd didn't - we need to do it in two steps */
1433 backend_modify (EV_A_ fd, anfd->events, 0);
1434 anfd->events = 0;
1435 anfd->handle = handle;
1436 }
454 } 1437 }
1438 }
455#endif 1439#endif
456 1440
1441 for (i = 0; i < fdchangecnt; ++i)
1442 {
1443 int fd = fdchanges [i];
1444 ANFD *anfd = anfds + fd;
1445 ev_io *w;
1446
1447 unsigned char o_events = anfd->events;
1448 unsigned char o_reify = anfd->reify;
1449
457 anfd->reify = 0; 1450 anfd->reify = 0;
458 1451
459 method_modify (EV_A_ fd, anfd->events, events); 1452 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1453 {
460 anfd->events = events; 1454 anfd->events = 0;
1455
1456 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1457 anfd->events |= (unsigned char)w->events;
1458
1459 if (o_events != anfd->events)
1460 o_reify = EV__IOFDSET; /* actually |= */
1461 }
1462
1463 if (o_reify & EV__IOFDSET)
1464 backend_modify (EV_A_ fd, o_events, anfd->events);
461 } 1465 }
462 1466
463 fdchangecnt = 0; 1467 fdchangecnt = 0;
464} 1468}
465 1469
466static void 1470/* something about the given fd changed */
1471inline_size void
467fd_change (EV_P_ int fd) 1472fd_change (EV_P_ int fd, int flags)
468{ 1473{
469 if (expect_false (anfds [fd].reify)) 1474 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 1475 anfds [fd].reify |= flags;
473 1476
1477 if (expect_true (!reify))
1478 {
474 ++fdchangecnt; 1479 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1480 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 1481 fdchanges [fdchangecnt - 1] = fd;
1482 }
477} 1483}
478 1484
479static void 1485/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1486inline_speed void ecb_cold
480fd_kill (EV_P_ int fd) 1487fd_kill (EV_P_ int fd)
481{ 1488{
482 struct ev_io *w; 1489 ev_io *w;
483 1490
484 while ((w = (struct ev_io *)anfds [fd].head)) 1491 while ((w = (ev_io *)anfds [fd].head))
485 { 1492 {
486 ev_io_stop (EV_A_ w); 1493 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1494 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 1495 }
489} 1496}
490 1497
491inline int 1498/* check whether the given fd is actually valid, for error recovery */
1499inline_size int ecb_cold
492fd_valid (int fd) 1500fd_valid (int fd)
493{ 1501{
494#ifdef _WIN32 1502#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 1503 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
496#else 1504#else
497 return fcntl (fd, F_GETFD) != -1; 1505 return fcntl (fd, F_GETFD) != -1;
498#endif 1506#endif
499} 1507}
500 1508
501/* called on EBADF to verify fds */ 1509/* called on EBADF to verify fds */
502static void 1510static void noinline ecb_cold
503fd_ebadf (EV_P) 1511fd_ebadf (EV_P)
504{ 1512{
505 int fd; 1513 int fd;
506 1514
507 for (fd = 0; fd < anfdmax; ++fd) 1515 for (fd = 0; fd < anfdmax; ++fd)
508 if (anfds [fd].events) 1516 if (anfds [fd].events)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 1517 if (!fd_valid (fd) && errno == EBADF)
510 fd_kill (EV_A_ fd); 1518 fd_kill (EV_A_ fd);
511} 1519}
512 1520
513/* called on ENOMEM in select/poll to kill some fds and retry */ 1521/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 1522static void noinline ecb_cold
515fd_enomem (EV_P) 1523fd_enomem (EV_P)
516{ 1524{
517 int fd; 1525 int fd;
518 1526
519 for (fd = anfdmax; fd--; ) 1527 for (fd = anfdmax; fd--; )
520 if (anfds [fd].events) 1528 if (anfds [fd].events)
521 { 1529 {
522 fd_kill (EV_A_ fd); 1530 fd_kill (EV_A_ fd);
523 return; 1531 break;
524 } 1532 }
525} 1533}
526 1534
527/* usually called after fork if method needs to re-arm all fds from scratch */ 1535/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 1536static void noinline
529fd_rearm_all (EV_P) 1537fd_rearm_all (EV_P)
530{ 1538{
531 int fd; 1539 int fd;
532 1540
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 1541 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 1542 if (anfds [fd].events)
536 { 1543 {
537 anfds [fd].events = 0; 1544 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 1545 anfds [fd].emask = 0;
1546 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
539 } 1547 }
540} 1548}
541 1549
542/*****************************************************************************/ 1550/* used to prepare libev internal fd's */
543 1551/* this is not fork-safe */
544static void
545upheap (WT *heap, int k)
546{
547 WT w = heap [k];
548
549 while (k && heap [k >> 1]->at > w->at)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583}
584
585inline void 1552inline_speed void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
592/*****************************************************************************/
593
594typedef struct
595{
596 WL head;
597 sig_atomic_t volatile gotsig;
598} ANSIG;
599
600static ANSIG *signals;
601static int signalmax;
602
603static int sigpipe [2];
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606
607static void
608signals_init (ANSIG *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->gotsig = 0;
614
615 ++base;
616 }
617}
618
619static void
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
626 signals [signum - 1].gotsig = 1;
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 1553fd_intern (int fd)
672{ 1554{
673#ifdef _WIN32 1555#ifdef _WIN32
674 int arg = 1; 1556 unsigned long arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1557 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
676#else 1558#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 1559 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 1560 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 1561#endif
680} 1562}
681 1563
1564/*****************************************************************************/
1565
1566/*
1567 * the heap functions want a real array index. array index 0 is guaranteed to not
1568 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1569 * the branching factor of the d-tree.
1570 */
1571
1572/*
1573 * at the moment we allow libev the luxury of two heaps,
1574 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1575 * which is more cache-efficient.
1576 * the difference is about 5% with 50000+ watchers.
1577 */
1578#if EV_USE_4HEAP
1579
1580#define DHEAP 4
1581#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1582#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1583#define UPHEAP_DONE(p,k) ((p) == (k))
1584
1585/* away from the root */
1586inline_speed void
1587downheap (ANHE *heap, int N, int k)
1588{
1589 ANHE he = heap [k];
1590 ANHE *E = heap + N + HEAP0;
1591
1592 for (;;)
1593 {
1594 ev_tstamp minat;
1595 ANHE *minpos;
1596 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1597
1598 /* find minimum child */
1599 if (expect_true (pos + DHEAP - 1 < E))
1600 {
1601 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1602 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1603 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1604 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1605 }
1606 else if (pos < E)
1607 {
1608 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1609 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1610 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1611 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1612 }
1613 else
1614 break;
1615
1616 if (ANHE_at (he) <= minat)
1617 break;
1618
1619 heap [k] = *minpos;
1620 ev_active (ANHE_w (*minpos)) = k;
1621
1622 k = minpos - heap;
1623 }
1624
1625 heap [k] = he;
1626 ev_active (ANHE_w (he)) = k;
1627}
1628
1629#else /* 4HEAP */
1630
1631#define HEAP0 1
1632#define HPARENT(k) ((k) >> 1)
1633#define UPHEAP_DONE(p,k) (!(p))
1634
1635/* away from the root */
1636inline_speed void
1637downheap (ANHE *heap, int N, int k)
1638{
1639 ANHE he = heap [k];
1640
1641 for (;;)
1642 {
1643 int c = k << 1;
1644
1645 if (c >= N + HEAP0)
1646 break;
1647
1648 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1649 ? 1 : 0;
1650
1651 if (ANHE_at (he) <= ANHE_at (heap [c]))
1652 break;
1653
1654 heap [k] = heap [c];
1655 ev_active (ANHE_w (heap [k])) = k;
1656
1657 k = c;
1658 }
1659
1660 heap [k] = he;
1661 ev_active (ANHE_w (he)) = k;
1662}
1663#endif
1664
1665/* towards the root */
1666inline_speed void
1667upheap (ANHE *heap, int k)
1668{
1669 ANHE he = heap [k];
1670
1671 for (;;)
1672 {
1673 int p = HPARENT (k);
1674
1675 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1676 break;
1677
1678 heap [k] = heap [p];
1679 ev_active (ANHE_w (heap [k])) = k;
1680 k = p;
1681 }
1682
1683 heap [k] = he;
1684 ev_active (ANHE_w (he)) = k;
1685}
1686
1687/* move an element suitably so it is in a correct place */
1688inline_size void
1689adjustheap (ANHE *heap, int N, int k)
1690{
1691 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1692 upheap (heap, k);
1693 else
1694 downheap (heap, N, k);
1695}
1696
1697/* rebuild the heap: this function is used only once and executed rarely */
1698inline_size void
1699reheap (ANHE *heap, int N)
1700{
1701 int i;
1702
1703 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1704 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1705 for (i = 0; i < N; ++i)
1706 upheap (heap, i + HEAP0);
1707}
1708
1709/*****************************************************************************/
1710
1711/* associate signal watchers to a signal signal */
1712typedef struct
1713{
1714 EV_ATOMIC_T pending;
1715#if EV_MULTIPLICITY
1716 EV_P;
1717#endif
1718 WL head;
1719} ANSIG;
1720
1721static ANSIG signals [EV_NSIG - 1];
1722
1723/*****************************************************************************/
1724
1725#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1726
1727static void noinline ecb_cold
1728evpipe_init (EV_P)
1729{
1730 if (!ev_is_active (&pipe_w))
1731 {
1732# if EV_USE_EVENTFD
1733 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1734 if (evfd < 0 && errno == EINVAL)
1735 evfd = eventfd (0, 0);
1736
1737 if (evfd >= 0)
1738 {
1739 evpipe [0] = -1;
1740 fd_intern (evfd); /* doing it twice doesn't hurt */
1741 ev_io_set (&pipe_w, evfd, EV_READ);
1742 }
1743 else
1744# endif
1745 {
1746 while (pipe (evpipe))
1747 ev_syserr ("(libev) error creating signal/async pipe");
1748
1749 fd_intern (evpipe [0]);
1750 fd_intern (evpipe [1]);
1751 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1752 }
1753
1754 ev_io_start (EV_A_ &pipe_w);
1755 ev_unref (EV_A); /* watcher should not keep loop alive */
1756 }
1757}
1758
1759inline_speed void
1760evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1761{
1762 if (expect_true (*flag))
1763 return;
1764
1765 *flag = 1;
1766
1767 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1768
1769 pipe_write_skipped = 1;
1770
1771 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1772
1773 if (pipe_write_wanted)
1774 {
1775 int old_errno;
1776
1777 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1778
1779 old_errno = errno; /* save errno because write will clobber it */
1780
1781#if EV_USE_EVENTFD
1782 if (evfd >= 0)
1783 {
1784 uint64_t counter = 1;
1785 write (evfd, &counter, sizeof (uint64_t));
1786 }
1787 else
1788#endif
1789 {
1790 /* win32 people keep sending patches that change this write() to send() */
1791 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1792 /* so when you think this write should be a send instead, please find out */
1793 /* where your send() is from - it's definitely not the microsoft send, and */
1794 /* tell me. thank you. */
1795 write (evpipe [1], &(evpipe [1]), 1);
1796 }
1797
1798 errno = old_errno;
1799 }
1800}
1801
1802/* called whenever the libev signal pipe */
1803/* got some events (signal, async) */
682static void 1804static void
683siginit (EV_P) 1805pipecb (EV_P_ ev_io *iow, int revents)
684{ 1806{
685 fd_intern (sigpipe [0]); 1807 int i;
686 fd_intern (sigpipe [1]);
687 1808
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1809 if (revents & EV_READ)
689 ev_io_start (EV_A_ &sigev); 1810 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1811#if EV_USE_EVENTFD
1812 if (evfd >= 0)
1813 {
1814 uint64_t counter;
1815 read (evfd, &counter, sizeof (uint64_t));
1816 }
1817 else
1818#endif
1819 {
1820 char dummy;
1821 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1822 read (evpipe [0], &dummy, 1);
1823 }
1824 }
1825
1826 pipe_write_skipped = 0;
1827
1828#if EV_SIGNAL_ENABLE
1829 if (sig_pending)
1830 {
1831 sig_pending = 0;
1832
1833 for (i = EV_NSIG - 1; i--; )
1834 if (expect_false (signals [i].pending))
1835 ev_feed_signal_event (EV_A_ i + 1);
1836 }
1837#endif
1838
1839#if EV_ASYNC_ENABLE
1840 if (async_pending)
1841 {
1842 async_pending = 0;
1843
1844 for (i = asynccnt; i--; )
1845 if (asyncs [i]->sent)
1846 {
1847 asyncs [i]->sent = 0;
1848 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1849 }
1850 }
1851#endif
691} 1852}
692 1853
693/*****************************************************************************/ 1854/*****************************************************************************/
694 1855
695static struct ev_child *childs [PID_HASHSIZE]; 1856void
1857ev_feed_signal (int signum)
1858{
1859#if EV_MULTIPLICITY
1860 EV_P = signals [signum - 1].loop;
696 1861
1862 if (!EV_A)
1863 return;
1864#endif
1865
1866 if (!ev_active (&pipe_w))
1867 return;
1868
1869 signals [signum - 1].pending = 1;
1870 evpipe_write (EV_A_ &sig_pending);
1871}
1872
1873static void
1874ev_sighandler (int signum)
1875{
697#ifndef _WIN32 1876#ifdef _WIN32
1877 signal (signum, ev_sighandler);
1878#endif
698 1879
1880 ev_feed_signal (signum);
1881}
1882
1883void noinline
1884ev_feed_signal_event (EV_P_ int signum)
1885{
1886 WL w;
1887
1888 if (expect_false (signum <= 0 || signum > EV_NSIG))
1889 return;
1890
1891 --signum;
1892
1893#if EV_MULTIPLICITY
1894 /* it is permissible to try to feed a signal to the wrong loop */
1895 /* or, likely more useful, feeding a signal nobody is waiting for */
1896
1897 if (expect_false (signals [signum].loop != EV_A))
1898 return;
1899#endif
1900
1901 signals [signum].pending = 0;
1902
1903 for (w = signals [signum].head; w; w = w->next)
1904 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1905}
1906
1907#if EV_USE_SIGNALFD
1908static void
1909sigfdcb (EV_P_ ev_io *iow, int revents)
1910{
1911 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1912
1913 for (;;)
1914 {
1915 ssize_t res = read (sigfd, si, sizeof (si));
1916
1917 /* not ISO-C, as res might be -1, but works with SuS */
1918 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1919 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1920
1921 if (res < (ssize_t)sizeof (si))
1922 break;
1923 }
1924}
1925#endif
1926
1927#endif
1928
1929/*****************************************************************************/
1930
1931#if EV_CHILD_ENABLE
1932static WL childs [EV_PID_HASHSIZE];
1933
699static struct ev_signal childev; 1934static ev_signal childev;
1935
1936#ifndef WIFCONTINUED
1937# define WIFCONTINUED(status) 0
1938#endif
1939
1940/* handle a single child status event */
1941inline_speed void
1942child_reap (EV_P_ int chain, int pid, int status)
1943{
1944 ev_child *w;
1945 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1946
1947 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1948 {
1949 if ((w->pid == pid || !w->pid)
1950 && (!traced || (w->flags & 1)))
1951 {
1952 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1953 w->rpid = pid;
1954 w->rstatus = status;
1955 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1956 }
1957 }
1958}
700 1959
701#ifndef WCONTINUED 1960#ifndef WCONTINUED
702# define WCONTINUED 0 1961# define WCONTINUED 0
703#endif 1962#endif
704 1963
1964/* called on sigchld etc., calls waitpid */
705static void 1965static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1966childcb (EV_P_ ev_signal *sw, int revents)
722{ 1967{
723 int pid, status; 1968 int pid, status;
724 1969
1970 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1971 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1972 if (!WCONTINUED
1973 || errno != EINVAL
1974 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1975 return;
1976
727 /* make sure we are called again until all childs have been reaped */ 1977 /* make sure we are called again until all children have been reaped */
1978 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1979 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1980
730 child_reap (EV_A_ sw, pid, pid, status); 1981 child_reap (EV_A_ pid, pid, status);
1982 if ((EV_PID_HASHSIZE) > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1983 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1984}
734 1985
735#endif 1986#endif
736 1987
737/*****************************************************************************/ 1988/*****************************************************************************/
738 1989
1990#if EV_USE_IOCP
1991# include "ev_iocp.c"
1992#endif
739#if EV_USE_PORT 1993#if EV_USE_PORT
740# include "ev_port.c" 1994# include "ev_port.c"
741#endif 1995#endif
742#if EV_USE_KQUEUE 1996#if EV_USE_KQUEUE
743# include "ev_kqueue.c" 1997# include "ev_kqueue.c"
750#endif 2004#endif
751#if EV_USE_SELECT 2005#if EV_USE_SELECT
752# include "ev_select.c" 2006# include "ev_select.c"
753#endif 2007#endif
754 2008
755int 2009int ecb_cold
756ev_version_major (void) 2010ev_version_major (void)
757{ 2011{
758 return EV_VERSION_MAJOR; 2012 return EV_VERSION_MAJOR;
759} 2013}
760 2014
761int 2015int ecb_cold
762ev_version_minor (void) 2016ev_version_minor (void)
763{ 2017{
764 return EV_VERSION_MINOR; 2018 return EV_VERSION_MINOR;
765} 2019}
766 2020
767/* return true if we are running with elevated privileges and should ignore env variables */ 2021/* return true if we are running with elevated privileges and should ignore env variables */
768static int 2022int inline_size ecb_cold
769enable_secure (void) 2023enable_secure (void)
770{ 2024{
771#ifdef _WIN32 2025#ifdef _WIN32
772 return 0; 2026 return 0;
773#else 2027#else
774 return getuid () != geteuid () 2028 return getuid () != geteuid ()
775 || getgid () != getegid (); 2029 || getgid () != getegid ();
776#endif 2030#endif
777} 2031}
778 2032
2033unsigned int ecb_cold
2034ev_supported_backends (void)
2035{
2036 unsigned int flags = 0;
2037
2038 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2039 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2040 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2041 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2042 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2043
2044 return flags;
2045}
2046
2047unsigned int ecb_cold
2048ev_recommended_backends (void)
2049{
2050 unsigned int flags = ev_supported_backends ();
2051
2052#ifndef __NetBSD__
2053 /* kqueue is borked on everything but netbsd apparently */
2054 /* it usually doesn't work correctly on anything but sockets and pipes */
2055 flags &= ~EVBACKEND_KQUEUE;
2056#endif
2057#ifdef __APPLE__
2058 /* only select works correctly on that "unix-certified" platform */
2059 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2060 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2061#endif
2062#ifdef __FreeBSD__
2063 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2064#endif
2065
2066 return flags;
2067}
2068
2069unsigned int ecb_cold
2070ev_embeddable_backends (void)
2071{
2072 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2073
2074 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2075 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2076 flags &= ~EVBACKEND_EPOLL;
2077
2078 return flags;
2079}
2080
779unsigned int 2081unsigned int
2082ev_backend (EV_P)
2083{
2084 return backend;
2085}
2086
2087#if EV_FEATURE_API
2088unsigned int
2089ev_iteration (EV_P)
2090{
2091 return loop_count;
2092}
2093
2094unsigned int
780ev_method (EV_P) 2095ev_depth (EV_P)
781{ 2096{
782 return method; 2097 return loop_depth;
783} 2098}
784 2099
785static void 2100void
2101ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2102{
2103 io_blocktime = interval;
2104}
2105
2106void
2107ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2108{
2109 timeout_blocktime = interval;
2110}
2111
2112void
2113ev_set_userdata (EV_P_ void *data)
2114{
2115 userdata = data;
2116}
2117
2118void *
2119ev_userdata (EV_P)
2120{
2121 return userdata;
2122}
2123
2124void
2125ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2126{
2127 invoke_cb = invoke_pending_cb;
2128}
2129
2130void
2131ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2132{
2133 release_cb = release;
2134 acquire_cb = acquire;
2135}
2136#endif
2137
2138/* initialise a loop structure, must be zero-initialised */
2139static void noinline ecb_cold
786loop_init (EV_P_ unsigned int flags) 2140loop_init (EV_P_ unsigned int flags)
787{ 2141{
788 if (!method) 2142 if (!backend)
789 { 2143 {
2144 origflags = flags;
2145
2146#if EV_USE_REALTIME
2147 if (!have_realtime)
2148 {
2149 struct timespec ts;
2150
2151 if (!clock_gettime (CLOCK_REALTIME, &ts))
2152 have_realtime = 1;
2153 }
2154#endif
2155
790#if EV_USE_MONOTONIC 2156#if EV_USE_MONOTONIC
2157 if (!have_monotonic)
2158 {
2159 struct timespec ts;
2160
2161 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2162 have_monotonic = 1;
2163 }
2164#endif
2165
2166 /* pid check not overridable via env */
2167#ifndef _WIN32
2168 if (flags & EVFLAG_FORKCHECK)
2169 curpid = getpid ();
2170#endif
2171
2172 if (!(flags & EVFLAG_NOENV)
2173 && !enable_secure ()
2174 && getenv ("LIBEV_FLAGS"))
2175 flags = atoi (getenv ("LIBEV_FLAGS"));
2176
2177 ev_rt_now = ev_time ();
2178 mn_now = get_clock ();
2179 now_floor = mn_now;
2180 rtmn_diff = ev_rt_now - mn_now;
2181#if EV_FEATURE_API
2182 invoke_cb = ev_invoke_pending;
2183#endif
2184
2185 io_blocktime = 0.;
2186 timeout_blocktime = 0.;
2187 backend = 0;
2188 backend_fd = -1;
2189 sig_pending = 0;
2190#if EV_ASYNC_ENABLE
2191 async_pending = 0;
2192#endif
2193 pipe_write_skipped = 0;
2194 pipe_write_wanted = 0;
2195#if EV_USE_INOTIFY
2196 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2197#endif
2198#if EV_USE_SIGNALFD
2199 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2200#endif
2201
2202 if (!(flags & EVBACKEND_MASK))
2203 flags |= ev_recommended_backends ();
2204
2205#if EV_USE_IOCP
2206 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2207#endif
2208#if EV_USE_PORT
2209 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2210#endif
2211#if EV_USE_KQUEUE
2212 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2213#endif
2214#if EV_USE_EPOLL
2215 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2216#endif
2217#if EV_USE_POLL
2218 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2219#endif
2220#if EV_USE_SELECT
2221 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2222#endif
2223
2224 ev_prepare_init (&pending_w, pendingcb);
2225
2226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2227 ev_init (&pipe_w, pipecb);
2228 ev_set_priority (&pipe_w, EV_MAXPRI);
2229#endif
2230 }
2231}
2232
2233/* free up a loop structure */
2234void ecb_cold
2235ev_loop_destroy (EV_P)
2236{
2237 int i;
2238
2239#if EV_MULTIPLICITY
2240 /* mimic free (0) */
2241 if (!EV_A)
2242 return;
2243#endif
2244
2245#if EV_CLEANUP_ENABLE
2246 /* queue cleanup watchers (and execute them) */
2247 if (expect_false (cleanupcnt))
2248 {
2249 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2250 EV_INVOKE_PENDING;
2251 }
2252#endif
2253
2254#if EV_CHILD_ENABLE
2255 if (ev_is_active (&childev))
2256 {
2257 ev_ref (EV_A); /* child watcher */
2258 ev_signal_stop (EV_A_ &childev);
2259 }
2260#endif
2261
2262 if (ev_is_active (&pipe_w))
2263 {
2264 /*ev_ref (EV_A);*/
2265 /*ev_io_stop (EV_A_ &pipe_w);*/
2266
2267#if EV_USE_EVENTFD
2268 if (evfd >= 0)
2269 close (evfd);
2270#endif
2271
2272 if (evpipe [0] >= 0)
2273 {
2274 EV_WIN32_CLOSE_FD (evpipe [0]);
2275 EV_WIN32_CLOSE_FD (evpipe [1]);
2276 }
2277 }
2278
2279#if EV_USE_SIGNALFD
2280 if (ev_is_active (&sigfd_w))
2281 close (sigfd);
2282#endif
2283
2284#if EV_USE_INOTIFY
2285 if (fs_fd >= 0)
2286 close (fs_fd);
2287#endif
2288
2289 if (backend_fd >= 0)
2290 close (backend_fd);
2291
2292#if EV_USE_IOCP
2293 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2294#endif
2295#if EV_USE_PORT
2296 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2297#endif
2298#if EV_USE_KQUEUE
2299 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2300#endif
2301#if EV_USE_EPOLL
2302 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2303#endif
2304#if EV_USE_POLL
2305 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2306#endif
2307#if EV_USE_SELECT
2308 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2309#endif
2310
2311 for (i = NUMPRI; i--; )
2312 {
2313 array_free (pending, [i]);
2314#if EV_IDLE_ENABLE
2315 array_free (idle, [i]);
2316#endif
2317 }
2318
2319 ev_free (anfds); anfds = 0; anfdmax = 0;
2320
2321 /* have to use the microsoft-never-gets-it-right macro */
2322 array_free (rfeed, EMPTY);
2323 array_free (fdchange, EMPTY);
2324 array_free (timer, EMPTY);
2325#if EV_PERIODIC_ENABLE
2326 array_free (periodic, EMPTY);
2327#endif
2328#if EV_FORK_ENABLE
2329 array_free (fork, EMPTY);
2330#endif
2331#if EV_CLEANUP_ENABLE
2332 array_free (cleanup, EMPTY);
2333#endif
2334 array_free (prepare, EMPTY);
2335 array_free (check, EMPTY);
2336#if EV_ASYNC_ENABLE
2337 array_free (async, EMPTY);
2338#endif
2339
2340 backend = 0;
2341
2342#if EV_MULTIPLICITY
2343 if (ev_is_default_loop (EV_A))
2344#endif
2345 ev_default_loop_ptr = 0;
2346#if EV_MULTIPLICITY
2347 else
2348 ev_free (EV_A);
2349#endif
2350}
2351
2352#if EV_USE_INOTIFY
2353inline_size void infy_fork (EV_P);
2354#endif
2355
2356inline_size void
2357loop_fork (EV_P)
2358{
2359#if EV_USE_PORT
2360 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2361#endif
2362#if EV_USE_KQUEUE
2363 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2364#endif
2365#if EV_USE_EPOLL
2366 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2367#endif
2368#if EV_USE_INOTIFY
2369 infy_fork (EV_A);
2370#endif
2371
2372 if (ev_is_active (&pipe_w))
2373 {
2374 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2375
2376 ev_ref (EV_A);
2377 ev_io_stop (EV_A_ &pipe_w);
2378
2379#if EV_USE_EVENTFD
2380 if (evfd >= 0)
2381 close (evfd);
2382#endif
2383
2384 if (evpipe [0] >= 0)
2385 {
2386 EV_WIN32_CLOSE_FD (evpipe [0]);
2387 EV_WIN32_CLOSE_FD (evpipe [1]);
2388 }
2389
2390#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2391 evpipe_init (EV_A);
2392 /* now iterate over everything, in case we missed something */
2393 pipecb (EV_A_ &pipe_w, EV_READ);
2394#endif
2395 }
2396
2397 postfork = 0;
2398}
2399
2400#if EV_MULTIPLICITY
2401
2402struct ev_loop * ecb_cold
2403ev_loop_new (unsigned int flags)
2404{
2405 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2406
2407 memset (EV_A, 0, sizeof (struct ev_loop));
2408 loop_init (EV_A_ flags);
2409
2410 if (ev_backend (EV_A))
2411 return EV_A;
2412
2413 ev_free (EV_A);
2414 return 0;
2415}
2416
2417#endif /* multiplicity */
2418
2419#if EV_VERIFY
2420static void noinline ecb_cold
2421verify_watcher (EV_P_ W w)
2422{
2423 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2424
2425 if (w->pending)
2426 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2427}
2428
2429static void noinline ecb_cold
2430verify_heap (EV_P_ ANHE *heap, int N)
2431{
2432 int i;
2433
2434 for (i = HEAP0; i < N + HEAP0; ++i)
2435 {
2436 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2437 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2438 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2439
2440 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2441 }
2442}
2443
2444static void noinline ecb_cold
2445array_verify (EV_P_ W *ws, int cnt)
2446{
2447 while (cnt--)
2448 {
2449 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2450 verify_watcher (EV_A_ ws [cnt]);
2451 }
2452}
2453#endif
2454
2455#if EV_FEATURE_API
2456void ecb_cold
2457ev_verify (EV_P)
2458{
2459#if EV_VERIFY
2460 int i;
2461 WL w;
2462
2463 assert (activecnt >= -1);
2464
2465 assert (fdchangemax >= fdchangecnt);
2466 for (i = 0; i < fdchangecnt; ++i)
2467 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2468
2469 assert (anfdmax >= 0);
2470 for (i = 0; i < anfdmax; ++i)
2471 for (w = anfds [i].head; w; w = w->next)
791 { 2472 {
792 struct timespec ts; 2473 verify_watcher (EV_A_ (W)w);
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2474 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
794 have_monotonic = 1; 2475 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
795 } 2476 }
796#endif
797 2477
798 ev_rt_now = ev_time (); 2478 assert (timermax >= timercnt);
799 mn_now = get_clock (); 2479 verify_heap (EV_A_ timers, timercnt);
800 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now;
802 2480
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2481#if EV_PERIODIC_ENABLE
804 flags = atoi (getenv ("LIBEV_FLAGS")); 2482 assert (periodicmax >= periodiccnt);
805 2483 verify_heap (EV_A_ periodics, periodiccnt);
806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
808
809 method = 0;
810#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
812#endif
813#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
815#endif
816#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
818#endif
819#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
821#endif
822#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
824#endif
825
826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
832loop_destroy (EV_P)
833{
834 int i;
835
836#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
838#endif
839#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
841#endif
842#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
844#endif
845#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
847#endif
848#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
850#endif 2484#endif
851 2485
852 for (i = NUMPRI; i--; ) 2486 for (i = NUMPRI; i--; )
853 array_free (pending, [i]); 2487 {
2488 assert (pendingmax [i] >= pendingcnt [i]);
2489#if EV_IDLE_ENABLE
2490 assert (idleall >= 0);
2491 assert (idlemax [i] >= idlecnt [i]);
2492 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2493#endif
2494 }
854 2495
855 /* have to use the microsoft-never-gets-it-right macro */ 2496#if EV_FORK_ENABLE
856 array_free (fdchange, EMPTY0); 2497 assert (forkmax >= forkcnt);
857 array_free (timer, EMPTY0); 2498 array_verify (EV_A_ (W *)forks, forkcnt);
858#if EV_PERIODICS 2499#endif
859 array_free (periodic, EMPTY0); 2500
2501#if EV_CLEANUP_ENABLE
2502 assert (cleanupmax >= cleanupcnt);
2503 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2504#endif
2505
2506#if EV_ASYNC_ENABLE
2507 assert (asyncmax >= asynccnt);
2508 array_verify (EV_A_ (W *)asyncs, asynccnt);
2509#endif
2510
2511#if EV_PREPARE_ENABLE
2512 assert (preparemax >= preparecnt);
2513 array_verify (EV_A_ (W *)prepares, preparecnt);
2514#endif
2515
2516#if EV_CHECK_ENABLE
2517 assert (checkmax >= checkcnt);
2518 array_verify (EV_A_ (W *)checks, checkcnt);
2519#endif
2520
2521# if 0
2522#if EV_CHILD_ENABLE
2523 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2524 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2525#endif
860#endif 2526# endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
865 method = 0;
866}
867
868static void
869loop_fork (EV_P)
870{
871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif 2527#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
877#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
879#endif
880
881 if (ev_is_active (&sigev))
882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
897} 2528}
2529#endif
898 2530
899#if EV_MULTIPLICITY 2531#if EV_MULTIPLICITY
900struct ev_loop * 2532struct ev_loop * ecb_cold
901ev_loop_new (unsigned int flags)
902{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904
905 memset (loop, 0, sizeof (struct ev_loop));
906
907 loop_init (EV_A_ flags);
908
909 if (ev_method (EV_A))
910 return loop;
911
912 return 0;
913}
914
915void
916ev_loop_destroy (EV_P)
917{
918 loop_destroy (EV_A);
919 ev_free (loop);
920}
921
922void
923ev_loop_fork (EV_P)
924{
925 postfork = 1;
926}
927
928#endif
929
930#if EV_MULTIPLICITY
931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
933#else 2533#else
934int 2534int
2535#endif
935ev_default_loop (unsigned int flags) 2536ev_default_loop (unsigned int flags)
936#endif
937{ 2537{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 2538 if (!ev_default_loop_ptr)
943 { 2539 {
944#if EV_MULTIPLICITY 2540#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2541 EV_P = ev_default_loop_ptr = &default_loop_struct;
946#else 2542#else
947 ev_default_loop_ptr = 1; 2543 ev_default_loop_ptr = 1;
948#endif 2544#endif
949 2545
950 loop_init (EV_A_ flags); 2546 loop_init (EV_A_ flags);
951 2547
952 if (ev_method (EV_A)) 2548 if (ev_backend (EV_A))
953 { 2549 {
954 siginit (EV_A); 2550#if EV_CHILD_ENABLE
955
956#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 2551 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 2552 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 2553 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2554 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#endif 2555#endif
966 2560
967 return ev_default_loop_ptr; 2561 return ev_default_loop_ptr;
968} 2562}
969 2563
970void 2564void
971ev_default_destroy (void) 2565ev_loop_fork (EV_P)
972{ 2566{
973#if EV_MULTIPLICITY 2567 postfork = 1; /* must be in line with ev_default_fork */
974 struct ev_loop *loop = ev_default_loop_ptr;
975#endif
976
977#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev);
980#endif
981
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A);
989} 2568}
2569
2570/*****************************************************************************/
990 2571
991void 2572void
992ev_default_fork (void) 2573ev_invoke (EV_P_ void *w, int revents)
993{ 2574{
994#if EV_MULTIPLICITY 2575 EV_CB_INVOKE ((W)w, revents);
995 struct ev_loop *loop = ev_default_loop_ptr;
996#endif
997
998 if (method)
999 postfork = 1;
1000} 2576}
1001 2577
1002/*****************************************************************************/ 2578unsigned int
1003 2579ev_pending_count (EV_P)
1004static int
1005any_pending (EV_P)
1006{ 2580{
1007 int pri; 2581 int pri;
2582 unsigned int count = 0;
1008 2583
1009 for (pri = NUMPRI; pri--; ) 2584 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri]) 2585 count += pendingcnt [pri];
1011 return 1;
1012 2586
1013 return 0; 2587 return count;
1014} 2588}
1015 2589
1016inline void 2590void noinline
1017call_pending (EV_P) 2591ev_invoke_pending (EV_P)
1018{ 2592{
1019 int pri; 2593 int pri;
1020 2594
1021 for (pri = NUMPRI; pri--; ) 2595 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 2596 while (pendingcnt [pri])
1023 { 2597 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2598 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 2599
1026 if (expect_true (p->w))
1027 {
1028 p->w->pending = 0; 2600 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 2601 EV_CB_INVOKE (p->w, p->events);
1030 } 2602 EV_FREQUENT_CHECK;
1031 } 2603 }
1032} 2604}
1033 2605
2606#if EV_IDLE_ENABLE
2607/* make idle watchers pending. this handles the "call-idle */
2608/* only when higher priorities are idle" logic */
1034inline void 2609inline_size void
2610idle_reify (EV_P)
2611{
2612 if (expect_false (idleall))
2613 {
2614 int pri;
2615
2616 for (pri = NUMPRI; pri--; )
2617 {
2618 if (pendingcnt [pri])
2619 break;
2620
2621 if (idlecnt [pri])
2622 {
2623 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2624 break;
2625 }
2626 }
2627 }
2628}
2629#endif
2630
2631/* make timers pending */
2632inline_size void
1035timers_reify (EV_P) 2633timers_reify (EV_P)
1036{ 2634{
2635 EV_FREQUENT_CHECK;
2636
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 2637 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 2638 {
1039 struct ev_timer *w = timers [0]; 2639 do
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1042
1043 /* first reschedule or stop timer */
1044 if (w->repeat)
1045 { 2640 {
2641 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2642
2643 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2644
2645 /* first reschedule or stop timer */
2646 if (w->repeat)
2647 {
2648 ev_at (w) += w->repeat;
2649 if (ev_at (w) < mn_now)
2650 ev_at (w) = mn_now;
2651
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2652 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 2653
1048 ((WT)w)->at += w->repeat; 2654 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 2655 downheap (timers, timercnt, HEAP0);
2656 }
2657 else
2658 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2659
2660 EV_FREQUENT_CHECK;
2661 feed_reverse (EV_A_ (W)w);
1053 } 2662 }
1054 else 2663 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 2664
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2665 feed_reverse_done (EV_A_ EV_TIMER);
2666 }
2667}
2668
2669#if EV_PERIODIC_ENABLE
2670
2671static void noinline
2672periodic_recalc (EV_P_ ev_periodic *w)
2673{
2674 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2675 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2676
2677 /* the above almost always errs on the low side */
2678 while (at <= ev_rt_now)
1058 } 2679 {
1059} 2680 ev_tstamp nat = at + w->interval;
1060 2681
1061#if EV_PERIODICS 2682 /* when resolution fails us, we use ev_rt_now */
2683 if (expect_false (nat == at))
2684 {
2685 at = ev_rt_now;
2686 break;
2687 }
2688
2689 at = nat;
2690 }
2691
2692 ev_at (w) = at;
2693}
2694
2695/* make periodics pending */
1062inline void 2696inline_size void
1063periodics_reify (EV_P) 2697periodics_reify (EV_P)
1064{ 2698{
2699 EV_FREQUENT_CHECK;
2700
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2701 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 2702 {
1067 struct ev_periodic *w = periodics [0]; 2703 int feed_count = 0;
1068 2704
2705 do
2706 {
2707 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2708
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2709 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 2710
1071 /* first reschedule or stop timer */ 2711 /* first reschedule or stop timer */
2712 if (w->reschedule_cb)
2713 {
2714 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2715
2716 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2717
2718 ANHE_at_cache (periodics [HEAP0]);
2719 downheap (periodics, periodiccnt, HEAP0);
2720 }
2721 else if (w->interval)
2722 {
2723 periodic_recalc (EV_A_ w);
2724 ANHE_at_cache (periodics [HEAP0]);
2725 downheap (periodics, periodiccnt, HEAP0);
2726 }
2727 else
2728 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2729
2730 EV_FREQUENT_CHECK;
2731 feed_reverse (EV_A_ (W)w);
2732 }
2733 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2734
2735 feed_reverse_done (EV_A_ EV_PERIODIC);
2736 }
2737}
2738
2739/* simply recalculate all periodics */
2740/* TODO: maybe ensure that at least one event happens when jumping forward? */
2741static void noinline ecb_cold
2742periodics_reschedule (EV_P)
2743{
2744 int i;
2745
2746 /* adjust periodics after time jump */
2747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2748 {
2749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2750
1072 if (w->reschedule_cb) 2751 if (w->reschedule_cb)
2752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2753 else if (w->interval)
2754 periodic_recalc (EV_A_ w);
2755
2756 ANHE_at_cache (periodics [i]);
2757 }
2758
2759 reheap (periodics, periodiccnt);
2760}
2761#endif
2762
2763/* adjust all timers by a given offset */
2764static void noinline ecb_cold
2765timers_reschedule (EV_P_ ev_tstamp adjust)
2766{
2767 int i;
2768
2769 for (i = 0; i < timercnt; ++i)
2770 {
2771 ANHE *he = timers + i + HEAP0;
2772 ANHE_w (*he)->at += adjust;
2773 ANHE_at_cache (*he);
2774 }
2775}
2776
2777/* fetch new monotonic and realtime times from the kernel */
2778/* also detect if there was a timejump, and act accordingly */
2779inline_speed void
2780time_update (EV_P_ ev_tstamp max_block)
2781{
2782#if EV_USE_MONOTONIC
2783 if (expect_true (have_monotonic))
2784 {
2785 int i;
2786 ev_tstamp odiff = rtmn_diff;
2787
2788 mn_now = get_clock ();
2789
2790 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2791 /* interpolate in the meantime */
2792 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 2793 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2794 ev_rt_now = rtmn_diff + mn_now;
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2795 return;
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 } 2796 }
1078 else if (w->interval)
1079 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0);
1083 }
1084 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 2797
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 }
1089}
1090
1091static void
1092periodics_reschedule (EV_P)
1093{
1094 int i;
1095
1096 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i)
1098 {
1099 struct ev_periodic *w = periodics [i];
1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock ();
1117
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 {
1120 ev_rt_now = rtmn_diff + mn_now;
1121 return 0;
1122 }
1123 else
1124 {
1125 now_floor = mn_now; 2798 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 2799 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 2800
1131inline void 2801 /* loop a few times, before making important decisions.
1132time_update (EV_P) 2802 * on the choice of "4": one iteration isn't enough,
1133{ 2803 * in case we get preempted during the calls to
1134 int i; 2804 * ev_time and get_clock. a second call is almost guaranteed
1135 2805 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 2806 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 2807 * in the unlikely event of having been preempted here.
1138 { 2808 */
1139 if (time_update_monotonic (EV_A)) 2809 for (i = 4; --i; )
1140 { 2810 {
1141 ev_tstamp odiff = rtmn_diff; 2811 ev_tstamp diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 2812 rtmn_diff = ev_rt_now - mn_now;
1146 2813
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2814 diff = odiff - rtmn_diff;
2815
2816 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1148 return; /* all is well */ 2817 return; /* all is well */
1149 2818
1150 ev_rt_now = ev_time (); 2819 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 2820 mn_now = get_clock ();
1152 now_floor = mn_now; 2821 now_floor = mn_now;
1153 } 2822 }
1154 2823
2824 /* no timer adjustment, as the monotonic clock doesn't jump */
2825 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1155# if EV_PERIODICS 2826# if EV_PERIODIC_ENABLE
2827 periodics_reschedule (EV_A);
2828# endif
2829 }
2830 else
2831#endif
2832 {
2833 ev_rt_now = ev_time ();
2834
2835 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2836 {
2837 /* adjust timers. this is easy, as the offset is the same for all of them */
2838 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2839#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 2840 periodics_reschedule (EV_A);
1157# endif 2841#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 2842 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 2843
1178 mn_now = ev_rt_now; 2844 mn_now = ev_rt_now;
1179 } 2845 }
1180} 2846}
1181 2847
1182void 2848void
1183ev_ref (EV_P)
1184{
1185 ++activecnt;
1186}
1187
1188void
1189ev_unref (EV_P)
1190{
1191 --activecnt;
1192}
1193
1194static int loop_done;
1195
1196void
1197ev_loop (EV_P_ int flags) 2849ev_run (EV_P_ int flags)
1198{ 2850{
1199 double block; 2851#if EV_FEATURE_API
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2852 ++loop_depth;
2853#endif
1201 2854
1202 while (activecnt) 2855 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2856
2857 loop_done = EVBREAK_CANCEL;
2858
2859 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2860
2861 do
1203 { 2862 {
2863#if EV_VERIFY >= 2
2864 ev_verify (EV_A);
2865#endif
2866
2867#ifndef _WIN32
2868 if (expect_false (curpid)) /* penalise the forking check even more */
2869 if (expect_false (getpid () != curpid))
2870 {
2871 curpid = getpid ();
2872 postfork = 1;
2873 }
2874#endif
2875
2876#if EV_FORK_ENABLE
2877 /* we might have forked, so queue fork handlers */
2878 if (expect_false (postfork))
2879 if (forkcnt)
2880 {
2881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2882 EV_INVOKE_PENDING;
2883 }
2884#endif
2885
2886#if EV_PREPARE_ENABLE
1204 /* queue check watchers (and execute them) */ 2887 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 2888 if (expect_false (preparecnt))
1206 { 2889 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2890 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 2891 EV_INVOKE_PENDING;
1209 } 2892 }
2893#endif
2894
2895 if (expect_false (loop_done))
2896 break;
1210 2897
1211 /* we might have forked, so reify kernel state if necessary */ 2898 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 2899 if (expect_false (postfork))
1213 loop_fork (EV_A); 2900 loop_fork (EV_A);
1214 2901
1215 /* update fd-related kernel structures */ 2902 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 2903 fd_reify (EV_A);
1217 2904
1218 /* calculate blocking time */ 2905 /* calculate blocking time */
2906 {
2907 ev_tstamp waittime = 0.;
2908 ev_tstamp sleeptime = 0.;
1219 2909
1220 /* we only need this for !monotonic clock or timers, but as we basically 2910 /* remember old timestamp for io_blocktime calculation */
1221 always have timers, we just calculate it always */ 2911 ev_tstamp prev_mn_now = mn_now;
1222#if EV_USE_MONOTONIC 2912
1223 if (expect_true (have_monotonic)) 2913 /* update time to cancel out callback processing overhead */
1224 time_update_monotonic (EV_A); 2914 time_update (EV_A_ 1e100);
1225 else 2915
1226#endif 2916 /* from now on, we want a pipe-wake-up */
2917 pipe_write_wanted = 1;
2918
2919 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2920
2921 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1227 { 2922 {
1228 ev_rt_now = ev_time ();
1229 mn_now = ev_rt_now;
1230 }
1231
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 2923 waittime = MAX_BLOCKTIME;
1237 2924
1238 if (timercnt) 2925 if (timercnt)
1239 { 2926 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2927 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1241 if (block > to) block = to; 2928 if (waittime > to) waittime = to;
1242 } 2929 }
1243 2930
1244#if EV_PERIODICS 2931#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 2932 if (periodiccnt)
1246 { 2933 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2934 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1248 if (block > to) block = to; 2935 if (waittime > to) waittime = to;
1249 } 2936 }
1250#endif 2937#endif
1251 2938
1252 if (expect_false (block < 0.)) block = 0.; 2939 /* don't let timeouts decrease the waittime below timeout_blocktime */
2940 if (expect_false (waittime < timeout_blocktime))
2941 waittime = timeout_blocktime;
2942
2943 /* at this point, we NEED to wait, so we have to ensure */
2944 /* to pass a minimum nonzero value to the backend */
2945 if (expect_false (waittime < backend_mintime))
2946 waittime = backend_mintime;
2947
2948 /* extra check because io_blocktime is commonly 0 */
2949 if (expect_false (io_blocktime))
2950 {
2951 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2952
2953 if (sleeptime > waittime - backend_mintime)
2954 sleeptime = waittime - backend_mintime;
2955
2956 if (expect_true (sleeptime > 0.))
2957 {
2958 ev_sleep (sleeptime);
2959 waittime -= sleeptime;
2960 }
2961 }
1253 } 2962 }
1254 2963
1255 method_poll (EV_A_ block); 2964#if EV_FEATURE_API
2965 ++loop_count;
2966#endif
2967 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2968 backend_poll (EV_A_ waittime);
2969 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1256 2970
2971 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2972
2973 if (pipe_write_skipped)
2974 {
2975 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2976 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2977 }
2978
2979
1257 /* update ev_rt_now, do magic */ 2980 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 2981 time_update (EV_A_ waittime + sleeptime);
2982 }
1259 2983
1260 /* queue pending timers and reschedule them */ 2984 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 2985 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 2986#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 2987 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 2988#endif
1265 2989
2990#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 2991 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 2992 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2993#endif
1269 2994
2995#if EV_CHECK_ENABLE
1270 /* queue check watchers, to be executed first */ 2996 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 2997 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2998 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2999#endif
1273 3000
1274 call_pending (EV_A); 3001 EV_INVOKE_PENDING;
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 3002 }
3003 while (expect_true (
3004 activecnt
3005 && !loop_done
3006 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3007 ));
1279 3008
1280 if (loop_done != 2) 3009 if (loop_done == EVBREAK_ONE)
1281 loop_done = 0; 3010 loop_done = EVBREAK_CANCEL;
3011
3012#if EV_FEATURE_API
3013 --loop_depth;
3014#endif
1282} 3015}
1283 3016
1284void 3017void
1285ev_unloop (EV_P_ int how) 3018ev_break (EV_P_ int how)
1286{ 3019{
1287 loop_done = how; 3020 loop_done = how;
1288} 3021}
1289 3022
3023void
3024ev_ref (EV_P)
3025{
3026 ++activecnt;
3027}
3028
3029void
3030ev_unref (EV_P)
3031{
3032 --activecnt;
3033}
3034
3035void
3036ev_now_update (EV_P)
3037{
3038 time_update (EV_A_ 1e100);
3039}
3040
3041void
3042ev_suspend (EV_P)
3043{
3044 ev_now_update (EV_A);
3045}
3046
3047void
3048ev_resume (EV_P)
3049{
3050 ev_tstamp mn_prev = mn_now;
3051
3052 ev_now_update (EV_A);
3053 timers_reschedule (EV_A_ mn_now - mn_prev);
3054#if EV_PERIODIC_ENABLE
3055 /* TODO: really do this? */
3056 periodics_reschedule (EV_A);
3057#endif
3058}
3059
1290/*****************************************************************************/ 3060/*****************************************************************************/
3061/* singly-linked list management, used when the expected list length is short */
1291 3062
1292inline void 3063inline_size void
1293wlist_add (WL *head, WL elem) 3064wlist_add (WL *head, WL elem)
1294{ 3065{
1295 elem->next = *head; 3066 elem->next = *head;
1296 *head = elem; 3067 *head = elem;
1297} 3068}
1298 3069
1299inline void 3070inline_size void
1300wlist_del (WL *head, WL elem) 3071wlist_del (WL *head, WL elem)
1301{ 3072{
1302 while (*head) 3073 while (*head)
1303 { 3074 {
1304 if (*head == elem) 3075 if (expect_true (*head == elem))
1305 { 3076 {
1306 *head = elem->next; 3077 *head = elem->next;
1307 return; 3078 break;
1308 } 3079 }
1309 3080
1310 head = &(*head)->next; 3081 head = &(*head)->next;
1311 } 3082 }
1312} 3083}
1313 3084
3085/* internal, faster, version of ev_clear_pending */
1314inline void 3086inline_speed void
1315ev_clear_pending (EV_P_ W w) 3087clear_pending (EV_P_ W w)
1316{ 3088{
1317 if (w->pending) 3089 if (w->pending)
1318 { 3090 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3091 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1320 w->pending = 0; 3092 w->pending = 0;
1321 } 3093 }
1322} 3094}
1323 3095
3096int
3097ev_clear_pending (EV_P_ void *w)
3098{
3099 W w_ = (W)w;
3100 int pending = w_->pending;
3101
3102 if (expect_true (pending))
3103 {
3104 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3105 p->w = (W)&pending_w;
3106 w_->pending = 0;
3107 return p->events;
3108 }
3109 else
3110 return 0;
3111}
3112
1324inline void 3113inline_size void
3114pri_adjust (EV_P_ W w)
3115{
3116 int pri = ev_priority (w);
3117 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3118 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3119 ev_set_priority (w, pri);
3120}
3121
3122inline_speed void
1325ev_start (EV_P_ W w, int active) 3123ev_start (EV_P_ W w, int active)
1326{ 3124{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3125 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 3126 w->active = active;
1331 ev_ref (EV_A); 3127 ev_ref (EV_A);
1332} 3128}
1333 3129
1334inline void 3130inline_size void
1335ev_stop (EV_P_ W w) 3131ev_stop (EV_P_ W w)
1336{ 3132{
1337 ev_unref (EV_A); 3133 ev_unref (EV_A);
1338 w->active = 0; 3134 w->active = 0;
1339} 3135}
1340 3136
1341/*****************************************************************************/ 3137/*****************************************************************************/
1342 3138
1343void 3139void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 3140ev_io_start (EV_P_ ev_io *w)
1345{ 3141{
1346 int fd = w->fd; 3142 int fd = w->fd;
1347 3143
1348 if (expect_false (ev_is_active (w))) 3144 if (expect_false (ev_is_active (w)))
1349 return; 3145 return;
1350 3146
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 3147 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3148 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3149
3150 EV_FREQUENT_CHECK;
1352 3151
1353 ev_start (EV_A_ (W)w, 1); 3152 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3153 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3154 wlist_add (&anfds[fd].head, (WL)w);
1356 3155
1357 fd_change (EV_A_ fd); 3156 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1358} 3157 w->events &= ~EV__IOFDSET;
1359 3158
1360void 3159 EV_FREQUENT_CHECK;
3160}
3161
3162void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 3163ev_io_stop (EV_P_ ev_io *w)
1362{ 3164{
1363 ev_clear_pending (EV_A_ (W)w); 3165 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 3166 if (expect_false (!ev_is_active (w)))
1365 return; 3167 return;
1366 3168
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3169 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 3170
3171 EV_FREQUENT_CHECK;
3172
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3173 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 3174 ev_stop (EV_A_ (W)w);
1371 3175
1372 fd_change (EV_A_ w->fd); 3176 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1373}
1374 3177
1375void 3178 EV_FREQUENT_CHECK;
3179}
3180
3181void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 3182ev_timer_start (EV_P_ ev_timer *w)
1377{ 3183{
1378 if (expect_false (ev_is_active (w))) 3184 if (expect_false (ev_is_active (w)))
1379 return; 3185 return;
1380 3186
1381 ((WT)w)->at += mn_now; 3187 ev_at (w) += mn_now;
1382 3188
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3189 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 3190
3191 EV_FREQUENT_CHECK;
3192
3193 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 3194 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3195 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 3196 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 3197 ANHE_at_cache (timers [ev_active (w)]);
3198 upheap (timers, ev_active (w));
1389 3199
3200 EV_FREQUENT_CHECK;
3201
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3202 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 3203}
1392 3204
1393void 3205void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 3206ev_timer_stop (EV_P_ ev_timer *w)
1395{ 3207{
1396 ev_clear_pending (EV_A_ (W)w); 3208 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 3209 if (expect_false (!ev_is_active (w)))
1398 return; 3210 return;
1399 3211
3212 EV_FREQUENT_CHECK;
3213
3214 {
3215 int active = ev_active (w);
3216
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3217 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 3218
3219 --timercnt;
3220
1402 if (expect_true (((W)w)->active < timercnt--)) 3221 if (expect_true (active < timercnt + HEAP0))
1403 { 3222 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 3223 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3224 adjustheap (timers, timercnt, active);
1406 } 3225 }
3226 }
1407 3227
1408 ((WT)w)->at -= mn_now; 3228 ev_at (w) -= mn_now;
1409 3229
1410 ev_stop (EV_A_ (W)w); 3230 ev_stop (EV_A_ (W)w);
1411}
1412 3231
1413void 3232 EV_FREQUENT_CHECK;
3233}
3234
3235void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 3236ev_timer_again (EV_P_ ev_timer *w)
1415{ 3237{
3238 EV_FREQUENT_CHECK;
3239
1416 if (ev_is_active (w)) 3240 if (ev_is_active (w))
1417 { 3241 {
1418 if (w->repeat) 3242 if (w->repeat)
1419 { 3243 {
1420 ((WT)w)->at = mn_now + w->repeat; 3244 ev_at (w) = mn_now + w->repeat;
3245 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3246 adjustheap (timers, timercnt, ev_active (w));
1422 } 3247 }
1423 else 3248 else
1424 ev_timer_stop (EV_A_ w); 3249 ev_timer_stop (EV_A_ w);
1425 } 3250 }
1426 else if (w->repeat) 3251 else if (w->repeat)
1427 { 3252 {
1428 w->at = w->repeat; 3253 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 3254 ev_timer_start (EV_A_ w);
1430 } 3255 }
1431}
1432 3256
3257 EV_FREQUENT_CHECK;
3258}
3259
3260ev_tstamp
3261ev_timer_remaining (EV_P_ ev_timer *w)
3262{
3263 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3264}
3265
1433#if EV_PERIODICS 3266#if EV_PERIODIC_ENABLE
1434void 3267void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 3268ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 3269{
1437 if (expect_false (ev_is_active (w))) 3270 if (expect_false (ev_is_active (w)))
1438 return; 3271 return;
1439 3272
1440 if (w->reschedule_cb) 3273 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3274 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 3275 else if (w->interval)
1443 { 3276 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3277 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 3278 periodic_recalc (EV_A_ w);
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 } 3279 }
3280 else
3281 ev_at (w) = w->offset;
1448 3282
3283 EV_FREQUENT_CHECK;
3284
3285 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 3286 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3287 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 3288 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 3289 ANHE_at_cache (periodics [ev_active (w)]);
3290 upheap (periodics, ev_active (w));
1453 3291
3292 EV_FREQUENT_CHECK;
3293
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3294 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 3295}
1456 3296
1457void 3297void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 3298ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 3299{
1460 ev_clear_pending (EV_A_ (W)w); 3300 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 3301 if (expect_false (!ev_is_active (w)))
1462 return; 3302 return;
1463 3303
3304 EV_FREQUENT_CHECK;
3305
3306 {
3307 int active = ev_active (w);
3308
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3309 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 3310
3311 --periodiccnt;
3312
1466 if (expect_true (((W)w)->active < periodiccnt--)) 3313 if (expect_true (active < periodiccnt + HEAP0))
1467 { 3314 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3315 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3316 adjustheap (periodics, periodiccnt, active);
1470 } 3317 }
3318 }
1471 3319
1472 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
1473}
1474 3321
1475void 3322 EV_FREQUENT_CHECK;
3323}
3324
3325void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 3326ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 3327{
1478 /* TODO: use adjustheap and recalculation */ 3328 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 3329 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 3330 ev_periodic_start (EV_A_ w);
1481} 3331}
1482#endif 3332#endif
1483 3333
1484void 3334#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 3335# define SA_RESTART 0
3336#endif
3337
3338#if EV_SIGNAL_ENABLE
3339
3340void noinline
3341ev_signal_start (EV_P_ ev_signal *w)
1486{ 3342{
1487 if (expect_false (ev_is_active (w))) 3343 if (expect_false (ev_is_active (w)))
1488 return; 3344 return;
1489 3345
3346 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3347
3348#if EV_MULTIPLICITY
3349 assert (("libev: a signal must not be attached to two different loops",
3350 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3351
3352 signals [w->signum - 1].loop = EV_A;
3353#endif
3354
3355 EV_FREQUENT_CHECK;
3356
3357#if EV_USE_SIGNALFD
3358 if (sigfd == -2)
3359 {
3360 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3361 if (sigfd < 0 && errno == EINVAL)
3362 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3363
3364 if (sigfd >= 0)
3365 {
3366 fd_intern (sigfd); /* doing it twice will not hurt */
3367
3368 sigemptyset (&sigfd_set);
3369
3370 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3371 ev_set_priority (&sigfd_w, EV_MAXPRI);
3372 ev_io_start (EV_A_ &sigfd_w);
3373 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3374 }
3375 }
3376
3377 if (sigfd >= 0)
3378 {
3379 /* TODO: check .head */
3380 sigaddset (&sigfd_set, w->signum);
3381 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3382
3383 signalfd (sigfd, &sigfd_set, 0);
3384 }
3385#endif
3386
1490 ev_start (EV_A_ (W)w, ++idlecnt); 3387 ev_start (EV_A_ (W)w, 1);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3388 wlist_add (&signals [w->signum - 1].head, (WL)w);
1492 idles [idlecnt - 1] = w;
1493}
1494 3389
1495void 3390 if (!((WL)w)->next)
1496ev_idle_stop (EV_P_ struct ev_idle *w) 3391# if EV_USE_SIGNALFD
3392 if (sigfd < 0) /*TODO*/
3393# endif
3394 {
3395# ifdef _WIN32
3396 evpipe_init (EV_A);
3397
3398 signal (w->signum, ev_sighandler);
3399# else
3400 struct sigaction sa;
3401
3402 evpipe_init (EV_A);
3403
3404 sa.sa_handler = ev_sighandler;
3405 sigfillset (&sa.sa_mask);
3406 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3407 sigaction (w->signum, &sa, 0);
3408
3409 if (origflags & EVFLAG_NOSIGMASK)
3410 {
3411 sigemptyset (&sa.sa_mask);
3412 sigaddset (&sa.sa_mask, w->signum);
3413 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3414 }
3415#endif
3416 }
3417
3418 EV_FREQUENT_CHECK;
3419}
3420
3421void noinline
3422ev_signal_stop (EV_P_ ev_signal *w)
1497{ 3423{
1498 ev_clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
1500 return; 3426 return;
1501 3427
1502 idles [((W)w)->active - 1] = idles [--idlecnt]; 3428 EV_FREQUENT_CHECK;
3429
3430 wlist_del (&signals [w->signum - 1].head, (WL)w);
1503 ev_stop (EV_A_ (W)w); 3431 ev_stop (EV_A_ (W)w);
3432
3433 if (!signals [w->signum - 1].head)
3434 {
3435#if EV_MULTIPLICITY
3436 signals [w->signum - 1].loop = 0; /* unattach from signal */
3437#endif
3438#if EV_USE_SIGNALFD
3439 if (sigfd >= 0)
3440 {
3441 sigset_t ss;
3442
3443 sigemptyset (&ss);
3444 sigaddset (&ss, w->signum);
3445 sigdelset (&sigfd_set, w->signum);
3446
3447 signalfd (sigfd, &sigfd_set, 0);
3448 sigprocmask (SIG_UNBLOCK, &ss, 0);
3449 }
3450 else
3451#endif
3452 signal (w->signum, SIG_DFL);
3453 }
3454
3455 EV_FREQUENT_CHECK;
1504} 3456}
3457
3458#endif
3459
3460#if EV_CHILD_ENABLE
1505 3461
1506void 3462void
1507ev_prepare_start (EV_P_ struct ev_prepare *w) 3463ev_child_start (EV_P_ ev_child *w)
1508{ 3464{
3465#if EV_MULTIPLICITY
3466 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3467#endif
1509 if (expect_false (ev_is_active (w))) 3468 if (expect_false (ev_is_active (w)))
1510 return; 3469 return;
1511 3470
3471 EV_FREQUENT_CHECK;
3472
1512 ev_start (EV_A_ (W)w, ++preparecnt); 3473 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3474 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 prepares [preparecnt - 1] = w; 3475
3476 EV_FREQUENT_CHECK;
1515} 3477}
1516 3478
1517void 3479void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w) 3480ev_child_stop (EV_P_ ev_child *w)
1519{ 3481{
1520 ev_clear_pending (EV_A_ (W)w); 3482 clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w))) 3483 if (expect_false (!ev_is_active (w)))
1522 return; 3484 return;
1523 3485
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3486 EV_FREQUENT_CHECK;
3487
3488 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 ev_stop (EV_A_ (W)w); 3489 ev_stop (EV_A_ (W)w);
3490
3491 EV_FREQUENT_CHECK;
1526} 3492}
3493
3494#endif
3495
3496#if EV_STAT_ENABLE
3497
3498# ifdef _WIN32
3499# undef lstat
3500# define lstat(a,b) _stati64 (a,b)
3501# endif
3502
3503#define DEF_STAT_INTERVAL 5.0074891
3504#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3505#define MIN_STAT_INTERVAL 0.1074891
3506
3507static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3508
3509#if EV_USE_INOTIFY
3510
3511/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3512# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3513
3514static void noinline
3515infy_add (EV_P_ ev_stat *w)
3516{
3517 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3518
3519 if (w->wd >= 0)
3520 {
3521 struct statfs sfs;
3522
3523 /* now local changes will be tracked by inotify, but remote changes won't */
3524 /* unless the filesystem is known to be local, we therefore still poll */
3525 /* also do poll on <2.6.25, but with normal frequency */
3526
3527 if (!fs_2625)
3528 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3529 else if (!statfs (w->path, &sfs)
3530 && (sfs.f_type == 0x1373 /* devfs */
3531 || sfs.f_type == 0xEF53 /* ext2/3 */
3532 || sfs.f_type == 0x3153464a /* jfs */
3533 || sfs.f_type == 0x52654973 /* reiser3 */
3534 || sfs.f_type == 0x01021994 /* tempfs */
3535 || sfs.f_type == 0x58465342 /* xfs */))
3536 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3537 else
3538 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3539 }
3540 else
3541 {
3542 /* can't use inotify, continue to stat */
3543 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3544
3545 /* if path is not there, monitor some parent directory for speedup hints */
3546 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3547 /* but an efficiency issue only */
3548 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3549 {
3550 char path [4096];
3551 strcpy (path, w->path);
3552
3553 do
3554 {
3555 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3556 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3557
3558 char *pend = strrchr (path, '/');
3559
3560 if (!pend || pend == path)
3561 break;
3562
3563 *pend = 0;
3564 w->wd = inotify_add_watch (fs_fd, path, mask);
3565 }
3566 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3567 }
3568 }
3569
3570 if (w->wd >= 0)
3571 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3572
3573 /* now re-arm timer, if required */
3574 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3575 ev_timer_again (EV_A_ &w->timer);
3576 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3577}
3578
3579static void noinline
3580infy_del (EV_P_ ev_stat *w)
3581{
3582 int slot;
3583 int wd = w->wd;
3584
3585 if (wd < 0)
3586 return;
3587
3588 w->wd = -2;
3589 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3590 wlist_del (&fs_hash [slot].head, (WL)w);
3591
3592 /* remove this watcher, if others are watching it, they will rearm */
3593 inotify_rm_watch (fs_fd, wd);
3594}
3595
3596static void noinline
3597infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3598{
3599 if (slot < 0)
3600 /* overflow, need to check for all hash slots */
3601 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3602 infy_wd (EV_A_ slot, wd, ev);
3603 else
3604 {
3605 WL w_;
3606
3607 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3608 {
3609 ev_stat *w = (ev_stat *)w_;
3610 w_ = w_->next; /* lets us remove this watcher and all before it */
3611
3612 if (w->wd == wd || wd == -1)
3613 {
3614 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3615 {
3616 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3617 w->wd = -1;
3618 infy_add (EV_A_ w); /* re-add, no matter what */
3619 }
3620
3621 stat_timer_cb (EV_A_ &w->timer, 0);
3622 }
3623 }
3624 }
3625}
3626
3627static void
3628infy_cb (EV_P_ ev_io *w, int revents)
3629{
3630 char buf [EV_INOTIFY_BUFSIZE];
3631 int ofs;
3632 int len = read (fs_fd, buf, sizeof (buf));
3633
3634 for (ofs = 0; ofs < len; )
3635 {
3636 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3637 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3638 ofs += sizeof (struct inotify_event) + ev->len;
3639 }
3640}
3641
3642inline_size void ecb_cold
3643ev_check_2625 (EV_P)
3644{
3645 /* kernels < 2.6.25 are borked
3646 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3647 */
3648 if (ev_linux_version () < 0x020619)
3649 return;
3650
3651 fs_2625 = 1;
3652}
3653
3654inline_size int
3655infy_newfd (void)
3656{
3657#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3658 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3659 if (fd >= 0)
3660 return fd;
3661#endif
3662 return inotify_init ();
3663}
3664
3665inline_size void
3666infy_init (EV_P)
3667{
3668 if (fs_fd != -2)
3669 return;
3670
3671 fs_fd = -1;
3672
3673 ev_check_2625 (EV_A);
3674
3675 fs_fd = infy_newfd ();
3676
3677 if (fs_fd >= 0)
3678 {
3679 fd_intern (fs_fd);
3680 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3681 ev_set_priority (&fs_w, EV_MAXPRI);
3682 ev_io_start (EV_A_ &fs_w);
3683 ev_unref (EV_A);
3684 }
3685}
3686
3687inline_size void
3688infy_fork (EV_P)
3689{
3690 int slot;
3691
3692 if (fs_fd < 0)
3693 return;
3694
3695 ev_ref (EV_A);
3696 ev_io_stop (EV_A_ &fs_w);
3697 close (fs_fd);
3698 fs_fd = infy_newfd ();
3699
3700 if (fs_fd >= 0)
3701 {
3702 fd_intern (fs_fd);
3703 ev_io_set (&fs_w, fs_fd, EV_READ);
3704 ev_io_start (EV_A_ &fs_w);
3705 ev_unref (EV_A);
3706 }
3707
3708 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3709 {
3710 WL w_ = fs_hash [slot].head;
3711 fs_hash [slot].head = 0;
3712
3713 while (w_)
3714 {
3715 ev_stat *w = (ev_stat *)w_;
3716 w_ = w_->next; /* lets us add this watcher */
3717
3718 w->wd = -1;
3719
3720 if (fs_fd >= 0)
3721 infy_add (EV_A_ w); /* re-add, no matter what */
3722 else
3723 {
3724 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3725 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3726 ev_timer_again (EV_A_ &w->timer);
3727 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3728 }
3729 }
3730 }
3731}
3732
3733#endif
3734
3735#ifdef _WIN32
3736# define EV_LSTAT(p,b) _stati64 (p, b)
3737#else
3738# define EV_LSTAT(p,b) lstat (p, b)
3739#endif
1527 3740
1528void 3741void
1529ev_check_start (EV_P_ struct ev_check *w) 3742ev_stat_stat (EV_P_ ev_stat *w)
3743{
3744 if (lstat (w->path, &w->attr) < 0)
3745 w->attr.st_nlink = 0;
3746 else if (!w->attr.st_nlink)
3747 w->attr.st_nlink = 1;
3748}
3749
3750static void noinline
3751stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3752{
3753 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3754
3755 ev_statdata prev = w->attr;
3756 ev_stat_stat (EV_A_ w);
3757
3758 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3759 if (
3760 prev.st_dev != w->attr.st_dev
3761 || prev.st_ino != w->attr.st_ino
3762 || prev.st_mode != w->attr.st_mode
3763 || prev.st_nlink != w->attr.st_nlink
3764 || prev.st_uid != w->attr.st_uid
3765 || prev.st_gid != w->attr.st_gid
3766 || prev.st_rdev != w->attr.st_rdev
3767 || prev.st_size != w->attr.st_size
3768 || prev.st_atime != w->attr.st_atime
3769 || prev.st_mtime != w->attr.st_mtime
3770 || prev.st_ctime != w->attr.st_ctime
3771 ) {
3772 /* we only update w->prev on actual differences */
3773 /* in case we test more often than invoke the callback, */
3774 /* to ensure that prev is always different to attr */
3775 w->prev = prev;
3776
3777 #if EV_USE_INOTIFY
3778 if (fs_fd >= 0)
3779 {
3780 infy_del (EV_A_ w);
3781 infy_add (EV_A_ w);
3782 ev_stat_stat (EV_A_ w); /* avoid race... */
3783 }
3784 #endif
3785
3786 ev_feed_event (EV_A_ w, EV_STAT);
3787 }
3788}
3789
3790void
3791ev_stat_start (EV_P_ ev_stat *w)
1530{ 3792{
1531 if (expect_false (ev_is_active (w))) 3793 if (expect_false (ev_is_active (w)))
1532 return; 3794 return;
1533 3795
3796 ev_stat_stat (EV_A_ w);
3797
3798 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3799 w->interval = MIN_STAT_INTERVAL;
3800
3801 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3802 ev_set_priority (&w->timer, ev_priority (w));
3803
3804#if EV_USE_INOTIFY
3805 infy_init (EV_A);
3806
3807 if (fs_fd >= 0)
3808 infy_add (EV_A_ w);
3809 else
3810#endif
3811 {
3812 ev_timer_again (EV_A_ &w->timer);
3813 ev_unref (EV_A);
3814 }
3815
1534 ev_start (EV_A_ (W)w, ++checkcnt); 3816 ev_start (EV_A_ (W)w, 1);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3817
1536 checks [checkcnt - 1] = w; 3818 EV_FREQUENT_CHECK;
1537} 3819}
1538 3820
1539void 3821void
1540ev_check_stop (EV_P_ struct ev_check *w) 3822ev_stat_stop (EV_P_ ev_stat *w)
1541{ 3823{
1542 ev_clear_pending (EV_A_ (W)w); 3824 clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w))) 3825 if (expect_false (!ev_is_active (w)))
1544 return; 3826 return;
1545 3827
1546 checks [((W)w)->active - 1] = checks [--checkcnt]; 3828 EV_FREQUENT_CHECK;
3829
3830#if EV_USE_INOTIFY
3831 infy_del (EV_A_ w);
3832#endif
3833
3834 if (ev_is_active (&w->timer))
3835 {
3836 ev_ref (EV_A);
3837 ev_timer_stop (EV_A_ &w->timer);
3838 }
3839
1547 ev_stop (EV_A_ (W)w); 3840 ev_stop (EV_A_ (W)w);
1548}
1549 3841
1550#ifndef SA_RESTART 3842 EV_FREQUENT_CHECK;
1551# define SA_RESTART 0 3843}
1552#endif 3844#endif
1553 3845
3846#if EV_IDLE_ENABLE
1554void 3847void
1555ev_signal_start (EV_P_ struct ev_signal *w) 3848ev_idle_start (EV_P_ ev_idle *w)
1556{ 3849{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w))) 3850 if (expect_false (ev_is_active (w)))
1561 return; 3851 return;
1562 3852
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3853 pri_adjust (EV_A_ (W)w);
1564 3854
3855 EV_FREQUENT_CHECK;
3856
3857 {
3858 int active = ++idlecnt [ABSPRI (w)];
3859
3860 ++idleall;
1565 ev_start (EV_A_ (W)w, 1); 3861 ev_start (EV_A_ (W)w, active);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1568 3862
1569 if (!((WL)w)->next) 3863 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1570 { 3864 idles [ABSPRI (w)][active - 1] = w;
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1574 struct sigaction sa;
1575 sa.sa_handler = sighandler;
1576 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0);
1579#endif
1580 } 3865 }
3866
3867 EV_FREQUENT_CHECK;
1581} 3868}
1582 3869
1583void 3870void
1584ev_signal_stop (EV_P_ struct ev_signal *w) 3871ev_idle_stop (EV_P_ ev_idle *w)
1585{ 3872{
1586 ev_clear_pending (EV_A_ (W)w); 3873 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 3874 if (expect_false (!ev_is_active (w)))
1588 return; 3875 return;
1589 3876
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3877 EV_FREQUENT_CHECK;
3878
3879 {
3880 int active = ev_active (w);
3881
3882 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3883 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3884
1591 ev_stop (EV_A_ (W)w); 3885 ev_stop (EV_A_ (W)w);
3886 --idleall;
3887 }
1592 3888
1593 if (!signals [w->signum - 1].head) 3889 EV_FREQUENT_CHECK;
1594 signal (w->signum, SIG_DFL);
1595} 3890}
3891#endif
1596 3892
3893#if EV_PREPARE_ENABLE
1597void 3894void
1598ev_child_start (EV_P_ struct ev_child *w) 3895ev_prepare_start (EV_P_ ev_prepare *w)
1599{ 3896{
1600#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3897 if (expect_false (ev_is_active (w)))
1604 return; 3898 return;
1605 3899
3900 EV_FREQUENT_CHECK;
3901
1606 ev_start (EV_A_ (W)w, 1); 3902 ev_start (EV_A_ (W)w, ++preparecnt);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3903 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3904 prepares [preparecnt - 1] = w;
3905
3906 EV_FREQUENT_CHECK;
1608} 3907}
1609 3908
1610void 3909void
1611ev_child_stop (EV_P_ struct ev_child *w) 3910ev_prepare_stop (EV_P_ ev_prepare *w)
1612{ 3911{
1613 ev_clear_pending (EV_A_ (W)w); 3912 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 3913 if (expect_false (!ev_is_active (w)))
1615 return; 3914 return;
1616 3915
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3916 EV_FREQUENT_CHECK;
3917
3918 {
3919 int active = ev_active (w);
3920
3921 prepares [active - 1] = prepares [--preparecnt];
3922 ev_active (prepares [active - 1]) = active;
3923 }
3924
1618 ev_stop (EV_A_ (W)w); 3925 ev_stop (EV_A_ (W)w);
3926
3927 EV_FREQUENT_CHECK;
1619} 3928}
3929#endif
3930
3931#if EV_CHECK_ENABLE
3932void
3933ev_check_start (EV_P_ ev_check *w)
3934{
3935 if (expect_false (ev_is_active (w)))
3936 return;
3937
3938 EV_FREQUENT_CHECK;
3939
3940 ev_start (EV_A_ (W)w, ++checkcnt);
3941 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3942 checks [checkcnt - 1] = w;
3943
3944 EV_FREQUENT_CHECK;
3945}
3946
3947void
3948ev_check_stop (EV_P_ ev_check *w)
3949{
3950 clear_pending (EV_A_ (W)w);
3951 if (expect_false (!ev_is_active (w)))
3952 return;
3953
3954 EV_FREQUENT_CHECK;
3955
3956 {
3957 int active = ev_active (w);
3958
3959 checks [active - 1] = checks [--checkcnt];
3960 ev_active (checks [active - 1]) = active;
3961 }
3962
3963 ev_stop (EV_A_ (W)w);
3964
3965 EV_FREQUENT_CHECK;
3966}
3967#endif
3968
3969#if EV_EMBED_ENABLE
3970void noinline
3971ev_embed_sweep (EV_P_ ev_embed *w)
3972{
3973 ev_run (w->other, EVRUN_NOWAIT);
3974}
3975
3976static void
3977embed_io_cb (EV_P_ ev_io *io, int revents)
3978{
3979 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3980
3981 if (ev_cb (w))
3982 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3983 else
3984 ev_run (w->other, EVRUN_NOWAIT);
3985}
3986
3987static void
3988embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3989{
3990 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3991
3992 {
3993 EV_P = w->other;
3994
3995 while (fdchangecnt)
3996 {
3997 fd_reify (EV_A);
3998 ev_run (EV_A_ EVRUN_NOWAIT);
3999 }
4000 }
4001}
4002
4003static void
4004embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4005{
4006 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4007
4008 ev_embed_stop (EV_A_ w);
4009
4010 {
4011 EV_P = w->other;
4012
4013 ev_loop_fork (EV_A);
4014 ev_run (EV_A_ EVRUN_NOWAIT);
4015 }
4016
4017 ev_embed_start (EV_A_ w);
4018}
4019
4020#if 0
4021static void
4022embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4023{
4024 ev_idle_stop (EV_A_ idle);
4025}
4026#endif
4027
4028void
4029ev_embed_start (EV_P_ ev_embed *w)
4030{
4031 if (expect_false (ev_is_active (w)))
4032 return;
4033
4034 {
4035 EV_P = w->other;
4036 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4037 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4038 }
4039
4040 EV_FREQUENT_CHECK;
4041
4042 ev_set_priority (&w->io, ev_priority (w));
4043 ev_io_start (EV_A_ &w->io);
4044
4045 ev_prepare_init (&w->prepare, embed_prepare_cb);
4046 ev_set_priority (&w->prepare, EV_MINPRI);
4047 ev_prepare_start (EV_A_ &w->prepare);
4048
4049 ev_fork_init (&w->fork, embed_fork_cb);
4050 ev_fork_start (EV_A_ &w->fork);
4051
4052 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4053
4054 ev_start (EV_A_ (W)w, 1);
4055
4056 EV_FREQUENT_CHECK;
4057}
4058
4059void
4060ev_embed_stop (EV_P_ ev_embed *w)
4061{
4062 clear_pending (EV_A_ (W)w);
4063 if (expect_false (!ev_is_active (w)))
4064 return;
4065
4066 EV_FREQUENT_CHECK;
4067
4068 ev_io_stop (EV_A_ &w->io);
4069 ev_prepare_stop (EV_A_ &w->prepare);
4070 ev_fork_stop (EV_A_ &w->fork);
4071
4072 ev_stop (EV_A_ (W)w);
4073
4074 EV_FREQUENT_CHECK;
4075}
4076#endif
4077
4078#if EV_FORK_ENABLE
4079void
4080ev_fork_start (EV_P_ ev_fork *w)
4081{
4082 if (expect_false (ev_is_active (w)))
4083 return;
4084
4085 EV_FREQUENT_CHECK;
4086
4087 ev_start (EV_A_ (W)w, ++forkcnt);
4088 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4089 forks [forkcnt - 1] = w;
4090
4091 EV_FREQUENT_CHECK;
4092}
4093
4094void
4095ev_fork_stop (EV_P_ ev_fork *w)
4096{
4097 clear_pending (EV_A_ (W)w);
4098 if (expect_false (!ev_is_active (w)))
4099 return;
4100
4101 EV_FREQUENT_CHECK;
4102
4103 {
4104 int active = ev_active (w);
4105
4106 forks [active - 1] = forks [--forkcnt];
4107 ev_active (forks [active - 1]) = active;
4108 }
4109
4110 ev_stop (EV_A_ (W)w);
4111
4112 EV_FREQUENT_CHECK;
4113}
4114#endif
4115
4116#if EV_CLEANUP_ENABLE
4117void
4118ev_cleanup_start (EV_P_ ev_cleanup *w)
4119{
4120 if (expect_false (ev_is_active (w)))
4121 return;
4122
4123 EV_FREQUENT_CHECK;
4124
4125 ev_start (EV_A_ (W)w, ++cleanupcnt);
4126 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4127 cleanups [cleanupcnt - 1] = w;
4128
4129 /* cleanup watchers should never keep a refcount on the loop */
4130 ev_unref (EV_A);
4131 EV_FREQUENT_CHECK;
4132}
4133
4134void
4135ev_cleanup_stop (EV_P_ ev_cleanup *w)
4136{
4137 clear_pending (EV_A_ (W)w);
4138 if (expect_false (!ev_is_active (w)))
4139 return;
4140
4141 EV_FREQUENT_CHECK;
4142 ev_ref (EV_A);
4143
4144 {
4145 int active = ev_active (w);
4146
4147 cleanups [active - 1] = cleanups [--cleanupcnt];
4148 ev_active (cleanups [active - 1]) = active;
4149 }
4150
4151 ev_stop (EV_A_ (W)w);
4152
4153 EV_FREQUENT_CHECK;
4154}
4155#endif
4156
4157#if EV_ASYNC_ENABLE
4158void
4159ev_async_start (EV_P_ ev_async *w)
4160{
4161 if (expect_false (ev_is_active (w)))
4162 return;
4163
4164 w->sent = 0;
4165
4166 evpipe_init (EV_A);
4167
4168 EV_FREQUENT_CHECK;
4169
4170 ev_start (EV_A_ (W)w, ++asynccnt);
4171 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4172 asyncs [asynccnt - 1] = w;
4173
4174 EV_FREQUENT_CHECK;
4175}
4176
4177void
4178ev_async_stop (EV_P_ ev_async *w)
4179{
4180 clear_pending (EV_A_ (W)w);
4181 if (expect_false (!ev_is_active (w)))
4182 return;
4183
4184 EV_FREQUENT_CHECK;
4185
4186 {
4187 int active = ev_active (w);
4188
4189 asyncs [active - 1] = asyncs [--asynccnt];
4190 ev_active (asyncs [active - 1]) = active;
4191 }
4192
4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
4196}
4197
4198void
4199ev_async_send (EV_P_ ev_async *w)
4200{
4201 w->sent = 1;
4202 evpipe_write (EV_A_ &async_pending);
4203}
4204#endif
1620 4205
1621/*****************************************************************************/ 4206/*****************************************************************************/
1622 4207
1623struct ev_once 4208struct ev_once
1624{ 4209{
1625 struct ev_io io; 4210 ev_io io;
1626 struct ev_timer to; 4211 ev_timer to;
1627 void (*cb)(int revents, void *arg); 4212 void (*cb)(int revents, void *arg);
1628 void *arg; 4213 void *arg;
1629}; 4214};
1630 4215
1631static void 4216static void
1632once_cb (EV_P_ struct ev_once *once, int revents) 4217once_cb (EV_P_ struct ev_once *once, int revents)
1633{ 4218{
1634 void (*cb)(int revents, void *arg) = once->cb; 4219 void (*cb)(int revents, void *arg) = once->cb;
1635 void *arg = once->arg; 4220 void *arg = once->arg;
1636 4221
1637 ev_io_stop (EV_A_ &once->io); 4222 ev_io_stop (EV_A_ &once->io);
1638 ev_timer_stop (EV_A_ &once->to); 4223 ev_timer_stop (EV_A_ &once->to);
1639 ev_free (once); 4224 ev_free (once);
1640 4225
1641 cb (revents, arg); 4226 cb (revents, arg);
1642} 4227}
1643 4228
1644static void 4229static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 4230once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 4231{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4232 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4233
4234 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1648} 4235}
1649 4236
1650static void 4237static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 4238once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 4239{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4240 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4241
4242 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1654} 4243}
1655 4244
1656void 4245void
1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4246ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1658{ 4247{
1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4248 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1660 4249
1661 if (expect_false (!once)) 4250 if (expect_false (!once))
1662 { 4251 {
1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4252 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1664 return; 4253 return;
1665 } 4254 }
1666 4255
1667 once->cb = cb; 4256 once->cb = cb;
1668 once->arg = arg; 4257 once->arg = arg;
1680 ev_timer_set (&once->to, timeout, 0.); 4269 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 4270 ev_timer_start (EV_A_ &once->to);
1682 } 4271 }
1683} 4272}
1684 4273
1685#ifdef __cplusplus 4274/*****************************************************************************/
1686} 4275
4276#if EV_WALK_ENABLE
4277void ecb_cold
4278ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4279{
4280 int i, j;
4281 ev_watcher_list *wl, *wn;
4282
4283 if (types & (EV_IO | EV_EMBED))
4284 for (i = 0; i < anfdmax; ++i)
4285 for (wl = anfds [i].head; wl; )
4286 {
4287 wn = wl->next;
4288
4289#if EV_EMBED_ENABLE
4290 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4291 {
4292 if (types & EV_EMBED)
4293 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4294 }
4295 else
4296#endif
4297#if EV_USE_INOTIFY
4298 if (ev_cb ((ev_io *)wl) == infy_cb)
4299 ;
4300 else
4301#endif
4302 if ((ev_io *)wl != &pipe_w)
4303 if (types & EV_IO)
4304 cb (EV_A_ EV_IO, wl);
4305
4306 wl = wn;
4307 }
4308
4309 if (types & (EV_TIMER | EV_STAT))
4310 for (i = timercnt + HEAP0; i-- > HEAP0; )
4311#if EV_STAT_ENABLE
4312 /*TODO: timer is not always active*/
4313 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4314 {
4315 if (types & EV_STAT)
4316 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4317 }
4318 else
4319#endif
4320 if (types & EV_TIMER)
4321 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4322
4323#if EV_PERIODIC_ENABLE
4324 if (types & EV_PERIODIC)
4325 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4326 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4327#endif
4328
4329#if EV_IDLE_ENABLE
4330 if (types & EV_IDLE)
4331 for (j = NUMPRI; j--; )
4332 for (i = idlecnt [j]; i--; )
4333 cb (EV_A_ EV_IDLE, idles [j][i]);
4334#endif
4335
4336#if EV_FORK_ENABLE
4337 if (types & EV_FORK)
4338 for (i = forkcnt; i--; )
4339 if (ev_cb (forks [i]) != embed_fork_cb)
4340 cb (EV_A_ EV_FORK, forks [i]);
4341#endif
4342
4343#if EV_ASYNC_ENABLE
4344 if (types & EV_ASYNC)
4345 for (i = asynccnt; i--; )
4346 cb (EV_A_ EV_ASYNC, asyncs [i]);
4347#endif
4348
4349#if EV_PREPARE_ENABLE
4350 if (types & EV_PREPARE)
4351 for (i = preparecnt; i--; )
4352# if EV_EMBED_ENABLE
4353 if (ev_cb (prepares [i]) != embed_prepare_cb)
1687#endif 4354# endif
4355 cb (EV_A_ EV_PREPARE, prepares [i]);
4356#endif
1688 4357
4358#if EV_CHECK_ENABLE
4359 if (types & EV_CHECK)
4360 for (i = checkcnt; i--; )
4361 cb (EV_A_ EV_CHECK, checks [i]);
4362#endif
4363
4364#if EV_SIGNAL_ENABLE
4365 if (types & EV_SIGNAL)
4366 for (i = 0; i < EV_NSIG - 1; ++i)
4367 for (wl = signals [i].head; wl; )
4368 {
4369 wn = wl->next;
4370 cb (EV_A_ EV_SIGNAL, wl);
4371 wl = wn;
4372 }
4373#endif
4374
4375#if EV_CHILD_ENABLE
4376 if (types & EV_CHILD)
4377 for (i = (EV_PID_HASHSIZE); i--; )
4378 for (wl = childs [i]; wl; )
4379 {
4380 wn = wl->next;
4381 cb (EV_A_ EV_CHILD, wl);
4382 wl = wn;
4383 }
4384#endif
4385/* EV_STAT 0x00001000 /* stat data changed */
4386/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4387}
4388#endif
4389
4390#if EV_MULTIPLICITY
4391 #include "ev_wrap.h"
4392#endif
4393
4394EV_CPP(})
4395

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines