ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.174 by root, Tue Dec 11 03:18:33 2007 UTC vs.
Revision 1.398 by root, Sun Sep 25 21:27:35 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
127#endif 186#endif
187
188EV_CPP(extern "C" {)
128 189
129#ifndef _WIN32 190#ifndef _WIN32
130# include <sys/time.h> 191# include <sys/time.h>
131# include <sys/wait.h> 192# include <sys/wait.h>
132# include <unistd.h> 193# include <unistd.h>
133#else 194#else
195# include <io.h>
134# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 197# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
138# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
139#endif 251# endif
140 252#endif
141/**/
142 253
143#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
144# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
145#endif 260#endif
146 261
147#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
149#endif 272#endif
150 273
151#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 276#endif
154 277
155#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
156# ifdef _WIN32 279# ifdef _WIN32
157# define EV_USE_POLL 0 280# define EV_USE_POLL 0
158# else 281# else
159# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 283# endif
161#endif 284#endif
162 285
163#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
164# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
165#endif 292#endif
166 293
167#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
169#endif 296#endif
171#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 299# define EV_USE_PORT 0
173#endif 300#endif
174 301
175#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
176# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
307# endif
177#endif 308#endif
178 309
179#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 321# else
183# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
184# endif 323# endif
185#endif 324#endif
186 325
187#ifndef EV_INOTIFY_HASHSIZE 326#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 328# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 329# else
191# define EV_INOTIFY_HASHSIZE 16 330# define EV_USE_SIGNALFD 0
192# endif 331# endif
193#endif 332#endif
194 333
195/**/ 334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
196 373
197#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
200#endif 377#endif
202#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
205#endif 382#endif
206 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
207#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 407# include <winsock.h>
209#endif 408#endif
210 409
211#if !EV_STAT_ENABLE 410#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
213#endif 415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
214 425
215#if EV_USE_INOTIFY 426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
217#endif 446#endif
218 447
219/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 462
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 510 #if __GNUC__
226# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
227# define noinline __attribute__ ((noinline)) 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
228#else 517#else
229# define expect(expr,value) (expr) 518 #include <inttypes.h>
230# define noinline
231# if __STDC_VERSION__ < 199901L
232# define inline
233# endif 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
234#endif 533 #endif
534#endif
235 535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543#endif
544
545#ifndef ECB_MEMORY_FENCE
546 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__)
547 #if __i386__
548 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 #elif __amd64
552 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 #endif
564 #endif
565#endif
566
567#ifndef ECB_MEMORY_FENCE
568 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
569 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 #elif defined(_WIN32)
578 #include <WinNT.h>
579 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 #endif
581#endif
582
583#ifndef ECB_MEMORY_FENCE
584 #if !ECB_AVOID_PTHREADS
585 /*
586 * if you get undefined symbol references to pthread_mutex_lock,
587 * or failure to find pthread.h, then you should implement
588 * the ECB_MEMORY_FENCE operations for your cpu/compiler
589 * OR provide pthread.h and link against the posix thread library
590 * of your system.
591 */
592 #include <pthread.h>
593 #define ECB_NEEDS_PTHREADS 1
594 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595
596 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598 #endif
599#endif
600
601#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603#endif
604
605#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607#endif
608
609/*****************************************************************************/
610
611#define ECB_C99 (__STDC_VERSION__ >= 199901L)
612
613#if __cplusplus
614 #define ecb_inline static inline
615#elif ECB_GCC_VERSION(2,5)
616 #define ecb_inline static __inline__
617#elif ECB_C99
618 #define ecb_inline static inline
619#else
620 #define ecb_inline static
621#endif
622
623#if ECB_GCC_VERSION(3,3)
624 #define ecb_restrict __restrict__
625#elif ECB_C99
626 #define ecb_restrict restrict
627#else
628 #define ecb_restrict
629#endif
630
631typedef int ecb_bool;
632
633#define ECB_CONCAT_(a, b) a ## b
634#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635#define ECB_STRINGIFY_(a) # a
636#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637
638#define ecb_function_ ecb_inline
639
640#if ECB_GCC_VERSION(3,1)
641 #define ecb_attribute(attrlist) __attribute__(attrlist)
642 #define ecb_is_constant(expr) __builtin_constant_p (expr)
643 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645#else
646 #define ecb_attribute(attrlist)
647 #define ecb_is_constant(expr) 0
648 #define ecb_expect(expr,value) (expr)
649 #define ecb_prefetch(addr,rw,locality)
650#endif
651
652/* no emulation for ecb_decltype */
653#if ECB_GCC_VERSION(4,5)
654 #define ecb_decltype(x) __decltype(x)
655#elif ECB_GCC_VERSION(3,0)
656 #define ecb_decltype(x) __typeof(x)
657#endif
658
659#define ecb_noinline ecb_attribute ((__noinline__))
660#define ecb_noreturn ecb_attribute ((__noreturn__))
661#define ecb_unused ecb_attribute ((__unused__))
662#define ecb_const ecb_attribute ((__const__))
663#define ecb_pure ecb_attribute ((__pure__))
664
665#if ECB_GCC_VERSION(4,3)
666 #define ecb_artificial ecb_attribute ((__artificial__))
667 #define ecb_hot ecb_attribute ((__hot__))
668 #define ecb_cold ecb_attribute ((__cold__))
669#else
670 #define ecb_artificial
671 #define ecb_hot
672 #define ecb_cold
673#endif
674
675/* put around conditional expressions if you are very sure that the */
676/* expression is mostly true or mostly false. note that these return */
677/* booleans, not the expression. */
236#define expect_false(expr) expect ((expr) != 0, 0) 678#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 679#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680/* for compatibility to the rest of the world */
681#define ecb_likely(expr) ecb_expect_true (expr)
682#define ecb_unlikely(expr) ecb_expect_false (expr)
683
684/* count trailing zero bits and count # of one bits */
685#if ECB_GCC_VERSION(3,4)
686 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689 #define ecb_ctz32(x) __builtin_ctz (x)
690 #define ecb_ctz64(x) __builtin_ctzll (x)
691 #define ecb_popcount32(x) __builtin_popcount (x)
692 /* no popcountll */
693#else
694 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695 ecb_function_ int
696 ecb_ctz32 (uint32_t x)
697 {
698 int r = 0;
699
700 x &= ~x + 1; /* this isolates the lowest bit */
701
702#if ECB_branchless_on_i386
703 r += !!(x & 0xaaaaaaaa) << 0;
704 r += !!(x & 0xcccccccc) << 1;
705 r += !!(x & 0xf0f0f0f0) << 2;
706 r += !!(x & 0xff00ff00) << 3;
707 r += !!(x & 0xffff0000) << 4;
708#else
709 if (x & 0xaaaaaaaa) r += 1;
710 if (x & 0xcccccccc) r += 2;
711 if (x & 0xf0f0f0f0) r += 4;
712 if (x & 0xff00ff00) r += 8;
713 if (x & 0xffff0000) r += 16;
714#endif
715
716 return r;
717 }
718
719 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720 ecb_function_ int
721 ecb_ctz64 (uint64_t x)
722 {
723 int shift = x & 0xffffffffU ? 0 : 32;
724 return ecb_ctz32 (x >> shift) + shift;
725 }
726
727 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728 ecb_function_ int
729 ecb_popcount32 (uint32_t x)
730 {
731 x -= (x >> 1) & 0x55555555;
732 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733 x = ((x >> 4) + x) & 0x0f0f0f0f;
734 x *= 0x01010101;
735
736 return x >> 24;
737 }
738
739 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740 ecb_function_ int ecb_ld32 (uint32_t x)
741 {
742 int r = 0;
743
744 if (x >> 16) { x >>= 16; r += 16; }
745 if (x >> 8) { x >>= 8; r += 8; }
746 if (x >> 4) { x >>= 4; r += 4; }
747 if (x >> 2) { x >>= 2; r += 2; }
748 if (x >> 1) { r += 1; }
749
750 return r;
751 }
752
753 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754 ecb_function_ int ecb_ld64 (uint64_t x)
755 {
756 int r = 0;
757
758 if (x >> 32) { x >>= 32; r += 32; }
759
760 return r + ecb_ld32 (x);
761 }
762#endif
763
764/* popcount64 is only available on 64 bit cpus as gcc builtin */
765/* so for this version we are lazy */
766ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767ecb_function_ int
768ecb_popcount64 (uint64_t x)
769{
770 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771}
772
773ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781
782ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790
791#if ECB_GCC_VERSION(4,3)
792 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793 #define ecb_bswap32(x) __builtin_bswap32 (x)
794 #define ecb_bswap64(x) __builtin_bswap64 (x)
795#else
796 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797 ecb_function_ uint16_t
798 ecb_bswap16 (uint16_t x)
799 {
800 return ecb_rotl16 (x, 8);
801 }
802
803 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804 ecb_function_ uint32_t
805 ecb_bswap32 (uint32_t x)
806 {
807 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808 }
809
810 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811 ecb_function_ uint64_t
812 ecb_bswap64 (uint64_t x)
813 {
814 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815 }
816#endif
817
818#if ECB_GCC_VERSION(4,5)
819 #define ecb_unreachable() __builtin_unreachable ()
820#else
821 /* this seems to work fine, but gcc always emits a warning for it :/ */
822 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823 ecb_function_ void ecb_unreachable (void) { }
824#endif
825
826/* try to tell the compiler that some condition is definitely true */
827#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828
829ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830ecb_function_ unsigned char
831ecb_byteorder_helper (void)
832{
833 const uint32_t u = 0x11223344;
834 return *(unsigned char *)&u;
835}
836
837ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841
842#if ECB_GCC_VERSION(3,0) || ECB_C99
843 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844#else
845 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846#endif
847
848#if __cplusplus
849 template<typename T>
850 static inline T ecb_div_rd (T val, T div)
851 {
852 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
853 }
854 template<typename T>
855 static inline T ecb_div_ru (T val, T div)
856 {
857 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
858 }
859#else
860 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
861 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
862#endif
863
864#if ecb_cplusplus_does_not_suck
865 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
866 template<typename T, int N>
867 static inline int ecb_array_length (const T (&arr)[N])
868 {
869 return N;
870 }
871#else
872 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
873#endif
874
875#endif
876
877/* ECB.H END */
878
879#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
880/* if your architecture doesn't need memory fences, e.g. because it is
881 * single-cpu/core, or if you use libev in a project that doesn't use libev
882 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
883 * libev, in which casess the memory fences become nops.
884 * alternatively, you can remove this #error and link against libpthread,
885 * which will then provide the memory fences.
886 */
887# error "memory fences not defined for your architecture, please report"
888#endif
889
890#ifndef ECB_MEMORY_FENCE
891# define ECB_MEMORY_FENCE do { } while (0)
892# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
893# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
894#endif
895
896#define expect_false(cond) ecb_expect_false (cond)
897#define expect_true(cond) ecb_expect_true (cond)
898#define noinline ecb_noinline
899
238#define inline_size static inline 900#define inline_size ecb_inline
239 901
240#if EV_MINIMAL 902#if EV_FEATURE_CODE
903# define inline_speed ecb_inline
904#else
241# define inline_speed static noinline 905# define inline_speed static noinline
906#endif
907
908#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
909
910#if EV_MINPRI == EV_MAXPRI
911# define ABSPRI(w) (((W)w), 0)
242#else 912#else
243# define inline_speed static inline
244#endif
245
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 913# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
914#endif
248 915
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 916#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 917#define EMPTY2(a,b) /* used to suppress some warnings */
251 918
252typedef ev_watcher *W; 919typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 920typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 921typedef ev_watcher_time *WT;
255 922
923#define ev_active(w) ((W)(w))->active
924#define ev_at(w) ((WT)(w))->at
925
926#if EV_USE_REALTIME
927/* sig_atomic_t is used to avoid per-thread variables or locking but still */
928/* giving it a reasonably high chance of working on typical architectures */
929static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
930#endif
931
932#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 933static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
934#endif
935
936#ifndef EV_FD_TO_WIN32_HANDLE
937# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
938#endif
939#ifndef EV_WIN32_HANDLE_TO_FD
940# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
941#endif
942#ifndef EV_WIN32_CLOSE_FD
943# define EV_WIN32_CLOSE_FD(fd) close (fd)
944#endif
257 945
258#ifdef _WIN32 946#ifdef _WIN32
259# include "ev_win32.c" 947# include "ev_win32.c"
260#endif 948#endif
261 949
262/*****************************************************************************/ 950/*****************************************************************************/
263 951
952/* define a suitable floor function (only used by periodics atm) */
953
954#if EV_USE_FLOOR
955# include <math.h>
956# define ev_floor(v) floor (v)
957#else
958
959#include <float.h>
960
961/* a floor() replacement function, should be independent of ev_tstamp type */
962static ev_tstamp noinline
963ev_floor (ev_tstamp v)
964{
965 /* the choice of shift factor is not terribly important */
966#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
967 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
968#else
969 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
970#endif
971
972 /* argument too large for an unsigned long? */
973 if (expect_false (v >= shift))
974 {
975 ev_tstamp f;
976
977 if (v == v - 1.)
978 return v; /* very large number */
979
980 f = shift * ev_floor (v * (1. / shift));
981 return f + ev_floor (v - f);
982 }
983
984 /* special treatment for negative args? */
985 if (expect_false (v < 0.))
986 {
987 ev_tstamp f = -ev_floor (-v);
988
989 return f - (f == v ? 0 : 1);
990 }
991
992 /* fits into an unsigned long */
993 return (unsigned long)v;
994}
995
996#endif
997
998/*****************************************************************************/
999
1000#ifdef __linux
1001# include <sys/utsname.h>
1002#endif
1003
1004static unsigned int noinline ecb_cold
1005ev_linux_version (void)
1006{
1007#ifdef __linux
1008 unsigned int v = 0;
1009 struct utsname buf;
1010 int i;
1011 char *p = buf.release;
1012
1013 if (uname (&buf))
1014 return 0;
1015
1016 for (i = 3+1; --i; )
1017 {
1018 unsigned int c = 0;
1019
1020 for (;;)
1021 {
1022 if (*p >= '0' && *p <= '9')
1023 c = c * 10 + *p++ - '0';
1024 else
1025 {
1026 p += *p == '.';
1027 break;
1028 }
1029 }
1030
1031 v = (v << 8) | c;
1032 }
1033
1034 return v;
1035#else
1036 return 0;
1037#endif
1038}
1039
1040/*****************************************************************************/
1041
1042#if EV_AVOID_STDIO
1043static void noinline ecb_cold
1044ev_printerr (const char *msg)
1045{
1046 write (STDERR_FILENO, msg, strlen (msg));
1047}
1048#endif
1049
264static void (*syserr_cb)(const char *msg); 1050static void (*syserr_cb)(const char *msg);
265 1051
266void 1052void ecb_cold
267ev_set_syserr_cb (void (*cb)(const char *msg)) 1053ev_set_syserr_cb (void (*cb)(const char *msg))
268{ 1054{
269 syserr_cb = cb; 1055 syserr_cb = cb;
270} 1056}
271 1057
272static void noinline 1058static void noinline ecb_cold
273syserr (const char *msg) 1059ev_syserr (const char *msg)
274{ 1060{
275 if (!msg) 1061 if (!msg)
276 msg = "(libev) system error"; 1062 msg = "(libev) system error";
277 1063
278 if (syserr_cb) 1064 if (syserr_cb)
279 syserr_cb (msg); 1065 syserr_cb (msg);
280 else 1066 else
281 { 1067 {
1068#if EV_AVOID_STDIO
1069 ev_printerr (msg);
1070 ev_printerr (": ");
1071 ev_printerr (strerror (errno));
1072 ev_printerr ("\n");
1073#else
282 perror (msg); 1074 perror (msg);
1075#endif
283 abort (); 1076 abort ();
284 } 1077 }
285} 1078}
286 1079
1080static void *
1081ev_realloc_emul (void *ptr, long size)
1082{
1083#if __GLIBC__
1084 return realloc (ptr, size);
1085#else
1086 /* some systems, notably openbsd and darwin, fail to properly
1087 * implement realloc (x, 0) (as required by both ansi c-89 and
1088 * the single unix specification, so work around them here.
1089 */
1090
1091 if (size)
1092 return realloc (ptr, size);
1093
1094 free (ptr);
1095 return 0;
1096#endif
1097}
1098
287static void *(*alloc)(void *ptr, long size); 1099static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 1100
289void 1101void ecb_cold
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 1102ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 1103{
292 alloc = cb; 1104 alloc = cb;
293} 1105}
294 1106
295inline_speed void * 1107inline_speed void *
296ev_realloc (void *ptr, long size) 1108ev_realloc (void *ptr, long size)
297{ 1109{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1110 ptr = alloc (ptr, size);
299 1111
300 if (!ptr && size) 1112 if (!ptr && size)
301 { 1113 {
1114#if EV_AVOID_STDIO
1115 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1116#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1117 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1118#endif
303 abort (); 1119 abort ();
304 } 1120 }
305 1121
306 return ptr; 1122 return ptr;
307} 1123}
309#define ev_malloc(size) ev_realloc (0, (size)) 1125#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 1126#define ev_free(ptr) ev_realloc ((ptr), 0)
311 1127
312/*****************************************************************************/ 1128/*****************************************************************************/
313 1129
1130/* set in reify when reification needed */
1131#define EV_ANFD_REIFY 1
1132
1133/* file descriptor info structure */
314typedef struct 1134typedef struct
315{ 1135{
316 WL head; 1136 WL head;
317 unsigned char events; 1137 unsigned char events; /* the events watched for */
1138 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1139 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 1140 unsigned char unused;
1141#if EV_USE_EPOLL
1142 unsigned int egen; /* generation counter to counter epoll bugs */
1143#endif
319#if EV_SELECT_IS_WINSOCKET 1144#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
320 SOCKET handle; 1145 SOCKET handle;
321#endif 1146#endif
1147#if EV_USE_IOCP
1148 OVERLAPPED or, ow;
1149#endif
322} ANFD; 1150} ANFD;
323 1151
1152/* stores the pending event set for a given watcher */
324typedef struct 1153typedef struct
325{ 1154{
326 W w; 1155 W w;
327 int events; 1156 int events; /* the pending event set for the given watcher */
328} ANPENDING; 1157} ANPENDING;
329 1158
330#if EV_USE_INOTIFY 1159#if EV_USE_INOTIFY
1160/* hash table entry per inotify-id */
331typedef struct 1161typedef struct
332{ 1162{
333 WL head; 1163 WL head;
334} ANFS; 1164} ANFS;
1165#endif
1166
1167/* Heap Entry */
1168#if EV_HEAP_CACHE_AT
1169 /* a heap element */
1170 typedef struct {
1171 ev_tstamp at;
1172 WT w;
1173 } ANHE;
1174
1175 #define ANHE_w(he) (he).w /* access watcher, read-write */
1176 #define ANHE_at(he) (he).at /* access cached at, read-only */
1177 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1178#else
1179 /* a heap element */
1180 typedef WT ANHE;
1181
1182 #define ANHE_w(he) (he)
1183 #define ANHE_at(he) (he)->at
1184 #define ANHE_at_cache(he)
335#endif 1185#endif
336 1186
337#if EV_MULTIPLICITY 1187#if EV_MULTIPLICITY
338 1188
339 struct ev_loop 1189 struct ev_loop
358 1208
359 static int ev_default_loop_ptr; 1209 static int ev_default_loop_ptr;
360 1210
361#endif 1211#endif
362 1212
1213#if EV_FEATURE_API
1214# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1215# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1216# define EV_INVOKE_PENDING invoke_cb (EV_A)
1217#else
1218# define EV_RELEASE_CB (void)0
1219# define EV_ACQUIRE_CB (void)0
1220# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1221#endif
1222
1223#define EVBREAK_RECURSE 0x80
1224
363/*****************************************************************************/ 1225/*****************************************************************************/
364 1226
1227#ifndef EV_HAVE_EV_TIME
365ev_tstamp 1228ev_tstamp
366ev_time (void) 1229ev_time (void)
367{ 1230{
368#if EV_USE_REALTIME 1231#if EV_USE_REALTIME
1232 if (expect_true (have_realtime))
1233 {
369 struct timespec ts; 1234 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 1235 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 1236 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 1237 }
1238#endif
1239
373 struct timeval tv; 1240 struct timeval tv;
374 gettimeofday (&tv, 0); 1241 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 1242 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 1243}
1244#endif
378 1245
379ev_tstamp inline_size 1246inline_size ev_tstamp
380get_clock (void) 1247get_clock (void)
381{ 1248{
382#if EV_USE_MONOTONIC 1249#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 1250 if (expect_true (have_monotonic))
384 { 1251 {
397{ 1264{
398 return ev_rt_now; 1265 return ev_rt_now;
399} 1266}
400#endif 1267#endif
401 1268
402int inline_size 1269void
1270ev_sleep (ev_tstamp delay)
1271{
1272 if (delay > 0.)
1273 {
1274#if EV_USE_NANOSLEEP
1275 struct timespec ts;
1276
1277 EV_TS_SET (ts, delay);
1278 nanosleep (&ts, 0);
1279#elif defined(_WIN32)
1280 Sleep ((unsigned long)(delay * 1e3));
1281#else
1282 struct timeval tv;
1283
1284 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1285 /* something not guaranteed by newer posix versions, but guaranteed */
1286 /* by older ones */
1287 EV_TV_SET (tv, delay);
1288 select (0, 0, 0, 0, &tv);
1289#endif
1290 }
1291}
1292
1293/*****************************************************************************/
1294
1295#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1296
1297/* find a suitable new size for the given array, */
1298/* hopefully by rounding to a nice-to-malloc size */
1299inline_size int
403array_nextsize (int elem, int cur, int cnt) 1300array_nextsize (int elem, int cur, int cnt)
404{ 1301{
405 int ncur = cur + 1; 1302 int ncur = cur + 1;
406 1303
407 do 1304 do
408 ncur <<= 1; 1305 ncur <<= 1;
409 while (cnt > ncur); 1306 while (cnt > ncur);
410 1307
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1308 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 1309 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 1310 {
414 ncur *= elem; 1311 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1312 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 1313 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 1314 ncur /= elem;
418 } 1315 }
419 1316
420 return ncur; 1317 return ncur;
421} 1318}
422 1319
423static noinline void * 1320static void * noinline ecb_cold
424array_realloc (int elem, void *base, int *cur, int cnt) 1321array_realloc (int elem, void *base, int *cur, int cnt)
425{ 1322{
426 *cur = array_nextsize (elem, *cur, cnt); 1323 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 1324 return ev_realloc (base, elem * *cur);
428} 1325}
1326
1327#define array_init_zero(base,count) \
1328 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 1329
430#define array_needsize(type,base,cur,cnt,init) \ 1330#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 1331 if (expect_false ((cnt) > (cur))) \
432 { \ 1332 { \
433 int ocur_ = (cur); \ 1333 int ecb_unused ocur_ = (cur); \
434 (base) = (type *)array_realloc \ 1334 (base) = (type *)array_realloc \
435 (sizeof (type), (base), &(cur), (cnt)); \ 1335 (sizeof (type), (base), &(cur), (cnt)); \
436 init ((base) + (ocur_), (cur) - ocur_); \ 1336 init ((base) + (ocur_), (cur) - ocur_); \
437 } 1337 }
438 1338
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 1346 }
447#endif 1347#endif
448 1348
449#define array_free(stem, idx) \ 1349#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 1351
452/*****************************************************************************/ 1352/*****************************************************************************/
1353
1354/* dummy callback for pending events */
1355static void noinline
1356pendingcb (EV_P_ ev_prepare *w, int revents)
1357{
1358}
453 1359
454void noinline 1360void noinline
455ev_feed_event (EV_P_ void *w, int revents) 1361ev_feed_event (EV_P_ void *w, int revents)
456{ 1362{
457 W w_ = (W)w; 1363 W w_ = (W)w;
466 pendings [pri][w_->pending - 1].w = w_; 1372 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 1373 pendings [pri][w_->pending - 1].events = revents;
468 } 1374 }
469} 1375}
470 1376
471void inline_size 1377inline_speed void
1378feed_reverse (EV_P_ W w)
1379{
1380 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1381 rfeeds [rfeedcnt++] = w;
1382}
1383
1384inline_size void
1385feed_reverse_done (EV_P_ int revents)
1386{
1387 do
1388 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1389 while (rfeedcnt);
1390}
1391
1392inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 1393queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 1394{
474 int i; 1395 int i;
475 1396
476 for (i = 0; i < eventcnt; ++i) 1397 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 1398 ev_feed_event (EV_A_ events [i], type);
478} 1399}
479 1400
480/*****************************************************************************/ 1401/*****************************************************************************/
481 1402
482void inline_size 1403inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 1404fd_event_nocheck (EV_P_ int fd, int revents)
497{ 1405{
498 ANFD *anfd = anfds + fd; 1406 ANFD *anfd = anfds + fd;
499 ev_io *w; 1407 ev_io *w;
500 1408
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1409 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 1413 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 1414 ev_feed_event (EV_A_ (W)w, ev);
507 } 1415 }
508} 1416}
509 1417
1418/* do not submit kernel events for fds that have reify set */
1419/* because that means they changed while we were polling for new events */
1420inline_speed void
1421fd_event (EV_P_ int fd, int revents)
1422{
1423 ANFD *anfd = anfds + fd;
1424
1425 if (expect_true (!anfd->reify))
1426 fd_event_nocheck (EV_A_ fd, revents);
1427}
1428
510void 1429void
511ev_feed_fd_event (EV_P_ int fd, int revents) 1430ev_feed_fd_event (EV_P_ int fd, int revents)
512{ 1431{
513 if (fd >= 0 && fd < anfdmax) 1432 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 1433 fd_event_nocheck (EV_A_ fd, revents);
515} 1434}
516 1435
517void inline_size 1436/* make sure the external fd watch events are in-sync */
1437/* with the kernel/libev internal state */
1438inline_size void
518fd_reify (EV_P) 1439fd_reify (EV_P)
519{ 1440{
520 int i; 1441 int i;
1442
1443#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1444 for (i = 0; i < fdchangecnt; ++i)
1445 {
1446 int fd = fdchanges [i];
1447 ANFD *anfd = anfds + fd;
1448
1449 if (anfd->reify & EV__IOFDSET && anfd->head)
1450 {
1451 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1452
1453 if (handle != anfd->handle)
1454 {
1455 unsigned long arg;
1456
1457 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1458
1459 /* handle changed, but fd didn't - we need to do it in two steps */
1460 backend_modify (EV_A_ fd, anfd->events, 0);
1461 anfd->events = 0;
1462 anfd->handle = handle;
1463 }
1464 }
1465 }
1466#endif
521 1467
522 for (i = 0; i < fdchangecnt; ++i) 1468 for (i = 0; i < fdchangecnt; ++i)
523 { 1469 {
524 int fd = fdchanges [i]; 1470 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 1471 ANFD *anfd = anfds + fd;
526 ev_io *w; 1472 ev_io *w;
527 1473
528 int events = 0; 1474 unsigned char o_events = anfd->events;
1475 unsigned char o_reify = anfd->reify;
529 1476
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1477 anfd->reify = 0;
531 events |= w->events;
532 1478
533#if EV_SELECT_IS_WINSOCKET 1479 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
534 if (events)
535 { 1480 {
536 unsigned long argp; 1481 anfd->events = 0;
537 anfd->handle = _get_osfhandle (fd); 1482
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1483 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1484 anfd->events |= (unsigned char)w->events;
1485
1486 if (o_events != anfd->events)
1487 o_reify = EV__IOFDSET; /* actually |= */
539 } 1488 }
540#endif
541 1489
542 anfd->reify = 0; 1490 if (o_reify & EV__IOFDSET)
543
544 backend_modify (EV_A_ fd, anfd->events, events); 1491 backend_modify (EV_A_ fd, o_events, anfd->events);
545 anfd->events = events;
546 } 1492 }
547 1493
548 fdchangecnt = 0; 1494 fdchangecnt = 0;
549} 1495}
550 1496
551void inline_size 1497/* something about the given fd changed */
1498inline_size void
552fd_change (EV_P_ int fd) 1499fd_change (EV_P_ int fd, int flags)
553{ 1500{
554 if (expect_false (anfds [fd].reify)) 1501 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 1502 anfds [fd].reify |= flags;
558 1503
1504 if (expect_true (!reify))
1505 {
559 ++fdchangecnt; 1506 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1507 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 1508 fdchanges [fdchangecnt - 1] = fd;
1509 }
562} 1510}
563 1511
564void inline_speed 1512/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1513inline_speed void ecb_cold
565fd_kill (EV_P_ int fd) 1514fd_kill (EV_P_ int fd)
566{ 1515{
567 ev_io *w; 1516 ev_io *w;
568 1517
569 while ((w = (ev_io *)anfds [fd].head)) 1518 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 1520 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1521 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 1522 }
574} 1523}
575 1524
576int inline_size 1525/* check whether the given fd is actually valid, for error recovery */
1526inline_size int ecb_cold
577fd_valid (int fd) 1527fd_valid (int fd)
578{ 1528{
579#ifdef _WIN32 1529#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1530 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1531#else
582 return fcntl (fd, F_GETFD) != -1; 1532 return fcntl (fd, F_GETFD) != -1;
583#endif 1533#endif
584} 1534}
585 1535
586/* called on EBADF to verify fds */ 1536/* called on EBADF to verify fds */
587static void noinline 1537static void noinline ecb_cold
588fd_ebadf (EV_P) 1538fd_ebadf (EV_P)
589{ 1539{
590 int fd; 1540 int fd;
591 1541
592 for (fd = 0; fd < anfdmax; ++fd) 1542 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1543 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1544 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1545 fd_kill (EV_A_ fd);
596} 1546}
597 1547
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1548/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1549static void noinline ecb_cold
600fd_enomem (EV_P) 1550fd_enomem (EV_P)
601{ 1551{
602 int fd; 1552 int fd;
603 1553
604 for (fd = anfdmax; fd--; ) 1554 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1555 if (anfds [fd].events)
606 { 1556 {
607 fd_kill (EV_A_ fd); 1557 fd_kill (EV_A_ fd);
608 return; 1558 break;
609 } 1559 }
610} 1560}
611 1561
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1562/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1563static void noinline
617 1567
618 for (fd = 0; fd < anfdmax; ++fd) 1568 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1569 if (anfds [fd].events)
620 { 1570 {
621 anfds [fd].events = 0; 1571 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1572 anfds [fd].emask = 0;
1573 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1574 }
624} 1575}
625 1576
626/*****************************************************************************/ 1577/* used to prepare libev internal fd's */
627 1578/* this is not fork-safe */
628void inline_speed 1579inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_speed
755fd_intern (int fd) 1580fd_intern (int fd)
756{ 1581{
757#ifdef _WIN32 1582#ifdef _WIN32
758 int arg = 1; 1583 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1584 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1585#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1586 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1587 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1588#endif
764} 1589}
765 1590
766static void noinline
767siginit (EV_P)
768{
769 fd_intern (sigpipe [0]);
770 fd_intern (sigpipe [1]);
771
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */
775}
776
777/*****************************************************************************/ 1591/*****************************************************************************/
778 1592
779static ev_child *childs [EV_PID_HASHSIZE]; 1593/*
1594 * the heap functions want a real array index. array index 0 is guaranteed to not
1595 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1596 * the branching factor of the d-tree.
1597 */
780 1598
1599/*
1600 * at the moment we allow libev the luxury of two heaps,
1601 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1602 * which is more cache-efficient.
1603 * the difference is about 5% with 50000+ watchers.
1604 */
1605#if EV_USE_4HEAP
1606
1607#define DHEAP 4
1608#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1609#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1610#define UPHEAP_DONE(p,k) ((p) == (k))
1611
1612/* away from the root */
1613inline_speed void
1614downheap (ANHE *heap, int N, int k)
1615{
1616 ANHE he = heap [k];
1617 ANHE *E = heap + N + HEAP0;
1618
1619 for (;;)
1620 {
1621 ev_tstamp minat;
1622 ANHE *minpos;
1623 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1624
1625 /* find minimum child */
1626 if (expect_true (pos + DHEAP - 1 < E))
1627 {
1628 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1629 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1630 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1631 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1632 }
1633 else if (pos < E)
1634 {
1635 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1636 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1637 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1638 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1639 }
1640 else
1641 break;
1642
1643 if (ANHE_at (he) <= minat)
1644 break;
1645
1646 heap [k] = *minpos;
1647 ev_active (ANHE_w (*minpos)) = k;
1648
1649 k = minpos - heap;
1650 }
1651
1652 heap [k] = he;
1653 ev_active (ANHE_w (he)) = k;
1654}
1655
1656#else /* 4HEAP */
1657
1658#define HEAP0 1
1659#define HPARENT(k) ((k) >> 1)
1660#define UPHEAP_DONE(p,k) (!(p))
1661
1662/* away from the root */
1663inline_speed void
1664downheap (ANHE *heap, int N, int k)
1665{
1666 ANHE he = heap [k];
1667
1668 for (;;)
1669 {
1670 int c = k << 1;
1671
1672 if (c >= N + HEAP0)
1673 break;
1674
1675 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1676 ? 1 : 0;
1677
1678 if (ANHE_at (he) <= ANHE_at (heap [c]))
1679 break;
1680
1681 heap [k] = heap [c];
1682 ev_active (ANHE_w (heap [k])) = k;
1683
1684 k = c;
1685 }
1686
1687 heap [k] = he;
1688 ev_active (ANHE_w (he)) = k;
1689}
1690#endif
1691
1692/* towards the root */
1693inline_speed void
1694upheap (ANHE *heap, int k)
1695{
1696 ANHE he = heap [k];
1697
1698 for (;;)
1699 {
1700 int p = HPARENT (k);
1701
1702 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1703 break;
1704
1705 heap [k] = heap [p];
1706 ev_active (ANHE_w (heap [k])) = k;
1707 k = p;
1708 }
1709
1710 heap [k] = he;
1711 ev_active (ANHE_w (he)) = k;
1712}
1713
1714/* move an element suitably so it is in a correct place */
1715inline_size void
1716adjustheap (ANHE *heap, int N, int k)
1717{
1718 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1719 upheap (heap, k);
1720 else
1721 downheap (heap, N, k);
1722}
1723
1724/* rebuild the heap: this function is used only once and executed rarely */
1725inline_size void
1726reheap (ANHE *heap, int N)
1727{
1728 int i;
1729
1730 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1731 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1732 for (i = 0; i < N; ++i)
1733 upheap (heap, i + HEAP0);
1734}
1735
1736/*****************************************************************************/
1737
1738/* associate signal watchers to a signal signal */
1739typedef struct
1740{
1741 EV_ATOMIC_T pending;
1742#if EV_MULTIPLICITY
1743 EV_P;
1744#endif
1745 WL head;
1746} ANSIG;
1747
1748static ANSIG signals [EV_NSIG - 1];
1749
1750/*****************************************************************************/
1751
1752#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1753
1754static void noinline ecb_cold
1755evpipe_init (EV_P)
1756{
1757 if (!ev_is_active (&pipe_w))
1758 {
1759# if EV_USE_EVENTFD
1760 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1761 if (evfd < 0 && errno == EINVAL)
1762 evfd = eventfd (0, 0);
1763
1764 if (evfd >= 0)
1765 {
1766 evpipe [0] = -1;
1767 fd_intern (evfd); /* doing it twice doesn't hurt */
1768 ev_io_set (&pipe_w, evfd, EV_READ);
1769 }
1770 else
1771# endif
1772 {
1773 while (pipe (evpipe))
1774 ev_syserr ("(libev) error creating signal/async pipe");
1775
1776 fd_intern (evpipe [0]);
1777 fd_intern (evpipe [1]);
1778 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1779 }
1780
1781 ev_io_start (EV_A_ &pipe_w);
1782 ev_unref (EV_A); /* watcher should not keep loop alive */
1783 }
1784}
1785
1786inline_speed void
1787evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1788{
1789 if (expect_true (*flag))
1790 return;
1791
1792 *flag = 1;
1793
1794 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1795
1796 pipe_write_skipped = 1;
1797
1798 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1799
1800 if (pipe_write_wanted)
1801 {
1802 int old_errno;
1803
1804 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1805
1806 old_errno = errno; /* save errno because write will clobber it */
1807
1808#if EV_USE_EVENTFD
1809 if (evfd >= 0)
1810 {
1811 uint64_t counter = 1;
1812 write (evfd, &counter, sizeof (uint64_t));
1813 }
1814 else
1815#endif
1816 {
1817 /* win32 people keep sending patches that change this write() to send() */
1818 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1819 /* so when you think this write should be a send instead, please find out */
1820 /* where your send() is from - it's definitely not the microsoft send, and */
1821 /* tell me. thank you. */
1822 write (evpipe [1], &(evpipe [1]), 1);
1823 }
1824
1825 errno = old_errno;
1826 }
1827}
1828
1829/* called whenever the libev signal pipe */
1830/* got some events (signal, async) */
1831static void
1832pipecb (EV_P_ ev_io *iow, int revents)
1833{
1834 int i;
1835
1836 if (revents & EV_READ)
1837 {
1838#if EV_USE_EVENTFD
1839 if (evfd >= 0)
1840 {
1841 uint64_t counter;
1842 read (evfd, &counter, sizeof (uint64_t));
1843 }
1844 else
1845#endif
1846 {
1847 char dummy;
1848 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1849 read (evpipe [0], &dummy, 1);
1850 }
1851 }
1852
1853 pipe_write_skipped = 0;
1854
1855#if EV_SIGNAL_ENABLE
1856 if (sig_pending)
1857 {
1858 sig_pending = 0;
1859
1860 for (i = EV_NSIG - 1; i--; )
1861 if (expect_false (signals [i].pending))
1862 ev_feed_signal_event (EV_A_ i + 1);
1863 }
1864#endif
1865
1866#if EV_ASYNC_ENABLE
1867 if (async_pending)
1868 {
1869 async_pending = 0;
1870
1871 for (i = asynccnt; i--; )
1872 if (asyncs [i]->sent)
1873 {
1874 asyncs [i]->sent = 0;
1875 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1876 }
1877 }
1878#endif
1879}
1880
1881/*****************************************************************************/
1882
1883void
1884ev_feed_signal (int signum)
1885{
1886#if EV_MULTIPLICITY
1887 EV_P = signals [signum - 1].loop;
1888
1889 if (!EV_A)
1890 return;
1891#endif
1892
1893 if (!ev_active (&pipe_w))
1894 return;
1895
1896 signals [signum - 1].pending = 1;
1897 evpipe_write (EV_A_ &sig_pending);
1898}
1899
1900static void
1901ev_sighandler (int signum)
1902{
781#ifndef _WIN32 1903#ifdef _WIN32
1904 signal (signum, ev_sighandler);
1905#endif
1906
1907 ev_feed_signal (signum);
1908}
1909
1910void noinline
1911ev_feed_signal_event (EV_P_ int signum)
1912{
1913 WL w;
1914
1915 if (expect_false (signum <= 0 || signum > EV_NSIG))
1916 return;
1917
1918 --signum;
1919
1920#if EV_MULTIPLICITY
1921 /* it is permissible to try to feed a signal to the wrong loop */
1922 /* or, likely more useful, feeding a signal nobody is waiting for */
1923
1924 if (expect_false (signals [signum].loop != EV_A))
1925 return;
1926#endif
1927
1928 signals [signum].pending = 0;
1929
1930 for (w = signals [signum].head; w; w = w->next)
1931 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1932}
1933
1934#if EV_USE_SIGNALFD
1935static void
1936sigfdcb (EV_P_ ev_io *iow, int revents)
1937{
1938 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1939
1940 for (;;)
1941 {
1942 ssize_t res = read (sigfd, si, sizeof (si));
1943
1944 /* not ISO-C, as res might be -1, but works with SuS */
1945 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1946 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1947
1948 if (res < (ssize_t)sizeof (si))
1949 break;
1950 }
1951}
1952#endif
1953
1954#endif
1955
1956/*****************************************************************************/
1957
1958#if EV_CHILD_ENABLE
1959static WL childs [EV_PID_HASHSIZE];
782 1960
783static ev_signal childev; 1961static ev_signal childev;
784 1962
785void inline_speed 1963#ifndef WIFCONTINUED
1964# define WIFCONTINUED(status) 0
1965#endif
1966
1967/* handle a single child status event */
1968inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1969child_reap (EV_P_ int chain, int pid, int status)
787{ 1970{
788 ev_child *w; 1971 ev_child *w;
1972 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1973
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1974 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1975 {
791 if (w->pid == pid || !w->pid) 1976 if ((w->pid == pid || !w->pid)
1977 && (!traced || (w->flags & 1)))
792 { 1978 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1979 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1980 w->rpid = pid;
795 w->rstatus = status; 1981 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1982 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1983 }
1984 }
798} 1985}
799 1986
800#ifndef WCONTINUED 1987#ifndef WCONTINUED
801# define WCONTINUED 0 1988# define WCONTINUED 0
802#endif 1989#endif
803 1990
1991/* called on sigchld etc., calls waitpid */
804static void 1992static void
805childcb (EV_P_ ev_signal *sw, int revents) 1993childcb (EV_P_ ev_signal *sw, int revents)
806{ 1994{
807 int pid, status; 1995 int pid, status;
808 1996
811 if (!WCONTINUED 1999 if (!WCONTINUED
812 || errno != EINVAL 2000 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2001 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 2002 return;
815 2003
816 /* make sure we are called again until all childs have been reaped */ 2004 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 2005 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2006 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 2007
820 child_reap (EV_A_ sw, pid, pid, status); 2008 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 2009 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2010 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 2011}
824 2012
825#endif 2013#endif
826 2014
827/*****************************************************************************/ 2015/*****************************************************************************/
828 2016
2017#if EV_USE_IOCP
2018# include "ev_iocp.c"
2019#endif
829#if EV_USE_PORT 2020#if EV_USE_PORT
830# include "ev_port.c" 2021# include "ev_port.c"
831#endif 2022#endif
832#if EV_USE_KQUEUE 2023#if EV_USE_KQUEUE
833# include "ev_kqueue.c" 2024# include "ev_kqueue.c"
840#endif 2031#endif
841#if EV_USE_SELECT 2032#if EV_USE_SELECT
842# include "ev_select.c" 2033# include "ev_select.c"
843#endif 2034#endif
844 2035
845int 2036int ecb_cold
846ev_version_major (void) 2037ev_version_major (void)
847{ 2038{
848 return EV_VERSION_MAJOR; 2039 return EV_VERSION_MAJOR;
849} 2040}
850 2041
851int 2042int ecb_cold
852ev_version_minor (void) 2043ev_version_minor (void)
853{ 2044{
854 return EV_VERSION_MINOR; 2045 return EV_VERSION_MINOR;
855} 2046}
856 2047
857/* return true if we are running with elevated privileges and should ignore env variables */ 2048/* return true if we are running with elevated privileges and should ignore env variables */
858int inline_size 2049int inline_size ecb_cold
859enable_secure (void) 2050enable_secure (void)
860{ 2051{
861#ifdef _WIN32 2052#ifdef _WIN32
862 return 0; 2053 return 0;
863#else 2054#else
864 return getuid () != geteuid () 2055 return getuid () != geteuid ()
865 || getgid () != getegid (); 2056 || getgid () != getegid ();
866#endif 2057#endif
867} 2058}
868 2059
869unsigned int 2060unsigned int ecb_cold
870ev_supported_backends (void) 2061ev_supported_backends (void)
871{ 2062{
872 unsigned int flags = 0; 2063 unsigned int flags = 0;
873 2064
874 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2065 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
878 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2069 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
879 2070
880 return flags; 2071 return flags;
881} 2072}
882 2073
883unsigned int 2074unsigned int ecb_cold
884ev_recommended_backends (void) 2075ev_recommended_backends (void)
885{ 2076{
886 unsigned int flags = ev_supported_backends (); 2077 unsigned int flags = ev_supported_backends ();
887 2078
888#ifndef __NetBSD__ 2079#ifndef __NetBSD__
889 /* kqueue is borked on everything but netbsd apparently */ 2080 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 2081 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 2082 flags &= ~EVBACKEND_KQUEUE;
892#endif 2083#endif
893#ifdef __APPLE__ 2084#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 2085 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 2086 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2087 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2088#endif
2089#ifdef __FreeBSD__
2090 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 2091#endif
897 2092
898 return flags; 2093 return flags;
899} 2094}
900 2095
901unsigned int 2096unsigned int ecb_cold
902ev_embeddable_backends (void) 2097ev_embeddable_backends (void)
903{ 2098{
904 return EVBACKEND_EPOLL 2099 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 2100
906 | EVBACKEND_PORT; 2101 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2102 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2103 flags &= ~EVBACKEND_EPOLL;
2104
2105 return flags;
907} 2106}
908 2107
909unsigned int 2108unsigned int
910ev_backend (EV_P) 2109ev_backend (EV_P)
911{ 2110{
912 return backend; 2111 return backend;
913} 2112}
914 2113
2114#if EV_FEATURE_API
915unsigned int 2115unsigned int
916ev_loop_count (EV_P) 2116ev_iteration (EV_P)
917{ 2117{
918 return loop_count; 2118 return loop_count;
919} 2119}
920 2120
2121unsigned int
2122ev_depth (EV_P)
2123{
2124 return loop_depth;
2125}
2126
2127void
2128ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2129{
2130 io_blocktime = interval;
2131}
2132
2133void
2134ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2135{
2136 timeout_blocktime = interval;
2137}
2138
2139void
2140ev_set_userdata (EV_P_ void *data)
2141{
2142 userdata = data;
2143}
2144
2145void *
2146ev_userdata (EV_P)
2147{
2148 return userdata;
2149}
2150
2151void
2152ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2153{
2154 invoke_cb = invoke_pending_cb;
2155}
2156
2157void
2158ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2159{
2160 release_cb = release;
2161 acquire_cb = acquire;
2162}
2163#endif
2164
2165/* initialise a loop structure, must be zero-initialised */
921static void noinline 2166static void noinline ecb_cold
922loop_init (EV_P_ unsigned int flags) 2167loop_init (EV_P_ unsigned int flags)
923{ 2168{
924 if (!backend) 2169 if (!backend)
925 { 2170 {
2171 origflags = flags;
2172
2173#if EV_USE_REALTIME
2174 if (!have_realtime)
2175 {
2176 struct timespec ts;
2177
2178 if (!clock_gettime (CLOCK_REALTIME, &ts))
2179 have_realtime = 1;
2180 }
2181#endif
2182
926#if EV_USE_MONOTONIC 2183#if EV_USE_MONOTONIC
2184 if (!have_monotonic)
927 { 2185 {
928 struct timespec ts; 2186 struct timespec ts;
2187
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2188 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 2189 have_monotonic = 1;
931 } 2190 }
932#endif 2191#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 2192
939 /* pid check not overridable via env */ 2193 /* pid check not overridable via env */
940#ifndef _WIN32 2194#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 2195 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 2196 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 2199 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 2200 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 2201 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 2202 flags = atoi (getenv ("LIBEV_FLAGS"));
949 2203
950 if (!(flags & 0x0000ffffUL)) 2204 ev_rt_now = ev_time ();
2205 mn_now = get_clock ();
2206 now_floor = mn_now;
2207 rtmn_diff = ev_rt_now - mn_now;
2208#if EV_FEATURE_API
2209 invoke_cb = ev_invoke_pending;
2210#endif
2211
2212 io_blocktime = 0.;
2213 timeout_blocktime = 0.;
2214 backend = 0;
2215 backend_fd = -1;
2216 sig_pending = 0;
2217#if EV_ASYNC_ENABLE
2218 async_pending = 0;
2219#endif
2220 pipe_write_skipped = 0;
2221 pipe_write_wanted = 0;
2222#if EV_USE_INOTIFY
2223 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2224#endif
2225#if EV_USE_SIGNALFD
2226 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2227#endif
2228
2229 if (!(flags & EVBACKEND_MASK))
951 flags |= ev_recommended_backends (); 2230 flags |= ev_recommended_backends ();
952 2231
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY 2232#if EV_USE_IOCP
956 fs_fd = -2; 2233 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
957#endif 2234#endif
958
959#if EV_USE_PORT 2235#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2236 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 2237#endif
962#if EV_USE_KQUEUE 2238#if EV_USE_KQUEUE
963 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2239 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
970#endif 2246#endif
971#if EV_USE_SELECT 2247#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2248 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 2249#endif
974 2250
2251 ev_prepare_init (&pending_w, pendingcb);
2252
2253#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 2254 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 2255 ev_set_priority (&pipe_w, EV_MAXPRI);
2256#endif
977 } 2257 }
978} 2258}
979 2259
980static void noinline 2260/* free up a loop structure */
2261void ecb_cold
981loop_destroy (EV_P) 2262ev_loop_destroy (EV_P)
982{ 2263{
983 int i; 2264 int i;
2265
2266#if EV_MULTIPLICITY
2267 /* mimic free (0) */
2268 if (!EV_A)
2269 return;
2270#endif
2271
2272#if EV_CLEANUP_ENABLE
2273 /* queue cleanup watchers (and execute them) */
2274 if (expect_false (cleanupcnt))
2275 {
2276 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2277 EV_INVOKE_PENDING;
2278 }
2279#endif
2280
2281#if EV_CHILD_ENABLE
2282 if (ev_is_active (&childev))
2283 {
2284 ev_ref (EV_A); /* child watcher */
2285 ev_signal_stop (EV_A_ &childev);
2286 }
2287#endif
2288
2289 if (ev_is_active (&pipe_w))
2290 {
2291 /*ev_ref (EV_A);*/
2292 /*ev_io_stop (EV_A_ &pipe_w);*/
2293
2294#if EV_USE_EVENTFD
2295 if (evfd >= 0)
2296 close (evfd);
2297#endif
2298
2299 if (evpipe [0] >= 0)
2300 {
2301 EV_WIN32_CLOSE_FD (evpipe [0]);
2302 EV_WIN32_CLOSE_FD (evpipe [1]);
2303 }
2304 }
2305
2306#if EV_USE_SIGNALFD
2307 if (ev_is_active (&sigfd_w))
2308 close (sigfd);
2309#endif
984 2310
985#if EV_USE_INOTIFY 2311#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 2312 if (fs_fd >= 0)
987 close (fs_fd); 2313 close (fs_fd);
988#endif 2314#endif
989 2315
990 if (backend_fd >= 0) 2316 if (backend_fd >= 0)
991 close (backend_fd); 2317 close (backend_fd);
992 2318
2319#if EV_USE_IOCP
2320 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2321#endif
993#if EV_USE_PORT 2322#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2323 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
995#endif 2324#endif
996#if EV_USE_KQUEUE 2325#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2326 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1012#if EV_IDLE_ENABLE 2341#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 2342 array_free (idle, [i]);
1014#endif 2343#endif
1015 } 2344 }
1016 2345
2346 ev_free (anfds); anfds = 0; anfdmax = 0;
2347
1017 /* have to use the microsoft-never-gets-it-right macro */ 2348 /* have to use the microsoft-never-gets-it-right macro */
2349 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 2350 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 2351 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 2352#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 2353 array_free (periodic, EMPTY);
1022#endif 2354#endif
2355#if EV_FORK_ENABLE
2356 array_free (fork, EMPTY);
2357#endif
2358#if EV_CLEANUP_ENABLE
2359 array_free (cleanup, EMPTY);
2360#endif
1023 array_free (prepare, EMPTY); 2361 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 2362 array_free (check, EMPTY);
2363#if EV_ASYNC_ENABLE
2364 array_free (async, EMPTY);
2365#endif
1025 2366
1026 backend = 0; 2367 backend = 0;
1027}
1028 2368
2369#if EV_MULTIPLICITY
2370 if (ev_is_default_loop (EV_A))
2371#endif
2372 ev_default_loop_ptr = 0;
2373#if EV_MULTIPLICITY
2374 else
2375 ev_free (EV_A);
2376#endif
2377}
2378
2379#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 2380inline_size void infy_fork (EV_P);
2381#endif
1030 2382
1031void inline_size 2383inline_size void
1032loop_fork (EV_P) 2384loop_fork (EV_P)
1033{ 2385{
1034#if EV_USE_PORT 2386#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2387 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 2388#endif
1042#endif 2394#endif
1043#if EV_USE_INOTIFY 2395#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 2396 infy_fork (EV_A);
1045#endif 2397#endif
1046 2398
1047 if (ev_is_active (&sigev)) 2399 if (ev_is_active (&pipe_w))
1048 { 2400 {
1049 /* default loop */ 2401 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1050 2402
1051 ev_ref (EV_A); 2403 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 2404 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 2405
1056 while (pipe (sigpipe)) 2406#if EV_USE_EVENTFD
1057 syserr ("(libev) error creating pipe"); 2407 if (evfd >= 0)
2408 close (evfd);
2409#endif
1058 2410
2411 if (evpipe [0] >= 0)
2412 {
2413 EV_WIN32_CLOSE_FD (evpipe [0]);
2414 EV_WIN32_CLOSE_FD (evpipe [1]);
2415 }
2416
2417#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1059 siginit (EV_A); 2418 evpipe_init (EV_A);
2419 /* now iterate over everything, in case we missed something */
2420 pipecb (EV_A_ &pipe_w, EV_READ);
2421#endif
1060 } 2422 }
1061 2423
1062 postfork = 0; 2424 postfork = 0;
1063} 2425}
1064 2426
1065#if EV_MULTIPLICITY 2427#if EV_MULTIPLICITY
2428
1066struct ev_loop * 2429struct ev_loop * ecb_cold
1067ev_loop_new (unsigned int flags) 2430ev_loop_new (unsigned int flags)
1068{ 2431{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2432 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 2433
1071 memset (loop, 0, sizeof (struct ev_loop)); 2434 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 2435 loop_init (EV_A_ flags);
1074 2436
1075 if (ev_backend (EV_A)) 2437 if (ev_backend (EV_A))
1076 return loop; 2438 return EV_A;
1077 2439
2440 ev_free (EV_A);
1078 return 0; 2441 return 0;
1079} 2442}
1080 2443
1081void 2444#endif /* multiplicity */
1082ev_loop_destroy (EV_P)
1083{
1084 loop_destroy (EV_A);
1085 ev_free (loop);
1086}
1087 2445
1088void 2446#if EV_VERIFY
1089ev_loop_fork (EV_P) 2447static void noinline ecb_cold
2448verify_watcher (EV_P_ W w)
1090{ 2449{
1091 postfork = 1; 2450 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1092}
1093 2451
2452 if (w->pending)
2453 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2454}
2455
2456static void noinline ecb_cold
2457verify_heap (EV_P_ ANHE *heap, int N)
2458{
2459 int i;
2460
2461 for (i = HEAP0; i < N + HEAP0; ++i)
2462 {
2463 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2464 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2465 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2466
2467 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2468 }
2469}
2470
2471static void noinline ecb_cold
2472array_verify (EV_P_ W *ws, int cnt)
2473{
2474 while (cnt--)
2475 {
2476 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2477 verify_watcher (EV_A_ ws [cnt]);
2478 }
2479}
2480#endif
2481
2482#if EV_FEATURE_API
2483void ecb_cold
2484ev_verify (EV_P)
2485{
2486#if EV_VERIFY
2487 int i;
2488 WL w;
2489
2490 assert (activecnt >= -1);
2491
2492 assert (fdchangemax >= fdchangecnt);
2493 for (i = 0; i < fdchangecnt; ++i)
2494 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2495
2496 assert (anfdmax >= 0);
2497 for (i = 0; i < anfdmax; ++i)
2498 for (w = anfds [i].head; w; w = w->next)
2499 {
2500 verify_watcher (EV_A_ (W)w);
2501 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2502 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2503 }
2504
2505 assert (timermax >= timercnt);
2506 verify_heap (EV_A_ timers, timercnt);
2507
2508#if EV_PERIODIC_ENABLE
2509 assert (periodicmax >= periodiccnt);
2510 verify_heap (EV_A_ periodics, periodiccnt);
2511#endif
2512
2513 for (i = NUMPRI; i--; )
2514 {
2515 assert (pendingmax [i] >= pendingcnt [i]);
2516#if EV_IDLE_ENABLE
2517 assert (idleall >= 0);
2518 assert (idlemax [i] >= idlecnt [i]);
2519 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2520#endif
2521 }
2522
2523#if EV_FORK_ENABLE
2524 assert (forkmax >= forkcnt);
2525 array_verify (EV_A_ (W *)forks, forkcnt);
2526#endif
2527
2528#if EV_CLEANUP_ENABLE
2529 assert (cleanupmax >= cleanupcnt);
2530 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2531#endif
2532
2533#if EV_ASYNC_ENABLE
2534 assert (asyncmax >= asynccnt);
2535 array_verify (EV_A_ (W *)asyncs, asynccnt);
2536#endif
2537
2538#if EV_PREPARE_ENABLE
2539 assert (preparemax >= preparecnt);
2540 array_verify (EV_A_ (W *)prepares, preparecnt);
2541#endif
2542
2543#if EV_CHECK_ENABLE
2544 assert (checkmax >= checkcnt);
2545 array_verify (EV_A_ (W *)checks, checkcnt);
2546#endif
2547
2548# if 0
2549#if EV_CHILD_ENABLE
2550 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2551 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2552#endif
2553# endif
2554#endif
2555}
1094#endif 2556#endif
1095 2557
1096#if EV_MULTIPLICITY 2558#if EV_MULTIPLICITY
1097struct ev_loop * 2559struct ev_loop * ecb_cold
1098ev_default_loop_init (unsigned int flags)
1099#else 2560#else
1100int 2561int
2562#endif
1101ev_default_loop (unsigned int flags) 2563ev_default_loop (unsigned int flags)
1102#endif
1103{ 2564{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 2565 if (!ev_default_loop_ptr)
1109 { 2566 {
1110#if EV_MULTIPLICITY 2567#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2568 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 2569#else
1113 ev_default_loop_ptr = 1; 2570 ev_default_loop_ptr = 1;
1114#endif 2571#endif
1115 2572
1116 loop_init (EV_A_ flags); 2573 loop_init (EV_A_ flags);
1117 2574
1118 if (ev_backend (EV_A)) 2575 if (ev_backend (EV_A))
1119 { 2576 {
1120 siginit (EV_A); 2577#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 2578 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 2579 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 2580 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2581 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 2582#endif
1132 2587
1133 return ev_default_loop_ptr; 2588 return ev_default_loop_ptr;
1134} 2589}
1135 2590
1136void 2591void
1137ev_default_destroy (void) 2592ev_loop_fork (EV_P)
1138{ 2593{
1139#if EV_MULTIPLICITY 2594 postfork = 1; /* must be in line with ev_default_fork */
1140 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif
1142
1143#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev);
1146#endif
1147
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A);
1155}
1156
1157void
1158ev_default_fork (void)
1159{
1160#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif
1163
1164 if (backend)
1165 postfork = 1;
1166} 2595}
1167 2596
1168/*****************************************************************************/ 2597/*****************************************************************************/
1169 2598
1170void 2599void
1171ev_invoke (EV_P_ void *w, int revents) 2600ev_invoke (EV_P_ void *w, int revents)
1172{ 2601{
1173 EV_CB_INVOKE ((W)w, revents); 2602 EV_CB_INVOKE ((W)w, revents);
1174} 2603}
1175 2604
1176void inline_speed 2605unsigned int
1177call_pending (EV_P) 2606ev_pending_count (EV_P)
2607{
2608 int pri;
2609 unsigned int count = 0;
2610
2611 for (pri = NUMPRI; pri--; )
2612 count += pendingcnt [pri];
2613
2614 return count;
2615}
2616
2617void noinline
2618ev_invoke_pending (EV_P)
1178{ 2619{
1179 int pri; 2620 int pri;
1180 2621
1181 for (pri = NUMPRI; pri--; ) 2622 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 2623 while (pendingcnt [pri])
1183 { 2624 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2625 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 2626
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189
1190 p->w->pending = 0; 2627 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 2628 EV_CB_INVOKE (p->w, p->events);
1192 } 2629 EV_FREQUENT_CHECK;
1193 } 2630 }
1194} 2631}
1195 2632
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001220703125 /* 1/8192 */);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at = w->offset + floor ((ev_rt_now - w->offset) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275#if EV_IDLE_ENABLE 2633#if EV_IDLE_ENABLE
1276void inline_size 2634/* make idle watchers pending. this handles the "call-idle */
2635/* only when higher priorities are idle" logic */
2636inline_size void
1277idle_reify (EV_P) 2637idle_reify (EV_P)
1278{ 2638{
1279 if (expect_false (idleall)) 2639 if (expect_false (idleall))
1280 { 2640 {
1281 int pri; 2641 int pri;
1293 } 2653 }
1294 } 2654 }
1295} 2655}
1296#endif 2656#endif
1297 2657
1298int inline_size 2658/* make timers pending */
1299time_update_monotonic (EV_P) 2659inline_size void
2660timers_reify (EV_P)
1300{ 2661{
2662 EV_FREQUENT_CHECK;
2663
2664 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2665 {
2666 do
2667 {
2668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2669
2670 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2671
2672 /* first reschedule or stop timer */
2673 if (w->repeat)
2674 {
2675 ev_at (w) += w->repeat;
2676 if (ev_at (w) < mn_now)
2677 ev_at (w) = mn_now;
2678
2679 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2680
2681 ANHE_at_cache (timers [HEAP0]);
2682 downheap (timers, timercnt, HEAP0);
2683 }
2684 else
2685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2686
2687 EV_FREQUENT_CHECK;
2688 feed_reverse (EV_A_ (W)w);
2689 }
2690 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2691
2692 feed_reverse_done (EV_A_ EV_TIMER);
2693 }
2694}
2695
2696#if EV_PERIODIC_ENABLE
2697
2698static void noinline
2699periodic_recalc (EV_P_ ev_periodic *w)
2700{
2701 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2702 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2703
2704 /* the above almost always errs on the low side */
2705 while (at <= ev_rt_now)
2706 {
2707 ev_tstamp nat = at + w->interval;
2708
2709 /* when resolution fails us, we use ev_rt_now */
2710 if (expect_false (nat == at))
2711 {
2712 at = ev_rt_now;
2713 break;
2714 }
2715
2716 at = nat;
2717 }
2718
2719 ev_at (w) = at;
2720}
2721
2722/* make periodics pending */
2723inline_size void
2724periodics_reify (EV_P)
2725{
2726 EV_FREQUENT_CHECK;
2727
2728 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2729 {
2730 int feed_count = 0;
2731
2732 do
2733 {
2734 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2735
2736 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2737
2738 /* first reschedule or stop timer */
2739 if (w->reschedule_cb)
2740 {
2741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2742
2743 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2744
2745 ANHE_at_cache (periodics [HEAP0]);
2746 downheap (periodics, periodiccnt, HEAP0);
2747 }
2748 else if (w->interval)
2749 {
2750 periodic_recalc (EV_A_ w);
2751 ANHE_at_cache (periodics [HEAP0]);
2752 downheap (periodics, periodiccnt, HEAP0);
2753 }
2754 else
2755 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2756
2757 EV_FREQUENT_CHECK;
2758 feed_reverse (EV_A_ (W)w);
2759 }
2760 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2761
2762 feed_reverse_done (EV_A_ EV_PERIODIC);
2763 }
2764}
2765
2766/* simply recalculate all periodics */
2767/* TODO: maybe ensure that at least one event happens when jumping forward? */
2768static void noinline ecb_cold
2769periodics_reschedule (EV_P)
2770{
2771 int i;
2772
2773 /* adjust periodics after time jump */
2774 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2775 {
2776 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2777
2778 if (w->reschedule_cb)
2779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2780 else if (w->interval)
2781 periodic_recalc (EV_A_ w);
2782
2783 ANHE_at_cache (periodics [i]);
2784 }
2785
2786 reheap (periodics, periodiccnt);
2787}
2788#endif
2789
2790/* adjust all timers by a given offset */
2791static void noinline ecb_cold
2792timers_reschedule (EV_P_ ev_tstamp adjust)
2793{
2794 int i;
2795
2796 for (i = 0; i < timercnt; ++i)
2797 {
2798 ANHE *he = timers + i + HEAP0;
2799 ANHE_w (*he)->at += adjust;
2800 ANHE_at_cache (*he);
2801 }
2802}
2803
2804/* fetch new monotonic and realtime times from the kernel */
2805/* also detect if there was a timejump, and act accordingly */
2806inline_speed void
2807time_update (EV_P_ ev_tstamp max_block)
2808{
2809#if EV_USE_MONOTONIC
2810 if (expect_true (have_monotonic))
2811 {
2812 int i;
2813 ev_tstamp odiff = rtmn_diff;
2814
1301 mn_now = get_clock (); 2815 mn_now = get_clock ();
1302 2816
2817 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2818 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2819 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 2820 {
1305 ev_rt_now = rtmn_diff + mn_now; 2821 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 2822 return;
1307 } 2823 }
1308 else 2824
1309 {
1310 now_floor = mn_now; 2825 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 2826 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 2827
1316void inline_size 2828 /* loop a few times, before making important decisions.
1317time_update (EV_P) 2829 * on the choice of "4": one iteration isn't enough,
1318{ 2830 * in case we get preempted during the calls to
1319 int i; 2831 * ev_time and get_clock. a second call is almost guaranteed
1320 2832 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 2833 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 2834 * in the unlikely event of having been preempted here.
1323 { 2835 */
1324 if (time_update_monotonic (EV_A)) 2836 for (i = 4; --i; )
1325 { 2837 {
1326 ev_tstamp odiff = rtmn_diff; 2838 ev_tstamp diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 2839 rtmn_diff = ev_rt_now - mn_now;
1339 2840
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2841 diff = odiff - rtmn_diff;
2842
2843 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 2844 return; /* all is well */
1342 2845
1343 ev_rt_now = ev_time (); 2846 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 2847 mn_now = get_clock ();
1345 now_floor = mn_now; 2848 now_floor = mn_now;
1346 } 2849 }
1347 2850
2851 /* no timer adjustment, as the monotonic clock doesn't jump */
2852 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 2853# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 2854 periodics_reschedule (EV_A);
1350# endif 2855# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 2856 }
1355 else 2857 else
1356#endif 2858#endif
1357 { 2859 {
1358 ev_rt_now = ev_time (); 2860 ev_rt_now = ev_time ();
1359 2861
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2862 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 2863 {
2864 /* adjust timers. this is easy, as the offset is the same for all of them */
2865 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 2866#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 2867 periodics_reschedule (EV_A);
1364#endif 2868#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 2869 }
1370 2870
1371 mn_now = ev_rt_now; 2871 mn_now = ev_rt_now;
1372 } 2872 }
1373} 2873}
1374 2874
1375void 2875void
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 2876ev_run (EV_P_ int flags)
1391{ 2877{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2878#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 2879 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 2880#endif
1395 2881
2882 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2883
2884 loop_done = EVBREAK_CANCEL;
2885
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2886 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 2887
1398 do 2888 do
1399 { 2889 {
2890#if EV_VERIFY >= 2
2891 ev_verify (EV_A);
2892#endif
2893
1400#ifndef _WIN32 2894#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 2895 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 2896 if (expect_false (getpid () != curpid))
1403 { 2897 {
1404 curpid = getpid (); 2898 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 2904 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 2905 if (expect_false (postfork))
1412 if (forkcnt) 2906 if (forkcnt)
1413 { 2907 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2908 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 2909 EV_INVOKE_PENDING;
1416 } 2910 }
1417#endif 2911#endif
1418 2912
2913#if EV_PREPARE_ENABLE
1419 /* queue prepare watchers (and execute them) */ 2914 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 2915 if (expect_false (preparecnt))
1421 { 2916 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2917 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 2918 EV_INVOKE_PENDING;
1424 } 2919 }
2920#endif
1425 2921
1426 if (expect_false (!activecnt)) 2922 if (expect_false (loop_done))
1427 break; 2923 break;
1428 2924
1429 /* we might have forked, so reify kernel state if necessary */ 2925 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 2926 if (expect_false (postfork))
1431 loop_fork (EV_A); 2927 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 2929 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 2930 fd_reify (EV_A);
1435 2931
1436 /* calculate blocking time */ 2932 /* calculate blocking time */
1437 { 2933 {
1438 ev_tstamp block; 2934 ev_tstamp waittime = 0.;
2935 ev_tstamp sleeptime = 0.;
1439 2936
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2937 /* remember old timestamp for io_blocktime calculation */
1441 block = 0.; /* do not block at all */ 2938 ev_tstamp prev_mn_now = mn_now;
1442 else 2939
2940 /* update time to cancel out callback processing overhead */
2941 time_update (EV_A_ 1e100);
2942
2943 /* from now on, we want a pipe-wake-up */
2944 pipe_write_wanted = 1;
2945
2946 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2947
2948 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1443 { 2949 {
1444 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME; 2950 waittime = MAX_BLOCKTIME;
1456 2951
1457 if (timercnt) 2952 if (timercnt)
1458 { 2953 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2954 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1460 if (block > to) block = to; 2955 if (waittime > to) waittime = to;
1461 } 2956 }
1462 2957
1463#if EV_PERIODIC_ENABLE 2958#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 2959 if (periodiccnt)
1465 { 2960 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2961 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1467 if (block > to) block = to; 2962 if (waittime > to) waittime = to;
1468 } 2963 }
1469#endif 2964#endif
1470 2965
2966 /* don't let timeouts decrease the waittime below timeout_blocktime */
2967 if (expect_false (waittime < timeout_blocktime))
2968 waittime = timeout_blocktime;
2969
2970 /* at this point, we NEED to wait, so we have to ensure */
2971 /* to pass a minimum nonzero value to the backend */
2972 if (expect_false (waittime < backend_mintime))
2973 waittime = backend_mintime;
2974
2975 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 2976 if (expect_false (io_blocktime))
2977 {
2978 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2979
2980 if (sleeptime > waittime - backend_mintime)
2981 sleeptime = waittime - backend_mintime;
2982
2983 if (expect_true (sleeptime > 0.))
2984 {
2985 ev_sleep (sleeptime);
2986 waittime -= sleeptime;
2987 }
2988 }
1472 } 2989 }
1473 2990
2991#if EV_FEATURE_API
1474 ++loop_count; 2992 ++loop_count;
2993#endif
2994 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 2995 backend_poll (EV_A_ waittime);
2996 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2997
2998 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2999
3000 if (pipe_write_skipped)
3001 {
3002 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3003 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3004 }
3005
3006
3007 /* update ev_rt_now, do magic */
3008 time_update (EV_A_ waittime + sleeptime);
1476 } 3009 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 3010
1481 /* queue pending timers and reschedule them */ 3011 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 3012 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 3013#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 3014 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 3017#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 3018 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 3019 idle_reify (EV_A);
1490#endif 3020#endif
1491 3021
3022#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 3023 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 3024 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3026#endif
1495 3027
1496 call_pending (EV_A); 3028 EV_INVOKE_PENDING;
1497
1498 } 3029 }
1499 while (expect_true (activecnt && !loop_done)); 3030 while (expect_true (
3031 activecnt
3032 && !loop_done
3033 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3034 ));
1500 3035
1501 if (loop_done == EVUNLOOP_ONE) 3036 if (loop_done == EVBREAK_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 3037 loop_done = EVBREAK_CANCEL;
3038
3039#if EV_FEATURE_API
3040 --loop_depth;
3041#endif
1503} 3042}
1504 3043
1505void 3044void
1506ev_unloop (EV_P_ int how) 3045ev_break (EV_P_ int how)
1507{ 3046{
1508 loop_done = how; 3047 loop_done = how;
1509} 3048}
1510 3049
3050void
3051ev_ref (EV_P)
3052{
3053 ++activecnt;
3054}
3055
3056void
3057ev_unref (EV_P)
3058{
3059 --activecnt;
3060}
3061
3062void
3063ev_now_update (EV_P)
3064{
3065 time_update (EV_A_ 1e100);
3066}
3067
3068void
3069ev_suspend (EV_P)
3070{
3071 ev_now_update (EV_A);
3072}
3073
3074void
3075ev_resume (EV_P)
3076{
3077 ev_tstamp mn_prev = mn_now;
3078
3079 ev_now_update (EV_A);
3080 timers_reschedule (EV_A_ mn_now - mn_prev);
3081#if EV_PERIODIC_ENABLE
3082 /* TODO: really do this? */
3083 periodics_reschedule (EV_A);
3084#endif
3085}
3086
1511/*****************************************************************************/ 3087/*****************************************************************************/
3088/* singly-linked list management, used when the expected list length is short */
1512 3089
1513void inline_size 3090inline_size void
1514wlist_add (WL *head, WL elem) 3091wlist_add (WL *head, WL elem)
1515{ 3092{
1516 elem->next = *head; 3093 elem->next = *head;
1517 *head = elem; 3094 *head = elem;
1518} 3095}
1519 3096
1520void inline_size 3097inline_size void
1521wlist_del (WL *head, WL elem) 3098wlist_del (WL *head, WL elem)
1522{ 3099{
1523 while (*head) 3100 while (*head)
1524 { 3101 {
1525 if (*head == elem) 3102 if (expect_true (*head == elem))
1526 { 3103 {
1527 *head = elem->next; 3104 *head = elem->next;
1528 return; 3105 break;
1529 } 3106 }
1530 3107
1531 head = &(*head)->next; 3108 head = &(*head)->next;
1532 } 3109 }
1533} 3110}
1534 3111
1535void inline_speed 3112/* internal, faster, version of ev_clear_pending */
3113inline_speed void
1536clear_pending (EV_P_ W w) 3114clear_pending (EV_P_ W w)
1537{ 3115{
1538 if (w->pending) 3116 if (w->pending)
1539 { 3117 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3118 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 3119 w->pending = 0;
1542 } 3120 }
1543} 3121}
1544 3122
1545int 3123int
1549 int pending = w_->pending; 3127 int pending = w_->pending;
1550 3128
1551 if (expect_true (pending)) 3129 if (expect_true (pending))
1552 { 3130 {
1553 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3131 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3132 p->w = (W)&pending_w;
1554 w_->pending = 0; 3133 w_->pending = 0;
1555 p->w = 0;
1556 return p->events; 3134 return p->events;
1557 } 3135 }
1558 else 3136 else
1559 return 0; 3137 return 0;
1560} 3138}
1561 3139
1562void inline_size 3140inline_size void
1563pri_adjust (EV_P_ W w) 3141pri_adjust (EV_P_ W w)
1564{ 3142{
1565 int pri = w->priority; 3143 int pri = ev_priority (w);
1566 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3144 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1567 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3145 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1568 w->priority = pri; 3146 ev_set_priority (w, pri);
1569} 3147}
1570 3148
1571void inline_speed 3149inline_speed void
1572ev_start (EV_P_ W w, int active) 3150ev_start (EV_P_ W w, int active)
1573{ 3151{
1574 pri_adjust (EV_A_ w); 3152 pri_adjust (EV_A_ w);
1575 w->active = active; 3153 w->active = active;
1576 ev_ref (EV_A); 3154 ev_ref (EV_A);
1577} 3155}
1578 3156
1579void inline_size 3157inline_size void
1580ev_stop (EV_P_ W w) 3158ev_stop (EV_P_ W w)
1581{ 3159{
1582 ev_unref (EV_A); 3160 ev_unref (EV_A);
1583 w->active = 0; 3161 w->active = 0;
1584} 3162}
1591 int fd = w->fd; 3169 int fd = w->fd;
1592 3170
1593 if (expect_false (ev_is_active (w))) 3171 if (expect_false (ev_is_active (w)))
1594 return; 3172 return;
1595 3173
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 3174 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3175 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3176
3177 EV_FREQUENT_CHECK;
1597 3178
1598 ev_start (EV_A_ (W)w, 1); 3179 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3180 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3181 wlist_add (&anfds[fd].head, (WL)w);
1601 3182
1602 fd_change (EV_A_ fd); 3183 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3184 w->events &= ~EV__IOFDSET;
3185
3186 EV_FREQUENT_CHECK;
1603} 3187}
1604 3188
1605void noinline 3189void noinline
1606ev_io_stop (EV_P_ ev_io *w) 3190ev_io_stop (EV_P_ ev_io *w)
1607{ 3191{
1608 clear_pending (EV_A_ (W)w); 3192 clear_pending (EV_A_ (W)w);
1609 if (expect_false (!ev_is_active (w))) 3193 if (expect_false (!ev_is_active (w)))
1610 return; 3194 return;
1611 3195
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3196 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 3197
3198 EV_FREQUENT_CHECK;
3199
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3200 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 3201 ev_stop (EV_A_ (W)w);
1616 3202
1617 fd_change (EV_A_ w->fd); 3203 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3204
3205 EV_FREQUENT_CHECK;
1618} 3206}
1619 3207
1620void noinline 3208void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 3209ev_timer_start (EV_P_ ev_timer *w)
1622{ 3210{
1623 if (expect_false (ev_is_active (w))) 3211 if (expect_false (ev_is_active (w)))
1624 return; 3212 return;
1625 3213
1626 ((WT)w)->at += mn_now; 3214 ev_at (w) += mn_now;
1627 3215
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3216 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 3217
3218 EV_FREQUENT_CHECK;
3219
3220 ++timercnt;
1630 ev_start (EV_A_ (W)w, ++timercnt); 3221 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3222 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 3223 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 3224 ANHE_at_cache (timers [ev_active (w)]);
3225 upheap (timers, ev_active (w));
1634 3226
3227 EV_FREQUENT_CHECK;
3228
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3229 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1636} 3230}
1637 3231
1638void noinline 3232void noinline
1639ev_timer_stop (EV_P_ ev_timer *w) 3233ev_timer_stop (EV_P_ ev_timer *w)
1640{ 3234{
1641 clear_pending (EV_A_ (W)w); 3235 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 3236 if (expect_false (!ev_is_active (w)))
1643 return; 3237 return;
1644 3238
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3239 EV_FREQUENT_CHECK;
1646 3240
1647 { 3241 {
1648 int active = ((W)w)->active; 3242 int active = ev_active (w);
1649 3243
3244 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3245
3246 --timercnt;
3247
1650 if (expect_true (--active < --timercnt)) 3248 if (expect_true (active < timercnt + HEAP0))
1651 { 3249 {
1652 timers [active] = timers [timercnt]; 3250 timers [active] = timers [timercnt + HEAP0];
1653 adjustheap ((WT *)timers, timercnt, active); 3251 adjustheap (timers, timercnt, active);
1654 } 3252 }
1655 } 3253 }
1656 3254
1657 ((WT)w)->at -= mn_now; 3255 ev_at (w) -= mn_now;
1658 3256
1659 ev_stop (EV_A_ (W)w); 3257 ev_stop (EV_A_ (W)w);
3258
3259 EV_FREQUENT_CHECK;
1660} 3260}
1661 3261
1662void noinline 3262void noinline
1663ev_timer_again (EV_P_ ev_timer *w) 3263ev_timer_again (EV_P_ ev_timer *w)
1664{ 3264{
3265 EV_FREQUENT_CHECK;
3266
1665 if (ev_is_active (w)) 3267 if (ev_is_active (w))
1666 { 3268 {
1667 if (w->repeat) 3269 if (w->repeat)
1668 { 3270 {
1669 ((WT)w)->at = mn_now + w->repeat; 3271 ev_at (w) = mn_now + w->repeat;
3272 ANHE_at_cache (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3273 adjustheap (timers, timercnt, ev_active (w));
1671 } 3274 }
1672 else 3275 else
1673 ev_timer_stop (EV_A_ w); 3276 ev_timer_stop (EV_A_ w);
1674 } 3277 }
1675 else if (w->repeat) 3278 else if (w->repeat)
1676 { 3279 {
1677 w->at = w->repeat; 3280 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 3281 ev_timer_start (EV_A_ w);
1679 } 3282 }
3283
3284 EV_FREQUENT_CHECK;
3285}
3286
3287ev_tstamp
3288ev_timer_remaining (EV_P_ ev_timer *w)
3289{
3290 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1680} 3291}
1681 3292
1682#if EV_PERIODIC_ENABLE 3293#if EV_PERIODIC_ENABLE
1683void noinline 3294void noinline
1684ev_periodic_start (EV_P_ ev_periodic *w) 3295ev_periodic_start (EV_P_ ev_periodic *w)
1685{ 3296{
1686 if (expect_false (ev_is_active (w))) 3297 if (expect_false (ev_is_active (w)))
1687 return; 3298 return;
1688 3299
1689 if (w->reschedule_cb) 3300 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3301 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 3302 else if (w->interval)
1692 { 3303 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3304 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 3305 periodic_recalc (EV_A_ w);
1695 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 3306 }
1697 else 3307 else
1698 ((WT)w)->at = w->offset; 3308 ev_at (w) = w->offset;
1699 3309
3310 EV_FREQUENT_CHECK;
3311
3312 ++periodiccnt;
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 3313 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3314 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 3315 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 3316 ANHE_at_cache (periodics [ev_active (w)]);
3317 upheap (periodics, ev_active (w));
1704 3318
3319 EV_FREQUENT_CHECK;
3320
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3321 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1706} 3322}
1707 3323
1708void noinline 3324void noinline
1709ev_periodic_stop (EV_P_ ev_periodic *w) 3325ev_periodic_stop (EV_P_ ev_periodic *w)
1710{ 3326{
1711 clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
1713 return; 3329 return;
1714 3330
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3331 EV_FREQUENT_CHECK;
1716 3332
1717 { 3333 {
1718 int active = ((W)w)->active; 3334 int active = ev_active (w);
1719 3335
3336 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3337
3338 --periodiccnt;
3339
1720 if (expect_true (--active < --periodiccnt)) 3340 if (expect_true (active < periodiccnt + HEAP0))
1721 { 3341 {
1722 periodics [active] = periodics [periodiccnt]; 3342 periodics [active] = periodics [periodiccnt + HEAP0];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 3343 adjustheap (periodics, periodiccnt, active);
1724 } 3344 }
1725 } 3345 }
1726 3346
1727 ev_stop (EV_A_ (W)w); 3347 ev_stop (EV_A_ (W)w);
3348
3349 EV_FREQUENT_CHECK;
1728} 3350}
1729 3351
1730void noinline 3352void noinline
1731ev_periodic_again (EV_P_ ev_periodic *w) 3353ev_periodic_again (EV_P_ ev_periodic *w)
1732{ 3354{
1738 3360
1739#ifndef SA_RESTART 3361#ifndef SA_RESTART
1740# define SA_RESTART 0 3362# define SA_RESTART 0
1741#endif 3363#endif
1742 3364
3365#if EV_SIGNAL_ENABLE
3366
1743void noinline 3367void noinline
1744ev_signal_start (EV_P_ ev_signal *w) 3368ev_signal_start (EV_P_ ev_signal *w)
1745{ 3369{
1746#if EV_MULTIPLICITY
1747 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1748#endif
1749 if (expect_false (ev_is_active (w))) 3370 if (expect_false (ev_is_active (w)))
1750 return; 3371 return;
1751 3372
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3374
3375#if EV_MULTIPLICITY
3376 assert (("libev: a signal must not be attached to two different loops",
3377 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3378
3379 signals [w->signum - 1].loop = EV_A;
3380#endif
3381
3382 EV_FREQUENT_CHECK;
3383
3384#if EV_USE_SIGNALFD
3385 if (sigfd == -2)
3386 {
3387 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3388 if (sigfd < 0 && errno == EINVAL)
3389 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3390
3391 if (sigfd >= 0)
3392 {
3393 fd_intern (sigfd); /* doing it twice will not hurt */
3394
3395 sigemptyset (&sigfd_set);
3396
3397 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3398 ev_set_priority (&sigfd_w, EV_MAXPRI);
3399 ev_io_start (EV_A_ &sigfd_w);
3400 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3401 }
3402 }
3403
3404 if (sigfd >= 0)
3405 {
3406 /* TODO: check .head */
3407 sigaddset (&sigfd_set, w->signum);
3408 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3409
3410 signalfd (sigfd, &sigfd_set, 0);
3411 }
3412#endif
1753 3413
1754 ev_start (EV_A_ (W)w, 1); 3414 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3415 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 3416
1758 if (!((WL)w)->next) 3417 if (!((WL)w)->next)
3418# if EV_USE_SIGNALFD
3419 if (sigfd < 0) /*TODO*/
3420# endif
1759 { 3421 {
1760#if _WIN32 3422# ifdef _WIN32
3423 evpipe_init (EV_A);
3424
1761 signal (w->signum, sighandler); 3425 signal (w->signum, ev_sighandler);
1762#else 3426# else
1763 struct sigaction sa; 3427 struct sigaction sa;
3428
3429 evpipe_init (EV_A);
3430
1764 sa.sa_handler = sighandler; 3431 sa.sa_handler = ev_sighandler;
1765 sigfillset (&sa.sa_mask); 3432 sigfillset (&sa.sa_mask);
1766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3433 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1767 sigaction (w->signum, &sa, 0); 3434 sigaction (w->signum, &sa, 0);
3435
3436 if (origflags & EVFLAG_NOSIGMASK)
3437 {
3438 sigemptyset (&sa.sa_mask);
3439 sigaddset (&sa.sa_mask, w->signum);
3440 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3441 }
1768#endif 3442#endif
1769 } 3443 }
3444
3445 EV_FREQUENT_CHECK;
1770} 3446}
1771 3447
1772void noinline 3448void noinline
1773ev_signal_stop (EV_P_ ev_signal *w) 3449ev_signal_stop (EV_P_ ev_signal *w)
1774{ 3450{
1775 clear_pending (EV_A_ (W)w); 3451 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 3452 if (expect_false (!ev_is_active (w)))
1777 return; 3453 return;
1778 3454
3455 EV_FREQUENT_CHECK;
3456
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3457 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 3458 ev_stop (EV_A_ (W)w);
1781 3459
1782 if (!signals [w->signum - 1].head) 3460 if (!signals [w->signum - 1].head)
3461 {
3462#if EV_MULTIPLICITY
3463 signals [w->signum - 1].loop = 0; /* unattach from signal */
3464#endif
3465#if EV_USE_SIGNALFD
3466 if (sigfd >= 0)
3467 {
3468 sigset_t ss;
3469
3470 sigemptyset (&ss);
3471 sigaddset (&ss, w->signum);
3472 sigdelset (&sigfd_set, w->signum);
3473
3474 signalfd (sigfd, &sigfd_set, 0);
3475 sigprocmask (SIG_UNBLOCK, &ss, 0);
3476 }
3477 else
3478#endif
1783 signal (w->signum, SIG_DFL); 3479 signal (w->signum, SIG_DFL);
3480 }
3481
3482 EV_FREQUENT_CHECK;
1784} 3483}
3484
3485#endif
3486
3487#if EV_CHILD_ENABLE
1785 3488
1786void 3489void
1787ev_child_start (EV_P_ ev_child *w) 3490ev_child_start (EV_P_ ev_child *w)
1788{ 3491{
1789#if EV_MULTIPLICITY 3492#if EV_MULTIPLICITY
1790 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3493 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1791#endif 3494#endif
1792 if (expect_false (ev_is_active (w))) 3495 if (expect_false (ev_is_active (w)))
1793 return; 3496 return;
1794 3497
3498 EV_FREQUENT_CHECK;
3499
1795 ev_start (EV_A_ (W)w, 1); 3500 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3501 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3502
3503 EV_FREQUENT_CHECK;
1797} 3504}
1798 3505
1799void 3506void
1800ev_child_stop (EV_P_ ev_child *w) 3507ev_child_stop (EV_P_ ev_child *w)
1801{ 3508{
1802 clear_pending (EV_A_ (W)w); 3509 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 3510 if (expect_false (!ev_is_active (w)))
1804 return; 3511 return;
1805 3512
3513 EV_FREQUENT_CHECK;
3514
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3515 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 3516 ev_stop (EV_A_ (W)w);
3517
3518 EV_FREQUENT_CHECK;
1808} 3519}
3520
3521#endif
1809 3522
1810#if EV_STAT_ENABLE 3523#if EV_STAT_ENABLE
1811 3524
1812# ifdef _WIN32 3525# ifdef _WIN32
1813# undef lstat 3526# undef lstat
1814# define lstat(a,b) _stati64 (a,b) 3527# define lstat(a,b) _stati64 (a,b)
1815# endif 3528# endif
1816 3529
1817#define DEF_STAT_INTERVAL 5.0074891 3530#define DEF_STAT_INTERVAL 5.0074891
3531#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1818#define MIN_STAT_INTERVAL 0.1074891 3532#define MIN_STAT_INTERVAL 0.1074891
1819 3533
1820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3534static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1821 3535
1822#if EV_USE_INOTIFY 3536#if EV_USE_INOTIFY
1823# define EV_INOTIFY_BUFSIZE 8192 3537
3538/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3539# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1824 3540
1825static void noinline 3541static void noinline
1826infy_add (EV_P_ ev_stat *w) 3542infy_add (EV_P_ ev_stat *w)
1827{ 3543{
1828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3544 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1829 3545
1830 if (w->wd < 0) 3546 if (w->wd >= 0)
3547 {
3548 struct statfs sfs;
3549
3550 /* now local changes will be tracked by inotify, but remote changes won't */
3551 /* unless the filesystem is known to be local, we therefore still poll */
3552 /* also do poll on <2.6.25, but with normal frequency */
3553
3554 if (!fs_2625)
3555 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3556 else if (!statfs (w->path, &sfs)
3557 && (sfs.f_type == 0x1373 /* devfs */
3558 || sfs.f_type == 0xEF53 /* ext2/3 */
3559 || sfs.f_type == 0x3153464a /* jfs */
3560 || sfs.f_type == 0x52654973 /* reiser3 */
3561 || sfs.f_type == 0x01021994 /* tempfs */
3562 || sfs.f_type == 0x58465342 /* xfs */))
3563 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3564 else
3565 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1831 { 3566 }
1832 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3567 else
3568 {
3569 /* can't use inotify, continue to stat */
3570 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1833 3571
1834 /* monitor some parent directory for speedup hints */ 3572 /* if path is not there, monitor some parent directory for speedup hints */
3573 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3574 /* but an efficiency issue only */
1835 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3575 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1836 { 3576 {
1837 char path [4096]; 3577 char path [4096];
1838 strcpy (path, w->path); 3578 strcpy (path, w->path);
1839 3579
1842 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3582 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1843 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3583 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1844 3584
1845 char *pend = strrchr (path, '/'); 3585 char *pend = strrchr (path, '/');
1846 3586
1847 if (!pend) 3587 if (!pend || pend == path)
1848 break; /* whoops, no '/', complain to your admin */ 3588 break;
1849 3589
1850 *pend = 0; 3590 *pend = 0;
1851 w->wd = inotify_add_watch (fs_fd, path, mask); 3591 w->wd = inotify_add_watch (fs_fd, path, mask);
1852 } 3592 }
1853 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3593 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1854 } 3594 }
1855 } 3595 }
1856 else
1857 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1858 3596
1859 if (w->wd >= 0) 3597 if (w->wd >= 0)
1860 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3598 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3599
3600 /* now re-arm timer, if required */
3601 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3602 ev_timer_again (EV_A_ &w->timer);
3603 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1861} 3604}
1862 3605
1863static void noinline 3606static void noinline
1864infy_del (EV_P_ ev_stat *w) 3607infy_del (EV_P_ ev_stat *w)
1865{ 3608{
1868 3611
1869 if (wd < 0) 3612 if (wd < 0)
1870 return; 3613 return;
1871 3614
1872 w->wd = -2; 3615 w->wd = -2;
1873 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3616 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1874 wlist_del (&fs_hash [slot].head, (WL)w); 3617 wlist_del (&fs_hash [slot].head, (WL)w);
1875 3618
1876 /* remove this watcher, if others are watching it, they will rearm */ 3619 /* remove this watcher, if others are watching it, they will rearm */
1877 inotify_rm_watch (fs_fd, wd); 3620 inotify_rm_watch (fs_fd, wd);
1878} 3621}
1879 3622
1880static void noinline 3623static void noinline
1881infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3624infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1882{ 3625{
1883 if (slot < 0) 3626 if (slot < 0)
1884 /* overflow, need to check for all hahs slots */ 3627 /* overflow, need to check for all hash slots */
1885 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3628 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1886 infy_wd (EV_A_ slot, wd, ev); 3629 infy_wd (EV_A_ slot, wd, ev);
1887 else 3630 else
1888 { 3631 {
1889 WL w_; 3632 WL w_;
1890 3633
1891 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3634 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1892 { 3635 {
1893 ev_stat *w = (ev_stat *)w_; 3636 ev_stat *w = (ev_stat *)w_;
1894 w_ = w_->next; /* lets us remove this watcher and all before it */ 3637 w_ = w_->next; /* lets us remove this watcher and all before it */
1895 3638
1896 if (w->wd == wd || wd == -1) 3639 if (w->wd == wd || wd == -1)
1897 { 3640 {
1898 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3641 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1899 { 3642 {
3643 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1900 w->wd = -1; 3644 w->wd = -1;
1901 infy_add (EV_A_ w); /* re-add, no matter what */ 3645 infy_add (EV_A_ w); /* re-add, no matter what */
1902 } 3646 }
1903 3647
1904 stat_timer_cb (EV_A_ &w->timer, 0); 3648 stat_timer_cb (EV_A_ &w->timer, 0);
1909 3653
1910static void 3654static void
1911infy_cb (EV_P_ ev_io *w, int revents) 3655infy_cb (EV_P_ ev_io *w, int revents)
1912{ 3656{
1913 char buf [EV_INOTIFY_BUFSIZE]; 3657 char buf [EV_INOTIFY_BUFSIZE];
1914 struct inotify_event *ev = (struct inotify_event *)buf;
1915 int ofs; 3658 int ofs;
1916 int len = read (fs_fd, buf, sizeof (buf)); 3659 int len = read (fs_fd, buf, sizeof (buf));
1917 3660
1918 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3661 for (ofs = 0; ofs < len; )
3662 {
3663 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1919 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3664 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3665 ofs += sizeof (struct inotify_event) + ev->len;
3666 }
1920} 3667}
1921 3668
1922void inline_size 3669inline_size void ecb_cold
3670ev_check_2625 (EV_P)
3671{
3672 /* kernels < 2.6.25 are borked
3673 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3674 */
3675 if (ev_linux_version () < 0x020619)
3676 return;
3677
3678 fs_2625 = 1;
3679}
3680
3681inline_size int
3682infy_newfd (void)
3683{
3684#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3685 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3686 if (fd >= 0)
3687 return fd;
3688#endif
3689 return inotify_init ();
3690}
3691
3692inline_size void
1923infy_init (EV_P) 3693infy_init (EV_P)
1924{ 3694{
1925 if (fs_fd != -2) 3695 if (fs_fd != -2)
1926 return; 3696 return;
1927 3697
3698 fs_fd = -1;
3699
3700 ev_check_2625 (EV_A);
3701
1928 fs_fd = inotify_init (); 3702 fs_fd = infy_newfd ();
1929 3703
1930 if (fs_fd >= 0) 3704 if (fs_fd >= 0)
1931 { 3705 {
3706 fd_intern (fs_fd);
1932 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3707 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1933 ev_set_priority (&fs_w, EV_MAXPRI); 3708 ev_set_priority (&fs_w, EV_MAXPRI);
1934 ev_io_start (EV_A_ &fs_w); 3709 ev_io_start (EV_A_ &fs_w);
3710 ev_unref (EV_A);
1935 } 3711 }
1936} 3712}
1937 3713
1938void inline_size 3714inline_size void
1939infy_fork (EV_P) 3715infy_fork (EV_P)
1940{ 3716{
1941 int slot; 3717 int slot;
1942 3718
1943 if (fs_fd < 0) 3719 if (fs_fd < 0)
1944 return; 3720 return;
1945 3721
3722 ev_ref (EV_A);
3723 ev_io_stop (EV_A_ &fs_w);
1946 close (fs_fd); 3724 close (fs_fd);
1947 fs_fd = inotify_init (); 3725 fs_fd = infy_newfd ();
1948 3726
3727 if (fs_fd >= 0)
3728 {
3729 fd_intern (fs_fd);
3730 ev_io_set (&fs_w, fs_fd, EV_READ);
3731 ev_io_start (EV_A_ &fs_w);
3732 ev_unref (EV_A);
3733 }
3734
1949 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3735 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1950 { 3736 {
1951 WL w_ = fs_hash [slot].head; 3737 WL w_ = fs_hash [slot].head;
1952 fs_hash [slot].head = 0; 3738 fs_hash [slot].head = 0;
1953 3739
1954 while (w_) 3740 while (w_)
1959 w->wd = -1; 3745 w->wd = -1;
1960 3746
1961 if (fs_fd >= 0) 3747 if (fs_fd >= 0)
1962 infy_add (EV_A_ w); /* re-add, no matter what */ 3748 infy_add (EV_A_ w); /* re-add, no matter what */
1963 else 3749 else
3750 {
3751 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3752 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1964 ev_timer_start (EV_A_ &w->timer); 3753 ev_timer_again (EV_A_ &w->timer);
3754 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3755 }
1965 } 3756 }
1966
1967 } 3757 }
1968} 3758}
1969 3759
3760#endif
3761
3762#ifdef _WIN32
3763# define EV_LSTAT(p,b) _stati64 (p, b)
3764#else
3765# define EV_LSTAT(p,b) lstat (p, b)
1970#endif 3766#endif
1971 3767
1972void 3768void
1973ev_stat_stat (EV_P_ ev_stat *w) 3769ev_stat_stat (EV_P_ ev_stat *w)
1974{ 3770{
1981static void noinline 3777static void noinline
1982stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3778stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1983{ 3779{
1984 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3780 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1985 3781
1986 /* we copy this here each the time so that */ 3782 ev_statdata prev = w->attr;
1987 /* prev has the old value when the callback gets invoked */
1988 w->prev = w->attr;
1989 ev_stat_stat (EV_A_ w); 3783 ev_stat_stat (EV_A_ w);
1990 3784
1991 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3785 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1992 if ( 3786 if (
1993 w->prev.st_dev != w->attr.st_dev 3787 prev.st_dev != w->attr.st_dev
1994 || w->prev.st_ino != w->attr.st_ino 3788 || prev.st_ino != w->attr.st_ino
1995 || w->prev.st_mode != w->attr.st_mode 3789 || prev.st_mode != w->attr.st_mode
1996 || w->prev.st_nlink != w->attr.st_nlink 3790 || prev.st_nlink != w->attr.st_nlink
1997 || w->prev.st_uid != w->attr.st_uid 3791 || prev.st_uid != w->attr.st_uid
1998 || w->prev.st_gid != w->attr.st_gid 3792 || prev.st_gid != w->attr.st_gid
1999 || w->prev.st_rdev != w->attr.st_rdev 3793 || prev.st_rdev != w->attr.st_rdev
2000 || w->prev.st_size != w->attr.st_size 3794 || prev.st_size != w->attr.st_size
2001 || w->prev.st_atime != w->attr.st_atime 3795 || prev.st_atime != w->attr.st_atime
2002 || w->prev.st_mtime != w->attr.st_mtime 3796 || prev.st_mtime != w->attr.st_mtime
2003 || w->prev.st_ctime != w->attr.st_ctime 3797 || prev.st_ctime != w->attr.st_ctime
2004 ) { 3798 ) {
3799 /* we only update w->prev on actual differences */
3800 /* in case we test more often than invoke the callback, */
3801 /* to ensure that prev is always different to attr */
3802 w->prev = prev;
3803
2005 #if EV_USE_INOTIFY 3804 #if EV_USE_INOTIFY
3805 if (fs_fd >= 0)
3806 {
2006 infy_del (EV_A_ w); 3807 infy_del (EV_A_ w);
2007 infy_add (EV_A_ w); 3808 infy_add (EV_A_ w);
2008 ev_stat_stat (EV_A_ w); /* avoid race... */ 3809 ev_stat_stat (EV_A_ w); /* avoid race... */
3810 }
2009 #endif 3811 #endif
2010 3812
2011 ev_feed_event (EV_A_ w, EV_STAT); 3813 ev_feed_event (EV_A_ w, EV_STAT);
2012 } 3814 }
2013} 3815}
2016ev_stat_start (EV_P_ ev_stat *w) 3818ev_stat_start (EV_P_ ev_stat *w)
2017{ 3819{
2018 if (expect_false (ev_is_active (w))) 3820 if (expect_false (ev_is_active (w)))
2019 return; 3821 return;
2020 3822
2021 /* since we use memcmp, we need to clear any padding data etc. */
2022 memset (&w->prev, 0, sizeof (ev_statdata));
2023 memset (&w->attr, 0, sizeof (ev_statdata));
2024
2025 ev_stat_stat (EV_A_ w); 3823 ev_stat_stat (EV_A_ w);
2026 3824
3825 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2027 if (w->interval < MIN_STAT_INTERVAL) 3826 w->interval = MIN_STAT_INTERVAL;
2028 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2029 3827
2030 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3828 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2031 ev_set_priority (&w->timer, ev_priority (w)); 3829 ev_set_priority (&w->timer, ev_priority (w));
2032 3830
2033#if EV_USE_INOTIFY 3831#if EV_USE_INOTIFY
2034 infy_init (EV_A); 3832 infy_init (EV_A);
2035 3833
2036 if (fs_fd >= 0) 3834 if (fs_fd >= 0)
2037 infy_add (EV_A_ w); 3835 infy_add (EV_A_ w);
2038 else 3836 else
2039#endif 3837#endif
3838 {
2040 ev_timer_start (EV_A_ &w->timer); 3839 ev_timer_again (EV_A_ &w->timer);
3840 ev_unref (EV_A);
3841 }
2041 3842
2042 ev_start (EV_A_ (W)w, 1); 3843 ev_start (EV_A_ (W)w, 1);
3844
3845 EV_FREQUENT_CHECK;
2043} 3846}
2044 3847
2045void 3848void
2046ev_stat_stop (EV_P_ ev_stat *w) 3849ev_stat_stop (EV_P_ ev_stat *w)
2047{ 3850{
2048 clear_pending (EV_A_ (W)w); 3851 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 3852 if (expect_false (!ev_is_active (w)))
2050 return; 3853 return;
2051 3854
3855 EV_FREQUENT_CHECK;
3856
2052#if EV_USE_INOTIFY 3857#if EV_USE_INOTIFY
2053 infy_del (EV_A_ w); 3858 infy_del (EV_A_ w);
2054#endif 3859#endif
3860
3861 if (ev_is_active (&w->timer))
3862 {
3863 ev_ref (EV_A);
2055 ev_timer_stop (EV_A_ &w->timer); 3864 ev_timer_stop (EV_A_ &w->timer);
3865 }
2056 3866
2057 ev_stop (EV_A_ (W)w); 3867 ev_stop (EV_A_ (W)w);
3868
3869 EV_FREQUENT_CHECK;
2058} 3870}
2059#endif 3871#endif
2060 3872
2061#if EV_IDLE_ENABLE 3873#if EV_IDLE_ENABLE
2062void 3874void
2065 if (expect_false (ev_is_active (w))) 3877 if (expect_false (ev_is_active (w)))
2066 return; 3878 return;
2067 3879
2068 pri_adjust (EV_A_ (W)w); 3880 pri_adjust (EV_A_ (W)w);
2069 3881
3882 EV_FREQUENT_CHECK;
3883
2070 { 3884 {
2071 int active = ++idlecnt [ABSPRI (w)]; 3885 int active = ++idlecnt [ABSPRI (w)];
2072 3886
2073 ++idleall; 3887 ++idleall;
2074 ev_start (EV_A_ (W)w, active); 3888 ev_start (EV_A_ (W)w, active);
2075 3889
2076 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3890 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2077 idles [ABSPRI (w)][active - 1] = w; 3891 idles [ABSPRI (w)][active - 1] = w;
2078 } 3892 }
3893
3894 EV_FREQUENT_CHECK;
2079} 3895}
2080 3896
2081void 3897void
2082ev_idle_stop (EV_P_ ev_idle *w) 3898ev_idle_stop (EV_P_ ev_idle *w)
2083{ 3899{
2084 clear_pending (EV_A_ (W)w); 3900 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 3901 if (expect_false (!ev_is_active (w)))
2086 return; 3902 return;
2087 3903
3904 EV_FREQUENT_CHECK;
3905
2088 { 3906 {
2089 int active = ((W)w)->active; 3907 int active = ev_active (w);
2090 3908
2091 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3909 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2092 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3910 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2093 3911
2094 ev_stop (EV_A_ (W)w); 3912 ev_stop (EV_A_ (W)w);
2095 --idleall; 3913 --idleall;
2096 } 3914 }
2097}
2098#endif
2099 3915
3916 EV_FREQUENT_CHECK;
3917}
3918#endif
3919
3920#if EV_PREPARE_ENABLE
2100void 3921void
2101ev_prepare_start (EV_P_ ev_prepare *w) 3922ev_prepare_start (EV_P_ ev_prepare *w)
2102{ 3923{
2103 if (expect_false (ev_is_active (w))) 3924 if (expect_false (ev_is_active (w)))
2104 return; 3925 return;
3926
3927 EV_FREQUENT_CHECK;
2105 3928
2106 ev_start (EV_A_ (W)w, ++preparecnt); 3929 ev_start (EV_A_ (W)w, ++preparecnt);
2107 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3930 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2108 prepares [preparecnt - 1] = w; 3931 prepares [preparecnt - 1] = w;
3932
3933 EV_FREQUENT_CHECK;
2109} 3934}
2110 3935
2111void 3936void
2112ev_prepare_stop (EV_P_ ev_prepare *w) 3937ev_prepare_stop (EV_P_ ev_prepare *w)
2113{ 3938{
2114 clear_pending (EV_A_ (W)w); 3939 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 3940 if (expect_false (!ev_is_active (w)))
2116 return; 3941 return;
2117 3942
3943 EV_FREQUENT_CHECK;
3944
2118 { 3945 {
2119 int active = ((W)w)->active; 3946 int active = ev_active (w);
3947
2120 prepares [active - 1] = prepares [--preparecnt]; 3948 prepares [active - 1] = prepares [--preparecnt];
2121 ((W)prepares [active - 1])->active = active; 3949 ev_active (prepares [active - 1]) = active;
2122 } 3950 }
2123 3951
2124 ev_stop (EV_A_ (W)w); 3952 ev_stop (EV_A_ (W)w);
2125}
2126 3953
3954 EV_FREQUENT_CHECK;
3955}
3956#endif
3957
3958#if EV_CHECK_ENABLE
2127void 3959void
2128ev_check_start (EV_P_ ev_check *w) 3960ev_check_start (EV_P_ ev_check *w)
2129{ 3961{
2130 if (expect_false (ev_is_active (w))) 3962 if (expect_false (ev_is_active (w)))
2131 return; 3963 return;
3964
3965 EV_FREQUENT_CHECK;
2132 3966
2133 ev_start (EV_A_ (W)w, ++checkcnt); 3967 ev_start (EV_A_ (W)w, ++checkcnt);
2134 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3968 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2135 checks [checkcnt - 1] = w; 3969 checks [checkcnt - 1] = w;
3970
3971 EV_FREQUENT_CHECK;
2136} 3972}
2137 3973
2138void 3974void
2139ev_check_stop (EV_P_ ev_check *w) 3975ev_check_stop (EV_P_ ev_check *w)
2140{ 3976{
2141 clear_pending (EV_A_ (W)w); 3977 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 3978 if (expect_false (!ev_is_active (w)))
2143 return; 3979 return;
2144 3980
3981 EV_FREQUENT_CHECK;
3982
2145 { 3983 {
2146 int active = ((W)w)->active; 3984 int active = ev_active (w);
3985
2147 checks [active - 1] = checks [--checkcnt]; 3986 checks [active - 1] = checks [--checkcnt];
2148 ((W)checks [active - 1])->active = active; 3987 ev_active (checks [active - 1]) = active;
2149 } 3988 }
2150 3989
2151 ev_stop (EV_A_ (W)w); 3990 ev_stop (EV_A_ (W)w);
3991
3992 EV_FREQUENT_CHECK;
2152} 3993}
3994#endif
2153 3995
2154#if EV_EMBED_ENABLE 3996#if EV_EMBED_ENABLE
2155void noinline 3997void noinline
2156ev_embed_sweep (EV_P_ ev_embed *w) 3998ev_embed_sweep (EV_P_ ev_embed *w)
2157{ 3999{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 4000 ev_run (w->other, EVRUN_NOWAIT);
2159} 4001}
2160 4002
2161static void 4003static void
2162embed_cb (EV_P_ ev_io *io, int revents) 4004embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 4005{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4006 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 4007
2166 if (ev_cb (w)) 4008 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4009 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 4010 else
2169 ev_embed_sweep (loop, w); 4011 ev_run (w->other, EVRUN_NOWAIT);
2170} 4012}
4013
4014static void
4015embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4016{
4017 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4018
4019 {
4020 EV_P = w->other;
4021
4022 while (fdchangecnt)
4023 {
4024 fd_reify (EV_A);
4025 ev_run (EV_A_ EVRUN_NOWAIT);
4026 }
4027 }
4028}
4029
4030static void
4031embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4032{
4033 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4034
4035 ev_embed_stop (EV_A_ w);
4036
4037 {
4038 EV_P = w->other;
4039
4040 ev_loop_fork (EV_A);
4041 ev_run (EV_A_ EVRUN_NOWAIT);
4042 }
4043
4044 ev_embed_start (EV_A_ w);
4045}
4046
4047#if 0
4048static void
4049embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4050{
4051 ev_idle_stop (EV_A_ idle);
4052}
4053#endif
2171 4054
2172void 4055void
2173ev_embed_start (EV_P_ ev_embed *w) 4056ev_embed_start (EV_P_ ev_embed *w)
2174{ 4057{
2175 if (expect_false (ev_is_active (w))) 4058 if (expect_false (ev_is_active (w)))
2176 return; 4059 return;
2177 4060
2178 { 4061 {
2179 struct ev_loop *loop = w->loop; 4062 EV_P = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4063 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4064 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 4065 }
4066
4067 EV_FREQUENT_CHECK;
2183 4068
2184 ev_set_priority (&w->io, ev_priority (w)); 4069 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 4070 ev_io_start (EV_A_ &w->io);
2186 4071
4072 ev_prepare_init (&w->prepare, embed_prepare_cb);
4073 ev_set_priority (&w->prepare, EV_MINPRI);
4074 ev_prepare_start (EV_A_ &w->prepare);
4075
4076 ev_fork_init (&w->fork, embed_fork_cb);
4077 ev_fork_start (EV_A_ &w->fork);
4078
4079 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4080
2187 ev_start (EV_A_ (W)w, 1); 4081 ev_start (EV_A_ (W)w, 1);
4082
4083 EV_FREQUENT_CHECK;
2188} 4084}
2189 4085
2190void 4086void
2191ev_embed_stop (EV_P_ ev_embed *w) 4087ev_embed_stop (EV_P_ ev_embed *w)
2192{ 4088{
2193 clear_pending (EV_A_ (W)w); 4089 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 4090 if (expect_false (!ev_is_active (w)))
2195 return; 4091 return;
2196 4092
4093 EV_FREQUENT_CHECK;
4094
2197 ev_io_stop (EV_A_ &w->io); 4095 ev_io_stop (EV_A_ &w->io);
4096 ev_prepare_stop (EV_A_ &w->prepare);
4097 ev_fork_stop (EV_A_ &w->fork);
2198 4098
2199 ev_stop (EV_A_ (W)w); 4099 ev_stop (EV_A_ (W)w);
4100
4101 EV_FREQUENT_CHECK;
2200} 4102}
2201#endif 4103#endif
2202 4104
2203#if EV_FORK_ENABLE 4105#if EV_FORK_ENABLE
2204void 4106void
2205ev_fork_start (EV_P_ ev_fork *w) 4107ev_fork_start (EV_P_ ev_fork *w)
2206{ 4108{
2207 if (expect_false (ev_is_active (w))) 4109 if (expect_false (ev_is_active (w)))
2208 return; 4110 return;
2209 4111
4112 EV_FREQUENT_CHECK;
4113
2210 ev_start (EV_A_ (W)w, ++forkcnt); 4114 ev_start (EV_A_ (W)w, ++forkcnt);
2211 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4115 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2212 forks [forkcnt - 1] = w; 4116 forks [forkcnt - 1] = w;
4117
4118 EV_FREQUENT_CHECK;
2213} 4119}
2214 4120
2215void 4121void
2216ev_fork_stop (EV_P_ ev_fork *w) 4122ev_fork_stop (EV_P_ ev_fork *w)
2217{ 4123{
2218 clear_pending (EV_A_ (W)w); 4124 clear_pending (EV_A_ (W)w);
2219 if (expect_false (!ev_is_active (w))) 4125 if (expect_false (!ev_is_active (w)))
2220 return; 4126 return;
2221 4127
4128 EV_FREQUENT_CHECK;
4129
2222 { 4130 {
2223 int active = ((W)w)->active; 4131 int active = ev_active (w);
4132
2224 forks [active - 1] = forks [--forkcnt]; 4133 forks [active - 1] = forks [--forkcnt];
2225 ((W)forks [active - 1])->active = active; 4134 ev_active (forks [active - 1]) = active;
2226 } 4135 }
2227 4136
2228 ev_stop (EV_A_ (W)w); 4137 ev_stop (EV_A_ (W)w);
4138
4139 EV_FREQUENT_CHECK;
4140}
4141#endif
4142
4143#if EV_CLEANUP_ENABLE
4144void
4145ev_cleanup_start (EV_P_ ev_cleanup *w)
4146{
4147 if (expect_false (ev_is_active (w)))
4148 return;
4149
4150 EV_FREQUENT_CHECK;
4151
4152 ev_start (EV_A_ (W)w, ++cleanupcnt);
4153 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4154 cleanups [cleanupcnt - 1] = w;
4155
4156 /* cleanup watchers should never keep a refcount on the loop */
4157 ev_unref (EV_A);
4158 EV_FREQUENT_CHECK;
4159}
4160
4161void
4162ev_cleanup_stop (EV_P_ ev_cleanup *w)
4163{
4164 clear_pending (EV_A_ (W)w);
4165 if (expect_false (!ev_is_active (w)))
4166 return;
4167
4168 EV_FREQUENT_CHECK;
4169 ev_ref (EV_A);
4170
4171 {
4172 int active = ev_active (w);
4173
4174 cleanups [active - 1] = cleanups [--cleanupcnt];
4175 ev_active (cleanups [active - 1]) = active;
4176 }
4177
4178 ev_stop (EV_A_ (W)w);
4179
4180 EV_FREQUENT_CHECK;
4181}
4182#endif
4183
4184#if EV_ASYNC_ENABLE
4185void
4186ev_async_start (EV_P_ ev_async *w)
4187{
4188 if (expect_false (ev_is_active (w)))
4189 return;
4190
4191 w->sent = 0;
4192
4193 evpipe_init (EV_A);
4194
4195 EV_FREQUENT_CHECK;
4196
4197 ev_start (EV_A_ (W)w, ++asynccnt);
4198 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4199 asyncs [asynccnt - 1] = w;
4200
4201 EV_FREQUENT_CHECK;
4202}
4203
4204void
4205ev_async_stop (EV_P_ ev_async *w)
4206{
4207 clear_pending (EV_A_ (W)w);
4208 if (expect_false (!ev_is_active (w)))
4209 return;
4210
4211 EV_FREQUENT_CHECK;
4212
4213 {
4214 int active = ev_active (w);
4215
4216 asyncs [active - 1] = asyncs [--asynccnt];
4217 ev_active (asyncs [active - 1]) = active;
4218 }
4219
4220 ev_stop (EV_A_ (W)w);
4221
4222 EV_FREQUENT_CHECK;
4223}
4224
4225void
4226ev_async_send (EV_P_ ev_async *w)
4227{
4228 w->sent = 1;
4229 evpipe_write (EV_A_ &async_pending);
2229} 4230}
2230#endif 4231#endif
2231 4232
2232/*****************************************************************************/ 4233/*****************************************************************************/
2233 4234
2243once_cb (EV_P_ struct ev_once *once, int revents) 4244once_cb (EV_P_ struct ev_once *once, int revents)
2244{ 4245{
2245 void (*cb)(int revents, void *arg) = once->cb; 4246 void (*cb)(int revents, void *arg) = once->cb;
2246 void *arg = once->arg; 4247 void *arg = once->arg;
2247 4248
2248 ev_io_stop (EV_A_ &once->io); 4249 ev_io_stop (EV_A_ &once->io);
2249 ev_timer_stop (EV_A_ &once->to); 4250 ev_timer_stop (EV_A_ &once->to);
2250 ev_free (once); 4251 ev_free (once);
2251 4252
2252 cb (revents, arg); 4253 cb (revents, arg);
2253} 4254}
2254 4255
2255static void 4256static void
2256once_cb_io (EV_P_ ev_io *w, int revents) 4257once_cb_io (EV_P_ ev_io *w, int revents)
2257{ 4258{
2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4259 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4260
4261 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2259} 4262}
2260 4263
2261static void 4264static void
2262once_cb_to (EV_P_ ev_timer *w, int revents) 4265once_cb_to (EV_P_ ev_timer *w, int revents)
2263{ 4266{
2264 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4267 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4268
4269 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2265} 4270}
2266 4271
2267void 4272void
2268ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4273ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2269{ 4274{
2270 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4275 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2271 4276
2272 if (expect_false (!once)) 4277 if (expect_false (!once))
2273 { 4278 {
2274 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4279 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2275 return; 4280 return;
2276 } 4281 }
2277 4282
2278 once->cb = cb; 4283 once->cb = cb;
2279 once->arg = arg; 4284 once->arg = arg;
2291 ev_timer_set (&once->to, timeout, 0.); 4296 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 4297 ev_timer_start (EV_A_ &once->to);
2293 } 4298 }
2294} 4299}
2295 4300
2296#ifdef __cplusplus 4301/*****************************************************************************/
2297} 4302
4303#if EV_WALK_ENABLE
4304void ecb_cold
4305ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4306{
4307 int i, j;
4308 ev_watcher_list *wl, *wn;
4309
4310 if (types & (EV_IO | EV_EMBED))
4311 for (i = 0; i < anfdmax; ++i)
4312 for (wl = anfds [i].head; wl; )
4313 {
4314 wn = wl->next;
4315
4316#if EV_EMBED_ENABLE
4317 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4318 {
4319 if (types & EV_EMBED)
4320 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4321 }
4322 else
4323#endif
4324#if EV_USE_INOTIFY
4325 if (ev_cb ((ev_io *)wl) == infy_cb)
4326 ;
4327 else
4328#endif
4329 if ((ev_io *)wl != &pipe_w)
4330 if (types & EV_IO)
4331 cb (EV_A_ EV_IO, wl);
4332
4333 wl = wn;
4334 }
4335
4336 if (types & (EV_TIMER | EV_STAT))
4337 for (i = timercnt + HEAP0; i-- > HEAP0; )
4338#if EV_STAT_ENABLE
4339 /*TODO: timer is not always active*/
4340 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4341 {
4342 if (types & EV_STAT)
4343 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4344 }
4345 else
4346#endif
4347 if (types & EV_TIMER)
4348 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4349
4350#if EV_PERIODIC_ENABLE
4351 if (types & EV_PERIODIC)
4352 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4353 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4354#endif
4355
4356#if EV_IDLE_ENABLE
4357 if (types & EV_IDLE)
4358 for (j = NUMPRI; j--; )
4359 for (i = idlecnt [j]; i--; )
4360 cb (EV_A_ EV_IDLE, idles [j][i]);
4361#endif
4362
4363#if EV_FORK_ENABLE
4364 if (types & EV_FORK)
4365 for (i = forkcnt; i--; )
4366 if (ev_cb (forks [i]) != embed_fork_cb)
4367 cb (EV_A_ EV_FORK, forks [i]);
4368#endif
4369
4370#if EV_ASYNC_ENABLE
4371 if (types & EV_ASYNC)
4372 for (i = asynccnt; i--; )
4373 cb (EV_A_ EV_ASYNC, asyncs [i]);
4374#endif
4375
4376#if EV_PREPARE_ENABLE
4377 if (types & EV_PREPARE)
4378 for (i = preparecnt; i--; )
4379# if EV_EMBED_ENABLE
4380 if (ev_cb (prepares [i]) != embed_prepare_cb)
2298#endif 4381# endif
4382 cb (EV_A_ EV_PREPARE, prepares [i]);
4383#endif
2299 4384
4385#if EV_CHECK_ENABLE
4386 if (types & EV_CHECK)
4387 for (i = checkcnt; i--; )
4388 cb (EV_A_ EV_CHECK, checks [i]);
4389#endif
4390
4391#if EV_SIGNAL_ENABLE
4392 if (types & EV_SIGNAL)
4393 for (i = 0; i < EV_NSIG - 1; ++i)
4394 for (wl = signals [i].head; wl; )
4395 {
4396 wn = wl->next;
4397 cb (EV_A_ EV_SIGNAL, wl);
4398 wl = wn;
4399 }
4400#endif
4401
4402#if EV_CHILD_ENABLE
4403 if (types & EV_CHILD)
4404 for (i = (EV_PID_HASHSIZE); i--; )
4405 for (wl = childs [i]; wl; )
4406 {
4407 wn = wl->next;
4408 cb (EV_A_ EV_CHILD, wl);
4409 wl = wn;
4410 }
4411#endif
4412/* EV_STAT 0x00001000 /* stat data changed */
4413/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4414}
4415#endif
4416
4417#if EV_MULTIPLICITY
4418 #include "ev_wrap.h"
4419#endif
4420
4421EV_CPP(})
4422

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines