ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.4 by root, Tue Oct 30 23:10:33 2007 UTC vs.
Revision 1.366 by root, Mon Jan 10 01:58:54 2011 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
76# endif
77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
103# endif
104
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
112# endif
113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
159#endif
160
1#include <math.h> 161#include <math.h>
2#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
164#include <fcntl.h>
165#include <stddef.h>
3 166
4#include <stdio.h> 167#include <stdio.h>
5 168
6#include <assert.h> 169#include <assert.h>
7#include <errno.h> 170#include <errno.h>
8#include <sys/time.h> 171#include <sys/types.h>
9#include <time.h> 172#include <time.h>
173#include <limits.h>
10 174
175#include <signal.h>
176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
185#ifndef _WIN32
186# include <sys/time.h>
187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
263#endif
264
265#ifndef EV_USE_SELECT
266# define EV_USE_SELECT EV_FEATURE_BACKENDS
267#endif
268
269#ifndef EV_USE_POLL
270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
275#endif
276
277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
281# define EV_USE_EPOLL 0
282# endif
283#endif
284
285#ifndef EV_USE_KQUEUE
286# define EV_USE_KQUEUE 0
287#endif
288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
364
11#ifdef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
366# undef EV_USE_MONOTONIC
12# define HAVE_MONOTONIC 1 367# define EV_USE_MONOTONIC 0
368#endif
369
370#ifndef CLOCK_REALTIME
371# undef EV_USE_REALTIME
372# define EV_USE_REALTIME 0
373#endif
374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
13#endif 383# endif
384#endif
14 385
15#define HAVE_EPOLL 1 386#if EV_USE_INOTIFY
16#define HAVE_REALTIME 1 387# include <sys/statfs.h>
17#define HAVE_SELECT 0 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
18 455
19#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
20#define MAX_BLOCKTIME 60. 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
21 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
462#if __GNUC__ >= 4
463# define expect(expr,value) __builtin_expect ((expr),(value))
464# define noinline __attribute__ ((noinline))
465#else
466# define expect(expr,value) (expr)
467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
471#endif
472
473#define expect_false(expr) expect ((expr) != 0, 0)
474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
494typedef ev_watcher *W;
495typedef ev_watcher_list *WL;
496typedef ev_watcher_time *WT;
497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
521#ifdef _WIN32
522# include "ev_win32.c"
523#endif
524
525/*****************************************************************************/
526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
577static void (*syserr_cb)(const char *msg);
578
579void
580ev_set_syserr_cb (void (*cb)(const char *msg))
581{
582 syserr_cb = cb;
583}
584
585static void noinline
586ev_syserr (const char *msg)
587{
588 if (!msg)
589 msg = "(libev) system error";
590
591 if (syserr_cb)
592 syserr_cb (msg);
593 else
594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
601 perror (msg);
602#endif
603 abort ();
604 }
605}
606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
627
628void
629ev_set_allocator (void *(*cb)(void *ptr, long size))
630{
631 alloc = cb;
632}
633
634inline_speed void *
635ev_realloc (void *ptr, long size)
636{
637 ptr = alloc (ptr, size);
638
639 if (!ptr && size)
640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
646 abort ();
647 }
648
649 return ptr;
650}
651
652#define ev_malloc(size) ev_realloc (0, (size))
653#define ev_free(ptr) ev_realloc ((ptr), 0)
654
655/*****************************************************************************/
656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
661typedef struct
662{
663 WL head;
664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
672 SOCKET handle;
673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
677} ANFD;
678
679/* stores the pending event set for a given watcher */
680typedef struct
681{
682 W w;
683 int events; /* the pending event set for the given watcher */
684} ANPENDING;
685
686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
688typedef struct
689{
690 WL head;
691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
712#endif
713
714#if EV_MULTIPLICITY
715
716 struct ev_loop
717 {
718 ev_tstamp ev_rt_now;
719 #define ev_rt_now ((loop)->ev_rt_now)
720 #define VAR(name,decl) decl;
721 #include "ev_vars.h"
722 #undef VAR
723 };
22#include "ev.h" 724 #include "ev_wrap.h"
23 725
24struct ev_watcher { 726 static struct ev_loop default_loop_struct;
25 EV_WATCHER (ev_watcher); 727 struct ev_loop *ev_default_loop_ptr;
26};
27 728
28struct ev_watcher_list { 729#else
29 EV_WATCHER_LIST (ev_watcher_list);
30};
31 730
32static ev_tstamp now, diff; /* monotonic clock */
33ev_tstamp ev_now; 731 ev_tstamp ev_rt_now;
34int ev_method; 732 #define VAR(name,decl) static decl;
733 #include "ev_vars.h"
734 #undef VAR
35 735
36static int have_monotonic; /* runtime */ 736 static int ev_default_loop_ptr;
37 737
38static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 738#endif
39static void (*method_reify)(void);
40static void (*method_poll)(ev_tstamp timeout);
41 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
752/*****************************************************************************/
753
754#ifndef EV_HAVE_EV_TIME
42ev_tstamp 755ev_tstamp
43ev_time (void) 756ev_time (void)
44{ 757{
45#if HAVE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
46 struct timespec ts; 761 struct timespec ts;
47 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
48 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
49#else 764 }
765#endif
766
50 struct timeval tv; 767 struct timeval tv;
51 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
52 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
53#endif
54} 770}
771#endif
55 772
56static ev_tstamp 773inline_size ev_tstamp
57get_clock (void) 774get_clock (void)
58{ 775{
59#if HAVE_MONOTONIC 776#if EV_USE_MONOTONIC
60 if (have_monotonic) 777 if (expect_true (have_monotonic))
61 { 778 {
62 struct timespec ts; 779 struct timespec ts;
63 clock_gettime (CLOCK_MONOTONIC, &ts); 780 clock_gettime (CLOCK_MONOTONIC, &ts);
64 return ts.tv_sec + ts.tv_nsec * 1e-9; 781 return ts.tv_sec + ts.tv_nsec * 1e-9;
65 } 782 }
66#endif 783#endif
67 784
68 return ev_time (); 785 return ev_time ();
69} 786}
70 787
788#if EV_MULTIPLICITY
789ev_tstamp
790ev_now (EV_P)
791{
792 return ev_rt_now;
793}
794#endif
795
796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820/*****************************************************************************/
821
822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
827array_nextsize (int elem, int cur, int cnt)
828{
829 int ncur = cur + 1;
830
831 do
832 ncur <<= 1;
833 while (cnt > ncur);
834
835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
837 {
838 ncur *= elem;
839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
840 ncur = ncur - sizeof (void *) * 4;
841 ncur /= elem;
842 }
843
844 return ncur;
845}
846
847static noinline void *
848array_realloc (int elem, void *base, int *cur, int cnt)
849{
850 *cur = array_nextsize (elem, *cur, cnt);
851 return ev_realloc (base, elem * *cur);
852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
856
71#define array_needsize(base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
72 if ((cnt) > cur) \ 858 if (expect_false ((cnt) > (cur))) \
73 { \ 859 { \
74 int newcnt = cur ? cur << 1 : 16; \ 860 int ocur_ = (cur); \
75 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 861 (base) = (type *)array_realloc \
76 base = realloc (base, sizeof (*base) * (newcnt)); \ 862 (sizeof (type), (base), &(cur), (cnt)); \
77 init (base + cur, newcnt - cur); \ 863 init ((base) + (ocur_), (cur) - ocur_); \
78 cur = newcnt; \ 864 }
865
866#if 0
867#define array_slim(type,stem) \
868 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
869 { \
870 stem ## max = array_roundsize (stem ## cnt >> 1); \
871 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
873 }
874#endif
875
876#define array_free(stem, idx) \
877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
878
879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
886
887void noinline
888ev_feed_event (EV_P_ void *w, int revents)
889{
890 W w_ = (W)w;
891 int pri = ABSPRI (w_);
892
893 if (expect_false (w_->pending))
894 pendings [pri][w_->pending - 1].events |= revents;
895 else
896 {
897 w_->pending = ++pendingcnt [pri];
898 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
899 pendings [pri][w_->pending - 1].w = w_;
900 pendings [pri][w_->pending - 1].events = revents;
901 }
902}
903
904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
920queue_events (EV_P_ W *events, int eventcnt, int type)
921{
922 int i;
923
924 for (i = 0; i < eventcnt; ++i)
925 ev_feed_event (EV_A_ events [i], type);
926}
927
928/*****************************************************************************/
929
930inline_speed void
931fd_event_nocheck (EV_P_ int fd, int revents)
932{
933 ANFD *anfd = anfds + fd;
934 ev_io *w;
935
936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
937 {
938 int ev = w->events & revents;
939
940 if (ev)
941 ev_feed_event (EV_A_ (W)w, ev);
942 }
943}
944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
956void
957ev_feed_fd_event (EV_P_ int fd, int revents)
958{
959 if (fd >= 0 && fd < anfdmax)
960 fd_event_nocheck (EV_A_ fd, revents);
961}
962
963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
966fd_reify (EV_P)
967{
968 int i;
969
970 for (i = 0; i < fdchangecnt; ++i)
971 {
972 int fd = fdchanges [i];
973 ANFD *anfd = anfds + fd;
974 ev_io *w;
975
976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
978
979 anfd->reify = 0;
980
981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
982 if (o_reify & EV__IOFDSET)
983 {
984 unsigned long arg;
985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
988 }
989#endif
990
991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
992 {
993 anfd->events = 0;
994
995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
1003 backend_modify (EV_A_ fd, o_events, anfd->events);
1004 }
1005
1006 fdchangecnt = 0;
1007}
1008
1009/* something about the given fd changed */
1010inline_size void
1011fd_change (EV_P_ int fd, int flags)
1012{
1013 unsigned char reify = anfds [fd].reify;
1014 anfds [fd].reify |= flags;
1015
1016 if (expect_true (!reify))
1017 {
1018 ++fdchangecnt;
1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1020 fdchanges [fdchangecnt - 1] = fd;
1021 }
1022}
1023
1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
1026fd_kill (EV_P_ int fd)
1027{
1028 ev_io *w;
1029
1030 while ((w = (ev_io *)anfds [fd].head))
1031 {
1032 ev_io_stop (EV_A_ w);
1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1034 }
1035}
1036
1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
1039fd_valid (int fd)
1040{
1041#ifdef _WIN32
1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1043#else
1044 return fcntl (fd, F_GETFD) != -1;
1045#endif
1046}
1047
1048/* called on EBADF to verify fds */
1049static void noinline
1050fd_ebadf (EV_P)
1051{
1052 int fd;
1053
1054 for (fd = 0; fd < anfdmax; ++fd)
1055 if (anfds [fd].events)
1056 if (!fd_valid (fd) && errno == EBADF)
1057 fd_kill (EV_A_ fd);
1058}
1059
1060/* called on ENOMEM in select/poll to kill some fds and retry */
1061static void noinline
1062fd_enomem (EV_P)
1063{
1064 int fd;
1065
1066 for (fd = anfdmax; fd--; )
1067 if (anfds [fd].events)
1068 {
1069 fd_kill (EV_A_ fd);
1070 break;
79 } 1071 }
1072}
80 1073
1074/* usually called after fork if backend needs to re-arm all fds from scratch */
1075static void noinline
1076fd_rearm_all (EV_P)
1077{
1078 int fd;
1079
1080 for (fd = 0; fd < anfdmax; ++fd)
1081 if (anfds [fd].events)
1082 {
1083 anfds [fd].events = 0;
1084 anfds [fd].emask = 0;
1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1086 }
1087}
1088
1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1092fd_intern (int fd)
1093{
1094#ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1097#else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100#endif
1101}
1102
1103/*****************************************************************************/
1104
1105/*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111/*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117#if EV_USE_4HEAP
1118
1119#define DHEAP 4
1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122#define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124/* away from the root */
1125inline_speed void
1126downheap (ANHE *heap, int N, int k)
1127{
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168#else /* 4HEAP */
1169
1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
1173
1174/* away from the root */
1175inline_speed void
1176downheap (ANHE *heap, int N, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201}
1202#endif
1203
1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
1228adjustheap (ANHE *heap, int N, int k)
1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246}
1247
1248/*****************************************************************************/
1249
1250/* associate signal watchers to a signal signal */
81typedef struct 1251typedef struct
82{ 1252{
83 struct ev_io *head; 1253 EV_ATOMIC_T pending;
84 unsigned char wev, rev; /* want, received event set */ 1254#if EV_MULTIPLICITY
85} ANFD; 1255 EV_P;
1256#endif
1257 WL head;
1258} ANSIG;
86 1259
87static ANFD *anfds; 1260static ANSIG signals [EV_NSIG - 1];
88static int anfdmax;
89 1261
90static int *fdchanges; 1262/*****************************************************************************/
91static int fdchangemax, fdchangecnt;
92 1263
1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
1266static void noinline
1267evpipe_init (EV_P)
1268{
1269 if (!ev_is_active (&pipe_w))
1270 {
1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283# endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
1288 fd_intern (evpipe [0]);
1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
1292
1293 ev_io_start (EV_A_ &pipe_w);
1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296}
1297
1298inline_size void
1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300{
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308#if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325}
1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
93static void 1329static void
94anfds_init (ANFD *base, int count) 1330pipecb (EV_P_ ev_io *iow, int revents)
95{ 1331{
96 while (count--) 1332 int i;
97 { 1333
98 base->head = 0; 1334#if EV_USE_EVENTFD
99 base->wev = base->rev = EV_NONE; 1335 if (evfd >= 0)
100 ++base;
101 } 1336 {
102} 1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341#endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
103 1347
104typedef struct 1348 if (sig_pending)
105{ 1349 {
106 struct ev_watcher *w; 1350 sig_pending = 0;
107 int events;
108} ANPENDING;
109 1351
110static ANPENDING *pendings; 1352 for (i = EV_NSIG - 1; i--; )
111static int pendingmax, pendingcnt; 1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357#if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369#endif
1370}
1371
1372/*****************************************************************************/
1373
1374void
1375ev_feed_signal (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
1379
1380 if (!EV_A)
1381 return;
1382#endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386}
112 1387
113static void 1388static void
114event (struct ev_watcher *w, int events) 1389ev_sighandler (int signum)
115{ 1390{
116 w->pending = ++pendingcnt; 1391#ifdef _WIN32
117 array_needsize (pendings, pendingmax, pendingcnt, ); 1392 signal (signum, ev_sighandler);
118 pendings [pendingcnt - 1].w = w; 1393#endif
119 pendings [pendingcnt - 1].events = events;
120}
121 1394
1395 ev_feed_signal (signum);
1396}
1397
1398void noinline
1399ev_feed_signal_event (EV_P_ int signum)
1400{
1401 WL w;
1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1408#if EV_MULTIPLICITY
1409 /* it is permissible to try to feed a signal to the wrong loop */
1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1411
1412 if (expect_false (signals [signum].loop != EV_A))
1413 return;
1414#endif
1415
1416 signals [signum].pending = 0;
1417
1418 for (w = signals [signum].head; w; w = w->next)
1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1420}
1421
1422#if EV_USE_SIGNALFD
122static void 1423static void
123fd_event (int fd, int events) 1424sigfdcb (EV_P_ ev_io *iow, int revents)
124{ 1425{
125 ANFD *anfd = anfds + fd; 1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
126 struct ev_io *w;
127 1427
128 for (w = anfd->head; w; w = w->next) 1428 for (;;)
129 {
130 int ev = w->events & events;
131
132 if (ev)
133 event ((struct ev_watcher *)w, ev);
134 } 1429 {
135} 1430 ssize_t res = read (sigfd, si, sizeof (si));
136 1431
137static struct ev_timer **atimers; 1432 /* not ISO-C, as res might be -1, but works with SuS */
138static int atimermax, atimercnt; 1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
139 1435
140static struct ev_timer **rtimers; 1436 if (res < (ssize_t)sizeof (si))
141static int rtimermax, rtimercnt; 1437 break;
1438 }
1439}
1440#endif
142 1441
1442#endif
1443
1444/*****************************************************************************/
1445
1446#if EV_CHILD_ENABLE
1447static WL childs [EV_PID_HASHSIZE];
1448
1449static ev_signal childev;
1450
1451#ifndef WIFCONTINUED
1452# define WIFCONTINUED(status) 0
1453#endif
1454
1455/* handle a single child status event */
1456inline_speed void
1457child_reap (EV_P_ int chain, int pid, int status)
1458{
1459 ev_child *w;
1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1461
1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1463 {
1464 if ((w->pid == pid || !w->pid)
1465 && (!traced || (w->flags & 1)))
1466 {
1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1468 w->rpid = pid;
1469 w->rstatus = status;
1470 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1471 }
1472 }
1473}
1474
1475#ifndef WCONTINUED
1476# define WCONTINUED 0
1477#endif
1478
1479/* called on sigchld etc., calls waitpid */
143static void 1480static void
144upheap (struct ev_timer **timers, int k) 1481childcb (EV_P_ ev_signal *sw, int revents)
145{ 1482{
146 struct ev_timer *w = timers [k]; 1483 int pid, status;
147 1484
148 while (k && timers [k >> 1]->at > w->at) 1485 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1486 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1487 if (!WCONTINUED
1488 || errno != EINVAL
1489 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1490 return;
1491
1492 /* make sure we are called again until all children have been reaped */
1493 /* we need to do it this way so that the callback gets called before we continue */
1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1495
1496 child_reap (EV_A_ pid, pid, status);
1497 if ((EV_PID_HASHSIZE) > 1)
1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1499}
1500
1501#endif
1502
1503/*****************************************************************************/
1504
1505#if EV_USE_IOCP
1506# include "ev_iocp.c"
1507#endif
1508#if EV_USE_PORT
1509# include "ev_port.c"
1510#endif
1511#if EV_USE_KQUEUE
1512# include "ev_kqueue.c"
1513#endif
1514#if EV_USE_EPOLL
1515# include "ev_epoll.c"
1516#endif
1517#if EV_USE_POLL
1518# include "ev_poll.c"
1519#endif
1520#if EV_USE_SELECT
1521# include "ev_select.c"
1522#endif
1523
1524int
1525ev_version_major (void)
1526{
1527 return EV_VERSION_MAJOR;
1528}
1529
1530int
1531ev_version_minor (void)
1532{
1533 return EV_VERSION_MINOR;
1534}
1535
1536/* return true if we are running with elevated privileges and should ignore env variables */
1537int inline_size
1538enable_secure (void)
1539{
1540#ifdef _WIN32
1541 return 0;
1542#else
1543 return getuid () != geteuid ()
1544 || getgid () != getegid ();
1545#endif
1546}
1547
1548unsigned int
1549ev_supported_backends (void)
1550{
1551 unsigned int flags = 0;
1552
1553 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1554 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1555 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1556 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1557 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1558
1559 return flags;
1560}
1561
1562unsigned int
1563ev_recommended_backends (void)
1564{
1565 unsigned int flags = ev_supported_backends ();
1566
1567#ifndef __NetBSD__
1568 /* kqueue is borked on everything but netbsd apparently */
1569 /* it usually doesn't work correctly on anything but sockets and pipes */
1570 flags &= ~EVBACKEND_KQUEUE;
1571#endif
1572#ifdef __APPLE__
1573 /* only select works correctly on that "unix-certified" platform */
1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576#endif
1577#ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1579#endif
1580
1581 return flags;
1582}
1583
1584unsigned int
1585ev_embeddable_backends (void)
1586{
1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1588
1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1591 flags &= ~EVBACKEND_EPOLL;
1592
1593 return flags;
1594}
1595
1596unsigned int
1597ev_backend (EV_P)
1598{
1599 return backend;
1600}
1601
1602#if EV_FEATURE_API
1603unsigned int
1604ev_iteration (EV_P)
1605{
1606 return loop_count;
1607}
1608
1609unsigned int
1610ev_depth (EV_P)
1611{
1612 return loop_depth;
1613}
1614
1615void
1616ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1617{
1618 io_blocktime = interval;
1619}
1620
1621void
1622ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1623{
1624 timeout_blocktime = interval;
1625}
1626
1627void
1628ev_set_userdata (EV_P_ void *data)
1629{
1630 userdata = data;
1631}
1632
1633void *
1634ev_userdata (EV_P)
1635{
1636 return userdata;
1637}
1638
1639void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640{
1641 invoke_cb = invoke_pending_cb;
1642}
1643
1644void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645{
1646 release_cb = release;
1647 acquire_cb = acquire;
1648}
1649#endif
1650
1651/* initialise a loop structure, must be zero-initialised */
1652static void noinline
1653loop_init (EV_P_ unsigned int flags)
1654{
1655 if (!backend)
1656 {
1657 origflags = flags;
1658
1659#if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667#endif
1668
1669#if EV_USE_MONOTONIC
1670 if (!have_monotonic)
1671 {
1672 struct timespec ts;
1673
1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1675 have_monotonic = 1;
1676 }
1677#endif
1678
1679 /* pid check not overridable via env */
1680#ifndef _WIN32
1681 if (flags & EVFLAG_FORKCHECK)
1682 curpid = getpid ();
1683#endif
1684
1685 if (!(flags & EVFLAG_NOENV)
1686 && !enable_secure ()
1687 && getenv ("LIBEV_FLAGS"))
1688 flags = atoi (getenv ("LIBEV_FLAGS"));
1689
1690 ev_rt_now = ev_time ();
1691 mn_now = get_clock ();
1692 now_floor = mn_now;
1693 rtmn_diff = ev_rt_now - mn_now;
1694#if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696#endif
1697
1698 io_blocktime = 0.;
1699 timeout_blocktime = 0.;
1700 backend = 0;
1701 backend_fd = -1;
1702 sig_pending = 0;
1703#if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705#endif
1706#if EV_USE_INOTIFY
1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1708#endif
1709#if EV_USE_SIGNALFD
1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1711#endif
1712
1713 if (!(flags & EVBACKEND_MASK))
1714 flags |= ev_recommended_backends ();
1715
1716#if EV_USE_IOCP
1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1718#endif
1719#if EV_USE_PORT
1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1721#endif
1722#if EV_USE_KQUEUE
1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1724#endif
1725#if EV_USE_EPOLL
1726 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1727#endif
1728#if EV_USE_POLL
1729 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1730#endif
1731#if EV_USE_SELECT
1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1733#endif
1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1738 ev_init (&pipe_w, pipecb);
1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740#endif
1741 }
1742}
1743
1744/* free up a loop structure */
1745void
1746ev_loop_destroy (EV_P)
1747{
1748 int i;
1749
1750#if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754#endif
1755
1756#if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763#endif
1764
1765#if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771#endif
1772
1773 if (ev_is_active (&pipe_w))
1774 {
1775 /*ev_ref (EV_A);*/
1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1777
1778#if EV_USE_EVENTFD
1779 if (evfd >= 0)
1780 close (evfd);
1781#endif
1782
1783 if (evpipe [0] >= 0)
1784 {
1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1787 }
1788 }
1789
1790#if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793#endif
1794
1795#if EV_USE_INOTIFY
1796 if (fs_fd >= 0)
1797 close (fs_fd);
1798#endif
1799
1800 if (backend_fd >= 0)
1801 close (backend_fd);
1802
1803#if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805#endif
1806#if EV_USE_PORT
1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1808#endif
1809#if EV_USE_KQUEUE
1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1811#endif
1812#if EV_USE_EPOLL
1813 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1814#endif
1815#if EV_USE_POLL
1816 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1817#endif
1818#if EV_USE_SELECT
1819 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1820#endif
1821
1822 for (i = NUMPRI; i--; )
1823 {
1824 array_free (pending, [i]);
1825#if EV_IDLE_ENABLE
1826 array_free (idle, [i]);
1827#endif
1828 }
1829
1830 ev_free (anfds); anfds = 0; anfdmax = 0;
1831
1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
1834 array_free (fdchange, EMPTY);
1835 array_free (timer, EMPTY);
1836#if EV_PERIODIC_ENABLE
1837 array_free (periodic, EMPTY);
1838#endif
1839#if EV_FORK_ENABLE
1840 array_free (fork, EMPTY);
1841#endif
1842#if EV_CLEANUP_ENABLE
1843 array_free (cleanup, EMPTY);
1844#endif
1845 array_free (prepare, EMPTY);
1846 array_free (check, EMPTY);
1847#if EV_ASYNC_ENABLE
1848 array_free (async, EMPTY);
1849#endif
1850
1851 backend = 0;
1852
1853#if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855#endif
1856 ev_default_loop_ptr = 0;
1857#if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860#endif
1861}
1862
1863#if EV_USE_INOTIFY
1864inline_size void infy_fork (EV_P);
1865#endif
1866
1867inline_size void
1868loop_fork (EV_P)
1869{
1870#if EV_USE_PORT
1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1872#endif
1873#if EV_USE_KQUEUE
1874 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1875#endif
1876#if EV_USE_EPOLL
1877 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1878#endif
1879#if EV_USE_INOTIFY
1880 infy_fork (EV_A);
1881#endif
1882
1883 if (ev_is_active (&pipe_w))
1884 {
1885 /* this "locks" the handlers against writing to the pipe */
1886 /* while we modify the fd vars */
1887 sig_pending = 1;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 1;
1890#endif
1891
1892 ev_ref (EV_A);
1893 ev_io_stop (EV_A_ &pipe_w);
1894
1895#if EV_USE_EVENTFD
1896 if (evfd >= 0)
1897 close (evfd);
1898#endif
1899
1900 if (evpipe [0] >= 0)
1901 {
1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1904 }
1905
1906#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1907 evpipe_init (EV_A);
1908 /* now iterate over everything, in case we missed something */
1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910#endif
1911 }
1912
1913 postfork = 0;
1914}
1915
1916#if EV_MULTIPLICITY
1917
1918struct ev_loop *
1919ev_loop_new (unsigned int flags)
1920{
1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1922
1923 memset (EV_A, 0, sizeof (struct ev_loop));
1924 loop_init (EV_A_ flags);
1925
1926 if (ev_backend (EV_A))
1927 return EV_A;
1928
1929 ev_free (EV_A);
1930 return 0;
1931}
1932
1933#endif /* multiplicity */
1934
1935#if EV_VERIFY
1936static void noinline
1937verify_watcher (EV_P_ W w)
1938{
1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943}
1944
1945static void noinline
1946verify_heap (EV_P_ ANHE *heap, int N)
1947{
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958}
1959
1960static void noinline
1961array_verify (EV_P_ W *ws, int cnt)
1962{
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968}
1969#endif
1970
1971#if EV_FEATURE_API
1972void
1973ev_verify (EV_P)
1974{
1975#if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
149 { 1988 {
150 timers [k] = timers [k >> 1]; 1989 verify_watcher (EV_A_ (W)w);
151 timers [k]->active = k + 1; 1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
152 k >>= 1; 1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
153 } 1992 }
154 1993
155 timers [k] = w; 1994 assert (timermax >= timercnt);
156 timers [k]->active = k + 1; 1995 verify_heap (EV_A_ timers, timercnt);
157 1996
158} 1997#if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000#endif
159 2001
160static void 2002 for (i = NUMPRI; i--; )
161downheap (struct ev_timer **timers, int N, int k) 2003 {
162{ 2004 assert (pendingmax [i] >= pendingcnt [i]);
163 struct ev_timer *w = timers [k]; 2005#if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009#endif
2010 }
164 2011
165 while (k < (N >> 1)) 2012#if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015#endif
2016
2017#if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020#endif
2021
2022#if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025#endif
2026
2027#if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030#endif
2031
2032#if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035#endif
2036
2037# if 0
2038#if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041#endif
2042# endif
2043#endif
2044}
2045#endif
2046
2047#if EV_MULTIPLICITY
2048struct ev_loop *
2049#else
2050int
2051#endif
2052ev_default_loop (unsigned int flags)
2053{
2054 if (!ev_default_loop_ptr)
2055 {
2056#if EV_MULTIPLICITY
2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
2058#else
2059 ev_default_loop_ptr = 1;
2060#endif
2061
2062 loop_init (EV_A_ flags);
2063
2064 if (ev_backend (EV_A))
2065 {
2066#if EV_CHILD_ENABLE
2067 ev_signal_init (&childev, childcb, SIGCHLD);
2068 ev_set_priority (&childev, EV_MAXPRI);
2069 ev_signal_start (EV_A_ &childev);
2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
2071#endif
2072 }
2073 else
2074 ev_default_loop_ptr = 0;
2075 }
2076
2077 return ev_default_loop_ptr;
2078}
2079
2080void
2081ev_loop_fork (EV_P)
2082{
2083 postfork = 1; /* must be in line with ev_default_fork */
2084}
2085
2086/*****************************************************************************/
2087
2088void
2089ev_invoke (EV_P_ void *w, int revents)
2090{
2091 EV_CB_INVOKE ((W)w, revents);
2092}
2093
2094unsigned int
2095ev_pending_count (EV_P)
2096{
2097 int pri;
2098 unsigned int count = 0;
2099
2100 for (pri = NUMPRI; pri--; )
2101 count += pendingcnt [pri];
2102
2103 return count;
2104}
2105
2106void noinline
2107ev_invoke_pending (EV_P)
2108{
2109 int pri;
2110
2111 for (pri = NUMPRI; pri--; )
2112 while (pendingcnt [pri])
166 { 2113 {
167 int j = k << 1; 2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
168 2115
169 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 2116 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2117 /* ^ this is no longer true, as pending_w could be here */
2118
2119 p->w->pending = 0;
2120 EV_CB_INVOKE (p->w, p->events);
2121 EV_FREQUENT_CHECK;
2122 }
2123}
2124
2125#if EV_IDLE_ENABLE
2126/* make idle watchers pending. this handles the "call-idle */
2127/* only when higher priorities are idle" logic */
2128inline_size void
2129idle_reify (EV_P)
2130{
2131 if (expect_false (idleall))
2132 {
2133 int pri;
2134
2135 for (pri = NUMPRI; pri--; )
170 ++j; 2136 {
2137 if (pendingcnt [pri])
2138 break;
171 2139
172 if (w->at <= timers [j]->at) 2140 if (idlecnt [pri])
2141 {
2142 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2143 break;
2144 }
2145 }
2146 }
2147}
2148#endif
2149
2150/* make timers pending */
2151inline_size void
2152timers_reify (EV_P)
2153{
2154 EV_FREQUENT_CHECK;
2155
2156 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2157 {
2158 do
2159 {
2160 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2161
2162 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2163
2164 /* first reschedule or stop timer */
2165 if (w->repeat)
2166 {
2167 ev_at (w) += w->repeat;
2168 if (ev_at (w) < mn_now)
2169 ev_at (w) = mn_now;
2170
2171 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2172
2173 ANHE_at_cache (timers [HEAP0]);
2174 downheap (timers, timercnt, HEAP0);
2175 }
2176 else
2177 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2178
2179 EV_FREQUENT_CHECK;
2180 feed_reverse (EV_A_ (W)w);
2181 }
2182 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2183
2184 feed_reverse_done (EV_A_ EV_TIMER);
2185 }
2186}
2187
2188#if EV_PERIODIC_ENABLE
2189/* make periodics pending */
2190inline_size void
2191periodics_reify (EV_P)
2192{
2193 EV_FREQUENT_CHECK;
2194
2195 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2196 {
2197 int feed_count = 0;
2198
2199 do
2200 {
2201 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2202
2203 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2204
2205 /* first reschedule or stop timer */
2206 if (w->reschedule_cb)
2207 {
2208 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2209
2210 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2211
2212 ANHE_at_cache (periodics [HEAP0]);
2213 downheap (periodics, periodiccnt, HEAP0);
2214 }
2215 else if (w->interval)
2216 {
2217 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2218 /* if next trigger time is not sufficiently in the future, put it there */
2219 /* this might happen because of floating point inexactness */
2220 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2221 {
2222 ev_at (w) += w->interval;
2223
2224 /* if interval is unreasonably low we might still have a time in the past */
2225 /* so correct this. this will make the periodic very inexact, but the user */
2226 /* has effectively asked to get triggered more often than possible */
2227 if (ev_at (w) < ev_rt_now)
2228 ev_at (w) = ev_rt_now;
2229 }
2230
2231 ANHE_at_cache (periodics [HEAP0]);
2232 downheap (periodics, periodiccnt, HEAP0);
2233 }
2234 else
2235 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2236
2237 EV_FREQUENT_CHECK;
2238 feed_reverse (EV_A_ (W)w);
2239 }
2240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2241
2242 feed_reverse_done (EV_A_ EV_PERIODIC);
2243 }
2244}
2245
2246/* simply recalculate all periodics */
2247/* TODO: maybe ensure that at least one event happens when jumping forward? */
2248static void noinline
2249periodics_reschedule (EV_P)
2250{
2251 int i;
2252
2253 /* adjust periodics after time jump */
2254 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2255 {
2256 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2257
2258 if (w->reschedule_cb)
2259 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2260 else if (w->interval)
2261 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2262
2263 ANHE_at_cache (periodics [i]);
2264 }
2265
2266 reheap (periodics, periodiccnt);
2267}
2268#endif
2269
2270/* adjust all timers by a given offset */
2271static void noinline
2272timers_reschedule (EV_P_ ev_tstamp adjust)
2273{
2274 int i;
2275
2276 for (i = 0; i < timercnt; ++i)
2277 {
2278 ANHE *he = timers + i + HEAP0;
2279 ANHE_w (*he)->at += adjust;
2280 ANHE_at_cache (*he);
2281 }
2282}
2283
2284/* fetch new monotonic and realtime times from the kernel */
2285/* also detect if there was a timejump, and act accordingly */
2286inline_speed void
2287time_update (EV_P_ ev_tstamp max_block)
2288{
2289#if EV_USE_MONOTONIC
2290 if (expect_true (have_monotonic))
2291 {
2292 int i;
2293 ev_tstamp odiff = rtmn_diff;
2294
2295 mn_now = get_clock ();
2296
2297 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2298 /* interpolate in the meantime */
2299 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2300 {
2301 ev_rt_now = rtmn_diff + mn_now;
2302 return;
2303 }
2304
2305 now_floor = mn_now;
2306 ev_rt_now = ev_time ();
2307
2308 /* loop a few times, before making important decisions.
2309 * on the choice of "4": one iteration isn't enough,
2310 * in case we get preempted during the calls to
2311 * ev_time and get_clock. a second call is almost guaranteed
2312 * to succeed in that case, though. and looping a few more times
2313 * doesn't hurt either as we only do this on time-jumps or
2314 * in the unlikely event of having been preempted here.
2315 */
2316 for (i = 4; --i; )
2317 {
2318 rtmn_diff = ev_rt_now - mn_now;
2319
2320 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2321 return; /* all is well */
2322
2323 ev_rt_now = ev_time ();
2324 mn_now = get_clock ();
2325 now_floor = mn_now;
2326 }
2327
2328 /* no timer adjustment, as the monotonic clock doesn't jump */
2329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2330# if EV_PERIODIC_ENABLE
2331 periodics_reschedule (EV_A);
2332# endif
2333 }
2334 else
2335#endif
2336 {
2337 ev_rt_now = ev_time ();
2338
2339 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2340 {
2341 /* adjust timers. this is easy, as the offset is the same for all of them */
2342 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2343#if EV_PERIODIC_ENABLE
2344 periodics_reschedule (EV_A);
2345#endif
2346 }
2347
2348 mn_now = ev_rt_now;
2349 }
2350}
2351
2352void
2353ev_run (EV_P_ int flags)
2354{
2355#if EV_FEATURE_API
2356 ++loop_depth;
2357#endif
2358
2359 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2360
2361 loop_done = EVBREAK_CANCEL;
2362
2363 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2364
2365 do
2366 {
2367#if EV_VERIFY >= 2
2368 ev_verify (EV_A);
2369#endif
2370
2371#ifndef _WIN32
2372 if (expect_false (curpid)) /* penalise the forking check even more */
2373 if (expect_false (getpid () != curpid))
2374 {
2375 curpid = getpid ();
2376 postfork = 1;
2377 }
2378#endif
2379
2380#if EV_FORK_ENABLE
2381 /* we might have forked, so queue fork handlers */
2382 if (expect_false (postfork))
2383 if (forkcnt)
2384 {
2385 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2386 EV_INVOKE_PENDING;
2387 }
2388#endif
2389
2390#if EV_PREPARE_ENABLE
2391 /* queue prepare watchers (and execute them) */
2392 if (expect_false (preparecnt))
2393 {
2394 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2395 EV_INVOKE_PENDING;
2396 }
2397#endif
2398
2399 if (expect_false (loop_done))
173 break; 2400 break;
174 2401
175 timers [k] = timers [j]; 2402 /* we might have forked, so reify kernel state if necessary */
176 timers [k]->active = k + 1; 2403 if (expect_false (postfork))
177 k = j; 2404 loop_fork (EV_A);
2405
2406 /* update fd-related kernel structures */
2407 fd_reify (EV_A);
2408
2409 /* calculate blocking time */
2410 {
2411 ev_tstamp waittime = 0.;
2412 ev_tstamp sleeptime = 0.;
2413
2414 /* remember old timestamp for io_blocktime calculation */
2415 ev_tstamp prev_mn_now = mn_now;
2416
2417 /* update time to cancel out callback processing overhead */
2418 time_update (EV_A_ 1e100);
2419
2420 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2421 {
2422 waittime = MAX_BLOCKTIME;
2423
2424 if (timercnt)
2425 {
2426 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2427 if (waittime > to) waittime = to;
2428 }
2429
2430#if EV_PERIODIC_ENABLE
2431 if (periodiccnt)
2432 {
2433 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2434 if (waittime > to) waittime = to;
2435 }
2436#endif
2437
2438 /* don't let timeouts decrease the waittime below timeout_blocktime */
2439 if (expect_false (waittime < timeout_blocktime))
2440 waittime = timeout_blocktime;
2441
2442 /* extra check because io_blocktime is commonly 0 */
2443 if (expect_false (io_blocktime))
2444 {
2445 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2446
2447 if (sleeptime > waittime - backend_fudge)
2448 sleeptime = waittime - backend_fudge;
2449
2450 if (expect_true (sleeptime > 0.))
2451 {
2452 ev_sleep (sleeptime);
2453 waittime -= sleeptime;
2454 }
2455 }
2456 }
2457
2458#if EV_FEATURE_API
2459 ++loop_count;
2460#endif
2461 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2462 backend_poll (EV_A_ waittime);
2463 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2464
2465 /* update ev_rt_now, do magic */
2466 time_update (EV_A_ waittime + sleeptime);
178 } 2467 }
179 2468
180 timers [k] = w; 2469 /* queue pending timers and reschedule them */
181 timers [k]->active = k + 1; 2470 timers_reify (EV_A); /* relative timers called last */
182} 2471#if EV_PERIODIC_ENABLE
183 2472 periodics_reify (EV_A); /* absolute timers called first */
184static struct ev_signal **signals;
185static int signalmax;
186
187static void
188signals_init (struct ev_signal **base, int count)
189{
190 while (count--)
191 *base++ = 0;
192}
193
194#if HAVE_EPOLL
195# include "ev_epoll.c"
196#endif 2473#endif
197#if HAVE_SELECT
198# include "ev_select.c"
199#endif
200 2474
201int ev_init (int flags) 2475#if EV_IDLE_ENABLE
2476 /* queue idle watchers unless other events are pending */
2477 idle_reify (EV_A);
2478#endif
2479
2480#if EV_CHECK_ENABLE
2481 /* queue check watchers, to be executed first */
2482 if (expect_false (checkcnt))
2483 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2484#endif
2485
2486 EV_INVOKE_PENDING;
2487 }
2488 while (expect_true (
2489 activecnt
2490 && !loop_done
2491 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2492 ));
2493
2494 if (loop_done == EVBREAK_ONE)
2495 loop_done = EVBREAK_CANCEL;
2496
2497#if EV_FEATURE_API
2498 --loop_depth;
2499#endif
2500}
2501
2502void
2503ev_break (EV_P_ int how)
202{ 2504{
203#if HAVE_MONOTONIC 2505 loop_done = how;
2506}
2507
2508void
2509ev_ref (EV_P)
2510{
2511 ++activecnt;
2512}
2513
2514void
2515ev_unref (EV_P)
2516{
2517 --activecnt;
2518}
2519
2520void
2521ev_now_update (EV_P)
2522{
2523 time_update (EV_A_ 1e100);
2524}
2525
2526void
2527ev_suspend (EV_P)
2528{
2529 ev_now_update (EV_A);
2530}
2531
2532void
2533ev_resume (EV_P)
2534{
2535 ev_tstamp mn_prev = mn_now;
2536
2537 ev_now_update (EV_A);
2538 timers_reschedule (EV_A_ mn_now - mn_prev);
2539#if EV_PERIODIC_ENABLE
2540 /* TODO: really do this? */
2541 periodics_reschedule (EV_A);
2542#endif
2543}
2544
2545/*****************************************************************************/
2546/* singly-linked list management, used when the expected list length is short */
2547
2548inline_size void
2549wlist_add (WL *head, WL elem)
2550{
2551 elem->next = *head;
2552 *head = elem;
2553}
2554
2555inline_size void
2556wlist_del (WL *head, WL elem)
2557{
2558 while (*head)
2559 {
2560 if (expect_true (*head == elem))
2561 {
2562 *head = elem->next;
2563 break;
2564 }
2565
2566 head = &(*head)->next;
2567 }
2568}
2569
2570/* internal, faster, version of ev_clear_pending */
2571inline_speed void
2572clear_pending (EV_P_ W w)
2573{
2574 if (w->pending)
2575 {
2576 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2577 w->pending = 0;
2578 }
2579}
2580
2581int
2582ev_clear_pending (EV_P_ void *w)
2583{
2584 W w_ = (W)w;
2585 int pending = w_->pending;
2586
2587 if (expect_true (pending))
2588 {
2589 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2590 p->w = (W)&pending_w;
2591 w_->pending = 0;
2592 return p->events;
2593 }
2594 else
2595 return 0;
2596}
2597
2598inline_size void
2599pri_adjust (EV_P_ W w)
2600{
2601 int pri = ev_priority (w);
2602 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2603 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2604 ev_set_priority (w, pri);
2605}
2606
2607inline_speed void
2608ev_start (EV_P_ W w, int active)
2609{
2610 pri_adjust (EV_A_ w);
2611 w->active = active;
2612 ev_ref (EV_A);
2613}
2614
2615inline_size void
2616ev_stop (EV_P_ W w)
2617{
2618 ev_unref (EV_A);
2619 w->active = 0;
2620}
2621
2622/*****************************************************************************/
2623
2624void noinline
2625ev_io_start (EV_P_ ev_io *w)
2626{
2627 int fd = w->fd;
2628
2629 if (expect_false (ev_is_active (w)))
2630 return;
2631
2632 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2633 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2634
2635 EV_FREQUENT_CHECK;
2636
2637 ev_start (EV_A_ (W)w, 1);
2638 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2639 wlist_add (&anfds[fd].head, (WL)w);
2640
2641 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2642 w->events &= ~EV__IOFDSET;
2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647void noinline
2648ev_io_stop (EV_P_ ev_io *w)
2649{
2650 clear_pending (EV_A_ (W)w);
2651 if (expect_false (!ev_is_active (w)))
2652 return;
2653
2654 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2655
2656 EV_FREQUENT_CHECK;
2657
2658 wlist_del (&anfds[w->fd].head, (WL)w);
2659 ev_stop (EV_A_ (W)w);
2660
2661 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2662
2663 EV_FREQUENT_CHECK;
2664}
2665
2666void noinline
2667ev_timer_start (EV_P_ ev_timer *w)
2668{
2669 if (expect_false (ev_is_active (w)))
2670 return;
2671
2672 ev_at (w) += mn_now;
2673
2674 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2675
2676 EV_FREQUENT_CHECK;
2677
2678 ++timercnt;
2679 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2680 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2681 ANHE_w (timers [ev_active (w)]) = (WT)w;
2682 ANHE_at_cache (timers [ev_active (w)]);
2683 upheap (timers, ev_active (w));
2684
2685 EV_FREQUENT_CHECK;
2686
2687 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2688}
2689
2690void noinline
2691ev_timer_stop (EV_P_ ev_timer *w)
2692{
2693 clear_pending (EV_A_ (W)w);
2694 if (expect_false (!ev_is_active (w)))
2695 return;
2696
2697 EV_FREQUENT_CHECK;
2698
204 { 2699 {
205 struct timespec ts; 2700 int active = ev_active (w);
206 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2701
207 have_monotonic = 1; 2702 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2703
2704 --timercnt;
2705
2706 if (expect_true (active < timercnt + HEAP0))
2707 {
2708 timers [active] = timers [timercnt + HEAP0];
2709 adjustheap (timers, timercnt, active);
2710 }
208 } 2711 }
209#endif
210 2712
211 ev_now = ev_time (); 2713 ev_at (w) -= mn_now;
212 now = get_clock ();
213 diff = ev_now - now;
214 2714
215#if HAVE_EPOLL 2715 ev_stop (EV_A_ (W)w);
216 if (epoll_init (flags))
217 return ev_method;
218#endif
219#if HAVE_SELECT
220 if (select_init (flags))
221 return ev_method;
222#endif
223 2716
224 ev_method = EVMETHOD_NONE; 2717 EV_FREQUENT_CHECK;
225 return ev_method;
226} 2718}
227 2719
228void ev_prefork (void) 2720void noinline
2721ev_timer_again (EV_P_ ev_timer *w)
229{ 2722{
230} 2723 EV_FREQUENT_CHECK;
231 2724
232void ev_postfork_parent (void) 2725 if (ev_is_active (w))
233{
234}
235
236void ev_postfork_child (void)
237{
238#if HAVE_EPOLL
239 epoll_postfork_child ();
240#endif
241}
242
243static void
244call_pending ()
245{
246 int i;
247
248 for (i = 0; i < pendingcnt; ++i)
249 {
250 ANPENDING *p = pendings + i;
251
252 if (p->w)
253 {
254 p->w->pending = 0;
255 p->w->cb (p->w, p->events);
256 }
257 } 2726 {
258
259 pendingcnt = 0;
260}
261
262static void
263timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now)
264{
265 while (timercnt && timers [0]->at <= now)
266 {
267 struct ev_timer *w = timers [0];
268
269 /* first reschedule or stop timer */
270 if (w->repeat) 2727 if (w->repeat)
271 { 2728 {
272 if (w->is_abs)
273 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
274 else
275 w->at = now + w->repeat; 2729 ev_at (w) = mn_now + w->repeat;
276 2730 ANHE_at_cache (timers [ev_active (w)]);
277 assert (w->at > now);
278
279 downheap (timers, timercnt, 0); 2731 adjustheap (timers, timercnt, ev_active (w));
280 } 2732 }
281 else 2733 else
2734 ev_timer_stop (EV_A_ w);
2735 }
2736 else if (w->repeat)
2737 {
2738 ev_at (w) = w->repeat;
2739 ev_timer_start (EV_A_ w);
2740 }
2741
2742 EV_FREQUENT_CHECK;
2743}
2744
2745ev_tstamp
2746ev_timer_remaining (EV_P_ ev_timer *w)
2747{
2748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2749}
2750
2751#if EV_PERIODIC_ENABLE
2752void noinline
2753ev_periodic_start (EV_P_ ev_periodic *w)
2754{
2755 if (expect_false (ev_is_active (w)))
2756 return;
2757
2758 if (w->reschedule_cb)
2759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2760 else if (w->interval)
2761 {
2762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2763 /* this formula differs from the one in periodic_reify because we do not always round up */
2764 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2765 }
2766 else
2767 ev_at (w) = w->offset;
2768
2769 EV_FREQUENT_CHECK;
2770
2771 ++periodiccnt;
2772 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2773 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2774 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2775 ANHE_at_cache (periodics [ev_active (w)]);
2776 upheap (periodics, ev_active (w));
2777
2778 EV_FREQUENT_CHECK;
2779
2780 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2781}
2782
2783void noinline
2784ev_periodic_stop (EV_P_ ev_periodic *w)
2785{
2786 clear_pending (EV_A_ (W)w);
2787 if (expect_false (!ev_is_active (w)))
2788 return;
2789
2790 EV_FREQUENT_CHECK;
2791
2792 {
2793 int active = ev_active (w);
2794
2795 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2796
2797 --periodiccnt;
2798
2799 if (expect_true (active < periodiccnt + HEAP0))
2800 {
2801 periodics [active] = periodics [periodiccnt + HEAP0];
2802 adjustheap (periodics, periodiccnt, active);
2803 }
2804 }
2805
2806 ev_stop (EV_A_ (W)w);
2807
2808 EV_FREQUENT_CHECK;
2809}
2810
2811void noinline
2812ev_periodic_again (EV_P_ ev_periodic *w)
2813{
2814 /* TODO: use adjustheap and recalculation */
2815 ev_periodic_stop (EV_A_ w);
2816 ev_periodic_start (EV_A_ w);
2817}
2818#endif
2819
2820#ifndef SA_RESTART
2821# define SA_RESTART 0
2822#endif
2823
2824#if EV_SIGNAL_ENABLE
2825
2826void noinline
2827ev_signal_start (EV_P_ ev_signal *w)
2828{
2829 if (expect_false (ev_is_active (w)))
2830 return;
2831
2832 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2833
2834#if EV_MULTIPLICITY
2835 assert (("libev: a signal must not be attached to two different loops",
2836 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2837
2838 signals [w->signum - 1].loop = EV_A;
2839#endif
2840
2841 EV_FREQUENT_CHECK;
2842
2843#if EV_USE_SIGNALFD
2844 if (sigfd == -2)
2845 {
2846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2847 if (sigfd < 0 && errno == EINVAL)
2848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2849
2850 if (sigfd >= 0)
282 { 2851 {
283 evtimer_stop (w); /* nonrepeating: stop timer */ 2852 fd_intern (sigfd); /* doing it twice will not hurt */
284 --timercnt; /* maybe pass by reference instead? */ 2853
2854 sigemptyset (&sigfd_set);
2855
2856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2857 ev_set_priority (&sigfd_w, EV_MAXPRI);
2858 ev_io_start (EV_A_ &sigfd_w);
2859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
285 } 2860 }
2861 }
286 2862
287 event ((struct ev_watcher *)w, EV_TIMEOUT); 2863 if (sigfd >= 0)
2864 {
2865 /* TODO: check .head */
2866 sigaddset (&sigfd_set, w->signum);
2867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2868
2869 signalfd (sigfd, &sigfd_set, 0);
2870 }
2871#endif
2872
2873 ev_start (EV_A_ (W)w, 1);
2874 wlist_add (&signals [w->signum - 1].head, (WL)w);
2875
2876 if (!((WL)w)->next)
2877# if EV_USE_SIGNALFD
2878 if (sigfd < 0) /*TODO*/
2879# endif
2880 {
2881# ifdef _WIN32
2882 evpipe_init (EV_A);
2883
2884 signal (w->signum, ev_sighandler);
2885# else
2886 struct sigaction sa;
2887
2888 evpipe_init (EV_A);
2889
2890 sa.sa_handler = ev_sighandler;
2891 sigfillset (&sa.sa_mask);
2892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2893 sigaction (w->signum, &sa, 0);
2894
2895 if (origflags & EVFLAG_NOSIGMASK)
2896 {
2897 sigemptyset (&sa.sa_mask);
2898 sigaddset (&sa.sa_mask, w->signum);
2899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2900 }
2901#endif
2902 }
2903
2904 EV_FREQUENT_CHECK;
2905}
2906
2907void noinline
2908ev_signal_stop (EV_P_ ev_signal *w)
2909{
2910 clear_pending (EV_A_ (W)w);
2911 if (expect_false (!ev_is_active (w)))
2912 return;
2913
2914 EV_FREQUENT_CHECK;
2915
2916 wlist_del (&signals [w->signum - 1].head, (WL)w);
2917 ev_stop (EV_A_ (W)w);
2918
2919 if (!signals [w->signum - 1].head)
2920 {
2921#if EV_MULTIPLICITY
2922 signals [w->signum - 1].loop = 0; /* unattach from signal */
2923#endif
2924#if EV_USE_SIGNALFD
2925 if (sigfd >= 0)
2926 {
2927 sigset_t ss;
2928
2929 sigemptyset (&ss);
2930 sigaddset (&ss, w->signum);
2931 sigdelset (&sigfd_set, w->signum);
2932
2933 signalfd (sigfd, &sigfd_set, 0);
2934 sigprocmask (SIG_UNBLOCK, &ss, 0);
2935 }
2936 else
2937#endif
2938 signal (w->signum, SIG_DFL);
2939 }
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944#endif
2945
2946#if EV_CHILD_ENABLE
2947
2948void
2949ev_child_start (EV_P_ ev_child *w)
2950{
2951#if EV_MULTIPLICITY
2952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2953#endif
2954 if (expect_false (ev_is_active (w)))
2955 return;
2956
2957 EV_FREQUENT_CHECK;
2958
2959 ev_start (EV_A_ (W)w, 1);
2960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2961
2962 EV_FREQUENT_CHECK;
2963}
2964
2965void
2966ev_child_stop (EV_P_ ev_child *w)
2967{
2968 clear_pending (EV_A_ (W)w);
2969 if (expect_false (!ev_is_active (w)))
2970 return;
2971
2972 EV_FREQUENT_CHECK;
2973
2974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2975 ev_stop (EV_A_ (W)w);
2976
2977 EV_FREQUENT_CHECK;
2978}
2979
2980#endif
2981
2982#if EV_STAT_ENABLE
2983
2984# ifdef _WIN32
2985# undef lstat
2986# define lstat(a,b) _stati64 (a,b)
2987# endif
2988
2989#define DEF_STAT_INTERVAL 5.0074891
2990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2991#define MIN_STAT_INTERVAL 0.1074891
2992
2993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2994
2995#if EV_USE_INOTIFY
2996
2997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2999
3000static void noinline
3001infy_add (EV_P_ ev_stat *w)
3002{
3003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3004
3005 if (w->wd >= 0)
3006 {
3007 struct statfs sfs;
3008
3009 /* now local changes will be tracked by inotify, but remote changes won't */
3010 /* unless the filesystem is known to be local, we therefore still poll */
3011 /* also do poll on <2.6.25, but with normal frequency */
3012
3013 if (!fs_2625)
3014 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3015 else if (!statfs (w->path, &sfs)
3016 && (sfs.f_type == 0x1373 /* devfs */
3017 || sfs.f_type == 0xEF53 /* ext2/3 */
3018 || sfs.f_type == 0x3153464a /* jfs */
3019 || sfs.f_type == 0x52654973 /* reiser3 */
3020 || sfs.f_type == 0x01021994 /* tempfs */
3021 || sfs.f_type == 0x58465342 /* xfs */))
3022 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3023 else
3024 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3025 }
3026 else
3027 {
3028 /* can't use inotify, continue to stat */
3029 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3030
3031 /* if path is not there, monitor some parent directory for speedup hints */
3032 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3033 /* but an efficiency issue only */
3034 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3035 {
3036 char path [4096];
3037 strcpy (path, w->path);
3038
3039 do
3040 {
3041 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3042 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3043
3044 char *pend = strrchr (path, '/');
3045
3046 if (!pend || pend == path)
3047 break;
3048
3049 *pend = 0;
3050 w->wd = inotify_add_watch (fs_fd, path, mask);
3051 }
3052 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3053 }
3054 }
3055
3056 if (w->wd >= 0)
3057 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3058
3059 /* now re-arm timer, if required */
3060 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3061 ev_timer_again (EV_A_ &w->timer);
3062 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3063}
3064
3065static void noinline
3066infy_del (EV_P_ ev_stat *w)
3067{
3068 int slot;
3069 int wd = w->wd;
3070
3071 if (wd < 0)
3072 return;
3073
3074 w->wd = -2;
3075 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3076 wlist_del (&fs_hash [slot].head, (WL)w);
3077
3078 /* remove this watcher, if others are watching it, they will rearm */
3079 inotify_rm_watch (fs_fd, wd);
3080}
3081
3082static void noinline
3083infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3084{
3085 if (slot < 0)
3086 /* overflow, need to check for all hash slots */
3087 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3088 infy_wd (EV_A_ slot, wd, ev);
3089 else
3090 {
3091 WL w_;
3092
3093 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3094 {
3095 ev_stat *w = (ev_stat *)w_;
3096 w_ = w_->next; /* lets us remove this watcher and all before it */
3097
3098 if (w->wd == wd || wd == -1)
3099 {
3100 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3101 {
3102 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3103 w->wd = -1;
3104 infy_add (EV_A_ w); /* re-add, no matter what */
3105 }
3106
3107 stat_timer_cb (EV_A_ &w->timer, 0);
3108 }
3109 }
288 } 3110 }
289} 3111}
290 3112
291static void 3113static void
292time_update () 3114infy_cb (EV_P_ ev_io *w, int revents)
293{ 3115{
3116 char buf [EV_INOTIFY_BUFSIZE];
294 int i; 3117 int ofs;
295 ev_now = ev_time (); 3118 int len = read (fs_fd, buf, sizeof (buf));
296 3119
297 if (have_monotonic) 3120 for (ofs = 0; ofs < len; )
3121 {
3122 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3123 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3124 ofs += sizeof (struct inotify_event) + ev->len;
298 { 3125 }
299 ev_tstamp odiff = diff; 3126}
300 3127
301 /* detecting time jumps is much more difficult */ 3128inline_size void
302 for (i = 2; --i; ) /* loop a few times, before making important decisions */ 3129ev_check_2625 (EV_P)
3130{
3131 /* kernels < 2.6.25 are borked
3132 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3133 */
3134 if (ev_linux_version () < 0x020619)
3135 return;
3136
3137 fs_2625 = 1;
3138}
3139
3140inline_size int
3141infy_newfd (void)
3142{
3143#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3144 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3145 if (fd >= 0)
3146 return fd;
3147#endif
3148 return inotify_init ();
3149}
3150
3151inline_size void
3152infy_init (EV_P)
3153{
3154 if (fs_fd != -2)
3155 return;
3156
3157 fs_fd = -1;
3158
3159 ev_check_2625 (EV_A);
3160
3161 fs_fd = infy_newfd ();
3162
3163 if (fs_fd >= 0)
3164 {
3165 fd_intern (fs_fd);
3166 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3167 ev_set_priority (&fs_w, EV_MAXPRI);
3168 ev_io_start (EV_A_ &fs_w);
3169 ev_unref (EV_A);
3170 }
3171}
3172
3173inline_size void
3174infy_fork (EV_P)
3175{
3176 int slot;
3177
3178 if (fs_fd < 0)
3179 return;
3180
3181 ev_ref (EV_A);
3182 ev_io_stop (EV_A_ &fs_w);
3183 close (fs_fd);
3184 fs_fd = infy_newfd ();
3185
3186 if (fs_fd >= 0)
3187 {
3188 fd_intern (fs_fd);
3189 ev_io_set (&fs_w, fs_fd, EV_READ);
3190 ev_io_start (EV_A_ &fs_w);
3191 ev_unref (EV_A);
3192 }
3193
3194 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3195 {
3196 WL w_ = fs_hash [slot].head;
3197 fs_hash [slot].head = 0;
3198
3199 while (w_)
303 { 3200 {
304 now = get_clock (); 3201 ev_stat *w = (ev_stat *)w_;
305 diff = ev_now - now; 3202 w_ = w_->next; /* lets us add this watcher */
306 3203
307 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3204 w->wd = -1;
308 return; /* all is well */
309 3205
310 ev_now = ev_time (); 3206 if (fs_fd >= 0)
3207 infy_add (EV_A_ w); /* re-add, no matter what */
3208 else
3209 {
3210 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3211 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3212 ev_timer_again (EV_A_ &w->timer);
3213 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3214 }
311 } 3215 }
3216 }
3217}
312 3218
313 /* time jump detected, reschedule atimers */ 3219#endif
3220
3221#ifdef _WIN32
3222# define EV_LSTAT(p,b) _stati64 (p, b)
3223#else
3224# define EV_LSTAT(p,b) lstat (p, b)
3225#endif
3226
3227void
3228ev_stat_stat (EV_P_ ev_stat *w)
3229{
3230 if (lstat (w->path, &w->attr) < 0)
3231 w->attr.st_nlink = 0;
3232 else if (!w->attr.st_nlink)
3233 w->attr.st_nlink = 1;
3234}
3235
3236static void noinline
3237stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3238{
3239 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3240
3241 ev_statdata prev = w->attr;
3242 ev_stat_stat (EV_A_ w);
3243
3244 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3245 if (
3246 prev.st_dev != w->attr.st_dev
3247 || prev.st_ino != w->attr.st_ino
3248 || prev.st_mode != w->attr.st_mode
3249 || prev.st_nlink != w->attr.st_nlink
3250 || prev.st_uid != w->attr.st_uid
3251 || prev.st_gid != w->attr.st_gid
3252 || prev.st_rdev != w->attr.st_rdev
3253 || prev.st_size != w->attr.st_size
3254 || prev.st_atime != w->attr.st_atime
3255 || prev.st_mtime != w->attr.st_mtime
3256 || prev.st_ctime != w->attr.st_ctime
3257 ) {
3258 /* we only update w->prev on actual differences */
3259 /* in case we test more often than invoke the callback, */
3260 /* to ensure that prev is always different to attr */
3261 w->prev = prev;
3262
3263 #if EV_USE_INOTIFY
3264 if (fs_fd >= 0)
3265 {
3266 infy_del (EV_A_ w);
3267 infy_add (EV_A_ w);
3268 ev_stat_stat (EV_A_ w); /* avoid race... */
3269 }
3270 #endif
3271
3272 ev_feed_event (EV_A_ w, EV_STAT);
3273 }
3274}
3275
3276void
3277ev_stat_start (EV_P_ ev_stat *w)
3278{
3279 if (expect_false (ev_is_active (w)))
3280 return;
3281
3282 ev_stat_stat (EV_A_ w);
3283
3284 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3285 w->interval = MIN_STAT_INTERVAL;
3286
3287 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3288 ev_set_priority (&w->timer, ev_priority (w));
3289
3290#if EV_USE_INOTIFY
3291 infy_init (EV_A);
3292
3293 if (fs_fd >= 0)
3294 infy_add (EV_A_ w);
3295 else
3296#endif
3297 {
3298 ev_timer_again (EV_A_ &w->timer);
3299 ev_unref (EV_A);
3300 }
3301
3302 ev_start (EV_A_ (W)w, 1);
3303
3304 EV_FREQUENT_CHECK;
3305}
3306
3307void
3308ev_stat_stop (EV_P_ ev_stat *w)
3309{
3310 clear_pending (EV_A_ (W)w);
3311 if (expect_false (!ev_is_active (w)))
3312 return;
3313
3314 EV_FREQUENT_CHECK;
3315
3316#if EV_USE_INOTIFY
3317 infy_del (EV_A_ w);
3318#endif
3319
3320 if (ev_is_active (&w->timer))
3321 {
3322 ev_ref (EV_A);
3323 ev_timer_stop (EV_A_ &w->timer);
3324 }
3325
3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
3329}
3330#endif
3331
3332#if EV_IDLE_ENABLE
3333void
3334ev_idle_start (EV_P_ ev_idle *w)
3335{
3336 if (expect_false (ev_is_active (w)))
3337 return;
3338
3339 pri_adjust (EV_A_ (W)w);
3340
3341 EV_FREQUENT_CHECK;
3342
3343 {
3344 int active = ++idlecnt [ABSPRI (w)];
3345
3346 ++idleall;
3347 ev_start (EV_A_ (W)w, active);
3348
3349 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3350 idles [ABSPRI (w)][active - 1] = w;
3351 }
3352
3353 EV_FREQUENT_CHECK;
3354}
3355
3356void
3357ev_idle_stop (EV_P_ ev_idle *w)
3358{
3359 clear_pending (EV_A_ (W)w);
3360 if (expect_false (!ev_is_active (w)))
3361 return;
3362
3363 EV_FREQUENT_CHECK;
3364
3365 {
3366 int active = ev_active (w);
3367
3368 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3369 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3370
3371 ev_stop (EV_A_ (W)w);
3372 --idleall;
3373 }
3374
3375 EV_FREQUENT_CHECK;
3376}
3377#endif
3378
3379#if EV_PREPARE_ENABLE
3380void
3381ev_prepare_start (EV_P_ ev_prepare *w)
3382{
3383 if (expect_false (ev_is_active (w)))
3384 return;
3385
3386 EV_FREQUENT_CHECK;
3387
3388 ev_start (EV_A_ (W)w, ++preparecnt);
3389 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3390 prepares [preparecnt - 1] = w;
3391
3392 EV_FREQUENT_CHECK;
3393}
3394
3395void
3396ev_prepare_stop (EV_P_ ev_prepare *w)
3397{
3398 clear_pending (EV_A_ (W)w);
3399 if (expect_false (!ev_is_active (w)))
3400 return;
3401
3402 EV_FREQUENT_CHECK;
3403
3404 {
3405 int active = ev_active (w);
3406
3407 prepares [active - 1] = prepares [--preparecnt];
3408 ev_active (prepares [active - 1]) = active;
3409 }
3410
3411 ev_stop (EV_A_ (W)w);
3412
3413 EV_FREQUENT_CHECK;
3414}
3415#endif
3416
3417#if EV_CHECK_ENABLE
3418void
3419ev_check_start (EV_P_ ev_check *w)
3420{
3421 if (expect_false (ev_is_active (w)))
3422 return;
3423
3424 EV_FREQUENT_CHECK;
3425
3426 ev_start (EV_A_ (W)w, ++checkcnt);
3427 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3428 checks [checkcnt - 1] = w;
3429
3430 EV_FREQUENT_CHECK;
3431}
3432
3433void
3434ev_check_stop (EV_P_ ev_check *w)
3435{
3436 clear_pending (EV_A_ (W)w);
3437 if (expect_false (!ev_is_active (w)))
3438 return;
3439
3440 EV_FREQUENT_CHECK;
3441
3442 {
3443 int active = ev_active (w);
3444
3445 checks [active - 1] = checks [--checkcnt];
3446 ev_active (checks [active - 1]) = active;
3447 }
3448
3449 ev_stop (EV_A_ (W)w);
3450
3451 EV_FREQUENT_CHECK;
3452}
3453#endif
3454
3455#if EV_EMBED_ENABLE
3456void noinline
3457ev_embed_sweep (EV_P_ ev_embed *w)
3458{
3459 ev_run (w->other, EVRUN_NOWAIT);
3460}
3461
3462static void
3463embed_io_cb (EV_P_ ev_io *io, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3466
3467 if (ev_cb (w))
3468 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3469 else
3470 ev_run (w->other, EVRUN_NOWAIT);
3471}
3472
3473static void
3474embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3475{
3476 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3477
3478 {
3479 EV_P = w->other;
3480
3481 while (fdchangecnt)
3482 {
3483 fd_reify (EV_A);
3484 ev_run (EV_A_ EVRUN_NOWAIT);
3485 }
3486 }
3487}
3488
3489static void
3490embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3491{
3492 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3493
3494 ev_embed_stop (EV_A_ w);
3495
3496 {
3497 EV_P = w->other;
3498
3499 ev_loop_fork (EV_A);
3500 ev_run (EV_A_ EVRUN_NOWAIT);
3501 }
3502
3503 ev_embed_start (EV_A_ w);
3504}
3505
3506#if 0
3507static void
3508embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3509{
3510 ev_idle_stop (EV_A_ idle);
3511}
3512#endif
3513
3514void
3515ev_embed_start (EV_P_ ev_embed *w)
3516{
3517 if (expect_false (ev_is_active (w)))
3518 return;
3519
3520 {
3521 EV_P = w->other;
3522 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3523 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3524 }
3525
3526 EV_FREQUENT_CHECK;
3527
3528 ev_set_priority (&w->io, ev_priority (w));
3529 ev_io_start (EV_A_ &w->io);
3530
3531 ev_prepare_init (&w->prepare, embed_prepare_cb);
3532 ev_set_priority (&w->prepare, EV_MINPRI);
3533 ev_prepare_start (EV_A_ &w->prepare);
3534
3535 ev_fork_init (&w->fork, embed_fork_cb);
3536 ev_fork_start (EV_A_ &w->fork);
3537
3538 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3539
3540 ev_start (EV_A_ (W)w, 1);
3541
3542 EV_FREQUENT_CHECK;
3543}
3544
3545void
3546ev_embed_stop (EV_P_ ev_embed *w)
3547{
3548 clear_pending (EV_A_ (W)w);
3549 if (expect_false (!ev_is_active (w)))
3550 return;
3551
3552 EV_FREQUENT_CHECK;
3553
3554 ev_io_stop (EV_A_ &w->io);
3555 ev_prepare_stop (EV_A_ &w->prepare);
3556 ev_fork_stop (EV_A_ &w->fork);
3557
3558 ev_stop (EV_A_ (W)w);
3559
3560 EV_FREQUENT_CHECK;
3561}
3562#endif
3563
3564#if EV_FORK_ENABLE
3565void
3566ev_fork_start (EV_P_ ev_fork *w)
3567{
3568 if (expect_false (ev_is_active (w)))
3569 return;
3570
3571 EV_FREQUENT_CHECK;
3572
3573 ev_start (EV_A_ (W)w, ++forkcnt);
3574 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3575 forks [forkcnt - 1] = w;
3576
3577 EV_FREQUENT_CHECK;
3578}
3579
3580void
3581ev_fork_stop (EV_P_ ev_fork *w)
3582{
3583 clear_pending (EV_A_ (W)w);
3584 if (expect_false (!ev_is_active (w)))
3585 return;
3586
3587 EV_FREQUENT_CHECK;
3588
3589 {
3590 int active = ev_active (w);
3591
3592 forks [active - 1] = forks [--forkcnt];
3593 ev_active (forks [active - 1]) = active;
3594 }
3595
3596 ev_stop (EV_A_ (W)w);
3597
3598 EV_FREQUENT_CHECK;
3599}
3600#endif
3601
3602#if EV_CLEANUP_ENABLE
3603void
3604ev_cleanup_start (EV_P_ ev_cleanup *w)
3605{
3606 if (expect_false (ev_is_active (w)))
3607 return;
3608
3609 EV_FREQUENT_CHECK;
3610
3611 ev_start (EV_A_ (W)w, ++cleanupcnt);
3612 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3613 cleanups [cleanupcnt - 1] = w;
3614
3615 /* cleanup watchers should never keep a refcount on the loop */
3616 ev_unref (EV_A);
3617 EV_FREQUENT_CHECK;
3618}
3619
3620void
3621ev_cleanup_stop (EV_P_ ev_cleanup *w)
3622{
3623 clear_pending (EV_A_ (W)w);
3624 if (expect_false (!ev_is_active (w)))
3625 return;
3626
3627 EV_FREQUENT_CHECK;
3628 ev_ref (EV_A);
3629
3630 {
3631 int active = ev_active (w);
3632
3633 cleanups [active - 1] = cleanups [--cleanupcnt];
3634 ev_active (cleanups [active - 1]) = active;
3635 }
3636
3637 ev_stop (EV_A_ (W)w);
3638
3639 EV_FREQUENT_CHECK;
3640}
3641#endif
3642
3643#if EV_ASYNC_ENABLE
3644void
3645ev_async_start (EV_P_ ev_async *w)
3646{
3647 if (expect_false (ev_is_active (w)))
3648 return;
3649
3650 w->sent = 0;
3651
3652 evpipe_init (EV_A);
3653
3654 EV_FREQUENT_CHECK;
3655
3656 ev_start (EV_A_ (W)w, ++asynccnt);
3657 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3658 asyncs [asynccnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_async_stop (EV_P_ ev_async *w)
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 {
3673 int active = ev_active (w);
3674
3675 asyncs [active - 1] = asyncs [--asynccnt];
3676 ev_active (asyncs [active - 1]) = active;
3677 }
3678
3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683
3684void
3685ev_async_send (EV_P_ ev_async *w)
3686{
3687 w->sent = 1;
3688 evpipe_write (EV_A_ &async_pending);
3689}
3690#endif
3691
3692/*****************************************************************************/
3693
3694struct ev_once
3695{
3696 ev_io io;
3697 ev_timer to;
3698 void (*cb)(int revents, void *arg);
3699 void *arg;
3700};
3701
3702static void
3703once_cb (EV_P_ struct ev_once *once, int revents)
3704{
3705 void (*cb)(int revents, void *arg) = once->cb;
3706 void *arg = once->arg;
3707
3708 ev_io_stop (EV_A_ &once->io);
3709 ev_timer_stop (EV_A_ &once->to);
3710 ev_free (once);
3711
3712 cb (revents, arg);
3713}
3714
3715static void
3716once_cb_io (EV_P_ ev_io *w, int revents)
3717{
3718 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3719
3720 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3721}
3722
3723static void
3724once_cb_to (EV_P_ ev_timer *w, int revents)
3725{
3726 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3727
3728 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3729}
3730
3731void
3732ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3733{
3734 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3735
3736 if (expect_false (!once))
3737 {
3738 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3739 return;
3740 }
3741
3742 once->cb = cb;
3743 once->arg = arg;
3744
3745 ev_init (&once->io, once_cb_io);
3746 if (fd >= 0)
3747 {
3748 ev_io_set (&once->io, fd, events);
3749 ev_io_start (EV_A_ &once->io);
3750 }
3751
3752 ev_init (&once->to, once_cb_to);
3753 if (timeout >= 0.)
3754 {
3755 ev_timer_set (&once->to, timeout, 0.);
3756 ev_timer_start (EV_A_ &once->to);
3757 }
3758}
3759
3760/*****************************************************************************/
3761
3762#if EV_WALK_ENABLE
3763void
3764ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3765{
3766 int i, j;
3767 ev_watcher_list *wl, *wn;
3768
3769 if (types & (EV_IO | EV_EMBED))
314 for (i = 0; i < atimercnt; ++i) 3770 for (i = 0; i < anfdmax; ++i)
3771 for (wl = anfds [i].head; wl; )
315 { 3772 {
316 struct ev_timer *w = atimers [i]; 3773 wn = wl->next;
317 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 3774
3775#if EV_EMBED_ENABLE
3776 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3777 {
3778 if (types & EV_EMBED)
3779 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3780 }
3781 else
3782#endif
3783#if EV_USE_INOTIFY
3784 if (ev_cb ((ev_io *)wl) == infy_cb)
3785 ;
3786 else
3787#endif
3788 if ((ev_io *)wl != &pipe_w)
3789 if (types & EV_IO)
3790 cb (EV_A_ EV_IO, wl);
3791
3792 wl = wn;
318 } 3793 }
319 }
320 else
321 {
322 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
323 /* time jump detected, adjust rtimers */
324 for (i = 0; i < rtimercnt; ++i)
325 rtimers [i]->at += ev_now - now;
326 3794
327 now = ev_now; 3795 if (types & (EV_TIMER | EV_STAT))
328 } 3796 for (i = timercnt + HEAP0; i-- > HEAP0; )
329} 3797#if EV_STAT_ENABLE
330 3798 /*TODO: timer is not always active*/
331int ev_loop_done; 3799 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
332 3800 {
333void ev_loop (int flags) 3801 if (types & EV_STAT)
334{ 3802 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
335 double block; 3803 }
336 ev_loop_done = flags & EVLOOP_ONESHOT;
337
338 do
339 {
340 /* update fd-related kernel structures */
341 method_reify (); fdchangecnt = 0;
342
343 /* calculate blocking time */
344 if (flags & EVLOOP_NONBLOCK)
345 block = 0.;
346 else 3804 else
3805#endif
3806 if (types & EV_TIMER)
3807 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3808
3809#if EV_PERIODIC_ENABLE
3810 if (types & EV_PERIODIC)
3811 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3812 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3813#endif
3814
3815#if EV_IDLE_ENABLE
3816 if (types & EV_IDLE)
3817 for (j = NUMPRI; i--; )
3818 for (i = idlecnt [j]; i--; )
3819 cb (EV_A_ EV_IDLE, idles [j][i]);
3820#endif
3821
3822#if EV_FORK_ENABLE
3823 if (types & EV_FORK)
3824 for (i = forkcnt; i--; )
3825 if (ev_cb (forks [i]) != embed_fork_cb)
3826 cb (EV_A_ EV_FORK, forks [i]);
3827#endif
3828
3829#if EV_ASYNC_ENABLE
3830 if (types & EV_ASYNC)
3831 for (i = asynccnt; i--; )
3832 cb (EV_A_ EV_ASYNC, asyncs [i]);
3833#endif
3834
3835#if EV_PREPARE_ENABLE
3836 if (types & EV_PREPARE)
3837 for (i = preparecnt; i--; )
3838# if EV_EMBED_ENABLE
3839 if (ev_cb (prepares [i]) != embed_prepare_cb)
3840# endif
3841 cb (EV_A_ EV_PREPARE, prepares [i]);
3842#endif
3843
3844#if EV_CHECK_ENABLE
3845 if (types & EV_CHECK)
3846 for (i = checkcnt; i--; )
3847 cb (EV_A_ EV_CHECK, checks [i]);
3848#endif
3849
3850#if EV_SIGNAL_ENABLE
3851 if (types & EV_SIGNAL)
3852 for (i = 0; i < EV_NSIG - 1; ++i)
3853 for (wl = signals [i].head; wl; )
347 { 3854 {
348 block = MAX_BLOCKTIME; 3855 wn = wl->next;
349 3856 cb (EV_A_ EV_SIGNAL, wl);
350 if (rtimercnt) 3857 wl = wn;
351 {
352 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge;
353 if (block > to) block = to;
354 }
355
356 if (atimercnt)
357 {
358 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge;
359 if (block > to) block = to;
360 }
361
362 if (block < 0.) block = 0.;
363 } 3858 }
3859#endif
364 3860
365 method_poll (block); 3861#if EV_CHILD_ENABLE
366 3862 if (types & EV_CHILD)
367 /* update ev_now, do magic */ 3863 for (i = (EV_PID_HASHSIZE); i--; )
368 time_update (); 3864 for (wl = childs [i]; wl; )
369
370 /* put pending timers into pendign queue and reschedule them */
371 /* absolute timers first */
372 timers_reify (atimers, atimercnt, ev_now);
373 /* relative timers second */
374 timers_reify (rtimers, rtimercnt, now);
375
376 call_pending ();
377 }
378 while (!ev_loop_done);
379}
380
381static void
382wlist_add (struct ev_watcher_list **head, struct ev_watcher_list *elem)
383{
384 elem->next = *head;
385 *head = elem;
386}
387
388static void
389wlist_del (struct ev_watcher_list **head, struct ev_watcher_list *elem)
390{
391 while (*head)
392 {
393 if (*head == elem)
394 { 3865 {
395 *head = elem->next; 3866 wn = wl->next;
396 return; 3867 cb (EV_A_ EV_CHILD, wl);
3868 wl = wn;
397 } 3869 }
398
399 head = &(*head)->next;
400 }
401}
402
403static void
404ev_start (struct ev_watcher *w, int active)
405{
406 w->pending = 0;
407 w->active = active;
408}
409
410static void
411ev_stop (struct ev_watcher *w)
412{
413 if (w->pending)
414 pendings [w->pending - 1].w = 0;
415
416 w->active = 0;
417 /* nop */
418}
419
420void
421evio_start (struct ev_io *w)
422{
423 if (ev_is_active (w))
424 return;
425
426 int fd = w->fd;
427
428 ev_start ((struct ev_watcher *)w, 1);
429 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
430 wlist_add ((struct ev_watcher_list **)&anfds[fd].head, (struct ev_watcher_list *)w);
431
432 ++fdchangecnt;
433 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
434 fdchanges [fdchangecnt - 1] = fd;
435}
436
437void
438evio_stop (struct ev_io *w)
439{
440 if (!ev_is_active (w))
441 return;
442
443 wlist_del ((struct ev_watcher_list **)&anfds[w->fd].head, (struct ev_watcher_list *)w);
444 ev_stop ((struct ev_watcher *)w);
445
446 ++fdchangecnt;
447 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
448 fdchanges [fdchangecnt - 1] = w->fd;
449}
450
451void
452evtimer_start (struct ev_timer *w)
453{
454 if (ev_is_active (w))
455 return;
456
457 if (w->is_abs)
458 {
459 /* this formula differs from the one in timer_reify becuse we do not round up */
460 if (w->repeat)
461 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat;
462
463 ev_start ((struct ev_watcher *)w, ++atimercnt);
464 array_needsize (atimers, atimermax, atimercnt, );
465 atimers [atimercnt - 1] = w;
466 upheap (atimers, atimercnt - 1);
467 }
468 else
469 {
470 w->at += now;
471
472 ev_start ((struct ev_watcher *)w, ++rtimercnt);
473 array_needsize (rtimers, rtimermax, rtimercnt, );
474 rtimers [rtimercnt - 1] = w;
475 upheap (rtimers, rtimercnt - 1);
476 }
477
478}
479
480void
481evtimer_stop (struct ev_timer *w)
482{
483 if (!ev_is_active (w))
484 return;
485
486 if (w->is_abs)
487 {
488 if (w->active < atimercnt--)
489 {
490 atimers [w->active - 1] = atimers [atimercnt];
491 downheap (atimers, atimercnt, w->active - 1);
492 }
493 }
494 else
495 {
496 if (w->active < rtimercnt--)
497 {
498 rtimers [w->active - 1] = rtimers [rtimercnt];
499 downheap (rtimers, rtimercnt, w->active - 1);
500 }
501 }
502
503 ev_stop ((struct ev_watcher *)w);
504}
505
506void
507evsignal_start (struct ev_signal *w)
508{
509 if (ev_is_active (w))
510 return;
511
512 ev_start ((struct ev_watcher *)w, 1);
513 array_needsize (signals, signalmax, w->signum, signals_init);
514 wlist_add ((struct ev_watcher_list **)&signals [w->signum - 1], (struct ev_watcher_list *)w);
515}
516
517void
518evsignal_stop (struct ev_signal *w)
519{
520 if (!ev_is_active (w))
521 return;
522
523 wlist_del ((struct ev_watcher_list **)&signals [w->signum - 1], (struct ev_watcher_list *)w);
524 ev_stop ((struct ev_watcher *)w);
525}
526
527/*****************************************************************************/
528#if 1
529
530static void
531sin_cb (struct ev_io *w, int revents)
532{
533 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
534}
535
536static void
537ocb (struct ev_timer *w, int revents)
538{
539 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
540 evtimer_stop (w);
541 evtimer_start (w);
542}
543
544int main (void)
545{
546 struct ev_io sin;
547
548 ev_init (0);
549
550 evw_init (&sin, sin_cb, 55);
551 evio_set (&sin, 0, EV_READ);
552 evio_start (&sin);
553
554 struct ev_timer t[10000];
555
556#if 1
557 int i;
558 for (i = 0; i < 10000; ++i)
559 {
560 struct ev_timer *w = t + i;
561 evw_init (w, ocb, i);
562 evtimer_set_abs (w, drand48 (), 0.99775533);
563 evtimer_start (w);
564 if (drand48 () < 0.5)
565 evtimer_stop (w);
566 }
567#endif 3870#endif
568 3871/* EV_STAT 0x00001000 /* stat data changed */
569 struct ev_timer t1; 3872/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
570 evw_init (&t1, ocb, 0);
571 evtimer_set_abs (&t1, 5, 10);
572 evtimer_start (&t1);
573
574 ev_loop (0);
575
576 return 0;
577} 3873}
578
579#endif 3874#endif
580 3875
3876#if EV_MULTIPLICITY
3877 #include "ev_wrap.h"
3878#endif
581 3879
3880EV_CPP(})
582 3881
583

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines