ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.32 by root, Thu Nov 1 09:21:51 2007 UTC vs.
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
44#include <sys/types.h> 46#include <sys/types.h>
45#include <sys/wait.h> 47#include <sys/wait.h>
46#include <sys/time.h> 48#include <sys/time.h>
47#include <time.h> 49#include <time.h>
48 50
51/**/
52
49#ifndef EV_USE_MONOTONIC 53#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
52# endif
53#endif 55#endif
54 56
55#ifndef EV_USE_SELECT 57#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 58# define EV_USE_SELECT 1
57#endif 59#endif
58 60
59#ifndef EV_USE_EPOLL 61#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 62# define EV_USE_EPOLL 0
61#endif 63#endif
62 64
65#ifndef EV_USE_REALTIME
66# define EV_USE_REALTIME 1
67#endif
68
69/**/
70
71#ifndef CLOCK_MONOTONIC
72# undef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74#endif
75
63#ifndef CLOCK_REALTIME 76#ifndef CLOCK_REALTIME
77# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65#endif 79#endif
66#ifndef EV_USE_REALTIME 80
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 81/**/
68#endif
69 82
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 83#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 84#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 85#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 86/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 87
75#include "ev.h" 88#include "ev.h"
89
90#if __GNUC__ >= 3
91# define expect(expr,value) __builtin_expect ((expr),(value))
92# define inline inline
93#else
94# define expect(expr,value) (expr)
95# define inline static
96#endif
97
98#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1)
76 100
77typedef struct ev_watcher *W; 101typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 102typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 103typedef struct ev_watcher_time *WT;
80 104
81static ev_tstamp now, diff; /* monotonic clock */ 105static ev_tstamp now_floor, now, diff; /* monotonic clock */
82ev_tstamp ev_now; 106ev_tstamp ev_now;
83int ev_method; 107int ev_method;
84 108
85static int have_monotonic; /* runtime */ 109static int have_monotonic; /* runtime */
86 110
106 130
107static ev_tstamp 131static ev_tstamp
108get_clock (void) 132get_clock (void)
109{ 133{
110#if EV_USE_MONOTONIC 134#if EV_USE_MONOTONIC
111 if (have_monotonic) 135 if (expect_true (have_monotonic))
112 { 136 {
113 struct timespec ts; 137 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 138 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 139 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 140 }
120} 144}
121 145
122#define array_roundsize(base,n) ((n) | 4 & ~3) 146#define array_roundsize(base,n) ((n) | 4 & ~3)
123 147
124#define array_needsize(base,cur,cnt,init) \ 148#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 149 if (expect_false ((cnt) > cur)) \
126 { \ 150 { \
127 int newcnt = cur; \ 151 int newcnt = cur; \
128 do \ 152 do \
129 { \ 153 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 154 newcnt = array_roundsize (base, newcnt << 1); \
139/*****************************************************************************/ 163/*****************************************************************************/
140 164
141typedef struct 165typedef struct
142{ 166{
143 struct ev_io *head; 167 struct ev_io *head;
144 int events; 168 unsigned char events;
169 unsigned char reify;
145} ANFD; 170} ANFD;
146 171
147static ANFD *anfds; 172static ANFD *anfds;
148static int anfdmax; 173static int anfdmax;
149 174
152{ 177{
153 while (count--) 178 while (count--)
154 { 179 {
155 base->head = 0; 180 base->head = 0;
156 base->events = EV_NONE; 181 base->events = EV_NONE;
182 base->reify = 0;
183
157 ++base; 184 ++base;
158 } 185 }
159} 186}
160 187
161typedef struct 188typedef struct
225 int events = 0; 252 int events = 0;
226 253
227 for (w = anfd->head; w; w = w->next) 254 for (w = anfd->head; w; w = w->next)
228 events |= w->events; 255 events |= w->events;
229 256
230 anfd->events &= ~EV_REIFY; 257 anfd->reify = 0;
231 258
232 if (anfd->events != events) 259 if (anfd->events != events)
233 { 260 {
234 method_modify (fd, anfd->events, events); 261 method_modify (fd, anfd->events, events);
235 anfd->events = events; 262 anfd->events = events;
240} 267}
241 268
242static void 269static void
243fd_change (int fd) 270fd_change (int fd)
244{ 271{
245 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 272 if (anfds [fd].reify || fdchangecnt < 0)
246 return; 273 return;
247 274
248 anfds [fd].events |= EV_REIFY; 275 anfds [fd].reify = 1;
249 276
250 ++fdchangecnt; 277 ++fdchangecnt;
251 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 278 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
252 fdchanges [fdchangecnt - 1] = fd; 279 fdchanges [fdchangecnt - 1] = fd;
253} 280}
262 if (anfds [fd].events) 289 if (anfds [fd].events)
263 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
264 while (anfds [fd].head) 291 while (anfds [fd].head)
265 { 292 {
266 ev_io_stop (anfds [fd].head); 293 ev_io_stop (anfds [fd].head);
267 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE);
268 } 295 }
269} 296}
270 297
271/*****************************************************************************/ 298/*****************************************************************************/
272 299
320/*****************************************************************************/ 347/*****************************************************************************/
321 348
322typedef struct 349typedef struct
323{ 350{
324 struct ev_signal *head; 351 struct ev_signal *head;
325 sig_atomic_t gotsig; 352 sig_atomic_t volatile gotsig;
326} ANSIG; 353} ANSIG;
327 354
328static ANSIG *signals; 355static ANSIG *signals;
329static int signalmax; 356static int signalmax;
330 357
331static int sigpipe [2]; 358static int sigpipe [2];
332static sig_atomic_t gotsig; 359static sig_atomic_t volatile gotsig;
333static struct ev_io sigev; 360static struct ev_io sigev;
334 361
335static void 362static void
336signals_init (ANSIG *base, int count) 363signals_init (ANSIG *base, int count)
337{ 364{
338 while (count--) 365 while (count--)
339 { 366 {
340 base->head = 0; 367 base->head = 0;
341 base->gotsig = 0; 368 base->gotsig = 0;
369
342 ++base; 370 ++base;
343 } 371 }
344} 372}
345 373
346static void 374static void
349 signals [signum - 1].gotsig = 1; 377 signals [signum - 1].gotsig = 1;
350 378
351 if (!gotsig) 379 if (!gotsig)
352 { 380 {
353 gotsig = 1; 381 gotsig = 1;
354 write (sigpipe [1], &gotsig, 1); 382 write (sigpipe [1], &signum, 1);
355 } 383 }
356} 384}
357 385
358static void 386static void
359sigcb (struct ev_io *iow, int revents) 387sigcb (struct ev_io *iow, int revents)
360{ 388{
361 struct ev_signal *w; 389 struct ev_signal *w;
362 int sig; 390 int signum;
363 391
392 read (sigpipe [0], &revents, 1);
364 gotsig = 0; 393 gotsig = 0;
365 read (sigpipe [0], &revents, 1);
366 394
367 for (sig = signalmax; sig--; ) 395 for (signum = signalmax; signum--; )
368 if (signals [sig].gotsig) 396 if (signals [signum].gotsig)
369 { 397 {
370 signals [sig].gotsig = 0; 398 signals [signum].gotsig = 0;
371 399
372 for (w = signals [sig].head; w; w = w->next) 400 for (w = signals [signum].head; w; w = w->next)
373 event ((W)w, EV_SIGNAL); 401 event ((W)w, EV_SIGNAL);
374 } 402 }
375} 403}
376 404
377static void 405static void
414 struct ev_child *w; 442 struct ev_child *w;
415 int pid, status; 443 int pid, status;
416 444
417 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1)
418 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next)
419 if (w->pid == pid || w->pid == -1) 447 if (w->pid == pid || !w->pid)
420 { 448 {
421 w->status = status; 449 w->status = status;
422 event ((W)w, EV_CHILD); 450 event ((W)w, EV_CHILD);
423 } 451 }
424} 452}
454 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 482 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
455 have_monotonic = 1; 483 have_monotonic = 1;
456 } 484 }
457#endif 485#endif
458 486
459 ev_now = ev_time (); 487 ev_now = ev_time ();
460 now = get_clock (); 488 now = get_clock ();
489 now_floor = now;
461 diff = ev_now - now; 490 diff = ev_now - now;
462 491
463 if (pipe (sigpipe)) 492 if (pipe (sigpipe))
464 return 0; 493 return 0;
465 494
466 ev_method = EVMETHOD_NONE; 495 ev_method = EVMETHOD_NONE;
485} 514}
486 515
487/*****************************************************************************/ 516/*****************************************************************************/
488 517
489void 518void
490ev_prefork (void) 519ev_fork_prepare (void)
491{ 520{
492 /* nop */ 521 /* nop */
493} 522}
494 523
495void 524void
496ev_postfork_parent (void) 525ev_fork_parent (void)
497{ 526{
498 /* nop */ 527 /* nop */
499} 528}
500 529
501void 530void
502ev_postfork_child (void) 531ev_fork_child (void)
503{ 532{
504#if EV_USE_EPOLL 533#if EV_USE_EPOLL
505 if (ev_method == EVMETHOD_EPOLL) 534 if (ev_method == EVMETHOD_EPOLL)
506 epoll_postfork_child (); 535 epoll_postfork_child ();
507#endif 536#endif
538 struct ev_timer *w = timers [0]; 567 struct ev_timer *w = timers [0];
539 568
540 /* first reschedule or stop timer */ 569 /* first reschedule or stop timer */
541 if (w->repeat) 570 if (w->repeat)
542 { 571 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
543 w->at = now + w->repeat; 573 w->at = now + w->repeat;
544 assert (("timer timeout in the past, negative repeat?", w->at > now));
545 downheap ((WT *)timers, timercnt, 0); 574 downheap ((WT *)timers, timercnt, 0);
546 } 575 }
547 else 576 else
548 ev_timer_stop (w); /* nonrepeating: stop timer */ 577 ev_timer_stop (w); /* nonrepeating: stop timer */
549 578
560 589
561 /* first reschedule or stop timer */ 590 /* first reschedule or stop timer */
562 if (w->interval) 591 if (w->interval)
563 { 592 {
564 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval;
565 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now));
566 downheap ((WT *)periodics, periodiccnt, 0); 595 downheap ((WT *)periodics, periodiccnt, 0);
567 } 596 }
568 else 597 else
569 ev_periodic_stop (w); /* nonrepeating: stop timer */ 598 ev_periodic_stop (w); /* nonrepeating: stop timer */
570 599
571 event ((W)w, EV_TIMEOUT); 600 event ((W)w, EV_PERIODIC);
572 } 601 }
573} 602}
574 603
575static void 604static void
576periodics_reschedule (ev_tstamp diff) 605periodics_reschedule (ev_tstamp diff)
595 } 624 }
596 } 625 }
597 } 626 }
598} 627}
599 628
629static int
630time_update_monotonic (void)
631{
632 now = get_clock ();
633
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
635 {
636 ev_now = now + diff;
637 return 0;
638 }
639 else
640 {
641 now_floor = now;
642 ev_now = ev_time ();
643 return 1;
644 }
645}
646
600static void 647static void
601time_update (void) 648time_update (void)
602{ 649{
603 int i; 650 int i;
604 651
605 ev_now = ev_time (); 652#if EV_USE_MONOTONIC
606
607 if (have_monotonic) 653 if (expect_true (have_monotonic))
608 { 654 {
655 if (time_update_monotonic ())
656 {
609 ev_tstamp odiff = diff; 657 ev_tstamp odiff = diff;
610 658
611 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 659 for (i = 4; --i; ) /* loop a few times, before making important decisions */
612 { 660 {
613 now = get_clock ();
614 diff = ev_now - now; 661 diff = ev_now - now;
615 662
616 if (fabs (odiff - diff) < MIN_TIMEJUMP) 663 if (fabs (odiff - diff) < MIN_TIMEJUMP)
617 return; /* all is well */ 664 return; /* all is well */
618 665
619 ev_now = ev_time (); 666 ev_now = ev_time ();
667 now = get_clock ();
668 now_floor = now;
620 } 669 }
621 670
622 periodics_reschedule (diff - odiff); 671 periodics_reschedule (diff - odiff);
623 /* no timer adjustment, as the monotonic clock doesn't jump */ 672 /* no timer adjustment, as the monotonic clock doesn't jump */
673 }
624 } 674 }
625 else 675 else
676#endif
626 { 677 {
678 ev_now = ev_time ();
679
627 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
628 { 681 {
629 periodics_reschedule (ev_now - now); 682 periodics_reschedule (ev_now - now);
630 683
631 /* adjust timers. this is easy, as the offset is the same for all */ 684 /* adjust timers. this is easy, as the offset is the same for all */
632 for (i = 0; i < timercnt; ++i) 685 for (i = 0; i < timercnt; ++i)
645 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
646 699
647 do 700 do
648 { 701 {
649 /* queue check watchers (and execute them) */ 702 /* queue check watchers (and execute them) */
650 if (preparecnt) 703 if (expect_false (preparecnt))
651 { 704 {
652 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 705 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
653 call_pending (); 706 call_pending ();
654 } 707 }
655 708
658 711
659 /* calculate blocking time */ 712 /* calculate blocking time */
660 713
661 /* we only need this for !monotonic clockor timers, but as we basically 714 /* we only need this for !monotonic clockor timers, but as we basically
662 always have timers, we just calculate it always */ 715 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic))
718 time_update_monotonic ();
719 else
720#endif
721 {
663 ev_now = ev_time (); 722 ev_now = ev_time ();
723 now = ev_now;
724 }
664 725
665 if (flags & EVLOOP_NONBLOCK || idlecnt) 726 if (flags & EVLOOP_NONBLOCK || idlecnt)
666 block = 0.; 727 block = 0.;
667 else 728 else
668 { 729 {
669 block = MAX_BLOCKTIME; 730 block = MAX_BLOCKTIME;
670 731
671 if (timercnt) 732 if (timercnt)
672 { 733 {
673 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 734 ev_tstamp to = timers [0]->at - now + method_fudge;
674 if (block > to) block = to; 735 if (block > to) block = to;
675 } 736 }
676 737
677 if (periodiccnt) 738 if (periodiccnt)
678 { 739 {
731 head = &(*head)->next; 792 head = &(*head)->next;
732 } 793 }
733} 794}
734 795
735static void 796static void
736ev_clear (W w) 797ev_clear_pending (W w)
737{ 798{
738 if (w->pending) 799 if (w->pending)
739 { 800 {
740 pendings [w->pending - 1].w = 0; 801 pendings [w->pending - 1].w = 0;
741 w->pending = 0; 802 w->pending = 0;
757/*****************************************************************************/ 818/*****************************************************************************/
758 819
759void 820void
760ev_io_start (struct ev_io *w) 821ev_io_start (struct ev_io *w)
761{ 822{
823 int fd = w->fd;
824
762 if (ev_is_active (w)) 825 if (ev_is_active (w))
763 return; 826 return;
764 827
765 int fd = w->fd; 828 assert (("ev_io_start called with negative fd", fd >= 0));
766 829
767 ev_start ((W)w, 1); 830 ev_start ((W)w, 1);
768 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 831 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
769 wlist_add ((WL *)&anfds[fd].head, (WL)w); 832 wlist_add ((WL *)&anfds[fd].head, (WL)w);
770 833
772} 835}
773 836
774void 837void
775ev_io_stop (struct ev_io *w) 838ev_io_stop (struct ev_io *w)
776{ 839{
777 ev_clear ((W)w); 840 ev_clear_pending ((W)w);
778 if (!ev_is_active (w)) 841 if (!ev_is_active (w))
779 return; 842 return;
780 843
781 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
782 ev_stop ((W)w); 845 ev_stop ((W)w);
790 if (ev_is_active (w)) 853 if (ev_is_active (w))
791 return; 854 return;
792 855
793 w->at += now; 856 w->at += now;
794 857
795 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
796 859
797 ev_start ((W)w, ++timercnt); 860 ev_start ((W)w, ++timercnt);
798 array_needsize (timers, timermax, timercnt, ); 861 array_needsize (timers, timermax, timercnt, );
799 timers [timercnt - 1] = w; 862 timers [timercnt - 1] = w;
800 upheap ((WT *)timers, timercnt - 1); 863 upheap ((WT *)timers, timercnt - 1);
801} 864}
802 865
803void 866void
804ev_timer_stop (struct ev_timer *w) 867ev_timer_stop (struct ev_timer *w)
805{ 868{
806 ev_clear ((W)w); 869 ev_clear_pending ((W)w);
807 if (!ev_is_active (w)) 870 if (!ev_is_active (w))
808 return; 871 return;
809 872
810 if (w->active < timercnt--) 873 if (w->active < timercnt--)
811 { 874 {
839ev_periodic_start (struct ev_periodic *w) 902ev_periodic_start (struct ev_periodic *w)
840{ 903{
841 if (ev_is_active (w)) 904 if (ev_is_active (w))
842 return; 905 return;
843 906
844 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
845 908
846 /* this formula differs from the one in periodic_reify because we do not always round up */ 909 /* this formula differs from the one in periodic_reify because we do not always round up */
847 if (w->interval) 910 if (w->interval)
848 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
849 912
854} 917}
855 918
856void 919void
857ev_periodic_stop (struct ev_periodic *w) 920ev_periodic_stop (struct ev_periodic *w)
858{ 921{
859 ev_clear ((W)w); 922 ev_clear_pending ((W)w);
860 if (!ev_is_active (w)) 923 if (!ev_is_active (w))
861 return; 924 return;
862 925
863 if (w->active < periodiccnt--) 926 if (w->active < periodiccnt--)
864 { 927 {
872void 935void
873ev_signal_start (struct ev_signal *w) 936ev_signal_start (struct ev_signal *w)
874{ 937{
875 if (ev_is_active (w)) 938 if (ev_is_active (w))
876 return; 939 return;
940
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
877 942
878 ev_start ((W)w, 1); 943 ev_start ((W)w, 1);
879 array_needsize (signals, signalmax, w->signum, signals_init); 944 array_needsize (signals, signalmax, w->signum, signals_init);
880 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
881 946
890} 955}
891 956
892void 957void
893ev_signal_stop (struct ev_signal *w) 958ev_signal_stop (struct ev_signal *w)
894{ 959{
895 ev_clear ((W)w); 960 ev_clear_pending ((W)w);
896 if (!ev_is_active (w)) 961 if (!ev_is_active (w))
897 return; 962 return;
898 963
899 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
900 ev_stop ((W)w); 965 ev_stop ((W)w);
915} 980}
916 981
917void 982void
918ev_idle_stop (struct ev_idle *w) 983ev_idle_stop (struct ev_idle *w)
919{ 984{
920 ev_clear ((W)w); 985 ev_clear_pending ((W)w);
921 if (ev_is_active (w)) 986 if (ev_is_active (w))
922 return; 987 return;
923 988
924 idles [w->active - 1] = idles [--idlecnt]; 989 idles [w->active - 1] = idles [--idlecnt];
925 ev_stop ((W)w); 990 ev_stop ((W)w);
937} 1002}
938 1003
939void 1004void
940ev_prepare_stop (struct ev_prepare *w) 1005ev_prepare_stop (struct ev_prepare *w)
941{ 1006{
942 ev_clear ((W)w); 1007 ev_clear_pending ((W)w);
943 if (ev_is_active (w)) 1008 if (ev_is_active (w))
944 return; 1009 return;
945 1010
946 prepares [w->active - 1] = prepares [--preparecnt]; 1011 prepares [w->active - 1] = prepares [--preparecnt];
947 ev_stop ((W)w); 1012 ev_stop ((W)w);
959} 1024}
960 1025
961void 1026void
962ev_check_stop (struct ev_check *w) 1027ev_check_stop (struct ev_check *w)
963{ 1028{
964 ev_clear ((W)w); 1029 ev_clear_pending ((W)w);
965 if (ev_is_active (w)) 1030 if (ev_is_active (w))
966 return; 1031 return;
967 1032
968 checks [w->active - 1] = checks [--checkcnt]; 1033 checks [w->active - 1] = checks [--checkcnt];
969 ev_stop ((W)w); 1034 ev_stop ((W)w);
980} 1045}
981 1046
982void 1047void
983ev_child_stop (struct ev_child *w) 1048ev_child_stop (struct ev_child *w)
984{ 1049{
985 ev_clear ((W)w); 1050 ev_clear_pending ((W)w);
986 if (ev_is_active (w)) 1051 if (ev_is_active (w))
987 return; 1052 return;
988 1053
989 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990 ev_stop ((W)w); 1055 ev_stop ((W)w);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines