ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_EMBED
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
42#include <stdio.h> 42#include <stdio.h>
43 43
44#include <assert.h> 44#include <assert.h>
45#include <errno.h> 45#include <errno.h>
46#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
47#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
48#include <sys/time.h> 50#include <sys/time.h>
49#include <time.h> 51#include <time.h>
50 52
51/**/ 53/**/
52 54
56 58
57#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
59#endif 61#endif
60 62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
61#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
63#endif 73#endif
64 74
65#ifndef EV_USE_REALTIME 75#ifndef EV_USE_REALTIME
66# define EV_USE_REALTIME 1 76# define EV_USE_REALTIME 1
67#endif 77#endif
83#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
84#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
85#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
86/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
87 97
98#ifndef EV_EMBED
88#include "ev.h" 99# include "ev.h"
100#endif
89 101
90#if __GNUC__ >= 3 102#if __GNUC__ >= 3
91# define expect(expr,value) __builtin_expect ((expr),(value)) 103# define expect(expr,value) __builtin_expect ((expr),(value))
92# define inline inline 104# define inline inline
93#else 105#else
96#endif 108#endif
97 109
98#define expect_false(expr) expect ((expr) != 0, 0) 110#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1) 111#define expect_true(expr) expect ((expr) != 0, 1)
100 112
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
114#define ABSPRI(w) ((w)->priority - EV_MINPRI)
115
101typedef struct ev_watcher *W; 116typedef struct ev_watcher *W;
102typedef struct ev_watcher_list *WL; 117typedef struct ev_watcher_list *WL;
103typedef struct ev_watcher_time *WT; 118typedef struct ev_watcher_time *WT;
104 119
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
106ev_tstamp ev_now;
107int ev_method;
108
109static int have_monotonic; /* runtime */
110
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
112static void (*method_modify)(int fd, int oev, int nev);
113static void (*method_poll)(ev_tstamp timeout);
114 121
115/*****************************************************************************/ 122/*****************************************************************************/
116 123
117ev_tstamp 124typedef struct
125{
126 struct ev_watcher_list *head;
127 unsigned char events;
128 unsigned char reify;
129} ANFD;
130
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137#if EV_MULTIPLICITY
138
139struct ev_loop
140{
141# define VAR(name,decl) decl;
142# include "ev_vars.h"
143};
144# undef VAR
145# include "ev_wrap.h"
146
147#else
148
149# define VAR(name,decl) static decl;
150# include "ev_vars.h"
151# undef VAR
152
153#endif
154
155/*****************************************************************************/
156
157inline ev_tstamp
118ev_time (void) 158ev_time (void)
119{ 159{
120#if EV_USE_REALTIME 160#if EV_USE_REALTIME
121 struct timespec ts; 161 struct timespec ts;
122 clock_gettime (CLOCK_REALTIME, &ts); 162 clock_gettime (CLOCK_REALTIME, &ts);
126 gettimeofday (&tv, 0); 166 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 167 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif 168#endif
129} 169}
130 170
131static ev_tstamp 171inline ev_tstamp
132get_clock (void) 172get_clock (void)
133{ 173{
134#if EV_USE_MONOTONIC 174#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 175 if (expect_true (have_monotonic))
136 { 176 {
139 return ts.tv_sec + ts.tv_nsec * 1e-9; 179 return ts.tv_sec + ts.tv_nsec * 1e-9;
140 } 180 }
141#endif 181#endif
142 182
143 return ev_time (); 183 return ev_time ();
184}
185
186ev_tstamp
187ev_now (EV_P)
188{
189 return rt_now;
144} 190}
145 191
146#define array_roundsize(base,n) ((n) | 4 & ~3) 192#define array_roundsize(base,n) ((n) | 4 & ~3)
147 193
148#define array_needsize(base,cur,cnt,init) \ 194#define array_needsize(base,cur,cnt,init) \
160 cur = newcnt; \ 206 cur = newcnt; \
161 } 207 }
162 208
163/*****************************************************************************/ 209/*****************************************************************************/
164 210
165typedef struct
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171
172static ANFD *anfds;
173static int anfdmax;
174
175static void 211static void
176anfds_init (ANFD *base, int count) 212anfds_init (ANFD *base, int count)
177{ 213{
178 while (count--) 214 while (count--)
179 { 215 {
183 219
184 ++base; 220 ++base;
185 } 221 }
186} 222}
187 223
188typedef struct
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void 224static void
198event (W w, int events) 225event (EV_P_ W w, int events)
199{ 226{
200 if (w->pending) 227 if (w->pending)
201 { 228 {
202 pendings [w->pending - 1].events |= events; 229 pendings [ABSPRI (w)][w->pending - 1].events |= events;
203 return; 230 return;
204 } 231 }
205 232
206 w->pending = ++pendingcnt; 233 w->pending = ++pendingcnt [ABSPRI (w)];
207 array_needsize (pendings, pendingmax, pendingcnt, ); 234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
208 pendings [pendingcnt - 1].w = w; 235 pendings [ABSPRI (w)][w->pending - 1].w = w;
209 pendings [pendingcnt - 1].events = events; 236 pendings [ABSPRI (w)][w->pending - 1].events = events;
210} 237}
211 238
212static void 239static void
213queue_events (W *events, int eventcnt, int type) 240queue_events (EV_P_ W *events, int eventcnt, int type)
214{ 241{
215 int i; 242 int i;
216 243
217 for (i = 0; i < eventcnt; ++i) 244 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type); 245 event (EV_A_ events [i], type);
219} 246}
220 247
221static void 248static void
222fd_event (int fd, int events) 249fd_event (EV_P_ int fd, int events)
223{ 250{
224 ANFD *anfd = anfds + fd; 251 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 252 struct ev_io *w;
226 253
227 for (w = anfd->head; w; w = w->next) 254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
228 { 255 {
229 int ev = w->events & events; 256 int ev = w->events & events;
230 257
231 if (ev) 258 if (ev)
232 event ((W)w, ev); 259 event (EV_A_ (W)w, ev);
233 } 260 }
234} 261}
235 262
236/*****************************************************************************/ 263/*****************************************************************************/
237 264
238static int *fdchanges;
239static int fdchangemax, fdchangecnt;
240
241static void 265static void
242fd_reify (void) 266fd_reify (EV_P)
243{ 267{
244 int i; 268 int i;
245 269
246 for (i = 0; i < fdchangecnt; ++i) 270 for (i = 0; i < fdchangecnt; ++i)
247 { 271 {
249 ANFD *anfd = anfds + fd; 273 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 274 struct ev_io *w;
251 275
252 int events = 0; 276 int events = 0;
253 277
254 for (w = anfd->head; w; w = w->next) 278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 events |= w->events; 279 events |= w->events;
256 280
257 anfd->reify = 0; 281 anfd->reify = 0;
258 282
259 if (anfd->events != events) 283 if (anfd->events != events)
260 { 284 {
261 method_modify (fd, anfd->events, events); 285 method_modify (EV_A_ fd, anfd->events, events);
262 anfd->events = events; 286 anfd->events = events;
263 } 287 }
264 } 288 }
265 289
266 fdchangecnt = 0; 290 fdchangecnt = 0;
267} 291}
268 292
269static void 293static void
270fd_change (int fd) 294fd_change (EV_P_ int fd)
271{ 295{
272 if (anfds [fd].reify || fdchangecnt < 0) 296 if (anfds [fd].reify || fdchangecnt < 0)
273 return; 297 return;
274 298
275 anfds [fd].reify = 1; 299 anfds [fd].reify = 1;
277 ++fdchangecnt; 301 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 302 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
279 fdchanges [fdchangecnt - 1] = fd; 303 fdchanges [fdchangecnt - 1] = fd;
280} 304}
281 305
306static void
307fd_kill (EV_P_ int fd)
308{
309 struct ev_io *w;
310
311 while ((w = (struct ev_io *)anfds [fd].head))
312 {
313 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 }
316}
317
282/* called on EBADF to verify fds */ 318/* called on EBADF to verify fds */
283static void 319static void
284fd_recheck (void) 320fd_ebadf (EV_P)
285{ 321{
286 int fd; 322 int fd;
287 323
288 for (fd = 0; fd < anfdmax; ++fd) 324 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 325 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
291 while (anfds [fd].head) 327 fd_kill (EV_A_ fd);
328}
329
330/* called on ENOMEM in select/poll to kill some fds and retry */
331static void
332fd_enomem (EV_P)
333{
334 int fd = anfdmax;
335
336 while (fd--)
337 if (anfds [fd].events)
292 { 338 {
293 ev_io_stop (anfds [fd].head); 339 close (fd);
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 340 fd_kill (EV_A_ fd);
341 return;
295 } 342 }
343}
344
345/* susually called after fork if method needs to re-arm all fds from scratch */
346static void
347fd_rearm_all (EV_P)
348{
349 int fd;
350
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 {
355 anfds [fd].events = 0;
356 fd_change (fd);
357 }
296} 358}
297 359
298/*****************************************************************************/ 360/*****************************************************************************/
299 361
300static struct ev_timer **timers;
301static int timermax, timercnt;
302
303static struct ev_periodic **periodics;
304static int periodicmax, periodiccnt;
305
306static void 362static void
307upheap (WT *timers, int k) 363upheap (WT *heap, int k)
308{ 364{
309 WT w = timers [k]; 365 WT w = heap [k];
310 366
311 while (k && timers [k >> 1]->at > w->at) 367 while (k && heap [k >> 1]->at > w->at)
312 { 368 {
313 timers [k] = timers [k >> 1]; 369 heap [k] = heap [k >> 1];
314 timers [k]->active = k + 1; 370 heap [k]->active = k + 1;
315 k >>= 1; 371 k >>= 1;
316 } 372 }
317 373
318 timers [k] = w; 374 heap [k] = w;
319 timers [k]->active = k + 1; 375 heap [k]->active = k + 1;
320 376
321} 377}
322 378
323static void 379static void
324downheap (WT *timers, int N, int k) 380downheap (WT *heap, int N, int k)
325{ 381{
326 WT w = timers [k]; 382 WT w = heap [k];
327 383
328 while (k < (N >> 1)) 384 while (k < (N >> 1))
329 { 385 {
330 int j = k << 1; 386 int j = k << 1;
331 387
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
333 ++j; 389 ++j;
334 390
335 if (w->at <= timers [j]->at) 391 if (w->at <= heap [j]->at)
336 break; 392 break;
337 393
338 timers [k] = timers [j]; 394 heap [k] = heap [j];
339 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
340 k = j; 396 k = j;
341 } 397 }
342 398
343 timers [k] = w; 399 heap [k] = w;
344 timers [k]->active = k + 1; 400 heap [k]->active = k + 1;
345} 401}
346 402
347/*****************************************************************************/ 403/*****************************************************************************/
348 404
349typedef struct 405typedef struct
350{ 406{
351 struct ev_signal *head; 407 struct ev_watcher_list *head;
352 sig_atomic_t volatile gotsig; 408 sig_atomic_t volatile gotsig;
353} ANSIG; 409} ANSIG;
354 410
355static ANSIG *signals; 411static ANSIG *signals;
356static int signalmax; 412static int signalmax;
357 413
358static int sigpipe [2]; 414static int sigpipe [2];
359static sig_atomic_t volatile gotsig; 415static sig_atomic_t volatile gotsig;
360static struct ev_io sigev;
361 416
362static void 417static void
363signals_init (ANSIG *base, int count) 418signals_init (ANSIG *base, int count)
364{ 419{
365 while (count--) 420 while (count--)
376{ 431{
377 signals [signum - 1].gotsig = 1; 432 signals [signum - 1].gotsig = 1;
378 433
379 if (!gotsig) 434 if (!gotsig)
380 { 435 {
436 int old_errno = errno;
381 gotsig = 1; 437 gotsig = 1;
382 write (sigpipe [1], &signum, 1); 438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
383 } 440 }
384} 441}
385 442
386static void 443static void
387sigcb (struct ev_io *iow, int revents) 444sigcb (EV_P_ struct ev_io *iow, int revents)
388{ 445{
389 struct ev_signal *w; 446 struct ev_watcher_list *w;
390 int signum; 447 int signum;
391 448
392 read (sigpipe [0], &revents, 1); 449 read (sigpipe [0], &revents, 1);
393 gotsig = 0; 450 gotsig = 0;
394 451
396 if (signals [signum].gotsig) 453 if (signals [signum].gotsig)
397 { 454 {
398 signals [signum].gotsig = 0; 455 signals [signum].gotsig = 0;
399 456
400 for (w = signals [signum].head; w; w = w->next) 457 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL); 458 event (EV_A_ (W)w, EV_SIGNAL);
402 } 459 }
403} 460}
404 461
405static void 462static void
406siginit (void) 463siginit (EV_P)
407{ 464{
465#ifndef WIN32
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410 468
411 /* rather than sort out wether we really need nb, set it */ 469 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
414 473
415 ev_io_set (&sigev, sigpipe [0], EV_READ); 474 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev); 475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
417} 477}
418 478
419/*****************************************************************************/ 479/*****************************************************************************/
420 480
421static struct ev_idle **idles; 481#ifndef WIN32
422static int idlemax, idlecnt;
423
424static struct ev_prepare **prepares;
425static int preparemax, preparecnt;
426
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431
432static struct ev_child *childs [PID_HASHSIZE];
433static struct ev_signal childev;
434 482
435#ifndef WCONTINUED 483#ifndef WCONTINUED
436# define WCONTINUED 0 484# define WCONTINUED 0
437#endif 485#endif
438 486
439static void 487static void
440childcb (struct ev_signal *sw, int revents) 488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
441{ 489{
442 struct ev_child *w; 490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents)
504{
443 int pid, status; 505 int pid, status;
444 506
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 508 {
447 if (w->pid == pid || !w->pid) 509 /* make sure we are called again until all childs have been reaped */
448 { 510 event (EV_A_ (W)sw, EV_SIGNAL);
449 w->status = status; 511
450 event ((W)w, EV_CHILD); 512 child_reap (EV_A_ sw, pid, pid, status);
451 } 513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 }
452} 515}
516
517#endif
453 518
454/*****************************************************************************/ 519/*****************************************************************************/
455 520
521#if EV_USE_KQUEUE
522# include "ev_kqueue.c"
523#endif
456#if EV_USE_EPOLL 524#if EV_USE_EPOLL
457# include "ev_epoll.c" 525# include "ev_epoll.c"
458#endif 526#endif
527#if EV_USEV_POLL
528# include "ev_poll.c"
529#endif
459#if EV_USE_SELECT 530#if EV_USE_SELECT
460# include "ev_select.c" 531# include "ev_select.c"
461#endif 532#endif
462 533
463int 534int
470ev_version_minor (void) 541ev_version_minor (void)
471{ 542{
472 return EV_VERSION_MINOR; 543 return EV_VERSION_MINOR;
473} 544}
474 545
475int ev_init (int flags) 546/* return true if we are running with elevated privileges and should ignore env variables */
547static int
548enable_secure (void)
476{ 549{
550#ifdef WIN32
551 return 0;
552#else
553 return getuid () != geteuid ()
554 || getgid () != getegid ();
555#endif
556}
557
558int
559ev_method (EV_P)
560{
561 return method;
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
477 if (!ev_method) 567 if (!method)
478 { 568 {
479#if EV_USE_MONOTONIC 569#if EV_USE_MONOTONIC
480 { 570 {
481 struct timespec ts; 571 struct timespec ts;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
483 have_monotonic = 1; 573 have_monotonic = 1;
484 } 574 }
485#endif 575#endif
486 576
487 ev_now = ev_time (); 577 rt_now = ev_time ();
488 now = get_clock (); 578 mn_now = get_clock ();
489 now_floor = now; 579 now_floor = mn_now;
490 diff = ev_now - now; 580 rtmn_diff = rt_now - mn_now;
491 581
492 if (pipe (sigpipe)) 582 if (methods == EVMETHOD_AUTO)
493 return 0; 583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
494 584 methods = atoi (getenv ("LIBEV_METHODS"));
585 else
495 ev_method = EVMETHOD_NONE; 586 methods = EVMETHOD_ANY;
587
588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif
496#if EV_USE_EPOLL 592#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif
595#if EV_USEV_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
498#endif 597#endif
499#if EV_USE_SELECT 598#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags); 599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
501#endif 600#endif
601 }
602}
502 603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY
637struct ev_loop *
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1;
687#endif
688
689 loop_init (EV_A_ methods);
690
503 if (ev_method) 691 if (ev_method (EV_A))
504 { 692 {
505 ev_watcher_init (&sigev, sigcb); 693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
506 siginit (); 695 siginit (EV_A);
507 696
697#ifndef WIN32
508 ev_signal_init (&childev, childcb, SIGCHLD); 698 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI);
509 ev_signal_start (&childev); 700 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif
510 } 703 }
704 else
705 default_loop = 0;
511 } 706 }
512 707
513 return ev_method; 708 return default_loop;
514} 709}
515 710
516/*****************************************************************************/
517
518void 711void
519ev_fork_prepare (void) 712ev_default_destroy (void)
520{ 713{
521 /* nop */ 714#if EV_MULTIPLICITY
522} 715 struct ev_loop *loop = default_loop;
523
524void
525ev_fork_parent (void)
526{
527 /* nop */
528}
529
530void
531ev_fork_child (void)
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif 716#endif
537 717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
538 ev_io_stop (&sigev); 722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728}
729
730void
731ev_default_fork (EV_P)
732{
733 loop_fork (EV_A);
734
735 ev_io_stop (EV_A_ &sigev);
539 close (sigpipe [0]); 736 close (sigpipe [0]);
540 close (sigpipe [1]); 737 close (sigpipe [1]);
541 pipe (sigpipe); 738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
542 siginit (); 741 siginit (EV_A);
543} 742}
544 743
545/*****************************************************************************/ 744/*****************************************************************************/
546 745
547static void 746static void
548call_pending (void) 747call_pending (EV_P)
549{ 748{
749 int pri;
750
751 for (pri = NUMPRI; pri--; )
550 while (pendingcnt) 752 while (pendingcnt [pri])
551 { 753 {
552 ANPENDING *p = pendings + --pendingcnt; 754 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
553 755
554 if (p->w) 756 if (p->w)
555 { 757 {
556 p->w->pending = 0; 758 p->w->pending = 0;
557 p->w->cb (p->w, p->events); 759 p->w->cb (EV_A_ p->w, p->events);
558 } 760 }
559 } 761 }
560} 762}
561 763
562static void 764static void
563timers_reify (void) 765timers_reify (EV_P)
564{ 766{
565 while (timercnt && timers [0]->at <= now) 767 while (timercnt && timers [0]->at <= mn_now)
566 { 768 {
567 struct ev_timer *w = timers [0]; 769 struct ev_timer *w = timers [0];
568 770
569 /* first reschedule or stop timer */ 771 /* first reschedule or stop timer */
570 if (w->repeat) 772 if (w->repeat)
571 { 773 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 775 w->at = mn_now + w->repeat;
574 downheap ((WT *)timers, timercnt, 0); 776 downheap ((WT *)timers, timercnt, 0);
575 } 777 }
576 else 778 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
578 780
579 event ((W)w, EV_TIMEOUT); 781 event (EV_A_ (W)w, EV_TIMEOUT);
580 } 782 }
581} 783}
582 784
583static void 785static void
584periodics_reify (void) 786periodics_reify (EV_P)
585{ 787{
586 while (periodiccnt && periodics [0]->at <= ev_now) 788 while (periodiccnt && periodics [0]->at <= rt_now)
587 { 789 {
588 struct ev_periodic *w = periodics [0]; 790 struct ev_periodic *w = periodics [0];
589 791
590 /* first reschedule or stop timer */ 792 /* first reschedule or stop timer */
591 if (w->interval) 793 if (w->interval)
592 { 794 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
595 downheap ((WT *)periodics, periodiccnt, 0); 797 downheap ((WT *)periodics, periodiccnt, 0);
596 } 798 }
597 else 799 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
599 801
600 event ((W)w, EV_PERIODIC); 802 event (EV_A_ (W)w, EV_PERIODIC);
601 } 803 }
602} 804}
603 805
604static void 806static void
605periodics_reschedule (ev_tstamp diff) 807periodics_reschedule (EV_P)
606{ 808{
607 int i; 809 int i;
608 810
609 /* adjust periodics after time jump */ 811 /* adjust periodics after time jump */
610 for (i = 0; i < periodiccnt; ++i) 812 for (i = 0; i < periodiccnt; ++i)
611 { 813 {
612 struct ev_periodic *w = periodics [i]; 814 struct ev_periodic *w = periodics [i];
613 815
614 if (w->interval) 816 if (w->interval)
615 { 817 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
617 819
618 if (fabs (diff) >= 1e-4) 820 if (fabs (diff) >= 1e-4)
619 { 821 {
620 ev_periodic_stop (w); 822 ev_periodic_stop (EV_A_ w);
621 ev_periodic_start (w); 823 ev_periodic_start (EV_A_ w);
622 824
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
624 } 826 }
625 } 827 }
626 } 828 }
627} 829}
628 830
629static int 831inline int
630time_update_monotonic (void) 832time_update_monotonic (EV_P)
631{ 833{
632 now = get_clock (); 834 mn_now = get_clock ();
633 835
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
635 { 837 {
636 ev_now = now + diff; 838 rt_now = rtmn_diff + mn_now;
637 return 0; 839 return 0;
638 } 840 }
639 else 841 else
640 { 842 {
641 now_floor = now; 843 now_floor = mn_now;
642 ev_now = ev_time (); 844 rt_now = ev_time ();
643 return 1; 845 return 1;
644 } 846 }
645} 847}
646 848
647static void 849static void
648time_update (void) 850time_update (EV_P)
649{ 851{
650 int i; 852 int i;
651 853
652#if EV_USE_MONOTONIC 854#if EV_USE_MONOTONIC
653 if (expect_true (have_monotonic)) 855 if (expect_true (have_monotonic))
654 { 856 {
655 if (time_update_monotonic ()) 857 if (time_update_monotonic (EV_A))
656 { 858 {
657 ev_tstamp odiff = diff; 859 ev_tstamp odiff = rtmn_diff;
658 860
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 861 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 { 862 {
661 diff = ev_now - now; 863 rtmn_diff = rt_now - mn_now;
662 864
663 if (fabs (odiff - diff) < MIN_TIMEJUMP) 865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
664 return; /* all is well */ 866 return; /* all is well */
665 867
666 ev_now = ev_time (); 868 rt_now = ev_time ();
667 now = get_clock (); 869 mn_now = get_clock ();
668 now_floor = now; 870 now_floor = mn_now;
669 } 871 }
670 872
671 periodics_reschedule (diff - odiff); 873 periodics_reschedule (EV_A);
672 /* no timer adjustment, as the monotonic clock doesn't jump */ 874 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
673 } 876 }
674 } 877 }
675 else 878 else
676#endif 879#endif
677 { 880 {
678 ev_now = ev_time (); 881 rt_now = ev_time ();
679 882
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
681 { 884 {
682 periodics_reschedule (ev_now - now); 885 periodics_reschedule (EV_A);
683 886
684 /* adjust timers. this is easy, as the offset is the same for all */ 887 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i) 888 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff; 889 timers [i]->at += rt_now - mn_now;
687 } 890 }
688 891
689 now = ev_now; 892 mn_now = rt_now;
690 } 893 }
691} 894}
692 895
693int ev_loop_done; 896void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
694 901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
695void ev_loop (int flags) 911ev_loop (EV_P_ int flags)
696{ 912{
697 double block; 913 double block;
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
699 915
700 do 916 do
701 { 917 {
702 /* queue check watchers (and execute them) */ 918 /* queue check watchers (and execute them) */
703 if (expect_false (preparecnt)) 919 if (expect_false (preparecnt))
704 { 920 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
706 call_pending (); 922 call_pending (EV_A);
707 } 923 }
708 924
709 /* update fd-related kernel structures */ 925 /* update fd-related kernel structures */
710 fd_reify (); 926 fd_reify (EV_A);
711 927
712 /* calculate blocking time */ 928 /* calculate blocking time */
713 929
714 /* we only need this for !monotonic clockor timers, but as we basically 930 /* we only need this for !monotonic clockor timers, but as we basically
715 always have timers, we just calculate it always */ 931 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC 932#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 933 if (expect_true (have_monotonic))
718 time_update_monotonic (); 934 time_update_monotonic (EV_A);
719 else 935 else
720#endif 936#endif
721 { 937 {
722 ev_now = ev_time (); 938 rt_now = ev_time ();
723 now = ev_now; 939 mn_now = rt_now;
724 } 940 }
725 941
726 if (flags & EVLOOP_NONBLOCK || idlecnt) 942 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.; 943 block = 0.;
728 else 944 else
729 { 945 {
730 block = MAX_BLOCKTIME; 946 block = MAX_BLOCKTIME;
731 947
732 if (timercnt) 948 if (timercnt)
733 { 949 {
734 ev_tstamp to = timers [0]->at - now + method_fudge; 950 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
735 if (block > to) block = to; 951 if (block > to) block = to;
736 } 952 }
737 953
738 if (periodiccnt) 954 if (periodiccnt)
739 { 955 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
741 if (block > to) block = to; 957 if (block > to) block = to;
742 } 958 }
743 959
744 if (block < 0.) block = 0.; 960 if (block < 0.) block = 0.;
745 } 961 }
746 962
747 method_poll (block); 963 method_poll (EV_A_ block);
748 964
749 /* update ev_now, do magic */ 965 /* update rt_now, do magic */
750 time_update (); 966 time_update (EV_A);
751 967
752 /* queue pending timers and reschedule them */ 968 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */ 969 timers_reify (EV_A); /* relative timers called last */
754 periodics_reify (); /* absolute timers called first */ 970 periodics_reify (EV_A); /* absolute timers called first */
755 971
756 /* queue idle watchers unless io or timers are pending */ 972 /* queue idle watchers unless io or timers are pending */
757 if (!pendingcnt) 973 if (!pendingcnt)
758 queue_events ((W *)idles, idlecnt, EV_IDLE); 974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
759 975
760 /* queue check watchers, to be executed first */ 976 /* queue check watchers, to be executed first */
761 if (checkcnt) 977 if (checkcnt)
762 queue_events ((W *)checks, checkcnt, EV_CHECK); 978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
763 979
764 call_pending (); 980 call_pending (EV_A);
765 } 981 }
766 while (!ev_loop_done); 982 while (activecnt && !loop_done);
767 983
768 if (ev_loop_done != 2) 984 if (loop_done != 2)
769 ev_loop_done = 0; 985 loop_done = 0;
986}
987
988void
989ev_unloop (EV_P_ int how)
990{
991 loop_done = how;
770} 992}
771 993
772/*****************************************************************************/ 994/*****************************************************************************/
773 995
774static void 996inline void
775wlist_add (WL *head, WL elem) 997wlist_add (WL *head, WL elem)
776{ 998{
777 elem->next = *head; 999 elem->next = *head;
778 *head = elem; 1000 *head = elem;
779} 1001}
780 1002
781static void 1003inline void
782wlist_del (WL *head, WL elem) 1004wlist_del (WL *head, WL elem)
783{ 1005{
784 while (*head) 1006 while (*head)
785 { 1007 {
786 if (*head == elem) 1008 if (*head == elem)
791 1013
792 head = &(*head)->next; 1014 head = &(*head)->next;
793 } 1015 }
794} 1016}
795 1017
796static void 1018inline void
797ev_clear_pending (W w) 1019ev_clear_pending (EV_P_ W w)
798{ 1020{
799 if (w->pending) 1021 if (w->pending)
800 { 1022 {
801 pendings [w->pending - 1].w = 0; 1023 pendings [ABSPRI (w)][w->pending - 1].w = 0;
802 w->pending = 0; 1024 w->pending = 0;
803 } 1025 }
804} 1026}
805 1027
806static void 1028inline void
807ev_start (W w, int active) 1029ev_start (EV_P_ W w, int active)
808{ 1030{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
809 w->active = active; 1034 w->active = active;
1035 ev_ref (EV_A);
810} 1036}
811 1037
812static void 1038inline void
813ev_stop (W w) 1039ev_stop (EV_P_ W w)
814{ 1040{
1041 ev_unref (EV_A);
815 w->active = 0; 1042 w->active = 0;
816} 1043}
817 1044
818/*****************************************************************************/ 1045/*****************************************************************************/
819 1046
820void 1047void
821ev_io_start (struct ev_io *w) 1048ev_io_start (EV_P_ struct ev_io *w)
822{ 1049{
823 int fd = w->fd; 1050 int fd = w->fd;
824 1051
825 if (ev_is_active (w)) 1052 if (ev_is_active (w))
826 return; 1053 return;
827 1054
828 assert (("ev_io_start called with negative fd", fd >= 0)); 1055 assert (("ev_io_start called with negative fd", fd >= 0));
829 1056
830 ev_start ((W)w, 1); 1057 ev_start (EV_A_ (W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1059 wlist_add ((WL *)&anfds[fd].head, (WL)w);
833 1060
834 fd_change (fd); 1061 fd_change (EV_A_ fd);
835} 1062}
836 1063
837void 1064void
838ev_io_stop (struct ev_io *w) 1065ev_io_stop (EV_P_ struct ev_io *w)
839{ 1066{
840 ev_clear_pending ((W)w); 1067 ev_clear_pending (EV_A_ (W)w);
841 if (!ev_is_active (w)) 1068 if (!ev_is_active (w))
842 return; 1069 return;
843 1070
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w); 1072 ev_stop (EV_A_ (W)w);
846 1073
847 fd_change (w->fd); 1074 fd_change (EV_A_ w->fd);
848} 1075}
849 1076
850void 1077void
851ev_timer_start (struct ev_timer *w) 1078ev_timer_start (EV_P_ struct ev_timer *w)
852{ 1079{
853 if (ev_is_active (w)) 1080 if (ev_is_active (w))
854 return; 1081 return;
855 1082
856 w->at += now; 1083 w->at += mn_now;
857 1084
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859 1086
860 ev_start ((W)w, ++timercnt); 1087 ev_start (EV_A_ (W)w, ++timercnt);
861 array_needsize (timers, timermax, timercnt, ); 1088 array_needsize (timers, timermax, timercnt, );
862 timers [timercnt - 1] = w; 1089 timers [timercnt - 1] = w;
863 upheap ((WT *)timers, timercnt - 1); 1090 upheap ((WT *)timers, timercnt - 1);
864} 1091}
865 1092
866void 1093void
867ev_timer_stop (struct ev_timer *w) 1094ev_timer_stop (EV_P_ struct ev_timer *w)
868{ 1095{
869 ev_clear_pending ((W)w); 1096 ev_clear_pending (EV_A_ (W)w);
870 if (!ev_is_active (w)) 1097 if (!ev_is_active (w))
871 return; 1098 return;
872 1099
873 if (w->active < timercnt--) 1100 if (w->active < timercnt--)
874 { 1101 {
876 downheap ((WT *)timers, timercnt, w->active - 1); 1103 downheap ((WT *)timers, timercnt, w->active - 1);
877 } 1104 }
878 1105
879 w->at = w->repeat; 1106 w->at = w->repeat;
880 1107
881 ev_stop ((W)w); 1108 ev_stop (EV_A_ (W)w);
882} 1109}
883 1110
884void 1111void
885ev_timer_again (struct ev_timer *w) 1112ev_timer_again (EV_P_ struct ev_timer *w)
886{ 1113{
887 if (ev_is_active (w)) 1114 if (ev_is_active (w))
888 { 1115 {
889 if (w->repeat) 1116 if (w->repeat)
890 { 1117 {
891 w->at = now + w->repeat; 1118 w->at = mn_now + w->repeat;
892 downheap ((WT *)timers, timercnt, w->active - 1); 1119 downheap ((WT *)timers, timercnt, w->active - 1);
893 } 1120 }
894 else 1121 else
895 ev_timer_stop (w); 1122 ev_timer_stop (EV_A_ w);
896 } 1123 }
897 else if (w->repeat) 1124 else if (w->repeat)
898 ev_timer_start (w); 1125 ev_timer_start (EV_A_ w);
899} 1126}
900 1127
901void 1128void
902ev_periodic_start (struct ev_periodic *w) 1129ev_periodic_start (EV_P_ struct ev_periodic *w)
903{ 1130{
904 if (ev_is_active (w)) 1131 if (ev_is_active (w))
905 return; 1132 return;
906 1133
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908 1135
909 /* this formula differs from the one in periodic_reify because we do not always round up */ 1136 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval) 1137 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
912 1139
913 ev_start ((W)w, ++periodiccnt); 1140 ev_start (EV_A_ (W)w, ++periodiccnt);
914 array_needsize (periodics, periodicmax, periodiccnt, ); 1141 array_needsize (periodics, periodicmax, periodiccnt, );
915 periodics [periodiccnt - 1] = w; 1142 periodics [periodiccnt - 1] = w;
916 upheap ((WT *)periodics, periodiccnt - 1); 1143 upheap ((WT *)periodics, periodiccnt - 1);
917} 1144}
918 1145
919void 1146void
920ev_periodic_stop (struct ev_periodic *w) 1147ev_periodic_stop (EV_P_ struct ev_periodic *w)
921{ 1148{
922 ev_clear_pending ((W)w); 1149 ev_clear_pending (EV_A_ (W)w);
923 if (!ev_is_active (w)) 1150 if (!ev_is_active (w))
924 return; 1151 return;
925 1152
926 if (w->active < periodiccnt--) 1153 if (w->active < periodiccnt--)
927 { 1154 {
928 periodics [w->active - 1] = periodics [periodiccnt]; 1155 periodics [w->active - 1] = periodics [periodiccnt];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1156 downheap ((WT *)periodics, periodiccnt, w->active - 1);
930 } 1157 }
931 1158
932 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
933} 1160}
934 1161
935void 1162void
936ev_signal_start (struct ev_signal *w) 1163ev_idle_start (EV_P_ struct ev_idle *w)
937{ 1164{
938 if (ev_is_active (w)) 1165 if (ev_is_active (w))
939 return; 1166 return;
940 1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171}
1172
1173void
1174ev_idle_stop (EV_P_ struct ev_idle *w)
1175{
1176 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w);
1182}
1183
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227
1228#ifndef SA_RESTART
1229# define SA_RESTART 0
1230#endif
1231
1232void
1233ev_signal_start (EV_P_ struct ev_signal *w)
1234{
1235#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1237#endif
1238 if (ev_is_active (w))
1239 return;
1240
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942 1242
943 ev_start ((W)w, 1); 1243 ev_start (EV_A_ (W)w, 1);
944 array_needsize (signals, signalmax, w->signum, signals_init); 1244 array_needsize (signals, signalmax, w->signum, signals_init);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
946 1246
947 if (!w->next) 1247 if (!w->next)
948 { 1248 {
949 struct sigaction sa; 1249 struct sigaction sa;
950 sa.sa_handler = sighandler; 1250 sa.sa_handler = sighandler;
951 sigfillset (&sa.sa_mask); 1251 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0; 1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
953 sigaction (w->signum, &sa, 0); 1253 sigaction (w->signum, &sa, 0);
954 } 1254 }
955} 1255}
956 1256
957void 1257void
958ev_signal_stop (struct ev_signal *w) 1258ev_signal_stop (EV_P_ struct ev_signal *w)
959{ 1259{
960 ev_clear_pending ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
961 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
962 return; 1262 return;
963 1263
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w); 1265 ev_stop (EV_A_ (W)w);
966 1266
967 if (!signals [w->signum - 1].head) 1267 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL); 1268 signal (w->signum, SIG_DFL);
969} 1269}
970 1270
971void 1271void
972ev_idle_start (struct ev_idle *w) 1272ev_child_start (EV_P_ struct ev_child *w)
973{ 1273{
1274#if EV_MULTIPLICITY
1275 assert (("child watchers are only supported in the default loop", loop == default_loop));
1276#endif
974 if (ev_is_active (w)) 1277 if (ev_is_active (w))
975 return; 1278 return;
976 1279
977 ev_start ((W)w, ++idlecnt); 1280 ev_start (EV_A_ (W)w, 1);
978 array_needsize (idles, idlemax, idlecnt, ); 1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
979 idles [idlecnt - 1] = w;
980} 1282}
981 1283
982void 1284void
983ev_idle_stop (struct ev_idle *w) 1285ev_child_stop (EV_P_ struct ev_child *w)
984{ 1286{
985 ev_clear_pending ((W)w); 1287 ev_clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 1288 if (ev_is_active (w))
987 return; 1289 return;
988 1290
989 idles [w->active - 1] = idles [--idlecnt];
990 ev_stop ((W)w);
991}
992
993void
994ev_prepare_start (struct ev_prepare *w)
995{
996 if (ev_is_active (w))
997 return;
998
999 ev_start ((W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, );
1001 prepares [preparecnt - 1] = w;
1002}
1003
1004void
1005ev_prepare_stop (struct ev_prepare *w)
1006{
1007 ev_clear_pending ((W)w);
1008 if (ev_is_active (w))
1009 return;
1010
1011 prepares [w->active - 1] = prepares [--preparecnt];
1012 ev_stop ((W)w);
1013}
1014
1015void
1016ev_check_start (struct ev_check *w)
1017{
1018 if (ev_is_active (w))
1019 return;
1020
1021 ev_start ((W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, );
1023 checks [checkcnt - 1] = w;
1024}
1025
1026void
1027ev_check_stop (struct ev_check *w)
1028{
1029 ev_clear_pending ((W)w);
1030 if (ev_is_active (w))
1031 return;
1032
1033 checks [w->active - 1] = checks [--checkcnt];
1034 ev_stop ((W)w);
1035}
1036
1037void
1038ev_child_start (struct ev_child *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 ev_start ((W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045}
1046
1047void
1048ev_child_stop (struct ev_child *w)
1049{
1050 ev_clear_pending ((W)w);
1051 if (ev_is_active (w))
1052 return;
1053
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1055 ev_stop ((W)w); 1292 ev_stop (EV_A_ (W)w);
1056} 1293}
1057 1294
1058/*****************************************************************************/ 1295/*****************************************************************************/
1059 1296
1060struct ev_once 1297struct ev_once
1064 void (*cb)(int revents, void *arg); 1301 void (*cb)(int revents, void *arg);
1065 void *arg; 1302 void *arg;
1066}; 1303};
1067 1304
1068static void 1305static void
1069once_cb (struct ev_once *once, int revents) 1306once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 1307{
1071 void (*cb)(int revents, void *arg) = once->cb; 1308 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 1309 void *arg = once->arg;
1073 1310
1074 ev_io_stop (&once->io); 1311 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 1312 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 1313 free (once);
1077 1314
1078 cb (revents, arg); 1315 cb (revents, arg);
1079} 1316}
1080 1317
1081static void 1318static void
1082once_cb_io (struct ev_io *w, int revents) 1319once_cb_io (EV_P_ struct ev_io *w, int revents)
1083{ 1320{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1085} 1322}
1086 1323
1087static void 1324static void
1088once_cb_to (struct ev_timer *w, int revents) 1325once_cb_to (EV_P_ struct ev_timer *w, int revents)
1089{ 1326{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1091} 1328}
1092 1329
1093void 1330void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1095{ 1332{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 1333 struct ev_once *once = malloc (sizeof (struct ev_once));
1097 1334
1098 if (!once) 1335 if (!once)
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1104 1341
1105 ev_watcher_init (&once->io, once_cb_io); 1342 ev_watcher_init (&once->io, once_cb_io);
1106 if (fd >= 0) 1343 if (fd >= 0)
1107 { 1344 {
1108 ev_io_set (&once->io, fd, events); 1345 ev_io_set (&once->io, fd, events);
1109 ev_io_start (&once->io); 1346 ev_io_start (EV_A_ &once->io);
1110 } 1347 }
1111 1348
1112 ev_watcher_init (&once->to, once_cb_to); 1349 ev_watcher_init (&once->to, once_cb_to);
1113 if (timeout >= 0.) 1350 if (timeout >= 0.)
1114 { 1351 {
1115 ev_timer_set (&once->to, timeout, 0.); 1352 ev_timer_set (&once->to, timeout, 0.);
1116 ev_timer_start (&once->to); 1353 ev_timer_start (EV_A_ &once->to);
1117 } 1354 }
1118 } 1355 }
1119} 1356}
1120 1357
1121/*****************************************************************************/
1122
1123#if 0
1124
1125struct ev_io wio;
1126
1127static void
1128sin_cb (struct ev_io *w, int revents)
1129{
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1131}
1132
1133static void
1134ocb (struct ev_timer *w, int revents)
1135{
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1137 ev_timer_stop (w);
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 {
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif
1177
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197}
1198
1199#endif
1200
1201
1202
1203

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines