ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
63#endif 103#endif
64 104
65#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
66# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
67#endif 107#endif
96#endif 136#endif
97 137
98#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
100 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
101typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
102typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
103typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
104 147
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
106ev_tstamp ev_now;
107int ev_method;
108 149
109static int have_monotonic; /* runtime */ 150#if WIN32
110 151/* note: the comment below could not be substantiated, but what would I care */
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
112static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
113static void (*method_poll)(ev_tstamp timeout); 154#endif
114 155
115/*****************************************************************************/ 156/*****************************************************************************/
116 157
117ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
118ev_time (void) 192ev_time (void)
119{ 193{
120#if EV_USE_REALTIME 194#if EV_USE_REALTIME
121 struct timespec ts; 195 struct timespec ts;
122 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
126 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif 202#endif
129} 203}
130 204
131static ev_tstamp 205inline ev_tstamp
132get_clock (void) 206get_clock (void)
133{ 207{
134#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 209 if (expect_true (have_monotonic))
136 { 210 {
139 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
140 } 214 }
141#endif 215#endif
142 216
143 return ev_time (); 217 return ev_time ();
218}
219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
144} 224}
145 225
146#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
147 227
148#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
158 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
159 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
160 cur = newcnt; \ 240 cur = newcnt; \
161 } 241 }
162 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
163/*****************************************************************************/ 254/*****************************************************************************/
164
165typedef struct
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171
172static ANFD *anfds;
173static int anfdmax;
174 255
175static void 256static void
176anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
177{ 258{
178 while (count--) 259 while (count--)
183 264
184 ++base; 265 ++base;
185 } 266 }
186} 267}
187 268
188typedef struct
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void 269static void
198event (W w, int events) 270event (EV_P_ W w, int events)
199{ 271{
200 if (w->pending) 272 if (w->pending)
201 { 273 {
202 pendings [w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
203 return; 275 return;
204 } 276 }
205 277
206 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
207 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
208 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
209 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
210} 282}
211 283
212static void 284static void
213queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
214{ 286{
215 int i; 287 int i;
216 288
217 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type); 290 event (EV_A_ events [i], type);
219} 291}
220 292
221static void 293static void
222fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
223{ 295{
224 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 297 struct ev_io *w;
226 298
227 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
228 { 300 {
229 int ev = w->events & events; 301 int ev = w->events & events;
230 302
231 if (ev) 303 if (ev)
232 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
233 } 305 }
234} 306}
235 307
236/*****************************************************************************/ 308/*****************************************************************************/
237 309
238static int *fdchanges;
239static int fdchangemax, fdchangecnt;
240
241static void 310static void
242fd_reify (void) 311fd_reify (EV_P)
243{ 312{
244 int i; 313 int i;
245 314
246 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
247 { 316 {
249 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 319 struct ev_io *w;
251 320
252 int events = 0; 321 int events = 0;
253 322
254 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 events |= w->events; 324 events |= w->events;
256 325
257 anfd->reify = 0; 326 anfd->reify = 0;
258 327
259 if (anfd->events != events)
260 {
261 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
262 anfd->events = events; 329 anfd->events = events;
263 }
264 } 330 }
265 331
266 fdchangecnt = 0; 332 fdchangecnt = 0;
267} 333}
268 334
269static void 335static void
270fd_change (int fd) 336fd_change (EV_P_ int fd)
271{ 337{
272 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
273 return; 339 return;
274 340
275 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
277 ++fdchangecnt; 343 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
279 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
280} 346}
281 347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358}
359
282/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
283static void 361static void
284fd_recheck (void) 362fd_ebadf (EV_P)
285{ 363{
286 int fd; 364 int fd;
287 365
288 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 367 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
291 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
292 { 380 {
293 ev_io_stop (anfds [fd].head); 381 close (fd);
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 382 fd_kill (EV_A_ fd);
383 return;
295 } 384 }
385}
386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
296} 400}
297 401
298/*****************************************************************************/ 402/*****************************************************************************/
299 403
300static struct ev_timer **timers;
301static int timermax, timercnt;
302
303static struct ev_periodic **periodics;
304static int periodicmax, periodiccnt;
305
306static void 404static void
307upheap (WT *timers, int k) 405upheap (WT *heap, int k)
308{ 406{
309 WT w = timers [k]; 407 WT w = heap [k];
310 408
311 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
312 { 410 {
313 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
314 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
315 k >>= 1; 413 k >>= 1;
316 } 414 }
317 415
318 timers [k] = w; 416 heap [k] = w;
319 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
320 418
321} 419}
322 420
323static void 421static void
324downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
325{ 423{
326 WT w = timers [k]; 424 WT w = heap [k];
327 425
328 while (k < (N >> 1)) 426 while (k < (N >> 1))
329 { 427 {
330 int j = k << 1; 428 int j = k << 1;
331 429
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
333 ++j; 431 ++j;
334 432
335 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
336 break; 434 break;
337 435
338 timers [k] = timers [j]; 436 heap [k] = heap [j];
339 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
340 k = j; 438 k = j;
341 } 439 }
342 440
343 timers [k] = w; 441 heap [k] = w;
344 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
345} 443}
346 444
347/*****************************************************************************/ 445/*****************************************************************************/
348 446
349typedef struct 447typedef struct
350{ 448{
351 struct ev_signal *head; 449 struct ev_watcher_list *head;
352 sig_atomic_t volatile gotsig; 450 sig_atomic_t volatile gotsig;
353} ANSIG; 451} ANSIG;
354 452
355static ANSIG *signals; 453static ANSIG *signals;
356static int signalmax; 454static int signalmax;
372} 470}
373 471
374static void 472static void
375sighandler (int signum) 473sighandler (int signum)
376{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
377 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
378 480
379 if (!gotsig) 481 if (!gotsig)
380 { 482 {
483 int old_errno = errno;
381 gotsig = 1; 484 gotsig = 1;
382 write (sigpipe [1], &signum, 1); 485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
383 } 487 }
384} 488}
385 489
386static void 490static void
387sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
388{ 492{
389 struct ev_signal *w; 493 struct ev_watcher_list *w;
390 int signum; 494 int signum;
391 495
392 read (sigpipe [0], &revents, 1); 496 read (sigpipe [0], &revents, 1);
393 gotsig = 0; 497 gotsig = 0;
394 498
396 if (signals [signum].gotsig) 500 if (signals [signum].gotsig)
397 { 501 {
398 signals [signum].gotsig = 0; 502 signals [signum].gotsig = 0;
399 503
400 for (w = signals [signum].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
402 } 506 }
403} 507}
404 508
405static void 509static void
406siginit (void) 510siginit (EV_P)
407{ 511{
512#ifndef WIN32
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410 515
411 /* rather than sort out wether we really need nb, set it */ 516 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
414 520
415 ev_io_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
417} 524}
418 525
419/*****************************************************************************/ 526/*****************************************************************************/
420 527
421static struct ev_idle **idles; 528#ifndef WIN32
422static int idlemax, idlecnt;
423
424static struct ev_prepare **prepares;
425static int preparemax, preparecnt;
426
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431 529
432static struct ev_child *childs [PID_HASHSIZE]; 530static struct ev_child *childs [PID_HASHSIZE];
433static struct ev_signal childev; 531static struct ev_signal childev;
434 532
435#ifndef WCONTINUED 533#ifndef WCONTINUED
436# define WCONTINUED 0 534# define WCONTINUED 0
437#endif 535#endif
438 536
439static void 537static void
440childcb (struct ev_signal *sw, int revents) 538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
441{ 539{
442 struct ev_child *w; 540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
443 int pid, status; 555 int pid, status;
444 556
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 558 {
447 if (w->pid == pid || !w->pid) 559 /* make sure we are called again until all childs have been reaped */
448 { 560 event (EV_A_ (W)sw, EV_SIGNAL);
449 w->status = status; 561
450 event ((W)w, EV_CHILD); 562 child_reap (EV_A_ sw, pid, pid, status);
451 } 563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
452} 565}
566
567#endif
453 568
454/*****************************************************************************/ 569/*****************************************************************************/
455 570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
456#if EV_USE_EPOLL 574#if EV_USE_EPOLL
457# include "ev_epoll.c" 575# include "ev_epoll.c"
458#endif 576#endif
577#if EV_USE_POLL
578# include "ev_poll.c"
579#endif
459#if EV_USE_SELECT 580#if EV_USE_SELECT
460# include "ev_select.c" 581# include "ev_select.c"
461#endif 582#endif
462 583
463int 584int
470ev_version_minor (void) 591ev_version_minor (void)
471{ 592{
472 return EV_VERSION_MINOR; 593 return EV_VERSION_MINOR;
473} 594}
474 595
475int ev_init (int flags) 596/* return true if we are running with elevated privileges and should ignore env variables */
597static int
598enable_secure (void)
476{ 599{
600#ifdef WIN32
601 return 0;
602#else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605#endif
606}
607
608int
609ev_method (EV_P)
610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
477 if (!ev_method) 617 if (!method)
478 { 618 {
479#if EV_USE_MONOTONIC 619#if EV_USE_MONOTONIC
480 { 620 {
481 struct timespec ts; 621 struct timespec ts;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
483 have_monotonic = 1; 623 have_monotonic = 1;
484 } 624 }
485#endif 625#endif
486 626
487 ev_now = ev_time (); 627 rt_now = ev_time ();
488 now = get_clock (); 628 mn_now = get_clock ();
489 now_floor = now; 629 now_floor = mn_now;
490 diff = ev_now - now; 630 rtmn_diff = rt_now - mn_now;
491 631
492 if (pipe (sigpipe)) 632 if (methods == EVMETHOD_AUTO)
493 return 0; 633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
494 634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
495 ev_method = EVMETHOD_NONE; 636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
496#if EV_USE_EPOLL 645#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
498#endif 650#endif
499#if EV_USE_SELECT 651#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags); 652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
501#endif 653#endif
654 }
655}
502 656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop)
750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
503 if (ev_method) 759 if (ev_method (EV_A))
504 { 760 {
505 ev_watcher_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
506 siginit (); 763 siginit (EV_A);
507 764
765#ifndef WIN32
508 ev_signal_init (&childev, childcb, SIGCHLD); 766 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI);
509 ev_signal_start (&childev); 768 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif
510 } 771 }
772 else
773 default_loop = 0;
511 } 774 }
512 775
513 return ev_method; 776 return default_loop;
514} 777}
515 778
516/*****************************************************************************/
517
518void 779void
519ev_fork_prepare (void) 780ev_default_destroy (void)
520{ 781{
521 /* nop */ 782#if EV_MULTIPLICITY
522} 783 struct ev_loop *loop = default_loop;
523
524void
525ev_fork_parent (void)
526{
527 /* nop */
528}
529
530void
531ev_fork_child (void)
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif 784#endif
537 785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
538 ev_io_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
539 close (sigpipe [0]); 808 close (sigpipe [0]);
540 close (sigpipe [1]); 809 close (sigpipe [1]);
541 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
542 siginit (); 813 siginit (EV_A);
543} 814}
544 815
545/*****************************************************************************/ 816/*****************************************************************************/
546 817
547static void 818static void
548call_pending (void) 819call_pending (EV_P)
549{ 820{
821 int pri;
822
823 for (pri = NUMPRI; pri--; )
550 while (pendingcnt) 824 while (pendingcnt [pri])
551 { 825 {
552 ANPENDING *p = pendings + --pendingcnt; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
553 827
554 if (p->w) 828 if (p->w)
555 { 829 {
556 p->w->pending = 0; 830 p->w->pending = 0;
557 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
558 } 832 }
559 } 833 }
560} 834}
561 835
562static void 836static void
563timers_reify (void) 837timers_reify (EV_P)
564{ 838{
565 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
566 { 840 {
567 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
568 844
569 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
570 if (w->repeat) 846 if (w->repeat)
571 { 847 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
574 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
575 } 851 }
576 else 852 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
578 854
579 event ((W)w, EV_TIMEOUT); 855 event (EV_A_ (W)w, EV_TIMEOUT);
580 } 856 }
581} 857}
582 858
583static void 859static void
584periodics_reify (void) 860periodics_reify (EV_P)
585{ 861{
586 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
587 { 863 {
588 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
589 867
590 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
591 if (w->interval) 869 if (w->interval)
592 { 870 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
595 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
596 } 874 }
597 else 875 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
599 877
600 event ((W)w, EV_PERIODIC); 878 event (EV_A_ (W)w, EV_PERIODIC);
601 } 879 }
602} 880}
603 881
604static void 882static void
605periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
606{ 884{
607 int i; 885 int i;
608 886
609 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
610 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
611 { 889 {
612 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
613 891
614 if (w->interval) 892 if (w->interval)
615 { 893 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
617 895
618 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
619 { 897 {
620 ev_periodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
621 ev_periodic_start (w); 899 ev_periodic_start (EV_A_ w);
622 900
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
624 } 902 }
625 } 903 }
626 } 904 }
627} 905}
628 906
629static int 907inline int
630time_update_monotonic (void) 908time_update_monotonic (EV_P)
631{ 909{
632 now = get_clock (); 910 mn_now = get_clock ();
633 911
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
635 { 913 {
636 ev_now = now + diff; 914 rt_now = rtmn_diff + mn_now;
637 return 0; 915 return 0;
638 } 916 }
639 else 917 else
640 { 918 {
641 now_floor = now; 919 now_floor = mn_now;
642 ev_now = ev_time (); 920 rt_now = ev_time ();
643 return 1; 921 return 1;
644 } 922 }
645} 923}
646 924
647static void 925static void
648time_update (void) 926time_update (EV_P)
649{ 927{
650 int i; 928 int i;
651 929
652#if EV_USE_MONOTONIC 930#if EV_USE_MONOTONIC
653 if (expect_true (have_monotonic)) 931 if (expect_true (have_monotonic))
654 { 932 {
655 if (time_update_monotonic ()) 933 if (time_update_monotonic (EV_A))
656 { 934 {
657 ev_tstamp odiff = diff; 935 ev_tstamp odiff = rtmn_diff;
658 936
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 { 938 {
661 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
662 940
663 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
664 return; /* all is well */ 942 return; /* all is well */
665 943
666 ev_now = ev_time (); 944 rt_now = ev_time ();
667 now = get_clock (); 945 mn_now = get_clock ();
668 now_floor = now; 946 now_floor = mn_now;
669 } 947 }
670 948
671 periodics_reschedule (diff - odiff); 949 periodics_reschedule (EV_A);
672 /* no timer adjustment, as the monotonic clock doesn't jump */ 950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
673 } 952 }
674 } 953 }
675 else 954 else
676#endif 955#endif
677 { 956 {
678 ev_now = ev_time (); 957 rt_now = ev_time ();
679 958
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
681 { 960 {
682 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
683 962
684 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
687 } 966 }
688 967
689 now = ev_now; 968 mn_now = rt_now;
690 } 969 }
691} 970}
692 971
693int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
694 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
695void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
696{ 988{
697 double block; 989 double block;
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
699 991
700 do 992 do
701 { 993 {
702 /* queue check watchers (and execute them) */ 994 /* queue check watchers (and execute them) */
703 if (expect_false (preparecnt)) 995 if (expect_false (preparecnt))
704 { 996 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
706 call_pending (); 998 call_pending (EV_A);
707 } 999 }
708 1000
709 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
710 fd_reify (); 1002 fd_reify (EV_A);
711 1003
712 /* calculate blocking time */ 1004 /* calculate blocking time */
713 1005
714 /* we only need this for !monotonic clockor timers, but as we basically 1006 /* we only need this for !monotonic clockor timers, but as we basically
715 always have timers, we just calculate it always */ 1007 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC 1008#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1009 if (expect_true (have_monotonic))
718 time_update_monotonic (); 1010 time_update_monotonic (EV_A);
719 else 1011 else
720#endif 1012#endif
721 { 1013 {
722 ev_now = ev_time (); 1014 rt_now = ev_time ();
723 now = ev_now; 1015 mn_now = rt_now;
724 } 1016 }
725 1017
726 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.; 1019 block = 0.;
728 else 1020 else
729 { 1021 {
730 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
731 1023
732 if (timercnt) 1024 if (timercnt)
733 { 1025 {
734 ev_tstamp to = timers [0]->at - now + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
735 if (block > to) block = to; 1027 if (block > to) block = to;
736 } 1028 }
737 1029
738 if (periodiccnt) 1030 if (periodiccnt)
739 { 1031 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
741 if (block > to) block = to; 1033 if (block > to) block = to;
742 } 1034 }
743 1035
744 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
745 } 1037 }
746 1038
747 method_poll (block); 1039 method_poll (EV_A_ block);
748 1040
749 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
750 time_update (); 1042 time_update (EV_A);
751 1043
752 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */ 1045 timers_reify (EV_A); /* relative timers called last */
754 periodics_reify (); /* absolute timers called first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
755 1047
756 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
757 if (!pendingcnt) 1049 if (!pendingcnt)
758 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
759 1051
760 /* queue check watchers, to be executed first */ 1052 /* queue check watchers, to be executed first */
761 if (checkcnt) 1053 if (checkcnt)
762 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
763 1055
764 call_pending (); 1056 call_pending (EV_A);
765 } 1057 }
766 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
767 1059
768 if (ev_loop_done != 2) 1060 if (loop_done != 2)
769 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
770} 1068}
771 1069
772/*****************************************************************************/ 1070/*****************************************************************************/
773 1071
774static void 1072inline void
775wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
776{ 1074{
777 elem->next = *head; 1075 elem->next = *head;
778 *head = elem; 1076 *head = elem;
779} 1077}
780 1078
781static void 1079inline void
782wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
783{ 1081{
784 while (*head) 1082 while (*head)
785 { 1083 {
786 if (*head == elem) 1084 if (*head == elem)
791 1089
792 head = &(*head)->next; 1090 head = &(*head)->next;
793 } 1091 }
794} 1092}
795 1093
796static void 1094inline void
797ev_clear_pending (W w) 1095ev_clear_pending (EV_P_ W w)
798{ 1096{
799 if (w->pending) 1097 if (w->pending)
800 { 1098 {
801 pendings [w->pending - 1].w = 0; 1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
802 w->pending = 0; 1100 w->pending = 0;
803 } 1101 }
804} 1102}
805 1103
806static void 1104inline void
807ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
808{ 1106{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
809 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
810} 1112}
811 1113
812static void 1114inline void
813ev_stop (W w) 1115ev_stop (EV_P_ W w)
814{ 1116{
1117 ev_unref (EV_A);
815 w->active = 0; 1118 w->active = 0;
816} 1119}
817 1120
818/*****************************************************************************/ 1121/*****************************************************************************/
819 1122
820void 1123void
821ev_io_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
822{ 1125{
823 int fd = w->fd; 1126 int fd = w->fd;
824 1127
825 if (ev_is_active (w)) 1128 if (ev_is_active (w))
826 return; 1129 return;
827 1130
828 assert (("ev_io_start called with negative fd", fd >= 0)); 1131 assert (("ev_io_start called with negative fd", fd >= 0));
829 1132
830 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
833 1136
834 fd_change (fd); 1137 fd_change (EV_A_ fd);
835} 1138}
836 1139
837void 1140void
838ev_io_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
839{ 1142{
840 ev_clear_pending ((W)w); 1143 ev_clear_pending (EV_A_ (W)w);
841 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
842 return; 1145 return;
843 1146
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
846 1149
847 fd_change (w->fd); 1150 fd_change (EV_A_ w->fd);
848} 1151}
849 1152
850void 1153void
851ev_timer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
852{ 1155{
853 if (ev_is_active (w)) 1156 if (ev_is_active (w))
854 return; 1157 return;
855 1158
856 w->at += now; 1159 ((WT)w)->at += mn_now;
857 1160
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859 1162
860 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
861 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
862 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
863 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
864}
865 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
866void 1171void
867ev_timer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
868{ 1173{
869 ev_clear_pending ((W)w); 1174 ev_clear_pending (EV_A_ (W)w);
870 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
871 return; 1176 return;
872 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
873 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
874 { 1181 {
875 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
876 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
877 } 1184 }
878 1185
879 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
880 1187
881 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
882} 1189}
883 1190
884void 1191void
885ev_timer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
886{ 1193{
887 if (ev_is_active (w)) 1194 if (ev_is_active (w))
888 { 1195 {
889 if (w->repeat) 1196 if (w->repeat)
890 { 1197 {
891 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
892 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
893 } 1200 }
894 else 1201 else
895 ev_timer_stop (w); 1202 ev_timer_stop (EV_A_ w);
896 } 1203 }
897 else if (w->repeat) 1204 else if (w->repeat)
898 ev_timer_start (w); 1205 ev_timer_start (EV_A_ w);
899} 1206}
900 1207
901void 1208void
902ev_periodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
903{ 1210{
904 if (ev_is_active (w)) 1211 if (ev_is_active (w))
905 return; 1212 return;
906 1213
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908 1215
909 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval) 1217 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
912 1219
913 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
914 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
915 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
916 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
917}
918 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
919void 1228void
920ev_periodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
921{ 1230{
922 ev_clear_pending ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
923 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
924 return; 1233 return;
925 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
926 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
927 { 1238 {
928 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
930 } 1241 }
931 1242
932 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
933} 1244}
934 1245
935void 1246void
936ev_signal_start (struct ev_signal *w) 1247ev_idle_start (EV_P_ struct ev_idle *w)
937{ 1248{
938 if (ev_is_active (w)) 1249 if (ev_is_active (w))
939 return; 1250 return;
940 1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942 1326
943 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
944 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
946 1330
947 if (!w->next) 1331 if (!((WL)w)->next)
948 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
949 struct sigaction sa; 1336 struct sigaction sa;
950 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
951 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0; 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
953 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
954 } 1342 }
955} 1343}
956 1344
957void 1345void
958ev_signal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
959{ 1347{
960 ev_clear_pending ((W)w); 1348 ev_clear_pending (EV_A_ (W)w);
961 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
962 return; 1350 return;
963 1351
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
966 1354
967 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
969} 1357}
970 1358
971void 1359void
972ev_idle_start (struct ev_idle *w) 1360ev_child_start (EV_P_ struct ev_child *w)
973{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
974 if (ev_is_active (w)) 1365 if (ev_is_active (w))
975 return; 1366 return;
976 1367
977 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
978 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
979 idles [idlecnt - 1] = w;
980} 1370}
981 1371
982void 1372void
983ev_idle_stop (struct ev_idle *w) 1373ev_child_stop (EV_P_ struct ev_child *w)
984{ 1374{
985 ev_clear_pending ((W)w); 1375 ev_clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 1376 if (ev_is_active (w))
987 return; 1377 return;
988 1378
989 idles [w->active - 1] = idles [--idlecnt];
990 ev_stop ((W)w);
991}
992
993void
994ev_prepare_start (struct ev_prepare *w)
995{
996 if (ev_is_active (w))
997 return;
998
999 ev_start ((W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, );
1001 prepares [preparecnt - 1] = w;
1002}
1003
1004void
1005ev_prepare_stop (struct ev_prepare *w)
1006{
1007 ev_clear_pending ((W)w);
1008 if (ev_is_active (w))
1009 return;
1010
1011 prepares [w->active - 1] = prepares [--preparecnt];
1012 ev_stop ((W)w);
1013}
1014
1015void
1016ev_check_start (struct ev_check *w)
1017{
1018 if (ev_is_active (w))
1019 return;
1020
1021 ev_start ((W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, );
1023 checks [checkcnt - 1] = w;
1024}
1025
1026void
1027ev_check_stop (struct ev_check *w)
1028{
1029 ev_clear_pending ((W)w);
1030 if (ev_is_active (w))
1031 return;
1032
1033 checks [w->active - 1] = checks [--checkcnt];
1034 ev_stop ((W)w);
1035}
1036
1037void
1038ev_child_start (struct ev_child *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 ev_start ((W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045}
1046
1047void
1048ev_child_stop (struct ev_child *w)
1049{
1050 ev_clear_pending ((W)w);
1051 if (ev_is_active (w))
1052 return;
1053
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1055 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
1056} 1381}
1057 1382
1058/*****************************************************************************/ 1383/*****************************************************************************/
1059 1384
1060struct ev_once 1385struct ev_once
1064 void (*cb)(int revents, void *arg); 1389 void (*cb)(int revents, void *arg);
1065 void *arg; 1390 void *arg;
1066}; 1391};
1067 1392
1068static void 1393static void
1069once_cb (struct ev_once *once, int revents) 1394once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 1395{
1071 void (*cb)(int revents, void *arg) = once->cb; 1396 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 1397 void *arg = once->arg;
1073 1398
1074 ev_io_stop (&once->io); 1399 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 1400 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 1401 free (once);
1077 1402
1078 cb (revents, arg); 1403 cb (revents, arg);
1079} 1404}
1080 1405
1081static void 1406static void
1082once_cb_io (struct ev_io *w, int revents) 1407once_cb_io (EV_P_ struct ev_io *w, int revents)
1083{ 1408{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1085} 1410}
1086 1411
1087static void 1412static void
1088once_cb_to (struct ev_timer *w, int revents) 1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
1089{ 1414{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1091} 1416}
1092 1417
1093void 1418void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1095{ 1420{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 1421 struct ev_once *once = malloc (sizeof (struct ev_once));
1097 1422
1098 if (!once) 1423 if (!once)
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1104 1429
1105 ev_watcher_init (&once->io, once_cb_io); 1430 ev_watcher_init (&once->io, once_cb_io);
1106 if (fd >= 0) 1431 if (fd >= 0)
1107 { 1432 {
1108 ev_io_set (&once->io, fd, events); 1433 ev_io_set (&once->io, fd, events);
1109 ev_io_start (&once->io); 1434 ev_io_start (EV_A_ &once->io);
1110 } 1435 }
1111 1436
1112 ev_watcher_init (&once->to, once_cb_to); 1437 ev_watcher_init (&once->to, once_cb_to);
1113 if (timeout >= 0.) 1438 if (timeout >= 0.)
1114 { 1439 {
1115 ev_timer_set (&once->to, timeout, 0.); 1440 ev_timer_set (&once->to, timeout, 0.);
1116 ev_timer_start (&once->to); 1441 ev_timer_start (EV_A_ &once->to);
1117 } 1442 }
1118 } 1443 }
1119} 1444}
1120 1445
1121/*****************************************************************************/
1122
1123#if 0
1124
1125struct ev_io wio;
1126
1127static void
1128sin_cb (struct ev_io *w, int revents)
1129{
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1131}
1132
1133static void
1134ocb (struct ev_timer *w, int revents)
1135{
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1137 ev_timer_stop (w);
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 {
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif
1177
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197}
1198
1199#endif
1200
1201
1202
1203

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines