ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.149 by root, Tue Nov 27 19:23:31 2007 UTC vs.
Revision 1.400 by root, Sat Oct 15 09:05:03 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
114 187
115#ifndef _WIN32 188#ifndef _WIN32
116# include <sys/time.h> 189# include <sys/time.h>
117# include <sys/wait.h> 190# include <sys/wait.h>
118# include <unistd.h> 191# include <unistd.h>
119#else 192#else
193# include <io.h>
120# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 195# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
124# endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
125#endif 249# endif
126 250#endif
127/**/
128 251
129#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
130# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
131#endif 258#endif
132 259
133#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262#endif
263
264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
268# define EV_USE_NANOSLEEP 0
269# endif
135#endif 270#endif
136 271
137#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 274#endif
140 275
141#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
142# ifdef _WIN32 277# ifdef _WIN32
143# define EV_USE_POLL 0 278# define EV_USE_POLL 0
144# else 279# else
145# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 281# endif
147#endif 282#endif
148 283
149#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
150# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
151#endif 290#endif
152 291
153#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
155#endif 294#endif
156 295
157#ifndef EV_USE_PORT 296#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 297# define EV_USE_PORT 0
159#endif 298#endif
160 299
300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
304# define EV_USE_INOTIFY 0
305# endif
306#endif
307
161#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
163# define EV_PID_HASHSIZE 1 310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
164# else 319# else
165# define EV_PID_HASHSIZE 16 320# define EV_USE_EVENTFD 0
166# endif 321# endif
167#endif 322#endif
168 323
169/**/ 324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
170 371
171#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
174#endif 375#endif
176#ifndef CLOCK_REALTIME 377#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 378# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 379# define EV_USE_REALTIME 0
179#endif 380#endif
180 381
382#if !EV_STAT_ENABLE
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385#endif
386
387#if !EV_USE_NANOSLEEP
388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
390# include <sys/select.h>
391# endif
392#endif
393
394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
402#endif
403
181#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 405# include <winsock.h>
183#endif 406#endif
184 407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
185/**/ 446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to work around floating point rounding problems.
456 * This value is good at least till the year 4000.
457 */
458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
186 460
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
190 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
191#ifdef EV_H 498#ifndef ECB_H
192# include EV_H 499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
508 #if __GNUC__
509 typedef signed long long int64_t;
510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
193#else 515#else
194# include "ev.h" 516 #include <inttypes.h>
195#endif
196
197#if __GNUC__ >= 3
198# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
531 #endif
532#endif
533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__)
545 #if __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #endif
562 #endif
563#endif
564
565#ifndef ECB_MEMORY_FENCE
566 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
567 #define ECB_MEMORY_FENCE __sync_synchronize ()
568 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
569 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
570 #elif _MSC_VER >= 1400 /* VC++ 2005 */
571 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
572 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
573 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
574 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
575 #elif defined(_WIN32)
576 #include <WinNT.h>
577 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
578 #endif
579#endif
580
581#ifndef ECB_MEMORY_FENCE
582 #if !ECB_AVOID_PTHREADS
583 /*
584 * if you get undefined symbol references to pthread_mutex_lock,
585 * or failure to find pthread.h, then you should implement
586 * the ECB_MEMORY_FENCE operations for your cpu/compiler
587 * OR provide pthread.h and link against the posix thread library
588 * of your system.
589 */
590 #include <pthread.h>
591 #define ECB_NEEDS_PTHREADS 1
592 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
593
594 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
595 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
596 #endif
597#endif
598
599#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
600 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
601#endif
602
603#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
604 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
605#endif
606
607/*****************************************************************************/
608
609#define ECB_C99 (__STDC_VERSION__ >= 199901L)
610
611#if __cplusplus
612 #define ecb_inline static inline
613#elif ECB_GCC_VERSION(2,5)
614 #define ecb_inline static __inline__
615#elif ECB_C99
616 #define ecb_inline static inline
207#else 617#else
618 #define ecb_inline static
619#endif
620
621#if ECB_GCC_VERSION(3,3)
622 #define ecb_restrict __restrict__
623#elif ECB_C99
624 #define ecb_restrict restrict
625#else
626 #define ecb_restrict
627#endif
628
629typedef int ecb_bool;
630
631#define ECB_CONCAT_(a, b) a ## b
632#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
633#define ECB_STRINGIFY_(a) # a
634#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
635
636#define ecb_function_ ecb_inline
637
638#if ECB_GCC_VERSION(3,1)
639 #define ecb_attribute(attrlist) __attribute__(attrlist)
640 #define ecb_is_constant(expr) __builtin_constant_p (expr)
641 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
642 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
643#else
644 #define ecb_attribute(attrlist)
645 #define ecb_is_constant(expr) 0
208# define expect(expr,value) (expr) 646 #define ecb_expect(expr,value) (expr)
209# define inline_speed static 647 #define ecb_prefetch(addr,rw,locality)
210# define inline_size static
211# define noinline
212#endif 648#endif
213 649
650/* no emulation for ecb_decltype */
651#if ECB_GCC_VERSION(4,5)
652 #define ecb_decltype(x) __decltype(x)
653#elif ECB_GCC_VERSION(3,0)
654 #define ecb_decltype(x) __typeof(x)
655#endif
656
657#define ecb_noinline ecb_attribute ((__noinline__))
658#define ecb_noreturn ecb_attribute ((__noreturn__))
659#define ecb_unused ecb_attribute ((__unused__))
660#define ecb_const ecb_attribute ((__const__))
661#define ecb_pure ecb_attribute ((__pure__))
662
663#if ECB_GCC_VERSION(4,3)
664 #define ecb_artificial ecb_attribute ((__artificial__))
665 #define ecb_hot ecb_attribute ((__hot__))
666 #define ecb_cold ecb_attribute ((__cold__))
667#else
668 #define ecb_artificial
669 #define ecb_hot
670 #define ecb_cold
671#endif
672
673/* put around conditional expressions if you are very sure that the */
674/* expression is mostly true or mostly false. note that these return */
675/* booleans, not the expression. */
214#define expect_false(expr) expect ((expr) != 0, 0) 676#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 677#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
678/* for compatibility to the rest of the world */
679#define ecb_likely(expr) ecb_expect_true (expr)
680#define ecb_unlikely(expr) ecb_expect_false (expr)
216 681
682/* count trailing zero bits and count # of one bits */
683#if ECB_GCC_VERSION(3,4)
684 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
685 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
686 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
687 #define ecb_ctz32(x) __builtin_ctz (x)
688 #define ecb_ctz64(x) __builtin_ctzll (x)
689 #define ecb_popcount32(x) __builtin_popcount (x)
690 /* no popcountll */
691#else
692 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
693 ecb_function_ int
694 ecb_ctz32 (uint32_t x)
695 {
696 int r = 0;
697
698 x &= ~x + 1; /* this isolates the lowest bit */
699
700#if ECB_branchless_on_i386
701 r += !!(x & 0xaaaaaaaa) << 0;
702 r += !!(x & 0xcccccccc) << 1;
703 r += !!(x & 0xf0f0f0f0) << 2;
704 r += !!(x & 0xff00ff00) << 3;
705 r += !!(x & 0xffff0000) << 4;
706#else
707 if (x & 0xaaaaaaaa) r += 1;
708 if (x & 0xcccccccc) r += 2;
709 if (x & 0xf0f0f0f0) r += 4;
710 if (x & 0xff00ff00) r += 8;
711 if (x & 0xffff0000) r += 16;
712#endif
713
714 return r;
715 }
716
717 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
718 ecb_function_ int
719 ecb_ctz64 (uint64_t x)
720 {
721 int shift = x & 0xffffffffU ? 0 : 32;
722 return ecb_ctz32 (x >> shift) + shift;
723 }
724
725 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_popcount32 (uint32_t x)
728 {
729 x -= (x >> 1) & 0x55555555;
730 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
731 x = ((x >> 4) + x) & 0x0f0f0f0f;
732 x *= 0x01010101;
733
734 return x >> 24;
735 }
736
737 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
738 ecb_function_ int ecb_ld32 (uint32_t x)
739 {
740 int r = 0;
741
742 if (x >> 16) { x >>= 16; r += 16; }
743 if (x >> 8) { x >>= 8; r += 8; }
744 if (x >> 4) { x >>= 4; r += 4; }
745 if (x >> 2) { x >>= 2; r += 2; }
746 if (x >> 1) { r += 1; }
747
748 return r;
749 }
750
751 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
752 ecb_function_ int ecb_ld64 (uint64_t x)
753 {
754 int r = 0;
755
756 if (x >> 32) { x >>= 32; r += 32; }
757
758 return r + ecb_ld32 (x);
759 }
760#endif
761
762/* popcount64 is only available on 64 bit cpus as gcc builtin */
763/* so for this version we are lazy */
764ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
765ecb_function_ int
766ecb_popcount64 (uint64_t x)
767{
768 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
769}
770
771ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
772ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
773ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
774ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
775ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
776ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
777ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
778ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
779
780ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
781ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
782ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
783ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
784ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
785ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
786ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
787ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
788
789#if ECB_GCC_VERSION(4,3)
790 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
791 #define ecb_bswap32(x) __builtin_bswap32 (x)
792 #define ecb_bswap64(x) __builtin_bswap64 (x)
793#else
794 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
795 ecb_function_ uint16_t
796 ecb_bswap16 (uint16_t x)
797 {
798 return ecb_rotl16 (x, 8);
799 }
800
801 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
802 ecb_function_ uint32_t
803 ecb_bswap32 (uint32_t x)
804 {
805 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
806 }
807
808 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
809 ecb_function_ uint64_t
810 ecb_bswap64 (uint64_t x)
811 {
812 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
813 }
814#endif
815
816#if ECB_GCC_VERSION(4,5)
817 #define ecb_unreachable() __builtin_unreachable ()
818#else
819 /* this seems to work fine, but gcc always emits a warning for it :/ */
820 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
821 ecb_function_ void ecb_unreachable (void) { }
822#endif
823
824/* try to tell the compiler that some condition is definitely true */
825#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
826
827ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
828ecb_function_ unsigned char
829ecb_byteorder_helper (void)
830{
831 const uint32_t u = 0x11223344;
832 return *(unsigned char *)&u;
833}
834
835ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
836ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
837ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
839
840#if ECB_GCC_VERSION(3,0) || ECB_C99
841 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
842#else
843 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
844#endif
845
846#if __cplusplus
847 template<typename T>
848 static inline T ecb_div_rd (T val, T div)
849 {
850 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
851 }
852 template<typename T>
853 static inline T ecb_div_ru (T val, T div)
854 {
855 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
856 }
857#else
858 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
859 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
860#endif
861
862#if ecb_cplusplus_does_not_suck
863 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
864 template<typename T, int N>
865 static inline int ecb_array_length (const T (&arr)[N])
866 {
867 return N;
868 }
869#else
870 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
871#endif
872
873#endif
874
875/* ECB.H END */
876
877#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
878/* if your architecture doesn't need memory fences, e.g. because it is
879 * single-cpu/core, or if you use libev in a project that doesn't use libev
880 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
881 * libev, in which casess the memory fences become nops.
882 * alternatively, you can remove this #error and link against libpthread,
883 * which will then provide the memory fences.
884 */
885# error "memory fences not defined for your architecture, please report"
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889# define ECB_MEMORY_FENCE do { } while (0)
890# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
891# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
892#endif
893
894#define expect_false(cond) ecb_expect_false (cond)
895#define expect_true(cond) ecb_expect_true (cond)
896#define noinline ecb_noinline
897
898#define inline_size ecb_inline
899
900#if EV_FEATURE_CODE
901# define inline_speed ecb_inline
902#else
903# define inline_speed static noinline
904#endif
905
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 906#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
907
908#if EV_MINPRI == EV_MAXPRI
909# define ABSPRI(w) (((W)w), 0)
910#else
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 911# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
912#endif
219 913
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 914#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 915#define EMPTY2(a,b) /* used to suppress some warnings */
222 916
223typedef ev_watcher *W; 917typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 918typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 919typedef ev_watcher_time *WT;
226 920
921#define ev_active(w) ((W)(w))->active
922#define ev_at(w) ((WT)(w))->at
923
924#if EV_USE_REALTIME
925/* sig_atomic_t is used to avoid per-thread variables or locking but still */
926/* giving it a reasonably high chance of working on typical architectures */
927static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
928#endif
929
930#if EV_USE_MONOTONIC
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 931static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
932#endif
933
934#ifndef EV_FD_TO_WIN32_HANDLE
935# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
936#endif
937#ifndef EV_WIN32_HANDLE_TO_FD
938# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
939#endif
940#ifndef EV_WIN32_CLOSE_FD
941# define EV_WIN32_CLOSE_FD(fd) close (fd)
942#endif
228 943
229#ifdef _WIN32 944#ifdef _WIN32
230# include "ev_win32.c" 945# include "ev_win32.c"
231#endif 946#endif
232 947
233/*****************************************************************************/ 948/*****************************************************************************/
234 949
950/* define a suitable floor function (only used by periodics atm) */
951
952#if EV_USE_FLOOR
953# include <math.h>
954# define ev_floor(v) floor (v)
955#else
956
957#include <float.h>
958
959/* a floor() replacement function, should be independent of ev_tstamp type */
960static ev_tstamp noinline
961ev_floor (ev_tstamp v)
962{
963 /* the choice of shift factor is not terribly important */
964#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
965 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
966#else
967 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
968#endif
969
970 /* argument too large for an unsigned long? */
971 if (expect_false (v >= shift))
972 {
973 ev_tstamp f;
974
975 if (v == v - 1.)
976 return v; /* very large number */
977
978 f = shift * ev_floor (v * (1. / shift));
979 return f + ev_floor (v - f);
980 }
981
982 /* special treatment for negative args? */
983 if (expect_false (v < 0.))
984 {
985 ev_tstamp f = -ev_floor (-v);
986
987 return f - (f == v ? 0 : 1);
988 }
989
990 /* fits into an unsigned long */
991 return (unsigned long)v;
992}
993
994#endif
995
996/*****************************************************************************/
997
998#ifdef __linux
999# include <sys/utsname.h>
1000#endif
1001
1002static unsigned int noinline ecb_cold
1003ev_linux_version (void)
1004{
1005#ifdef __linux
1006 unsigned int v = 0;
1007 struct utsname buf;
1008 int i;
1009 char *p = buf.release;
1010
1011 if (uname (&buf))
1012 return 0;
1013
1014 for (i = 3+1; --i; )
1015 {
1016 unsigned int c = 0;
1017
1018 for (;;)
1019 {
1020 if (*p >= '0' && *p <= '9')
1021 c = c * 10 + *p++ - '0';
1022 else
1023 {
1024 p += *p == '.';
1025 break;
1026 }
1027 }
1028
1029 v = (v << 8) | c;
1030 }
1031
1032 return v;
1033#else
1034 return 0;
1035#endif
1036}
1037
1038/*****************************************************************************/
1039
1040#if EV_AVOID_STDIO
1041static void noinline ecb_cold
1042ev_printerr (const char *msg)
1043{
1044 write (STDERR_FILENO, msg, strlen (msg));
1045}
1046#endif
1047
235static void (*syserr_cb)(const char *msg); 1048static void (*syserr_cb)(const char *msg);
236 1049
237void 1050void ecb_cold
238ev_set_syserr_cb (void (*cb)(const char *msg)) 1051ev_set_syserr_cb (void (*cb)(const char *msg))
239{ 1052{
240 syserr_cb = cb; 1053 syserr_cb = cb;
241} 1054}
242 1055
243static void noinline 1056static void noinline ecb_cold
244syserr (const char *msg) 1057ev_syserr (const char *msg)
245{ 1058{
246 if (!msg) 1059 if (!msg)
247 msg = "(libev) system error"; 1060 msg = "(libev) system error";
248 1061
249 if (syserr_cb) 1062 if (syserr_cb)
250 syserr_cb (msg); 1063 syserr_cb (msg);
251 else 1064 else
252 { 1065 {
1066#if EV_AVOID_STDIO
1067 ev_printerr (msg);
1068 ev_printerr (": ");
1069 ev_printerr (strerror (errno));
1070 ev_printerr ("\n");
1071#else
253 perror (msg); 1072 perror (msg);
1073#endif
254 abort (); 1074 abort ();
255 } 1075 }
256} 1076}
257 1077
1078static void *
1079ev_realloc_emul (void *ptr, long size)
1080{
1081#if __GLIBC__
1082 return realloc (ptr, size);
1083#else
1084 /* some systems, notably openbsd and darwin, fail to properly
1085 * implement realloc (x, 0) (as required by both ansi c-89 and
1086 * the single unix specification, so work around them here.
1087 */
1088
1089 if (size)
1090 return realloc (ptr, size);
1091
1092 free (ptr);
1093 return 0;
1094#endif
1095}
1096
258static void *(*alloc)(void *ptr, long size); 1097static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 1098
260void 1099void ecb_cold
261ev_set_allocator (void *(*cb)(void *ptr, long size)) 1100ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 1101{
263 alloc = cb; 1102 alloc = cb;
264} 1103}
265 1104
266static void * 1105inline_speed void *
267ev_realloc (void *ptr, long size) 1106ev_realloc (void *ptr, long size)
268{ 1107{
269 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1108 ptr = alloc (ptr, size);
270 1109
271 if (!ptr && size) 1110 if (!ptr && size)
272 { 1111 {
1112#if EV_AVOID_STDIO
1113 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1114#else
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1115 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1116#endif
274 abort (); 1117 abort ();
275 } 1118 }
276 1119
277 return ptr; 1120 return ptr;
278} 1121}
280#define ev_malloc(size) ev_realloc (0, (size)) 1123#define ev_malloc(size) ev_realloc (0, (size))
281#define ev_free(ptr) ev_realloc ((ptr), 0) 1124#define ev_free(ptr) ev_realloc ((ptr), 0)
282 1125
283/*****************************************************************************/ 1126/*****************************************************************************/
284 1127
1128/* set in reify when reification needed */
1129#define EV_ANFD_REIFY 1
1130
1131/* file descriptor info structure */
285typedef struct 1132typedef struct
286{ 1133{
287 WL head; 1134 WL head;
288 unsigned char events; 1135 unsigned char events; /* the events watched for */
1136 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1137 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
289 unsigned char reify; 1138 unsigned char unused;
1139#if EV_USE_EPOLL
1140 unsigned int egen; /* generation counter to counter epoll bugs */
1141#endif
290#if EV_SELECT_IS_WINSOCKET 1142#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
291 SOCKET handle; 1143 SOCKET handle;
292#endif 1144#endif
1145#if EV_USE_IOCP
1146 OVERLAPPED or, ow;
1147#endif
293} ANFD; 1148} ANFD;
294 1149
1150/* stores the pending event set for a given watcher */
295typedef struct 1151typedef struct
296{ 1152{
297 W w; 1153 W w;
298 int events; 1154 int events; /* the pending event set for the given watcher */
299} ANPENDING; 1155} ANPENDING;
1156
1157#if EV_USE_INOTIFY
1158/* hash table entry per inotify-id */
1159typedef struct
1160{
1161 WL head;
1162} ANFS;
1163#endif
1164
1165/* Heap Entry */
1166#if EV_HEAP_CACHE_AT
1167 /* a heap element */
1168 typedef struct {
1169 ev_tstamp at;
1170 WT w;
1171 } ANHE;
1172
1173 #define ANHE_w(he) (he).w /* access watcher, read-write */
1174 #define ANHE_at(he) (he).at /* access cached at, read-only */
1175 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1176#else
1177 /* a heap element */
1178 typedef WT ANHE;
1179
1180 #define ANHE_w(he) (he)
1181 #define ANHE_at(he) (he)->at
1182 #define ANHE_at_cache(he)
1183#endif
300 1184
301#if EV_MULTIPLICITY 1185#if EV_MULTIPLICITY
302 1186
303 struct ev_loop 1187 struct ev_loop
304 { 1188 {
322 1206
323 static int ev_default_loop_ptr; 1207 static int ev_default_loop_ptr;
324 1208
325#endif 1209#endif
326 1210
1211#if EV_FEATURE_API
1212# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1213# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1214# define EV_INVOKE_PENDING invoke_cb (EV_A)
1215#else
1216# define EV_RELEASE_CB (void)0
1217# define EV_ACQUIRE_CB (void)0
1218# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1219#endif
1220
1221#define EVBREAK_RECURSE 0x80
1222
327/*****************************************************************************/ 1223/*****************************************************************************/
328 1224
1225#ifndef EV_HAVE_EV_TIME
329ev_tstamp 1226ev_tstamp
330ev_time (void) 1227ev_time (void)
331{ 1228{
332#if EV_USE_REALTIME 1229#if EV_USE_REALTIME
1230 if (expect_true (have_realtime))
1231 {
333 struct timespec ts; 1232 struct timespec ts;
334 clock_gettime (CLOCK_REALTIME, &ts); 1233 clock_gettime (CLOCK_REALTIME, &ts);
335 return ts.tv_sec + ts.tv_nsec * 1e-9; 1234 return ts.tv_sec + ts.tv_nsec * 1e-9;
336#else 1235 }
1236#endif
1237
337 struct timeval tv; 1238 struct timeval tv;
338 gettimeofday (&tv, 0); 1239 gettimeofday (&tv, 0);
339 return tv.tv_sec + tv.tv_usec * 1e-6; 1240 return tv.tv_sec + tv.tv_usec * 1e-6;
340#endif
341} 1241}
1242#endif
342 1243
343ev_tstamp inline_size 1244inline_size ev_tstamp
344get_clock (void) 1245get_clock (void)
345{ 1246{
346#if EV_USE_MONOTONIC 1247#if EV_USE_MONOTONIC
347 if (expect_true (have_monotonic)) 1248 if (expect_true (have_monotonic))
348 { 1249 {
361{ 1262{
362 return ev_rt_now; 1263 return ev_rt_now;
363} 1264}
364#endif 1265#endif
365 1266
366#define array_roundsize(type,n) (((n) | 4) & ~3) 1267void
1268ev_sleep (ev_tstamp delay)
1269{
1270 if (delay > 0.)
1271 {
1272#if EV_USE_NANOSLEEP
1273 struct timespec ts;
1274
1275 EV_TS_SET (ts, delay);
1276 nanosleep (&ts, 0);
1277#elif defined(_WIN32)
1278 Sleep ((unsigned long)(delay * 1e3));
1279#else
1280 struct timeval tv;
1281
1282 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1283 /* something not guaranteed by newer posix versions, but guaranteed */
1284 /* by older ones */
1285 EV_TV_SET (tv, delay);
1286 select (0, 0, 0, 0, &tv);
1287#endif
1288 }
1289}
1290
1291/*****************************************************************************/
1292
1293#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1294
1295/* find a suitable new size for the given array, */
1296/* hopefully by rounding to a nice-to-malloc size */
1297inline_size int
1298array_nextsize (int elem, int cur, int cnt)
1299{
1300 int ncur = cur + 1;
1301
1302 do
1303 ncur <<= 1;
1304 while (cnt > ncur);
1305
1306 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1307 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1308 {
1309 ncur *= elem;
1310 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1311 ncur = ncur - sizeof (void *) * 4;
1312 ncur /= elem;
1313 }
1314
1315 return ncur;
1316}
1317
1318static void * noinline ecb_cold
1319array_realloc (int elem, void *base, int *cur, int cnt)
1320{
1321 *cur = array_nextsize (elem, *cur, cnt);
1322 return ev_realloc (base, elem * *cur);
1323}
1324
1325#define array_init_zero(base,count) \
1326 memset ((void *)(base), 0, sizeof (*(base)) * (count))
367 1327
368#define array_needsize(type,base,cur,cnt,init) \ 1328#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 1329 if (expect_false ((cnt) > (cur))) \
370 { \ 1330 { \
371 int newcnt = cur; \ 1331 int ecb_unused ocur_ = (cur); \
372 do \ 1332 (base) = (type *)array_realloc \
373 { \ 1333 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 1334 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 1335 }
382 1336
1337#if 0
383#define array_slim(type,stem) \ 1338#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1339 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 1340 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1341 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1342 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1343 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 1344 }
1345#endif
390 1346
391#define array_free(stem, idx) \ 1347#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1348 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
393 1349
394/*****************************************************************************/ 1350/*****************************************************************************/
1351
1352/* dummy callback for pending events */
1353static void noinline
1354pendingcb (EV_P_ ev_prepare *w, int revents)
1355{
1356}
395 1357
396void noinline 1358void noinline
397ev_feed_event (EV_P_ void *w, int revents) 1359ev_feed_event (EV_P_ void *w, int revents)
398{ 1360{
399 W w_ = (W)w; 1361 W w_ = (W)w;
1362 int pri = ABSPRI (w_);
400 1363
401 if (expect_false (w_->pending)) 1364 if (expect_false (w_->pending))
1365 pendings [pri][w_->pending - 1].events |= revents;
1366 else
402 { 1367 {
1368 w_->pending = ++pendingcnt [pri];
1369 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1370 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1371 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 1372 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 1373}
412 1374
413void inline_size 1375inline_speed void
1376feed_reverse (EV_P_ W w)
1377{
1378 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1379 rfeeds [rfeedcnt++] = w;
1380}
1381
1382inline_size void
1383feed_reverse_done (EV_P_ int revents)
1384{
1385 do
1386 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1387 while (rfeedcnt);
1388}
1389
1390inline_speed void
414queue_events (EV_P_ W *events, int eventcnt, int type) 1391queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 1392{
416 int i; 1393 int i;
417 1394
418 for (i = 0; i < eventcnt; ++i) 1395 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type); 1396 ev_feed_event (EV_A_ events [i], type);
420} 1397}
421 1398
422/*****************************************************************************/ 1399/*****************************************************************************/
423 1400
424void inline_size 1401inline_speed void
425anfds_init (ANFD *base, int count)
426{
427 while (count--)
428 {
429 base->head = 0;
430 base->events = EV_NONE;
431 base->reify = 0;
432
433 ++base;
434 }
435}
436
437void inline_speed
438fd_event (EV_P_ int fd, int revents) 1402fd_event_nocheck (EV_P_ int fd, int revents)
439{ 1403{
440 ANFD *anfd = anfds + fd; 1404 ANFD *anfd = anfds + fd;
441 ev_io *w; 1405 ev_io *w;
442 1406
443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1407 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
447 if (ev) 1411 if (ev)
448 ev_feed_event (EV_A_ (W)w, ev); 1412 ev_feed_event (EV_A_ (W)w, ev);
449 } 1413 }
450} 1414}
451 1415
1416/* do not submit kernel events for fds that have reify set */
1417/* because that means they changed while we were polling for new events */
1418inline_speed void
1419fd_event (EV_P_ int fd, int revents)
1420{
1421 ANFD *anfd = anfds + fd;
1422
1423 if (expect_true (!anfd->reify))
1424 fd_event_nocheck (EV_A_ fd, revents);
1425}
1426
452void 1427void
453ev_feed_fd_event (EV_P_ int fd, int revents) 1428ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 1429{
1430 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 1431 fd_event_nocheck (EV_A_ fd, revents);
456} 1432}
457 1433
458void inline_size 1434/* make sure the external fd watch events are in-sync */
1435/* with the kernel/libev internal state */
1436inline_size void
459fd_reify (EV_P) 1437fd_reify (EV_P)
460{ 1438{
461 int i; 1439 int i;
1440
1441#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1442 for (i = 0; i < fdchangecnt; ++i)
1443 {
1444 int fd = fdchanges [i];
1445 ANFD *anfd = anfds + fd;
1446
1447 if (anfd->reify & EV__IOFDSET && anfd->head)
1448 {
1449 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1450
1451 if (handle != anfd->handle)
1452 {
1453 unsigned long arg;
1454
1455 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1456
1457 /* handle changed, but fd didn't - we need to do it in two steps */
1458 backend_modify (EV_A_ fd, anfd->events, 0);
1459 anfd->events = 0;
1460 anfd->handle = handle;
1461 }
1462 }
1463 }
1464#endif
462 1465
463 for (i = 0; i < fdchangecnt; ++i) 1466 for (i = 0; i < fdchangecnt; ++i)
464 { 1467 {
465 int fd = fdchanges [i]; 1468 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
467 ev_io *w; 1470 ev_io *w;
468 1471
469 int events = 0; 1472 unsigned char o_events = anfd->events;
1473 unsigned char o_reify = anfd->reify;
470 1474
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1475 anfd->reify = 0;
472 events |= w->events;
473 1476
474#if EV_SELECT_IS_WINSOCKET 1477 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
475 if (events)
476 { 1478 {
477 unsigned long argp; 1479 anfd->events = 0;
478 anfd->handle = _get_osfhandle (fd); 1480
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1481 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1482 anfd->events |= (unsigned char)w->events;
1483
1484 if (o_events != anfd->events)
1485 o_reify = EV__IOFDSET; /* actually |= */
480 } 1486 }
481#endif
482 1487
483 anfd->reify = 0; 1488 if (o_reify & EV__IOFDSET)
484
485 backend_modify (EV_A_ fd, anfd->events, events); 1489 backend_modify (EV_A_ fd, o_events, anfd->events);
486 anfd->events = events;
487 } 1490 }
488 1491
489 fdchangecnt = 0; 1492 fdchangecnt = 0;
490} 1493}
491 1494
492void inline_size 1495/* something about the given fd changed */
1496inline_size void
493fd_change (EV_P_ int fd) 1497fd_change (EV_P_ int fd, int flags)
494{ 1498{
495 if (expect_false (anfds [fd].reify)) 1499 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 1500 anfds [fd].reify |= flags;
499 1501
1502 if (expect_true (!reify))
1503 {
500 ++fdchangecnt; 1504 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1505 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 1506 fdchanges [fdchangecnt - 1] = fd;
1507 }
503} 1508}
504 1509
505void inline_speed 1510/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1511inline_speed void ecb_cold
506fd_kill (EV_P_ int fd) 1512fd_kill (EV_P_ int fd)
507{ 1513{
508 ev_io *w; 1514 ev_io *w;
509 1515
510 while ((w = (ev_io *)anfds [fd].head)) 1516 while ((w = (ev_io *)anfds [fd].head))
512 ev_io_stop (EV_A_ w); 1518 ev_io_stop (EV_A_ w);
513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1519 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
514 } 1520 }
515} 1521}
516 1522
517int inline_size 1523/* check whether the given fd is actually valid, for error recovery */
1524inline_size int ecb_cold
518fd_valid (int fd) 1525fd_valid (int fd)
519{ 1526{
520#ifdef _WIN32 1527#ifdef _WIN32
521 return _get_osfhandle (fd) != -1; 1528 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
522#else 1529#else
523 return fcntl (fd, F_GETFD) != -1; 1530 return fcntl (fd, F_GETFD) != -1;
524#endif 1531#endif
525} 1532}
526 1533
527/* called on EBADF to verify fds */ 1534/* called on EBADF to verify fds */
528static void noinline 1535static void noinline ecb_cold
529fd_ebadf (EV_P) 1536fd_ebadf (EV_P)
530{ 1537{
531 int fd; 1538 int fd;
532 1539
533 for (fd = 0; fd < anfdmax; ++fd) 1540 for (fd = 0; fd < anfdmax; ++fd)
534 if (anfds [fd].events) 1541 if (anfds [fd].events)
535 if (!fd_valid (fd) == -1 && errno == EBADF) 1542 if (!fd_valid (fd) && errno == EBADF)
536 fd_kill (EV_A_ fd); 1543 fd_kill (EV_A_ fd);
537} 1544}
538 1545
539/* called on ENOMEM in select/poll to kill some fds and retry */ 1546/* called on ENOMEM in select/poll to kill some fds and retry */
540static void noinline 1547static void noinline ecb_cold
541fd_enomem (EV_P) 1548fd_enomem (EV_P)
542{ 1549{
543 int fd; 1550 int fd;
544 1551
545 for (fd = anfdmax; fd--; ) 1552 for (fd = anfdmax; fd--; )
546 if (anfds [fd].events) 1553 if (anfds [fd].events)
547 { 1554 {
548 fd_kill (EV_A_ fd); 1555 fd_kill (EV_A_ fd);
549 return; 1556 break;
550 } 1557 }
551} 1558}
552 1559
553/* usually called after fork if backend needs to re-arm all fds from scratch */ 1560/* usually called after fork if backend needs to re-arm all fds from scratch */
554static void noinline 1561static void noinline
555fd_rearm_all (EV_P) 1562fd_rearm_all (EV_P)
556{ 1563{
557 int fd; 1564 int fd;
558 1565
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 1566 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 1567 if (anfds [fd].events)
562 { 1568 {
563 anfds [fd].events = 0; 1569 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 1570 anfds [fd].emask = 0;
1571 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
565 } 1572 }
566} 1573}
567 1574
568/*****************************************************************************/ 1575/* used to prepare libev internal fd's */
569 1576/* this is not fork-safe */
570void inline_speed 1577inline_speed void
571upheap (WT *heap, int k)
572{
573 WT w = heap [k];
574
575 while (k && heap [k >> 1]->at > w->at)
576 {
577 heap [k] = heap [k >> 1];
578 ((W)heap [k])->active = k + 1;
579 k >>= 1;
580 }
581
582 heap [k] = w;
583 ((W)heap [k])->active = k + 1;
584
585}
586
587void inline_speed
588downheap (WT *heap, int N, int k)
589{
590 WT w = heap [k];
591
592 while (k < (N >> 1))
593 {
594 int j = k << 1;
595
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break;
601
602 heap [k] = heap [j];
603 ((W)heap [k])->active = k + 1;
604 k = j;
605 }
606
607 heap [k] = w;
608 ((W)heap [k])->active = k + 1;
609}
610
611void inline_size
612adjustheap (WT *heap, int N, int k)
613{
614 upheap (heap, k);
615 downheap (heap, N, k);
616}
617
618/*****************************************************************************/
619
620typedef struct
621{
622 WL head;
623 sig_atomic_t volatile gotsig;
624} ANSIG;
625
626static ANSIG *signals;
627static int signalmax;
628
629static int sigpipe [2];
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632
633void inline_size
634signals_init (ANSIG *base, int count)
635{
636 while (count--)
637 {
638 base->head = 0;
639 base->gotsig = 0;
640
641 ++base;
642 }
643}
644
645static void
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size
697fd_intern (int fd) 1578fd_intern (int fd)
698{ 1579{
699#ifdef _WIN32 1580#ifdef _WIN32
700 int arg = 1; 1581 unsigned long arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1582 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
702#else 1583#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC); 1584 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 1585 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 1586#endif
706} 1587}
707 1588
708static void noinline
709siginit (EV_P)
710{
711 fd_intern (sigpipe [0]);
712 fd_intern (sigpipe [1]);
713
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */
717}
718
719/*****************************************************************************/ 1589/*****************************************************************************/
720 1590
721static ev_child *childs [EV_PID_HASHSIZE]; 1591/*
1592 * the heap functions want a real array index. array index 0 is guaranteed to not
1593 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1594 * the branching factor of the d-tree.
1595 */
722 1596
1597/*
1598 * at the moment we allow libev the luxury of two heaps,
1599 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1600 * which is more cache-efficient.
1601 * the difference is about 5% with 50000+ watchers.
1602 */
1603#if EV_USE_4HEAP
1604
1605#define DHEAP 4
1606#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1607#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1608#define UPHEAP_DONE(p,k) ((p) == (k))
1609
1610/* away from the root */
1611inline_speed void
1612downheap (ANHE *heap, int N, int k)
1613{
1614 ANHE he = heap [k];
1615 ANHE *E = heap + N + HEAP0;
1616
1617 for (;;)
1618 {
1619 ev_tstamp minat;
1620 ANHE *minpos;
1621 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1622
1623 /* find minimum child */
1624 if (expect_true (pos + DHEAP - 1 < E))
1625 {
1626 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1627 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1628 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1629 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1630 }
1631 else if (pos < E)
1632 {
1633 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1634 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1635 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1636 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1637 }
1638 else
1639 break;
1640
1641 if (ANHE_at (he) <= minat)
1642 break;
1643
1644 heap [k] = *minpos;
1645 ev_active (ANHE_w (*minpos)) = k;
1646
1647 k = minpos - heap;
1648 }
1649
1650 heap [k] = he;
1651 ev_active (ANHE_w (he)) = k;
1652}
1653
1654#else /* 4HEAP */
1655
1656#define HEAP0 1
1657#define HPARENT(k) ((k) >> 1)
1658#define UPHEAP_DONE(p,k) (!(p))
1659
1660/* away from the root */
1661inline_speed void
1662downheap (ANHE *heap, int N, int k)
1663{
1664 ANHE he = heap [k];
1665
1666 for (;;)
1667 {
1668 int c = k << 1;
1669
1670 if (c >= N + HEAP0)
1671 break;
1672
1673 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1674 ? 1 : 0;
1675
1676 if (ANHE_at (he) <= ANHE_at (heap [c]))
1677 break;
1678
1679 heap [k] = heap [c];
1680 ev_active (ANHE_w (heap [k])) = k;
1681
1682 k = c;
1683 }
1684
1685 heap [k] = he;
1686 ev_active (ANHE_w (he)) = k;
1687}
1688#endif
1689
1690/* towards the root */
1691inline_speed void
1692upheap (ANHE *heap, int k)
1693{
1694 ANHE he = heap [k];
1695
1696 for (;;)
1697 {
1698 int p = HPARENT (k);
1699
1700 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1701 break;
1702
1703 heap [k] = heap [p];
1704 ev_active (ANHE_w (heap [k])) = k;
1705 k = p;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710}
1711
1712/* move an element suitably so it is in a correct place */
1713inline_size void
1714adjustheap (ANHE *heap, int N, int k)
1715{
1716 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1717 upheap (heap, k);
1718 else
1719 downheap (heap, N, k);
1720}
1721
1722/* rebuild the heap: this function is used only once and executed rarely */
1723inline_size void
1724reheap (ANHE *heap, int N)
1725{
1726 int i;
1727
1728 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1729 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1730 for (i = 0; i < N; ++i)
1731 upheap (heap, i + HEAP0);
1732}
1733
1734/*****************************************************************************/
1735
1736/* associate signal watchers to a signal signal */
1737typedef struct
1738{
1739 EV_ATOMIC_T pending;
1740#if EV_MULTIPLICITY
1741 EV_P;
1742#endif
1743 WL head;
1744} ANSIG;
1745
1746static ANSIG signals [EV_NSIG - 1];
1747
1748/*****************************************************************************/
1749
1750#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1751
1752static void noinline ecb_cold
1753evpipe_init (EV_P)
1754{
1755 if (!ev_is_active (&pipe_w))
1756 {
1757# if EV_USE_EVENTFD
1758 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1759 if (evfd < 0 && errno == EINVAL)
1760 evfd = eventfd (0, 0);
1761
1762 if (evfd >= 0)
1763 {
1764 evpipe [0] = -1;
1765 fd_intern (evfd); /* doing it twice doesn't hurt */
1766 ev_io_set (&pipe_w, evfd, EV_READ);
1767 }
1768 else
1769# endif
1770 {
1771 while (pipe (evpipe))
1772 ev_syserr ("(libev) error creating signal/async pipe");
1773
1774 fd_intern (evpipe [0]);
1775 fd_intern (evpipe [1]);
1776 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1777 }
1778
1779 ev_io_start (EV_A_ &pipe_w);
1780 ev_unref (EV_A); /* watcher should not keep loop alive */
1781 }
1782}
1783
1784inline_speed void
1785evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1786{
1787 if (expect_true (*flag))
1788 return;
1789
1790 *flag = 1;
1791
1792 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1793
1794 pipe_write_skipped = 1;
1795
1796 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1797
1798 if (pipe_write_wanted)
1799 {
1800 int old_errno;
1801
1802 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1803
1804 old_errno = errno; /* save errno because write will clobber it */
1805
1806#if EV_USE_EVENTFD
1807 if (evfd >= 0)
1808 {
1809 uint64_t counter = 1;
1810 write (evfd, &counter, sizeof (uint64_t));
1811 }
1812 else
1813#endif
1814 {
1815 /* win32 people keep sending patches that change this write() to send() */
1816 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1817 /* so when you think this write should be a send instead, please find out */
1818 /* where your send() is from - it's definitely not the microsoft send, and */
1819 /* tell me. thank you. */
1820 write (evpipe [1], &(evpipe [1]), 1);
1821 }
1822
1823 errno = old_errno;
1824 }
1825}
1826
1827/* called whenever the libev signal pipe */
1828/* got some events (signal, async) */
1829static void
1830pipecb (EV_P_ ev_io *iow, int revents)
1831{
1832 int i;
1833
1834 if (revents & EV_READ)
1835 {
1836#if EV_USE_EVENTFD
1837 if (evfd >= 0)
1838 {
1839 uint64_t counter;
1840 read (evfd, &counter, sizeof (uint64_t));
1841 }
1842 else
1843#endif
1844 {
1845 char dummy;
1846 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1847 read (evpipe [0], &dummy, 1);
1848 }
1849 }
1850
1851 pipe_write_skipped = 0;
1852
1853#if EV_SIGNAL_ENABLE
1854 if (sig_pending)
1855 {
1856 sig_pending = 0;
1857
1858 for (i = EV_NSIG - 1; i--; )
1859 if (expect_false (signals [i].pending))
1860 ev_feed_signal_event (EV_A_ i + 1);
1861 }
1862#endif
1863
1864#if EV_ASYNC_ENABLE
1865 if (async_pending)
1866 {
1867 async_pending = 0;
1868
1869 for (i = asynccnt; i--; )
1870 if (asyncs [i]->sent)
1871 {
1872 asyncs [i]->sent = 0;
1873 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1874 }
1875 }
1876#endif
1877}
1878
1879/*****************************************************************************/
1880
1881void
1882ev_feed_signal (int signum)
1883{
1884#if EV_MULTIPLICITY
1885 EV_P = signals [signum - 1].loop;
1886
1887 if (!EV_A)
1888 return;
1889#endif
1890
1891 if (!ev_active (&pipe_w))
1892 return;
1893
1894 signals [signum - 1].pending = 1;
1895 evpipe_write (EV_A_ &sig_pending);
1896}
1897
1898static void
1899ev_sighandler (int signum)
1900{
723#ifndef _WIN32 1901#ifdef _WIN32
1902 signal (signum, ev_sighandler);
1903#endif
1904
1905 ev_feed_signal (signum);
1906}
1907
1908void noinline
1909ev_feed_signal_event (EV_P_ int signum)
1910{
1911 WL w;
1912
1913 if (expect_false (signum <= 0 || signum > EV_NSIG))
1914 return;
1915
1916 --signum;
1917
1918#if EV_MULTIPLICITY
1919 /* it is permissible to try to feed a signal to the wrong loop */
1920 /* or, likely more useful, feeding a signal nobody is waiting for */
1921
1922 if (expect_false (signals [signum].loop != EV_A))
1923 return;
1924#endif
1925
1926 signals [signum].pending = 0;
1927
1928 for (w = signals [signum].head; w; w = w->next)
1929 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1930}
1931
1932#if EV_USE_SIGNALFD
1933static void
1934sigfdcb (EV_P_ ev_io *iow, int revents)
1935{
1936 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1937
1938 for (;;)
1939 {
1940 ssize_t res = read (sigfd, si, sizeof (si));
1941
1942 /* not ISO-C, as res might be -1, but works with SuS */
1943 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1944 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1945
1946 if (res < (ssize_t)sizeof (si))
1947 break;
1948 }
1949}
1950#endif
1951
1952#endif
1953
1954/*****************************************************************************/
1955
1956#if EV_CHILD_ENABLE
1957static WL childs [EV_PID_HASHSIZE];
724 1958
725static ev_signal childev; 1959static ev_signal childev;
726 1960
727void inline_speed 1961#ifndef WIFCONTINUED
1962# define WIFCONTINUED(status) 0
1963#endif
1964
1965/* handle a single child status event */
1966inline_speed void
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1967child_reap (EV_P_ int chain, int pid, int status)
729{ 1968{
730 ev_child *w; 1969 ev_child *w;
1970 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1971
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1972 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1973 {
733 if (w->pid == pid || !w->pid) 1974 if ((w->pid == pid || !w->pid)
1975 && (!traced || (w->flags & 1)))
734 { 1976 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1977 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1978 w->rpid = pid;
737 w->rstatus = status; 1979 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1980 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1981 }
1982 }
740} 1983}
741 1984
742#ifndef WCONTINUED 1985#ifndef WCONTINUED
743# define WCONTINUED 0 1986# define WCONTINUED 0
744#endif 1987#endif
745 1988
1989/* called on sigchld etc., calls waitpid */
746static void 1990static void
747childcb (EV_P_ ev_signal *sw, int revents) 1991childcb (EV_P_ ev_signal *sw, int revents)
748{ 1992{
749 int pid, status; 1993 int pid, status;
750 1994
753 if (!WCONTINUED 1997 if (!WCONTINUED
754 || errno != EINVAL 1998 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1999 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 2000 return;
757 2001
758 /* make sure we are called again until all childs have been reaped */ 2002 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 2003 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2004 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 2005
762 child_reap (EV_A_ sw, pid, pid, status); 2006 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 2007 if ((EV_PID_HASHSIZE) > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2008 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 2009}
766 2010
767#endif 2011#endif
768 2012
769/*****************************************************************************/ 2013/*****************************************************************************/
770 2014
2015#if EV_USE_IOCP
2016# include "ev_iocp.c"
2017#endif
771#if EV_USE_PORT 2018#if EV_USE_PORT
772# include "ev_port.c" 2019# include "ev_port.c"
773#endif 2020#endif
774#if EV_USE_KQUEUE 2021#if EV_USE_KQUEUE
775# include "ev_kqueue.c" 2022# include "ev_kqueue.c"
782#endif 2029#endif
783#if EV_USE_SELECT 2030#if EV_USE_SELECT
784# include "ev_select.c" 2031# include "ev_select.c"
785#endif 2032#endif
786 2033
787int 2034int ecb_cold
788ev_version_major (void) 2035ev_version_major (void)
789{ 2036{
790 return EV_VERSION_MAJOR; 2037 return EV_VERSION_MAJOR;
791} 2038}
792 2039
793int 2040int ecb_cold
794ev_version_minor (void) 2041ev_version_minor (void)
795{ 2042{
796 return EV_VERSION_MINOR; 2043 return EV_VERSION_MINOR;
797} 2044}
798 2045
799/* return true if we are running with elevated privileges and should ignore env variables */ 2046/* return true if we are running with elevated privileges and should ignore env variables */
800int inline_size 2047int inline_size ecb_cold
801enable_secure (void) 2048enable_secure (void)
802{ 2049{
803#ifdef _WIN32 2050#ifdef _WIN32
804 return 0; 2051 return 0;
805#else 2052#else
806 return getuid () != geteuid () 2053 return getuid () != geteuid ()
807 || getgid () != getegid (); 2054 || getgid () != getegid ();
808#endif 2055#endif
809} 2056}
810 2057
811unsigned int 2058unsigned int ecb_cold
812ev_supported_backends (void) 2059ev_supported_backends (void)
813{ 2060{
814 unsigned int flags = 0; 2061 unsigned int flags = 0;
815 2062
816 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2063 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
820 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2067 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
821 2068
822 return flags; 2069 return flags;
823} 2070}
824 2071
825unsigned int 2072unsigned int ecb_cold
826ev_recommended_backends (void) 2073ev_recommended_backends (void)
827{ 2074{
828 unsigned int flags = ev_supported_backends (); 2075 unsigned int flags = ev_supported_backends ();
829 2076
830#ifndef __NetBSD__ 2077#ifndef __NetBSD__
831 /* kqueue is borked on everything but netbsd apparently */ 2078 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */ 2079 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE; 2080 flags &= ~EVBACKEND_KQUEUE;
834#endif 2081#endif
835#ifdef __APPLE__ 2082#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation 2083 /* only select works correctly on that "unix-certified" platform */
837 flags &= ~EVBACKEND_POLL; 2084 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2085 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2086#endif
2087#ifdef __FreeBSD__
2088 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
838#endif 2089#endif
839 2090
840 return flags; 2091 return flags;
841} 2092}
842 2093
843unsigned int 2094unsigned int ecb_cold
844ev_embeddable_backends (void) 2095ev_embeddable_backends (void)
845{ 2096{
846 return EVBACKEND_EPOLL 2097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 2098
848 | EVBACKEND_PORT; 2099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2100 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2101 flags &= ~EVBACKEND_EPOLL;
2102
2103 return flags;
849} 2104}
850 2105
851unsigned int 2106unsigned int
852ev_backend (EV_P) 2107ev_backend (EV_P)
853{ 2108{
854 return backend; 2109 return backend;
855} 2110}
856 2111
857static void 2112#if EV_FEATURE_API
2113unsigned int
2114ev_iteration (EV_P)
2115{
2116 return loop_count;
2117}
2118
2119unsigned int
2120ev_depth (EV_P)
2121{
2122 return loop_depth;
2123}
2124
2125void
2126ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2127{
2128 io_blocktime = interval;
2129}
2130
2131void
2132ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2133{
2134 timeout_blocktime = interval;
2135}
2136
2137void
2138ev_set_userdata (EV_P_ void *data)
2139{
2140 userdata = data;
2141}
2142
2143void *
2144ev_userdata (EV_P)
2145{
2146 return userdata;
2147}
2148
2149void
2150ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2151{
2152 invoke_cb = invoke_pending_cb;
2153}
2154
2155void
2156ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2157{
2158 release_cb = release;
2159 acquire_cb = acquire;
2160}
2161#endif
2162
2163/* initialise a loop structure, must be zero-initialised */
2164static void noinline ecb_cold
858loop_init (EV_P_ unsigned int flags) 2165loop_init (EV_P_ unsigned int flags)
859{ 2166{
860 if (!backend) 2167 if (!backend)
861 { 2168 {
2169 origflags = flags;
2170
2171#if EV_USE_REALTIME
2172 if (!have_realtime)
2173 {
2174 struct timespec ts;
2175
2176 if (!clock_gettime (CLOCK_REALTIME, &ts))
2177 have_realtime = 1;
2178 }
2179#endif
2180
862#if EV_USE_MONOTONIC 2181#if EV_USE_MONOTONIC
2182 if (!have_monotonic)
863 { 2183 {
864 struct timespec ts; 2184 struct timespec ts;
2185
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2186 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 2187 have_monotonic = 1;
867 } 2188 }
868#endif 2189#endif
869 2190
870 ev_rt_now = ev_time (); 2191 /* pid check not overridable via env */
871 mn_now = get_clock (); 2192#ifndef _WIN32
872 now_floor = mn_now; 2193 if (flags & EVFLAG_FORKCHECK)
873 rtmn_diff = ev_rt_now - mn_now; 2194 curpid = getpid ();
2195#endif
874 2196
875 if (!(flags & EVFLAG_NOENV) 2197 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 2198 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 2199 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 2200 flags = atoi (getenv ("LIBEV_FLAGS"));
879 2201
880 if (!(flags & 0x0000ffffUL)) 2202 ev_rt_now = ev_time ();
2203 mn_now = get_clock ();
2204 now_floor = mn_now;
2205 rtmn_diff = ev_rt_now - mn_now;
2206#if EV_FEATURE_API
2207 invoke_cb = ev_invoke_pending;
2208#endif
2209
2210 io_blocktime = 0.;
2211 timeout_blocktime = 0.;
2212 backend = 0;
2213 backend_fd = -1;
2214 sig_pending = 0;
2215#if EV_ASYNC_ENABLE
2216 async_pending = 0;
2217#endif
2218 pipe_write_skipped = 0;
2219 pipe_write_wanted = 0;
2220#if EV_USE_INOTIFY
2221 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2222#endif
2223#if EV_USE_SIGNALFD
2224 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2225#endif
2226
2227 if (!(flags & EVBACKEND_MASK))
881 flags |= ev_recommended_backends (); 2228 flags |= ev_recommended_backends ();
882 2229
883 backend = 0; 2230#if EV_USE_IOCP
2231 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2232#endif
884#if EV_USE_PORT 2233#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2234 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 2235#endif
887#if EV_USE_KQUEUE 2236#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2237 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 2244#endif
896#if EV_USE_SELECT 2245#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2246 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 2247#endif
899 2248
2249 ev_prepare_init (&pending_w, pendingcb);
2250
2251#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
900 ev_init (&sigev, sigcb); 2252 ev_init (&pipe_w, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 2253 ev_set_priority (&pipe_w, EV_MAXPRI);
2254#endif
902 } 2255 }
903} 2256}
904 2257
905static void 2258/* free up a loop structure */
2259void ecb_cold
906loop_destroy (EV_P) 2260ev_loop_destroy (EV_P)
907{ 2261{
908 int i; 2262 int i;
909 2263
2264#if EV_MULTIPLICITY
2265 /* mimic free (0) */
2266 if (!EV_A)
2267 return;
2268#endif
2269
2270#if EV_CLEANUP_ENABLE
2271 /* queue cleanup watchers (and execute them) */
2272 if (expect_false (cleanupcnt))
2273 {
2274 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2275 EV_INVOKE_PENDING;
2276 }
2277#endif
2278
2279#if EV_CHILD_ENABLE
2280 if (ev_is_active (&childev))
2281 {
2282 ev_ref (EV_A); /* child watcher */
2283 ev_signal_stop (EV_A_ &childev);
2284 }
2285#endif
2286
2287 if (ev_is_active (&pipe_w))
2288 {
2289 /*ev_ref (EV_A);*/
2290 /*ev_io_stop (EV_A_ &pipe_w);*/
2291
2292#if EV_USE_EVENTFD
2293 if (evfd >= 0)
2294 close (evfd);
2295#endif
2296
2297 if (evpipe [0] >= 0)
2298 {
2299 EV_WIN32_CLOSE_FD (evpipe [0]);
2300 EV_WIN32_CLOSE_FD (evpipe [1]);
2301 }
2302 }
2303
2304#if EV_USE_SIGNALFD
2305 if (ev_is_active (&sigfd_w))
2306 close (sigfd);
2307#endif
2308
2309#if EV_USE_INOTIFY
2310 if (fs_fd >= 0)
2311 close (fs_fd);
2312#endif
2313
2314 if (backend_fd >= 0)
2315 close (backend_fd);
2316
2317#if EV_USE_IOCP
2318 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2319#endif
910#if EV_USE_PORT 2320#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2321 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 2322#endif
913#if EV_USE_KQUEUE 2323#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2324 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
922#if EV_USE_SELECT 2332#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2333 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 2334#endif
925 2335
926 for (i = NUMPRI; i--; ) 2336 for (i = NUMPRI; i--; )
2337 {
927 array_free (pending, [i]); 2338 array_free (pending, [i]);
2339#if EV_IDLE_ENABLE
2340 array_free (idle, [i]);
2341#endif
2342 }
2343
2344 ev_free (anfds); anfds = 0; anfdmax = 0;
928 2345
929 /* have to use the microsoft-never-gets-it-right macro */ 2346 /* have to use the microsoft-never-gets-it-right macro */
2347 array_free (rfeed, EMPTY);
930 array_free (fdchange, EMPTY0); 2348 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 2349 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 2351 array_free (periodic, EMPTY);
934#endif 2352#endif
2353#if EV_FORK_ENABLE
2354 array_free (fork, EMPTY);
2355#endif
2356#if EV_CLEANUP_ENABLE
935 array_free (idle, EMPTY0); 2357 array_free (cleanup, EMPTY);
2358#endif
936 array_free (prepare, EMPTY0); 2359 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 2360 array_free (check, EMPTY);
2361#if EV_ASYNC_ENABLE
2362 array_free (async, EMPTY);
2363#endif
938 2364
939 backend = 0; 2365 backend = 0;
940}
941 2366
942static void 2367#if EV_MULTIPLICITY
2368 if (ev_is_default_loop (EV_A))
2369#endif
2370 ev_default_loop_ptr = 0;
2371#if EV_MULTIPLICITY
2372 else
2373 ev_free (EV_A);
2374#endif
2375}
2376
2377#if EV_USE_INOTIFY
2378inline_size void infy_fork (EV_P);
2379#endif
2380
2381inline_size void
943loop_fork (EV_P) 2382loop_fork (EV_P)
944{ 2383{
945#if EV_USE_PORT 2384#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2385 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 2386#endif
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2388 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 2389#endif
951#if EV_USE_EPOLL 2390#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2391 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 2392#endif
2393#if EV_USE_INOTIFY
2394 infy_fork (EV_A);
2395#endif
954 2396
955 if (ev_is_active (&sigev)) 2397 if (ev_is_active (&pipe_w))
956 { 2398 {
957 /* default loop */ 2399 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
958 2400
959 ev_ref (EV_A); 2401 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 2402 ev_io_stop (EV_A_ &pipe_w);
961 close (sigpipe [0]);
962 close (sigpipe [1]);
963 2403
964 while (pipe (sigpipe)) 2404#if EV_USE_EVENTFD
965 syserr ("(libev) error creating pipe"); 2405 if (evfd >= 0)
2406 close (evfd);
2407#endif
966 2408
2409 if (evpipe [0] >= 0)
2410 {
2411 EV_WIN32_CLOSE_FD (evpipe [0]);
2412 EV_WIN32_CLOSE_FD (evpipe [1]);
2413 }
2414
2415#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
967 siginit (EV_A); 2416 evpipe_init (EV_A);
2417 /* now iterate over everything, in case we missed something */
2418 pipecb (EV_A_ &pipe_w, EV_READ);
2419#endif
968 } 2420 }
969 2421
970 postfork = 0; 2422 postfork = 0;
971} 2423}
972 2424
973#if EV_MULTIPLICITY 2425#if EV_MULTIPLICITY
2426
974struct ev_loop * 2427struct ev_loop * ecb_cold
975ev_loop_new (unsigned int flags) 2428ev_loop_new (unsigned int flags)
976{ 2429{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2430 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978 2431
979 memset (loop, 0, sizeof (struct ev_loop)); 2432 memset (EV_A, 0, sizeof (struct ev_loop));
980
981 loop_init (EV_A_ flags); 2433 loop_init (EV_A_ flags);
982 2434
983 if (ev_backend (EV_A)) 2435 if (ev_backend (EV_A))
984 return loop; 2436 return EV_A;
985 2437
2438 ev_free (EV_A);
986 return 0; 2439 return 0;
987} 2440}
988 2441
989void 2442#endif /* multiplicity */
990ev_loop_destroy (EV_P)
991{
992 loop_destroy (EV_A);
993 ev_free (loop);
994}
995 2443
996void 2444#if EV_VERIFY
997ev_loop_fork (EV_P) 2445static void noinline ecb_cold
2446verify_watcher (EV_P_ W w)
998{ 2447{
999 postfork = 1; 2448 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1000}
1001 2449
2450 if (w->pending)
2451 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2452}
2453
2454static void noinline ecb_cold
2455verify_heap (EV_P_ ANHE *heap, int N)
2456{
2457 int i;
2458
2459 for (i = HEAP0; i < N + HEAP0; ++i)
2460 {
2461 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2462 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2463 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2464
2465 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2466 }
2467}
2468
2469static void noinline ecb_cold
2470array_verify (EV_P_ W *ws, int cnt)
2471{
2472 while (cnt--)
2473 {
2474 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2475 verify_watcher (EV_A_ ws [cnt]);
2476 }
2477}
2478#endif
2479
2480#if EV_FEATURE_API
2481void ecb_cold
2482ev_verify (EV_P)
2483{
2484#if EV_VERIFY
2485 int i;
2486 WL w;
2487
2488 assert (activecnt >= -1);
2489
2490 assert (fdchangemax >= fdchangecnt);
2491 for (i = 0; i < fdchangecnt; ++i)
2492 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2493
2494 assert (anfdmax >= 0);
2495 for (i = 0; i < anfdmax; ++i)
2496 for (w = anfds [i].head; w; w = w->next)
2497 {
2498 verify_watcher (EV_A_ (W)w);
2499 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2500 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2501 }
2502
2503 assert (timermax >= timercnt);
2504 verify_heap (EV_A_ timers, timercnt);
2505
2506#if EV_PERIODIC_ENABLE
2507 assert (periodicmax >= periodiccnt);
2508 verify_heap (EV_A_ periodics, periodiccnt);
2509#endif
2510
2511 for (i = NUMPRI; i--; )
2512 {
2513 assert (pendingmax [i] >= pendingcnt [i]);
2514#if EV_IDLE_ENABLE
2515 assert (idleall >= 0);
2516 assert (idlemax [i] >= idlecnt [i]);
2517 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2518#endif
2519 }
2520
2521#if EV_FORK_ENABLE
2522 assert (forkmax >= forkcnt);
2523 array_verify (EV_A_ (W *)forks, forkcnt);
2524#endif
2525
2526#if EV_CLEANUP_ENABLE
2527 assert (cleanupmax >= cleanupcnt);
2528 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2529#endif
2530
2531#if EV_ASYNC_ENABLE
2532 assert (asyncmax >= asynccnt);
2533 array_verify (EV_A_ (W *)asyncs, asynccnt);
2534#endif
2535
2536#if EV_PREPARE_ENABLE
2537 assert (preparemax >= preparecnt);
2538 array_verify (EV_A_ (W *)prepares, preparecnt);
2539#endif
2540
2541#if EV_CHECK_ENABLE
2542 assert (checkmax >= checkcnt);
2543 array_verify (EV_A_ (W *)checks, checkcnt);
2544#endif
2545
2546# if 0
2547#if EV_CHILD_ENABLE
2548 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2549 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2550#endif
2551# endif
2552#endif
2553}
1002#endif 2554#endif
1003 2555
1004#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
1005struct ev_loop * 2557struct ev_loop * ecb_cold
1006ev_default_loop_init (unsigned int flags)
1007#else 2558#else
1008int 2559int
2560#endif
1009ev_default_loop (unsigned int flags) 2561ev_default_loop (unsigned int flags)
1010#endif
1011{ 2562{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 2563 if (!ev_default_loop_ptr)
1017 { 2564 {
1018#if EV_MULTIPLICITY 2565#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2566 EV_P = ev_default_loop_ptr = &default_loop_struct;
1020#else 2567#else
1021 ev_default_loop_ptr = 1; 2568 ev_default_loop_ptr = 1;
1022#endif 2569#endif
1023 2570
1024 loop_init (EV_A_ flags); 2571 loop_init (EV_A_ flags);
1025 2572
1026 if (ev_backend (EV_A)) 2573 if (ev_backend (EV_A))
1027 { 2574 {
1028 siginit (EV_A); 2575#if EV_CHILD_ENABLE
1029
1030#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 2576 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 2577 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 2578 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2579 ev_unref (EV_A); /* child watcher should not keep loop alive */
1035#endif 2580#endif
1040 2585
1041 return ev_default_loop_ptr; 2586 return ev_default_loop_ptr;
1042} 2587}
1043 2588
1044void 2589void
1045ev_default_destroy (void) 2590ev_loop_fork (EV_P)
1046{ 2591{
1047#if EV_MULTIPLICITY 2592 postfork = 1; /* must be in line with ev_default_fork */
1048 struct ev_loop *loop = ev_default_loop_ptr;
1049#endif
1050
1051#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev);
1054#endif
1055
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A);
1063} 2593}
2594
2595/*****************************************************************************/
1064 2596
1065void 2597void
1066ev_default_fork (void) 2598ev_invoke (EV_P_ void *w, int revents)
1067{ 2599{
1068#if EV_MULTIPLICITY 2600 EV_CB_INVOKE ((W)w, revents);
1069 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif
1071
1072 if (backend)
1073 postfork = 1;
1074} 2601}
1075 2602
1076/*****************************************************************************/ 2603unsigned int
1077 2604ev_pending_count (EV_P)
1078int inline_size
1079any_pending (EV_P)
1080{ 2605{
1081 int pri; 2606 int pri;
2607 unsigned int count = 0;
1082 2608
1083 for (pri = NUMPRI; pri--; ) 2609 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri]) 2610 count += pendingcnt [pri];
1085 return 1;
1086 2611
1087 return 0; 2612 return count;
1088} 2613}
1089 2614
1090void inline_speed 2615void noinline
1091call_pending (EV_P) 2616ev_invoke_pending (EV_P)
1092{ 2617{
1093 int pri; 2618 int pri;
1094 2619
1095 for (pri = NUMPRI; pri--; ) 2620 for (pri = NUMPRI; pri--; )
1096 while (pendingcnt [pri]) 2621 while (pendingcnt [pri])
1097 { 2622 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2623 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099 2624
1100 if (expect_true (p->w))
1101 {
1102 assert (("non-pending watcher on pending list", p->w->pending));
1103
1104 p->w->pending = 0; 2625 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 2626 EV_CB_INVOKE (p->w, p->events);
1106 } 2627 EV_FREQUENT_CHECK;
1107 } 2628 }
1108} 2629}
1109 2630
1110void inline_size 2631#if EV_IDLE_ENABLE
2632/* make idle watchers pending. this handles the "call-idle */
2633/* only when higher priorities are idle" logic */
2634inline_size void
2635idle_reify (EV_P)
2636{
2637 if (expect_false (idleall))
2638 {
2639 int pri;
2640
2641 for (pri = NUMPRI; pri--; )
2642 {
2643 if (pendingcnt [pri])
2644 break;
2645
2646 if (idlecnt [pri])
2647 {
2648 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2649 break;
2650 }
2651 }
2652 }
2653}
2654#endif
2655
2656/* make timers pending */
2657inline_size void
1111timers_reify (EV_P) 2658timers_reify (EV_P)
1112{ 2659{
2660 EV_FREQUENT_CHECK;
2661
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 2662 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 2663 {
1115 ev_timer *w = timers [0]; 2664 do
1116
1117 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1118
1119 /* first reschedule or stop timer */
1120 if (w->repeat)
1121 { 2665 {
2666 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2667
2668 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2669
2670 /* first reschedule or stop timer */
2671 if (w->repeat)
2672 {
2673 ev_at (w) += w->repeat;
2674 if (ev_at (w) < mn_now)
2675 ev_at (w) = mn_now;
2676
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2677 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 2678
1124 ((WT)w)->at += w->repeat; 2679 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 2680 downheap (timers, timercnt, HEAP0);
2681 }
2682 else
2683 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2684
2685 EV_FREQUENT_CHECK;
2686 feed_reverse (EV_A_ (W)w);
1129 } 2687 }
1130 else 2688 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 2689
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2690 feed_reverse_done (EV_A_ EV_TIMER);
1134 } 2691 }
1135} 2692}
1136 2693
1137#if EV_PERIODIC_ENABLE 2694#if EV_PERIODIC_ENABLE
1138void inline_size 2695
2696static void noinline
2697periodic_recalc (EV_P_ ev_periodic *w)
2698{
2699 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2700 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2701
2702 /* the above almost always errs on the low side */
2703 while (at <= ev_rt_now)
2704 {
2705 ev_tstamp nat = at + w->interval;
2706
2707 /* when resolution fails us, we use ev_rt_now */
2708 if (expect_false (nat == at))
2709 {
2710 at = ev_rt_now;
2711 break;
2712 }
2713
2714 at = nat;
2715 }
2716
2717 ev_at (w) = at;
2718}
2719
2720/* make periodics pending */
2721inline_size void
1139periodics_reify (EV_P) 2722periodics_reify (EV_P)
1140{ 2723{
2724 EV_FREQUENT_CHECK;
2725
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2726 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 2727 {
1143 ev_periodic *w = periodics [0]; 2728 int feed_count = 0;
1144 2729
2730 do
2731 {
2732 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2733
1145 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2734 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 2735
1147 /* first reschedule or stop timer */ 2736 /* first reschedule or stop timer */
2737 if (w->reschedule_cb)
2738 {
2739 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2740
2741 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2742
2743 ANHE_at_cache (periodics [HEAP0]);
2744 downheap (periodics, periodiccnt, HEAP0);
2745 }
2746 else if (w->interval)
2747 {
2748 periodic_recalc (EV_A_ w);
2749 ANHE_at_cache (periodics [HEAP0]);
2750 downheap (periodics, periodiccnt, HEAP0);
2751 }
2752 else
2753 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2754
2755 EV_FREQUENT_CHECK;
2756 feed_reverse (EV_A_ (W)w);
2757 }
2758 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2759
2760 feed_reverse_done (EV_A_ EV_PERIODIC);
2761 }
2762}
2763
2764/* simply recalculate all periodics */
2765/* TODO: maybe ensure that at least one event happens when jumping forward? */
2766static void noinline ecb_cold
2767periodics_reschedule (EV_P)
2768{
2769 int i;
2770
2771 /* adjust periodics after time jump */
2772 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2773 {
2774 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2775
1148 if (w->reschedule_cb) 2776 if (w->reschedule_cb)
2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2778 else if (w->interval)
2779 periodic_recalc (EV_A_ w);
2780
2781 ANHE_at_cache (periodics [i]);
2782 }
2783
2784 reheap (periodics, periodiccnt);
2785}
2786#endif
2787
2788/* adjust all timers by a given offset */
2789static void noinline ecb_cold
2790timers_reschedule (EV_P_ ev_tstamp adjust)
2791{
2792 int i;
2793
2794 for (i = 0; i < timercnt; ++i)
2795 {
2796 ANHE *he = timers + i + HEAP0;
2797 ANHE_w (*he)->at += adjust;
2798 ANHE_at_cache (*he);
2799 }
2800}
2801
2802/* fetch new monotonic and realtime times from the kernel */
2803/* also detect if there was a timejump, and act accordingly */
2804inline_speed void
2805time_update (EV_P_ ev_tstamp max_block)
2806{
2807#if EV_USE_MONOTONIC
2808 if (expect_true (have_monotonic))
2809 {
2810 int i;
2811 ev_tstamp odiff = rtmn_diff;
2812
2813 mn_now = get_clock ();
2814
2815 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2816 /* interpolate in the meantime */
2817 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1149 { 2818 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2819 ev_rt_now = rtmn_diff + mn_now;
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2820 return;
1152 downheap ((WT *)periodics, periodiccnt, 0);
1153 } 2821 }
1154 else if (w->interval)
1155 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0);
1159 }
1160 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 2822
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1164 }
1165}
1166
1167static void noinline
1168periodics_reschedule (EV_P)
1169{
1170 int i;
1171
1172 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i)
1174 {
1175 ev_periodic *w = periodics [i];
1176
1177 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1181 }
1182
1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
1190time_update_monotonic (EV_P)
1191{
1192 mn_now = get_clock ();
1193
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 {
1196 ev_rt_now = rtmn_diff + mn_now;
1197 return 0;
1198 }
1199 else
1200 {
1201 now_floor = mn_now; 2823 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 2824 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 2825
1207void inline_size 2826 /* loop a few times, before making important decisions.
1208time_update (EV_P) 2827 * on the choice of "4": one iteration isn't enough,
1209{ 2828 * in case we get preempted during the calls to
1210 int i; 2829 * ev_time and get_clock. a second call is almost guaranteed
1211 2830 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 2831 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 2832 * in the unlikely event of having been preempted here.
1214 { 2833 */
1215 if (time_update_monotonic (EV_A)) 2834 for (i = 4; --i; )
1216 { 2835 {
1217 ev_tstamp odiff = rtmn_diff; 2836 ev_tstamp diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 2837 rtmn_diff = ev_rt_now - mn_now;
1230 2838
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2839 diff = odiff - rtmn_diff;
2840
2841 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 2842 return; /* all is well */
1233 2843
1234 ev_rt_now = ev_time (); 2844 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 2845 mn_now = get_clock ();
1236 now_floor = mn_now; 2846 now_floor = mn_now;
1237 } 2847 }
1238 2848
2849 /* no timer adjustment, as the monotonic clock doesn't jump */
2850 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1239# if EV_PERIODIC_ENABLE 2851# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 2852 periodics_reschedule (EV_A);
1241# endif 2853# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 2854 }
1246 else 2855 else
1247#endif 2856#endif
1248 { 2857 {
1249 ev_rt_now = ev_time (); 2858 ev_rt_now = ev_time ();
1250 2859
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2860 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 2861 {
2862 /* adjust timers. this is easy, as the offset is the same for all of them */
2863 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1253#if EV_PERIODIC_ENABLE 2864#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 2865 periodics_reschedule (EV_A);
1255#endif 2866#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */
1258 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 2867 }
1261 2868
1262 mn_now = ev_rt_now; 2869 mn_now = ev_rt_now;
1263 } 2870 }
1264} 2871}
1265 2872
1266void 2873void
1267ev_ref (EV_P)
1268{
1269 ++activecnt;
1270}
1271
1272void
1273ev_unref (EV_P)
1274{
1275 --activecnt;
1276}
1277
1278static int loop_done;
1279
1280void
1281ev_loop (EV_P_ int flags) 2874ev_run (EV_P_ int flags)
1282{ 2875{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2876#if EV_FEATURE_API
1284 ? EVUNLOOP_ONE 2877 ++loop_depth;
1285 : EVUNLOOP_CANCEL; 2878#endif
1286 2879
1287 while (activecnt) 2880 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2881
2882 loop_done = EVBREAK_CANCEL;
2883
2884 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2885
2886 do
1288 { 2887 {
1289 /* we might have forked, so reify kernel state if necessary */ 2888#if EV_VERIFY >= 2
2889 ev_verify (EV_A);
2890#endif
2891
2892#ifndef _WIN32
2893 if (expect_false (curpid)) /* penalise the forking check even more */
2894 if (expect_false (getpid () != curpid))
2895 {
2896 curpid = getpid ();
2897 postfork = 1;
2898 }
2899#endif
2900
1290 #if EV_FORK_ENABLE 2901#if EV_FORK_ENABLE
2902 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 2903 if (expect_false (postfork))
1292 if (forkcnt) 2904 if (forkcnt)
1293 { 2905 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2906 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 2907 EV_INVOKE_PENDING;
1296 } 2908 }
1297 #endif 2909#endif
1298 2910
2911#if EV_PREPARE_ENABLE
1299 /* queue check watchers (and execute them) */ 2912 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 2913 if (expect_false (preparecnt))
1301 { 2914 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2915 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 2916 EV_INVOKE_PENDING;
1304 } 2917 }
2918#endif
2919
2920 if (expect_false (loop_done))
2921 break;
1305 2922
1306 /* we might have forked, so reify kernel state if necessary */ 2923 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 2924 if (expect_false (postfork))
1308 loop_fork (EV_A); 2925 loop_fork (EV_A);
1309 2926
1310 /* update fd-related kernel structures */ 2927 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 2928 fd_reify (EV_A);
1312 2929
1313 /* calculate blocking time */ 2930 /* calculate blocking time */
1314 { 2931 {
1315 double block; 2932 ev_tstamp waittime = 0.;
2933 ev_tstamp sleeptime = 0.;
1316 2934
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 2935 /* remember old timestamp for io_blocktime calculation */
1318 block = 0.; /* do not block at all */ 2936 ev_tstamp prev_mn_now = mn_now;
1319 else 2937
2938 /* update time to cancel out callback processing overhead */
2939 time_update (EV_A_ 1e100);
2940
2941 /* from now on, we want a pipe-wake-up */
2942 pipe_write_wanted = 1;
2943
2944 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2945
2946 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1320 { 2947 {
1321 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331
1332 block = MAX_BLOCKTIME; 2948 waittime = MAX_BLOCKTIME;
1333 2949
1334 if (timercnt) 2950 if (timercnt)
1335 { 2951 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2952 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1337 if (block > to) block = to; 2953 if (waittime > to) waittime = to;
1338 } 2954 }
1339 2955
1340#if EV_PERIODIC_ENABLE 2956#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 2957 if (periodiccnt)
1342 { 2958 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2959 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1344 if (block > to) block = to; 2960 if (waittime > to) waittime = to;
1345 } 2961 }
1346#endif 2962#endif
1347 2963
2964 /* don't let timeouts decrease the waittime below timeout_blocktime */
2965 if (expect_false (waittime < timeout_blocktime))
2966 waittime = timeout_blocktime;
2967
2968 /* at this point, we NEED to wait, so we have to ensure */
2969 /* to pass a minimum nonzero value to the backend */
2970 if (expect_false (waittime < backend_mintime))
2971 waittime = backend_mintime;
2972
2973 /* extra check because io_blocktime is commonly 0 */
1348 if (expect_false (block < 0.)) block = 0.; 2974 if (expect_false (io_blocktime))
2975 {
2976 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2977
2978 if (sleeptime > waittime - backend_mintime)
2979 sleeptime = waittime - backend_mintime;
2980
2981 if (expect_true (sleeptime > 0.))
2982 {
2983 ev_sleep (sleeptime);
2984 waittime -= sleeptime;
2985 }
2986 }
1349 } 2987 }
1350 2988
2989#if EV_FEATURE_API
2990 ++loop_count;
2991#endif
2992 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1351 backend_poll (EV_A_ block); 2993 backend_poll (EV_A_ waittime);
2994 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2995
2996 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2997
2998 if (pipe_write_skipped)
2999 {
3000 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3001 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3002 }
3003
3004
3005 /* update ev_rt_now, do magic */
3006 time_update (EV_A_ waittime + sleeptime);
1352 } 3007 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 3008
1357 /* queue pending timers and reschedule them */ 3009 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 3010 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 3011#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 3012 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 3013#endif
1362 3014
3015#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 3016 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 3017 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3018#endif
1366 3019
3020#if EV_CHECK_ENABLE
1367 /* queue check watchers, to be executed first */ 3021 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 3022 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3024#endif
1370 3025
1371 call_pending (EV_A); 3026 EV_INVOKE_PENDING;
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 3027 }
3028 while (expect_true (
3029 activecnt
3030 && !loop_done
3031 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3032 ));
1376 3033
1377 if (loop_done == EVUNLOOP_ONE) 3034 if (loop_done == EVBREAK_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 3035 loop_done = EVBREAK_CANCEL;
3036
3037#if EV_FEATURE_API
3038 --loop_depth;
3039#endif
1379} 3040}
1380 3041
1381void 3042void
1382ev_unloop (EV_P_ int how) 3043ev_break (EV_P_ int how)
1383{ 3044{
1384 loop_done = how; 3045 loop_done = how;
1385} 3046}
1386 3047
3048void
3049ev_ref (EV_P)
3050{
3051 ++activecnt;
3052}
3053
3054void
3055ev_unref (EV_P)
3056{
3057 --activecnt;
3058}
3059
3060void
3061ev_now_update (EV_P)
3062{
3063 time_update (EV_A_ 1e100);
3064}
3065
3066void
3067ev_suspend (EV_P)
3068{
3069 ev_now_update (EV_A);
3070}
3071
3072void
3073ev_resume (EV_P)
3074{
3075 ev_tstamp mn_prev = mn_now;
3076
3077 ev_now_update (EV_A);
3078 timers_reschedule (EV_A_ mn_now - mn_prev);
3079#if EV_PERIODIC_ENABLE
3080 /* TODO: really do this? */
3081 periodics_reschedule (EV_A);
3082#endif
3083}
3084
1387/*****************************************************************************/ 3085/*****************************************************************************/
3086/* singly-linked list management, used when the expected list length is short */
1388 3087
1389void inline_size 3088inline_size void
1390wlist_add (WL *head, WL elem) 3089wlist_add (WL *head, WL elem)
1391{ 3090{
1392 elem->next = *head; 3091 elem->next = *head;
1393 *head = elem; 3092 *head = elem;
1394} 3093}
1395 3094
1396void inline_size 3095inline_size void
1397wlist_del (WL *head, WL elem) 3096wlist_del (WL *head, WL elem)
1398{ 3097{
1399 while (*head) 3098 while (*head)
1400 { 3099 {
1401 if (*head == elem) 3100 if (expect_true (*head == elem))
1402 { 3101 {
1403 *head = elem->next; 3102 *head = elem->next;
1404 return; 3103 break;
1405 } 3104 }
1406 3105
1407 head = &(*head)->next; 3106 head = &(*head)->next;
1408 } 3107 }
1409} 3108}
1410 3109
1411void inline_speed 3110/* internal, faster, version of ev_clear_pending */
3111inline_speed void
1412ev_clear_pending (EV_P_ W w) 3112clear_pending (EV_P_ W w)
1413{ 3113{
1414 if (w->pending) 3114 if (w->pending)
1415 { 3115 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3116 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1417 w->pending = 0; 3117 w->pending = 0;
1418 } 3118 }
1419} 3119}
1420 3120
1421void inline_speed 3121int
3122ev_clear_pending (EV_P_ void *w)
3123{
3124 W w_ = (W)w;
3125 int pending = w_->pending;
3126
3127 if (expect_true (pending))
3128 {
3129 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3130 p->w = (W)&pending_w;
3131 w_->pending = 0;
3132 return p->events;
3133 }
3134 else
3135 return 0;
3136}
3137
3138inline_size void
3139pri_adjust (EV_P_ W w)
3140{
3141 int pri = ev_priority (w);
3142 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3143 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3144 ev_set_priority (w, pri);
3145}
3146
3147inline_speed void
1422ev_start (EV_P_ W w, int active) 3148ev_start (EV_P_ W w, int active)
1423{ 3149{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3150 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 3151 w->active = active;
1428 ev_ref (EV_A); 3152 ev_ref (EV_A);
1429} 3153}
1430 3154
1431void inline_size 3155inline_size void
1432ev_stop (EV_P_ W w) 3156ev_stop (EV_P_ W w)
1433{ 3157{
1434 ev_unref (EV_A); 3158 ev_unref (EV_A);
1435 w->active = 0; 3159 w->active = 0;
1436} 3160}
1437 3161
1438/*****************************************************************************/ 3162/*****************************************************************************/
1439 3163
1440void 3164void noinline
1441ev_io_start (EV_P_ ev_io *w) 3165ev_io_start (EV_P_ ev_io *w)
1442{ 3166{
1443 int fd = w->fd; 3167 int fd = w->fd;
1444 3168
1445 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
1446 return; 3170 return;
1447 3171
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 3172 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3173 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3174
3175 EV_FREQUENT_CHECK;
1449 3176
1450 ev_start (EV_A_ (W)w, 1); 3177 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3178 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3179 wlist_add (&anfds[fd].head, (WL)w);
1453 3180
1454 fd_change (EV_A_ fd); 3181 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1455} 3182 w->events &= ~EV__IOFDSET;
1456 3183
1457void 3184 EV_FREQUENT_CHECK;
3185}
3186
3187void noinline
1458ev_io_stop (EV_P_ ev_io *w) 3188ev_io_stop (EV_P_ ev_io *w)
1459{ 3189{
1460 ev_clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
1462 return; 3192 return;
1463 3193
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3194 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 3195
3196 EV_FREQUENT_CHECK;
3197
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3198 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 3199 ev_stop (EV_A_ (W)w);
1468 3200
1469 fd_change (EV_A_ w->fd); 3201 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1470}
1471 3202
1472void 3203 EV_FREQUENT_CHECK;
3204}
3205
3206void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 3207ev_timer_start (EV_P_ ev_timer *w)
1474{ 3208{
1475 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
1476 return; 3210 return;
1477 3211
1478 ((WT)w)->at += mn_now; 3212 ev_at (w) += mn_now;
1479 3213
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3214 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 3215
3216 EV_FREQUENT_CHECK;
3217
3218 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 3219 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3220 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 3221 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 3222 ANHE_at_cache (timers [ev_active (w)]);
3223 upheap (timers, ev_active (w));
1486 3224
3225 EV_FREQUENT_CHECK;
3226
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3227 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 3228}
1489 3229
1490void 3230void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 3231ev_timer_stop (EV_P_ ev_timer *w)
1492{ 3232{
1493 ev_clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
1495 return; 3235 return;
1496 3236
3237 EV_FREQUENT_CHECK;
3238
3239 {
3240 int active = ev_active (w);
3241
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3242 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1498 3243
3244 --timercnt;
3245
1499 if (expect_true (((W)w)->active < timercnt--)) 3246 if (expect_true (active < timercnt + HEAP0))
1500 { 3247 {
1501 timers [((W)w)->active - 1] = timers [timercnt]; 3248 timers [active] = timers [timercnt + HEAP0];
1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3249 adjustheap (timers, timercnt, active);
1503 } 3250 }
3251 }
1504 3252
1505 ((WT)w)->at -= mn_now; 3253 ev_at (w) -= mn_now;
1506 3254
1507 ev_stop (EV_A_ (W)w); 3255 ev_stop (EV_A_ (W)w);
1508}
1509 3256
1510void 3257 EV_FREQUENT_CHECK;
3258}
3259
3260void noinline
1511ev_timer_again (EV_P_ ev_timer *w) 3261ev_timer_again (EV_P_ ev_timer *w)
1512{ 3262{
3263 EV_FREQUENT_CHECK;
3264
1513 if (ev_is_active (w)) 3265 if (ev_is_active (w))
1514 { 3266 {
1515 if (w->repeat) 3267 if (w->repeat)
1516 { 3268 {
1517 ((WT)w)->at = mn_now + w->repeat; 3269 ev_at (w) = mn_now + w->repeat;
3270 ANHE_at_cache (timers [ev_active (w)]);
1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3271 adjustheap (timers, timercnt, ev_active (w));
1519 } 3272 }
1520 else 3273 else
1521 ev_timer_stop (EV_A_ w); 3274 ev_timer_stop (EV_A_ w);
1522 } 3275 }
1523 else if (w->repeat) 3276 else if (w->repeat)
1524 { 3277 {
1525 w->at = w->repeat; 3278 ev_at (w) = w->repeat;
1526 ev_timer_start (EV_A_ w); 3279 ev_timer_start (EV_A_ w);
1527 } 3280 }
3281
3282 EV_FREQUENT_CHECK;
3283}
3284
3285ev_tstamp
3286ev_timer_remaining (EV_P_ ev_timer *w)
3287{
3288 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1528} 3289}
1529 3290
1530#if EV_PERIODIC_ENABLE 3291#if EV_PERIODIC_ENABLE
1531void 3292void noinline
1532ev_periodic_start (EV_P_ ev_periodic *w) 3293ev_periodic_start (EV_P_ ev_periodic *w)
1533{ 3294{
1534 if (expect_false (ev_is_active (w))) 3295 if (expect_false (ev_is_active (w)))
1535 return; 3296 return;
1536 3297
1537 if (w->reschedule_cb) 3298 if (w->reschedule_cb)
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval) 3300 else if (w->interval)
1540 { 3301 {
1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1542 /* this formula differs from the one in periodic_reify because we do not always round up */ 3303 periodic_recalc (EV_A_ w);
1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1544 } 3304 }
3305 else
3306 ev_at (w) = w->offset;
1545 3307
3308 EV_FREQUENT_CHECK;
3309
3310 ++periodiccnt;
1546 ev_start (EV_A_ (W)w, ++periodiccnt); 3311 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3312 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1548 periodics [periodiccnt - 1] = w; 3313 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1549 upheap ((WT *)periodics, periodiccnt - 1); 3314 ANHE_at_cache (periodics [ev_active (w)]);
3315 upheap (periodics, ev_active (w));
1550 3316
3317 EV_FREQUENT_CHECK;
3318
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3319 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1552} 3320}
1553 3321
1554void 3322void noinline
1555ev_periodic_stop (EV_P_ ev_periodic *w) 3323ev_periodic_stop (EV_P_ ev_periodic *w)
1556{ 3324{
1557 ev_clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 3326 if (expect_false (!ev_is_active (w)))
1559 return; 3327 return;
1560 3328
3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ev_active (w);
3333
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3334 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1562 3335
3336 --periodiccnt;
3337
1563 if (expect_true (((W)w)->active < periodiccnt--)) 3338 if (expect_true (active < periodiccnt + HEAP0))
1564 { 3339 {
1565 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3340 periodics [active] = periodics [periodiccnt + HEAP0];
1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3341 adjustheap (periodics, periodiccnt, active);
1567 } 3342 }
3343 }
1568 3344
1569 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
1570}
1571 3346
1572void 3347 EV_FREQUENT_CHECK;
3348}
3349
3350void noinline
1573ev_periodic_again (EV_P_ ev_periodic *w) 3351ev_periodic_again (EV_P_ ev_periodic *w)
1574{ 3352{
1575 /* TODO: use adjustheap and recalculation */ 3353 /* TODO: use adjustheap and recalculation */
1576 ev_periodic_stop (EV_A_ w); 3354 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w); 3355 ev_periodic_start (EV_A_ w);
1580 3358
1581#ifndef SA_RESTART 3359#ifndef SA_RESTART
1582# define SA_RESTART 0 3360# define SA_RESTART 0
1583#endif 3361#endif
1584 3362
1585void 3363#if EV_SIGNAL_ENABLE
3364
3365void noinline
1586ev_signal_start (EV_P_ ev_signal *w) 3366ev_signal_start (EV_P_ ev_signal *w)
1587{ 3367{
1588#if EV_MULTIPLICITY
1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1590#endif
1591 if (expect_false (ev_is_active (w))) 3368 if (expect_false (ev_is_active (w)))
1592 return; 3369 return;
1593 3370
1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3371 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3372
3373#if EV_MULTIPLICITY
3374 assert (("libev: a signal must not be attached to two different loops",
3375 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3376
3377 signals [w->signum - 1].loop = EV_A;
3378#endif
3379
3380 EV_FREQUENT_CHECK;
3381
3382#if EV_USE_SIGNALFD
3383 if (sigfd == -2)
3384 {
3385 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3386 if (sigfd < 0 && errno == EINVAL)
3387 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3388
3389 if (sigfd >= 0)
3390 {
3391 fd_intern (sigfd); /* doing it twice will not hurt */
3392
3393 sigemptyset (&sigfd_set);
3394
3395 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3396 ev_set_priority (&sigfd_w, EV_MAXPRI);
3397 ev_io_start (EV_A_ &sigfd_w);
3398 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3399 }
3400 }
3401
3402 if (sigfd >= 0)
3403 {
3404 /* TODO: check .head */
3405 sigaddset (&sigfd_set, w->signum);
3406 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3407
3408 signalfd (sigfd, &sigfd_set, 0);
3409 }
3410#endif
1595 3411
1596 ev_start (EV_A_ (W)w, 1); 3412 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3413 wlist_add (&signals [w->signum - 1].head, (WL)w);
1599 3414
1600 if (!((WL)w)->next) 3415 if (!((WL)w)->next)
3416# if EV_USE_SIGNALFD
3417 if (sigfd < 0) /*TODO*/
3418# endif
1601 { 3419 {
1602#if _WIN32 3420# ifdef _WIN32
3421 evpipe_init (EV_A);
3422
1603 signal (w->signum, sighandler); 3423 signal (w->signum, ev_sighandler);
1604#else 3424# else
1605 struct sigaction sa; 3425 struct sigaction sa;
3426
3427 evpipe_init (EV_A);
3428
1606 sa.sa_handler = sighandler; 3429 sa.sa_handler = ev_sighandler;
1607 sigfillset (&sa.sa_mask); 3430 sigfillset (&sa.sa_mask);
1608 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3431 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1609 sigaction (w->signum, &sa, 0); 3432 sigaction (w->signum, &sa, 0);
3433
3434 if (origflags & EVFLAG_NOSIGMASK)
3435 {
3436 sigemptyset (&sa.sa_mask);
3437 sigaddset (&sa.sa_mask, w->signum);
3438 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3439 }
1610#endif 3440#endif
1611 } 3441 }
1612}
1613 3442
1614void 3443 EV_FREQUENT_CHECK;
3444}
3445
3446void noinline
1615ev_signal_stop (EV_P_ ev_signal *w) 3447ev_signal_stop (EV_P_ ev_signal *w)
1616{ 3448{
1617 ev_clear_pending (EV_A_ (W)w); 3449 clear_pending (EV_A_ (W)w);
1618 if (expect_false (!ev_is_active (w))) 3450 if (expect_false (!ev_is_active (w)))
1619 return; 3451 return;
1620 3452
3453 EV_FREQUENT_CHECK;
3454
1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3455 wlist_del (&signals [w->signum - 1].head, (WL)w);
1622 ev_stop (EV_A_ (W)w); 3456 ev_stop (EV_A_ (W)w);
1623 3457
1624 if (!signals [w->signum - 1].head) 3458 if (!signals [w->signum - 1].head)
3459 {
3460#if EV_MULTIPLICITY
3461 signals [w->signum - 1].loop = 0; /* unattach from signal */
3462#endif
3463#if EV_USE_SIGNALFD
3464 if (sigfd >= 0)
3465 {
3466 sigset_t ss;
3467
3468 sigemptyset (&ss);
3469 sigaddset (&ss, w->signum);
3470 sigdelset (&sigfd_set, w->signum);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 sigprocmask (SIG_UNBLOCK, &ss, 0);
3474 }
3475 else
3476#endif
1625 signal (w->signum, SIG_DFL); 3477 signal (w->signum, SIG_DFL);
3478 }
3479
3480 EV_FREQUENT_CHECK;
1626} 3481}
3482
3483#endif
3484
3485#if EV_CHILD_ENABLE
1627 3486
1628void 3487void
1629ev_child_start (EV_P_ ev_child *w) 3488ev_child_start (EV_P_ ev_child *w)
1630{ 3489{
1631#if EV_MULTIPLICITY 3490#if EV_MULTIPLICITY
1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3491 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1633#endif 3492#endif
1634 if (expect_false (ev_is_active (w))) 3493 if (expect_false (ev_is_active (w)))
1635 return; 3494 return;
1636 3495
3496 EV_FREQUENT_CHECK;
3497
1637 ev_start (EV_A_ (W)w, 1); 3498 ev_start (EV_A_ (W)w, 1);
1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3499 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3500
3501 EV_FREQUENT_CHECK;
1639} 3502}
1640 3503
1641void 3504void
1642ev_child_stop (EV_P_ ev_child *w) 3505ev_child_stop (EV_P_ ev_child *w)
1643{ 3506{
1644 ev_clear_pending (EV_A_ (W)w); 3507 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 3508 if (expect_false (!ev_is_active (w)))
1646 return; 3509 return;
1647 3510
3511 EV_FREQUENT_CHECK;
3512
1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3513 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1649 ev_stop (EV_A_ (W)w); 3514 ev_stop (EV_A_ (W)w);
3515
3516 EV_FREQUENT_CHECK;
1650} 3517}
3518
3519#endif
1651 3520
1652#if EV_STAT_ENABLE 3521#if EV_STAT_ENABLE
1653 3522
1654# ifdef _WIN32 3523# ifdef _WIN32
1655# undef lstat 3524# undef lstat
1656# define lstat(a,b) _stati64 (a,b) 3525# define lstat(a,b) _stati64 (a,b)
1657# endif 3526# endif
1658 3527
1659#define DEF_STAT_INTERVAL 5.0074891 3528#define DEF_STAT_INTERVAL 5.0074891
3529#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1660#define MIN_STAT_INTERVAL 0.1074891 3530#define MIN_STAT_INTERVAL 0.1074891
3531
3532static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3533
3534#if EV_USE_INOTIFY
3535
3536/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3537# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3538
3539static void noinline
3540infy_add (EV_P_ ev_stat *w)
3541{
3542 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3543
3544 if (w->wd >= 0)
3545 {
3546 struct statfs sfs;
3547
3548 /* now local changes will be tracked by inotify, but remote changes won't */
3549 /* unless the filesystem is known to be local, we therefore still poll */
3550 /* also do poll on <2.6.25, but with normal frequency */
3551
3552 if (!fs_2625)
3553 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3554 else if (!statfs (w->path, &sfs)
3555 && (sfs.f_type == 0x1373 /* devfs */
3556 || sfs.f_type == 0xEF53 /* ext2/3 */
3557 || sfs.f_type == 0x3153464a /* jfs */
3558 || sfs.f_type == 0x52654973 /* reiser3 */
3559 || sfs.f_type == 0x01021994 /* tempfs */
3560 || sfs.f_type == 0x58465342 /* xfs */))
3561 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3562 else
3563 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3564 }
3565 else
3566 {
3567 /* can't use inotify, continue to stat */
3568 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3569
3570 /* if path is not there, monitor some parent directory for speedup hints */
3571 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3572 /* but an efficiency issue only */
3573 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3574 {
3575 char path [4096];
3576 strcpy (path, w->path);
3577
3578 do
3579 {
3580 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3581 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3582
3583 char *pend = strrchr (path, '/');
3584
3585 if (!pend || pend == path)
3586 break;
3587
3588 *pend = 0;
3589 w->wd = inotify_add_watch (fs_fd, path, mask);
3590 }
3591 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3592 }
3593 }
3594
3595 if (w->wd >= 0)
3596 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3597
3598 /* now re-arm timer, if required */
3599 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3600 ev_timer_again (EV_A_ &w->timer);
3601 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3602}
3603
3604static void noinline
3605infy_del (EV_P_ ev_stat *w)
3606{
3607 int slot;
3608 int wd = w->wd;
3609
3610 if (wd < 0)
3611 return;
3612
3613 w->wd = -2;
3614 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3615 wlist_del (&fs_hash [slot].head, (WL)w);
3616
3617 /* remove this watcher, if others are watching it, they will rearm */
3618 inotify_rm_watch (fs_fd, wd);
3619}
3620
3621static void noinline
3622infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3623{
3624 if (slot < 0)
3625 /* overflow, need to check for all hash slots */
3626 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3627 infy_wd (EV_A_ slot, wd, ev);
3628 else
3629 {
3630 WL w_;
3631
3632 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3633 {
3634 ev_stat *w = (ev_stat *)w_;
3635 w_ = w_->next; /* lets us remove this watcher and all before it */
3636
3637 if (w->wd == wd || wd == -1)
3638 {
3639 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3640 {
3641 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3642 w->wd = -1;
3643 infy_add (EV_A_ w); /* re-add, no matter what */
3644 }
3645
3646 stat_timer_cb (EV_A_ &w->timer, 0);
3647 }
3648 }
3649 }
3650}
3651
3652static void
3653infy_cb (EV_P_ ev_io *w, int revents)
3654{
3655 char buf [EV_INOTIFY_BUFSIZE];
3656 int ofs;
3657 int len = read (fs_fd, buf, sizeof (buf));
3658
3659 for (ofs = 0; ofs < len; )
3660 {
3661 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3662 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3663 ofs += sizeof (struct inotify_event) + ev->len;
3664 }
3665}
3666
3667inline_size void ecb_cold
3668ev_check_2625 (EV_P)
3669{
3670 /* kernels < 2.6.25 are borked
3671 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3672 */
3673 if (ev_linux_version () < 0x020619)
3674 return;
3675
3676 fs_2625 = 1;
3677}
3678
3679inline_size int
3680infy_newfd (void)
3681{
3682#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3683 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3684 if (fd >= 0)
3685 return fd;
3686#endif
3687 return inotify_init ();
3688}
3689
3690inline_size void
3691infy_init (EV_P)
3692{
3693 if (fs_fd != -2)
3694 return;
3695
3696 fs_fd = -1;
3697
3698 ev_check_2625 (EV_A);
3699
3700 fs_fd = infy_newfd ();
3701
3702 if (fs_fd >= 0)
3703 {
3704 fd_intern (fs_fd);
3705 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3706 ev_set_priority (&fs_w, EV_MAXPRI);
3707 ev_io_start (EV_A_ &fs_w);
3708 ev_unref (EV_A);
3709 }
3710}
3711
3712inline_size void
3713infy_fork (EV_P)
3714{
3715 int slot;
3716
3717 if (fs_fd < 0)
3718 return;
3719
3720 ev_ref (EV_A);
3721 ev_io_stop (EV_A_ &fs_w);
3722 close (fs_fd);
3723 fs_fd = infy_newfd ();
3724
3725 if (fs_fd >= 0)
3726 {
3727 fd_intern (fs_fd);
3728 ev_io_set (&fs_w, fs_fd, EV_READ);
3729 ev_io_start (EV_A_ &fs_w);
3730 ev_unref (EV_A);
3731 }
3732
3733 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3734 {
3735 WL w_ = fs_hash [slot].head;
3736 fs_hash [slot].head = 0;
3737
3738 while (w_)
3739 {
3740 ev_stat *w = (ev_stat *)w_;
3741 w_ = w_->next; /* lets us add this watcher */
3742
3743 w->wd = -1;
3744
3745 if (fs_fd >= 0)
3746 infy_add (EV_A_ w); /* re-add, no matter what */
3747 else
3748 {
3749 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3750 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3751 ev_timer_again (EV_A_ &w->timer);
3752 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3753 }
3754 }
3755 }
3756}
3757
3758#endif
3759
3760#ifdef _WIN32
3761# define EV_LSTAT(p,b) _stati64 (p, b)
3762#else
3763# define EV_LSTAT(p,b) lstat (p, b)
3764#endif
1661 3765
1662void 3766void
1663ev_stat_stat (EV_P_ ev_stat *w) 3767ev_stat_stat (EV_P_ ev_stat *w)
1664{ 3768{
1665 if (lstat (w->path, &w->attr) < 0) 3769 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0; 3770 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink) 3771 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1; 3772 w->attr.st_nlink = 1;
1669} 3773}
1670 3774
1671static void 3775static void noinline
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{ 3777{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675 3779
1676 /* we copy this here each the time so that */ 3780 ev_statdata prev = w->attr;
1677 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w); 3781 ev_stat_stat (EV_A_ w);
1680 3782
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3783 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3784 if (
3785 prev.st_dev != w->attr.st_dev
3786 || prev.st_ino != w->attr.st_ino
3787 || prev.st_mode != w->attr.st_mode
3788 || prev.st_nlink != w->attr.st_nlink
3789 || prev.st_uid != w->attr.st_uid
3790 || prev.st_gid != w->attr.st_gid
3791 || prev.st_rdev != w->attr.st_rdev
3792 || prev.st_size != w->attr.st_size
3793 || prev.st_atime != w->attr.st_atime
3794 || prev.st_mtime != w->attr.st_mtime
3795 || prev.st_ctime != w->attr.st_ctime
3796 ) {
3797 /* we only update w->prev on actual differences */
3798 /* in case we test more often than invoke the callback, */
3799 /* to ensure that prev is always different to attr */
3800 w->prev = prev;
3801
3802 #if EV_USE_INOTIFY
3803 if (fs_fd >= 0)
3804 {
3805 infy_del (EV_A_ w);
3806 infy_add (EV_A_ w);
3807 ev_stat_stat (EV_A_ w); /* avoid race... */
3808 }
3809 #endif
3810
1682 ev_feed_event (EV_A_ w, EV_STAT); 3811 ev_feed_event (EV_A_ w, EV_STAT);
3812 }
1683} 3813}
1684 3814
1685void 3815void
1686ev_stat_start (EV_P_ ev_stat *w) 3816ev_stat_start (EV_P_ ev_stat *w)
1687{ 3817{
1688 if (expect_false (ev_is_active (w))) 3818 if (expect_false (ev_is_active (w)))
1689 return; 3819 return;
1690 3820
1691 /* since we use memcmp, we need to clear any padding data etc. */
1692 memset (&w->prev, 0, sizeof (ev_statdata));
1693 memset (&w->attr, 0, sizeof (ev_statdata));
1694
1695 ev_stat_stat (EV_A_ w); 3821 ev_stat_stat (EV_A_ w);
1696 3822
3823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1697 if (w->interval < MIN_STAT_INTERVAL) 3824 w->interval = MIN_STAT_INTERVAL;
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699 3825
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1701 ev_set_priority (&w->timer, ev_priority (w)); 3827 ev_set_priority (&w->timer, ev_priority (w));
3828
3829#if EV_USE_INOTIFY
3830 infy_init (EV_A);
3831
3832 if (fs_fd >= 0)
3833 infy_add (EV_A_ w);
3834 else
3835#endif
3836 {
1702 ev_timer_start (EV_A_ &w->timer); 3837 ev_timer_again (EV_A_ &w->timer);
3838 ev_unref (EV_A);
3839 }
1703 3840
1704 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
3842
3843 EV_FREQUENT_CHECK;
1705} 3844}
1706 3845
1707void 3846void
1708ev_stat_stop (EV_P_ ev_stat *w) 3847ev_stat_stop (EV_P_ ev_stat *w)
1709{ 3848{
1710 ev_clear_pending (EV_A_ (W)w); 3849 clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w))) 3850 if (expect_false (!ev_is_active (w)))
1712 return; 3851 return;
1713 3852
3853 EV_FREQUENT_CHECK;
3854
3855#if EV_USE_INOTIFY
3856 infy_del (EV_A_ w);
3857#endif
3858
3859 if (ev_is_active (&w->timer))
3860 {
3861 ev_ref (EV_A);
1714 ev_timer_stop (EV_A_ &w->timer); 3862 ev_timer_stop (EV_A_ &w->timer);
3863 }
1715 3864
1716 ev_stop (EV_A_ (W)w); 3865 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719 3866
3867 EV_FREQUENT_CHECK;
3868}
3869#endif
3870
3871#if EV_IDLE_ENABLE
1720void 3872void
1721ev_idle_start (EV_P_ ev_idle *w) 3873ev_idle_start (EV_P_ ev_idle *w)
1722{ 3874{
1723 if (expect_false (ev_is_active (w))) 3875 if (expect_false (ev_is_active (w)))
1724 return; 3876 return;
1725 3877
3878 pri_adjust (EV_A_ (W)w);
3879
3880 EV_FREQUENT_CHECK;
3881
3882 {
3883 int active = ++idlecnt [ABSPRI (w)];
3884
3885 ++idleall;
1726 ev_start (EV_A_ (W)w, ++idlecnt); 3886 ev_start (EV_A_ (W)w, active);
3887
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3888 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1728 idles [idlecnt - 1] = w; 3889 idles [ABSPRI (w)][active - 1] = w;
3890 }
3891
3892 EV_FREQUENT_CHECK;
1729} 3893}
1730 3894
1731void 3895void
1732ev_idle_stop (EV_P_ ev_idle *w) 3896ev_idle_stop (EV_P_ ev_idle *w)
1733{ 3897{
1734 ev_clear_pending (EV_A_ (W)w); 3898 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 3899 if (expect_false (!ev_is_active (w)))
1736 return; 3900 return;
1737 3901
3902 EV_FREQUENT_CHECK;
3903
1738 { 3904 {
1739 int active = ((W)w)->active; 3905 int active = ev_active (w);
1740 idles [active - 1] = idles [--idlecnt]; 3906
1741 ((W)idles [active - 1])->active = active; 3907 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3908 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3909
3910 ev_stop (EV_A_ (W)w);
3911 --idleall;
1742 } 3912 }
1743 3913
1744 ev_stop (EV_A_ (W)w); 3914 EV_FREQUENT_CHECK;
1745} 3915}
3916#endif
1746 3917
3918#if EV_PREPARE_ENABLE
1747void 3919void
1748ev_prepare_start (EV_P_ ev_prepare *w) 3920ev_prepare_start (EV_P_ ev_prepare *w)
1749{ 3921{
1750 if (expect_false (ev_is_active (w))) 3922 if (expect_false (ev_is_active (w)))
1751 return; 3923 return;
3924
3925 EV_FREQUENT_CHECK;
1752 3926
1753 ev_start (EV_A_ (W)w, ++preparecnt); 3927 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w; 3929 prepares [preparecnt - 1] = w;
3930
3931 EV_FREQUENT_CHECK;
1756} 3932}
1757 3933
1758void 3934void
1759ev_prepare_stop (EV_P_ ev_prepare *w) 3935ev_prepare_stop (EV_P_ ev_prepare *w)
1760{ 3936{
1761 ev_clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w))) 3938 if (expect_false (!ev_is_active (w)))
1763 return; 3939 return;
1764 3940
3941 EV_FREQUENT_CHECK;
3942
1765 { 3943 {
1766 int active = ((W)w)->active; 3944 int active = ev_active (w);
3945
1767 prepares [active - 1] = prepares [--preparecnt]; 3946 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active; 3947 ev_active (prepares [active - 1]) = active;
1769 } 3948 }
1770 3949
1771 ev_stop (EV_A_ (W)w); 3950 ev_stop (EV_A_ (W)w);
1772}
1773 3951
3952 EV_FREQUENT_CHECK;
3953}
3954#endif
3955
3956#if EV_CHECK_ENABLE
1774void 3957void
1775ev_check_start (EV_P_ ev_check *w) 3958ev_check_start (EV_P_ ev_check *w)
1776{ 3959{
1777 if (expect_false (ev_is_active (w))) 3960 if (expect_false (ev_is_active (w)))
1778 return; 3961 return;
3962
3963 EV_FREQUENT_CHECK;
1779 3964
1780 ev_start (EV_A_ (W)w, ++checkcnt); 3965 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3966 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w; 3967 checks [checkcnt - 1] = w;
3968
3969 EV_FREQUENT_CHECK;
1783} 3970}
1784 3971
1785void 3972void
1786ev_check_stop (EV_P_ ev_check *w) 3973ev_check_stop (EV_P_ ev_check *w)
1787{ 3974{
1788 ev_clear_pending (EV_A_ (W)w); 3975 clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w))) 3976 if (expect_false (!ev_is_active (w)))
1790 return; 3977 return;
1791 3978
3979 EV_FREQUENT_CHECK;
3980
1792 { 3981 {
1793 int active = ((W)w)->active; 3982 int active = ev_active (w);
3983
1794 checks [active - 1] = checks [--checkcnt]; 3984 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active; 3985 ev_active (checks [active - 1]) = active;
1796 } 3986 }
1797 3987
1798 ev_stop (EV_A_ (W)w); 3988 ev_stop (EV_A_ (W)w);
3989
3990 EV_FREQUENT_CHECK;
1799} 3991}
3992#endif
1800 3993
1801#if EV_EMBED_ENABLE 3994#if EV_EMBED_ENABLE
1802void noinline 3995void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w) 3996ev_embed_sweep (EV_P_ ev_embed *w)
1804{ 3997{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK); 3998 ev_run (w->other, EVRUN_NOWAIT);
1806} 3999}
1807 4000
1808static void 4001static void
1809embed_cb (EV_P_ ev_io *io, int revents) 4002embed_io_cb (EV_P_ ev_io *io, int revents)
1810{ 4003{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4004 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812 4005
1813 if (ev_cb (w)) 4006 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4007 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else 4008 else
1816 ev_embed_sweep (loop, w); 4009 ev_run (w->other, EVRUN_NOWAIT);
1817} 4010}
4011
4012static void
4013embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4014{
4015 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4016
4017 {
4018 EV_P = w->other;
4019
4020 while (fdchangecnt)
4021 {
4022 fd_reify (EV_A);
4023 ev_run (EV_A_ EVRUN_NOWAIT);
4024 }
4025 }
4026}
4027
4028static void
4029embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4030{
4031 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4032
4033 ev_embed_stop (EV_A_ w);
4034
4035 {
4036 EV_P = w->other;
4037
4038 ev_loop_fork (EV_A);
4039 ev_run (EV_A_ EVRUN_NOWAIT);
4040 }
4041
4042 ev_embed_start (EV_A_ w);
4043}
4044
4045#if 0
4046static void
4047embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4048{
4049 ev_idle_stop (EV_A_ idle);
4050}
4051#endif
1818 4052
1819void 4053void
1820ev_embed_start (EV_P_ ev_embed *w) 4054ev_embed_start (EV_P_ ev_embed *w)
1821{ 4055{
1822 if (expect_false (ev_is_active (w))) 4056 if (expect_false (ev_is_active (w)))
1823 return; 4057 return;
1824 4058
1825 { 4059 {
1826 struct ev_loop *loop = w->loop; 4060 EV_P = w->other;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4061 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4062 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1829 } 4063 }
4064
4065 EV_FREQUENT_CHECK;
1830 4066
1831 ev_set_priority (&w->io, ev_priority (w)); 4067 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io); 4068 ev_io_start (EV_A_ &w->io);
1833 4069
4070 ev_prepare_init (&w->prepare, embed_prepare_cb);
4071 ev_set_priority (&w->prepare, EV_MINPRI);
4072 ev_prepare_start (EV_A_ &w->prepare);
4073
4074 ev_fork_init (&w->fork, embed_fork_cb);
4075 ev_fork_start (EV_A_ &w->fork);
4076
4077 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4078
1834 ev_start (EV_A_ (W)w, 1); 4079 ev_start (EV_A_ (W)w, 1);
4080
4081 EV_FREQUENT_CHECK;
1835} 4082}
1836 4083
1837void 4084void
1838ev_embed_stop (EV_P_ ev_embed *w) 4085ev_embed_stop (EV_P_ ev_embed *w)
1839{ 4086{
1840 ev_clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
1842 return; 4089 return;
1843 4090
4091 EV_FREQUENT_CHECK;
4092
1844 ev_io_stop (EV_A_ &w->io); 4093 ev_io_stop (EV_A_ &w->io);
4094 ev_prepare_stop (EV_A_ &w->prepare);
4095 ev_fork_stop (EV_A_ &w->fork);
1845 4096
1846 ev_stop (EV_A_ (W)w); 4097 ev_stop (EV_A_ (W)w);
4098
4099 EV_FREQUENT_CHECK;
1847} 4100}
1848#endif 4101#endif
1849 4102
1850#if EV_FORK_ENABLE 4103#if EV_FORK_ENABLE
1851void 4104void
1852ev_fork_start (EV_P_ ev_fork *w) 4105ev_fork_start (EV_P_ ev_fork *w)
1853{ 4106{
1854 if (expect_false (ev_is_active (w))) 4107 if (expect_false (ev_is_active (w)))
1855 return; 4108 return;
1856 4109
4110 EV_FREQUENT_CHECK;
4111
1857 ev_start (EV_A_ (W)w, ++forkcnt); 4112 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4113 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w; 4114 forks [forkcnt - 1] = w;
4115
4116 EV_FREQUENT_CHECK;
1860} 4117}
1861 4118
1862void 4119void
1863ev_fork_stop (EV_P_ ev_fork *w) 4120ev_fork_stop (EV_P_ ev_fork *w)
1864{ 4121{
1865 ev_clear_pending (EV_A_ (W)w); 4122 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 4123 if (expect_false (!ev_is_active (w)))
1867 return; 4124 return;
1868 4125
4126 EV_FREQUENT_CHECK;
4127
1869 { 4128 {
1870 int active = ((W)w)->active; 4129 int active = ev_active (w);
4130
1871 forks [active - 1] = forks [--forkcnt]; 4131 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active; 4132 ev_active (forks [active - 1]) = active;
1873 } 4133 }
1874 4134
1875 ev_stop (EV_A_ (W)w); 4135 ev_stop (EV_A_ (W)w);
4136
4137 EV_FREQUENT_CHECK;
4138}
4139#endif
4140
4141#if EV_CLEANUP_ENABLE
4142void
4143ev_cleanup_start (EV_P_ ev_cleanup *w)
4144{
4145 if (expect_false (ev_is_active (w)))
4146 return;
4147
4148 EV_FREQUENT_CHECK;
4149
4150 ev_start (EV_A_ (W)w, ++cleanupcnt);
4151 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4152 cleanups [cleanupcnt - 1] = w;
4153
4154 /* cleanup watchers should never keep a refcount on the loop */
4155 ev_unref (EV_A);
4156 EV_FREQUENT_CHECK;
4157}
4158
4159void
4160ev_cleanup_stop (EV_P_ ev_cleanup *w)
4161{
4162 clear_pending (EV_A_ (W)w);
4163 if (expect_false (!ev_is_active (w)))
4164 return;
4165
4166 EV_FREQUENT_CHECK;
4167 ev_ref (EV_A);
4168
4169 {
4170 int active = ev_active (w);
4171
4172 cleanups [active - 1] = cleanups [--cleanupcnt];
4173 ev_active (cleanups [active - 1]) = active;
4174 }
4175
4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
4179}
4180#endif
4181
4182#if EV_ASYNC_ENABLE
4183void
4184ev_async_start (EV_P_ ev_async *w)
4185{
4186 if (expect_false (ev_is_active (w)))
4187 return;
4188
4189 w->sent = 0;
4190
4191 evpipe_init (EV_A);
4192
4193 EV_FREQUENT_CHECK;
4194
4195 ev_start (EV_A_ (W)w, ++asynccnt);
4196 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4197 asyncs [asynccnt - 1] = w;
4198
4199 EV_FREQUENT_CHECK;
4200}
4201
4202void
4203ev_async_stop (EV_P_ ev_async *w)
4204{
4205 clear_pending (EV_A_ (W)w);
4206 if (expect_false (!ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210
4211 {
4212 int active = ev_active (w);
4213
4214 asyncs [active - 1] = asyncs [--asynccnt];
4215 ev_active (asyncs [active - 1]) = active;
4216 }
4217
4218 ev_stop (EV_A_ (W)w);
4219
4220 EV_FREQUENT_CHECK;
4221}
4222
4223void
4224ev_async_send (EV_P_ ev_async *w)
4225{
4226 w->sent = 1;
4227 evpipe_write (EV_A_ &async_pending);
1876} 4228}
1877#endif 4229#endif
1878 4230
1879/*****************************************************************************/ 4231/*****************************************************************************/
1880 4232
1890once_cb (EV_P_ struct ev_once *once, int revents) 4242once_cb (EV_P_ struct ev_once *once, int revents)
1891{ 4243{
1892 void (*cb)(int revents, void *arg) = once->cb; 4244 void (*cb)(int revents, void *arg) = once->cb;
1893 void *arg = once->arg; 4245 void *arg = once->arg;
1894 4246
1895 ev_io_stop (EV_A_ &once->io); 4247 ev_io_stop (EV_A_ &once->io);
1896 ev_timer_stop (EV_A_ &once->to); 4248 ev_timer_stop (EV_A_ &once->to);
1897 ev_free (once); 4249 ev_free (once);
1898 4250
1899 cb (revents, arg); 4251 cb (revents, arg);
1900} 4252}
1901 4253
1902static void 4254static void
1903once_cb_io (EV_P_ ev_io *w, int revents) 4255once_cb_io (EV_P_ ev_io *w, int revents)
1904{ 4256{
1905 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4257 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4258
4259 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1906} 4260}
1907 4261
1908static void 4262static void
1909once_cb_to (EV_P_ ev_timer *w, int revents) 4263once_cb_to (EV_P_ ev_timer *w, int revents)
1910{ 4264{
1911 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4265 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4266
4267 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1912} 4268}
1913 4269
1914void 4270void
1915ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1916{ 4272{
1917 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4273 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1918 4274
1919 if (expect_false (!once)) 4275 if (expect_false (!once))
1920 { 4276 {
1921 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4277 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1922 return; 4278 return;
1923 } 4279 }
1924 4280
1925 once->cb = cb; 4281 once->cb = cb;
1926 once->arg = arg; 4282 once->arg = arg;
1938 ev_timer_set (&once->to, timeout, 0.); 4294 ev_timer_set (&once->to, timeout, 0.);
1939 ev_timer_start (EV_A_ &once->to); 4295 ev_timer_start (EV_A_ &once->to);
1940 } 4296 }
1941} 4297}
1942 4298
1943#ifdef __cplusplus 4299/*****************************************************************************/
1944} 4300
4301#if EV_WALK_ENABLE
4302void ecb_cold
4303ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4304{
4305 int i, j;
4306 ev_watcher_list *wl, *wn;
4307
4308 if (types & (EV_IO | EV_EMBED))
4309 for (i = 0; i < anfdmax; ++i)
4310 for (wl = anfds [i].head; wl; )
4311 {
4312 wn = wl->next;
4313
4314#if EV_EMBED_ENABLE
4315 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4316 {
4317 if (types & EV_EMBED)
4318 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4319 }
4320 else
4321#endif
4322#if EV_USE_INOTIFY
4323 if (ev_cb ((ev_io *)wl) == infy_cb)
4324 ;
4325 else
4326#endif
4327 if ((ev_io *)wl != &pipe_w)
4328 if (types & EV_IO)
4329 cb (EV_A_ EV_IO, wl);
4330
4331 wl = wn;
4332 }
4333
4334 if (types & (EV_TIMER | EV_STAT))
4335 for (i = timercnt + HEAP0; i-- > HEAP0; )
4336#if EV_STAT_ENABLE
4337 /*TODO: timer is not always active*/
4338 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4339 {
4340 if (types & EV_STAT)
4341 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4342 }
4343 else
4344#endif
4345 if (types & EV_TIMER)
4346 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4347
4348#if EV_PERIODIC_ENABLE
4349 if (types & EV_PERIODIC)
4350 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4351 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4352#endif
4353
4354#if EV_IDLE_ENABLE
4355 if (types & EV_IDLE)
4356 for (j = NUMPRI; j--; )
4357 for (i = idlecnt [j]; i--; )
4358 cb (EV_A_ EV_IDLE, idles [j][i]);
4359#endif
4360
4361#if EV_FORK_ENABLE
4362 if (types & EV_FORK)
4363 for (i = forkcnt; i--; )
4364 if (ev_cb (forks [i]) != embed_fork_cb)
4365 cb (EV_A_ EV_FORK, forks [i]);
4366#endif
4367
4368#if EV_ASYNC_ENABLE
4369 if (types & EV_ASYNC)
4370 for (i = asynccnt; i--; )
4371 cb (EV_A_ EV_ASYNC, asyncs [i]);
4372#endif
4373
4374#if EV_PREPARE_ENABLE
4375 if (types & EV_PREPARE)
4376 for (i = preparecnt; i--; )
4377# if EV_EMBED_ENABLE
4378 if (ev_cb (prepares [i]) != embed_prepare_cb)
1945#endif 4379# endif
4380 cb (EV_A_ EV_PREPARE, prepares [i]);
4381#endif
1946 4382
4383#if EV_CHECK_ENABLE
4384 if (types & EV_CHECK)
4385 for (i = checkcnt; i--; )
4386 cb (EV_A_ EV_CHECK, checks [i]);
4387#endif
4388
4389#if EV_SIGNAL_ENABLE
4390 if (types & EV_SIGNAL)
4391 for (i = 0; i < EV_NSIG - 1; ++i)
4392 for (wl = signals [i].head; wl; )
4393 {
4394 wn = wl->next;
4395 cb (EV_A_ EV_SIGNAL, wl);
4396 wl = wn;
4397 }
4398#endif
4399
4400#if EV_CHILD_ENABLE
4401 if (types & EV_CHILD)
4402 for (i = (EV_PID_HASHSIZE); i--; )
4403 for (wl = childs [i]; wl; )
4404 {
4405 wn = wl->next;
4406 cb (EV_A_ EV_CHILD, wl);
4407 wl = wn;
4408 }
4409#endif
4410/* EV_STAT 0x00001000 /* stat data changed */
4411/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4412}
4413#endif
4414
4415#if EV_MULTIPLICITY
4416 #include "ev_wrap.h"
4417#endif
4418

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines