ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC vs.
Revision 1.402 by sf-exg, Tue Dec 20 10:34:10 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
129#ifndef _WIN32 188#ifndef _WIN32
130# include <sys/time.h> 189# include <sys/time.h>
131# include <sys/wait.h> 190# include <sys/wait.h>
132# include <unistd.h> 191# include <unistd.h>
133#else 192#else
193# include <io.h>
134# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 195# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
138# endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
139#endif 249# endif
140 250#endif
141/**/
142 251
143#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
144# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
145#endif 258#endif
146 259
147#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262#endif
263
264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
268# define EV_USE_NANOSLEEP 0
269# endif
149#endif 270#endif
150 271
151#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 274#endif
154 275
155#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
156# ifdef _WIN32 277# ifdef _WIN32
157# define EV_USE_POLL 0 278# define EV_USE_POLL 0
158# else 279# else
159# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 281# endif
161#endif 282#endif
162 283
163#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
164# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
165#endif 290#endif
166 291
167#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
169#endif 294#endif
171#ifndef EV_USE_PORT 296#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 297# define EV_USE_PORT 0
173#endif 298#endif
174 299
175#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
176# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
305# endif
177#endif 306#endif
178 307
179#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 319# else
183# define EV_PID_HASHSIZE 16 320# define EV_USE_EVENTFD 0
184# endif 321# endif
185#endif 322#endif
186 323
187#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 326# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 327# else
191# define EV_INOTIFY_HASHSIZE 16 328# define EV_USE_SIGNALFD 0
192# endif 329# endif
193#endif 330#endif
194 331
195/**/ 332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
196 371
197#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
200#endif 375#endif
202#ifndef CLOCK_REALTIME 377#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 378# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 379# define EV_USE_REALTIME 0
205#endif 380#endif
206 381
382#if !EV_STAT_ENABLE
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385#endif
386
387#if !EV_USE_NANOSLEEP
388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
390# include <sys/select.h>
391# endif
392#endif
393
394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
402#endif
403
207#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 405# include <winsock.h>
209#endif 406#endif
210 407
211#if !EV_STAT_ENABLE 408#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
213#endif 413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
214 423
215#if EV_USE_INOTIFY 424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
217#endif 444#endif
218 445
219/**/ 446/**/
220 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
221/* 454/*
222 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */ 457 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
230 460
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
235#if __GNUC__ >= 3 508 #if __GNUC__
236# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
237# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
238#else 515#else
239# define expect(expr,value) (expr) 516 #include <inttypes.h>
240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
244#endif 531 #endif
532#endif
245 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__)
545 #if __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #endif
562 #endif
563#endif
564
565#ifndef ECB_MEMORY_FENCE
566 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
567 #define ECB_MEMORY_FENCE __sync_synchronize ()
568 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
569 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
570 #elif _MSC_VER >= 1400 /* VC++ 2005 */
571 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
572 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
573 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
574 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
575 #elif defined(_WIN32)
576 #include <WinNT.h>
577 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
578 #endif
579#endif
580
581#ifndef ECB_MEMORY_FENCE
582 #if !ECB_AVOID_PTHREADS
583 /*
584 * if you get undefined symbol references to pthread_mutex_lock,
585 * or failure to find pthread.h, then you should implement
586 * the ECB_MEMORY_FENCE operations for your cpu/compiler
587 * OR provide pthread.h and link against the posix thread library
588 * of your system.
589 */
590 #include <pthread.h>
591 #define ECB_NEEDS_PTHREADS 1
592 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
593
594 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
595 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
596 #endif
597#endif
598
599#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
600 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
601#endif
602
603#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
604 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
605#endif
606
607/*****************************************************************************/
608
609#define ECB_C99 (__STDC_VERSION__ >= 199901L)
610
611#if __cplusplus
612 #define ecb_inline static inline
613#elif ECB_GCC_VERSION(2,5)
614 #define ecb_inline static __inline__
615#elif ECB_C99
616 #define ecb_inline static inline
617#else
618 #define ecb_inline static
619#endif
620
621#if ECB_GCC_VERSION(3,3)
622 #define ecb_restrict __restrict__
623#elif ECB_C99
624 #define ecb_restrict restrict
625#else
626 #define ecb_restrict
627#endif
628
629typedef int ecb_bool;
630
631#define ECB_CONCAT_(a, b) a ## b
632#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
633#define ECB_STRINGIFY_(a) # a
634#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
635
636#define ecb_function_ ecb_inline
637
638#if ECB_GCC_VERSION(3,1)
639 #define ecb_attribute(attrlist) __attribute__(attrlist)
640 #define ecb_is_constant(expr) __builtin_constant_p (expr)
641 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
642 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
643#else
644 #define ecb_attribute(attrlist)
645 #define ecb_is_constant(expr) 0
646 #define ecb_expect(expr,value) (expr)
647 #define ecb_prefetch(addr,rw,locality)
648#endif
649
650/* no emulation for ecb_decltype */
651#if ECB_GCC_VERSION(4,5)
652 #define ecb_decltype(x) __decltype(x)
653#elif ECB_GCC_VERSION(3,0)
654 #define ecb_decltype(x) __typeof(x)
655#endif
656
657#define ecb_noinline ecb_attribute ((__noinline__))
658#define ecb_noreturn ecb_attribute ((__noreturn__))
659#define ecb_unused ecb_attribute ((__unused__))
660#define ecb_const ecb_attribute ((__const__))
661#define ecb_pure ecb_attribute ((__pure__))
662
663#if ECB_GCC_VERSION(4,3)
664 #define ecb_artificial ecb_attribute ((__artificial__))
665 #define ecb_hot ecb_attribute ((__hot__))
666 #define ecb_cold ecb_attribute ((__cold__))
667#else
668 #define ecb_artificial
669 #define ecb_hot
670 #define ecb_cold
671#endif
672
673/* put around conditional expressions if you are very sure that the */
674/* expression is mostly true or mostly false. note that these return */
675/* booleans, not the expression. */
246#define expect_false(expr) expect ((expr) != 0, 0) 676#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
247#define expect_true(expr) expect ((expr) != 0, 1) 677#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
678/* for compatibility to the rest of the world */
679#define ecb_likely(expr) ecb_expect_true (expr)
680#define ecb_unlikely(expr) ecb_expect_false (expr)
681
682/* count trailing zero bits and count # of one bits */
683#if ECB_GCC_VERSION(3,4)
684 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
685 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
686 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
687 #define ecb_ctz32(x) __builtin_ctz (x)
688 #define ecb_ctz64(x) __builtin_ctzll (x)
689 #define ecb_popcount32(x) __builtin_popcount (x)
690 /* no popcountll */
691#else
692 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
693 ecb_function_ int
694 ecb_ctz32 (uint32_t x)
695 {
696 int r = 0;
697
698 x &= ~x + 1; /* this isolates the lowest bit */
699
700#if ECB_branchless_on_i386
701 r += !!(x & 0xaaaaaaaa) << 0;
702 r += !!(x & 0xcccccccc) << 1;
703 r += !!(x & 0xf0f0f0f0) << 2;
704 r += !!(x & 0xff00ff00) << 3;
705 r += !!(x & 0xffff0000) << 4;
706#else
707 if (x & 0xaaaaaaaa) r += 1;
708 if (x & 0xcccccccc) r += 2;
709 if (x & 0xf0f0f0f0) r += 4;
710 if (x & 0xff00ff00) r += 8;
711 if (x & 0xffff0000) r += 16;
712#endif
713
714 return r;
715 }
716
717 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
718 ecb_function_ int
719 ecb_ctz64 (uint64_t x)
720 {
721 int shift = x & 0xffffffffU ? 0 : 32;
722 return ecb_ctz32 (x >> shift) + shift;
723 }
724
725 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_popcount32 (uint32_t x)
728 {
729 x -= (x >> 1) & 0x55555555;
730 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
731 x = ((x >> 4) + x) & 0x0f0f0f0f;
732 x *= 0x01010101;
733
734 return x >> 24;
735 }
736
737 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
738 ecb_function_ int ecb_ld32 (uint32_t x)
739 {
740 int r = 0;
741
742 if (x >> 16) { x >>= 16; r += 16; }
743 if (x >> 8) { x >>= 8; r += 8; }
744 if (x >> 4) { x >>= 4; r += 4; }
745 if (x >> 2) { x >>= 2; r += 2; }
746 if (x >> 1) { r += 1; }
747
748 return r;
749 }
750
751 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
752 ecb_function_ int ecb_ld64 (uint64_t x)
753 {
754 int r = 0;
755
756 if (x >> 32) { x >>= 32; r += 32; }
757
758 return r + ecb_ld32 (x);
759 }
760#endif
761
762/* popcount64 is only available on 64 bit cpus as gcc builtin */
763/* so for this version we are lazy */
764ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
765ecb_function_ int
766ecb_popcount64 (uint64_t x)
767{
768 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
769}
770
771ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
772ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
773ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
774ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
775ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
776ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
777ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
778ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
779
780ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
781ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
782ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
783ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
784ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
785ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
786ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
787ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
788
789#if ECB_GCC_VERSION(4,3)
790 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
791 #define ecb_bswap32(x) __builtin_bswap32 (x)
792 #define ecb_bswap64(x) __builtin_bswap64 (x)
793#else
794 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
795 ecb_function_ uint16_t
796 ecb_bswap16 (uint16_t x)
797 {
798 return ecb_rotl16 (x, 8);
799 }
800
801 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
802 ecb_function_ uint32_t
803 ecb_bswap32 (uint32_t x)
804 {
805 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
806 }
807
808 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
809 ecb_function_ uint64_t
810 ecb_bswap64 (uint64_t x)
811 {
812 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
813 }
814#endif
815
816#if ECB_GCC_VERSION(4,5)
817 #define ecb_unreachable() __builtin_unreachable ()
818#else
819 /* this seems to work fine, but gcc always emits a warning for it :/ */
820 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
821 ecb_function_ void ecb_unreachable (void) { }
822#endif
823
824/* try to tell the compiler that some condition is definitely true */
825#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
826
827ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
828ecb_function_ unsigned char
829ecb_byteorder_helper (void)
830{
831 const uint32_t u = 0x11223344;
832 return *(unsigned char *)&u;
833}
834
835ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
836ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
837ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
839
840#if ECB_GCC_VERSION(3,0) || ECB_C99
841 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
842#else
843 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
844#endif
845
846#if __cplusplus
847 template<typename T>
848 static inline T ecb_div_rd (T val, T div)
849 {
850 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
851 }
852 template<typename T>
853 static inline T ecb_div_ru (T val, T div)
854 {
855 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
856 }
857#else
858 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
859 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
860#endif
861
862#if ecb_cplusplus_does_not_suck
863 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
864 template<typename T, int N>
865 static inline int ecb_array_length (const T (&arr)[N])
866 {
867 return N;
868 }
869#else
870 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
871#endif
872
873#endif
874
875/* ECB.H END */
876
877#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
878/* if your architecture doesn't need memory fences, e.g. because it is
879 * single-cpu/core, or if you use libev in a project that doesn't use libev
880 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
881 * libev, in which cases the memory fences become nops.
882 * alternatively, you can remove this #error and link against libpthread,
883 * which will then provide the memory fences.
884 */
885# error "memory fences not defined for your architecture, please report"
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889# define ECB_MEMORY_FENCE do { } while (0)
890# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
891# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
892#endif
893
894#define expect_false(cond) ecb_expect_false (cond)
895#define expect_true(cond) ecb_expect_true (cond)
896#define noinline ecb_noinline
897
248#define inline_size static inline 898#define inline_size ecb_inline
249 899
250#if EV_MINIMAL 900#if EV_FEATURE_CODE
901# define inline_speed ecb_inline
902#else
251# define inline_speed static noinline 903# define inline_speed static noinline
904#endif
905
906#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
907
908#if EV_MINPRI == EV_MAXPRI
909# define ABSPRI(w) (((W)w), 0)
252#else 910#else
253# define inline_speed static inline
254#endif
255
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 911# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
912#endif
258 913
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 914#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 915#define EMPTY2(a,b) /* used to suppress some warnings */
261 916
262typedef ev_watcher *W; 917typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 918typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 919typedef ev_watcher_time *WT;
265 920
921#define ev_active(w) ((W)(w))->active
922#define ev_at(w) ((WT)(w))->at
923
924#if EV_USE_REALTIME
925/* sig_atomic_t is used to avoid per-thread variables or locking but still */
926/* giving it a reasonably high chance of working on typical architectures */
927static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
928#endif
929
930#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 931static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
932#endif
933
934#ifndef EV_FD_TO_WIN32_HANDLE
935# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
936#endif
937#ifndef EV_WIN32_HANDLE_TO_FD
938# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
939#endif
940#ifndef EV_WIN32_CLOSE_FD
941# define EV_WIN32_CLOSE_FD(fd) close (fd)
942#endif
267 943
268#ifdef _WIN32 944#ifdef _WIN32
269# include "ev_win32.c" 945# include "ev_win32.c"
270#endif 946#endif
271 947
272/*****************************************************************************/ 948/*****************************************************************************/
273 949
950/* define a suitable floor function (only used by periodics atm) */
951
952#if EV_USE_FLOOR
953# include <math.h>
954# define ev_floor(v) floor (v)
955#else
956
957#include <float.h>
958
959/* a floor() replacement function, should be independent of ev_tstamp type */
960static ev_tstamp noinline
961ev_floor (ev_tstamp v)
962{
963 /* the choice of shift factor is not terribly important */
964#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
965 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
966#else
967 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
968#endif
969
970 /* argument too large for an unsigned long? */
971 if (expect_false (v >= shift))
972 {
973 ev_tstamp f;
974
975 if (v == v - 1.)
976 return v; /* very large number */
977
978 f = shift * ev_floor (v * (1. / shift));
979 return f + ev_floor (v - f);
980 }
981
982 /* special treatment for negative args? */
983 if (expect_false (v < 0.))
984 {
985 ev_tstamp f = -ev_floor (-v);
986
987 return f - (f == v ? 0 : 1);
988 }
989
990 /* fits into an unsigned long */
991 return (unsigned long)v;
992}
993
994#endif
995
996/*****************************************************************************/
997
998#ifdef __linux
999# include <sys/utsname.h>
1000#endif
1001
1002static unsigned int noinline ecb_cold
1003ev_linux_version (void)
1004{
1005#ifdef __linux
1006 unsigned int v = 0;
1007 struct utsname buf;
1008 int i;
1009 char *p = buf.release;
1010
1011 if (uname (&buf))
1012 return 0;
1013
1014 for (i = 3+1; --i; )
1015 {
1016 unsigned int c = 0;
1017
1018 for (;;)
1019 {
1020 if (*p >= '0' && *p <= '9')
1021 c = c * 10 + *p++ - '0';
1022 else
1023 {
1024 p += *p == '.';
1025 break;
1026 }
1027 }
1028
1029 v = (v << 8) | c;
1030 }
1031
1032 return v;
1033#else
1034 return 0;
1035#endif
1036}
1037
1038/*****************************************************************************/
1039
1040#if EV_AVOID_STDIO
1041static void noinline ecb_cold
1042ev_printerr (const char *msg)
1043{
1044 write (STDERR_FILENO, msg, strlen (msg));
1045}
1046#endif
1047
274static void (*syserr_cb)(const char *msg); 1048static void (*syserr_cb)(const char *msg);
275 1049
276void 1050void ecb_cold
277ev_set_syserr_cb (void (*cb)(const char *msg)) 1051ev_set_syserr_cb (void (*cb)(const char *msg))
278{ 1052{
279 syserr_cb = cb; 1053 syserr_cb = cb;
280} 1054}
281 1055
282static void noinline 1056static void noinline ecb_cold
283syserr (const char *msg) 1057ev_syserr (const char *msg)
284{ 1058{
285 if (!msg) 1059 if (!msg)
286 msg = "(libev) system error"; 1060 msg = "(libev) system error";
287 1061
288 if (syserr_cb) 1062 if (syserr_cb)
289 syserr_cb (msg); 1063 syserr_cb (msg);
290 else 1064 else
291 { 1065 {
1066#if EV_AVOID_STDIO
1067 ev_printerr (msg);
1068 ev_printerr (": ");
1069 ev_printerr (strerror (errno));
1070 ev_printerr ("\n");
1071#else
292 perror (msg); 1072 perror (msg);
1073#endif
293 abort (); 1074 abort ();
294 } 1075 }
295} 1076}
296 1077
1078static void *
1079ev_realloc_emul (void *ptr, long size)
1080{
1081#if __GLIBC__
1082 return realloc (ptr, size);
1083#else
1084 /* some systems, notably openbsd and darwin, fail to properly
1085 * implement realloc (x, 0) (as required by both ansi c-89 and
1086 * the single unix specification, so work around them here.
1087 */
1088
1089 if (size)
1090 return realloc (ptr, size);
1091
1092 free (ptr);
1093 return 0;
1094#endif
1095}
1096
297static void *(*alloc)(void *ptr, long size); 1097static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 1098
299void 1099void ecb_cold
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 1100ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 1101{
302 alloc = cb; 1102 alloc = cb;
303} 1103}
304 1104
305inline_speed void * 1105inline_speed void *
306ev_realloc (void *ptr, long size) 1106ev_realloc (void *ptr, long size)
307{ 1107{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1108 ptr = alloc (ptr, size);
309 1109
310 if (!ptr && size) 1110 if (!ptr && size)
311 { 1111 {
1112#if EV_AVOID_STDIO
1113 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1114#else
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1115 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1116#endif
313 abort (); 1117 abort ();
314 } 1118 }
315 1119
316 return ptr; 1120 return ptr;
317} 1121}
319#define ev_malloc(size) ev_realloc (0, (size)) 1123#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 1124#define ev_free(ptr) ev_realloc ((ptr), 0)
321 1125
322/*****************************************************************************/ 1126/*****************************************************************************/
323 1127
1128/* set in reify when reification needed */
1129#define EV_ANFD_REIFY 1
1130
1131/* file descriptor info structure */
324typedef struct 1132typedef struct
325{ 1133{
326 WL head; 1134 WL head;
327 unsigned char events; 1135 unsigned char events; /* the events watched for */
1136 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1137 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 1138 unsigned char unused;
1139#if EV_USE_EPOLL
1140 unsigned int egen; /* generation counter to counter epoll bugs */
1141#endif
329#if EV_SELECT_IS_WINSOCKET 1142#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
330 SOCKET handle; 1143 SOCKET handle;
331#endif 1144#endif
1145#if EV_USE_IOCP
1146 OVERLAPPED or, ow;
1147#endif
332} ANFD; 1148} ANFD;
333 1149
1150/* stores the pending event set for a given watcher */
334typedef struct 1151typedef struct
335{ 1152{
336 W w; 1153 W w;
337 int events; 1154 int events; /* the pending event set for the given watcher */
338} ANPENDING; 1155} ANPENDING;
339 1156
340#if EV_USE_INOTIFY 1157#if EV_USE_INOTIFY
1158/* hash table entry per inotify-id */
341typedef struct 1159typedef struct
342{ 1160{
343 WL head; 1161 WL head;
344} ANFS; 1162} ANFS;
1163#endif
1164
1165/* Heap Entry */
1166#if EV_HEAP_CACHE_AT
1167 /* a heap element */
1168 typedef struct {
1169 ev_tstamp at;
1170 WT w;
1171 } ANHE;
1172
1173 #define ANHE_w(he) (he).w /* access watcher, read-write */
1174 #define ANHE_at(he) (he).at /* access cached at, read-only */
1175 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1176#else
1177 /* a heap element */
1178 typedef WT ANHE;
1179
1180 #define ANHE_w(he) (he)
1181 #define ANHE_at(he) (he)->at
1182 #define ANHE_at_cache(he)
345#endif 1183#endif
346 1184
347#if EV_MULTIPLICITY 1185#if EV_MULTIPLICITY
348 1186
349 struct ev_loop 1187 struct ev_loop
355 #undef VAR 1193 #undef VAR
356 }; 1194 };
357 #include "ev_wrap.h" 1195 #include "ev_wrap.h"
358 1196
359 static struct ev_loop default_loop_struct; 1197 static struct ev_loop default_loop_struct;
360 struct ev_loop *ev_default_loop_ptr; 1198 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
361 1199
362#else 1200#else
363 1201
364 ev_tstamp ev_rt_now; 1202 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
365 #define VAR(name,decl) static decl; 1203 #define VAR(name,decl) static decl;
366 #include "ev_vars.h" 1204 #include "ev_vars.h"
367 #undef VAR 1205 #undef VAR
368 1206
369 static int ev_default_loop_ptr; 1207 static int ev_default_loop_ptr;
370 1208
371#endif 1209#endif
372 1210
1211#if EV_FEATURE_API
1212# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1213# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1214# define EV_INVOKE_PENDING invoke_cb (EV_A)
1215#else
1216# define EV_RELEASE_CB (void)0
1217# define EV_ACQUIRE_CB (void)0
1218# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1219#endif
1220
1221#define EVBREAK_RECURSE 0x80
1222
373/*****************************************************************************/ 1223/*****************************************************************************/
374 1224
1225#ifndef EV_HAVE_EV_TIME
375ev_tstamp 1226ev_tstamp
376ev_time (void) 1227ev_time (void)
377{ 1228{
378#if EV_USE_REALTIME 1229#if EV_USE_REALTIME
1230 if (expect_true (have_realtime))
1231 {
379 struct timespec ts; 1232 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 1233 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 1234 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 1235 }
1236#endif
1237
383 struct timeval tv; 1238 struct timeval tv;
384 gettimeofday (&tv, 0); 1239 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 1240 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 1241}
1242#endif
388 1243
389ev_tstamp inline_size 1244inline_size ev_tstamp
390get_clock (void) 1245get_clock (void)
391{ 1246{
392#if EV_USE_MONOTONIC 1247#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 1248 if (expect_true (have_monotonic))
394 { 1249 {
407{ 1262{
408 return ev_rt_now; 1263 return ev_rt_now;
409} 1264}
410#endif 1265#endif
411 1266
412int inline_size 1267void
1268ev_sleep (ev_tstamp delay)
1269{
1270 if (delay > 0.)
1271 {
1272#if EV_USE_NANOSLEEP
1273 struct timespec ts;
1274
1275 EV_TS_SET (ts, delay);
1276 nanosleep (&ts, 0);
1277#elif defined(_WIN32)
1278 Sleep ((unsigned long)(delay * 1e3));
1279#else
1280 struct timeval tv;
1281
1282 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1283 /* something not guaranteed by newer posix versions, but guaranteed */
1284 /* by older ones */
1285 EV_TV_SET (tv, delay);
1286 select (0, 0, 0, 0, &tv);
1287#endif
1288 }
1289}
1290
1291/*****************************************************************************/
1292
1293#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1294
1295/* find a suitable new size for the given array, */
1296/* hopefully by rounding to a nice-to-malloc size */
1297inline_size int
413array_nextsize (int elem, int cur, int cnt) 1298array_nextsize (int elem, int cur, int cnt)
414{ 1299{
415 int ncur = cur + 1; 1300 int ncur = cur + 1;
416 1301
417 do 1302 do
418 ncur <<= 1; 1303 ncur <<= 1;
419 while (cnt > ncur); 1304 while (cnt > ncur);
420 1305
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1306 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
422 if (elem * ncur > 4096) 1307 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 1308 {
424 ncur *= elem; 1309 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1310 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 1311 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 1312 ncur /= elem;
428 } 1313 }
429 1314
430 return ncur; 1315 return ncur;
431} 1316}
432 1317
433static noinline void * 1318static void * noinline ecb_cold
434array_realloc (int elem, void *base, int *cur, int cnt) 1319array_realloc (int elem, void *base, int *cur, int cnt)
435{ 1320{
436 *cur = array_nextsize (elem, *cur, cnt); 1321 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 1322 return ev_realloc (base, elem * *cur);
438} 1323}
1324
1325#define array_init_zero(base,count) \
1326 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 1327
440#define array_needsize(type,base,cur,cnt,init) \ 1328#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 1329 if (expect_false ((cnt) > (cur))) \
442 { \ 1330 { \
443 int ocur_ = (cur); \ 1331 int ecb_unused ocur_ = (cur); \
444 (base) = (type *)array_realloc \ 1332 (base) = (type *)array_realloc \
445 (sizeof (type), (base), &(cur), (cnt)); \ 1333 (sizeof (type), (base), &(cur), (cnt)); \
446 init ((base) + (ocur_), (cur) - ocur_); \ 1334 init ((base) + (ocur_), (cur) - ocur_); \
447 } 1335 }
448 1336
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1343 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 1344 }
457#endif 1345#endif
458 1346
459#define array_free(stem, idx) \ 1347#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1348 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 1349
462/*****************************************************************************/ 1350/*****************************************************************************/
1351
1352/* dummy callback for pending events */
1353static void noinline
1354pendingcb (EV_P_ ev_prepare *w, int revents)
1355{
1356}
463 1357
464void noinline 1358void noinline
465ev_feed_event (EV_P_ void *w, int revents) 1359ev_feed_event (EV_P_ void *w, int revents)
466{ 1360{
467 W w_ = (W)w; 1361 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 1370 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 1371 pendings [pri][w_->pending - 1].events = revents;
478 } 1372 }
479} 1373}
480 1374
481void inline_speed 1375inline_speed void
1376feed_reverse (EV_P_ W w)
1377{
1378 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1379 rfeeds [rfeedcnt++] = w;
1380}
1381
1382inline_size void
1383feed_reverse_done (EV_P_ int revents)
1384{
1385 do
1386 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1387 while (rfeedcnt);
1388}
1389
1390inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 1391queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 1392{
484 int i; 1393 int i;
485 1394
486 for (i = 0; i < eventcnt; ++i) 1395 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 1396 ev_feed_event (EV_A_ events [i], type);
488} 1397}
489 1398
490/*****************************************************************************/ 1399/*****************************************************************************/
491 1400
492void inline_size 1401inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 1402fd_event_nocheck (EV_P_ int fd, int revents)
507{ 1403{
508 ANFD *anfd = anfds + fd; 1404 ANFD *anfd = anfds + fd;
509 ev_io *w; 1405 ev_io *w;
510 1406
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1407 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 1411 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 1412 ev_feed_event (EV_A_ (W)w, ev);
517 } 1413 }
518} 1414}
519 1415
1416/* do not submit kernel events for fds that have reify set */
1417/* because that means they changed while we were polling for new events */
1418inline_speed void
1419fd_event (EV_P_ int fd, int revents)
1420{
1421 ANFD *anfd = anfds + fd;
1422
1423 if (expect_true (!anfd->reify))
1424 fd_event_nocheck (EV_A_ fd, revents);
1425}
1426
520void 1427void
521ev_feed_fd_event (EV_P_ int fd, int revents) 1428ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 1429{
523 if (fd >= 0 && fd < anfdmax) 1430 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 1431 fd_event_nocheck (EV_A_ fd, revents);
525} 1432}
526 1433
527void inline_size 1434/* make sure the external fd watch events are in-sync */
1435/* with the kernel/libev internal state */
1436inline_size void
528fd_reify (EV_P) 1437fd_reify (EV_P)
529{ 1438{
530 int i; 1439 int i;
1440
1441#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1442 for (i = 0; i < fdchangecnt; ++i)
1443 {
1444 int fd = fdchanges [i];
1445 ANFD *anfd = anfds + fd;
1446
1447 if (anfd->reify & EV__IOFDSET && anfd->head)
1448 {
1449 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1450
1451 if (handle != anfd->handle)
1452 {
1453 unsigned long arg;
1454
1455 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1456
1457 /* handle changed, but fd didn't - we need to do it in two steps */
1458 backend_modify (EV_A_ fd, anfd->events, 0);
1459 anfd->events = 0;
1460 anfd->handle = handle;
1461 }
1462 }
1463 }
1464#endif
531 1465
532 for (i = 0; i < fdchangecnt; ++i) 1466 for (i = 0; i < fdchangecnt; ++i)
533 { 1467 {
534 int fd = fdchanges [i]; 1468 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
536 ev_io *w; 1470 ev_io *w;
537 1471
538 int events = 0; 1472 unsigned char o_events = anfd->events;
1473 unsigned char o_reify = anfd->reify;
539 1474
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1475 anfd->reify = 0;
541 events |= w->events;
542 1476
543#if EV_SELECT_IS_WINSOCKET 1477 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
544 if (events)
545 { 1478 {
546 unsigned long argp; 1479 anfd->events = 0;
547 anfd->handle = _get_osfhandle (fd); 1480
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1481 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1482 anfd->events |= (unsigned char)w->events;
1483
1484 if (o_events != anfd->events)
1485 o_reify = EV__IOFDSET; /* actually |= */
549 } 1486 }
550#endif
551 1487
552 anfd->reify = 0; 1488 if (o_reify & EV__IOFDSET)
553
554 backend_modify (EV_A_ fd, anfd->events, events); 1489 backend_modify (EV_A_ fd, o_events, anfd->events);
555 anfd->events = events;
556 } 1490 }
557 1491
558 fdchangecnt = 0; 1492 fdchangecnt = 0;
559} 1493}
560 1494
561void inline_size 1495/* something about the given fd changed */
1496inline_size void
562fd_change (EV_P_ int fd) 1497fd_change (EV_P_ int fd, int flags)
563{ 1498{
564 if (expect_false (anfds [fd].reify)) 1499 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 1500 anfds [fd].reify |= flags;
568 1501
1502 if (expect_true (!reify))
1503 {
569 ++fdchangecnt; 1504 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1505 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 1506 fdchanges [fdchangecnt - 1] = fd;
1507 }
572} 1508}
573 1509
574void inline_speed 1510/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1511inline_speed void ecb_cold
575fd_kill (EV_P_ int fd) 1512fd_kill (EV_P_ int fd)
576{ 1513{
577 ev_io *w; 1514 ev_io *w;
578 1515
579 while ((w = (ev_io *)anfds [fd].head)) 1516 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 1518 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1519 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 1520 }
584} 1521}
585 1522
586int inline_size 1523/* check whether the given fd is actually valid, for error recovery */
1524inline_size int ecb_cold
587fd_valid (int fd) 1525fd_valid (int fd)
588{ 1526{
589#ifdef _WIN32 1527#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 1528 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
591#else 1529#else
592 return fcntl (fd, F_GETFD) != -1; 1530 return fcntl (fd, F_GETFD) != -1;
593#endif 1531#endif
594} 1532}
595 1533
596/* called on EBADF to verify fds */ 1534/* called on EBADF to verify fds */
597static void noinline 1535static void noinline ecb_cold
598fd_ebadf (EV_P) 1536fd_ebadf (EV_P)
599{ 1537{
600 int fd; 1538 int fd;
601 1539
602 for (fd = 0; fd < anfdmax; ++fd) 1540 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 1541 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 1542 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 1543 fd_kill (EV_A_ fd);
606} 1544}
607 1545
608/* called on ENOMEM in select/poll to kill some fds and retry */ 1546/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 1547static void noinline ecb_cold
610fd_enomem (EV_P) 1548fd_enomem (EV_P)
611{ 1549{
612 int fd; 1550 int fd;
613 1551
614 for (fd = anfdmax; fd--; ) 1552 for (fd = anfdmax; fd--; )
615 if (anfds [fd].events) 1553 if (anfds [fd].events)
616 { 1554 {
617 fd_kill (EV_A_ fd); 1555 fd_kill (EV_A_ fd);
618 return; 1556 break;
619 } 1557 }
620} 1558}
621 1559
622/* usually called after fork if backend needs to re-arm all fds from scratch */ 1560/* usually called after fork if backend needs to re-arm all fds from scratch */
623static void noinline 1561static void noinline
627 1565
628 for (fd = 0; fd < anfdmax; ++fd) 1566 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 1567 if (anfds [fd].events)
630 { 1568 {
631 anfds [fd].events = 0; 1569 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 1570 anfds [fd].emask = 0;
1571 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
633 } 1572 }
634} 1573}
635 1574
636/*****************************************************************************/ 1575/* used to prepare libev internal fd's */
637 1576/* this is not fork-safe */
638void inline_speed 1577inline_speed void
639upheap (WT *heap, int k)
640{
641 WT w = heap [k];
642
643 while (k)
644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
650 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1;
652 k = p;
653 }
654
655 heap [k] = w;
656 ((W)heap [k])->active = k + 1;
657
658}
659
660void inline_speed
661downheap (WT *heap, int N, int k)
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k)
690{
691 upheap (heap, k);
692 downheap (heap, N, k);
693}
694
695/*****************************************************************************/
696
697typedef struct
698{
699 WL head;
700 sig_atomic_t volatile gotsig;
701} ANSIG;
702
703static ANSIG *signals;
704static int signalmax;
705
706static int sigpipe [2];
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709
710void inline_size
711signals_init (ANSIG *base, int count)
712{
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772
773void inline_speed
774fd_intern (int fd) 1578fd_intern (int fd)
775{ 1579{
776#ifdef _WIN32 1580#ifdef _WIN32
777 int arg = 1; 1581 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1582 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
779#else 1583#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1584 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1585 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1586#endif
783} 1587}
784 1588
785static void noinline
786siginit (EV_P)
787{
788 fd_intern (sigpipe [0]);
789 fd_intern (sigpipe [1]);
790
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */
794}
795
796/*****************************************************************************/ 1589/*****************************************************************************/
797 1590
798static ev_child *childs [EV_PID_HASHSIZE]; 1591/*
1592 * the heap functions want a real array index. array index 0 is guaranteed to not
1593 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1594 * the branching factor of the d-tree.
1595 */
799 1596
1597/*
1598 * at the moment we allow libev the luxury of two heaps,
1599 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1600 * which is more cache-efficient.
1601 * the difference is about 5% with 50000+ watchers.
1602 */
1603#if EV_USE_4HEAP
1604
1605#define DHEAP 4
1606#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1607#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1608#define UPHEAP_DONE(p,k) ((p) == (k))
1609
1610/* away from the root */
1611inline_speed void
1612downheap (ANHE *heap, int N, int k)
1613{
1614 ANHE he = heap [k];
1615 ANHE *E = heap + N + HEAP0;
1616
1617 for (;;)
1618 {
1619 ev_tstamp minat;
1620 ANHE *minpos;
1621 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1622
1623 /* find minimum child */
1624 if (expect_true (pos + DHEAP - 1 < E))
1625 {
1626 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1627 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1628 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1629 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1630 }
1631 else if (pos < E)
1632 {
1633 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1634 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1635 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1636 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1637 }
1638 else
1639 break;
1640
1641 if (ANHE_at (he) <= minat)
1642 break;
1643
1644 heap [k] = *minpos;
1645 ev_active (ANHE_w (*minpos)) = k;
1646
1647 k = minpos - heap;
1648 }
1649
1650 heap [k] = he;
1651 ev_active (ANHE_w (he)) = k;
1652}
1653
1654#else /* 4HEAP */
1655
1656#define HEAP0 1
1657#define HPARENT(k) ((k) >> 1)
1658#define UPHEAP_DONE(p,k) (!(p))
1659
1660/* away from the root */
1661inline_speed void
1662downheap (ANHE *heap, int N, int k)
1663{
1664 ANHE he = heap [k];
1665
1666 for (;;)
1667 {
1668 int c = k << 1;
1669
1670 if (c >= N + HEAP0)
1671 break;
1672
1673 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1674 ? 1 : 0;
1675
1676 if (ANHE_at (he) <= ANHE_at (heap [c]))
1677 break;
1678
1679 heap [k] = heap [c];
1680 ev_active (ANHE_w (heap [k])) = k;
1681
1682 k = c;
1683 }
1684
1685 heap [k] = he;
1686 ev_active (ANHE_w (he)) = k;
1687}
1688#endif
1689
1690/* towards the root */
1691inline_speed void
1692upheap (ANHE *heap, int k)
1693{
1694 ANHE he = heap [k];
1695
1696 for (;;)
1697 {
1698 int p = HPARENT (k);
1699
1700 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1701 break;
1702
1703 heap [k] = heap [p];
1704 ev_active (ANHE_w (heap [k])) = k;
1705 k = p;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710}
1711
1712/* move an element suitably so it is in a correct place */
1713inline_size void
1714adjustheap (ANHE *heap, int N, int k)
1715{
1716 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1717 upheap (heap, k);
1718 else
1719 downheap (heap, N, k);
1720}
1721
1722/* rebuild the heap: this function is used only once and executed rarely */
1723inline_size void
1724reheap (ANHE *heap, int N)
1725{
1726 int i;
1727
1728 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1729 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1730 for (i = 0; i < N; ++i)
1731 upheap (heap, i + HEAP0);
1732}
1733
1734/*****************************************************************************/
1735
1736/* associate signal watchers to a signal signal */
1737typedef struct
1738{
1739 EV_ATOMIC_T pending;
1740#if EV_MULTIPLICITY
1741 EV_P;
1742#endif
1743 WL head;
1744} ANSIG;
1745
1746static ANSIG signals [EV_NSIG - 1];
1747
1748/*****************************************************************************/
1749
1750#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1751
1752static void noinline ecb_cold
1753evpipe_init (EV_P)
1754{
1755 if (!ev_is_active (&pipe_w))
1756 {
1757# if EV_USE_EVENTFD
1758 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1759 if (evfd < 0 && errno == EINVAL)
1760 evfd = eventfd (0, 0);
1761
1762 if (evfd >= 0)
1763 {
1764 evpipe [0] = -1;
1765 fd_intern (evfd); /* doing it twice doesn't hurt */
1766 ev_io_set (&pipe_w, evfd, EV_READ);
1767 }
1768 else
1769# endif
1770 {
1771 while (pipe (evpipe))
1772 ev_syserr ("(libev) error creating signal/async pipe");
1773
1774 fd_intern (evpipe [0]);
1775 fd_intern (evpipe [1]);
1776 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1777 }
1778
1779 ev_io_start (EV_A_ &pipe_w);
1780 ev_unref (EV_A); /* watcher should not keep loop alive */
1781 }
1782}
1783
1784inline_speed void
1785evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1786{
1787 if (expect_true (*flag))
1788 return;
1789
1790 *flag = 1;
1791
1792 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1793
1794 pipe_write_skipped = 1;
1795
1796 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1797
1798 if (pipe_write_wanted)
1799 {
1800 int old_errno;
1801
1802 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1803
1804 old_errno = errno; /* save errno because write will clobber it */
1805
1806#if EV_USE_EVENTFD
1807 if (evfd >= 0)
1808 {
1809 uint64_t counter = 1;
1810 write (evfd, &counter, sizeof (uint64_t));
1811 }
1812 else
1813#endif
1814 {
1815 /* win32 people keep sending patches that change this write() to send() */
1816 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1817 /* so when you think this write should be a send instead, please find out */
1818 /* where your send() is from - it's definitely not the microsoft send, and */
1819 /* tell me. thank you. */
1820 write (evpipe [1], &(evpipe [1]), 1);
1821 }
1822
1823 errno = old_errno;
1824 }
1825}
1826
1827/* called whenever the libev signal pipe */
1828/* got some events (signal, async) */
1829static void
1830pipecb (EV_P_ ev_io *iow, int revents)
1831{
1832 int i;
1833
1834 if (revents & EV_READ)
1835 {
1836#if EV_USE_EVENTFD
1837 if (evfd >= 0)
1838 {
1839 uint64_t counter;
1840 read (evfd, &counter, sizeof (uint64_t));
1841 }
1842 else
1843#endif
1844 {
1845 char dummy;
1846 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1847 read (evpipe [0], &dummy, 1);
1848 }
1849 }
1850
1851 pipe_write_skipped = 0;
1852
1853#if EV_SIGNAL_ENABLE
1854 if (sig_pending)
1855 {
1856 sig_pending = 0;
1857
1858 for (i = EV_NSIG - 1; i--; )
1859 if (expect_false (signals [i].pending))
1860 ev_feed_signal_event (EV_A_ i + 1);
1861 }
1862#endif
1863
1864#if EV_ASYNC_ENABLE
1865 if (async_pending)
1866 {
1867 async_pending = 0;
1868
1869 for (i = asynccnt; i--; )
1870 if (asyncs [i]->sent)
1871 {
1872 asyncs [i]->sent = 0;
1873 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1874 }
1875 }
1876#endif
1877}
1878
1879/*****************************************************************************/
1880
1881void
1882ev_feed_signal (int signum)
1883{
1884#if EV_MULTIPLICITY
1885 EV_P = signals [signum - 1].loop;
1886
1887 if (!EV_A)
1888 return;
1889#endif
1890
1891 if (!ev_active (&pipe_w))
1892 return;
1893
1894 signals [signum - 1].pending = 1;
1895 evpipe_write (EV_A_ &sig_pending);
1896}
1897
1898static void
1899ev_sighandler (int signum)
1900{
800#ifndef _WIN32 1901#ifdef _WIN32
1902 signal (signum, ev_sighandler);
1903#endif
1904
1905 ev_feed_signal (signum);
1906}
1907
1908void noinline
1909ev_feed_signal_event (EV_P_ int signum)
1910{
1911 WL w;
1912
1913 if (expect_false (signum <= 0 || signum > EV_NSIG))
1914 return;
1915
1916 --signum;
1917
1918#if EV_MULTIPLICITY
1919 /* it is permissible to try to feed a signal to the wrong loop */
1920 /* or, likely more useful, feeding a signal nobody is waiting for */
1921
1922 if (expect_false (signals [signum].loop != EV_A))
1923 return;
1924#endif
1925
1926 signals [signum].pending = 0;
1927
1928 for (w = signals [signum].head; w; w = w->next)
1929 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1930}
1931
1932#if EV_USE_SIGNALFD
1933static void
1934sigfdcb (EV_P_ ev_io *iow, int revents)
1935{
1936 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1937
1938 for (;;)
1939 {
1940 ssize_t res = read (sigfd, si, sizeof (si));
1941
1942 /* not ISO-C, as res might be -1, but works with SuS */
1943 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1944 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1945
1946 if (res < (ssize_t)sizeof (si))
1947 break;
1948 }
1949}
1950#endif
1951
1952#endif
1953
1954/*****************************************************************************/
1955
1956#if EV_CHILD_ENABLE
1957static WL childs [EV_PID_HASHSIZE];
801 1958
802static ev_signal childev; 1959static ev_signal childev;
803 1960
804void inline_speed 1961#ifndef WIFCONTINUED
1962# define WIFCONTINUED(status) 0
1963#endif
1964
1965/* handle a single child status event */
1966inline_speed void
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1967child_reap (EV_P_ int chain, int pid, int status)
806{ 1968{
807 ev_child *w; 1969 ev_child *w;
1970 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1971
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1972 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1973 {
810 if (w->pid == pid || !w->pid) 1974 if ((w->pid == pid || !w->pid)
1975 && (!traced || (w->flags & 1)))
811 { 1976 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1977 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1978 w->rpid = pid;
814 w->rstatus = status; 1979 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1980 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1981 }
1982 }
817} 1983}
818 1984
819#ifndef WCONTINUED 1985#ifndef WCONTINUED
820# define WCONTINUED 0 1986# define WCONTINUED 0
821#endif 1987#endif
822 1988
1989/* called on sigchld etc., calls waitpid */
823static void 1990static void
824childcb (EV_P_ ev_signal *sw, int revents) 1991childcb (EV_P_ ev_signal *sw, int revents)
825{ 1992{
826 int pid, status; 1993 int pid, status;
827 1994
830 if (!WCONTINUED 1997 if (!WCONTINUED
831 || errno != EINVAL 1998 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1999 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 2000 return;
834 2001
835 /* make sure we are called again until all childs have been reaped */ 2002 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 2003 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2004 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 2005
839 child_reap (EV_A_ sw, pid, pid, status); 2006 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 2007 if ((EV_PID_HASHSIZE) > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2008 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 2009}
843 2010
844#endif 2011#endif
845 2012
846/*****************************************************************************/ 2013/*****************************************************************************/
847 2014
2015#if EV_USE_IOCP
2016# include "ev_iocp.c"
2017#endif
848#if EV_USE_PORT 2018#if EV_USE_PORT
849# include "ev_port.c" 2019# include "ev_port.c"
850#endif 2020#endif
851#if EV_USE_KQUEUE 2021#if EV_USE_KQUEUE
852# include "ev_kqueue.c" 2022# include "ev_kqueue.c"
859#endif 2029#endif
860#if EV_USE_SELECT 2030#if EV_USE_SELECT
861# include "ev_select.c" 2031# include "ev_select.c"
862#endif 2032#endif
863 2033
864int 2034int ecb_cold
865ev_version_major (void) 2035ev_version_major (void)
866{ 2036{
867 return EV_VERSION_MAJOR; 2037 return EV_VERSION_MAJOR;
868} 2038}
869 2039
870int 2040int ecb_cold
871ev_version_minor (void) 2041ev_version_minor (void)
872{ 2042{
873 return EV_VERSION_MINOR; 2043 return EV_VERSION_MINOR;
874} 2044}
875 2045
876/* return true if we are running with elevated privileges and should ignore env variables */ 2046/* return true if we are running with elevated privileges and should ignore env variables */
877int inline_size 2047int inline_size ecb_cold
878enable_secure (void) 2048enable_secure (void)
879{ 2049{
880#ifdef _WIN32 2050#ifdef _WIN32
881 return 0; 2051 return 0;
882#else 2052#else
883 return getuid () != geteuid () 2053 return getuid () != geteuid ()
884 || getgid () != getegid (); 2054 || getgid () != getegid ();
885#endif 2055#endif
886} 2056}
887 2057
888unsigned int 2058unsigned int ecb_cold
889ev_supported_backends (void) 2059ev_supported_backends (void)
890{ 2060{
891 unsigned int flags = 0; 2061 unsigned int flags = 0;
892 2062
893 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2063 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
897 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2067 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
898 2068
899 return flags; 2069 return flags;
900} 2070}
901 2071
902unsigned int 2072unsigned int ecb_cold
903ev_recommended_backends (void) 2073ev_recommended_backends (void)
904{ 2074{
905 unsigned int flags = ev_supported_backends (); 2075 unsigned int flags = ev_supported_backends ();
906 2076
907#ifndef __NetBSD__ 2077#ifndef __NetBSD__
908 /* kqueue is borked on everything but netbsd apparently */ 2078 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */ 2079 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE; 2080 flags &= ~EVBACKEND_KQUEUE;
911#endif 2081#endif
912#ifdef __APPLE__ 2082#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation 2083 /* only select works correctly on that "unix-certified" platform */
914 flags &= ~EVBACKEND_POLL; 2084 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2085 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2086#endif
2087#ifdef __FreeBSD__
2088 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
915#endif 2089#endif
916 2090
917 return flags; 2091 return flags;
918} 2092}
919 2093
920unsigned int 2094unsigned int ecb_cold
921ev_embeddable_backends (void) 2095ev_embeddable_backends (void)
922{ 2096{
923 return EVBACKEND_EPOLL 2097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 2098
925 | EVBACKEND_PORT; 2099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2100 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2101 flags &= ~EVBACKEND_EPOLL;
2102
2103 return flags;
926} 2104}
927 2105
928unsigned int 2106unsigned int
929ev_backend (EV_P) 2107ev_backend (EV_P)
930{ 2108{
931 return backend; 2109 return backend;
932} 2110}
933 2111
2112#if EV_FEATURE_API
934unsigned int 2113unsigned int
935ev_loop_count (EV_P) 2114ev_iteration (EV_P)
936{ 2115{
937 return loop_count; 2116 return loop_count;
938} 2117}
939 2118
2119unsigned int
2120ev_depth (EV_P)
2121{
2122 return loop_depth;
2123}
2124
2125void
2126ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2127{
2128 io_blocktime = interval;
2129}
2130
2131void
2132ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2133{
2134 timeout_blocktime = interval;
2135}
2136
2137void
2138ev_set_userdata (EV_P_ void *data)
2139{
2140 userdata = data;
2141}
2142
2143void *
2144ev_userdata (EV_P)
2145{
2146 return userdata;
2147}
2148
2149void
2150ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2151{
2152 invoke_cb = invoke_pending_cb;
2153}
2154
2155void
2156ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2157{
2158 release_cb = release;
2159 acquire_cb = acquire;
2160}
2161#endif
2162
2163/* initialise a loop structure, must be zero-initialised */
940static void noinline 2164static void noinline ecb_cold
941loop_init (EV_P_ unsigned int flags) 2165loop_init (EV_P_ unsigned int flags)
942{ 2166{
943 if (!backend) 2167 if (!backend)
944 { 2168 {
2169 origflags = flags;
2170
2171#if EV_USE_REALTIME
2172 if (!have_realtime)
2173 {
2174 struct timespec ts;
2175
2176 if (!clock_gettime (CLOCK_REALTIME, &ts))
2177 have_realtime = 1;
2178 }
2179#endif
2180
945#if EV_USE_MONOTONIC 2181#if EV_USE_MONOTONIC
2182 if (!have_monotonic)
946 { 2183 {
947 struct timespec ts; 2184 struct timespec ts;
2185
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2186 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 2187 have_monotonic = 1;
950 } 2188 }
951#endif 2189#endif
952
953 ev_rt_now = ev_time ();
954 mn_now = get_clock ();
955 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now;
957 2190
958 /* pid check not overridable via env */ 2191 /* pid check not overridable via env */
959#ifndef _WIN32 2192#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 2193 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 2194 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 2197 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 2198 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 2199 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 2200 flags = atoi (getenv ("LIBEV_FLAGS"));
968 2201
969 if (!(flags & 0x0000ffffUL)) 2202 ev_rt_now = ev_time ();
2203 mn_now = get_clock ();
2204 now_floor = mn_now;
2205 rtmn_diff = ev_rt_now - mn_now;
2206#if EV_FEATURE_API
2207 invoke_cb = ev_invoke_pending;
2208#endif
2209
2210 io_blocktime = 0.;
2211 timeout_blocktime = 0.;
2212 backend = 0;
2213 backend_fd = -1;
2214 sig_pending = 0;
2215#if EV_ASYNC_ENABLE
2216 async_pending = 0;
2217#endif
2218 pipe_write_skipped = 0;
2219 pipe_write_wanted = 0;
2220#if EV_USE_INOTIFY
2221 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2222#endif
2223#if EV_USE_SIGNALFD
2224 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2225#endif
2226
2227 if (!(flags & EVBACKEND_MASK))
970 flags |= ev_recommended_backends (); 2228 flags |= ev_recommended_backends ();
971 2229
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY 2230#if EV_USE_IOCP
975 fs_fd = -2; 2231 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
976#endif 2232#endif
977
978#if EV_USE_PORT 2233#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2234 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 2235#endif
981#if EV_USE_KQUEUE 2236#if EV_USE_KQUEUE
982 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2237 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
989#endif 2244#endif
990#if EV_USE_SELECT 2245#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2246 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 2247#endif
993 2248
2249 ev_prepare_init (&pending_w, pendingcb);
2250
2251#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
994 ev_init (&sigev, sigcb); 2252 ev_init (&pipe_w, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 2253 ev_set_priority (&pipe_w, EV_MAXPRI);
2254#endif
996 } 2255 }
997} 2256}
998 2257
999static void noinline 2258/* free up a loop structure */
2259void ecb_cold
1000loop_destroy (EV_P) 2260ev_loop_destroy (EV_P)
1001{ 2261{
1002 int i; 2262 int i;
2263
2264#if EV_MULTIPLICITY
2265 /* mimic free (0) */
2266 if (!EV_A)
2267 return;
2268#endif
2269
2270#if EV_CLEANUP_ENABLE
2271 /* queue cleanup watchers (and execute them) */
2272 if (expect_false (cleanupcnt))
2273 {
2274 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2275 EV_INVOKE_PENDING;
2276 }
2277#endif
2278
2279#if EV_CHILD_ENABLE
2280 if (ev_is_active (&childev))
2281 {
2282 ev_ref (EV_A); /* child watcher */
2283 ev_signal_stop (EV_A_ &childev);
2284 }
2285#endif
2286
2287 if (ev_is_active (&pipe_w))
2288 {
2289 /*ev_ref (EV_A);*/
2290 /*ev_io_stop (EV_A_ &pipe_w);*/
2291
2292#if EV_USE_EVENTFD
2293 if (evfd >= 0)
2294 close (evfd);
2295#endif
2296
2297 if (evpipe [0] >= 0)
2298 {
2299 EV_WIN32_CLOSE_FD (evpipe [0]);
2300 EV_WIN32_CLOSE_FD (evpipe [1]);
2301 }
2302 }
2303
2304#if EV_USE_SIGNALFD
2305 if (ev_is_active (&sigfd_w))
2306 close (sigfd);
2307#endif
1003 2308
1004#if EV_USE_INOTIFY 2309#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 2310 if (fs_fd >= 0)
1006 close (fs_fd); 2311 close (fs_fd);
1007#endif 2312#endif
1008 2313
1009 if (backend_fd >= 0) 2314 if (backend_fd >= 0)
1010 close (backend_fd); 2315 close (backend_fd);
1011 2316
2317#if EV_USE_IOCP
2318 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2319#endif
1012#if EV_USE_PORT 2320#if EV_USE_PORT
1013 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2321 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1014#endif 2322#endif
1015#if EV_USE_KQUEUE 2323#if EV_USE_KQUEUE
1016 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2324 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1031#if EV_IDLE_ENABLE 2339#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 2340 array_free (idle, [i]);
1033#endif 2341#endif
1034 } 2342 }
1035 2343
2344 ev_free (anfds); anfds = 0; anfdmax = 0;
2345
1036 /* have to use the microsoft-never-gets-it-right macro */ 2346 /* have to use the microsoft-never-gets-it-right macro */
2347 array_free (rfeed, EMPTY);
1037 array_free (fdchange, EMPTY); 2348 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 2349 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 2351 array_free (periodic, EMPTY);
1041#endif 2352#endif
2353#if EV_FORK_ENABLE
2354 array_free (fork, EMPTY);
2355#endif
2356#if EV_CLEANUP_ENABLE
2357 array_free (cleanup, EMPTY);
2358#endif
1042 array_free (prepare, EMPTY); 2359 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 2360 array_free (check, EMPTY);
2361#if EV_ASYNC_ENABLE
2362 array_free (async, EMPTY);
2363#endif
1044 2364
1045 backend = 0; 2365 backend = 0;
1046}
1047 2366
2367#if EV_MULTIPLICITY
2368 if (ev_is_default_loop (EV_A))
2369#endif
2370 ev_default_loop_ptr = 0;
2371#if EV_MULTIPLICITY
2372 else
2373 ev_free (EV_A);
2374#endif
2375}
2376
2377#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 2378inline_size void infy_fork (EV_P);
2379#endif
1049 2380
1050void inline_size 2381inline_size void
1051loop_fork (EV_P) 2382loop_fork (EV_P)
1052{ 2383{
1053#if EV_USE_PORT 2384#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2385 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif 2386#endif
1061#endif 2392#endif
1062#if EV_USE_INOTIFY 2393#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 2394 infy_fork (EV_A);
1064#endif 2395#endif
1065 2396
1066 if (ev_is_active (&sigev)) 2397 if (ev_is_active (&pipe_w))
1067 { 2398 {
1068 /* default loop */ 2399 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1069 2400
1070 ev_ref (EV_A); 2401 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 2402 ev_io_stop (EV_A_ &pipe_w);
1072 close (sigpipe [0]);
1073 close (sigpipe [1]);
1074 2403
1075 while (pipe (sigpipe)) 2404#if EV_USE_EVENTFD
1076 syserr ("(libev) error creating pipe"); 2405 if (evfd >= 0)
2406 close (evfd);
2407#endif
1077 2408
2409 if (evpipe [0] >= 0)
2410 {
2411 EV_WIN32_CLOSE_FD (evpipe [0]);
2412 EV_WIN32_CLOSE_FD (evpipe [1]);
2413 }
2414
2415#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1078 siginit (EV_A); 2416 evpipe_init (EV_A);
2417 /* now iterate over everything, in case we missed something */
2418 pipecb (EV_A_ &pipe_w, EV_READ);
2419#endif
1079 } 2420 }
1080 2421
1081 postfork = 0; 2422 postfork = 0;
1082} 2423}
1083 2424
1084#if EV_MULTIPLICITY 2425#if EV_MULTIPLICITY
2426
1085struct ev_loop * 2427struct ev_loop * ecb_cold
1086ev_loop_new (unsigned int flags) 2428ev_loop_new (unsigned int flags)
1087{ 2429{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2430 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 2431
1090 memset (loop, 0, sizeof (struct ev_loop)); 2432 memset (EV_A, 0, sizeof (struct ev_loop));
1091
1092 loop_init (EV_A_ flags); 2433 loop_init (EV_A_ flags);
1093 2434
1094 if (ev_backend (EV_A)) 2435 if (ev_backend (EV_A))
1095 return loop; 2436 return EV_A;
1096 2437
2438 ev_free (EV_A);
1097 return 0; 2439 return 0;
1098} 2440}
1099 2441
1100void 2442#endif /* multiplicity */
1101ev_loop_destroy (EV_P)
1102{
1103 loop_destroy (EV_A);
1104 ev_free (loop);
1105}
1106 2443
1107void 2444#if EV_VERIFY
1108ev_loop_fork (EV_P) 2445static void noinline ecb_cold
2446verify_watcher (EV_P_ W w)
1109{ 2447{
1110 postfork = 1; 2448 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1111}
1112 2449
2450 if (w->pending)
2451 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2452}
2453
2454static void noinline ecb_cold
2455verify_heap (EV_P_ ANHE *heap, int N)
2456{
2457 int i;
2458
2459 for (i = HEAP0; i < N + HEAP0; ++i)
2460 {
2461 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2462 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2463 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2464
2465 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2466 }
2467}
2468
2469static void noinline ecb_cold
2470array_verify (EV_P_ W *ws, int cnt)
2471{
2472 while (cnt--)
2473 {
2474 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2475 verify_watcher (EV_A_ ws [cnt]);
2476 }
2477}
2478#endif
2479
2480#if EV_FEATURE_API
2481void ecb_cold
2482ev_verify (EV_P)
2483{
2484#if EV_VERIFY
2485 int i;
2486 WL w;
2487
2488 assert (activecnt >= -1);
2489
2490 assert (fdchangemax >= fdchangecnt);
2491 for (i = 0; i < fdchangecnt; ++i)
2492 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2493
2494 assert (anfdmax >= 0);
2495 for (i = 0; i < anfdmax; ++i)
2496 for (w = anfds [i].head; w; w = w->next)
2497 {
2498 verify_watcher (EV_A_ (W)w);
2499 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2500 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2501 }
2502
2503 assert (timermax >= timercnt);
2504 verify_heap (EV_A_ timers, timercnt);
2505
2506#if EV_PERIODIC_ENABLE
2507 assert (periodicmax >= periodiccnt);
2508 verify_heap (EV_A_ periodics, periodiccnt);
2509#endif
2510
2511 for (i = NUMPRI; i--; )
2512 {
2513 assert (pendingmax [i] >= pendingcnt [i]);
2514#if EV_IDLE_ENABLE
2515 assert (idleall >= 0);
2516 assert (idlemax [i] >= idlecnt [i]);
2517 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2518#endif
2519 }
2520
2521#if EV_FORK_ENABLE
2522 assert (forkmax >= forkcnt);
2523 array_verify (EV_A_ (W *)forks, forkcnt);
2524#endif
2525
2526#if EV_CLEANUP_ENABLE
2527 assert (cleanupmax >= cleanupcnt);
2528 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2529#endif
2530
2531#if EV_ASYNC_ENABLE
2532 assert (asyncmax >= asynccnt);
2533 array_verify (EV_A_ (W *)asyncs, asynccnt);
2534#endif
2535
2536#if EV_PREPARE_ENABLE
2537 assert (preparemax >= preparecnt);
2538 array_verify (EV_A_ (W *)prepares, preparecnt);
2539#endif
2540
2541#if EV_CHECK_ENABLE
2542 assert (checkmax >= checkcnt);
2543 array_verify (EV_A_ (W *)checks, checkcnt);
2544#endif
2545
2546# if 0
2547#if EV_CHILD_ENABLE
2548 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2549 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2550#endif
2551# endif
2552#endif
2553}
1113#endif 2554#endif
1114 2555
1115#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
1116struct ev_loop * 2557struct ev_loop * ecb_cold
1117ev_default_loop_init (unsigned int flags)
1118#else 2558#else
1119int 2559int
2560#endif
1120ev_default_loop (unsigned int flags) 2561ev_default_loop (unsigned int flags)
1121#endif
1122{ 2562{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 2563 if (!ev_default_loop_ptr)
1128 { 2564 {
1129#if EV_MULTIPLICITY 2565#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2566 EV_P = ev_default_loop_ptr = &default_loop_struct;
1131#else 2567#else
1132 ev_default_loop_ptr = 1; 2568 ev_default_loop_ptr = 1;
1133#endif 2569#endif
1134 2570
1135 loop_init (EV_A_ flags); 2571 loop_init (EV_A_ flags);
1136 2572
1137 if (ev_backend (EV_A)) 2573 if (ev_backend (EV_A))
1138 { 2574 {
1139 siginit (EV_A); 2575#if EV_CHILD_ENABLE
1140
1141#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 2576 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 2577 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 2578 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2579 ev_unref (EV_A); /* child watcher should not keep loop alive */
1146#endif 2580#endif
1151 2585
1152 return ev_default_loop_ptr; 2586 return ev_default_loop_ptr;
1153} 2587}
1154 2588
1155void 2589void
1156ev_default_destroy (void) 2590ev_loop_fork (EV_P)
1157{ 2591{
1158#if EV_MULTIPLICITY 2592 postfork = 1; /* must be in line with ev_default_fork */
1159 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif
1161
1162#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev);
1165#endif
1166
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A);
1174}
1175
1176void
1177ev_default_fork (void)
1178{
1179#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif
1182
1183 if (backend)
1184 postfork = 1;
1185} 2593}
1186 2594
1187/*****************************************************************************/ 2595/*****************************************************************************/
1188 2596
1189void 2597void
1190ev_invoke (EV_P_ void *w, int revents) 2598ev_invoke (EV_P_ void *w, int revents)
1191{ 2599{
1192 EV_CB_INVOKE ((W)w, revents); 2600 EV_CB_INVOKE ((W)w, revents);
1193} 2601}
1194 2602
1195void inline_speed 2603unsigned int
1196call_pending (EV_P) 2604ev_pending_count (EV_P)
2605{
2606 int pri;
2607 unsigned int count = 0;
2608
2609 for (pri = NUMPRI; pri--; )
2610 count += pendingcnt [pri];
2611
2612 return count;
2613}
2614
2615void noinline
2616ev_invoke_pending (EV_P)
1197{ 2617{
1198 int pri; 2618 int pri;
1199 2619
1200 for (pri = NUMPRI; pri--; ) 2620 for (pri = NUMPRI; pri--; )
1201 while (pendingcnt [pri]) 2621 while (pendingcnt [pri])
1202 { 2622 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2623 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1204 2624
1205 if (expect_true (p->w))
1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208
1209 p->w->pending = 0; 2625 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 2626 EV_CB_INVOKE (p->w, p->events);
1211 } 2627 EV_FREQUENT_CHECK;
1212 } 2628 }
1213} 2629}
1214 2630
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE 2631#if EV_IDLE_ENABLE
1296void inline_size 2632/* make idle watchers pending. this handles the "call-idle */
2633/* only when higher priorities are idle" logic */
2634inline_size void
1297idle_reify (EV_P) 2635idle_reify (EV_P)
1298{ 2636{
1299 if (expect_false (idleall)) 2637 if (expect_false (idleall))
1300 { 2638 {
1301 int pri; 2639 int pri;
1313 } 2651 }
1314 } 2652 }
1315} 2653}
1316#endif 2654#endif
1317 2655
1318void inline_speed 2656/* make timers pending */
2657inline_size void
2658timers_reify (EV_P)
2659{
2660 EV_FREQUENT_CHECK;
2661
2662 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2663 {
2664 do
2665 {
2666 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2667
2668 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2669
2670 /* first reschedule or stop timer */
2671 if (w->repeat)
2672 {
2673 ev_at (w) += w->repeat;
2674 if (ev_at (w) < mn_now)
2675 ev_at (w) = mn_now;
2676
2677 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2678
2679 ANHE_at_cache (timers [HEAP0]);
2680 downheap (timers, timercnt, HEAP0);
2681 }
2682 else
2683 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2684
2685 EV_FREQUENT_CHECK;
2686 feed_reverse (EV_A_ (W)w);
2687 }
2688 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2689
2690 feed_reverse_done (EV_A_ EV_TIMER);
2691 }
2692}
2693
2694#if EV_PERIODIC_ENABLE
2695
2696static void noinline
2697periodic_recalc (EV_P_ ev_periodic *w)
2698{
2699 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2700 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2701
2702 /* the above almost always errs on the low side */
2703 while (at <= ev_rt_now)
2704 {
2705 ev_tstamp nat = at + w->interval;
2706
2707 /* when resolution fails us, we use ev_rt_now */
2708 if (expect_false (nat == at))
2709 {
2710 at = ev_rt_now;
2711 break;
2712 }
2713
2714 at = nat;
2715 }
2716
2717 ev_at (w) = at;
2718}
2719
2720/* make periodics pending */
2721inline_size void
2722periodics_reify (EV_P)
2723{
2724 EV_FREQUENT_CHECK;
2725
2726 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2727 {
2728 int feed_count = 0;
2729
2730 do
2731 {
2732 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2733
2734 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2735
2736 /* first reschedule or stop timer */
2737 if (w->reschedule_cb)
2738 {
2739 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2740
2741 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2742
2743 ANHE_at_cache (periodics [HEAP0]);
2744 downheap (periodics, periodiccnt, HEAP0);
2745 }
2746 else if (w->interval)
2747 {
2748 periodic_recalc (EV_A_ w);
2749 ANHE_at_cache (periodics [HEAP0]);
2750 downheap (periodics, periodiccnt, HEAP0);
2751 }
2752 else
2753 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2754
2755 EV_FREQUENT_CHECK;
2756 feed_reverse (EV_A_ (W)w);
2757 }
2758 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2759
2760 feed_reverse_done (EV_A_ EV_PERIODIC);
2761 }
2762}
2763
2764/* simply recalculate all periodics */
2765/* TODO: maybe ensure that at least one event happens when jumping forward? */
2766static void noinline ecb_cold
2767periodics_reschedule (EV_P)
2768{
2769 int i;
2770
2771 /* adjust periodics after time jump */
2772 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2773 {
2774 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2775
2776 if (w->reschedule_cb)
2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2778 else if (w->interval)
2779 periodic_recalc (EV_A_ w);
2780
2781 ANHE_at_cache (periodics [i]);
2782 }
2783
2784 reheap (periodics, periodiccnt);
2785}
2786#endif
2787
2788/* adjust all timers by a given offset */
2789static void noinline ecb_cold
2790timers_reschedule (EV_P_ ev_tstamp adjust)
2791{
2792 int i;
2793
2794 for (i = 0; i < timercnt; ++i)
2795 {
2796 ANHE *he = timers + i + HEAP0;
2797 ANHE_w (*he)->at += adjust;
2798 ANHE_at_cache (*he);
2799 }
2800}
2801
2802/* fetch new monotonic and realtime times from the kernel */
2803/* also detect if there was a timejump, and act accordingly */
2804inline_speed void
1319time_update (EV_P_ ev_tstamp max_block) 2805time_update (EV_P_ ev_tstamp max_block)
1320{ 2806{
1321 int i;
1322
1323#if EV_USE_MONOTONIC 2807#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic)) 2808 if (expect_true (have_monotonic))
1325 { 2809 {
2810 int i;
1326 ev_tstamp odiff = rtmn_diff; 2811 ev_tstamp odiff = rtmn_diff;
1327 2812
1328 mn_now = get_clock (); 2813 mn_now = get_clock ();
1329 2814
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2815 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1346 * doesn't hurt either as we only do this on time-jumps or 2831 * doesn't hurt either as we only do this on time-jumps or
1347 * in the unlikely event of having been preempted here. 2832 * in the unlikely event of having been preempted here.
1348 */ 2833 */
1349 for (i = 4; --i; ) 2834 for (i = 4; --i; )
1350 { 2835 {
2836 ev_tstamp diff;
1351 rtmn_diff = ev_rt_now - mn_now; 2837 rtmn_diff = ev_rt_now - mn_now;
1352 2838
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2839 diff = odiff - rtmn_diff;
2840
2841 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 2842 return; /* all is well */
1355 2843
1356 ev_rt_now = ev_time (); 2844 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 2845 mn_now = get_clock ();
1358 now_floor = mn_now; 2846 now_floor = mn_now;
1359 } 2847 }
1360 2848
2849 /* no timer adjustment, as the monotonic clock doesn't jump */
2850 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1361# if EV_PERIODIC_ENABLE 2851# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2852 periodics_reschedule (EV_A);
1363# endif 2853# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 } 2854 }
1367 else 2855 else
1368#endif 2856#endif
1369 { 2857 {
1370 ev_rt_now = ev_time (); 2858 ev_rt_now = ev_time ();
1371 2859
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2860 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 { 2861 {
2862 /* adjust timers. this is easy, as the offset is the same for all of them */
2863 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1374#if EV_PERIODIC_ENABLE 2864#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 2865 periodics_reschedule (EV_A);
1376#endif 2866#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2867 }
1381 2868
1382 mn_now = ev_rt_now; 2869 mn_now = ev_rt_now;
1383 } 2870 }
1384} 2871}
1385 2872
1386void 2873void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2874ev_run (EV_P_ int flags)
1402{ 2875{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2876#if EV_FEATURE_API
1404 ? EVUNLOOP_ONE 2877 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2878#endif
1406 2879
2880 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2881
2882 loop_done = EVBREAK_CANCEL;
2883
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2884 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2885
1409 do 2886 do
1410 { 2887 {
2888#if EV_VERIFY >= 2
2889 ev_verify (EV_A);
2890#endif
2891
1411#ifndef _WIN32 2892#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2893 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2894 if (expect_false (getpid () != curpid))
1414 { 2895 {
1415 curpid = getpid (); 2896 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2902 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2903 if (expect_false (postfork))
1423 if (forkcnt) 2904 if (forkcnt)
1424 { 2905 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2906 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2907 EV_INVOKE_PENDING;
1427 } 2908 }
1428#endif 2909#endif
1429 2910
2911#if EV_PREPARE_ENABLE
1430 /* queue prepare watchers (and execute them) */ 2912 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2913 if (expect_false (preparecnt))
1432 { 2914 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2915 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2916 EV_INVOKE_PENDING;
1435 } 2917 }
2918#endif
1436 2919
1437 if (expect_false (!activecnt)) 2920 if (expect_false (loop_done))
1438 break; 2921 break;
1439 2922
1440 /* we might have forked, so reify kernel state if necessary */ 2923 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2924 if (expect_false (postfork))
1442 loop_fork (EV_A); 2925 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2927 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2928 fd_reify (EV_A);
1446 2929
1447 /* calculate blocking time */ 2930 /* calculate blocking time */
1448 { 2931 {
1449 ev_tstamp block; 2932 ev_tstamp waittime = 0.;
2933 ev_tstamp sleeptime = 0.;
1450 2934
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2935 /* remember old timestamp for io_blocktime calculation */
1452 block = 0.; /* do not block at all */ 2936 ev_tstamp prev_mn_now = mn_now;
1453 else 2937
2938 /* update time to cancel out callback processing overhead */
2939 time_update (EV_A_ 1e100);
2940
2941 /* from now on, we want a pipe-wake-up */
2942 pipe_write_wanted = 1;
2943
2944 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2945
2946 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1454 { 2947 {
1455 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100);
1457
1458 block = MAX_BLOCKTIME; 2948 waittime = MAX_BLOCKTIME;
1459 2949
1460 if (timercnt) 2950 if (timercnt)
1461 { 2951 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2952 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1463 if (block > to) block = to; 2953 if (waittime > to) waittime = to;
1464 } 2954 }
1465 2955
1466#if EV_PERIODIC_ENABLE 2956#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2957 if (periodiccnt)
1468 { 2958 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2959 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1470 if (block > to) block = to; 2960 if (waittime > to) waittime = to;
1471 } 2961 }
1472#endif 2962#endif
1473 2963
2964 /* don't let timeouts decrease the waittime below timeout_blocktime */
2965 if (expect_false (waittime < timeout_blocktime))
2966 waittime = timeout_blocktime;
2967
2968 /* at this point, we NEED to wait, so we have to ensure */
2969 /* to pass a minimum nonzero value to the backend */
2970 if (expect_false (waittime < backend_mintime))
2971 waittime = backend_mintime;
2972
2973 /* extra check because io_blocktime is commonly 0 */
1474 if (expect_false (block < 0.)) block = 0.; 2974 if (expect_false (io_blocktime))
2975 {
2976 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2977
2978 if (sleeptime > waittime - backend_mintime)
2979 sleeptime = waittime - backend_mintime;
2980
2981 if (expect_true (sleeptime > 0.))
2982 {
2983 ev_sleep (sleeptime);
2984 waittime -= sleeptime;
2985 }
2986 }
1475 } 2987 }
1476 2988
2989#if EV_FEATURE_API
1477 ++loop_count; 2990 ++loop_count;
2991#endif
2992 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1478 backend_poll (EV_A_ block); 2993 backend_poll (EV_A_ waittime);
2994 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2995
2996 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
2997
2998 if (pipe_write_skipped)
2999 {
3000 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3001 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3002 }
3003
1479 3004
1480 /* update ev_rt_now, do magic */ 3005 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 3006 time_update (EV_A_ waittime + sleeptime);
1482 } 3007 }
1483 3008
1484 /* queue pending timers and reschedule them */ 3009 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 3010 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 3011#if EV_PERIODIC_ENABLE
1490#if EV_IDLE_ENABLE 3015#if EV_IDLE_ENABLE
1491 /* queue idle watchers unless other events are pending */ 3016 /* queue idle watchers unless other events are pending */
1492 idle_reify (EV_A); 3017 idle_reify (EV_A);
1493#endif 3018#endif
1494 3019
3020#if EV_CHECK_ENABLE
1495 /* queue check watchers, to be executed first */ 3021 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 3022 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3024#endif
1498 3025
1499 call_pending (EV_A); 3026 EV_INVOKE_PENDING;
1500
1501 } 3027 }
1502 while (expect_true (activecnt && !loop_done)); 3028 while (expect_true (
3029 activecnt
3030 && !loop_done
3031 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3032 ));
1503 3033
1504 if (loop_done == EVUNLOOP_ONE) 3034 if (loop_done == EVBREAK_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 3035 loop_done = EVBREAK_CANCEL;
3036
3037#if EV_FEATURE_API
3038 --loop_depth;
3039#endif
1506} 3040}
1507 3041
1508void 3042void
1509ev_unloop (EV_P_ int how) 3043ev_break (EV_P_ int how)
1510{ 3044{
1511 loop_done = how; 3045 loop_done = how;
1512} 3046}
1513 3047
3048void
3049ev_ref (EV_P)
3050{
3051 ++activecnt;
3052}
3053
3054void
3055ev_unref (EV_P)
3056{
3057 --activecnt;
3058}
3059
3060void
3061ev_now_update (EV_P)
3062{
3063 time_update (EV_A_ 1e100);
3064}
3065
3066void
3067ev_suspend (EV_P)
3068{
3069 ev_now_update (EV_A);
3070}
3071
3072void
3073ev_resume (EV_P)
3074{
3075 ev_tstamp mn_prev = mn_now;
3076
3077 ev_now_update (EV_A);
3078 timers_reschedule (EV_A_ mn_now - mn_prev);
3079#if EV_PERIODIC_ENABLE
3080 /* TODO: really do this? */
3081 periodics_reschedule (EV_A);
3082#endif
3083}
3084
1514/*****************************************************************************/ 3085/*****************************************************************************/
3086/* singly-linked list management, used when the expected list length is short */
1515 3087
1516void inline_size 3088inline_size void
1517wlist_add (WL *head, WL elem) 3089wlist_add (WL *head, WL elem)
1518{ 3090{
1519 elem->next = *head; 3091 elem->next = *head;
1520 *head = elem; 3092 *head = elem;
1521} 3093}
1522 3094
1523void inline_size 3095inline_size void
1524wlist_del (WL *head, WL elem) 3096wlist_del (WL *head, WL elem)
1525{ 3097{
1526 while (*head) 3098 while (*head)
1527 { 3099 {
1528 if (*head == elem) 3100 if (expect_true (*head == elem))
1529 { 3101 {
1530 *head = elem->next; 3102 *head = elem->next;
1531 return; 3103 break;
1532 } 3104 }
1533 3105
1534 head = &(*head)->next; 3106 head = &(*head)->next;
1535 } 3107 }
1536} 3108}
1537 3109
1538void inline_speed 3110/* internal, faster, version of ev_clear_pending */
3111inline_speed void
1539clear_pending (EV_P_ W w) 3112clear_pending (EV_P_ W w)
1540{ 3113{
1541 if (w->pending) 3114 if (w->pending)
1542 { 3115 {
1543 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3116 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1544 w->pending = 0; 3117 w->pending = 0;
1545 } 3118 }
1546} 3119}
1547 3120
1548int 3121int
1552 int pending = w_->pending; 3125 int pending = w_->pending;
1553 3126
1554 if (expect_true (pending)) 3127 if (expect_true (pending))
1555 { 3128 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3129 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3130 p->w = (W)&pending_w;
1557 w_->pending = 0; 3131 w_->pending = 0;
1558 p->w = 0;
1559 return p->events; 3132 return p->events;
1560 } 3133 }
1561 else 3134 else
1562 return 0; 3135 return 0;
1563} 3136}
1564 3137
1565void inline_size 3138inline_size void
1566pri_adjust (EV_P_ W w) 3139pri_adjust (EV_P_ W w)
1567{ 3140{
1568 int pri = w->priority; 3141 int pri = ev_priority (w);
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3142 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3143 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri; 3144 ev_set_priority (w, pri);
1572} 3145}
1573 3146
1574void inline_speed 3147inline_speed void
1575ev_start (EV_P_ W w, int active) 3148ev_start (EV_P_ W w, int active)
1576{ 3149{
1577 pri_adjust (EV_A_ w); 3150 pri_adjust (EV_A_ w);
1578 w->active = active; 3151 w->active = active;
1579 ev_ref (EV_A); 3152 ev_ref (EV_A);
1580} 3153}
1581 3154
1582void inline_size 3155inline_size void
1583ev_stop (EV_P_ W w) 3156ev_stop (EV_P_ W w)
1584{ 3157{
1585 ev_unref (EV_A); 3158 ev_unref (EV_A);
1586 w->active = 0; 3159 w->active = 0;
1587} 3160}
1594 int fd = w->fd; 3167 int fd = w->fd;
1595 3168
1596 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
1597 return; 3170 return;
1598 3171
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 3172 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3173 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3174
3175 EV_FREQUENT_CHECK;
1600 3176
1601 ev_start (EV_A_ (W)w, 1); 3177 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3178 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3179 wlist_add (&anfds[fd].head, (WL)w);
1604 3180
1605 fd_change (EV_A_ fd); 3181 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3182 w->events &= ~EV__IOFDSET;
3183
3184 EV_FREQUENT_CHECK;
1606} 3185}
1607 3186
1608void noinline 3187void noinline
1609ev_io_stop (EV_P_ ev_io *w) 3188ev_io_stop (EV_P_ ev_io *w)
1610{ 3189{
1611 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
1613 return; 3192 return;
1614 3193
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3194 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 3195
3196 EV_FREQUENT_CHECK;
3197
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3198 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 3199 ev_stop (EV_A_ (W)w);
1619 3200
1620 fd_change (EV_A_ w->fd); 3201 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3202
3203 EV_FREQUENT_CHECK;
1621} 3204}
1622 3205
1623void noinline 3206void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 3207ev_timer_start (EV_P_ ev_timer *w)
1625{ 3208{
1626 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
1627 return; 3210 return;
1628 3211
1629 ((WT)w)->at += mn_now; 3212 ev_at (w) += mn_now;
1630 3213
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3214 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 3215
3216 EV_FREQUENT_CHECK;
3217
3218 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 3219 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3220 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 3221 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 3222 ANHE_at_cache (timers [ev_active (w)]);
3223 upheap (timers, ev_active (w));
1637 3224
3225 EV_FREQUENT_CHECK;
3226
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3227 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 3228}
1640 3229
1641void noinline 3230void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 3231ev_timer_stop (EV_P_ ev_timer *w)
1643{ 3232{
1644 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
1646 return; 3235 return;
1647 3236
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3237 EV_FREQUENT_CHECK;
1649 3238
1650 { 3239 {
1651 int active = ((W)w)->active; 3240 int active = ev_active (w);
1652 3241
3242 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3243
3244 --timercnt;
3245
1653 if (expect_true (--active < --timercnt)) 3246 if (expect_true (active < timercnt + HEAP0))
1654 { 3247 {
1655 timers [active] = timers [timercnt]; 3248 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 3249 adjustheap (timers, timercnt, active);
1657 } 3250 }
1658 } 3251 }
1659 3252
1660 ((WT)w)->at -= mn_now; 3253 ev_at (w) -= mn_now;
1661 3254
1662 ev_stop (EV_A_ (W)w); 3255 ev_stop (EV_A_ (W)w);
3256
3257 EV_FREQUENT_CHECK;
1663} 3258}
1664 3259
1665void noinline 3260void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 3261ev_timer_again (EV_P_ ev_timer *w)
1667{ 3262{
3263 EV_FREQUENT_CHECK;
3264
1668 if (ev_is_active (w)) 3265 if (ev_is_active (w))
1669 { 3266 {
1670 if (w->repeat) 3267 if (w->repeat)
1671 { 3268 {
1672 ((WT)w)->at = mn_now + w->repeat; 3269 ev_at (w) = mn_now + w->repeat;
3270 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3271 adjustheap (timers, timercnt, ev_active (w));
1674 } 3272 }
1675 else 3273 else
1676 ev_timer_stop (EV_A_ w); 3274 ev_timer_stop (EV_A_ w);
1677 } 3275 }
1678 else if (w->repeat) 3276 else if (w->repeat)
1679 { 3277 {
1680 w->at = w->repeat; 3278 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 3279 ev_timer_start (EV_A_ w);
1682 } 3280 }
3281
3282 EV_FREQUENT_CHECK;
3283}
3284
3285ev_tstamp
3286ev_timer_remaining (EV_P_ ev_timer *w)
3287{
3288 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1683} 3289}
1684 3290
1685#if EV_PERIODIC_ENABLE 3291#if EV_PERIODIC_ENABLE
1686void noinline 3292void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 3293ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 3294{
1689 if (expect_false (ev_is_active (w))) 3295 if (expect_false (ev_is_active (w)))
1690 return; 3296 return;
1691 3297
1692 if (w->reschedule_cb) 3298 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 3300 else if (w->interval)
1695 { 3301 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 3303 periodic_recalc (EV_A_ w);
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 3304 }
1700 else 3305 else
1701 ((WT)w)->at = w->offset; 3306 ev_at (w) = w->offset;
1702 3307
3308 EV_FREQUENT_CHECK;
3309
3310 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 3311 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3312 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 3313 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 3314 ANHE_at_cache (periodics [ev_active (w)]);
3315 upheap (periodics, ev_active (w));
1707 3316
3317 EV_FREQUENT_CHECK;
3318
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3319 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 3320}
1710 3321
1711void noinline 3322void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 3323ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 3324{
1714 clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 3326 if (expect_false (!ev_is_active (w)))
1716 return; 3327 return;
1717 3328
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3329 EV_FREQUENT_CHECK;
1719 3330
1720 { 3331 {
1721 int active = ((W)w)->active; 3332 int active = ev_active (w);
1722 3333
3334 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3335
3336 --periodiccnt;
3337
1723 if (expect_true (--active < --periodiccnt)) 3338 if (expect_true (active < periodiccnt + HEAP0))
1724 { 3339 {
1725 periodics [active] = periodics [periodiccnt]; 3340 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 3341 adjustheap (periodics, periodiccnt, active);
1727 } 3342 }
1728 } 3343 }
1729 3344
1730 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
1731} 3348}
1732 3349
1733void noinline 3350void noinline
1734ev_periodic_again (EV_P_ ev_periodic *w) 3351ev_periodic_again (EV_P_ ev_periodic *w)
1735{ 3352{
1741 3358
1742#ifndef SA_RESTART 3359#ifndef SA_RESTART
1743# define SA_RESTART 0 3360# define SA_RESTART 0
1744#endif 3361#endif
1745 3362
3363#if EV_SIGNAL_ENABLE
3364
1746void noinline 3365void noinline
1747ev_signal_start (EV_P_ ev_signal *w) 3366ev_signal_start (EV_P_ ev_signal *w)
1748{ 3367{
1749#if EV_MULTIPLICITY
1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1751#endif
1752 if (expect_false (ev_is_active (w))) 3368 if (expect_false (ev_is_active (w)))
1753 return; 3369 return;
1754 3370
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3371 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3372
3373#if EV_MULTIPLICITY
3374 assert (("libev: a signal must not be attached to two different loops",
3375 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3376
3377 signals [w->signum - 1].loop = EV_A;
3378#endif
3379
3380 EV_FREQUENT_CHECK;
3381
3382#if EV_USE_SIGNALFD
3383 if (sigfd == -2)
3384 {
3385 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3386 if (sigfd < 0 && errno == EINVAL)
3387 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3388
3389 if (sigfd >= 0)
3390 {
3391 fd_intern (sigfd); /* doing it twice will not hurt */
3392
3393 sigemptyset (&sigfd_set);
3394
3395 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3396 ev_set_priority (&sigfd_w, EV_MAXPRI);
3397 ev_io_start (EV_A_ &sigfd_w);
3398 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3399 }
3400 }
3401
3402 if (sigfd >= 0)
3403 {
3404 /* TODO: check .head */
3405 sigaddset (&sigfd_set, w->signum);
3406 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3407
3408 signalfd (sigfd, &sigfd_set, 0);
3409 }
3410#endif
1756 3411
1757 ev_start (EV_A_ (W)w, 1); 3412 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1759 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3413 wlist_add (&signals [w->signum - 1].head, (WL)w);
1760 3414
1761 if (!((WL)w)->next) 3415 if (!((WL)w)->next)
3416# if EV_USE_SIGNALFD
3417 if (sigfd < 0) /*TODO*/
3418# endif
1762 { 3419 {
1763#if _WIN32 3420# ifdef _WIN32
3421 evpipe_init (EV_A);
3422
1764 signal (w->signum, sighandler); 3423 signal (w->signum, ev_sighandler);
1765#else 3424# else
1766 struct sigaction sa; 3425 struct sigaction sa;
3426
3427 evpipe_init (EV_A);
3428
1767 sa.sa_handler = sighandler; 3429 sa.sa_handler = ev_sighandler;
1768 sigfillset (&sa.sa_mask); 3430 sigfillset (&sa.sa_mask);
1769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3431 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1770 sigaction (w->signum, &sa, 0); 3432 sigaction (w->signum, &sa, 0);
3433
3434 if (origflags & EVFLAG_NOSIGMASK)
3435 {
3436 sigemptyset (&sa.sa_mask);
3437 sigaddset (&sa.sa_mask, w->signum);
3438 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3439 }
1771#endif 3440#endif
1772 } 3441 }
3442
3443 EV_FREQUENT_CHECK;
1773} 3444}
1774 3445
1775void noinline 3446void noinline
1776ev_signal_stop (EV_P_ ev_signal *w) 3447ev_signal_stop (EV_P_ ev_signal *w)
1777{ 3448{
1778 clear_pending (EV_A_ (W)w); 3449 clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w))) 3450 if (expect_false (!ev_is_active (w)))
1780 return; 3451 return;
1781 3452
3453 EV_FREQUENT_CHECK;
3454
1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3455 wlist_del (&signals [w->signum - 1].head, (WL)w);
1783 ev_stop (EV_A_ (W)w); 3456 ev_stop (EV_A_ (W)w);
1784 3457
1785 if (!signals [w->signum - 1].head) 3458 if (!signals [w->signum - 1].head)
3459 {
3460#if EV_MULTIPLICITY
3461 signals [w->signum - 1].loop = 0; /* unattach from signal */
3462#endif
3463#if EV_USE_SIGNALFD
3464 if (sigfd >= 0)
3465 {
3466 sigset_t ss;
3467
3468 sigemptyset (&ss);
3469 sigaddset (&ss, w->signum);
3470 sigdelset (&sigfd_set, w->signum);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 sigprocmask (SIG_UNBLOCK, &ss, 0);
3474 }
3475 else
3476#endif
1786 signal (w->signum, SIG_DFL); 3477 signal (w->signum, SIG_DFL);
3478 }
3479
3480 EV_FREQUENT_CHECK;
1787} 3481}
3482
3483#endif
3484
3485#if EV_CHILD_ENABLE
1788 3486
1789void 3487void
1790ev_child_start (EV_P_ ev_child *w) 3488ev_child_start (EV_P_ ev_child *w)
1791{ 3489{
1792#if EV_MULTIPLICITY 3490#if EV_MULTIPLICITY
1793 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3491 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1794#endif 3492#endif
1795 if (expect_false (ev_is_active (w))) 3493 if (expect_false (ev_is_active (w)))
1796 return; 3494 return;
1797 3495
3496 EV_FREQUENT_CHECK;
3497
1798 ev_start (EV_A_ (W)w, 1); 3498 ev_start (EV_A_ (W)w, 1);
1799 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3499 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3500
3501 EV_FREQUENT_CHECK;
1800} 3502}
1801 3503
1802void 3504void
1803ev_child_stop (EV_P_ ev_child *w) 3505ev_child_stop (EV_P_ ev_child *w)
1804{ 3506{
1805 clear_pending (EV_A_ (W)w); 3507 clear_pending (EV_A_ (W)w);
1806 if (expect_false (!ev_is_active (w))) 3508 if (expect_false (!ev_is_active (w)))
1807 return; 3509 return;
1808 3510
3511 EV_FREQUENT_CHECK;
3512
1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3513 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1810 ev_stop (EV_A_ (W)w); 3514 ev_stop (EV_A_ (W)w);
3515
3516 EV_FREQUENT_CHECK;
1811} 3517}
3518
3519#endif
1812 3520
1813#if EV_STAT_ENABLE 3521#if EV_STAT_ENABLE
1814 3522
1815# ifdef _WIN32 3523# ifdef _WIN32
1816# undef lstat 3524# undef lstat
1817# define lstat(a,b) _stati64 (a,b) 3525# define lstat(a,b) _stati64 (a,b)
1818# endif 3526# endif
1819 3527
1820#define DEF_STAT_INTERVAL 5.0074891 3528#define DEF_STAT_INTERVAL 5.0074891
3529#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1821#define MIN_STAT_INTERVAL 0.1074891 3530#define MIN_STAT_INTERVAL 0.1074891
1822 3531
1823static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3532static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1824 3533
1825#if EV_USE_INOTIFY 3534#if EV_USE_INOTIFY
1826# define EV_INOTIFY_BUFSIZE 8192 3535
3536/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3537# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1827 3538
1828static void noinline 3539static void noinline
1829infy_add (EV_P_ ev_stat *w) 3540infy_add (EV_P_ ev_stat *w)
1830{ 3541{
1831 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3542 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1832 3543
1833 if (w->wd < 0) 3544 if (w->wd >= 0)
3545 {
3546 struct statfs sfs;
3547
3548 /* now local changes will be tracked by inotify, but remote changes won't */
3549 /* unless the filesystem is known to be local, we therefore still poll */
3550 /* also do poll on <2.6.25, but with normal frequency */
3551
3552 if (!fs_2625)
3553 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3554 else if (!statfs (w->path, &sfs)
3555 && (sfs.f_type == 0x1373 /* devfs */
3556 || sfs.f_type == 0xEF53 /* ext2/3 */
3557 || sfs.f_type == 0x3153464a /* jfs */
3558 || sfs.f_type == 0x52654973 /* reiser3 */
3559 || sfs.f_type == 0x01021994 /* tempfs */
3560 || sfs.f_type == 0x58465342 /* xfs */))
3561 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3562 else
3563 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1834 { 3564 }
1835 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3565 else
3566 {
3567 /* can't use inotify, continue to stat */
3568 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1836 3569
1837 /* monitor some parent directory for speedup hints */ 3570 /* if path is not there, monitor some parent directory for speedup hints */
3571 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3572 /* but an efficiency issue only */
1838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3573 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1839 { 3574 {
1840 char path [4096]; 3575 char path [4096];
1841 strcpy (path, w->path); 3576 strcpy (path, w->path);
1842 3577
1845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3580 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3581 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1847 3582
1848 char *pend = strrchr (path, '/'); 3583 char *pend = strrchr (path, '/');
1849 3584
1850 if (!pend) 3585 if (!pend || pend == path)
1851 break; /* whoops, no '/', complain to your admin */ 3586 break;
1852 3587
1853 *pend = 0; 3588 *pend = 0;
1854 w->wd = inotify_add_watch (fs_fd, path, mask); 3589 w->wd = inotify_add_watch (fs_fd, path, mask);
1855 } 3590 }
1856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3591 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1857 } 3592 }
1858 } 3593 }
1859 else
1860 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1861 3594
1862 if (w->wd >= 0) 3595 if (w->wd >= 0)
1863 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3596 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3597
3598 /* now re-arm timer, if required */
3599 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3600 ev_timer_again (EV_A_ &w->timer);
3601 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1864} 3602}
1865 3603
1866static void noinline 3604static void noinline
1867infy_del (EV_P_ ev_stat *w) 3605infy_del (EV_P_ ev_stat *w)
1868{ 3606{
1871 3609
1872 if (wd < 0) 3610 if (wd < 0)
1873 return; 3611 return;
1874 3612
1875 w->wd = -2; 3613 w->wd = -2;
1876 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3614 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1877 wlist_del (&fs_hash [slot].head, (WL)w); 3615 wlist_del (&fs_hash [slot].head, (WL)w);
1878 3616
1879 /* remove this watcher, if others are watching it, they will rearm */ 3617 /* remove this watcher, if others are watching it, they will rearm */
1880 inotify_rm_watch (fs_fd, wd); 3618 inotify_rm_watch (fs_fd, wd);
1881} 3619}
1882 3620
1883static void noinline 3621static void noinline
1884infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3622infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1885{ 3623{
1886 if (slot < 0) 3624 if (slot < 0)
1887 /* overflow, need to check for all hahs slots */ 3625 /* overflow, need to check for all hash slots */
1888 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3626 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1889 infy_wd (EV_A_ slot, wd, ev); 3627 infy_wd (EV_A_ slot, wd, ev);
1890 else 3628 else
1891 { 3629 {
1892 WL w_; 3630 WL w_;
1893 3631
1894 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3632 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1895 { 3633 {
1896 ev_stat *w = (ev_stat *)w_; 3634 ev_stat *w = (ev_stat *)w_;
1897 w_ = w_->next; /* lets us remove this watcher and all before it */ 3635 w_ = w_->next; /* lets us remove this watcher and all before it */
1898 3636
1899 if (w->wd == wd || wd == -1) 3637 if (w->wd == wd || wd == -1)
1900 { 3638 {
1901 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3639 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1902 { 3640 {
3641 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1903 w->wd = -1; 3642 w->wd = -1;
1904 infy_add (EV_A_ w); /* re-add, no matter what */ 3643 infy_add (EV_A_ w); /* re-add, no matter what */
1905 } 3644 }
1906 3645
1907 stat_timer_cb (EV_A_ &w->timer, 0); 3646 stat_timer_cb (EV_A_ &w->timer, 0);
1912 3651
1913static void 3652static void
1914infy_cb (EV_P_ ev_io *w, int revents) 3653infy_cb (EV_P_ ev_io *w, int revents)
1915{ 3654{
1916 char buf [EV_INOTIFY_BUFSIZE]; 3655 char buf [EV_INOTIFY_BUFSIZE];
1917 struct inotify_event *ev = (struct inotify_event *)buf;
1918 int ofs; 3656 int ofs;
1919 int len = read (fs_fd, buf, sizeof (buf)); 3657 int len = read (fs_fd, buf, sizeof (buf));
1920 3658
1921 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3659 for (ofs = 0; ofs < len; )
3660 {
3661 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1922 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3662 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3663 ofs += sizeof (struct inotify_event) + ev->len;
3664 }
1923} 3665}
1924 3666
1925void inline_size 3667inline_size void ecb_cold
3668ev_check_2625 (EV_P)
3669{
3670 /* kernels < 2.6.25 are borked
3671 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3672 */
3673 if (ev_linux_version () < 0x020619)
3674 return;
3675
3676 fs_2625 = 1;
3677}
3678
3679inline_size int
3680infy_newfd (void)
3681{
3682#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3683 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3684 if (fd >= 0)
3685 return fd;
3686#endif
3687 return inotify_init ();
3688}
3689
3690inline_size void
1926infy_init (EV_P) 3691infy_init (EV_P)
1927{ 3692{
1928 if (fs_fd != -2) 3693 if (fs_fd != -2)
1929 return; 3694 return;
1930 3695
3696 fs_fd = -1;
3697
3698 ev_check_2625 (EV_A);
3699
1931 fs_fd = inotify_init (); 3700 fs_fd = infy_newfd ();
1932 3701
1933 if (fs_fd >= 0) 3702 if (fs_fd >= 0)
1934 { 3703 {
3704 fd_intern (fs_fd);
1935 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3705 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1936 ev_set_priority (&fs_w, EV_MAXPRI); 3706 ev_set_priority (&fs_w, EV_MAXPRI);
1937 ev_io_start (EV_A_ &fs_w); 3707 ev_io_start (EV_A_ &fs_w);
3708 ev_unref (EV_A);
1938 } 3709 }
1939} 3710}
1940 3711
1941void inline_size 3712inline_size void
1942infy_fork (EV_P) 3713infy_fork (EV_P)
1943{ 3714{
1944 int slot; 3715 int slot;
1945 3716
1946 if (fs_fd < 0) 3717 if (fs_fd < 0)
1947 return; 3718 return;
1948 3719
3720 ev_ref (EV_A);
3721 ev_io_stop (EV_A_ &fs_w);
1949 close (fs_fd); 3722 close (fs_fd);
1950 fs_fd = inotify_init (); 3723 fs_fd = infy_newfd ();
1951 3724
3725 if (fs_fd >= 0)
3726 {
3727 fd_intern (fs_fd);
3728 ev_io_set (&fs_w, fs_fd, EV_READ);
3729 ev_io_start (EV_A_ &fs_w);
3730 ev_unref (EV_A);
3731 }
3732
1952 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3733 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1953 { 3734 {
1954 WL w_ = fs_hash [slot].head; 3735 WL w_ = fs_hash [slot].head;
1955 fs_hash [slot].head = 0; 3736 fs_hash [slot].head = 0;
1956 3737
1957 while (w_) 3738 while (w_)
1962 w->wd = -1; 3743 w->wd = -1;
1963 3744
1964 if (fs_fd >= 0) 3745 if (fs_fd >= 0)
1965 infy_add (EV_A_ w); /* re-add, no matter what */ 3746 infy_add (EV_A_ w); /* re-add, no matter what */
1966 else 3747 else
3748 {
3749 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3750 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1967 ev_timer_start (EV_A_ &w->timer); 3751 ev_timer_again (EV_A_ &w->timer);
3752 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3753 }
1968 } 3754 }
1969
1970 } 3755 }
1971} 3756}
1972 3757
3758#endif
3759
3760#ifdef _WIN32
3761# define EV_LSTAT(p,b) _stati64 (p, b)
3762#else
3763# define EV_LSTAT(p,b) lstat (p, b)
1973#endif 3764#endif
1974 3765
1975void 3766void
1976ev_stat_stat (EV_P_ ev_stat *w) 3767ev_stat_stat (EV_P_ ev_stat *w)
1977{ 3768{
1984static void noinline 3775static void noinline
1985stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1986{ 3777{
1987 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1988 3779
1989 /* we copy this here each the time so that */ 3780 ev_statdata prev = w->attr;
1990 /* prev has the old value when the callback gets invoked */
1991 w->prev = w->attr;
1992 ev_stat_stat (EV_A_ w); 3781 ev_stat_stat (EV_A_ w);
1993 3782
1994 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3783 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1995 if ( 3784 if (
1996 w->prev.st_dev != w->attr.st_dev 3785 prev.st_dev != w->attr.st_dev
1997 || w->prev.st_ino != w->attr.st_ino 3786 || prev.st_ino != w->attr.st_ino
1998 || w->prev.st_mode != w->attr.st_mode 3787 || prev.st_mode != w->attr.st_mode
1999 || w->prev.st_nlink != w->attr.st_nlink 3788 || prev.st_nlink != w->attr.st_nlink
2000 || w->prev.st_uid != w->attr.st_uid 3789 || prev.st_uid != w->attr.st_uid
2001 || w->prev.st_gid != w->attr.st_gid 3790 || prev.st_gid != w->attr.st_gid
2002 || w->prev.st_rdev != w->attr.st_rdev 3791 || prev.st_rdev != w->attr.st_rdev
2003 || w->prev.st_size != w->attr.st_size 3792 || prev.st_size != w->attr.st_size
2004 || w->prev.st_atime != w->attr.st_atime 3793 || prev.st_atime != w->attr.st_atime
2005 || w->prev.st_mtime != w->attr.st_mtime 3794 || prev.st_mtime != w->attr.st_mtime
2006 || w->prev.st_ctime != w->attr.st_ctime 3795 || prev.st_ctime != w->attr.st_ctime
2007 ) { 3796 ) {
3797 /* we only update w->prev on actual differences */
3798 /* in case we test more often than invoke the callback, */
3799 /* to ensure that prev is always different to attr */
3800 w->prev = prev;
3801
2008 #if EV_USE_INOTIFY 3802 #if EV_USE_INOTIFY
3803 if (fs_fd >= 0)
3804 {
2009 infy_del (EV_A_ w); 3805 infy_del (EV_A_ w);
2010 infy_add (EV_A_ w); 3806 infy_add (EV_A_ w);
2011 ev_stat_stat (EV_A_ w); /* avoid race... */ 3807 ev_stat_stat (EV_A_ w); /* avoid race... */
3808 }
2012 #endif 3809 #endif
2013 3810
2014 ev_feed_event (EV_A_ w, EV_STAT); 3811 ev_feed_event (EV_A_ w, EV_STAT);
2015 } 3812 }
2016} 3813}
2019ev_stat_start (EV_P_ ev_stat *w) 3816ev_stat_start (EV_P_ ev_stat *w)
2020{ 3817{
2021 if (expect_false (ev_is_active (w))) 3818 if (expect_false (ev_is_active (w)))
2022 return; 3819 return;
2023 3820
2024 /* since we use memcmp, we need to clear any padding data etc. */
2025 memset (&w->prev, 0, sizeof (ev_statdata));
2026 memset (&w->attr, 0, sizeof (ev_statdata));
2027
2028 ev_stat_stat (EV_A_ w); 3821 ev_stat_stat (EV_A_ w);
2029 3822
3823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2030 if (w->interval < MIN_STAT_INTERVAL) 3824 w->interval = MIN_STAT_INTERVAL;
2031 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2032 3825
2033 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2034 ev_set_priority (&w->timer, ev_priority (w)); 3827 ev_set_priority (&w->timer, ev_priority (w));
2035 3828
2036#if EV_USE_INOTIFY 3829#if EV_USE_INOTIFY
2037 infy_init (EV_A); 3830 infy_init (EV_A);
2038 3831
2039 if (fs_fd >= 0) 3832 if (fs_fd >= 0)
2040 infy_add (EV_A_ w); 3833 infy_add (EV_A_ w);
2041 else 3834 else
2042#endif 3835#endif
3836 {
2043 ev_timer_start (EV_A_ &w->timer); 3837 ev_timer_again (EV_A_ &w->timer);
3838 ev_unref (EV_A);
3839 }
2044 3840
2045 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
3842
3843 EV_FREQUENT_CHECK;
2046} 3844}
2047 3845
2048void 3846void
2049ev_stat_stop (EV_P_ ev_stat *w) 3847ev_stat_stop (EV_P_ ev_stat *w)
2050{ 3848{
2051 clear_pending (EV_A_ (W)w); 3849 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 3850 if (expect_false (!ev_is_active (w)))
2053 return; 3851 return;
2054 3852
3853 EV_FREQUENT_CHECK;
3854
2055#if EV_USE_INOTIFY 3855#if EV_USE_INOTIFY
2056 infy_del (EV_A_ w); 3856 infy_del (EV_A_ w);
2057#endif 3857#endif
3858
3859 if (ev_is_active (&w->timer))
3860 {
3861 ev_ref (EV_A);
2058 ev_timer_stop (EV_A_ &w->timer); 3862 ev_timer_stop (EV_A_ &w->timer);
3863 }
2059 3864
2060 ev_stop (EV_A_ (W)w); 3865 ev_stop (EV_A_ (W)w);
3866
3867 EV_FREQUENT_CHECK;
2061} 3868}
2062#endif 3869#endif
2063 3870
2064#if EV_IDLE_ENABLE 3871#if EV_IDLE_ENABLE
2065void 3872void
2068 if (expect_false (ev_is_active (w))) 3875 if (expect_false (ev_is_active (w)))
2069 return; 3876 return;
2070 3877
2071 pri_adjust (EV_A_ (W)w); 3878 pri_adjust (EV_A_ (W)w);
2072 3879
3880 EV_FREQUENT_CHECK;
3881
2073 { 3882 {
2074 int active = ++idlecnt [ABSPRI (w)]; 3883 int active = ++idlecnt [ABSPRI (w)];
2075 3884
2076 ++idleall; 3885 ++idleall;
2077 ev_start (EV_A_ (W)w, active); 3886 ev_start (EV_A_ (W)w, active);
2078 3887
2079 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3888 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2080 idles [ABSPRI (w)][active - 1] = w; 3889 idles [ABSPRI (w)][active - 1] = w;
2081 } 3890 }
3891
3892 EV_FREQUENT_CHECK;
2082} 3893}
2083 3894
2084void 3895void
2085ev_idle_stop (EV_P_ ev_idle *w) 3896ev_idle_stop (EV_P_ ev_idle *w)
2086{ 3897{
2087 clear_pending (EV_A_ (W)w); 3898 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3899 if (expect_false (!ev_is_active (w)))
2089 return; 3900 return;
2090 3901
3902 EV_FREQUENT_CHECK;
3903
2091 { 3904 {
2092 int active = ((W)w)->active; 3905 int active = ev_active (w);
2093 3906
2094 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3907 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2095 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3908 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2096 3909
2097 ev_stop (EV_A_ (W)w); 3910 ev_stop (EV_A_ (W)w);
2098 --idleall; 3911 --idleall;
2099 } 3912 }
2100}
2101#endif
2102 3913
3914 EV_FREQUENT_CHECK;
3915}
3916#endif
3917
3918#if EV_PREPARE_ENABLE
2103void 3919void
2104ev_prepare_start (EV_P_ ev_prepare *w) 3920ev_prepare_start (EV_P_ ev_prepare *w)
2105{ 3921{
2106 if (expect_false (ev_is_active (w))) 3922 if (expect_false (ev_is_active (w)))
2107 return; 3923 return;
3924
3925 EV_FREQUENT_CHECK;
2108 3926
2109 ev_start (EV_A_ (W)w, ++preparecnt); 3927 ev_start (EV_A_ (W)w, ++preparecnt);
2110 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2111 prepares [preparecnt - 1] = w; 3929 prepares [preparecnt - 1] = w;
3930
3931 EV_FREQUENT_CHECK;
2112} 3932}
2113 3933
2114void 3934void
2115ev_prepare_stop (EV_P_ ev_prepare *w) 3935ev_prepare_stop (EV_P_ ev_prepare *w)
2116{ 3936{
2117 clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
2118 if (expect_false (!ev_is_active (w))) 3938 if (expect_false (!ev_is_active (w)))
2119 return; 3939 return;
2120 3940
3941 EV_FREQUENT_CHECK;
3942
2121 { 3943 {
2122 int active = ((W)w)->active; 3944 int active = ev_active (w);
3945
2123 prepares [active - 1] = prepares [--preparecnt]; 3946 prepares [active - 1] = prepares [--preparecnt];
2124 ((W)prepares [active - 1])->active = active; 3947 ev_active (prepares [active - 1]) = active;
2125 } 3948 }
2126 3949
2127 ev_stop (EV_A_ (W)w); 3950 ev_stop (EV_A_ (W)w);
2128}
2129 3951
3952 EV_FREQUENT_CHECK;
3953}
3954#endif
3955
3956#if EV_CHECK_ENABLE
2130void 3957void
2131ev_check_start (EV_P_ ev_check *w) 3958ev_check_start (EV_P_ ev_check *w)
2132{ 3959{
2133 if (expect_false (ev_is_active (w))) 3960 if (expect_false (ev_is_active (w)))
2134 return; 3961 return;
3962
3963 EV_FREQUENT_CHECK;
2135 3964
2136 ev_start (EV_A_ (W)w, ++checkcnt); 3965 ev_start (EV_A_ (W)w, ++checkcnt);
2137 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3966 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2138 checks [checkcnt - 1] = w; 3967 checks [checkcnt - 1] = w;
3968
3969 EV_FREQUENT_CHECK;
2139} 3970}
2140 3971
2141void 3972void
2142ev_check_stop (EV_P_ ev_check *w) 3973ev_check_stop (EV_P_ ev_check *w)
2143{ 3974{
2144 clear_pending (EV_A_ (W)w); 3975 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3976 if (expect_false (!ev_is_active (w)))
2146 return; 3977 return;
2147 3978
3979 EV_FREQUENT_CHECK;
3980
2148 { 3981 {
2149 int active = ((W)w)->active; 3982 int active = ev_active (w);
3983
2150 checks [active - 1] = checks [--checkcnt]; 3984 checks [active - 1] = checks [--checkcnt];
2151 ((W)checks [active - 1])->active = active; 3985 ev_active (checks [active - 1]) = active;
2152 } 3986 }
2153 3987
2154 ev_stop (EV_A_ (W)w); 3988 ev_stop (EV_A_ (W)w);
3989
3990 EV_FREQUENT_CHECK;
2155} 3991}
3992#endif
2156 3993
2157#if EV_EMBED_ENABLE 3994#if EV_EMBED_ENABLE
2158void noinline 3995void noinline
2159ev_embed_sweep (EV_P_ ev_embed *w) 3996ev_embed_sweep (EV_P_ ev_embed *w)
2160{ 3997{
2161 ev_loop (w->loop, EVLOOP_NONBLOCK); 3998 ev_run (w->other, EVRUN_NOWAIT);
2162} 3999}
2163 4000
2164static void 4001static void
2165embed_cb (EV_P_ ev_io *io, int revents) 4002embed_io_cb (EV_P_ ev_io *io, int revents)
2166{ 4003{
2167 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4004 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2168 4005
2169 if (ev_cb (w)) 4006 if (ev_cb (w))
2170 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4007 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2171 else 4008 else
2172 ev_embed_sweep (loop, w); 4009 ev_run (w->other, EVRUN_NOWAIT);
2173} 4010}
4011
4012static void
4013embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4014{
4015 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4016
4017 {
4018 EV_P = w->other;
4019
4020 while (fdchangecnt)
4021 {
4022 fd_reify (EV_A);
4023 ev_run (EV_A_ EVRUN_NOWAIT);
4024 }
4025 }
4026}
4027
4028static void
4029embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4030{
4031 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4032
4033 ev_embed_stop (EV_A_ w);
4034
4035 {
4036 EV_P = w->other;
4037
4038 ev_loop_fork (EV_A);
4039 ev_run (EV_A_ EVRUN_NOWAIT);
4040 }
4041
4042 ev_embed_start (EV_A_ w);
4043}
4044
4045#if 0
4046static void
4047embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4048{
4049 ev_idle_stop (EV_A_ idle);
4050}
4051#endif
2174 4052
2175void 4053void
2176ev_embed_start (EV_P_ ev_embed *w) 4054ev_embed_start (EV_P_ ev_embed *w)
2177{ 4055{
2178 if (expect_false (ev_is_active (w))) 4056 if (expect_false (ev_is_active (w)))
2179 return; 4057 return;
2180 4058
2181 { 4059 {
2182 struct ev_loop *loop = w->loop; 4060 EV_P = w->other;
2183 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4061 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2184 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4062 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2185 } 4063 }
4064
4065 EV_FREQUENT_CHECK;
2186 4066
2187 ev_set_priority (&w->io, ev_priority (w)); 4067 ev_set_priority (&w->io, ev_priority (w));
2188 ev_io_start (EV_A_ &w->io); 4068 ev_io_start (EV_A_ &w->io);
2189 4069
4070 ev_prepare_init (&w->prepare, embed_prepare_cb);
4071 ev_set_priority (&w->prepare, EV_MINPRI);
4072 ev_prepare_start (EV_A_ &w->prepare);
4073
4074 ev_fork_init (&w->fork, embed_fork_cb);
4075 ev_fork_start (EV_A_ &w->fork);
4076
4077 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4078
2190 ev_start (EV_A_ (W)w, 1); 4079 ev_start (EV_A_ (W)w, 1);
4080
4081 EV_FREQUENT_CHECK;
2191} 4082}
2192 4083
2193void 4084void
2194ev_embed_stop (EV_P_ ev_embed *w) 4085ev_embed_stop (EV_P_ ev_embed *w)
2195{ 4086{
2196 clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
2198 return; 4089 return;
2199 4090
4091 EV_FREQUENT_CHECK;
4092
2200 ev_io_stop (EV_A_ &w->io); 4093 ev_io_stop (EV_A_ &w->io);
4094 ev_prepare_stop (EV_A_ &w->prepare);
4095 ev_fork_stop (EV_A_ &w->fork);
2201 4096
2202 ev_stop (EV_A_ (W)w); 4097 ev_stop (EV_A_ (W)w);
4098
4099 EV_FREQUENT_CHECK;
2203} 4100}
2204#endif 4101#endif
2205 4102
2206#if EV_FORK_ENABLE 4103#if EV_FORK_ENABLE
2207void 4104void
2208ev_fork_start (EV_P_ ev_fork *w) 4105ev_fork_start (EV_P_ ev_fork *w)
2209{ 4106{
2210 if (expect_false (ev_is_active (w))) 4107 if (expect_false (ev_is_active (w)))
2211 return; 4108 return;
2212 4109
4110 EV_FREQUENT_CHECK;
4111
2213 ev_start (EV_A_ (W)w, ++forkcnt); 4112 ev_start (EV_A_ (W)w, ++forkcnt);
2214 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4113 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2215 forks [forkcnt - 1] = w; 4114 forks [forkcnt - 1] = w;
4115
4116 EV_FREQUENT_CHECK;
2216} 4117}
2217 4118
2218void 4119void
2219ev_fork_stop (EV_P_ ev_fork *w) 4120ev_fork_stop (EV_P_ ev_fork *w)
2220{ 4121{
2221 clear_pending (EV_A_ (W)w); 4122 clear_pending (EV_A_ (W)w);
2222 if (expect_false (!ev_is_active (w))) 4123 if (expect_false (!ev_is_active (w)))
2223 return; 4124 return;
2224 4125
4126 EV_FREQUENT_CHECK;
4127
2225 { 4128 {
2226 int active = ((W)w)->active; 4129 int active = ev_active (w);
4130
2227 forks [active - 1] = forks [--forkcnt]; 4131 forks [active - 1] = forks [--forkcnt];
2228 ((W)forks [active - 1])->active = active; 4132 ev_active (forks [active - 1]) = active;
2229 } 4133 }
2230 4134
2231 ev_stop (EV_A_ (W)w); 4135 ev_stop (EV_A_ (W)w);
4136
4137 EV_FREQUENT_CHECK;
4138}
4139#endif
4140
4141#if EV_CLEANUP_ENABLE
4142void
4143ev_cleanup_start (EV_P_ ev_cleanup *w)
4144{
4145 if (expect_false (ev_is_active (w)))
4146 return;
4147
4148 EV_FREQUENT_CHECK;
4149
4150 ev_start (EV_A_ (W)w, ++cleanupcnt);
4151 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4152 cleanups [cleanupcnt - 1] = w;
4153
4154 /* cleanup watchers should never keep a refcount on the loop */
4155 ev_unref (EV_A);
4156 EV_FREQUENT_CHECK;
4157}
4158
4159void
4160ev_cleanup_stop (EV_P_ ev_cleanup *w)
4161{
4162 clear_pending (EV_A_ (W)w);
4163 if (expect_false (!ev_is_active (w)))
4164 return;
4165
4166 EV_FREQUENT_CHECK;
4167 ev_ref (EV_A);
4168
4169 {
4170 int active = ev_active (w);
4171
4172 cleanups [active - 1] = cleanups [--cleanupcnt];
4173 ev_active (cleanups [active - 1]) = active;
4174 }
4175
4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
4179}
4180#endif
4181
4182#if EV_ASYNC_ENABLE
4183void
4184ev_async_start (EV_P_ ev_async *w)
4185{
4186 if (expect_false (ev_is_active (w)))
4187 return;
4188
4189 w->sent = 0;
4190
4191 evpipe_init (EV_A);
4192
4193 EV_FREQUENT_CHECK;
4194
4195 ev_start (EV_A_ (W)w, ++asynccnt);
4196 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4197 asyncs [asynccnt - 1] = w;
4198
4199 EV_FREQUENT_CHECK;
4200}
4201
4202void
4203ev_async_stop (EV_P_ ev_async *w)
4204{
4205 clear_pending (EV_A_ (W)w);
4206 if (expect_false (!ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210
4211 {
4212 int active = ev_active (w);
4213
4214 asyncs [active - 1] = asyncs [--asynccnt];
4215 ev_active (asyncs [active - 1]) = active;
4216 }
4217
4218 ev_stop (EV_A_ (W)w);
4219
4220 EV_FREQUENT_CHECK;
4221}
4222
4223void
4224ev_async_send (EV_P_ ev_async *w)
4225{
4226 w->sent = 1;
4227 evpipe_write (EV_A_ &async_pending);
2232} 4228}
2233#endif 4229#endif
2234 4230
2235/*****************************************************************************/ 4231/*****************************************************************************/
2236 4232
2246once_cb (EV_P_ struct ev_once *once, int revents) 4242once_cb (EV_P_ struct ev_once *once, int revents)
2247{ 4243{
2248 void (*cb)(int revents, void *arg) = once->cb; 4244 void (*cb)(int revents, void *arg) = once->cb;
2249 void *arg = once->arg; 4245 void *arg = once->arg;
2250 4246
2251 ev_io_stop (EV_A_ &once->io); 4247 ev_io_stop (EV_A_ &once->io);
2252 ev_timer_stop (EV_A_ &once->to); 4248 ev_timer_stop (EV_A_ &once->to);
2253 ev_free (once); 4249 ev_free (once);
2254 4250
2255 cb (revents, arg); 4251 cb (revents, arg);
2256} 4252}
2257 4253
2258static void 4254static void
2259once_cb_io (EV_P_ ev_io *w, int revents) 4255once_cb_io (EV_P_ ev_io *w, int revents)
2260{ 4256{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4257 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4258
4259 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2262} 4260}
2263 4261
2264static void 4262static void
2265once_cb_to (EV_P_ ev_timer *w, int revents) 4263once_cb_to (EV_P_ ev_timer *w, int revents)
2266{ 4264{
2267 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4265 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4266
4267 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2268} 4268}
2269 4269
2270void 4270void
2271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2272{ 4272{
2273 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4273 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2274 4274
2275 if (expect_false (!once)) 4275 if (expect_false (!once))
2276 { 4276 {
2277 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4277 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2278 return; 4278 return;
2279 } 4279 }
2280 4280
2281 once->cb = cb; 4281 once->cb = cb;
2282 once->arg = arg; 4282 once->arg = arg;
2294 ev_timer_set (&once->to, timeout, 0.); 4294 ev_timer_set (&once->to, timeout, 0.);
2295 ev_timer_start (EV_A_ &once->to); 4295 ev_timer_start (EV_A_ &once->to);
2296 } 4296 }
2297} 4297}
2298 4298
2299#ifdef __cplusplus 4299/*****************************************************************************/
2300} 4300
4301#if EV_WALK_ENABLE
4302void ecb_cold
4303ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4304{
4305 int i, j;
4306 ev_watcher_list *wl, *wn;
4307
4308 if (types & (EV_IO | EV_EMBED))
4309 for (i = 0; i < anfdmax; ++i)
4310 for (wl = anfds [i].head; wl; )
4311 {
4312 wn = wl->next;
4313
4314#if EV_EMBED_ENABLE
4315 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4316 {
4317 if (types & EV_EMBED)
4318 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4319 }
4320 else
4321#endif
4322#if EV_USE_INOTIFY
4323 if (ev_cb ((ev_io *)wl) == infy_cb)
4324 ;
4325 else
4326#endif
4327 if ((ev_io *)wl != &pipe_w)
4328 if (types & EV_IO)
4329 cb (EV_A_ EV_IO, wl);
4330
4331 wl = wn;
4332 }
4333
4334 if (types & (EV_TIMER | EV_STAT))
4335 for (i = timercnt + HEAP0; i-- > HEAP0; )
4336#if EV_STAT_ENABLE
4337 /*TODO: timer is not always active*/
4338 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4339 {
4340 if (types & EV_STAT)
4341 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4342 }
4343 else
4344#endif
4345 if (types & EV_TIMER)
4346 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4347
4348#if EV_PERIODIC_ENABLE
4349 if (types & EV_PERIODIC)
4350 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4351 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4352#endif
4353
4354#if EV_IDLE_ENABLE
4355 if (types & EV_IDLE)
4356 for (j = NUMPRI; j--; )
4357 for (i = idlecnt [j]; i--; )
4358 cb (EV_A_ EV_IDLE, idles [j][i]);
4359#endif
4360
4361#if EV_FORK_ENABLE
4362 if (types & EV_FORK)
4363 for (i = forkcnt; i--; )
4364 if (ev_cb (forks [i]) != embed_fork_cb)
4365 cb (EV_A_ EV_FORK, forks [i]);
4366#endif
4367
4368#if EV_ASYNC_ENABLE
4369 if (types & EV_ASYNC)
4370 for (i = asynccnt; i--; )
4371 cb (EV_A_ EV_ASYNC, asyncs [i]);
4372#endif
4373
4374#if EV_PREPARE_ENABLE
4375 if (types & EV_PREPARE)
4376 for (i = preparecnt; i--; )
4377# if EV_EMBED_ENABLE
4378 if (ev_cb (prepares [i]) != embed_prepare_cb)
2301#endif 4379# endif
4380 cb (EV_A_ EV_PREPARE, prepares [i]);
4381#endif
2302 4382
4383#if EV_CHECK_ENABLE
4384 if (types & EV_CHECK)
4385 for (i = checkcnt; i--; )
4386 cb (EV_A_ EV_CHECK, checks [i]);
4387#endif
4388
4389#if EV_SIGNAL_ENABLE
4390 if (types & EV_SIGNAL)
4391 for (i = 0; i < EV_NSIG - 1; ++i)
4392 for (wl = signals [i].head; wl; )
4393 {
4394 wn = wl->next;
4395 cb (EV_A_ EV_SIGNAL, wl);
4396 wl = wn;
4397 }
4398#endif
4399
4400#if EV_CHILD_ENABLE
4401 if (types & EV_CHILD)
4402 for (i = (EV_PID_HASHSIZE); i--; )
4403 for (wl = childs [i]; wl; )
4404 {
4405 wn = wl->next;
4406 cb (EV_A_ EV_CHILD, wl);
4407 wl = wn;
4408 }
4409#endif
4410/* EV_STAT 0x00001000 /* stat data changed */
4411/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4412}
4413#endif
4414
4415#if EV_MULTIPLICITY
4416 #include "ev_wrap.h"
4417#endif
4418

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines