ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.202 by root, Sat Dec 29 16:19:36 2007 UTC vs.
Revision 1.403 by root, Wed Jan 18 12:13:14 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
145#ifndef _WIN32 188#ifndef _WIN32
146# include <sys/time.h> 189# include <sys/time.h>
147# include <sys/wait.h> 190# include <sys/wait.h>
148# include <unistd.h> 191# include <unistd.h>
149#else 192#else
193# include <io.h>
150# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 195# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
154# endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
155#endif 249# endif
156 250#endif
157/**/
158 251
159#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
160# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
161#endif 258#endif
162 259
163#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 262#endif
166 263
167#ifndef EV_USE_NANOSLEEP 264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
168# define EV_USE_NANOSLEEP 0 268# define EV_USE_NANOSLEEP 0
269# endif
169#endif 270#endif
170 271
171#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 274#endif
174 275
175#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
176# ifdef _WIN32 277# ifdef _WIN32
177# define EV_USE_POLL 0 278# define EV_USE_POLL 0
178# else 279# else
179# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 281# endif
181#endif 282#endif
182 283
183#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
184# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
185#endif 290#endif
186 291
187#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
189#endif 294#endif
191#ifndef EV_USE_PORT 296#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 297# define EV_USE_PORT 0
193#endif 298#endif
194 299
195#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
196# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
305# endif
197#endif 306#endif
198 307
199#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 319# else
203# define EV_PID_HASHSIZE 16 320# define EV_USE_EVENTFD 0
204# endif 321# endif
205#endif 322#endif
206 323
207#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 326# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 327# else
211# define EV_INOTIFY_HASHSIZE 16 328# define EV_USE_SIGNALFD 0
212# endif 329# endif
213#endif 330#endif
214 331
215/**/ 332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
216 371
217#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
220#endif 375#endif
228# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
230#endif 385#endif
231 386
232#if !EV_USE_NANOSLEEP 387#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
234# include <sys/select.h> 390# include <sys/select.h>
235# endif 391# endif
236#endif 392#endif
237 393
238#if EV_USE_INOTIFY 394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
239# include <sys/inotify.h> 396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
240#endif 402#endif
241 403
242#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 405# include <winsock.h>
244#endif 406#endif
245 407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
246/**/ 446/**/
247 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
248/* 454/*
249 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 457 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 460
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 508 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
265#else 515#else
266# define expect(expr,value) (expr) 516 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 531 #endif
532#endif
272 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_xC >= 0x5110
545 #if __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif defined(__sparc)
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #StoreLoad | #LoadLoad | #StoreStore" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #StoreStore")
565 #endif
566 #endif
567#endif
568
569#ifndef ECB_MEMORY_FENCE
570 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
571 #define ECB_MEMORY_FENCE __sync_synchronize ()
572 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
573 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
574 #elif _MSC_VER >= 1400 /* VC++ 2005 */
575 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
576 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
577 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
578 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
579 #elif defined(_WIN32)
580 #include <WinNT.h>
581 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
582 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
583 #include <mbarrier.h>
584 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
585 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
586 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if !ECB_AVOID_PTHREADS
592 /*
593 * if you get undefined symbol references to pthread_mutex_lock,
594 * or failure to find pthread.h, then you should implement
595 * the ECB_MEMORY_FENCE operations for your cpu/compiler
596 * OR provide pthread.h and link against the posix thread library
597 * of your system.
598 */
599 #include <pthread.h>
600 #define ECB_NEEDS_PTHREADS 1
601 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
602
603 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
604 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
605 #endif
606#endif
607
608#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
609 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
610#endif
611
612#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
613 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
614#endif
615
616/*****************************************************************************/
617
618#define ECB_C99 (__STDC_VERSION__ >= 199901L)
619
620#if __cplusplus
621 #define ecb_inline static inline
622#elif ECB_GCC_VERSION(2,5)
623 #define ecb_inline static __inline__
624#elif ECB_C99
625 #define ecb_inline static inline
626#else
627 #define ecb_inline static
628#endif
629
630#if ECB_GCC_VERSION(3,3)
631 #define ecb_restrict __restrict__
632#elif ECB_C99
633 #define ecb_restrict restrict
634#else
635 #define ecb_restrict
636#endif
637
638typedef int ecb_bool;
639
640#define ECB_CONCAT_(a, b) a ## b
641#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
642#define ECB_STRINGIFY_(a) # a
643#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
644
645#define ecb_function_ ecb_inline
646
647#if ECB_GCC_VERSION(3,1)
648 #define ecb_attribute(attrlist) __attribute__(attrlist)
649 #define ecb_is_constant(expr) __builtin_constant_p (expr)
650 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
651 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
652#else
653 #define ecb_attribute(attrlist)
654 #define ecb_is_constant(expr) 0
655 #define ecb_expect(expr,value) (expr)
656 #define ecb_prefetch(addr,rw,locality)
657#endif
658
659/* no emulation for ecb_decltype */
660#if ECB_GCC_VERSION(4,5)
661 #define ecb_decltype(x) __decltype(x)
662#elif ECB_GCC_VERSION(3,0)
663 #define ecb_decltype(x) __typeof(x)
664#endif
665
666#define ecb_noinline ecb_attribute ((__noinline__))
667#define ecb_noreturn ecb_attribute ((__noreturn__))
668#define ecb_unused ecb_attribute ((__unused__))
669#define ecb_const ecb_attribute ((__const__))
670#define ecb_pure ecb_attribute ((__pure__))
671
672#if ECB_GCC_VERSION(4,3)
673 #define ecb_artificial ecb_attribute ((__artificial__))
674 #define ecb_hot ecb_attribute ((__hot__))
675 #define ecb_cold ecb_attribute ((__cold__))
676#else
677 #define ecb_artificial
678 #define ecb_hot
679 #define ecb_cold
680#endif
681
682/* put around conditional expressions if you are very sure that the */
683/* expression is mostly true or mostly false. note that these return */
684/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 685#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 686#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
687/* for compatibility to the rest of the world */
688#define ecb_likely(expr) ecb_expect_true (expr)
689#define ecb_unlikely(expr) ecb_expect_false (expr)
690
691/* count trailing zero bits and count # of one bits */
692#if ECB_GCC_VERSION(3,4)
693 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
694 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
695 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
696 #define ecb_ctz32(x) __builtin_ctz (x)
697 #define ecb_ctz64(x) __builtin_ctzll (x)
698 #define ecb_popcount32(x) __builtin_popcount (x)
699 /* no popcountll */
700#else
701 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
702 ecb_function_ int
703 ecb_ctz32 (uint32_t x)
704 {
705 int r = 0;
706
707 x &= ~x + 1; /* this isolates the lowest bit */
708
709#if ECB_branchless_on_i386
710 r += !!(x & 0xaaaaaaaa) << 0;
711 r += !!(x & 0xcccccccc) << 1;
712 r += !!(x & 0xf0f0f0f0) << 2;
713 r += !!(x & 0xff00ff00) << 3;
714 r += !!(x & 0xffff0000) << 4;
715#else
716 if (x & 0xaaaaaaaa) r += 1;
717 if (x & 0xcccccccc) r += 2;
718 if (x & 0xf0f0f0f0) r += 4;
719 if (x & 0xff00ff00) r += 8;
720 if (x & 0xffff0000) r += 16;
721#endif
722
723 return r;
724 }
725
726 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
727 ecb_function_ int
728 ecb_ctz64 (uint64_t x)
729 {
730 int shift = x & 0xffffffffU ? 0 : 32;
731 return ecb_ctz32 (x >> shift) + shift;
732 }
733
734 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
735 ecb_function_ int
736 ecb_popcount32 (uint32_t x)
737 {
738 x -= (x >> 1) & 0x55555555;
739 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
740 x = ((x >> 4) + x) & 0x0f0f0f0f;
741 x *= 0x01010101;
742
743 return x >> 24;
744 }
745
746 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
747 ecb_function_ int ecb_ld32 (uint32_t x)
748 {
749 int r = 0;
750
751 if (x >> 16) { x >>= 16; r += 16; }
752 if (x >> 8) { x >>= 8; r += 8; }
753 if (x >> 4) { x >>= 4; r += 4; }
754 if (x >> 2) { x >>= 2; r += 2; }
755 if (x >> 1) { r += 1; }
756
757 return r;
758 }
759
760 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
761 ecb_function_ int ecb_ld64 (uint64_t x)
762 {
763 int r = 0;
764
765 if (x >> 32) { x >>= 32; r += 32; }
766
767 return r + ecb_ld32 (x);
768 }
769#endif
770
771ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
772ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
773{
774 return ( (x * 0x0802U & 0x22110U)
775 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
776}
777
778ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
779ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
780{
781 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
782 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
783 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
784 x = ( x >> 8 ) | ( x << 8);
785
786 return x;
787}
788
789ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
790ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
791{
792 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
793 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
794 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
795 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
796 x = ( x >> 16 ) | ( x << 16);
797
798 return x;
799}
800
801/* popcount64 is only available on 64 bit cpus as gcc builtin */
802/* so for this version we are lazy */
803ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
804ecb_function_ int
805ecb_popcount64 (uint64_t x)
806{
807 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
808}
809
810ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
811ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
812ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
813ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
814ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
815ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
816ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
817ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
818
819ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
820ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
821ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
822ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
823ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
824ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
825ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
826ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
830 #define ecb_bswap32(x) __builtin_bswap32 (x)
831 #define ecb_bswap64(x) __builtin_bswap64 (x)
832#else
833 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
834 ecb_function_ uint16_t
835 ecb_bswap16 (uint16_t x)
836 {
837 return ecb_rotl16 (x, 8);
838 }
839
840 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
841 ecb_function_ uint32_t
842 ecb_bswap32 (uint32_t x)
843 {
844 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
845 }
846
847 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
848 ecb_function_ uint64_t
849 ecb_bswap64 (uint64_t x)
850 {
851 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
852 }
853#endif
854
855#if ECB_GCC_VERSION(4,5)
856 #define ecb_unreachable() __builtin_unreachable ()
857#else
858 /* this seems to work fine, but gcc always emits a warning for it :/ */
859 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
860 ecb_function_ void ecb_unreachable (void) { }
861#endif
862
863/* try to tell the compiler that some condition is definitely true */
864#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
865
866ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
867ecb_function_ unsigned char
868ecb_byteorder_helper (void)
869{
870 const uint32_t u = 0x11223344;
871 return *(unsigned char *)&u;
872}
873
874ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
875ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
876ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
877ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
878
879#if ECB_GCC_VERSION(3,0) || ECB_C99
880 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
881#else
882 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
883#endif
884
885#if __cplusplus
886 template<typename T>
887 static inline T ecb_div_rd (T val, T div)
888 {
889 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
890 }
891 template<typename T>
892 static inline T ecb_div_ru (T val, T div)
893 {
894 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
895 }
896#else
897 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
898 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
899#endif
900
901#if ecb_cplusplus_does_not_suck
902 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
903 template<typename T, int N>
904 static inline int ecb_array_length (const T (&arr)[N])
905 {
906 return N;
907 }
908#else
909 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
910#endif
911
912#endif
913
914/* ECB.H END */
915
916#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
917/* if your architecture doesn't need memory fences, e.g. because it is
918 * single-cpu/core, or if you use libev in a project that doesn't use libev
919 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
920 * libev, in which cases the memory fences become nops.
921 * alternatively, you can remove this #error and link against libpthread,
922 * which will then provide the memory fences.
923 */
924# error "memory fences not defined for your architecture, please report"
925#endif
926
927#ifndef ECB_MEMORY_FENCE
928# define ECB_MEMORY_FENCE do { } while (0)
929# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
931#endif
932
933#define expect_false(cond) ecb_expect_false (cond)
934#define expect_true(cond) ecb_expect_true (cond)
935#define noinline ecb_noinline
936
275#define inline_size static inline 937#define inline_size ecb_inline
276 938
277#if EV_MINIMAL 939#if EV_FEATURE_CODE
940# define inline_speed ecb_inline
941#else
278# define inline_speed static noinline 942# define inline_speed static noinline
943#endif
944
945#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
946
947#if EV_MINPRI == EV_MAXPRI
948# define ABSPRI(w) (((W)w), 0)
279#else 949#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 950# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
951#endif
285 952
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 953#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 954#define EMPTY2(a,b) /* used to suppress some warnings */
288 955
289typedef ev_watcher *W; 956typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 957typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 958typedef ev_watcher_time *WT;
292 959
960#define ev_active(w) ((W)(w))->active
961#define ev_at(w) ((WT)(w))->at
962
963#if EV_USE_REALTIME
964/* sig_atomic_t is used to avoid per-thread variables or locking but still */
965/* giving it a reasonably high chance of working on typical architectures */
966static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
967#endif
968
293#if EV_USE_MONOTONIC 969#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 970static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
971#endif
972
973#ifndef EV_FD_TO_WIN32_HANDLE
974# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
975#endif
976#ifndef EV_WIN32_HANDLE_TO_FD
977# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
978#endif
979#ifndef EV_WIN32_CLOSE_FD
980# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 981#endif
298 982
299#ifdef _WIN32 983#ifdef _WIN32
300# include "ev_win32.c" 984# include "ev_win32.c"
301#endif 985#endif
302 986
303/*****************************************************************************/ 987/*****************************************************************************/
304 988
989/* define a suitable floor function (only used by periodics atm) */
990
991#if EV_USE_FLOOR
992# include <math.h>
993# define ev_floor(v) floor (v)
994#else
995
996#include <float.h>
997
998/* a floor() replacement function, should be independent of ev_tstamp type */
999static ev_tstamp noinline
1000ev_floor (ev_tstamp v)
1001{
1002 /* the choice of shift factor is not terribly important */
1003#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1004 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1005#else
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1007#endif
1008
1009 /* argument too large for an unsigned long? */
1010 if (expect_false (v >= shift))
1011 {
1012 ev_tstamp f;
1013
1014 if (v == v - 1.)
1015 return v; /* very large number */
1016
1017 f = shift * ev_floor (v * (1. / shift));
1018 return f + ev_floor (v - f);
1019 }
1020
1021 /* special treatment for negative args? */
1022 if (expect_false (v < 0.))
1023 {
1024 ev_tstamp f = -ev_floor (-v);
1025
1026 return f - (f == v ? 0 : 1);
1027 }
1028
1029 /* fits into an unsigned long */
1030 return (unsigned long)v;
1031}
1032
1033#endif
1034
1035/*****************************************************************************/
1036
1037#ifdef __linux
1038# include <sys/utsname.h>
1039#endif
1040
1041static unsigned int noinline ecb_cold
1042ev_linux_version (void)
1043{
1044#ifdef __linux
1045 unsigned int v = 0;
1046 struct utsname buf;
1047 int i;
1048 char *p = buf.release;
1049
1050 if (uname (&buf))
1051 return 0;
1052
1053 for (i = 3+1; --i; )
1054 {
1055 unsigned int c = 0;
1056
1057 for (;;)
1058 {
1059 if (*p >= '0' && *p <= '9')
1060 c = c * 10 + *p++ - '0';
1061 else
1062 {
1063 p += *p == '.';
1064 break;
1065 }
1066 }
1067
1068 v = (v << 8) | c;
1069 }
1070
1071 return v;
1072#else
1073 return 0;
1074#endif
1075}
1076
1077/*****************************************************************************/
1078
1079#if EV_AVOID_STDIO
1080static void noinline ecb_cold
1081ev_printerr (const char *msg)
1082{
1083 write (STDERR_FILENO, msg, strlen (msg));
1084}
1085#endif
1086
305static void (*syserr_cb)(const char *msg); 1087static void (*syserr_cb)(const char *msg);
306 1088
307void 1089void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1090ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 1091{
310 syserr_cb = cb; 1092 syserr_cb = cb;
311} 1093}
312 1094
313static void noinline 1095static void noinline ecb_cold
314syserr (const char *msg) 1096ev_syserr (const char *msg)
315{ 1097{
316 if (!msg) 1098 if (!msg)
317 msg = "(libev) system error"; 1099 msg = "(libev) system error";
318 1100
319 if (syserr_cb) 1101 if (syserr_cb)
320 syserr_cb (msg); 1102 syserr_cb (msg);
321 else 1103 else
322 { 1104 {
1105#if EV_AVOID_STDIO
1106 ev_printerr (msg);
1107 ev_printerr (": ");
1108 ev_printerr (strerror (errno));
1109 ev_printerr ("\n");
1110#else
323 perror (msg); 1111 perror (msg);
1112#endif
324 abort (); 1113 abort ();
325 } 1114 }
326} 1115}
327 1116
1117static void *
1118ev_realloc_emul (void *ptr, long size)
1119{
1120#if __GLIBC__
1121 return realloc (ptr, size);
1122#else
1123 /* some systems, notably openbsd and darwin, fail to properly
1124 * implement realloc (x, 0) (as required by both ansi c-89 and
1125 * the single unix specification, so work around them here.
1126 */
1127
1128 if (size)
1129 return realloc (ptr, size);
1130
1131 free (ptr);
1132 return 0;
1133#endif
1134}
1135
328static void *(*alloc)(void *ptr, long size); 1136static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 1137
330void 1138void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1139ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 1140{
333 alloc = cb; 1141 alloc = cb;
334} 1142}
335 1143
336inline_speed void * 1144inline_speed void *
337ev_realloc (void *ptr, long size) 1145ev_realloc (void *ptr, long size)
338{ 1146{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1147 ptr = alloc (ptr, size);
340 1148
341 if (!ptr && size) 1149 if (!ptr && size)
342 { 1150 {
1151#if EV_AVOID_STDIO
1152 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1153#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1154 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1155#endif
344 abort (); 1156 abort ();
345 } 1157 }
346 1158
347 return ptr; 1159 return ptr;
348} 1160}
350#define ev_malloc(size) ev_realloc (0, (size)) 1162#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1163#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1164
353/*****************************************************************************/ 1165/*****************************************************************************/
354 1166
1167/* set in reify when reification needed */
1168#define EV_ANFD_REIFY 1
1169
1170/* file descriptor info structure */
355typedef struct 1171typedef struct
356{ 1172{
357 WL head; 1173 WL head;
358 unsigned char events; 1174 unsigned char events; /* the events watched for */
1175 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1176 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1177 unsigned char unused;
1178#if EV_USE_EPOLL
1179 unsigned int egen; /* generation counter to counter epoll bugs */
1180#endif
360#if EV_SELECT_IS_WINSOCKET 1181#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1182 SOCKET handle;
362#endif 1183#endif
1184#if EV_USE_IOCP
1185 OVERLAPPED or, ow;
1186#endif
363} ANFD; 1187} ANFD;
364 1188
1189/* stores the pending event set for a given watcher */
365typedef struct 1190typedef struct
366{ 1191{
367 W w; 1192 W w;
368 int events; 1193 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1194} ANPENDING;
370 1195
371#if EV_USE_INOTIFY 1196#if EV_USE_INOTIFY
1197/* hash table entry per inotify-id */
372typedef struct 1198typedef struct
373{ 1199{
374 WL head; 1200 WL head;
375} ANFS; 1201} ANFS;
1202#endif
1203
1204/* Heap Entry */
1205#if EV_HEAP_CACHE_AT
1206 /* a heap element */
1207 typedef struct {
1208 ev_tstamp at;
1209 WT w;
1210 } ANHE;
1211
1212 #define ANHE_w(he) (he).w /* access watcher, read-write */
1213 #define ANHE_at(he) (he).at /* access cached at, read-only */
1214 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1215#else
1216 /* a heap element */
1217 typedef WT ANHE;
1218
1219 #define ANHE_w(he) (he)
1220 #define ANHE_at(he) (he)->at
1221 #define ANHE_at_cache(he)
376#endif 1222#endif
377 1223
378#if EV_MULTIPLICITY 1224#if EV_MULTIPLICITY
379 1225
380 struct ev_loop 1226 struct ev_loop
386 #undef VAR 1232 #undef VAR
387 }; 1233 };
388 #include "ev_wrap.h" 1234 #include "ev_wrap.h"
389 1235
390 static struct ev_loop default_loop_struct; 1236 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1237 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1238
393#else 1239#else
394 1240
395 ev_tstamp ev_rt_now; 1241 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1242 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1243 #include "ev_vars.h"
398 #undef VAR 1244 #undef VAR
399 1245
400 static int ev_default_loop_ptr; 1246 static int ev_default_loop_ptr;
401 1247
402#endif 1248#endif
403 1249
1250#if EV_FEATURE_API
1251# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1252# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1253# define EV_INVOKE_PENDING invoke_cb (EV_A)
1254#else
1255# define EV_RELEASE_CB (void)0
1256# define EV_ACQUIRE_CB (void)0
1257# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1258#endif
1259
1260#define EVBREAK_RECURSE 0x80
1261
404/*****************************************************************************/ 1262/*****************************************************************************/
405 1263
1264#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1265ev_tstamp
407ev_time (void) 1266ev_time (void)
408{ 1267{
409#if EV_USE_REALTIME 1268#if EV_USE_REALTIME
1269 if (expect_true (have_realtime))
1270 {
410 struct timespec ts; 1271 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1272 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1273 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1274 }
1275#endif
1276
414 struct timeval tv; 1277 struct timeval tv;
415 gettimeofday (&tv, 0); 1278 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1279 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1280}
1281#endif
419 1282
420ev_tstamp inline_size 1283inline_size ev_tstamp
421get_clock (void) 1284get_clock (void)
422{ 1285{
423#if EV_USE_MONOTONIC 1286#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1287 if (expect_true (have_monotonic))
425 { 1288 {
446 if (delay > 0.) 1309 if (delay > 0.)
447 { 1310 {
448#if EV_USE_NANOSLEEP 1311#if EV_USE_NANOSLEEP
449 struct timespec ts; 1312 struct timespec ts;
450 1313
451 ts.tv_sec = (time_t)delay; 1314 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1315 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1316#elif defined(_WIN32)
456 Sleep (delay * 1e3); 1317 Sleep ((unsigned long)(delay * 1e3));
457#else 1318#else
458 struct timeval tv; 1319 struct timeval tv;
459 1320
460 tv.tv_sec = (time_t)delay; 1321 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1322 /* something not guaranteed by newer posix versions, but guaranteed */
462 1323 /* by older ones */
1324 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1325 select (0, 0, 0, 0, &tv);
464#endif 1326#endif
465 } 1327 }
466} 1328}
467 1329
468/*****************************************************************************/ 1330/*****************************************************************************/
469 1331
470int inline_size 1332#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1333
1334/* find a suitable new size for the given array, */
1335/* hopefully by rounding to a nice-to-malloc size */
1336inline_size int
471array_nextsize (int elem, int cur, int cnt) 1337array_nextsize (int elem, int cur, int cnt)
472{ 1338{
473 int ncur = cur + 1; 1339 int ncur = cur + 1;
474 1340
475 do 1341 do
476 ncur <<= 1; 1342 ncur <<= 1;
477 while (cnt > ncur); 1343 while (cnt > ncur);
478 1344
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1345 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1346 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1347 {
482 ncur *= elem; 1348 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1349 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1350 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1351 ncur /= elem;
486 } 1352 }
487 1353
488 return ncur; 1354 return ncur;
489} 1355}
490 1356
491static noinline void * 1357static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1358array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1359{
494 *cur = array_nextsize (elem, *cur, cnt); 1360 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1361 return ev_realloc (base, elem * *cur);
496} 1362}
1363
1364#define array_init_zero(base,count) \
1365 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1366
498#define array_needsize(type,base,cur,cnt,init) \ 1367#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1368 if (expect_false ((cnt) > (cur))) \
500 { \ 1369 { \
501 int ocur_ = (cur); \ 1370 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1371 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1372 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1373 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1374 }
506 1375
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1382 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1383 }
515#endif 1384#endif
516 1385
517#define array_free(stem, idx) \ 1386#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1387 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1388
520/*****************************************************************************/ 1389/*****************************************************************************/
1390
1391/* dummy callback for pending events */
1392static void noinline
1393pendingcb (EV_P_ ev_prepare *w, int revents)
1394{
1395}
521 1396
522void noinline 1397void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1398ev_feed_event (EV_P_ void *w, int revents)
524{ 1399{
525 W w_ = (W)w; 1400 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 1409 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1410 pendings [pri][w_->pending - 1].events = revents;
536 } 1411 }
537} 1412}
538 1413
539void inline_speed 1414inline_speed void
1415feed_reverse (EV_P_ W w)
1416{
1417 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1418 rfeeds [rfeedcnt++] = w;
1419}
1420
1421inline_size void
1422feed_reverse_done (EV_P_ int revents)
1423{
1424 do
1425 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1426 while (rfeedcnt);
1427}
1428
1429inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1430queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1431{
542 int i; 1432 int i;
543 1433
544 for (i = 0; i < eventcnt; ++i) 1434 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1435 ev_feed_event (EV_A_ events [i], type);
546} 1436}
547 1437
548/*****************************************************************************/ 1438/*****************************************************************************/
549 1439
550void inline_size 1440inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1441fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1442{
566 ANFD *anfd = anfds + fd; 1443 ANFD *anfd = anfds + fd;
567 ev_io *w; 1444 ev_io *w;
568 1445
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1446 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1450 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1451 ev_feed_event (EV_A_ (W)w, ev);
575 } 1452 }
576} 1453}
577 1454
1455/* do not submit kernel events for fds that have reify set */
1456/* because that means they changed while we were polling for new events */
1457inline_speed void
1458fd_event (EV_P_ int fd, int revents)
1459{
1460 ANFD *anfd = anfds + fd;
1461
1462 if (expect_true (!anfd->reify))
1463 fd_event_nocheck (EV_A_ fd, revents);
1464}
1465
578void 1466void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1467ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 1468{
581 if (fd >= 0 && fd < anfdmax) 1469 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1470 fd_event_nocheck (EV_A_ fd, revents);
583} 1471}
584 1472
585void inline_size 1473/* make sure the external fd watch events are in-sync */
1474/* with the kernel/libev internal state */
1475inline_size void
586fd_reify (EV_P) 1476fd_reify (EV_P)
587{ 1477{
588 int i; 1478 int i;
1479
1480#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1481 for (i = 0; i < fdchangecnt; ++i)
1482 {
1483 int fd = fdchanges [i];
1484 ANFD *anfd = anfds + fd;
1485
1486 if (anfd->reify & EV__IOFDSET && anfd->head)
1487 {
1488 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1489
1490 if (handle != anfd->handle)
1491 {
1492 unsigned long arg;
1493
1494 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1495
1496 /* handle changed, but fd didn't - we need to do it in two steps */
1497 backend_modify (EV_A_ fd, anfd->events, 0);
1498 anfd->events = 0;
1499 anfd->handle = handle;
1500 }
1501 }
1502 }
1503#endif
589 1504
590 for (i = 0; i < fdchangecnt; ++i) 1505 for (i = 0; i < fdchangecnt; ++i)
591 { 1506 {
592 int fd = fdchanges [i]; 1507 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1508 ANFD *anfd = anfds + fd;
594 ev_io *w; 1509 ev_io *w;
595 1510
596 unsigned char events = 0; 1511 unsigned char o_events = anfd->events;
1512 unsigned char o_reify = anfd->reify;
597 1513
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1514 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1515
601#if EV_SELECT_IS_WINSOCKET 1516 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1517 {
604 unsigned long argp; 1518 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1519
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1520 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1521 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1522
609 #endif 1523 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1524 o_reify = EV__IOFDSET; /* actually |= */
611 } 1525 }
612#endif
613 1526
614 { 1527 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1528 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1529 }
625 1530
626 fdchangecnt = 0; 1531 fdchangecnt = 0;
627} 1532}
628 1533
629void inline_size 1534/* something about the given fd changed */
1535inline_size void
630fd_change (EV_P_ int fd, int flags) 1536fd_change (EV_P_ int fd, int flags)
631{ 1537{
632 unsigned char reify = anfds [fd].reify; 1538 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1539 anfds [fd].reify |= flags;
634 1540
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1544 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1545 fdchanges [fdchangecnt - 1] = fd;
640 } 1546 }
641} 1547}
642 1548
643void inline_speed 1549/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1550inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1551fd_kill (EV_P_ int fd)
645{ 1552{
646 ev_io *w; 1553 ev_io *w;
647 1554
648 while ((w = (ev_io *)anfds [fd].head)) 1555 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1557 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1558 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1559 }
653} 1560}
654 1561
655int inline_size 1562/* check whether the given fd is actually valid, for error recovery */
1563inline_size int ecb_cold
656fd_valid (int fd) 1564fd_valid (int fd)
657{ 1565{
658#ifdef _WIN32 1566#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1567 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1568#else
661 return fcntl (fd, F_GETFD) != -1; 1569 return fcntl (fd, F_GETFD) != -1;
662#endif 1570#endif
663} 1571}
664 1572
665/* called on EBADF to verify fds */ 1573/* called on EBADF to verify fds */
666static void noinline 1574static void noinline ecb_cold
667fd_ebadf (EV_P) 1575fd_ebadf (EV_P)
668{ 1576{
669 int fd; 1577 int fd;
670 1578
671 for (fd = 0; fd < anfdmax; ++fd) 1579 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1580 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1581 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1582 fd_kill (EV_A_ fd);
675} 1583}
676 1584
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1585/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1586static void noinline ecb_cold
679fd_enomem (EV_P) 1587fd_enomem (EV_P)
680{ 1588{
681 int fd; 1589 int fd;
682 1590
683 for (fd = anfdmax; fd--; ) 1591 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1592 if (anfds [fd].events)
685 { 1593 {
686 fd_kill (EV_A_ fd); 1594 fd_kill (EV_A_ fd);
687 return; 1595 break;
688 } 1596 }
689} 1597}
690 1598
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1599/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1600static void noinline
696 1604
697 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1606 if (anfds [fd].events)
699 { 1607 {
700 anfds [fd].events = 0; 1608 anfds [fd].events = 0;
1609 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1610 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1611 }
703} 1612}
704 1613
705/*****************************************************************************/ 1614/* used to prepare libev internal fd's */
706 1615/* this is not fork-safe */
707void inline_speed 1616inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 sig_atomic_t volatile gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static int sigpipe [2];
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777
778void inline_size
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1617fd_intern (int fd)
843{ 1618{
844#ifdef _WIN32 1619#ifdef _WIN32
845 int arg = 1; 1620 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1621 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
847#else 1622#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1623 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1624 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1625#endif
851} 1626}
852 1627
853static void noinline
854siginit (EV_P)
855{
856 fd_intern (sigpipe [0]);
857 fd_intern (sigpipe [1]);
858
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */
862}
863
864/*****************************************************************************/ 1628/*****************************************************************************/
865 1629
1630/*
1631 * the heap functions want a real array index. array index 0 is guaranteed to not
1632 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1633 * the branching factor of the d-tree.
1634 */
1635
1636/*
1637 * at the moment we allow libev the luxury of two heaps,
1638 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1639 * which is more cache-efficient.
1640 * the difference is about 5% with 50000+ watchers.
1641 */
1642#if EV_USE_4HEAP
1643
1644#define DHEAP 4
1645#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1646#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1647#define UPHEAP_DONE(p,k) ((p) == (k))
1648
1649/* away from the root */
1650inline_speed void
1651downheap (ANHE *heap, int N, int k)
1652{
1653 ANHE he = heap [k];
1654 ANHE *E = heap + N + HEAP0;
1655
1656 for (;;)
1657 {
1658 ev_tstamp minat;
1659 ANHE *minpos;
1660 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1661
1662 /* find minimum child */
1663 if (expect_true (pos + DHEAP - 1 < E))
1664 {
1665 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1666 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1667 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1669 }
1670 else if (pos < E)
1671 {
1672 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1673 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1674 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1675 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1676 }
1677 else
1678 break;
1679
1680 if (ANHE_at (he) <= minat)
1681 break;
1682
1683 heap [k] = *minpos;
1684 ev_active (ANHE_w (*minpos)) = k;
1685
1686 k = minpos - heap;
1687 }
1688
1689 heap [k] = he;
1690 ev_active (ANHE_w (he)) = k;
1691}
1692
1693#else /* 4HEAP */
1694
1695#define HEAP0 1
1696#define HPARENT(k) ((k) >> 1)
1697#define UPHEAP_DONE(p,k) (!(p))
1698
1699/* away from the root */
1700inline_speed void
1701downheap (ANHE *heap, int N, int k)
1702{
1703 ANHE he = heap [k];
1704
1705 for (;;)
1706 {
1707 int c = k << 1;
1708
1709 if (c >= N + HEAP0)
1710 break;
1711
1712 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1713 ? 1 : 0;
1714
1715 if (ANHE_at (he) <= ANHE_at (heap [c]))
1716 break;
1717
1718 heap [k] = heap [c];
1719 ev_active (ANHE_w (heap [k])) = k;
1720
1721 k = c;
1722 }
1723
1724 heap [k] = he;
1725 ev_active (ANHE_w (he)) = k;
1726}
1727#endif
1728
1729/* towards the root */
1730inline_speed void
1731upheap (ANHE *heap, int k)
1732{
1733 ANHE he = heap [k];
1734
1735 for (;;)
1736 {
1737 int p = HPARENT (k);
1738
1739 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1740 break;
1741
1742 heap [k] = heap [p];
1743 ev_active (ANHE_w (heap [k])) = k;
1744 k = p;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750
1751/* move an element suitably so it is in a correct place */
1752inline_size void
1753adjustheap (ANHE *heap, int N, int k)
1754{
1755 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1756 upheap (heap, k);
1757 else
1758 downheap (heap, N, k);
1759}
1760
1761/* rebuild the heap: this function is used only once and executed rarely */
1762inline_size void
1763reheap (ANHE *heap, int N)
1764{
1765 int i;
1766
1767 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1768 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1769 for (i = 0; i < N; ++i)
1770 upheap (heap, i + HEAP0);
1771}
1772
1773/*****************************************************************************/
1774
1775/* associate signal watchers to a signal signal */
1776typedef struct
1777{
1778 EV_ATOMIC_T pending;
1779#if EV_MULTIPLICITY
1780 EV_P;
1781#endif
1782 WL head;
1783} ANSIG;
1784
1785static ANSIG signals [EV_NSIG - 1];
1786
1787/*****************************************************************************/
1788
1789#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1790
1791static void noinline ecb_cold
1792evpipe_init (EV_P)
1793{
1794 if (!ev_is_active (&pipe_w))
1795 {
1796# if EV_USE_EVENTFD
1797 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1798 if (evfd < 0 && errno == EINVAL)
1799 evfd = eventfd (0, 0);
1800
1801 if (evfd >= 0)
1802 {
1803 evpipe [0] = -1;
1804 fd_intern (evfd); /* doing it twice doesn't hurt */
1805 ev_io_set (&pipe_w, evfd, EV_READ);
1806 }
1807 else
1808# endif
1809 {
1810 while (pipe (evpipe))
1811 ev_syserr ("(libev) error creating signal/async pipe");
1812
1813 fd_intern (evpipe [0]);
1814 fd_intern (evpipe [1]);
1815 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1816 }
1817
1818 ev_io_start (EV_A_ &pipe_w);
1819 ev_unref (EV_A); /* watcher should not keep loop alive */
1820 }
1821}
1822
1823inline_speed void
1824evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1825{
1826 if (expect_true (*flag))
1827 return;
1828
1829 *flag = 1;
1830
1831 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1832
1833 pipe_write_skipped = 1;
1834
1835 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1836
1837 if (pipe_write_wanted)
1838 {
1839 int old_errno;
1840
1841 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1842
1843 old_errno = errno; /* save errno because write will clobber it */
1844
1845#if EV_USE_EVENTFD
1846 if (evfd >= 0)
1847 {
1848 uint64_t counter = 1;
1849 write (evfd, &counter, sizeof (uint64_t));
1850 }
1851 else
1852#endif
1853 {
1854 /* win32 people keep sending patches that change this write() to send() */
1855 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1856 /* so when you think this write should be a send instead, please find out */
1857 /* where your send() is from - it's definitely not the microsoft send, and */
1858 /* tell me. thank you. */
1859 write (evpipe [1], &(evpipe [1]), 1);
1860 }
1861
1862 errno = old_errno;
1863 }
1864}
1865
1866/* called whenever the libev signal pipe */
1867/* got some events (signal, async) */
1868static void
1869pipecb (EV_P_ ev_io *iow, int revents)
1870{
1871 int i;
1872
1873 if (revents & EV_READ)
1874 {
1875#if EV_USE_EVENTFD
1876 if (evfd >= 0)
1877 {
1878 uint64_t counter;
1879 read (evfd, &counter, sizeof (uint64_t));
1880 }
1881 else
1882#endif
1883 {
1884 char dummy;
1885 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1886 read (evpipe [0], &dummy, 1);
1887 }
1888 }
1889
1890 pipe_write_skipped = 0;
1891
1892#if EV_SIGNAL_ENABLE
1893 if (sig_pending)
1894 {
1895 sig_pending = 0;
1896
1897 for (i = EV_NSIG - 1; i--; )
1898 if (expect_false (signals [i].pending))
1899 ev_feed_signal_event (EV_A_ i + 1);
1900 }
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 if (async_pending)
1905 {
1906 async_pending = 0;
1907
1908 for (i = asynccnt; i--; )
1909 if (asyncs [i]->sent)
1910 {
1911 asyncs [i]->sent = 0;
1912 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1913 }
1914 }
1915#endif
1916}
1917
1918/*****************************************************************************/
1919
1920void
1921ev_feed_signal (int signum)
1922{
1923#if EV_MULTIPLICITY
1924 EV_P = signals [signum - 1].loop;
1925
1926 if (!EV_A)
1927 return;
1928#endif
1929
1930 if (!ev_active (&pipe_w))
1931 return;
1932
1933 signals [signum - 1].pending = 1;
1934 evpipe_write (EV_A_ &sig_pending);
1935}
1936
1937static void
1938ev_sighandler (int signum)
1939{
1940#ifdef _WIN32
1941 signal (signum, ev_sighandler);
1942#endif
1943
1944 ev_feed_signal (signum);
1945}
1946
1947void noinline
1948ev_feed_signal_event (EV_P_ int signum)
1949{
1950 WL w;
1951
1952 if (expect_false (signum <= 0 || signum > EV_NSIG))
1953 return;
1954
1955 --signum;
1956
1957#if EV_MULTIPLICITY
1958 /* it is permissible to try to feed a signal to the wrong loop */
1959 /* or, likely more useful, feeding a signal nobody is waiting for */
1960
1961 if (expect_false (signals [signum].loop != EV_A))
1962 return;
1963#endif
1964
1965 signals [signum].pending = 0;
1966
1967 for (w = signals [signum].head; w; w = w->next)
1968 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1969}
1970
1971#if EV_USE_SIGNALFD
1972static void
1973sigfdcb (EV_P_ ev_io *iow, int revents)
1974{
1975 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1976
1977 for (;;)
1978 {
1979 ssize_t res = read (sigfd, si, sizeof (si));
1980
1981 /* not ISO-C, as res might be -1, but works with SuS */
1982 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1983 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1984
1985 if (res < (ssize_t)sizeof (si))
1986 break;
1987 }
1988}
1989#endif
1990
1991#endif
1992
1993/*****************************************************************************/
1994
1995#if EV_CHILD_ENABLE
866static WL childs [EV_PID_HASHSIZE]; 1996static WL childs [EV_PID_HASHSIZE];
867 1997
868#ifndef _WIN32
869
870static ev_signal childev; 1998static ev_signal childev;
871 1999
872void inline_speed 2000#ifndef WIFCONTINUED
2001# define WIFCONTINUED(status) 0
2002#endif
2003
2004/* handle a single child status event */
2005inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2006child_reap (EV_P_ int chain, int pid, int status)
874{ 2007{
875 ev_child *w; 2008 ev_child *w;
2009 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 2010
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2011 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2012 {
878 if (w->pid == pid || !w->pid) 2013 if ((w->pid == pid || !w->pid)
2014 && (!traced || (w->flags & 1)))
879 { 2015 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2016 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 2017 w->rpid = pid;
882 w->rstatus = status; 2018 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2019 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 2020 }
2021 }
885} 2022}
886 2023
887#ifndef WCONTINUED 2024#ifndef WCONTINUED
888# define WCONTINUED 0 2025# define WCONTINUED 0
889#endif 2026#endif
890 2027
2028/* called on sigchld etc., calls waitpid */
891static void 2029static void
892childcb (EV_P_ ev_signal *sw, int revents) 2030childcb (EV_P_ ev_signal *sw, int revents)
893{ 2031{
894 int pid, status; 2032 int pid, status;
895 2033
898 if (!WCONTINUED 2036 if (!WCONTINUED
899 || errno != EINVAL 2037 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2038 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 2039 return;
902 2040
903 /* make sure we are called again until all childs have been reaped */ 2041 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 2042 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2043 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 2044
907 child_reap (EV_A_ sw, pid, pid, status); 2045 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 2046 if ((EV_PID_HASHSIZE) > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2047 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 2048}
911 2049
912#endif 2050#endif
913 2051
914/*****************************************************************************/ 2052/*****************************************************************************/
915 2053
2054#if EV_USE_IOCP
2055# include "ev_iocp.c"
2056#endif
916#if EV_USE_PORT 2057#if EV_USE_PORT
917# include "ev_port.c" 2058# include "ev_port.c"
918#endif 2059#endif
919#if EV_USE_KQUEUE 2060#if EV_USE_KQUEUE
920# include "ev_kqueue.c" 2061# include "ev_kqueue.c"
927#endif 2068#endif
928#if EV_USE_SELECT 2069#if EV_USE_SELECT
929# include "ev_select.c" 2070# include "ev_select.c"
930#endif 2071#endif
931 2072
932int 2073int ecb_cold
933ev_version_major (void) 2074ev_version_major (void)
934{ 2075{
935 return EV_VERSION_MAJOR; 2076 return EV_VERSION_MAJOR;
936} 2077}
937 2078
938int 2079int ecb_cold
939ev_version_minor (void) 2080ev_version_minor (void)
940{ 2081{
941 return EV_VERSION_MINOR; 2082 return EV_VERSION_MINOR;
942} 2083}
943 2084
944/* return true if we are running with elevated privileges and should ignore env variables */ 2085/* return true if we are running with elevated privileges and should ignore env variables */
945int inline_size 2086int inline_size ecb_cold
946enable_secure (void) 2087enable_secure (void)
947{ 2088{
948#ifdef _WIN32 2089#ifdef _WIN32
949 return 0; 2090 return 0;
950#else 2091#else
951 return getuid () != geteuid () 2092 return getuid () != geteuid ()
952 || getgid () != getegid (); 2093 || getgid () != getegid ();
953#endif 2094#endif
954} 2095}
955 2096
956unsigned int 2097unsigned int ecb_cold
957ev_supported_backends (void) 2098ev_supported_backends (void)
958{ 2099{
959 unsigned int flags = 0; 2100 unsigned int flags = 0;
960 2101
961 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2102 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
965 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2106 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
966 2107
967 return flags; 2108 return flags;
968} 2109}
969 2110
970unsigned int 2111unsigned int ecb_cold
971ev_recommended_backends (void) 2112ev_recommended_backends (void)
972{ 2113{
973 unsigned int flags = ev_supported_backends (); 2114 unsigned int flags = ev_supported_backends ();
974 2115
975#ifndef __NetBSD__ 2116#ifndef __NetBSD__
976 /* kqueue is borked on everything but netbsd apparently */ 2117 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 2118 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 2119 flags &= ~EVBACKEND_KQUEUE;
979#endif 2120#endif
980#ifdef __APPLE__ 2121#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 2122 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 2123 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2124 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2125#endif
2126#ifdef __FreeBSD__
2127 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
983#endif 2128#endif
984 2129
985 return flags; 2130 return flags;
986} 2131}
987 2132
988unsigned int 2133unsigned int ecb_cold
989ev_embeddable_backends (void) 2134ev_embeddable_backends (void)
990{ 2135{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2136 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992 2137
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2138 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */ 2139 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
995 flags &= ~EVBACKEND_EPOLL; 2140 flags &= ~EVBACKEND_EPOLL;
996 2141
997 return flags; 2142 return flags;
998} 2143}
999 2144
1000unsigned int 2145unsigned int
1001ev_backend (EV_P) 2146ev_backend (EV_P)
1002{ 2147{
1003 return backend; 2148 return backend;
1004} 2149}
1005 2150
2151#if EV_FEATURE_API
1006unsigned int 2152unsigned int
1007ev_loop_count (EV_P) 2153ev_iteration (EV_P)
1008{ 2154{
1009 return loop_count; 2155 return loop_count;
2156}
2157
2158unsigned int
2159ev_depth (EV_P)
2160{
2161 return loop_depth;
1010} 2162}
1011 2163
1012void 2164void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2165ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{ 2166{
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2171ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{ 2172{
1021 timeout_blocktime = interval; 2173 timeout_blocktime = interval;
1022} 2174}
1023 2175
2176void
2177ev_set_userdata (EV_P_ void *data)
2178{
2179 userdata = data;
2180}
2181
2182void *
2183ev_userdata (EV_P)
2184{
2185 return userdata;
2186}
2187
2188void
2189ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2190{
2191 invoke_cb = invoke_pending_cb;
2192}
2193
2194void
2195ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2196{
2197 release_cb = release;
2198 acquire_cb = acquire;
2199}
2200#endif
2201
2202/* initialise a loop structure, must be zero-initialised */
1024static void noinline 2203static void noinline ecb_cold
1025loop_init (EV_P_ unsigned int flags) 2204loop_init (EV_P_ unsigned int flags)
1026{ 2205{
1027 if (!backend) 2206 if (!backend)
1028 { 2207 {
2208 origflags = flags;
2209
2210#if EV_USE_REALTIME
2211 if (!have_realtime)
2212 {
2213 struct timespec ts;
2214
2215 if (!clock_gettime (CLOCK_REALTIME, &ts))
2216 have_realtime = 1;
2217 }
2218#endif
2219
1029#if EV_USE_MONOTONIC 2220#if EV_USE_MONOTONIC
2221 if (!have_monotonic)
1030 { 2222 {
1031 struct timespec ts; 2223 struct timespec ts;
2224
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2225 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 2226 have_monotonic = 1;
1034 } 2227 }
1035#endif 2228#endif
1036
1037 ev_rt_now = ev_time ();
1038 mn_now = get_clock ();
1039 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now;
1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044 2229
1045 /* pid check not overridable via env */ 2230 /* pid check not overridable via env */
1046#ifndef _WIN32 2231#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 2232 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 2233 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 2236 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 2237 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 2238 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 2239 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 2240
1056 if (!(flags & 0x0000ffffUL)) 2241 ev_rt_now = ev_time ();
2242 mn_now = get_clock ();
2243 now_floor = mn_now;
2244 rtmn_diff = ev_rt_now - mn_now;
2245#if EV_FEATURE_API
2246 invoke_cb = ev_invoke_pending;
2247#endif
2248
2249 io_blocktime = 0.;
2250 timeout_blocktime = 0.;
2251 backend = 0;
2252 backend_fd = -1;
2253 sig_pending = 0;
2254#if EV_ASYNC_ENABLE
2255 async_pending = 0;
2256#endif
2257 pipe_write_skipped = 0;
2258 pipe_write_wanted = 0;
2259#if EV_USE_INOTIFY
2260 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2261#endif
2262#if EV_USE_SIGNALFD
2263 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2264#endif
2265
2266 if (!(flags & EVBACKEND_MASK))
1057 flags |= ev_recommended_backends (); 2267 flags |= ev_recommended_backends ();
1058 2268
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY 2269#if EV_USE_IOCP
1062 fs_fd = -2; 2270 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1063#endif 2271#endif
1064
1065#if EV_USE_PORT 2272#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2273 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 2274#endif
1068#if EV_USE_KQUEUE 2275#if EV_USE_KQUEUE
1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2276 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1076#endif 2283#endif
1077#if EV_USE_SELECT 2284#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2285 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 2286#endif
1080 2287
2288 ev_prepare_init (&pending_w, pendingcb);
2289
2290#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1081 ev_init (&sigev, sigcb); 2291 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 2292 ev_set_priority (&pipe_w, EV_MAXPRI);
2293#endif
1083 } 2294 }
1084} 2295}
1085 2296
1086static void noinline 2297/* free up a loop structure */
2298void ecb_cold
1087loop_destroy (EV_P) 2299ev_loop_destroy (EV_P)
1088{ 2300{
1089 int i; 2301 int i;
2302
2303#if EV_MULTIPLICITY
2304 /* mimic free (0) */
2305 if (!EV_A)
2306 return;
2307#endif
2308
2309#if EV_CLEANUP_ENABLE
2310 /* queue cleanup watchers (and execute them) */
2311 if (expect_false (cleanupcnt))
2312 {
2313 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2314 EV_INVOKE_PENDING;
2315 }
2316#endif
2317
2318#if EV_CHILD_ENABLE
2319 if (ev_is_active (&childev))
2320 {
2321 ev_ref (EV_A); /* child watcher */
2322 ev_signal_stop (EV_A_ &childev);
2323 }
2324#endif
2325
2326 if (ev_is_active (&pipe_w))
2327 {
2328 /*ev_ref (EV_A);*/
2329 /*ev_io_stop (EV_A_ &pipe_w);*/
2330
2331#if EV_USE_EVENTFD
2332 if (evfd >= 0)
2333 close (evfd);
2334#endif
2335
2336 if (evpipe [0] >= 0)
2337 {
2338 EV_WIN32_CLOSE_FD (evpipe [0]);
2339 EV_WIN32_CLOSE_FD (evpipe [1]);
2340 }
2341 }
2342
2343#if EV_USE_SIGNALFD
2344 if (ev_is_active (&sigfd_w))
2345 close (sigfd);
2346#endif
1090 2347
1091#if EV_USE_INOTIFY 2348#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 2349 if (fs_fd >= 0)
1093 close (fs_fd); 2350 close (fs_fd);
1094#endif 2351#endif
1095 2352
1096 if (backend_fd >= 0) 2353 if (backend_fd >= 0)
1097 close (backend_fd); 2354 close (backend_fd);
1098 2355
2356#if EV_USE_IOCP
2357 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2358#endif
1099#if EV_USE_PORT 2359#if EV_USE_PORT
1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2360 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1101#endif 2361#endif
1102#if EV_USE_KQUEUE 2362#if EV_USE_KQUEUE
1103 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2363 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1118#if EV_IDLE_ENABLE 2378#if EV_IDLE_ENABLE
1119 array_free (idle, [i]); 2379 array_free (idle, [i]);
1120#endif 2380#endif
1121 } 2381 }
1122 2382
1123 ev_free (anfds); anfdmax = 0; 2383 ev_free (anfds); anfds = 0; anfdmax = 0;
1124 2384
1125 /* have to use the microsoft-never-gets-it-right macro */ 2385 /* have to use the microsoft-never-gets-it-right macro */
2386 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 2387 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 2388 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 2389#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 2390 array_free (periodic, EMPTY);
1130#endif 2391#endif
1131#if EV_FORK_ENABLE 2392#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 2393 array_free (fork, EMPTY);
1133#endif 2394#endif
2395#if EV_CLEANUP_ENABLE
2396 array_free (cleanup, EMPTY);
2397#endif
1134 array_free (prepare, EMPTY); 2398 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 2399 array_free (check, EMPTY);
2400#if EV_ASYNC_ENABLE
2401 array_free (async, EMPTY);
2402#endif
1136 2403
1137 backend = 0; 2404 backend = 0;
1138}
1139 2405
2406#if EV_MULTIPLICITY
2407 if (ev_is_default_loop (EV_A))
2408#endif
2409 ev_default_loop_ptr = 0;
2410#if EV_MULTIPLICITY
2411 else
2412 ev_free (EV_A);
2413#endif
2414}
2415
2416#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 2417inline_size void infy_fork (EV_P);
2418#endif
1141 2419
1142void inline_size 2420inline_size void
1143loop_fork (EV_P) 2421loop_fork (EV_P)
1144{ 2422{
1145#if EV_USE_PORT 2423#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2424 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 2425#endif
1153#endif 2431#endif
1154#if EV_USE_INOTIFY 2432#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 2433 infy_fork (EV_A);
1156#endif 2434#endif
1157 2435
1158 if (ev_is_active (&sigev)) 2436 if (ev_is_active (&pipe_w))
1159 { 2437 {
1160 /* default loop */ 2438 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1161 2439
1162 ev_ref (EV_A); 2440 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 2441 ev_io_stop (EV_A_ &pipe_w);
1164 close (sigpipe [0]);
1165 close (sigpipe [1]);
1166 2442
1167 while (pipe (sigpipe)) 2443#if EV_USE_EVENTFD
1168 syserr ("(libev) error creating pipe"); 2444 if (evfd >= 0)
2445 close (evfd);
2446#endif
1169 2447
2448 if (evpipe [0] >= 0)
2449 {
2450 EV_WIN32_CLOSE_FD (evpipe [0]);
2451 EV_WIN32_CLOSE_FD (evpipe [1]);
2452 }
2453
2454#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1170 siginit (EV_A); 2455 evpipe_init (EV_A);
2456 /* now iterate over everything, in case we missed something */
2457 pipecb (EV_A_ &pipe_w, EV_READ);
2458#endif
1171 } 2459 }
1172 2460
1173 postfork = 0; 2461 postfork = 0;
1174} 2462}
1175 2463
1176#if EV_MULTIPLICITY 2464#if EV_MULTIPLICITY
2465
1177struct ev_loop * 2466struct ev_loop * ecb_cold
1178ev_loop_new (unsigned int flags) 2467ev_loop_new (unsigned int flags)
1179{ 2468{
1180 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2469 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1181 2470
1182 memset (loop, 0, sizeof (struct ev_loop)); 2471 memset (EV_A, 0, sizeof (struct ev_loop));
1183
1184 loop_init (EV_A_ flags); 2472 loop_init (EV_A_ flags);
1185 2473
1186 if (ev_backend (EV_A)) 2474 if (ev_backend (EV_A))
1187 return loop; 2475 return EV_A;
1188 2476
2477 ev_free (EV_A);
1189 return 0; 2478 return 0;
1190} 2479}
1191 2480
1192void 2481#endif /* multiplicity */
1193ev_loop_destroy (EV_P)
1194{
1195 loop_destroy (EV_A);
1196 ev_free (loop);
1197}
1198 2482
1199void 2483#if EV_VERIFY
1200ev_loop_fork (EV_P) 2484static void noinline ecb_cold
2485verify_watcher (EV_P_ W w)
1201{ 2486{
1202 postfork = 1; 2487 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1203}
1204 2488
2489 if (w->pending)
2490 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2491}
2492
2493static void noinline ecb_cold
2494verify_heap (EV_P_ ANHE *heap, int N)
2495{
2496 int i;
2497
2498 for (i = HEAP0; i < N + HEAP0; ++i)
2499 {
2500 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2501 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2502 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2503
2504 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2505 }
2506}
2507
2508static void noinline ecb_cold
2509array_verify (EV_P_ W *ws, int cnt)
2510{
2511 while (cnt--)
2512 {
2513 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2514 verify_watcher (EV_A_ ws [cnt]);
2515 }
2516}
2517#endif
2518
2519#if EV_FEATURE_API
2520void ecb_cold
2521ev_verify (EV_P)
2522{
2523#if EV_VERIFY
2524 int i;
2525 WL w;
2526
2527 assert (activecnt >= -1);
2528
2529 assert (fdchangemax >= fdchangecnt);
2530 for (i = 0; i < fdchangecnt; ++i)
2531 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2532
2533 assert (anfdmax >= 0);
2534 for (i = 0; i < anfdmax; ++i)
2535 for (w = anfds [i].head; w; w = w->next)
2536 {
2537 verify_watcher (EV_A_ (W)w);
2538 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2539 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2540 }
2541
2542 assert (timermax >= timercnt);
2543 verify_heap (EV_A_ timers, timercnt);
2544
2545#if EV_PERIODIC_ENABLE
2546 assert (periodicmax >= periodiccnt);
2547 verify_heap (EV_A_ periodics, periodiccnt);
2548#endif
2549
2550 for (i = NUMPRI; i--; )
2551 {
2552 assert (pendingmax [i] >= pendingcnt [i]);
2553#if EV_IDLE_ENABLE
2554 assert (idleall >= 0);
2555 assert (idlemax [i] >= idlecnt [i]);
2556 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2557#endif
2558 }
2559
2560#if EV_FORK_ENABLE
2561 assert (forkmax >= forkcnt);
2562 array_verify (EV_A_ (W *)forks, forkcnt);
2563#endif
2564
2565#if EV_CLEANUP_ENABLE
2566 assert (cleanupmax >= cleanupcnt);
2567 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 assert (asyncmax >= asynccnt);
2572 array_verify (EV_A_ (W *)asyncs, asynccnt);
2573#endif
2574
2575#if EV_PREPARE_ENABLE
2576 assert (preparemax >= preparecnt);
2577 array_verify (EV_A_ (W *)prepares, preparecnt);
2578#endif
2579
2580#if EV_CHECK_ENABLE
2581 assert (checkmax >= checkcnt);
2582 array_verify (EV_A_ (W *)checks, checkcnt);
2583#endif
2584
2585# if 0
2586#if EV_CHILD_ENABLE
2587 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2588 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2589#endif
2590# endif
2591#endif
2592}
1205#endif 2593#endif
1206 2594
1207#if EV_MULTIPLICITY 2595#if EV_MULTIPLICITY
1208struct ev_loop * 2596struct ev_loop * ecb_cold
1209ev_default_loop_init (unsigned int flags)
1210#else 2597#else
1211int 2598int
2599#endif
1212ev_default_loop (unsigned int flags) 2600ev_default_loop (unsigned int flags)
1213#endif
1214{ 2601{
1215 if (sigpipe [0] == sigpipe [1])
1216 if (pipe (sigpipe))
1217 return 0;
1218
1219 if (!ev_default_loop_ptr) 2602 if (!ev_default_loop_ptr)
1220 { 2603 {
1221#if EV_MULTIPLICITY 2604#if EV_MULTIPLICITY
1222 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2605 EV_P = ev_default_loop_ptr = &default_loop_struct;
1223#else 2606#else
1224 ev_default_loop_ptr = 1; 2607 ev_default_loop_ptr = 1;
1225#endif 2608#endif
1226 2609
1227 loop_init (EV_A_ flags); 2610 loop_init (EV_A_ flags);
1228 2611
1229 if (ev_backend (EV_A)) 2612 if (ev_backend (EV_A))
1230 { 2613 {
1231 siginit (EV_A); 2614#if EV_CHILD_ENABLE
1232
1233#ifndef _WIN32
1234 ev_signal_init (&childev, childcb, SIGCHLD); 2615 ev_signal_init (&childev, childcb, SIGCHLD);
1235 ev_set_priority (&childev, EV_MAXPRI); 2616 ev_set_priority (&childev, EV_MAXPRI);
1236 ev_signal_start (EV_A_ &childev); 2617 ev_signal_start (EV_A_ &childev);
1237 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2618 ev_unref (EV_A); /* child watcher should not keep loop alive */
1238#endif 2619#endif
1243 2624
1244 return ev_default_loop_ptr; 2625 return ev_default_loop_ptr;
1245} 2626}
1246 2627
1247void 2628void
1248ev_default_destroy (void) 2629ev_loop_fork (EV_P)
1249{ 2630{
1250#if EV_MULTIPLICITY 2631 postfork = 1; /* must be in line with ev_default_fork */
1251 struct ev_loop *loop = ev_default_loop_ptr;
1252#endif
1253
1254#ifndef _WIN32
1255 ev_ref (EV_A); /* child watcher */
1256 ev_signal_stop (EV_A_ &childev);
1257#endif
1258
1259 ev_ref (EV_A); /* signal watcher */
1260 ev_io_stop (EV_A_ &sigev);
1261
1262 close (sigpipe [0]); sigpipe [0] = 0;
1263 close (sigpipe [1]); sigpipe [1] = 0;
1264
1265 loop_destroy (EV_A);
1266}
1267
1268void
1269ev_default_fork (void)
1270{
1271#if EV_MULTIPLICITY
1272 struct ev_loop *loop = ev_default_loop_ptr;
1273#endif
1274
1275 if (backend)
1276 postfork = 1;
1277} 2632}
1278 2633
1279/*****************************************************************************/ 2634/*****************************************************************************/
1280 2635
1281void 2636void
1282ev_invoke (EV_P_ void *w, int revents) 2637ev_invoke (EV_P_ void *w, int revents)
1283{ 2638{
1284 EV_CB_INVOKE ((W)w, revents); 2639 EV_CB_INVOKE ((W)w, revents);
1285} 2640}
1286 2641
1287void inline_speed 2642unsigned int
1288call_pending (EV_P) 2643ev_pending_count (EV_P)
2644{
2645 int pri;
2646 unsigned int count = 0;
2647
2648 for (pri = NUMPRI; pri--; )
2649 count += pendingcnt [pri];
2650
2651 return count;
2652}
2653
2654void noinline
2655ev_invoke_pending (EV_P)
1289{ 2656{
1290 int pri; 2657 int pri;
1291 2658
1292 for (pri = NUMPRI; pri--; ) 2659 for (pri = NUMPRI; pri--; )
1293 while (pendingcnt [pri]) 2660 while (pendingcnt [pri])
1294 { 2661 {
1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2662 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1296 2663
1297 if (expect_true (p->w))
1298 {
1299 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1300
1301 p->w->pending = 0; 2664 p->w->pending = 0;
1302 EV_CB_INVOKE (p->w, p->events); 2665 EV_CB_INVOKE (p->w, p->events);
1303 } 2666 EV_FREQUENT_CHECK;
1304 } 2667 }
1305} 2668}
1306 2669
1307void inline_size
1308timers_reify (EV_P)
1309{
1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1311 {
1312 ev_timer *w = (ev_timer *)timers [0];
1313
1314 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1315
1316 /* first reschedule or stop timer */
1317 if (w->repeat)
1318 {
1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1320
1321 ((WT)w)->at += w->repeat;
1322 if (((WT)w)->at < mn_now)
1323 ((WT)w)->at = mn_now;
1324
1325 downheap (timers, timercnt, 0);
1326 }
1327 else
1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1329
1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1331 }
1332}
1333
1334#if EV_PERIODIC_ENABLE
1335void inline_size
1336periodics_reify (EV_P)
1337{
1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1339 {
1340 ev_periodic *w = (ev_periodic *)periodics [0];
1341
1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1343
1344 /* first reschedule or stop timer */
1345 if (w->reschedule_cb)
1346 {
1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1349 downheap (periodics, periodiccnt, 0);
1350 }
1351 else if (w->interval)
1352 {
1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1356 downheap (periodics, periodiccnt, 0);
1357 }
1358 else
1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1360
1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1362 }
1363}
1364
1365static void noinline
1366periodics_reschedule (EV_P)
1367{
1368 int i;
1369
1370 /* adjust periodics after time jump */
1371 for (i = 0; i < periodiccnt; ++i)
1372 {
1373 ev_periodic *w = (ev_periodic *)periodics [i];
1374
1375 if (w->reschedule_cb)
1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1377 else if (w->interval)
1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1379 }
1380
1381 /* now rebuild the heap */
1382 for (i = periodiccnt >> 1; i--; )
1383 downheap (periodics, periodiccnt, i);
1384}
1385#endif
1386
1387#if EV_IDLE_ENABLE 2670#if EV_IDLE_ENABLE
1388void inline_size 2671/* make idle watchers pending. this handles the "call-idle */
2672/* only when higher priorities are idle" logic */
2673inline_size void
1389idle_reify (EV_P) 2674idle_reify (EV_P)
1390{ 2675{
1391 if (expect_false (idleall)) 2676 if (expect_false (idleall))
1392 { 2677 {
1393 int pri; 2678 int pri;
1405 } 2690 }
1406 } 2691 }
1407} 2692}
1408#endif 2693#endif
1409 2694
1410void inline_speed 2695/* make timers pending */
2696inline_size void
2697timers_reify (EV_P)
2698{
2699 EV_FREQUENT_CHECK;
2700
2701 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2702 {
2703 do
2704 {
2705 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2706
2707 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2708
2709 /* first reschedule or stop timer */
2710 if (w->repeat)
2711 {
2712 ev_at (w) += w->repeat;
2713 if (ev_at (w) < mn_now)
2714 ev_at (w) = mn_now;
2715
2716 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2717
2718 ANHE_at_cache (timers [HEAP0]);
2719 downheap (timers, timercnt, HEAP0);
2720 }
2721 else
2722 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2723
2724 EV_FREQUENT_CHECK;
2725 feed_reverse (EV_A_ (W)w);
2726 }
2727 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2728
2729 feed_reverse_done (EV_A_ EV_TIMER);
2730 }
2731}
2732
2733#if EV_PERIODIC_ENABLE
2734
2735static void noinline
2736periodic_recalc (EV_P_ ev_periodic *w)
2737{
2738 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2739 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2740
2741 /* the above almost always errs on the low side */
2742 while (at <= ev_rt_now)
2743 {
2744 ev_tstamp nat = at + w->interval;
2745
2746 /* when resolution fails us, we use ev_rt_now */
2747 if (expect_false (nat == at))
2748 {
2749 at = ev_rt_now;
2750 break;
2751 }
2752
2753 at = nat;
2754 }
2755
2756 ev_at (w) = at;
2757}
2758
2759/* make periodics pending */
2760inline_size void
2761periodics_reify (EV_P)
2762{
2763 EV_FREQUENT_CHECK;
2764
2765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2766 {
2767 int feed_count = 0;
2768
2769 do
2770 {
2771 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2772
2773 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2774
2775 /* first reschedule or stop timer */
2776 if (w->reschedule_cb)
2777 {
2778 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2779
2780 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2781
2782 ANHE_at_cache (periodics [HEAP0]);
2783 downheap (periodics, periodiccnt, HEAP0);
2784 }
2785 else if (w->interval)
2786 {
2787 periodic_recalc (EV_A_ w);
2788 ANHE_at_cache (periodics [HEAP0]);
2789 downheap (periodics, periodiccnt, HEAP0);
2790 }
2791 else
2792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2793
2794 EV_FREQUENT_CHECK;
2795 feed_reverse (EV_A_ (W)w);
2796 }
2797 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2798
2799 feed_reverse_done (EV_A_ EV_PERIODIC);
2800 }
2801}
2802
2803/* simply recalculate all periodics */
2804/* TODO: maybe ensure that at least one event happens when jumping forward? */
2805static void noinline ecb_cold
2806periodics_reschedule (EV_P)
2807{
2808 int i;
2809
2810 /* adjust periodics after time jump */
2811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2812 {
2813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2814
2815 if (w->reschedule_cb)
2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2817 else if (w->interval)
2818 periodic_recalc (EV_A_ w);
2819
2820 ANHE_at_cache (periodics [i]);
2821 }
2822
2823 reheap (periodics, periodiccnt);
2824}
2825#endif
2826
2827/* adjust all timers by a given offset */
2828static void noinline ecb_cold
2829timers_reschedule (EV_P_ ev_tstamp adjust)
2830{
2831 int i;
2832
2833 for (i = 0; i < timercnt; ++i)
2834 {
2835 ANHE *he = timers + i + HEAP0;
2836 ANHE_w (*he)->at += adjust;
2837 ANHE_at_cache (*he);
2838 }
2839}
2840
2841/* fetch new monotonic and realtime times from the kernel */
2842/* also detect if there was a timejump, and act accordingly */
2843inline_speed void
1411time_update (EV_P_ ev_tstamp max_block) 2844time_update (EV_P_ ev_tstamp max_block)
1412{ 2845{
1413 int i;
1414
1415#if EV_USE_MONOTONIC 2846#if EV_USE_MONOTONIC
1416 if (expect_true (have_monotonic)) 2847 if (expect_true (have_monotonic))
1417 { 2848 {
2849 int i;
1418 ev_tstamp odiff = rtmn_diff; 2850 ev_tstamp odiff = rtmn_diff;
1419 2851
1420 mn_now = get_clock (); 2852 mn_now = get_clock ();
1421 2853
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2854 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1438 * doesn't hurt either as we only do this on time-jumps or 2870 * doesn't hurt either as we only do this on time-jumps or
1439 * in the unlikely event of having been preempted here. 2871 * in the unlikely event of having been preempted here.
1440 */ 2872 */
1441 for (i = 4; --i; ) 2873 for (i = 4; --i; )
1442 { 2874 {
2875 ev_tstamp diff;
1443 rtmn_diff = ev_rt_now - mn_now; 2876 rtmn_diff = ev_rt_now - mn_now;
1444 2877
1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2878 diff = odiff - rtmn_diff;
2879
2880 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1446 return; /* all is well */ 2881 return; /* all is well */
1447 2882
1448 ev_rt_now = ev_time (); 2883 ev_rt_now = ev_time ();
1449 mn_now = get_clock (); 2884 mn_now = get_clock ();
1450 now_floor = mn_now; 2885 now_floor = mn_now;
1451 } 2886 }
1452 2887
2888 /* no timer adjustment, as the monotonic clock doesn't jump */
2889 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1453# if EV_PERIODIC_ENABLE 2890# if EV_PERIODIC_ENABLE
1454 periodics_reschedule (EV_A); 2891 periodics_reschedule (EV_A);
1455# endif 2892# endif
1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1458 } 2893 }
1459 else 2894 else
1460#endif 2895#endif
1461 { 2896 {
1462 ev_rt_now = ev_time (); 2897 ev_rt_now = ev_time ();
1463 2898
1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2899 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1465 { 2900 {
2901 /* adjust timers. this is easy, as the offset is the same for all of them */
2902 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1466#if EV_PERIODIC_ENABLE 2903#if EV_PERIODIC_ENABLE
1467 periodics_reschedule (EV_A); 2904 periodics_reschedule (EV_A);
1468#endif 2905#endif
1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1470 for (i = 0; i < timercnt; ++i)
1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
1472 } 2906 }
1473 2907
1474 mn_now = ev_rt_now; 2908 mn_now = ev_rt_now;
1475 } 2909 }
1476} 2910}
1477 2911
1478void 2912void
1479ev_ref (EV_P)
1480{
1481 ++activecnt;
1482}
1483
1484void
1485ev_unref (EV_P)
1486{
1487 --activecnt;
1488}
1489
1490static int loop_done;
1491
1492void
1493ev_loop (EV_P_ int flags) 2913ev_run (EV_P_ int flags)
1494{ 2914{
1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2915#if EV_FEATURE_API
1496 ? EVUNLOOP_ONE 2916 ++loop_depth;
1497 : EVUNLOOP_CANCEL; 2917#endif
1498 2918
2919 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2920
2921 loop_done = EVBREAK_CANCEL;
2922
1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2923 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1500 2924
1501 do 2925 do
1502 { 2926 {
2927#if EV_VERIFY >= 2
2928 ev_verify (EV_A);
2929#endif
2930
1503#ifndef _WIN32 2931#ifndef _WIN32
1504 if (expect_false (curpid)) /* penalise the forking check even more */ 2932 if (expect_false (curpid)) /* penalise the forking check even more */
1505 if (expect_false (getpid () != curpid)) 2933 if (expect_false (getpid () != curpid))
1506 { 2934 {
1507 curpid = getpid (); 2935 curpid = getpid ();
1513 /* we might have forked, so queue fork handlers */ 2941 /* we might have forked, so queue fork handlers */
1514 if (expect_false (postfork)) 2942 if (expect_false (postfork))
1515 if (forkcnt) 2943 if (forkcnt)
1516 { 2944 {
1517 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2945 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1518 call_pending (EV_A); 2946 EV_INVOKE_PENDING;
1519 } 2947 }
1520#endif 2948#endif
1521 2949
2950#if EV_PREPARE_ENABLE
1522 /* queue prepare watchers (and execute them) */ 2951 /* queue prepare watchers (and execute them) */
1523 if (expect_false (preparecnt)) 2952 if (expect_false (preparecnt))
1524 { 2953 {
1525 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2954 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1526 call_pending (EV_A); 2955 EV_INVOKE_PENDING;
1527 } 2956 }
2957#endif
1528 2958
1529 if (expect_false (!activecnt)) 2959 if (expect_false (loop_done))
1530 break; 2960 break;
1531 2961
1532 /* we might have forked, so reify kernel state if necessary */ 2962 /* we might have forked, so reify kernel state if necessary */
1533 if (expect_false (postfork)) 2963 if (expect_false (postfork))
1534 loop_fork (EV_A); 2964 loop_fork (EV_A);
1539 /* calculate blocking time */ 2969 /* calculate blocking time */
1540 { 2970 {
1541 ev_tstamp waittime = 0.; 2971 ev_tstamp waittime = 0.;
1542 ev_tstamp sleeptime = 0.; 2972 ev_tstamp sleeptime = 0.;
1543 2973
2974 /* remember old timestamp for io_blocktime calculation */
2975 ev_tstamp prev_mn_now = mn_now;
2976
2977 /* update time to cancel out callback processing overhead */
2978 time_update (EV_A_ 1e100);
2979
2980 /* from now on, we want a pipe-wake-up */
2981 pipe_write_wanted = 1;
2982
2983 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2984
1544 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2985 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1545 { 2986 {
1546 /* update time to cancel out callback processing overhead */
1547 time_update (EV_A_ 1e100);
1548
1549 waittime = MAX_BLOCKTIME; 2987 waittime = MAX_BLOCKTIME;
1550 2988
1551 if (timercnt) 2989 if (timercnt)
1552 { 2990 {
1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1554 if (waittime > to) waittime = to; 2992 if (waittime > to) waittime = to;
1555 } 2993 }
1556 2994
1557#if EV_PERIODIC_ENABLE 2995#if EV_PERIODIC_ENABLE
1558 if (periodiccnt) 2996 if (periodiccnt)
1559 { 2997 {
1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1561 if (waittime > to) waittime = to; 2999 if (waittime > to) waittime = to;
1562 } 3000 }
1563#endif 3001#endif
1564 3002
3003 /* don't let timeouts decrease the waittime below timeout_blocktime */
1565 if (expect_false (waittime < timeout_blocktime)) 3004 if (expect_false (waittime < timeout_blocktime))
1566 waittime = timeout_blocktime; 3005 waittime = timeout_blocktime;
1567 3006
1568 sleeptime = waittime - backend_fudge; 3007 /* at this point, we NEED to wait, so we have to ensure */
3008 /* to pass a minimum nonzero value to the backend */
3009 if (expect_false (waittime < backend_mintime))
3010 waittime = backend_mintime;
1569 3011
3012 /* extra check because io_blocktime is commonly 0 */
1570 if (expect_true (sleeptime > io_blocktime)) 3013 if (expect_false (io_blocktime))
1571 sleeptime = io_blocktime;
1572
1573 if (sleeptime)
1574 { 3014 {
3015 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3016
3017 if (sleeptime > waittime - backend_mintime)
3018 sleeptime = waittime - backend_mintime;
3019
3020 if (expect_true (sleeptime > 0.))
3021 {
1575 ev_sleep (sleeptime); 3022 ev_sleep (sleeptime);
1576 waittime -= sleeptime; 3023 waittime -= sleeptime;
3024 }
1577 } 3025 }
1578 } 3026 }
1579 3027
3028#if EV_FEATURE_API
1580 ++loop_count; 3029 ++loop_count;
3030#endif
3031 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1581 backend_poll (EV_A_ waittime); 3032 backend_poll (EV_A_ waittime);
3033 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3034
3035 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3036
3037 if (pipe_write_skipped)
3038 {
3039 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3040 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3041 }
3042
1582 3043
1583 /* update ev_rt_now, do magic */ 3044 /* update ev_rt_now, do magic */
1584 time_update (EV_A_ waittime + sleeptime); 3045 time_update (EV_A_ waittime + sleeptime);
1585 } 3046 }
1586 3047
1593#if EV_IDLE_ENABLE 3054#if EV_IDLE_ENABLE
1594 /* queue idle watchers unless other events are pending */ 3055 /* queue idle watchers unless other events are pending */
1595 idle_reify (EV_A); 3056 idle_reify (EV_A);
1596#endif 3057#endif
1597 3058
3059#if EV_CHECK_ENABLE
1598 /* queue check watchers, to be executed first */ 3060 /* queue check watchers, to be executed first */
1599 if (expect_false (checkcnt)) 3061 if (expect_false (checkcnt))
1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3062 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3063#endif
1601 3064
1602 call_pending (EV_A); 3065 EV_INVOKE_PENDING;
1603
1604 } 3066 }
1605 while (expect_true (activecnt && !loop_done)); 3067 while (expect_true (
3068 activecnt
3069 && !loop_done
3070 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3071 ));
1606 3072
1607 if (loop_done == EVUNLOOP_ONE) 3073 if (loop_done == EVBREAK_ONE)
1608 loop_done = EVUNLOOP_CANCEL; 3074 loop_done = EVBREAK_CANCEL;
3075
3076#if EV_FEATURE_API
3077 --loop_depth;
3078#endif
1609} 3079}
1610 3080
1611void 3081void
1612ev_unloop (EV_P_ int how) 3082ev_break (EV_P_ int how)
1613{ 3083{
1614 loop_done = how; 3084 loop_done = how;
1615} 3085}
1616 3086
3087void
3088ev_ref (EV_P)
3089{
3090 ++activecnt;
3091}
3092
3093void
3094ev_unref (EV_P)
3095{
3096 --activecnt;
3097}
3098
3099void
3100ev_now_update (EV_P)
3101{
3102 time_update (EV_A_ 1e100);
3103}
3104
3105void
3106ev_suspend (EV_P)
3107{
3108 ev_now_update (EV_A);
3109}
3110
3111void
3112ev_resume (EV_P)
3113{
3114 ev_tstamp mn_prev = mn_now;
3115
3116 ev_now_update (EV_A);
3117 timers_reschedule (EV_A_ mn_now - mn_prev);
3118#if EV_PERIODIC_ENABLE
3119 /* TODO: really do this? */
3120 periodics_reschedule (EV_A);
3121#endif
3122}
3123
1617/*****************************************************************************/ 3124/*****************************************************************************/
3125/* singly-linked list management, used when the expected list length is short */
1618 3126
1619void inline_size 3127inline_size void
1620wlist_add (WL *head, WL elem) 3128wlist_add (WL *head, WL elem)
1621{ 3129{
1622 elem->next = *head; 3130 elem->next = *head;
1623 *head = elem; 3131 *head = elem;
1624} 3132}
1625 3133
1626void inline_size 3134inline_size void
1627wlist_del (WL *head, WL elem) 3135wlist_del (WL *head, WL elem)
1628{ 3136{
1629 while (*head) 3137 while (*head)
1630 { 3138 {
1631 if (*head == elem) 3139 if (expect_true (*head == elem))
1632 { 3140 {
1633 *head = elem->next; 3141 *head = elem->next;
1634 return; 3142 break;
1635 } 3143 }
1636 3144
1637 head = &(*head)->next; 3145 head = &(*head)->next;
1638 } 3146 }
1639} 3147}
1640 3148
1641void inline_speed 3149/* internal, faster, version of ev_clear_pending */
3150inline_speed void
1642clear_pending (EV_P_ W w) 3151clear_pending (EV_P_ W w)
1643{ 3152{
1644 if (w->pending) 3153 if (w->pending)
1645 { 3154 {
1646 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3155 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1647 w->pending = 0; 3156 w->pending = 0;
1648 } 3157 }
1649} 3158}
1650 3159
1651int 3160int
1655 int pending = w_->pending; 3164 int pending = w_->pending;
1656 3165
1657 if (expect_true (pending)) 3166 if (expect_true (pending))
1658 { 3167 {
1659 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3168 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3169 p->w = (W)&pending_w;
1660 w_->pending = 0; 3170 w_->pending = 0;
1661 p->w = 0;
1662 return p->events; 3171 return p->events;
1663 } 3172 }
1664 else 3173 else
1665 return 0; 3174 return 0;
1666} 3175}
1667 3176
1668void inline_size 3177inline_size void
1669pri_adjust (EV_P_ W w) 3178pri_adjust (EV_P_ W w)
1670{ 3179{
1671 int pri = w->priority; 3180 int pri = ev_priority (w);
1672 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3181 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1673 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3182 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1674 w->priority = pri; 3183 ev_set_priority (w, pri);
1675} 3184}
1676 3185
1677void inline_speed 3186inline_speed void
1678ev_start (EV_P_ W w, int active) 3187ev_start (EV_P_ W w, int active)
1679{ 3188{
1680 pri_adjust (EV_A_ w); 3189 pri_adjust (EV_A_ w);
1681 w->active = active; 3190 w->active = active;
1682 ev_ref (EV_A); 3191 ev_ref (EV_A);
1683} 3192}
1684 3193
1685void inline_size 3194inline_size void
1686ev_stop (EV_P_ W w) 3195ev_stop (EV_P_ W w)
1687{ 3196{
1688 ev_unref (EV_A); 3197 ev_unref (EV_A);
1689 w->active = 0; 3198 w->active = 0;
1690} 3199}
1697 int fd = w->fd; 3206 int fd = w->fd;
1698 3207
1699 if (expect_false (ev_is_active (w))) 3208 if (expect_false (ev_is_active (w)))
1700 return; 3209 return;
1701 3210
1702 assert (("ev_io_start called with negative fd", fd >= 0)); 3211 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3212 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3213
3214 EV_FREQUENT_CHECK;
1703 3215
1704 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3217 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1706 wlist_add (&anfds[fd].head, (WL)w); 3218 wlist_add (&anfds[fd].head, (WL)w);
1707 3219
1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3220 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1709 w->events &= ~EV_IOFDSET; 3221 w->events &= ~EV__IOFDSET;
3222
3223 EV_FREQUENT_CHECK;
1710} 3224}
1711 3225
1712void noinline 3226void noinline
1713ev_io_stop (EV_P_ ev_io *w) 3227ev_io_stop (EV_P_ ev_io *w)
1714{ 3228{
1715 clear_pending (EV_A_ (W)w); 3229 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 3230 if (expect_false (!ev_is_active (w)))
1717 return; 3231 return;
1718 3232
1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3233 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3234
3235 EV_FREQUENT_CHECK;
1720 3236
1721 wlist_del (&anfds[w->fd].head, (WL)w); 3237 wlist_del (&anfds[w->fd].head, (WL)w);
1722 ev_stop (EV_A_ (W)w); 3238 ev_stop (EV_A_ (W)w);
1723 3239
1724 fd_change (EV_A_ w->fd, 1); 3240 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3241
3242 EV_FREQUENT_CHECK;
1725} 3243}
1726 3244
1727void noinline 3245void noinline
1728ev_timer_start (EV_P_ ev_timer *w) 3246ev_timer_start (EV_P_ ev_timer *w)
1729{ 3247{
1730 if (expect_false (ev_is_active (w))) 3248 if (expect_false (ev_is_active (w)))
1731 return; 3249 return;
1732 3250
1733 ((WT)w)->at += mn_now; 3251 ev_at (w) += mn_now;
1734 3252
1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3253 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1736 3254
3255 EV_FREQUENT_CHECK;
3256
3257 ++timercnt;
1737 ev_start (EV_A_ (W)w, ++timercnt); 3258 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3259 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1739 timers [timercnt - 1] = (WT)w; 3260 ANHE_w (timers [ev_active (w)]) = (WT)w;
1740 upheap (timers, timercnt - 1); 3261 ANHE_at_cache (timers [ev_active (w)]);
3262 upheap (timers, ev_active (w));
1741 3263
3264 EV_FREQUENT_CHECK;
3265
1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3266 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1743} 3267}
1744 3268
1745void noinline 3269void noinline
1746ev_timer_stop (EV_P_ ev_timer *w) 3270ev_timer_stop (EV_P_ ev_timer *w)
1747{ 3271{
1748 clear_pending (EV_A_ (W)w); 3272 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 3273 if (expect_false (!ev_is_active (w)))
1750 return; 3274 return;
1751 3275
1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3276 EV_FREQUENT_CHECK;
1753 3277
1754 { 3278 {
1755 int active = ((W)w)->active; 3279 int active = ev_active (w);
1756 3280
3281 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3282
3283 --timercnt;
3284
1757 if (expect_true (--active < --timercnt)) 3285 if (expect_true (active < timercnt + HEAP0))
1758 { 3286 {
1759 timers [active] = timers [timercnt]; 3287 timers [active] = timers [timercnt + HEAP0];
1760 adjustheap (timers, timercnt, active); 3288 adjustheap (timers, timercnt, active);
1761 } 3289 }
1762 } 3290 }
1763 3291
1764 ((WT)w)->at -= mn_now; 3292 ev_at (w) -= mn_now;
1765 3293
1766 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
1767} 3297}
1768 3298
1769void noinline 3299void noinline
1770ev_timer_again (EV_P_ ev_timer *w) 3300ev_timer_again (EV_P_ ev_timer *w)
1771{ 3301{
3302 EV_FREQUENT_CHECK;
3303
1772 if (ev_is_active (w)) 3304 if (ev_is_active (w))
1773 { 3305 {
1774 if (w->repeat) 3306 if (w->repeat)
1775 { 3307 {
1776 ((WT)w)->at = mn_now + w->repeat; 3308 ev_at (w) = mn_now + w->repeat;
3309 ANHE_at_cache (timers [ev_active (w)]);
1777 adjustheap (timers, timercnt, ((W)w)->active - 1); 3310 adjustheap (timers, timercnt, ev_active (w));
1778 } 3311 }
1779 else 3312 else
1780 ev_timer_stop (EV_A_ w); 3313 ev_timer_stop (EV_A_ w);
1781 } 3314 }
1782 else if (w->repeat) 3315 else if (w->repeat)
1783 { 3316 {
1784 w->at = w->repeat; 3317 ev_at (w) = w->repeat;
1785 ev_timer_start (EV_A_ w); 3318 ev_timer_start (EV_A_ w);
1786 } 3319 }
3320
3321 EV_FREQUENT_CHECK;
3322}
3323
3324ev_tstamp
3325ev_timer_remaining (EV_P_ ev_timer *w)
3326{
3327 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1787} 3328}
1788 3329
1789#if EV_PERIODIC_ENABLE 3330#if EV_PERIODIC_ENABLE
1790void noinline 3331void noinline
1791ev_periodic_start (EV_P_ ev_periodic *w) 3332ev_periodic_start (EV_P_ ev_periodic *w)
1792{ 3333{
1793 if (expect_false (ev_is_active (w))) 3334 if (expect_false (ev_is_active (w)))
1794 return; 3335 return;
1795 3336
1796 if (w->reschedule_cb) 3337 if (w->reschedule_cb)
1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3338 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1798 else if (w->interval) 3339 else if (w->interval)
1799 { 3340 {
1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3341 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1801 /* this formula differs from the one in periodic_reify because we do not always round up */ 3342 periodic_recalc (EV_A_ w);
1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1803 } 3343 }
1804 else 3344 else
1805 ((WT)w)->at = w->offset; 3345 ev_at (w) = w->offset;
1806 3346
3347 EV_FREQUENT_CHECK;
3348
3349 ++periodiccnt;
1807 ev_start (EV_A_ (W)w, ++periodiccnt); 3350 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3351 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1809 periodics [periodiccnt - 1] = (WT)w; 3352 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1810 upheap (periodics, periodiccnt - 1); 3353 ANHE_at_cache (periodics [ev_active (w)]);
3354 upheap (periodics, ev_active (w));
1811 3355
3356 EV_FREQUENT_CHECK;
3357
1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3358 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1813} 3359}
1814 3360
1815void noinline 3361void noinline
1816ev_periodic_stop (EV_P_ ev_periodic *w) 3362ev_periodic_stop (EV_P_ ev_periodic *w)
1817{ 3363{
1818 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
1820 return; 3366 return;
1821 3367
1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3368 EV_FREQUENT_CHECK;
1823 3369
1824 { 3370 {
1825 int active = ((W)w)->active; 3371 int active = ev_active (w);
1826 3372
3373 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3374
3375 --periodiccnt;
3376
1827 if (expect_true (--active < --periodiccnt)) 3377 if (expect_true (active < periodiccnt + HEAP0))
1828 { 3378 {
1829 periodics [active] = periodics [periodiccnt]; 3379 periodics [active] = periodics [periodiccnt + HEAP0];
1830 adjustheap (periodics, periodiccnt, active); 3380 adjustheap (periodics, periodiccnt, active);
1831 } 3381 }
1832 } 3382 }
1833 3383
1834 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
3385
3386 EV_FREQUENT_CHECK;
1835} 3387}
1836 3388
1837void noinline 3389void noinline
1838ev_periodic_again (EV_P_ ev_periodic *w) 3390ev_periodic_again (EV_P_ ev_periodic *w)
1839{ 3391{
1845 3397
1846#ifndef SA_RESTART 3398#ifndef SA_RESTART
1847# define SA_RESTART 0 3399# define SA_RESTART 0
1848#endif 3400#endif
1849 3401
3402#if EV_SIGNAL_ENABLE
3403
1850void noinline 3404void noinline
1851ev_signal_start (EV_P_ ev_signal *w) 3405ev_signal_start (EV_P_ ev_signal *w)
1852{ 3406{
1853#if EV_MULTIPLICITY
1854 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1855#endif
1856 if (expect_false (ev_is_active (w))) 3407 if (expect_false (ev_is_active (w)))
1857 return; 3408 return;
1858 3409
1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3410 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1860 3411
3412#if EV_MULTIPLICITY
3413 assert (("libev: a signal must not be attached to two different loops",
3414 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3415
3416 signals [w->signum - 1].loop = EV_A;
3417#endif
3418
3419 EV_FREQUENT_CHECK;
3420
3421#if EV_USE_SIGNALFD
3422 if (sigfd == -2)
1861 { 3423 {
1862#ifndef _WIN32 3424 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1863 sigset_t full, prev; 3425 if (sigfd < 0 && errno == EINVAL)
1864 sigfillset (&full); 3426 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1865 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif
1867 3427
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3428 if (sigfd >= 0)
3429 {
3430 fd_intern (sigfd); /* doing it twice will not hurt */
1869 3431
1870#ifndef _WIN32 3432 sigemptyset (&sigfd_set);
1871 sigprocmask (SIG_SETMASK, &prev, 0); 3433
1872#endif 3434 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3435 ev_set_priority (&sigfd_w, EV_MAXPRI);
3436 ev_io_start (EV_A_ &sigfd_w);
3437 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3438 }
1873 } 3439 }
3440
3441 if (sigfd >= 0)
3442 {
3443 /* TODO: check .head */
3444 sigaddset (&sigfd_set, w->signum);
3445 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3446
3447 signalfd (sigfd, &sigfd_set, 0);
3448 }
3449#endif
1874 3450
1875 ev_start (EV_A_ (W)w, 1); 3451 ev_start (EV_A_ (W)w, 1);
1876 wlist_add (&signals [w->signum - 1].head, (WL)w); 3452 wlist_add (&signals [w->signum - 1].head, (WL)w);
1877 3453
1878 if (!((WL)w)->next) 3454 if (!((WL)w)->next)
3455# if EV_USE_SIGNALFD
3456 if (sigfd < 0) /*TODO*/
3457# endif
1879 { 3458 {
1880#if _WIN32 3459# ifdef _WIN32
3460 evpipe_init (EV_A);
3461
1881 signal (w->signum, sighandler); 3462 signal (w->signum, ev_sighandler);
1882#else 3463# else
1883 struct sigaction sa; 3464 struct sigaction sa;
3465
3466 evpipe_init (EV_A);
3467
1884 sa.sa_handler = sighandler; 3468 sa.sa_handler = ev_sighandler;
1885 sigfillset (&sa.sa_mask); 3469 sigfillset (&sa.sa_mask);
1886 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3470 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1887 sigaction (w->signum, &sa, 0); 3471 sigaction (w->signum, &sa, 0);
3472
3473 if (origflags & EVFLAG_NOSIGMASK)
3474 {
3475 sigemptyset (&sa.sa_mask);
3476 sigaddset (&sa.sa_mask, w->signum);
3477 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3478 }
1888#endif 3479#endif
1889 } 3480 }
3481
3482 EV_FREQUENT_CHECK;
1890} 3483}
1891 3484
1892void noinline 3485void noinline
1893ev_signal_stop (EV_P_ ev_signal *w) 3486ev_signal_stop (EV_P_ ev_signal *w)
1894{ 3487{
1895 clear_pending (EV_A_ (W)w); 3488 clear_pending (EV_A_ (W)w);
1896 if (expect_false (!ev_is_active (w))) 3489 if (expect_false (!ev_is_active (w)))
1897 return; 3490 return;
1898 3491
3492 EV_FREQUENT_CHECK;
3493
1899 wlist_del (&signals [w->signum - 1].head, (WL)w); 3494 wlist_del (&signals [w->signum - 1].head, (WL)w);
1900 ev_stop (EV_A_ (W)w); 3495 ev_stop (EV_A_ (W)w);
1901 3496
1902 if (!signals [w->signum - 1].head) 3497 if (!signals [w->signum - 1].head)
3498 {
3499#if EV_MULTIPLICITY
3500 signals [w->signum - 1].loop = 0; /* unattach from signal */
3501#endif
3502#if EV_USE_SIGNALFD
3503 if (sigfd >= 0)
3504 {
3505 sigset_t ss;
3506
3507 sigemptyset (&ss);
3508 sigaddset (&ss, w->signum);
3509 sigdelset (&sigfd_set, w->signum);
3510
3511 signalfd (sigfd, &sigfd_set, 0);
3512 sigprocmask (SIG_UNBLOCK, &ss, 0);
3513 }
3514 else
3515#endif
1903 signal (w->signum, SIG_DFL); 3516 signal (w->signum, SIG_DFL);
3517 }
3518
3519 EV_FREQUENT_CHECK;
1904} 3520}
3521
3522#endif
3523
3524#if EV_CHILD_ENABLE
1905 3525
1906void 3526void
1907ev_child_start (EV_P_ ev_child *w) 3527ev_child_start (EV_P_ ev_child *w)
1908{ 3528{
1909#if EV_MULTIPLICITY 3529#if EV_MULTIPLICITY
1910 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3530 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1911#endif 3531#endif
1912 if (expect_false (ev_is_active (w))) 3532 if (expect_false (ev_is_active (w)))
1913 return; 3533 return;
1914 3534
3535 EV_FREQUENT_CHECK;
3536
1915 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3538 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3539
3540 EV_FREQUENT_CHECK;
1917} 3541}
1918 3542
1919void 3543void
1920ev_child_stop (EV_P_ ev_child *w) 3544ev_child_stop (EV_P_ ev_child *w)
1921{ 3545{
1922 clear_pending (EV_A_ (W)w); 3546 clear_pending (EV_A_ (W)w);
1923 if (expect_false (!ev_is_active (w))) 3547 if (expect_false (!ev_is_active (w)))
1924 return; 3548 return;
1925 3549
3550 EV_FREQUENT_CHECK;
3551
1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3552 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1927 ev_stop (EV_A_ (W)w); 3553 ev_stop (EV_A_ (W)w);
3554
3555 EV_FREQUENT_CHECK;
1928} 3556}
3557
3558#endif
1929 3559
1930#if EV_STAT_ENABLE 3560#if EV_STAT_ENABLE
1931 3561
1932# ifdef _WIN32 3562# ifdef _WIN32
1933# undef lstat 3563# undef lstat
1934# define lstat(a,b) _stati64 (a,b) 3564# define lstat(a,b) _stati64 (a,b)
1935# endif 3565# endif
1936 3566
1937#define DEF_STAT_INTERVAL 5.0074891 3567#define DEF_STAT_INTERVAL 5.0074891
3568#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1938#define MIN_STAT_INTERVAL 0.1074891 3569#define MIN_STAT_INTERVAL 0.1074891
1939 3570
1940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3571static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1941 3572
1942#if EV_USE_INOTIFY 3573#if EV_USE_INOTIFY
1943# define EV_INOTIFY_BUFSIZE 8192 3574
3575/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3576# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1944 3577
1945static void noinline 3578static void noinline
1946infy_add (EV_P_ ev_stat *w) 3579infy_add (EV_P_ ev_stat *w)
1947{ 3580{
1948 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3581 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1949 3582
1950 if (w->wd < 0) 3583 if (w->wd >= 0)
3584 {
3585 struct statfs sfs;
3586
3587 /* now local changes will be tracked by inotify, but remote changes won't */
3588 /* unless the filesystem is known to be local, we therefore still poll */
3589 /* also do poll on <2.6.25, but with normal frequency */
3590
3591 if (!fs_2625)
3592 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3593 else if (!statfs (w->path, &sfs)
3594 && (sfs.f_type == 0x1373 /* devfs */
3595 || sfs.f_type == 0xEF53 /* ext2/3 */
3596 || sfs.f_type == 0x3153464a /* jfs */
3597 || sfs.f_type == 0x52654973 /* reiser3 */
3598 || sfs.f_type == 0x01021994 /* tempfs */
3599 || sfs.f_type == 0x58465342 /* xfs */))
3600 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3601 else
3602 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1951 { 3603 }
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3604 else
3605 {
3606 /* can't use inotify, continue to stat */
3607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1953 3608
1954 /* monitor some parent directory for speedup hints */ 3609 /* if path is not there, monitor some parent directory for speedup hints */
3610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3611 /* but an efficiency issue only */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 { 3613 {
1957 char path [4096]; 3614 char path [4096];
1958 strcpy (path, w->path); 3615 strcpy (path, w->path);
1959 3616
1962 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1963 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1964 3621
1965 char *pend = strrchr (path, '/'); 3622 char *pend = strrchr (path, '/');
1966 3623
1967 if (!pend) 3624 if (!pend || pend == path)
1968 break; /* whoops, no '/', complain to your admin */ 3625 break;
1969 3626
1970 *pend = 0; 3627 *pend = 0;
1971 w->wd = inotify_add_watch (fs_fd, path, mask); 3628 w->wd = inotify_add_watch (fs_fd, path, mask);
1972 } 3629 }
1973 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1974 } 3631 }
1975 } 3632 }
1976 else
1977 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1978 3633
1979 if (w->wd >= 0) 3634 if (w->wd >= 0)
1980 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3635 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3636
3637 /* now re-arm timer, if required */
3638 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3639 ev_timer_again (EV_A_ &w->timer);
3640 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1981} 3641}
1982 3642
1983static void noinline 3643static void noinline
1984infy_del (EV_P_ ev_stat *w) 3644infy_del (EV_P_ ev_stat *w)
1985{ 3645{
1988 3648
1989 if (wd < 0) 3649 if (wd < 0)
1990 return; 3650 return;
1991 3651
1992 w->wd = -2; 3652 w->wd = -2;
1993 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3653 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1994 wlist_del (&fs_hash [slot].head, (WL)w); 3654 wlist_del (&fs_hash [slot].head, (WL)w);
1995 3655
1996 /* remove this watcher, if others are watching it, they will rearm */ 3656 /* remove this watcher, if others are watching it, they will rearm */
1997 inotify_rm_watch (fs_fd, wd); 3657 inotify_rm_watch (fs_fd, wd);
1998} 3658}
1999 3659
2000static void noinline 3660static void noinline
2001infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3661infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2002{ 3662{
2003 if (slot < 0) 3663 if (slot < 0)
2004 /* overflow, need to check for all hahs slots */ 3664 /* overflow, need to check for all hash slots */
2005 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3665 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2006 infy_wd (EV_A_ slot, wd, ev); 3666 infy_wd (EV_A_ slot, wd, ev);
2007 else 3667 else
2008 { 3668 {
2009 WL w_; 3669 WL w_;
2010 3670
2011 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3671 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2012 { 3672 {
2013 ev_stat *w = (ev_stat *)w_; 3673 ev_stat *w = (ev_stat *)w_;
2014 w_ = w_->next; /* lets us remove this watcher and all before it */ 3674 w_ = w_->next; /* lets us remove this watcher and all before it */
2015 3675
2016 if (w->wd == wd || wd == -1) 3676 if (w->wd == wd || wd == -1)
2017 { 3677 {
2018 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3678 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2019 { 3679 {
3680 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2020 w->wd = -1; 3681 w->wd = -1;
2021 infy_add (EV_A_ w); /* re-add, no matter what */ 3682 infy_add (EV_A_ w); /* re-add, no matter what */
2022 } 3683 }
2023 3684
2024 stat_timer_cb (EV_A_ &w->timer, 0); 3685 stat_timer_cb (EV_A_ &w->timer, 0);
2029 3690
2030static void 3691static void
2031infy_cb (EV_P_ ev_io *w, int revents) 3692infy_cb (EV_P_ ev_io *w, int revents)
2032{ 3693{
2033 char buf [EV_INOTIFY_BUFSIZE]; 3694 char buf [EV_INOTIFY_BUFSIZE];
2034 struct inotify_event *ev = (struct inotify_event *)buf;
2035 int ofs; 3695 int ofs;
2036 int len = read (fs_fd, buf, sizeof (buf)); 3696 int len = read (fs_fd, buf, sizeof (buf));
2037 3697
2038 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3698 for (ofs = 0; ofs < len; )
3699 {
3700 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2039 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3701 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3702 ofs += sizeof (struct inotify_event) + ev->len;
3703 }
2040} 3704}
2041 3705
2042void inline_size 3706inline_size void ecb_cold
3707ev_check_2625 (EV_P)
3708{
3709 /* kernels < 2.6.25 are borked
3710 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3711 */
3712 if (ev_linux_version () < 0x020619)
3713 return;
3714
3715 fs_2625 = 1;
3716}
3717
3718inline_size int
3719infy_newfd (void)
3720{
3721#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3722 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3723 if (fd >= 0)
3724 return fd;
3725#endif
3726 return inotify_init ();
3727}
3728
3729inline_size void
2043infy_init (EV_P) 3730infy_init (EV_P)
2044{ 3731{
2045 if (fs_fd != -2) 3732 if (fs_fd != -2)
2046 return; 3733 return;
2047 3734
3735 fs_fd = -1;
3736
3737 ev_check_2625 (EV_A);
3738
2048 fs_fd = inotify_init (); 3739 fs_fd = infy_newfd ();
2049 3740
2050 if (fs_fd >= 0) 3741 if (fs_fd >= 0)
2051 { 3742 {
3743 fd_intern (fs_fd);
2052 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3744 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2053 ev_set_priority (&fs_w, EV_MAXPRI); 3745 ev_set_priority (&fs_w, EV_MAXPRI);
2054 ev_io_start (EV_A_ &fs_w); 3746 ev_io_start (EV_A_ &fs_w);
3747 ev_unref (EV_A);
2055 } 3748 }
2056} 3749}
2057 3750
2058void inline_size 3751inline_size void
2059infy_fork (EV_P) 3752infy_fork (EV_P)
2060{ 3753{
2061 int slot; 3754 int slot;
2062 3755
2063 if (fs_fd < 0) 3756 if (fs_fd < 0)
2064 return; 3757 return;
2065 3758
3759 ev_ref (EV_A);
3760 ev_io_stop (EV_A_ &fs_w);
2066 close (fs_fd); 3761 close (fs_fd);
2067 fs_fd = inotify_init (); 3762 fs_fd = infy_newfd ();
2068 3763
3764 if (fs_fd >= 0)
3765 {
3766 fd_intern (fs_fd);
3767 ev_io_set (&fs_w, fs_fd, EV_READ);
3768 ev_io_start (EV_A_ &fs_w);
3769 ev_unref (EV_A);
3770 }
3771
2069 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3772 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2070 { 3773 {
2071 WL w_ = fs_hash [slot].head; 3774 WL w_ = fs_hash [slot].head;
2072 fs_hash [slot].head = 0; 3775 fs_hash [slot].head = 0;
2073 3776
2074 while (w_) 3777 while (w_)
2079 w->wd = -1; 3782 w->wd = -1;
2080 3783
2081 if (fs_fd >= 0) 3784 if (fs_fd >= 0)
2082 infy_add (EV_A_ w); /* re-add, no matter what */ 3785 infy_add (EV_A_ w); /* re-add, no matter what */
2083 else 3786 else
3787 {
3788 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3789 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2084 ev_timer_start (EV_A_ &w->timer); 3790 ev_timer_again (EV_A_ &w->timer);
3791 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3792 }
2085 } 3793 }
2086
2087 } 3794 }
2088} 3795}
2089 3796
3797#endif
3798
3799#ifdef _WIN32
3800# define EV_LSTAT(p,b) _stati64 (p, b)
3801#else
3802# define EV_LSTAT(p,b) lstat (p, b)
2090#endif 3803#endif
2091 3804
2092void 3805void
2093ev_stat_stat (EV_P_ ev_stat *w) 3806ev_stat_stat (EV_P_ ev_stat *w)
2094{ 3807{
2101static void noinline 3814static void noinline
2102stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3815stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2103{ 3816{
2104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3817 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2105 3818
2106 /* we copy this here each the time so that */ 3819 ev_statdata prev = w->attr;
2107 /* prev has the old value when the callback gets invoked */
2108 w->prev = w->attr;
2109 ev_stat_stat (EV_A_ w); 3820 ev_stat_stat (EV_A_ w);
2110 3821
2111 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3822 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2112 if ( 3823 if (
2113 w->prev.st_dev != w->attr.st_dev 3824 prev.st_dev != w->attr.st_dev
2114 || w->prev.st_ino != w->attr.st_ino 3825 || prev.st_ino != w->attr.st_ino
2115 || w->prev.st_mode != w->attr.st_mode 3826 || prev.st_mode != w->attr.st_mode
2116 || w->prev.st_nlink != w->attr.st_nlink 3827 || prev.st_nlink != w->attr.st_nlink
2117 || w->prev.st_uid != w->attr.st_uid 3828 || prev.st_uid != w->attr.st_uid
2118 || w->prev.st_gid != w->attr.st_gid 3829 || prev.st_gid != w->attr.st_gid
2119 || w->prev.st_rdev != w->attr.st_rdev 3830 || prev.st_rdev != w->attr.st_rdev
2120 || w->prev.st_size != w->attr.st_size 3831 || prev.st_size != w->attr.st_size
2121 || w->prev.st_atime != w->attr.st_atime 3832 || prev.st_atime != w->attr.st_atime
2122 || w->prev.st_mtime != w->attr.st_mtime 3833 || prev.st_mtime != w->attr.st_mtime
2123 || w->prev.st_ctime != w->attr.st_ctime 3834 || prev.st_ctime != w->attr.st_ctime
2124 ) { 3835 ) {
3836 /* we only update w->prev on actual differences */
3837 /* in case we test more often than invoke the callback, */
3838 /* to ensure that prev is always different to attr */
3839 w->prev = prev;
3840
2125 #if EV_USE_INOTIFY 3841 #if EV_USE_INOTIFY
3842 if (fs_fd >= 0)
3843 {
2126 infy_del (EV_A_ w); 3844 infy_del (EV_A_ w);
2127 infy_add (EV_A_ w); 3845 infy_add (EV_A_ w);
2128 ev_stat_stat (EV_A_ w); /* avoid race... */ 3846 ev_stat_stat (EV_A_ w); /* avoid race... */
3847 }
2129 #endif 3848 #endif
2130 3849
2131 ev_feed_event (EV_A_ w, EV_STAT); 3850 ev_feed_event (EV_A_ w, EV_STAT);
2132 } 3851 }
2133} 3852}
2136ev_stat_start (EV_P_ ev_stat *w) 3855ev_stat_start (EV_P_ ev_stat *w)
2137{ 3856{
2138 if (expect_false (ev_is_active (w))) 3857 if (expect_false (ev_is_active (w)))
2139 return; 3858 return;
2140 3859
2141 /* since we use memcmp, we need to clear any padding data etc. */
2142 memset (&w->prev, 0, sizeof (ev_statdata));
2143 memset (&w->attr, 0, sizeof (ev_statdata));
2144
2145 ev_stat_stat (EV_A_ w); 3860 ev_stat_stat (EV_A_ w);
2146 3861
3862 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2147 if (w->interval < MIN_STAT_INTERVAL) 3863 w->interval = MIN_STAT_INTERVAL;
2148 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2149 3864
2150 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3865 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2151 ev_set_priority (&w->timer, ev_priority (w)); 3866 ev_set_priority (&w->timer, ev_priority (w));
2152 3867
2153#if EV_USE_INOTIFY 3868#if EV_USE_INOTIFY
2154 infy_init (EV_A); 3869 infy_init (EV_A);
2155 3870
2156 if (fs_fd >= 0) 3871 if (fs_fd >= 0)
2157 infy_add (EV_A_ w); 3872 infy_add (EV_A_ w);
2158 else 3873 else
2159#endif 3874#endif
3875 {
2160 ev_timer_start (EV_A_ &w->timer); 3876 ev_timer_again (EV_A_ &w->timer);
3877 ev_unref (EV_A);
3878 }
2161 3879
2162 ev_start (EV_A_ (W)w, 1); 3880 ev_start (EV_A_ (W)w, 1);
3881
3882 EV_FREQUENT_CHECK;
2163} 3883}
2164 3884
2165void 3885void
2166ev_stat_stop (EV_P_ ev_stat *w) 3886ev_stat_stop (EV_P_ ev_stat *w)
2167{ 3887{
2168 clear_pending (EV_A_ (W)w); 3888 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w))) 3889 if (expect_false (!ev_is_active (w)))
2170 return; 3890 return;
2171 3891
3892 EV_FREQUENT_CHECK;
3893
2172#if EV_USE_INOTIFY 3894#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w); 3895 infy_del (EV_A_ w);
2174#endif 3896#endif
3897
3898 if (ev_is_active (&w->timer))
3899 {
3900 ev_ref (EV_A);
2175 ev_timer_stop (EV_A_ &w->timer); 3901 ev_timer_stop (EV_A_ &w->timer);
3902 }
2176 3903
2177 ev_stop (EV_A_ (W)w); 3904 ev_stop (EV_A_ (W)w);
3905
3906 EV_FREQUENT_CHECK;
2178} 3907}
2179#endif 3908#endif
2180 3909
2181#if EV_IDLE_ENABLE 3910#if EV_IDLE_ENABLE
2182void 3911void
2185 if (expect_false (ev_is_active (w))) 3914 if (expect_false (ev_is_active (w)))
2186 return; 3915 return;
2187 3916
2188 pri_adjust (EV_A_ (W)w); 3917 pri_adjust (EV_A_ (W)w);
2189 3918
3919 EV_FREQUENT_CHECK;
3920
2190 { 3921 {
2191 int active = ++idlecnt [ABSPRI (w)]; 3922 int active = ++idlecnt [ABSPRI (w)];
2192 3923
2193 ++idleall; 3924 ++idleall;
2194 ev_start (EV_A_ (W)w, active); 3925 ev_start (EV_A_ (W)w, active);
2195 3926
2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3927 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2197 idles [ABSPRI (w)][active - 1] = w; 3928 idles [ABSPRI (w)][active - 1] = w;
2198 } 3929 }
3930
3931 EV_FREQUENT_CHECK;
2199} 3932}
2200 3933
2201void 3934void
2202ev_idle_stop (EV_P_ ev_idle *w) 3935ev_idle_stop (EV_P_ ev_idle *w)
2203{ 3936{
2204 clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3938 if (expect_false (!ev_is_active (w)))
2206 return; 3939 return;
2207 3940
3941 EV_FREQUENT_CHECK;
3942
2208 { 3943 {
2209 int active = ((W)w)->active; 3944 int active = ev_active (w);
2210 3945
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3946 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3947 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2213 3948
2214 ev_stop (EV_A_ (W)w); 3949 ev_stop (EV_A_ (W)w);
2215 --idleall; 3950 --idleall;
2216 } 3951 }
2217}
2218#endif
2219 3952
3953 EV_FREQUENT_CHECK;
3954}
3955#endif
3956
3957#if EV_PREPARE_ENABLE
2220void 3958void
2221ev_prepare_start (EV_P_ ev_prepare *w) 3959ev_prepare_start (EV_P_ ev_prepare *w)
2222{ 3960{
2223 if (expect_false (ev_is_active (w))) 3961 if (expect_false (ev_is_active (w)))
2224 return; 3962 return;
3963
3964 EV_FREQUENT_CHECK;
2225 3965
2226 ev_start (EV_A_ (W)w, ++preparecnt); 3966 ev_start (EV_A_ (W)w, ++preparecnt);
2227 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3967 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2228 prepares [preparecnt - 1] = w; 3968 prepares [preparecnt - 1] = w;
3969
3970 EV_FREQUENT_CHECK;
2229} 3971}
2230 3972
2231void 3973void
2232ev_prepare_stop (EV_P_ ev_prepare *w) 3974ev_prepare_stop (EV_P_ ev_prepare *w)
2233{ 3975{
2234 clear_pending (EV_A_ (W)w); 3976 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 3977 if (expect_false (!ev_is_active (w)))
2236 return; 3978 return;
2237 3979
3980 EV_FREQUENT_CHECK;
3981
2238 { 3982 {
2239 int active = ((W)w)->active; 3983 int active = ev_active (w);
3984
2240 prepares [active - 1] = prepares [--preparecnt]; 3985 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active; 3986 ev_active (prepares [active - 1]) = active;
2242 } 3987 }
2243 3988
2244 ev_stop (EV_A_ (W)w); 3989 ev_stop (EV_A_ (W)w);
2245}
2246 3990
3991 EV_FREQUENT_CHECK;
3992}
3993#endif
3994
3995#if EV_CHECK_ENABLE
2247void 3996void
2248ev_check_start (EV_P_ ev_check *w) 3997ev_check_start (EV_P_ ev_check *w)
2249{ 3998{
2250 if (expect_false (ev_is_active (w))) 3999 if (expect_false (ev_is_active (w)))
2251 return; 4000 return;
4001
4002 EV_FREQUENT_CHECK;
2252 4003
2253 ev_start (EV_A_ (W)w, ++checkcnt); 4004 ev_start (EV_A_ (W)w, ++checkcnt);
2254 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4005 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2255 checks [checkcnt - 1] = w; 4006 checks [checkcnt - 1] = w;
4007
4008 EV_FREQUENT_CHECK;
2256} 4009}
2257 4010
2258void 4011void
2259ev_check_stop (EV_P_ ev_check *w) 4012ev_check_stop (EV_P_ ev_check *w)
2260{ 4013{
2261 clear_pending (EV_A_ (W)w); 4014 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w))) 4015 if (expect_false (!ev_is_active (w)))
2263 return; 4016 return;
2264 4017
4018 EV_FREQUENT_CHECK;
4019
2265 { 4020 {
2266 int active = ((W)w)->active; 4021 int active = ev_active (w);
4022
2267 checks [active - 1] = checks [--checkcnt]; 4023 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active; 4024 ev_active (checks [active - 1]) = active;
2269 } 4025 }
2270 4026
2271 ev_stop (EV_A_ (W)w); 4027 ev_stop (EV_A_ (W)w);
4028
4029 EV_FREQUENT_CHECK;
2272} 4030}
4031#endif
2273 4032
2274#if EV_EMBED_ENABLE 4033#if EV_EMBED_ENABLE
2275void noinline 4034void noinline
2276ev_embed_sweep (EV_P_ ev_embed *w) 4035ev_embed_sweep (EV_P_ ev_embed *w)
2277{ 4036{
2278 ev_loop (w->other, EVLOOP_NONBLOCK); 4037 ev_run (w->other, EVRUN_NOWAIT);
2279} 4038}
2280 4039
2281static void 4040static void
2282embed_io_cb (EV_P_ ev_io *io, int revents) 4041embed_io_cb (EV_P_ ev_io *io, int revents)
2283{ 4042{
2284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2285 4044
2286 if (ev_cb (w)) 4045 if (ev_cb (w))
2287 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4046 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2288 else 4047 else
2289 ev_loop (w->other, EVLOOP_NONBLOCK); 4048 ev_run (w->other, EVRUN_NOWAIT);
2290} 4049}
2291 4050
2292static void 4051static void
2293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4052embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2294{ 4053{
2295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4054 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2296 4055
2297 { 4056 {
2298 struct ev_loop *loop = w->other; 4057 EV_P = w->other;
2299 4058
2300 while (fdchangecnt) 4059 while (fdchangecnt)
2301 { 4060 {
2302 fd_reify (EV_A); 4061 fd_reify (EV_A);
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4062 ev_run (EV_A_ EVRUN_NOWAIT);
2304 } 4063 }
2305 } 4064 }
4065}
4066
4067static void
4068embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4069{
4070 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4071
4072 ev_embed_stop (EV_A_ w);
4073
4074 {
4075 EV_P = w->other;
4076
4077 ev_loop_fork (EV_A);
4078 ev_run (EV_A_ EVRUN_NOWAIT);
4079 }
4080
4081 ev_embed_start (EV_A_ w);
2306} 4082}
2307 4083
2308#if 0 4084#if 0
2309static void 4085static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4086embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2318{ 4094{
2319 if (expect_false (ev_is_active (w))) 4095 if (expect_false (ev_is_active (w)))
2320 return; 4096 return;
2321 4097
2322 { 4098 {
2323 struct ev_loop *loop = w->other; 4099 EV_P = w->other;
2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4100 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4101 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2326 } 4102 }
4103
4104 EV_FREQUENT_CHECK;
2327 4105
2328 ev_set_priority (&w->io, ev_priority (w)); 4106 ev_set_priority (&w->io, ev_priority (w));
2329 ev_io_start (EV_A_ &w->io); 4107 ev_io_start (EV_A_ &w->io);
2330 4108
2331 ev_prepare_init (&w->prepare, embed_prepare_cb); 4109 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI); 4110 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare); 4111 ev_prepare_start (EV_A_ &w->prepare);
2334 4112
4113 ev_fork_init (&w->fork, embed_fork_cb);
4114 ev_fork_start (EV_A_ &w->fork);
4115
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4116 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336 4117
2337 ev_start (EV_A_ (W)w, 1); 4118 ev_start (EV_A_ (W)w, 1);
4119
4120 EV_FREQUENT_CHECK;
2338} 4121}
2339 4122
2340void 4123void
2341ev_embed_stop (EV_P_ ev_embed *w) 4124ev_embed_stop (EV_P_ ev_embed *w)
2342{ 4125{
2343 clear_pending (EV_A_ (W)w); 4126 clear_pending (EV_A_ (W)w);
2344 if (expect_false (!ev_is_active (w))) 4127 if (expect_false (!ev_is_active (w)))
2345 return; 4128 return;
2346 4129
4130 EV_FREQUENT_CHECK;
4131
2347 ev_io_stop (EV_A_ &w->io); 4132 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare); 4133 ev_prepare_stop (EV_A_ &w->prepare);
4134 ev_fork_stop (EV_A_ &w->fork);
2349 4135
2350 ev_stop (EV_A_ (W)w); 4136 ev_stop (EV_A_ (W)w);
4137
4138 EV_FREQUENT_CHECK;
2351} 4139}
2352#endif 4140#endif
2353 4141
2354#if EV_FORK_ENABLE 4142#if EV_FORK_ENABLE
2355void 4143void
2356ev_fork_start (EV_P_ ev_fork *w) 4144ev_fork_start (EV_P_ ev_fork *w)
2357{ 4145{
2358 if (expect_false (ev_is_active (w))) 4146 if (expect_false (ev_is_active (w)))
2359 return; 4147 return;
2360 4148
4149 EV_FREQUENT_CHECK;
4150
2361 ev_start (EV_A_ (W)w, ++forkcnt); 4151 ev_start (EV_A_ (W)w, ++forkcnt);
2362 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4152 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2363 forks [forkcnt - 1] = w; 4153 forks [forkcnt - 1] = w;
4154
4155 EV_FREQUENT_CHECK;
2364} 4156}
2365 4157
2366void 4158void
2367ev_fork_stop (EV_P_ ev_fork *w) 4159ev_fork_stop (EV_P_ ev_fork *w)
2368{ 4160{
2369 clear_pending (EV_A_ (W)w); 4161 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w))) 4162 if (expect_false (!ev_is_active (w)))
2371 return; 4163 return;
2372 4164
4165 EV_FREQUENT_CHECK;
4166
2373 { 4167 {
2374 int active = ((W)w)->active; 4168 int active = ev_active (w);
4169
2375 forks [active - 1] = forks [--forkcnt]; 4170 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active; 4171 ev_active (forks [active - 1]) = active;
2377 } 4172 }
2378 4173
2379 ev_stop (EV_A_ (W)w); 4174 ev_stop (EV_A_ (W)w);
4175
4176 EV_FREQUENT_CHECK;
4177}
4178#endif
4179
4180#if EV_CLEANUP_ENABLE
4181void
4182ev_cleanup_start (EV_P_ ev_cleanup *w)
4183{
4184 if (expect_false (ev_is_active (w)))
4185 return;
4186
4187 EV_FREQUENT_CHECK;
4188
4189 ev_start (EV_A_ (W)w, ++cleanupcnt);
4190 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4191 cleanups [cleanupcnt - 1] = w;
4192
4193 /* cleanup watchers should never keep a refcount on the loop */
4194 ev_unref (EV_A);
4195 EV_FREQUENT_CHECK;
4196}
4197
4198void
4199ev_cleanup_stop (EV_P_ ev_cleanup *w)
4200{
4201 clear_pending (EV_A_ (W)w);
4202 if (expect_false (!ev_is_active (w)))
4203 return;
4204
4205 EV_FREQUENT_CHECK;
4206 ev_ref (EV_A);
4207
4208 {
4209 int active = ev_active (w);
4210
4211 cleanups [active - 1] = cleanups [--cleanupcnt];
4212 ev_active (cleanups [active - 1]) = active;
4213 }
4214
4215 ev_stop (EV_A_ (W)w);
4216
4217 EV_FREQUENT_CHECK;
4218}
4219#endif
4220
4221#if EV_ASYNC_ENABLE
4222void
4223ev_async_start (EV_P_ ev_async *w)
4224{
4225 if (expect_false (ev_is_active (w)))
4226 return;
4227
4228 w->sent = 0;
4229
4230 evpipe_init (EV_A);
4231
4232 EV_FREQUENT_CHECK;
4233
4234 ev_start (EV_A_ (W)w, ++asynccnt);
4235 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4236 asyncs [asynccnt - 1] = w;
4237
4238 EV_FREQUENT_CHECK;
4239}
4240
4241void
4242ev_async_stop (EV_P_ ev_async *w)
4243{
4244 clear_pending (EV_A_ (W)w);
4245 if (expect_false (!ev_is_active (w)))
4246 return;
4247
4248 EV_FREQUENT_CHECK;
4249
4250 {
4251 int active = ev_active (w);
4252
4253 asyncs [active - 1] = asyncs [--asynccnt];
4254 ev_active (asyncs [active - 1]) = active;
4255 }
4256
4257 ev_stop (EV_A_ (W)w);
4258
4259 EV_FREQUENT_CHECK;
4260}
4261
4262void
4263ev_async_send (EV_P_ ev_async *w)
4264{
4265 w->sent = 1;
4266 evpipe_write (EV_A_ &async_pending);
2380} 4267}
2381#endif 4268#endif
2382 4269
2383/*****************************************************************************/ 4270/*****************************************************************************/
2384 4271
2394once_cb (EV_P_ struct ev_once *once, int revents) 4281once_cb (EV_P_ struct ev_once *once, int revents)
2395{ 4282{
2396 void (*cb)(int revents, void *arg) = once->cb; 4283 void (*cb)(int revents, void *arg) = once->cb;
2397 void *arg = once->arg; 4284 void *arg = once->arg;
2398 4285
2399 ev_io_stop (EV_A_ &once->io); 4286 ev_io_stop (EV_A_ &once->io);
2400 ev_timer_stop (EV_A_ &once->to); 4287 ev_timer_stop (EV_A_ &once->to);
2401 ev_free (once); 4288 ev_free (once);
2402 4289
2403 cb (revents, arg); 4290 cb (revents, arg);
2404} 4291}
2405 4292
2406static void 4293static void
2407once_cb_io (EV_P_ ev_io *w, int revents) 4294once_cb_io (EV_P_ ev_io *w, int revents)
2408{ 4295{
2409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4296 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4297
4298 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2410} 4299}
2411 4300
2412static void 4301static void
2413once_cb_to (EV_P_ ev_timer *w, int revents) 4302once_cb_to (EV_P_ ev_timer *w, int revents)
2414{ 4303{
2415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4304 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4305
4306 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2416} 4307}
2417 4308
2418void 4309void
2419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2420{ 4311{
2421 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4312 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2422 4313
2423 if (expect_false (!once)) 4314 if (expect_false (!once))
2424 { 4315 {
2425 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4316 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2426 return; 4317 return;
2427 } 4318 }
2428 4319
2429 once->cb = cb; 4320 once->cb = cb;
2430 once->arg = arg; 4321 once->arg = arg;
2442 ev_timer_set (&once->to, timeout, 0.); 4333 ev_timer_set (&once->to, timeout, 0.);
2443 ev_timer_start (EV_A_ &once->to); 4334 ev_timer_start (EV_A_ &once->to);
2444 } 4335 }
2445} 4336}
2446 4337
4338/*****************************************************************************/
4339
4340#if EV_WALK_ENABLE
4341void ecb_cold
4342ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4343{
4344 int i, j;
4345 ev_watcher_list *wl, *wn;
4346
4347 if (types & (EV_IO | EV_EMBED))
4348 for (i = 0; i < anfdmax; ++i)
4349 for (wl = anfds [i].head; wl; )
4350 {
4351 wn = wl->next;
4352
4353#if EV_EMBED_ENABLE
4354 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4355 {
4356 if (types & EV_EMBED)
4357 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4358 }
4359 else
4360#endif
4361#if EV_USE_INOTIFY
4362 if (ev_cb ((ev_io *)wl) == infy_cb)
4363 ;
4364 else
4365#endif
4366 if ((ev_io *)wl != &pipe_w)
4367 if (types & EV_IO)
4368 cb (EV_A_ EV_IO, wl);
4369
4370 wl = wn;
4371 }
4372
4373 if (types & (EV_TIMER | EV_STAT))
4374 for (i = timercnt + HEAP0; i-- > HEAP0; )
4375#if EV_STAT_ENABLE
4376 /*TODO: timer is not always active*/
4377 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4378 {
4379 if (types & EV_STAT)
4380 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4381 }
4382 else
4383#endif
4384 if (types & EV_TIMER)
4385 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4386
4387#if EV_PERIODIC_ENABLE
4388 if (types & EV_PERIODIC)
4389 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4390 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4391#endif
4392
4393#if EV_IDLE_ENABLE
4394 if (types & EV_IDLE)
4395 for (j = NUMPRI; j--; )
4396 for (i = idlecnt [j]; i--; )
4397 cb (EV_A_ EV_IDLE, idles [j][i]);
4398#endif
4399
4400#if EV_FORK_ENABLE
4401 if (types & EV_FORK)
4402 for (i = forkcnt; i--; )
4403 if (ev_cb (forks [i]) != embed_fork_cb)
4404 cb (EV_A_ EV_FORK, forks [i]);
4405#endif
4406
4407#if EV_ASYNC_ENABLE
4408 if (types & EV_ASYNC)
4409 for (i = asynccnt; i--; )
4410 cb (EV_A_ EV_ASYNC, asyncs [i]);
4411#endif
4412
4413#if EV_PREPARE_ENABLE
4414 if (types & EV_PREPARE)
4415 for (i = preparecnt; i--; )
4416# if EV_EMBED_ENABLE
4417 if (ev_cb (prepares [i]) != embed_prepare_cb)
4418# endif
4419 cb (EV_A_ EV_PREPARE, prepares [i]);
4420#endif
4421
4422#if EV_CHECK_ENABLE
4423 if (types & EV_CHECK)
4424 for (i = checkcnt; i--; )
4425 cb (EV_A_ EV_CHECK, checks [i]);
4426#endif
4427
4428#if EV_SIGNAL_ENABLE
4429 if (types & EV_SIGNAL)
4430 for (i = 0; i < EV_NSIG - 1; ++i)
4431 for (wl = signals [i].head; wl; )
4432 {
4433 wn = wl->next;
4434 cb (EV_A_ EV_SIGNAL, wl);
4435 wl = wn;
4436 }
4437#endif
4438
4439#if EV_CHILD_ENABLE
4440 if (types & EV_CHILD)
4441 for (i = (EV_PID_HASHSIZE); i--; )
4442 for (wl = childs [i]; wl; )
4443 {
4444 wn = wl->next;
4445 cb (EV_A_ EV_CHILD, wl);
4446 wl = wn;
4447 }
4448#endif
4449/* EV_STAT 0x00001000 /* stat data changed */
4450/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4451}
4452#endif
4453
2447#if EV_MULTIPLICITY 4454#if EV_MULTIPLICITY
2448 #include "ev_wrap.h" 4455 #include "ev_wrap.h"
2449#endif 4456#endif
2450 4457
2451#ifdef __cplusplus
2452}
2453#endif
2454

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines