ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.407 by root, Wed Jan 25 01:32:12 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31#ifndef EV_EMBED 39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
36#include <stdlib.h> 167#include <stdlib.h>
37#include <unistd.h> 168#include <string.h>
38#include <fcntl.h> 169#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 170#include <stddef.h>
41 171
42#include <stdio.h> 172#include <stdio.h>
43 173
44#include <assert.h> 174#include <assert.h>
45#include <errno.h> 175#include <errno.h>
46#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
47#ifndef WIN32 188#ifndef _WIN32
189# include <sys/time.h>
48# include <sys/wait.h> 190# include <sys/wait.h>
191# include <unistd.h>
192#else
193# include <io.h>
194# define WIN32_LEAN_AND_MEAN
195# include <windows.h>
196# ifndef EV_SELECT_IS_WINSOCKET
197# define EV_SELECT_IS_WINSOCKET 1
49#endif 198# endif
50#include <sys/time.h> 199# undef EV_AVOID_STDIO
51#include <time.h> 200#endif
52 201
53/**/ 202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
249# endif
250#endif
54 251
55#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
56# define EV_USE_MONOTONIC 1 256# define EV_USE_MONOTONIC 0
257# endif
258#endif
259
260#ifndef EV_USE_REALTIME
261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262#endif
263
264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
268# define EV_USE_NANOSLEEP 0
269# endif
57#endif 270#endif
58 271
59#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 274#endif
62 275
63#ifndef EV_USEV_POLL 276#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 277# ifdef _WIN32
278# define EV_USE_POLL 0
279# else
280# define EV_USE_POLL EV_FEATURE_BACKENDS
281# endif
65#endif 282#endif
66 283
67#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
68# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
69#endif 290#endif
70 291
71#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
73#endif 294#endif
74 295
75#ifndef EV_USE_REALTIME 296#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 297# define EV_USE_PORT 0
298#endif
299
300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
304# define EV_USE_INOTIFY 0
77#endif 305# endif
306#endif
78 307
79/**/ 308#ifndef EV_PID_HASHSIZE
309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
319# else
320# define EV_USE_EVENTFD 0
321# endif
322#endif
323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
80 371
81#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
84#endif 375#endif
86#ifndef CLOCK_REALTIME 377#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 378# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 379# define EV_USE_REALTIME 0
89#endif 380#endif
90 381
382#if !EV_STAT_ENABLE
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385#endif
386
387#if !EV_USE_NANOSLEEP
388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
390# include <sys/select.h>
391# endif
392#endif
393
394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
402#endif
403
404#if EV_SELECT_IS_WINSOCKET
405# include <winsock.h>
406#endif
407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
91/**/ 446/**/
92 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to work around floating point rounding problems.
456 * This value is good at least till the year 4000.
457 */
458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
460
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 463
98#ifndef EV_EMBED 464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
99# include "ev.h" 465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
508 #if __GNUC__
509 typedef signed long long int64_t;
510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
100#endif 514 #endif
101
102#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline
105#else 515#else
106# define expect(expr,value) (expr) 516 #include <inttypes.h>
107# define inline static 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
108#endif 531 #endif
109 532#endif
110#define expect_false(expr) expect ((expr) != 0, 0)
111#define expect_true(expr) expect ((expr) != 0, 1)
112
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
114#define ABSPRI(w) ((w)->priority - EV_MINPRI)
115
116typedef struct ev_watcher *W;
117typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT;
119
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 533
122/*****************************************************************************/ 534/*****************************************************************************/
123 535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 #if __i386 || __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif __sparc || __sparc__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 #endif
566 #endif
567#endif
568
569#ifndef ECB_MEMORY_FENCE
570 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
571 #define ECB_MEMORY_FENCE __sync_synchronize ()
572 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
573 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
574 #elif _MSC_VER >= 1400 /* VC++ 2005 */
575 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
576 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
577 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
578 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
579 #elif defined(_WIN32)
580 #include <WinNT.h>
581 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
582 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
583 #include <mbarrier.h>
584 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
585 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
586 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if !ECB_AVOID_PTHREADS
592 /*
593 * if you get undefined symbol references to pthread_mutex_lock,
594 * or failure to find pthread.h, then you should implement
595 * the ECB_MEMORY_FENCE operations for your cpu/compiler
596 * OR provide pthread.h and link against the posix thread library
597 * of your system.
598 */
599 #include <pthread.h>
600 #define ECB_NEEDS_PTHREADS 1
601 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
602
603 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
604 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
605 #endif
606#endif
607
608#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
609 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
610#endif
611
612#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
613 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
614#endif
615
616/*****************************************************************************/
617
618#define ECB_C99 (__STDC_VERSION__ >= 199901L)
619
620#if __cplusplus
621 #define ecb_inline static inline
622#elif ECB_GCC_VERSION(2,5)
623 #define ecb_inline static __inline__
624#elif ECB_C99
625 #define ecb_inline static inline
626#else
627 #define ecb_inline static
628#endif
629
630#if ECB_GCC_VERSION(3,3)
631 #define ecb_restrict __restrict__
632#elif ECB_C99
633 #define ecb_restrict restrict
634#else
635 #define ecb_restrict
636#endif
637
638typedef int ecb_bool;
639
640#define ECB_CONCAT_(a, b) a ## b
641#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
642#define ECB_STRINGIFY_(a) # a
643#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
644
645#define ecb_function_ ecb_inline
646
647#if ECB_GCC_VERSION(3,1)
648 #define ecb_attribute(attrlist) __attribute__(attrlist)
649 #define ecb_is_constant(expr) __builtin_constant_p (expr)
650 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
651 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
652#else
653 #define ecb_attribute(attrlist)
654 #define ecb_is_constant(expr) 0
655 #define ecb_expect(expr,value) (expr)
656 #define ecb_prefetch(addr,rw,locality)
657#endif
658
659/* no emulation for ecb_decltype */
660#if ECB_GCC_VERSION(4,5)
661 #define ecb_decltype(x) __decltype(x)
662#elif ECB_GCC_VERSION(3,0)
663 #define ecb_decltype(x) __typeof(x)
664#endif
665
666#define ecb_noinline ecb_attribute ((__noinline__))
667#define ecb_noreturn ecb_attribute ((__noreturn__))
668#define ecb_unused ecb_attribute ((__unused__))
669#define ecb_const ecb_attribute ((__const__))
670#define ecb_pure ecb_attribute ((__pure__))
671
672#if ECB_GCC_VERSION(4,3)
673 #define ecb_artificial ecb_attribute ((__artificial__))
674 #define ecb_hot ecb_attribute ((__hot__))
675 #define ecb_cold ecb_attribute ((__cold__))
676#else
677 #define ecb_artificial
678 #define ecb_hot
679 #define ecb_cold
680#endif
681
682/* put around conditional expressions if you are very sure that the */
683/* expression is mostly true or mostly false. note that these return */
684/* booleans, not the expression. */
685#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
686#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
687/* for compatibility to the rest of the world */
688#define ecb_likely(expr) ecb_expect_true (expr)
689#define ecb_unlikely(expr) ecb_expect_false (expr)
690
691/* count trailing zero bits and count # of one bits */
692#if ECB_GCC_VERSION(3,4)
693 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
694 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
695 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
696 #define ecb_ctz32(x) __builtin_ctz (x)
697 #define ecb_ctz64(x) __builtin_ctzll (x)
698 #define ecb_popcount32(x) __builtin_popcount (x)
699 /* no popcountll */
700#else
701 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
702 ecb_function_ int
703 ecb_ctz32 (uint32_t x)
704 {
705 int r = 0;
706
707 x &= ~x + 1; /* this isolates the lowest bit */
708
709#if ECB_branchless_on_i386
710 r += !!(x & 0xaaaaaaaa) << 0;
711 r += !!(x & 0xcccccccc) << 1;
712 r += !!(x & 0xf0f0f0f0) << 2;
713 r += !!(x & 0xff00ff00) << 3;
714 r += !!(x & 0xffff0000) << 4;
715#else
716 if (x & 0xaaaaaaaa) r += 1;
717 if (x & 0xcccccccc) r += 2;
718 if (x & 0xf0f0f0f0) r += 4;
719 if (x & 0xff00ff00) r += 8;
720 if (x & 0xffff0000) r += 16;
721#endif
722
723 return r;
724 }
725
726 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
727 ecb_function_ int
728 ecb_ctz64 (uint64_t x)
729 {
730 int shift = x & 0xffffffffU ? 0 : 32;
731 return ecb_ctz32 (x >> shift) + shift;
732 }
733
734 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
735 ecb_function_ int
736 ecb_popcount32 (uint32_t x)
737 {
738 x -= (x >> 1) & 0x55555555;
739 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
740 x = ((x >> 4) + x) & 0x0f0f0f0f;
741 x *= 0x01010101;
742
743 return x >> 24;
744 }
745
746 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
747 ecb_function_ int ecb_ld32 (uint32_t x)
748 {
749 int r = 0;
750
751 if (x >> 16) { x >>= 16; r += 16; }
752 if (x >> 8) { x >>= 8; r += 8; }
753 if (x >> 4) { x >>= 4; r += 4; }
754 if (x >> 2) { x >>= 2; r += 2; }
755 if (x >> 1) { r += 1; }
756
757 return r;
758 }
759
760 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
761 ecb_function_ int ecb_ld64 (uint64_t x)
762 {
763 int r = 0;
764
765 if (x >> 32) { x >>= 32; r += 32; }
766
767 return r + ecb_ld32 (x);
768 }
769#endif
770
771ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
772ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
773{
774 return ( (x * 0x0802U & 0x22110U)
775 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
776}
777
778ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
779ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
780{
781 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
782 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
783 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
784 x = ( x >> 8 ) | ( x << 8);
785
786 return x;
787}
788
789ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
790ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
791{
792 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
793 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
794 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
795 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
796 x = ( x >> 16 ) | ( x << 16);
797
798 return x;
799}
800
801/* popcount64 is only available on 64 bit cpus as gcc builtin */
802/* so for this version we are lazy */
803ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
804ecb_function_ int
805ecb_popcount64 (uint64_t x)
806{
807 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
808}
809
810ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
811ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
812ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
813ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
814ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
815ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
816ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
817ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
818
819ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
820ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
821ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
822ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
823ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
824ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
825ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
826ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
830 #define ecb_bswap32(x) __builtin_bswap32 (x)
831 #define ecb_bswap64(x) __builtin_bswap64 (x)
832#else
833 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
834 ecb_function_ uint16_t
835 ecb_bswap16 (uint16_t x)
836 {
837 return ecb_rotl16 (x, 8);
838 }
839
840 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
841 ecb_function_ uint32_t
842 ecb_bswap32 (uint32_t x)
843 {
844 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
845 }
846
847 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
848 ecb_function_ uint64_t
849 ecb_bswap64 (uint64_t x)
850 {
851 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
852 }
853#endif
854
855#if ECB_GCC_VERSION(4,5)
856 #define ecb_unreachable() __builtin_unreachable ()
857#else
858 /* this seems to work fine, but gcc always emits a warning for it :/ */
859 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
860 ecb_function_ void ecb_unreachable (void) { }
861#endif
862
863/* try to tell the compiler that some condition is definitely true */
864#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
865
866ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
867ecb_function_ unsigned char
868ecb_byteorder_helper (void)
869{
870 const uint32_t u = 0x11223344;
871 return *(unsigned char *)&u;
872}
873
874ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
875ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
876ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
877ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
878
879#if ECB_GCC_VERSION(3,0) || ECB_C99
880 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
881#else
882 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
883#endif
884
885#if __cplusplus
886 template<typename T>
887 static inline T ecb_div_rd (T val, T div)
888 {
889 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
890 }
891 template<typename T>
892 static inline T ecb_div_ru (T val, T div)
893 {
894 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
895 }
896#else
897 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
898 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
899#endif
900
901#if ecb_cplusplus_does_not_suck
902 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
903 template<typename T, int N>
904 static inline int ecb_array_length (const T (&arr)[N])
905 {
906 return N;
907 }
908#else
909 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
910#endif
911
912#endif
913
914/* ECB.H END */
915
916#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
917/* if your architecture doesn't need memory fences, e.g. because it is
918 * single-cpu/core, or if you use libev in a project that doesn't use libev
919 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
920 * libev, in which cases the memory fences become nops.
921 * alternatively, you can remove this #error and link against libpthread,
922 * which will then provide the memory fences.
923 */
924# error "memory fences not defined for your architecture, please report"
925#endif
926
927#ifndef ECB_MEMORY_FENCE
928# define ECB_MEMORY_FENCE do { } while (0)
929# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
931#endif
932
933#define expect_false(cond) ecb_expect_false (cond)
934#define expect_true(cond) ecb_expect_true (cond)
935#define noinline ecb_noinline
936
937#define inline_size ecb_inline
938
939#if EV_FEATURE_CODE
940# define inline_speed ecb_inline
941#else
942# define inline_speed static noinline
943#endif
944
945#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
946
947#if EV_MINPRI == EV_MAXPRI
948# define ABSPRI(w) (((W)w), 0)
949#else
950# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
951#endif
952
953#define EMPTY /* required for microsofts broken pseudo-c compiler */
954#define EMPTY2(a,b) /* used to suppress some warnings */
955
956typedef ev_watcher *W;
957typedef ev_watcher_list *WL;
958typedef ev_watcher_time *WT;
959
960#define ev_active(w) ((W)(w))->active
961#define ev_at(w) ((WT)(w))->at
962
963#if EV_USE_REALTIME
964/* sig_atomic_t is used to avoid per-thread variables or locking but still */
965/* giving it a reasonably high chance of working on typical architectures */
966static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
967#endif
968
969#if EV_USE_MONOTONIC
970static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
971#endif
972
973#ifndef EV_FD_TO_WIN32_HANDLE
974# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
975#endif
976#ifndef EV_WIN32_HANDLE_TO_FD
977# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
978#endif
979#ifndef EV_WIN32_CLOSE_FD
980# define EV_WIN32_CLOSE_FD(fd) close (fd)
981#endif
982
983#ifdef _WIN32
984# include "ev_win32.c"
985#endif
986
987/*****************************************************************************/
988
989/* define a suitable floor function (only used by periodics atm) */
990
991#if EV_USE_FLOOR
992# include <math.h>
993# define ev_floor(v) floor (v)
994#else
995
996#include <float.h>
997
998/* a floor() replacement function, should be independent of ev_tstamp type */
999static ev_tstamp noinline
1000ev_floor (ev_tstamp v)
1001{
1002 /* the choice of shift factor is not terribly important */
1003#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1004 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1005#else
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1007#endif
1008
1009 /* argument too large for an unsigned long? */
1010 if (expect_false (v >= shift))
1011 {
1012 ev_tstamp f;
1013
1014 if (v == v - 1.)
1015 return v; /* very large number */
1016
1017 f = shift * ev_floor (v * (1. / shift));
1018 return f + ev_floor (v - f);
1019 }
1020
1021 /* special treatment for negative args? */
1022 if (expect_false (v < 0.))
1023 {
1024 ev_tstamp f = -ev_floor (-v);
1025
1026 return f - (f == v ? 0 : 1);
1027 }
1028
1029 /* fits into an unsigned long */
1030 return (unsigned long)v;
1031}
1032
1033#endif
1034
1035/*****************************************************************************/
1036
1037#ifdef __linux
1038# include <sys/utsname.h>
1039#endif
1040
1041static unsigned int noinline ecb_cold
1042ev_linux_version (void)
1043{
1044#ifdef __linux
1045 unsigned int v = 0;
1046 struct utsname buf;
1047 int i;
1048 char *p = buf.release;
1049
1050 if (uname (&buf))
1051 return 0;
1052
1053 for (i = 3+1; --i; )
1054 {
1055 unsigned int c = 0;
1056
1057 for (;;)
1058 {
1059 if (*p >= '0' && *p <= '9')
1060 c = c * 10 + *p++ - '0';
1061 else
1062 {
1063 p += *p == '.';
1064 break;
1065 }
1066 }
1067
1068 v = (v << 8) | c;
1069 }
1070
1071 return v;
1072#else
1073 return 0;
1074#endif
1075}
1076
1077/*****************************************************************************/
1078
1079#if EV_AVOID_STDIO
1080static void noinline ecb_cold
1081ev_printerr (const char *msg)
1082{
1083 write (STDERR_FILENO, msg, strlen (msg));
1084}
1085#endif
1086
1087static void (*syserr_cb)(const char *msg);
1088
1089void ecb_cold
1090ev_set_syserr_cb (void (*cb)(const char *msg))
1091{
1092 syserr_cb = cb;
1093}
1094
1095static void noinline ecb_cold
1096ev_syserr (const char *msg)
1097{
1098 if (!msg)
1099 msg = "(libev) system error";
1100
1101 if (syserr_cb)
1102 syserr_cb (msg);
1103 else
1104 {
1105#if EV_AVOID_STDIO
1106 ev_printerr (msg);
1107 ev_printerr (": ");
1108 ev_printerr (strerror (errno));
1109 ev_printerr ("\n");
1110#else
1111 perror (msg);
1112#endif
1113 abort ();
1114 }
1115}
1116
1117static void *
1118ev_realloc_emul (void *ptr, long size)
1119{
1120#if __GLIBC__
1121 return realloc (ptr, size);
1122#else
1123 /* some systems, notably openbsd and darwin, fail to properly
1124 * implement realloc (x, 0) (as required by both ansi c-89 and
1125 * the single unix specification, so work around them here.
1126 */
1127
1128 if (size)
1129 return realloc (ptr, size);
1130
1131 free (ptr);
1132 return 0;
1133#endif
1134}
1135
1136static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1137
1138void ecb_cold
1139ev_set_allocator (void *(*cb)(void *ptr, long size))
1140{
1141 alloc = cb;
1142}
1143
1144inline_speed void *
1145ev_realloc (void *ptr, long size)
1146{
1147 ptr = alloc (ptr, size);
1148
1149 if (!ptr && size)
1150 {
1151#if EV_AVOID_STDIO
1152 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1153#else
1154 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1155#endif
1156 abort ();
1157 }
1158
1159 return ptr;
1160}
1161
1162#define ev_malloc(size) ev_realloc (0, (size))
1163#define ev_free(ptr) ev_realloc ((ptr), 0)
1164
1165/*****************************************************************************/
1166
1167/* set in reify when reification needed */
1168#define EV_ANFD_REIFY 1
1169
1170/* file descriptor info structure */
124typedef struct 1171typedef struct
125{ 1172{
126 struct ev_watcher_list *head; 1173 WL head;
127 unsigned char events; 1174 unsigned char events; /* the events watched for */
1175 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1176 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
128 unsigned char reify; 1177 unsigned char unused;
1178#if EV_USE_EPOLL
1179 unsigned int egen; /* generation counter to counter epoll bugs */
1180#endif
1181#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1182 SOCKET handle;
1183#endif
1184#if EV_USE_IOCP
1185 OVERLAPPED or, ow;
1186#endif
129} ANFD; 1187} ANFD;
130 1188
1189/* stores the pending event set for a given watcher */
131typedef struct 1190typedef struct
132{ 1191{
133 W w; 1192 W w;
134 int events; 1193 int events; /* the pending event set for the given watcher */
135} ANPENDING; 1194} ANPENDING;
136 1195
1196#if EV_USE_INOTIFY
1197/* hash table entry per inotify-id */
1198typedef struct
1199{
1200 WL head;
1201} ANFS;
1202#endif
1203
1204/* Heap Entry */
1205#if EV_HEAP_CACHE_AT
1206 /* a heap element */
1207 typedef struct {
1208 ev_tstamp at;
1209 WT w;
1210 } ANHE;
1211
1212 #define ANHE_w(he) (he).w /* access watcher, read-write */
1213 #define ANHE_at(he) (he).at /* access cached at, read-only */
1214 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1215#else
1216 /* a heap element */
1217 typedef WT ANHE;
1218
1219 #define ANHE_w(he) (he)
1220 #define ANHE_at(he) (he)->at
1221 #define ANHE_at_cache(he)
1222#endif
1223
137#if EV_MULTIPLICITY 1224#if EV_MULTIPLICITY
138 1225
139struct ev_loop 1226 struct ev_loop
140{ 1227 {
1228 ev_tstamp ev_rt_now;
1229 #define ev_rt_now ((loop)->ev_rt_now)
141# define VAR(name,decl) decl; 1230 #define VAR(name,decl) decl;
142# include "ev_vars.h" 1231 #include "ev_vars.h"
143};
144# undef VAR 1232 #undef VAR
1233 };
145# include "ev_wrap.h" 1234 #include "ev_wrap.h"
1235
1236 static struct ev_loop default_loop_struct;
1237 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
146 1238
147#else 1239#else
148 1240
1241 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
149# define VAR(name,decl) static decl; 1242 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 1243 #include "ev_vars.h"
151# undef VAR 1244 #undef VAR
152 1245
1246 static int ev_default_loop_ptr;
1247
153#endif 1248#endif
1249
1250#if EV_FEATURE_API
1251# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1252# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1253# define EV_INVOKE_PENDING invoke_cb (EV_A)
1254#else
1255# define EV_RELEASE_CB (void)0
1256# define EV_ACQUIRE_CB (void)0
1257# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1258#endif
1259
1260#define EVBREAK_RECURSE 0x80
154 1261
155/*****************************************************************************/ 1262/*****************************************************************************/
156 1263
157inline ev_tstamp 1264#ifndef EV_HAVE_EV_TIME
1265ev_tstamp
158ev_time (void) 1266ev_time (void)
159{ 1267{
160#if EV_USE_REALTIME 1268#if EV_USE_REALTIME
1269 if (expect_true (have_realtime))
1270 {
161 struct timespec ts; 1271 struct timespec ts;
162 clock_gettime (CLOCK_REALTIME, &ts); 1272 clock_gettime (CLOCK_REALTIME, &ts);
163 return ts.tv_sec + ts.tv_nsec * 1e-9; 1273 return ts.tv_sec + ts.tv_nsec * 1e-9;
164#else 1274 }
1275#endif
1276
165 struct timeval tv; 1277 struct timeval tv;
166 gettimeofday (&tv, 0); 1278 gettimeofday (&tv, 0);
167 return tv.tv_sec + tv.tv_usec * 1e-6; 1279 return tv.tv_sec + tv.tv_usec * 1e-6;
168#endif
169} 1280}
1281#endif
170 1282
171inline ev_tstamp 1283inline_size ev_tstamp
172get_clock (void) 1284get_clock (void)
173{ 1285{
174#if EV_USE_MONOTONIC 1286#if EV_USE_MONOTONIC
175 if (expect_true (have_monotonic)) 1287 if (expect_true (have_monotonic))
176 { 1288 {
181#endif 1293#endif
182 1294
183 return ev_time (); 1295 return ev_time ();
184} 1296}
185 1297
1298#if EV_MULTIPLICITY
186ev_tstamp 1299ev_tstamp
187ev_now (EV_P) 1300ev_now (EV_P)
188{ 1301{
189 return rt_now; 1302 return ev_rt_now;
190} 1303}
1304#endif
191 1305
192#define array_roundsize(base,n) ((n) | 4 & ~3) 1306void
193 1307ev_sleep (ev_tstamp delay)
194#define array_needsize(base,cur,cnt,init) \ 1308{
195 if (expect_false ((cnt) > cur)) \ 1309 if (delay > 0.)
196 { \
197 int newcnt = cur; \
198 do \
199 { \
200 newcnt = array_roundsize (base, newcnt << 1); \
201 } \
202 while ((cnt) > newcnt); \
203 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \
205 init (base + cur, newcnt - cur); \
206 cur = newcnt; \
207 } 1310 {
1311#if EV_USE_NANOSLEEP
1312 struct timespec ts;
1313
1314 EV_TS_SET (ts, delay);
1315 nanosleep (&ts, 0);
1316#elif defined(_WIN32)
1317 Sleep ((unsigned long)(delay * 1e3));
1318#else
1319 struct timeval tv;
1320
1321 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1322 /* something not guaranteed by newer posix versions, but guaranteed */
1323 /* by older ones */
1324 EV_TV_SET (tv, delay);
1325 select (0, 0, 0, 0, &tv);
1326#endif
1327 }
1328}
208 1329
209/*****************************************************************************/ 1330/*****************************************************************************/
210 1331
211static void 1332#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
212anfds_init (ANFD *base, int count)
213{
214 while (count--)
215 {
216 base->head = 0;
217 base->events = EV_NONE;
218 base->reify = 0;
219 1333
220 ++base; 1334/* find a suitable new size for the given array, */
1335/* hopefully by rounding to a nice-to-malloc size */
1336inline_size int
1337array_nextsize (int elem, int cur, int cnt)
1338{
1339 int ncur = cur + 1;
1340
1341 do
1342 ncur <<= 1;
1343 while (cnt > ncur);
1344
1345 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1346 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
221 } 1347 {
222} 1348 ncur *= elem;
223 1349 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
224static void 1350 ncur = ncur - sizeof (void *) * 4;
225event (EV_P_ W w, int events) 1351 ncur /= elem;
226{
227 if (w->pending)
228 { 1352 }
1353
1354 return ncur;
1355}
1356
1357static void * noinline ecb_cold
1358array_realloc (int elem, void *base, int *cur, int cnt)
1359{
1360 *cur = array_nextsize (elem, *cur, cnt);
1361 return ev_realloc (base, elem * *cur);
1362}
1363
1364#define array_init_zero(base,count) \
1365 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1366
1367#define array_needsize(type,base,cur,cnt,init) \
1368 if (expect_false ((cnt) > (cur))) \
1369 { \
1370 int ecb_unused ocur_ = (cur); \
1371 (base) = (type *)array_realloc \
1372 (sizeof (type), (base), &(cur), (cnt)); \
1373 init ((base) + (ocur_), (cur) - ocur_); \
1374 }
1375
1376#if 0
1377#define array_slim(type,stem) \
1378 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1379 { \
1380 stem ## max = array_roundsize (stem ## cnt >> 1); \
1381 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1382 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1383 }
1384#endif
1385
1386#define array_free(stem, idx) \
1387 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1388
1389/*****************************************************************************/
1390
1391/* dummy callback for pending events */
1392static void noinline
1393pendingcb (EV_P_ ev_prepare *w, int revents)
1394{
1395}
1396
1397void noinline
1398ev_feed_event (EV_P_ void *w, int revents)
1399{
1400 W w_ = (W)w;
1401 int pri = ABSPRI (w_);
1402
1403 if (expect_false (w_->pending))
1404 pendings [pri][w_->pending - 1].events |= revents;
1405 else
1406 {
1407 w_->pending = ++pendingcnt [pri];
1408 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1409 pendings [pri][w_->pending - 1].w = w_;
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1410 pendings [pri][w_->pending - 1].events = revents;
230 return;
231 } 1411 }
232
233 w->pending = ++pendingcnt [ABSPRI (w)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
235 pendings [ABSPRI (w)][w->pending - 1].w = w;
236 pendings [ABSPRI (w)][w->pending - 1].events = events;
237} 1412}
238 1413
239static void 1414inline_speed void
1415feed_reverse (EV_P_ W w)
1416{
1417 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1418 rfeeds [rfeedcnt++] = w;
1419}
1420
1421inline_size void
1422feed_reverse_done (EV_P_ int revents)
1423{
1424 do
1425 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1426 while (rfeedcnt);
1427}
1428
1429inline_speed void
240queue_events (EV_P_ W *events, int eventcnt, int type) 1430queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 1431{
242 int i; 1432 int i;
243 1433
244 for (i = 0; i < eventcnt; ++i) 1434 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 1435 ev_feed_event (EV_A_ events [i], type);
246} 1436}
247 1437
248static void 1438/*****************************************************************************/
1439
1440inline_speed void
249fd_event (EV_P_ int fd, int events) 1441fd_event_nocheck (EV_P_ int fd, int revents)
250{ 1442{
251 ANFD *anfd = anfds + fd; 1443 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 1444 ev_io *w;
253 1445
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1446 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
255 { 1447 {
256 int ev = w->events & events; 1448 int ev = w->events & revents;
257 1449
258 if (ev) 1450 if (ev)
259 event (EV_A_ (W)w, ev); 1451 ev_feed_event (EV_A_ (W)w, ev);
260 } 1452 }
261} 1453}
262 1454
263/*****************************************************************************/ 1455/* do not submit kernel events for fds that have reify set */
1456/* because that means they changed while we were polling for new events */
1457inline_speed void
1458fd_event (EV_P_ int fd, int revents)
1459{
1460 ANFD *anfd = anfds + fd;
264 1461
265static void 1462 if (expect_true (!anfd->reify))
1463 fd_event_nocheck (EV_A_ fd, revents);
1464}
1465
1466void
1467ev_feed_fd_event (EV_P_ int fd, int revents)
1468{
1469 if (fd >= 0 && fd < anfdmax)
1470 fd_event_nocheck (EV_A_ fd, revents);
1471}
1472
1473/* make sure the external fd watch events are in-sync */
1474/* with the kernel/libev internal state */
1475inline_size void
266fd_reify (EV_P) 1476fd_reify (EV_P)
267{ 1477{
268 int i; 1478 int i;
269 1479
1480#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
270 for (i = 0; i < fdchangecnt; ++i) 1481 for (i = 0; i < fdchangecnt; ++i)
271 { 1482 {
272 int fd = fdchanges [i]; 1483 int fd = fdchanges [i];
273 ANFD *anfd = anfds + fd; 1484 ANFD *anfd = anfds + fd;
274 struct ev_io *w;
275 1485
276 int events = 0; 1486 if (anfd->reify & EV__IOFDSET && anfd->head)
277
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events;
280
281 anfd->reify = 0;
282
283 if (anfd->events != events)
284 { 1487 {
1488 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1489
1490 if (handle != anfd->handle)
1491 {
1492 unsigned long arg;
1493
1494 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1495
1496 /* handle changed, but fd didn't - we need to do it in two steps */
285 method_modify (EV_A_ fd, anfd->events, events); 1497 backend_modify (EV_A_ fd, anfd->events, 0);
286 anfd->events = events; 1498 anfd->events = 0;
1499 anfd->handle = handle;
1500 }
287 } 1501 }
288 } 1502 }
1503#endif
1504
1505 for (i = 0; i < fdchangecnt; ++i)
1506 {
1507 int fd = fdchanges [i];
1508 ANFD *anfd = anfds + fd;
1509 ev_io *w;
1510
1511 unsigned char o_events = anfd->events;
1512 unsigned char o_reify = anfd->reify;
1513
1514 anfd->reify = 0;
1515
1516 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1517 {
1518 anfd->events = 0;
1519
1520 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1521 anfd->events |= (unsigned char)w->events;
1522
1523 if (o_events != anfd->events)
1524 o_reify = EV__IOFDSET; /* actually |= */
1525 }
1526
1527 if (o_reify & EV__IOFDSET)
1528 backend_modify (EV_A_ fd, o_events, anfd->events);
1529 }
289 1530
290 fdchangecnt = 0; 1531 fdchangecnt = 0;
291} 1532}
292 1533
293static void 1534/* something about the given fd changed */
1535inline_size void
294fd_change (EV_P_ int fd) 1536fd_change (EV_P_ int fd, int flags)
295{ 1537{
296 if (anfds [fd].reify || fdchangecnt < 0) 1538 unsigned char reify = anfds [fd].reify;
297 return;
298
299 anfds [fd].reify = 1; 1539 anfds [fd].reify |= flags;
300 1540
1541 if (expect_true (!reify))
1542 {
301 ++fdchangecnt; 1543 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1544 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
303 fdchanges [fdchangecnt - 1] = fd; 1545 fdchanges [fdchangecnt - 1] = fd;
1546 }
304} 1547}
305 1548
306static void 1549/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1550inline_speed void ecb_cold
307fd_kill (EV_P_ int fd) 1551fd_kill (EV_P_ int fd)
308{ 1552{
309 struct ev_io *w; 1553 ev_io *w;
310 1554
311 while ((w = (struct ev_io *)anfds [fd].head)) 1555 while ((w = (ev_io *)anfds [fd].head))
312 { 1556 {
313 ev_io_stop (EV_A_ w); 1557 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1558 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 1559 }
1560}
1561
1562/* check whether the given fd is actually valid, for error recovery */
1563inline_size int ecb_cold
1564fd_valid (int fd)
1565{
1566#ifdef _WIN32
1567 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1568#else
1569 return fcntl (fd, F_GETFD) != -1;
1570#endif
316} 1571}
317 1572
318/* called on EBADF to verify fds */ 1573/* called on EBADF to verify fds */
319static void 1574static void noinline ecb_cold
320fd_ebadf (EV_P) 1575fd_ebadf (EV_P)
321{ 1576{
322 int fd; 1577 int fd;
323 1578
324 for (fd = 0; fd < anfdmax; ++fd) 1579 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 1580 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1581 if (!fd_valid (fd) && errno == EBADF)
327 fd_kill (EV_A_ fd); 1582 fd_kill (EV_A_ fd);
328} 1583}
329 1584
330/* called on ENOMEM in select/poll to kill some fds and retry */ 1585/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 1586static void noinline ecb_cold
332fd_enomem (EV_P) 1587fd_enomem (EV_P)
333{ 1588{
334 int fd = anfdmax; 1589 int fd;
335 1590
336 while (fd--) 1591 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 1592 if (anfds [fd].events)
338 { 1593 {
339 close (fd);
340 fd_kill (EV_A_ fd); 1594 fd_kill (EV_A_ fd);
341 return; 1595 break;
342 } 1596 }
343} 1597}
344 1598
345/* susually called after fork if method needs to re-arm all fds from scratch */ 1599/* usually called after fork if backend needs to re-arm all fds from scratch */
346static void 1600static void noinline
347fd_rearm_all (EV_P) 1601fd_rearm_all (EV_P)
348{ 1602{
349 int fd; 1603 int fd;
350 1604
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 1606 if (anfds [fd].events)
354 { 1607 {
355 anfds [fd].events = 0; 1608 anfds [fd].events = 0;
356 fd_change (fd); 1609 anfds [fd].emask = 0;
1610 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
357 } 1611 }
358} 1612}
359 1613
1614/* used to prepare libev internal fd's */
1615/* this is not fork-safe */
1616inline_speed void
1617fd_intern (int fd)
1618{
1619#ifdef _WIN32
1620 unsigned long arg = 1;
1621 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1622#else
1623 fcntl (fd, F_SETFD, FD_CLOEXEC);
1624 fcntl (fd, F_SETFL, O_NONBLOCK);
1625#endif
1626}
1627
360/*****************************************************************************/ 1628/*****************************************************************************/
361 1629
1630/*
1631 * the heap functions want a real array index. array index 0 is guaranteed to not
1632 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1633 * the branching factor of the d-tree.
1634 */
1635
1636/*
1637 * at the moment we allow libev the luxury of two heaps,
1638 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1639 * which is more cache-efficient.
1640 * the difference is about 5% with 50000+ watchers.
1641 */
1642#if EV_USE_4HEAP
1643
1644#define DHEAP 4
1645#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1646#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1647#define UPHEAP_DONE(p,k) ((p) == (k))
1648
1649/* away from the root */
1650inline_speed void
1651downheap (ANHE *heap, int N, int k)
1652{
1653 ANHE he = heap [k];
1654 ANHE *E = heap + N + HEAP0;
1655
1656 for (;;)
1657 {
1658 ev_tstamp minat;
1659 ANHE *minpos;
1660 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1661
1662 /* find minimum child */
1663 if (expect_true (pos + DHEAP - 1 < E))
1664 {
1665 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1666 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1667 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1669 }
1670 else if (pos < E)
1671 {
1672 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1673 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1674 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1675 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1676 }
1677 else
1678 break;
1679
1680 if (ANHE_at (he) <= minat)
1681 break;
1682
1683 heap [k] = *minpos;
1684 ev_active (ANHE_w (*minpos)) = k;
1685
1686 k = minpos - heap;
1687 }
1688
1689 heap [k] = he;
1690 ev_active (ANHE_w (he)) = k;
1691}
1692
1693#else /* 4HEAP */
1694
1695#define HEAP0 1
1696#define HPARENT(k) ((k) >> 1)
1697#define UPHEAP_DONE(p,k) (!(p))
1698
1699/* away from the root */
1700inline_speed void
1701downheap (ANHE *heap, int N, int k)
1702{
1703 ANHE he = heap [k];
1704
1705 for (;;)
1706 {
1707 int c = k << 1;
1708
1709 if (c >= N + HEAP0)
1710 break;
1711
1712 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1713 ? 1 : 0;
1714
1715 if (ANHE_at (he) <= ANHE_at (heap [c]))
1716 break;
1717
1718 heap [k] = heap [c];
1719 ev_active (ANHE_w (heap [k])) = k;
1720
1721 k = c;
1722 }
1723
1724 heap [k] = he;
1725 ev_active (ANHE_w (he)) = k;
1726}
1727#endif
1728
1729/* towards the root */
1730inline_speed void
1731upheap (ANHE *heap, int k)
1732{
1733 ANHE he = heap [k];
1734
1735 for (;;)
1736 {
1737 int p = HPARENT (k);
1738
1739 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1740 break;
1741
1742 heap [k] = heap [p];
1743 ev_active (ANHE_w (heap [k])) = k;
1744 k = p;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750
1751/* move an element suitably so it is in a correct place */
1752inline_size void
1753adjustheap (ANHE *heap, int N, int k)
1754{
1755 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1756 upheap (heap, k);
1757 else
1758 downheap (heap, N, k);
1759}
1760
1761/* rebuild the heap: this function is used only once and executed rarely */
1762inline_size void
1763reheap (ANHE *heap, int N)
1764{
1765 int i;
1766
1767 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1768 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1769 for (i = 0; i < N; ++i)
1770 upheap (heap, i + HEAP0);
1771}
1772
1773/*****************************************************************************/
1774
1775/* associate signal watchers to a signal signal */
1776typedef struct
1777{
1778 EV_ATOMIC_T pending;
1779#if EV_MULTIPLICITY
1780 EV_P;
1781#endif
1782 WL head;
1783} ANSIG;
1784
1785static ANSIG signals [EV_NSIG - 1];
1786
1787/*****************************************************************************/
1788
1789#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1790
1791static void noinline ecb_cold
1792evpipe_init (EV_P)
1793{
1794 if (!ev_is_active (&pipe_w))
1795 {
1796# if EV_USE_EVENTFD
1797 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1798 if (evfd < 0 && errno == EINVAL)
1799 evfd = eventfd (0, 0);
1800
1801 if (evfd >= 0)
1802 {
1803 evpipe [0] = -1;
1804 fd_intern (evfd); /* doing it twice doesn't hurt */
1805 ev_io_set (&pipe_w, evfd, EV_READ);
1806 }
1807 else
1808# endif
1809 {
1810 while (pipe (evpipe))
1811 ev_syserr ("(libev) error creating signal/async pipe");
1812
1813 fd_intern (evpipe [0]);
1814 fd_intern (evpipe [1]);
1815 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1816 }
1817
1818 ev_io_start (EV_A_ &pipe_w);
1819 ev_unref (EV_A); /* watcher should not keep loop alive */
1820 }
1821}
1822
1823inline_speed void
1824evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1825{
1826 if (expect_true (*flag))
1827 return;
1828
1829 *flag = 1;
1830
1831 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1832
1833 pipe_write_skipped = 1;
1834
1835 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1836
1837 if (pipe_write_wanted)
1838 {
1839 int old_errno;
1840
1841 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1842
1843 old_errno = errno; /* save errno because write will clobber it */
1844
1845#if EV_USE_EVENTFD
1846 if (evfd >= 0)
1847 {
1848 uint64_t counter = 1;
1849 write (evfd, &counter, sizeof (uint64_t));
1850 }
1851 else
1852#endif
1853 {
1854 /* win32 people keep sending patches that change this write() to send() */
1855 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1856 /* so when you think this write should be a send instead, please find out */
1857 /* where your send() is from - it's definitely not the microsoft send, and */
1858 /* tell me. thank you. */
1859 write (evpipe [1], &(evpipe [1]), 1);
1860 }
1861
1862 errno = old_errno;
1863 }
1864}
1865
1866/* called whenever the libev signal pipe */
1867/* got some events (signal, async) */
362static void 1868static void
363upheap (WT *heap, int k) 1869pipecb (EV_P_ ev_io *iow, int revents)
364{ 1870{
365 WT w = heap [k]; 1871 int i;
366 1872
367 while (k && heap [k >> 1]->at > w->at) 1873 if (revents & EV_READ)
368 {
369 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1;
371 k >>= 1;
372 } 1874 {
1875#if EV_USE_EVENTFD
1876 if (evfd >= 0)
1877 {
1878 uint64_t counter;
1879 read (evfd, &counter, sizeof (uint64_t));
1880 }
1881 else
1882#endif
1883 {
1884 char dummy;
1885 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1886 read (evpipe [0], &dummy, 1);
1887 }
1888 }
373 1889
374 heap [k] = w; 1890 pipe_write_skipped = 0;
375 heap [k]->active = k + 1;
376 1891
1892#if EV_SIGNAL_ENABLE
1893 if (sig_pending)
1894 {
1895 sig_pending = 0;
1896
1897 for (i = EV_NSIG - 1; i--; )
1898 if (expect_false (signals [i].pending))
1899 ev_feed_signal_event (EV_A_ i + 1);
1900 }
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 if (async_pending)
1905 {
1906 async_pending = 0;
1907
1908 for (i = asynccnt; i--; )
1909 if (asyncs [i]->sent)
1910 {
1911 asyncs [i]->sent = 0;
1912 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1913 }
1914 }
1915#endif
1916}
1917
1918/*****************************************************************************/
1919
1920void
1921ev_feed_signal (int signum)
1922{
1923#if EV_MULTIPLICITY
1924 EV_P = signals [signum - 1].loop;
1925
1926 if (!EV_A)
1927 return;
1928#endif
1929
1930 if (!ev_active (&pipe_w))
1931 return;
1932
1933 signals [signum - 1].pending = 1;
1934 evpipe_write (EV_A_ &sig_pending);
377} 1935}
378 1936
379static void 1937static void
380downheap (WT *heap, int N, int k) 1938ev_sighandler (int signum)
381{ 1939{
382 WT w = heap [k]; 1940#ifdef _WIN32
1941 signal (signum, ev_sighandler);
1942#endif
383 1943
384 while (k < (N >> 1)) 1944 ev_feed_signal (signum);
385 { 1945}
386 int j = k << 1;
387 1946
388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1947void noinline
389 ++j; 1948ev_feed_signal_event (EV_P_ int signum)
1949{
1950 WL w;
390 1951
391 if (w->at <= heap [j]->at) 1952 if (expect_false (signum <= 0 || signum > EV_NSIG))
1953 return;
1954
1955 --signum;
1956
1957#if EV_MULTIPLICITY
1958 /* it is permissible to try to feed a signal to the wrong loop */
1959 /* or, likely more useful, feeding a signal nobody is waiting for */
1960
1961 if (expect_false (signals [signum].loop != EV_A))
1962 return;
1963#endif
1964
1965 signals [signum].pending = 0;
1966
1967 for (w = signals [signum].head; w; w = w->next)
1968 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1969}
1970
1971#if EV_USE_SIGNALFD
1972static void
1973sigfdcb (EV_P_ ev_io *iow, int revents)
1974{
1975 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1976
1977 for (;;)
1978 {
1979 ssize_t res = read (sigfd, si, sizeof (si));
1980
1981 /* not ISO-C, as res might be -1, but works with SuS */
1982 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1983 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1984
1985 if (res < (ssize_t)sizeof (si))
392 break; 1986 break;
393
394 heap [k] = heap [j];
395 heap [k]->active = k + 1;
396 k = j;
397 } 1987 }
398
399 heap [k] = w;
400 heap [k]->active = k + 1;
401} 1988}
1989#endif
1990
1991#endif
402 1992
403/*****************************************************************************/ 1993/*****************************************************************************/
404 1994
405typedef struct 1995#if EV_CHILD_ENABLE
406{ 1996static WL childs [EV_PID_HASHSIZE];
407 struct ev_watcher_list *head;
408 sig_atomic_t volatile gotsig;
409} ANSIG;
410 1997
411static ANSIG *signals; 1998static ev_signal childev;
412static int signalmax;
413 1999
414static int sigpipe [2]; 2000#ifndef WIFCONTINUED
415static sig_atomic_t volatile gotsig; 2001# define WIFCONTINUED(status) 0
2002#endif
416 2003
417static void 2004/* handle a single child status event */
418signals_init (ANSIG *base, int count) 2005inline_speed void
2006child_reap (EV_P_ int chain, int pid, int status)
419{ 2007{
420 while (count--) 2008 ev_child *w;
421 { 2009 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
422 base->head = 0;
423 base->gotsig = 0;
424 2010
425 ++base; 2011 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
426 } 2012 {
427} 2013 if ((w->pid == pid || !w->pid)
428 2014 && (!traced || (w->flags & 1)))
429static void
430sighandler (int signum)
431{
432 signals [signum - 1].gotsig = 1;
433
434 if (!gotsig)
435 {
436 int old_errno = errno;
437 gotsig = 1;
438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
440 }
441}
442
443static void
444sigcb (EV_P_ struct ev_io *iow, int revents)
445{
446 struct ev_watcher_list *w;
447 int signum;
448
449 read (sigpipe [0], &revents, 1);
450 gotsig = 0;
451
452 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig)
454 { 2015 {
455 signals [signum].gotsig = 0; 2016 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
456 2017 w->rpid = pid;
457 for (w = signals [signum].head; w; w = w->next) 2018 w->rstatus = status;
458 event (EV_A_ (W)w, EV_SIGNAL); 2019 ev_feed_event (EV_A_ (W)w, EV_CHILD);
459 } 2020 }
2021 }
460} 2022}
461
462static void
463siginit (EV_P)
464{
465#ifndef WIN32
466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
468
469 /* rather than sort out wether we really need nb, set it */
470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
473
474 ev_io_set (&sigev, sigpipe [0], EV_READ);
475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
477}
478
479/*****************************************************************************/
480
481#ifndef WIN32
482 2023
483#ifndef WCONTINUED 2024#ifndef WCONTINUED
484# define WCONTINUED 0 2025# define WCONTINUED 0
485#endif 2026#endif
486 2027
2028/* called on sigchld etc., calls waitpid */
487static void 2029static void
488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
489{
490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 2030childcb (EV_P_ ev_signal *sw, int revents)
504{ 2031{
505 int pid, status; 2032 int pid, status;
506 2033
2034 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2035 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 2036 if (!WCONTINUED
2037 || errno != EINVAL
2038 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2039 return;
2040
509 /* make sure we are called again until all childs have been reaped */ 2041 /* make sure we are called again until all children have been reaped */
2042 /* we need to do it this way so that the callback gets called before we continue */
510 event (EV_A_ (W)sw, EV_SIGNAL); 2043 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 2044
512 child_reap (EV_A_ sw, pid, pid, status); 2045 child_reap (EV_A_ pid, pid, status);
2046 if ((EV_PID_HASHSIZE) > 1)
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2047 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
514 }
515} 2048}
516 2049
517#endif 2050#endif
518 2051
519/*****************************************************************************/ 2052/*****************************************************************************/
520 2053
2054#if EV_USE_IOCP
2055# include "ev_iocp.c"
2056#endif
2057#if EV_USE_PORT
2058# include "ev_port.c"
2059#endif
521#if EV_USE_KQUEUE 2060#if EV_USE_KQUEUE
522# include "ev_kqueue.c" 2061# include "ev_kqueue.c"
523#endif 2062#endif
524#if EV_USE_EPOLL 2063#if EV_USE_EPOLL
525# include "ev_epoll.c" 2064# include "ev_epoll.c"
526#endif 2065#endif
527#if EV_USEV_POLL 2066#if EV_USE_POLL
528# include "ev_poll.c" 2067# include "ev_poll.c"
529#endif 2068#endif
530#if EV_USE_SELECT 2069#if EV_USE_SELECT
531# include "ev_select.c" 2070# include "ev_select.c"
532#endif 2071#endif
533 2072
534int 2073int ecb_cold
535ev_version_major (void) 2074ev_version_major (void)
536{ 2075{
537 return EV_VERSION_MAJOR; 2076 return EV_VERSION_MAJOR;
538} 2077}
539 2078
540int 2079int ecb_cold
541ev_version_minor (void) 2080ev_version_minor (void)
542{ 2081{
543 return EV_VERSION_MINOR; 2082 return EV_VERSION_MINOR;
544} 2083}
545 2084
546/* return true if we are running with elevated privileges and should ignore env variables */ 2085/* return true if we are running with elevated privileges and should ignore env variables */
547static int 2086int inline_size ecb_cold
548enable_secure (void) 2087enable_secure (void)
549{ 2088{
550#ifdef WIN32 2089#ifdef _WIN32
551 return 0; 2090 return 0;
552#else 2091#else
553 return getuid () != geteuid () 2092 return getuid () != geteuid ()
554 || getgid () != getegid (); 2093 || getgid () != getegid ();
555#endif 2094#endif
556} 2095}
557 2096
2097unsigned int ecb_cold
2098ev_supported_backends (void)
2099{
2100 unsigned int flags = 0;
2101
2102 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2103 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2104 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2105 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2106 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2107
2108 return flags;
2109}
2110
2111unsigned int ecb_cold
2112ev_recommended_backends (void)
2113{
2114 unsigned int flags = ev_supported_backends ();
2115
2116#ifndef __NetBSD__
2117 /* kqueue is borked on everything but netbsd apparently */
2118 /* it usually doesn't work correctly on anything but sockets and pipes */
2119 flags &= ~EVBACKEND_KQUEUE;
2120#endif
2121#ifdef __APPLE__
2122 /* only select works correctly on that "unix-certified" platform */
2123 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2124 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2125#endif
2126#ifdef __FreeBSD__
2127 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2128#endif
2129
2130 return flags;
2131}
2132
2133unsigned int ecb_cold
2134ev_embeddable_backends (void)
2135{
2136 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2137
2138 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2139 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2140 flags &= ~EVBACKEND_EPOLL;
2141
2142 return flags;
2143}
2144
2145unsigned int
2146ev_backend (EV_P)
2147{
2148 return backend;
2149}
2150
2151#if EV_FEATURE_API
2152unsigned int
2153ev_iteration (EV_P)
2154{
2155 return loop_count;
2156}
2157
2158unsigned int
2159ev_depth (EV_P)
2160{
2161 return loop_depth;
2162}
2163
2164void
2165ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2166{
2167 io_blocktime = interval;
2168}
2169
2170void
2171ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2172{
2173 timeout_blocktime = interval;
2174}
2175
2176void
2177ev_set_userdata (EV_P_ void *data)
2178{
2179 userdata = data;
2180}
2181
2182void *
2183ev_userdata (EV_P)
2184{
2185 return userdata;
2186}
2187
2188void
2189ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2190{
2191 invoke_cb = invoke_pending_cb;
2192}
2193
2194void
2195ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2196{
2197 release_cb = release;
2198 acquire_cb = acquire;
2199}
2200#endif
2201
2202/* initialise a loop structure, must be zero-initialised */
2203static void noinline ecb_cold
2204loop_init (EV_P_ unsigned int flags)
2205{
2206 if (!backend)
2207 {
2208 origflags = flags;
2209
2210#if EV_USE_REALTIME
2211 if (!have_realtime)
2212 {
2213 struct timespec ts;
2214
2215 if (!clock_gettime (CLOCK_REALTIME, &ts))
2216 have_realtime = 1;
2217 }
2218#endif
2219
2220#if EV_USE_MONOTONIC
2221 if (!have_monotonic)
2222 {
2223 struct timespec ts;
2224
2225 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2226 have_monotonic = 1;
2227 }
2228#endif
2229
2230 /* pid check not overridable via env */
2231#ifndef _WIN32
2232 if (flags & EVFLAG_FORKCHECK)
2233 curpid = getpid ();
2234#endif
2235
2236 if (!(flags & EVFLAG_NOENV)
2237 && !enable_secure ()
2238 && getenv ("LIBEV_FLAGS"))
2239 flags = atoi (getenv ("LIBEV_FLAGS"));
2240
2241 ev_rt_now = ev_time ();
2242 mn_now = get_clock ();
2243 now_floor = mn_now;
2244 rtmn_diff = ev_rt_now - mn_now;
2245#if EV_FEATURE_API
2246 invoke_cb = ev_invoke_pending;
2247#endif
2248
2249 io_blocktime = 0.;
2250 timeout_blocktime = 0.;
2251 backend = 0;
2252 backend_fd = -1;
2253 sig_pending = 0;
2254#if EV_ASYNC_ENABLE
2255 async_pending = 0;
2256#endif
2257 pipe_write_skipped = 0;
2258 pipe_write_wanted = 0;
2259#if EV_USE_INOTIFY
2260 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2261#endif
2262#if EV_USE_SIGNALFD
2263 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2264#endif
2265
2266 if (!(flags & EVBACKEND_MASK))
2267 flags |= ev_recommended_backends ();
2268
2269#if EV_USE_IOCP
2270 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2271#endif
2272#if EV_USE_PORT
2273 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2274#endif
2275#if EV_USE_KQUEUE
2276 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2277#endif
2278#if EV_USE_EPOLL
2279 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2280#endif
2281#if EV_USE_POLL
2282 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2283#endif
2284#if EV_USE_SELECT
2285 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2286#endif
2287
2288 ev_prepare_init (&pending_w, pendingcb);
2289
2290#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2291 ev_init (&pipe_w, pipecb);
2292 ev_set_priority (&pipe_w, EV_MAXPRI);
2293#endif
2294 }
2295}
2296
2297/* free up a loop structure */
2298void ecb_cold
2299ev_loop_destroy (EV_P)
2300{
2301 int i;
2302
2303#if EV_MULTIPLICITY
2304 /* mimic free (0) */
2305 if (!EV_A)
2306 return;
2307#endif
2308
2309#if EV_CLEANUP_ENABLE
2310 /* queue cleanup watchers (and execute them) */
2311 if (expect_false (cleanupcnt))
2312 {
2313 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2314 EV_INVOKE_PENDING;
2315 }
2316#endif
2317
2318#if EV_CHILD_ENABLE
2319 if (ev_is_active (&childev))
2320 {
2321 ev_ref (EV_A); /* child watcher */
2322 ev_signal_stop (EV_A_ &childev);
2323 }
2324#endif
2325
2326 if (ev_is_active (&pipe_w))
2327 {
2328 /*ev_ref (EV_A);*/
2329 /*ev_io_stop (EV_A_ &pipe_w);*/
2330
2331#if EV_USE_EVENTFD
2332 if (evfd >= 0)
2333 close (evfd);
2334#endif
2335
2336 if (evpipe [0] >= 0)
2337 {
2338 EV_WIN32_CLOSE_FD (evpipe [0]);
2339 EV_WIN32_CLOSE_FD (evpipe [1]);
2340 }
2341 }
2342
2343#if EV_USE_SIGNALFD
2344 if (ev_is_active (&sigfd_w))
2345 close (sigfd);
2346#endif
2347
2348#if EV_USE_INOTIFY
2349 if (fs_fd >= 0)
2350 close (fs_fd);
2351#endif
2352
2353 if (backend_fd >= 0)
2354 close (backend_fd);
2355
2356#if EV_USE_IOCP
2357 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2358#endif
2359#if EV_USE_PORT
2360 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2361#endif
2362#if EV_USE_KQUEUE
2363 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2364#endif
2365#if EV_USE_EPOLL
2366 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2367#endif
2368#if EV_USE_POLL
2369 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2370#endif
2371#if EV_USE_SELECT
2372 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2373#endif
2374
2375 for (i = NUMPRI; i--; )
2376 {
2377 array_free (pending, [i]);
2378#if EV_IDLE_ENABLE
2379 array_free (idle, [i]);
2380#endif
2381 }
2382
2383 ev_free (anfds); anfds = 0; anfdmax = 0;
2384
2385 /* have to use the microsoft-never-gets-it-right macro */
2386 array_free (rfeed, EMPTY);
2387 array_free (fdchange, EMPTY);
2388 array_free (timer, EMPTY);
2389#if EV_PERIODIC_ENABLE
2390 array_free (periodic, EMPTY);
2391#endif
2392#if EV_FORK_ENABLE
2393 array_free (fork, EMPTY);
2394#endif
2395#if EV_CLEANUP_ENABLE
2396 array_free (cleanup, EMPTY);
2397#endif
2398 array_free (prepare, EMPTY);
2399 array_free (check, EMPTY);
2400#if EV_ASYNC_ENABLE
2401 array_free (async, EMPTY);
2402#endif
2403
2404 backend = 0;
2405
2406#if EV_MULTIPLICITY
2407 if (ev_is_default_loop (EV_A))
2408#endif
2409 ev_default_loop_ptr = 0;
2410#if EV_MULTIPLICITY
2411 else
2412 ev_free (EV_A);
2413#endif
2414}
2415
2416#if EV_USE_INOTIFY
2417inline_size void infy_fork (EV_P);
2418#endif
2419
2420inline_size void
2421loop_fork (EV_P)
2422{
2423#if EV_USE_PORT
2424 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2425#endif
2426#if EV_USE_KQUEUE
2427 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2428#endif
2429#if EV_USE_EPOLL
2430 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2431#endif
2432#if EV_USE_INOTIFY
2433 infy_fork (EV_A);
2434#endif
2435
2436 if (ev_is_active (&pipe_w))
2437 {
2438 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2439
2440 ev_ref (EV_A);
2441 ev_io_stop (EV_A_ &pipe_w);
2442
2443#if EV_USE_EVENTFD
2444 if (evfd >= 0)
2445 close (evfd);
2446#endif
2447
2448 if (evpipe [0] >= 0)
2449 {
2450 EV_WIN32_CLOSE_FD (evpipe [0]);
2451 EV_WIN32_CLOSE_FD (evpipe [1]);
2452 }
2453
2454#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2455 evpipe_init (EV_A);
2456 /* now iterate over everything, in case we missed something */
2457 pipecb (EV_A_ &pipe_w, EV_READ);
2458#endif
2459 }
2460
2461 postfork = 0;
2462}
2463
2464#if EV_MULTIPLICITY
2465
2466struct ev_loop * ecb_cold
2467ev_loop_new (unsigned int flags)
2468{
2469 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2470
2471 memset (EV_A, 0, sizeof (struct ev_loop));
2472 loop_init (EV_A_ flags);
2473
2474 if (ev_backend (EV_A))
2475 return EV_A;
2476
2477 ev_free (EV_A);
2478 return 0;
2479}
2480
2481#endif /* multiplicity */
2482
2483#if EV_VERIFY
2484static void noinline ecb_cold
2485verify_watcher (EV_P_ W w)
2486{
2487 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2488
2489 if (w->pending)
2490 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2491}
2492
2493static void noinline ecb_cold
2494verify_heap (EV_P_ ANHE *heap, int N)
2495{
2496 int i;
2497
2498 for (i = HEAP0; i < N + HEAP0; ++i)
2499 {
2500 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2501 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2502 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2503
2504 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2505 }
2506}
2507
2508static void noinline ecb_cold
2509array_verify (EV_P_ W *ws, int cnt)
2510{
2511 while (cnt--)
2512 {
2513 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2514 verify_watcher (EV_A_ ws [cnt]);
2515 }
2516}
2517#endif
2518
2519#if EV_FEATURE_API
2520void ecb_cold
2521ev_verify (EV_P)
2522{
2523#if EV_VERIFY
2524 int i;
2525 WL w;
2526
2527 assert (activecnt >= -1);
2528
2529 assert (fdchangemax >= fdchangecnt);
2530 for (i = 0; i < fdchangecnt; ++i)
2531 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2532
2533 assert (anfdmax >= 0);
2534 for (i = 0; i < anfdmax; ++i)
2535 for (w = anfds [i].head; w; w = w->next)
2536 {
2537 verify_watcher (EV_A_ (W)w);
2538 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2539 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2540 }
2541
2542 assert (timermax >= timercnt);
2543 verify_heap (EV_A_ timers, timercnt);
2544
2545#if EV_PERIODIC_ENABLE
2546 assert (periodicmax >= periodiccnt);
2547 verify_heap (EV_A_ periodics, periodiccnt);
2548#endif
2549
2550 for (i = NUMPRI; i--; )
2551 {
2552 assert (pendingmax [i] >= pendingcnt [i]);
2553#if EV_IDLE_ENABLE
2554 assert (idleall >= 0);
2555 assert (idlemax [i] >= idlecnt [i]);
2556 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2557#endif
2558 }
2559
2560#if EV_FORK_ENABLE
2561 assert (forkmax >= forkcnt);
2562 array_verify (EV_A_ (W *)forks, forkcnt);
2563#endif
2564
2565#if EV_CLEANUP_ENABLE
2566 assert (cleanupmax >= cleanupcnt);
2567 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 assert (asyncmax >= asynccnt);
2572 array_verify (EV_A_ (W *)asyncs, asynccnt);
2573#endif
2574
2575#if EV_PREPARE_ENABLE
2576 assert (preparemax >= preparecnt);
2577 array_verify (EV_A_ (W *)prepares, preparecnt);
2578#endif
2579
2580#if EV_CHECK_ENABLE
2581 assert (checkmax >= checkcnt);
2582 array_verify (EV_A_ (W *)checks, checkcnt);
2583#endif
2584
2585# if 0
2586#if EV_CHILD_ENABLE
2587 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2588 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2589#endif
2590# endif
2591#endif
2592}
2593#endif
2594
2595#if EV_MULTIPLICITY
2596struct ev_loop * ecb_cold
2597#else
558int 2598int
559ev_method (EV_P) 2599#endif
2600ev_default_loop (unsigned int flags)
560{ 2601{
561 return method; 2602 if (!ev_default_loop_ptr)
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
567 if (!method)
568 {
569#if EV_USE_MONOTONIC
570 { 2603 {
571 struct timespec ts;
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1;
574 }
575#endif
576
577 rt_now = ev_time ();
578 mn_now = get_clock ();
579 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now;
581
582 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS"));
585 else
586 methods = EVMETHOD_ANY;
587
588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif
592#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif
595#if EV_USEV_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif
598#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif
601 }
602}
603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY 2604#if EV_MULTIPLICITY
637struct ev_loop * 2605 EV_P = ev_default_loop_ptr = &default_loop_struct;
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else 2606#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1; 2607 ev_default_loop_ptr = 1;
687#endif 2608#endif
688 2609
689 loop_init (EV_A_ methods); 2610 loop_init (EV_A_ flags);
690 2611
691 if (ev_method (EV_A)) 2612 if (ev_backend (EV_A))
692 { 2613 {
693 ev_watcher_init (&sigev, sigcb); 2614#if EV_CHILD_ENABLE
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A);
696
697#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 2615 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 2616 ev_set_priority (&childev, EV_MAXPRI);
700 ev_signal_start (EV_A_ &childev); 2617 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2618 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif 2619#endif
703 } 2620 }
704 else 2621 else
705 default_loop = 0; 2622 ev_default_loop_ptr = 0;
706 } 2623 }
707 2624
708 return default_loop; 2625 return ev_default_loop_ptr;
709} 2626}
710 2627
711void 2628void
712ev_default_destroy (void) 2629ev_loop_fork (EV_P)
713{ 2630{
714#if EV_MULTIPLICITY 2631 postfork = 1; /* must be in line with ev_default_fork */
715 struct ev_loop *loop = default_loop;
716#endif
717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728} 2632}
2633
2634/*****************************************************************************/
729 2635
730void 2636void
731ev_default_fork (EV_P) 2637ev_invoke (EV_P_ void *w, int revents)
732{ 2638{
733 loop_fork (EV_A); 2639 EV_CB_INVOKE ((W)w, revents);
734
735 ev_io_stop (EV_A_ &sigev);
736 close (sigpipe [0]);
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 2640}
743 2641
744/*****************************************************************************/ 2642unsigned int
2643ev_pending_count (EV_P)
2644{
2645 int pri;
2646 unsigned int count = 0;
745 2647
746static void 2648 for (pri = NUMPRI; pri--; )
747call_pending (EV_P) 2649 count += pendingcnt [pri];
2650
2651 return count;
2652}
2653
2654void noinline
2655ev_invoke_pending (EV_P)
748{ 2656{
749 int pri; 2657 int pri;
750 2658
751 for (pri = NUMPRI; pri--; ) 2659 for (pri = NUMPRI; pri--; )
752 while (pendingcnt [pri]) 2660 while (pendingcnt [pri])
753 { 2661 {
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2662 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 2663
756 if (p->w)
757 {
758 p->w->pending = 0; 2664 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 2665 EV_CB_INVOKE (p->w, p->events);
760 } 2666 EV_FREQUENT_CHECK;
761 } 2667 }
762} 2668}
763 2669
764static void 2670#if EV_IDLE_ENABLE
2671/* make idle watchers pending. this handles the "call-idle */
2672/* only when higher priorities are idle" logic */
2673inline_size void
765timers_reify (EV_P) 2674idle_reify (EV_P)
766{ 2675{
767 while (timercnt && timers [0]->at <= mn_now) 2676 if (expect_false (idleall))
768 { 2677 {
769 struct ev_timer *w = timers [0]; 2678 int pri;
770 2679
771 /* first reschedule or stop timer */ 2680 for (pri = NUMPRI; pri--; )
772 if (w->repeat)
773 { 2681 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2682 if (pendingcnt [pri])
775 w->at = mn_now + w->repeat; 2683 break;
776 downheap ((WT *)timers, timercnt, 0);
777 }
778 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 2684
781 event (EV_A_ (W)w, EV_TIMEOUT); 2685 if (idlecnt [pri])
782 }
783}
784
785static void
786periodics_reify (EV_P)
787{
788 while (periodiccnt && periodics [0]->at <= rt_now)
789 {
790 struct ev_periodic *w = periodics [0];
791
792 /* first reschedule or stop timer */
793 if (w->interval)
794 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0);
798 }
799 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801
802 event (EV_A_ (W)w, EV_PERIODIC);
803 }
804}
805
806static void
807periodics_reschedule (EV_P)
808{
809 int i;
810
811 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i)
813 {
814 struct ev_periodic *w = periodics [i];
815
816 if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 { 2686 {
822 ev_periodic_stop (EV_A_ w); 2687 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
823 ev_periodic_start (EV_A_ w); 2688 break;
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 } 2689 }
827 } 2690 }
828 } 2691 }
829} 2692}
2693#endif
830 2694
831inline int 2695/* make timers pending */
832time_update_monotonic (EV_P) 2696inline_size void
2697timers_reify (EV_P)
833{ 2698{
834 mn_now = get_clock (); 2699 EV_FREQUENT_CHECK;
835 2700
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2701 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
837 {
838 rt_now = rtmn_diff + mn_now;
839 return 0;
840 } 2702 {
841 else 2703 do
2704 {
2705 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2706
2707 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2708
2709 /* first reschedule or stop timer */
2710 if (w->repeat)
2711 {
2712 ev_at (w) += w->repeat;
2713 if (ev_at (w) < mn_now)
2714 ev_at (w) = mn_now;
2715
2716 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2717
2718 ANHE_at_cache (timers [HEAP0]);
2719 downheap (timers, timercnt, HEAP0);
2720 }
2721 else
2722 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2723
2724 EV_FREQUENT_CHECK;
2725 feed_reverse (EV_A_ (W)w);
2726 }
2727 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2728
2729 feed_reverse_done (EV_A_ EV_TIMER);
842 { 2730 }
843 now_floor = mn_now; 2731}
844 rt_now = ev_time (); 2732
845 return 1; 2733#if EV_PERIODIC_ENABLE
2734
2735static void noinline
2736periodic_recalc (EV_P_ ev_periodic *w)
2737{
2738 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2739 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2740
2741 /* the above almost always errs on the low side */
2742 while (at <= ev_rt_now)
846 } 2743 {
847} 2744 ev_tstamp nat = at + w->interval;
848 2745
849static void 2746 /* when resolution fails us, we use ev_rt_now */
850time_update (EV_P) 2747 if (expect_false (nat == at))
2748 {
2749 at = ev_rt_now;
2750 break;
2751 }
2752
2753 at = nat;
2754 }
2755
2756 ev_at (w) = at;
2757}
2758
2759/* make periodics pending */
2760inline_size void
2761periodics_reify (EV_P)
2762{
2763 EV_FREQUENT_CHECK;
2764
2765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2766 {
2767 int feed_count = 0;
2768
2769 do
2770 {
2771 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2772
2773 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2774
2775 /* first reschedule or stop timer */
2776 if (w->reschedule_cb)
2777 {
2778 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2779
2780 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2781
2782 ANHE_at_cache (periodics [HEAP0]);
2783 downheap (periodics, periodiccnt, HEAP0);
2784 }
2785 else if (w->interval)
2786 {
2787 periodic_recalc (EV_A_ w);
2788 ANHE_at_cache (periodics [HEAP0]);
2789 downheap (periodics, periodiccnt, HEAP0);
2790 }
2791 else
2792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2793
2794 EV_FREQUENT_CHECK;
2795 feed_reverse (EV_A_ (W)w);
2796 }
2797 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2798
2799 feed_reverse_done (EV_A_ EV_PERIODIC);
2800 }
2801}
2802
2803/* simply recalculate all periodics */
2804/* TODO: maybe ensure that at least one event happens when jumping forward? */
2805static void noinline ecb_cold
2806periodics_reschedule (EV_P)
851{ 2807{
852 int i; 2808 int i;
853 2809
2810 /* adjust periodics after time jump */
2811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2812 {
2813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2814
2815 if (w->reschedule_cb)
2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2817 else if (w->interval)
2818 periodic_recalc (EV_A_ w);
2819
2820 ANHE_at_cache (periodics [i]);
2821 }
2822
2823 reheap (periodics, periodiccnt);
2824}
2825#endif
2826
2827/* adjust all timers by a given offset */
2828static void noinline ecb_cold
2829timers_reschedule (EV_P_ ev_tstamp adjust)
2830{
2831 int i;
2832
2833 for (i = 0; i < timercnt; ++i)
2834 {
2835 ANHE *he = timers + i + HEAP0;
2836 ANHE_w (*he)->at += adjust;
2837 ANHE_at_cache (*he);
2838 }
2839}
2840
2841/* fetch new monotonic and realtime times from the kernel */
2842/* also detect if there was a timejump, and act accordingly */
2843inline_speed void
2844time_update (EV_P_ ev_tstamp max_block)
2845{
854#if EV_USE_MONOTONIC 2846#if EV_USE_MONOTONIC
855 if (expect_true (have_monotonic)) 2847 if (expect_true (have_monotonic))
856 { 2848 {
857 if (time_update_monotonic (EV_A)) 2849 int i;
2850 ev_tstamp odiff = rtmn_diff;
2851
2852 mn_now = get_clock ();
2853
2854 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2855 /* interpolate in the meantime */
2856 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
858 { 2857 {
859 ev_tstamp odiff = rtmn_diff; 2858 ev_rt_now = rtmn_diff + mn_now;
2859 return;
2860 }
860 2861
2862 now_floor = mn_now;
2863 ev_rt_now = ev_time ();
2864
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2865 /* loop a few times, before making important decisions.
2866 * on the choice of "4": one iteration isn't enough,
2867 * in case we get preempted during the calls to
2868 * ev_time and get_clock. a second call is almost guaranteed
2869 * to succeed in that case, though. and looping a few more times
2870 * doesn't hurt either as we only do this on time-jumps or
2871 * in the unlikely event of having been preempted here.
2872 */
2873 for (i = 4; --i; )
862 { 2874 {
2875 ev_tstamp diff;
863 rtmn_diff = rt_now - mn_now; 2876 rtmn_diff = ev_rt_now - mn_now;
864 2877
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2878 diff = odiff - rtmn_diff;
2879
2880 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
866 return; /* all is well */ 2881 return; /* all is well */
867 2882
868 rt_now = ev_time (); 2883 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 2884 mn_now = get_clock ();
870 now_floor = mn_now; 2885 now_floor = mn_now;
871 } 2886 }
872 2887
2888 /* no timer adjustment, as the monotonic clock doesn't jump */
2889 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2890# if EV_PERIODIC_ENABLE
2891 periodics_reschedule (EV_A);
2892# endif
2893 }
2894 else
2895#endif
2896 {
2897 ev_rt_now = ev_time ();
2898
2899 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2900 {
2901 /* adjust timers. this is easy, as the offset is the same for all of them */
2902 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2903#if EV_PERIODIC_ENABLE
873 periodics_reschedule (EV_A); 2904 periodics_reschedule (EV_A);
874 /* no timer adjustment, as the monotonic clock doesn't jump */ 2905#endif
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 } 2906 }
877 }
878 else
879#endif
880 {
881 rt_now = ev_time ();
882 2907
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 {
885 periodics_reschedule (EV_A);
886
887 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now;
890 }
891
892 mn_now = rt_now; 2908 mn_now = ev_rt_now;
893 } 2909 }
894} 2910}
895 2911
896void 2912void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
911ev_loop (EV_P_ int flags) 2913ev_run (EV_P_ int flags)
912{ 2914{
913 double block; 2915#if EV_FEATURE_API
914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2916 ++loop_depth;
2917#endif
2918
2919 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2920
2921 loop_done = EVBREAK_CANCEL;
2922
2923 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
915 2924
916 do 2925 do
917 { 2926 {
2927#if EV_VERIFY >= 2
2928 ev_verify (EV_A);
2929#endif
2930
2931#ifndef _WIN32
2932 if (expect_false (curpid)) /* penalise the forking check even more */
2933 if (expect_false (getpid () != curpid))
2934 {
2935 curpid = getpid ();
2936 postfork = 1;
2937 }
2938#endif
2939
2940#if EV_FORK_ENABLE
2941 /* we might have forked, so queue fork handlers */
2942 if (expect_false (postfork))
2943 if (forkcnt)
2944 {
2945 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2946 EV_INVOKE_PENDING;
2947 }
2948#endif
2949
2950#if EV_PREPARE_ENABLE
918 /* queue check watchers (and execute them) */ 2951 /* queue prepare watchers (and execute them) */
919 if (expect_false (preparecnt)) 2952 if (expect_false (preparecnt))
920 { 2953 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2954 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 2955 EV_INVOKE_PENDING;
923 } 2956 }
2957#endif
2958
2959 if (expect_false (loop_done))
2960 break;
2961
2962 /* we might have forked, so reify kernel state if necessary */
2963 if (expect_false (postfork))
2964 loop_fork (EV_A);
924 2965
925 /* update fd-related kernel structures */ 2966 /* update fd-related kernel structures */
926 fd_reify (EV_A); 2967 fd_reify (EV_A);
927 2968
928 /* calculate blocking time */ 2969 /* calculate blocking time */
2970 {
2971 ev_tstamp waittime = 0.;
2972 ev_tstamp sleeptime = 0.;
929 2973
930 /* we only need this for !monotonic clockor timers, but as we basically 2974 /* remember old timestamp for io_blocktime calculation */
931 always have timers, we just calculate it always */ 2975 ev_tstamp prev_mn_now = mn_now;
932#if EV_USE_MONOTONIC 2976
933 if (expect_true (have_monotonic)) 2977 /* update time to cancel out callback processing overhead */
934 time_update_monotonic (EV_A); 2978 time_update (EV_A_ 1e100);
935 else 2979
936#endif 2980 /* from now on, we want a pipe-wake-up */
2981 pipe_write_wanted = 1;
2982
2983 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2984
2985 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
937 { 2986 {
938 rt_now = ev_time ();
939 mn_now = rt_now;
940 }
941
942 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.;
944 else
945 {
946 block = MAX_BLOCKTIME; 2987 waittime = MAX_BLOCKTIME;
947 2988
948 if (timercnt) 2989 if (timercnt)
949 { 2990 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
951 if (block > to) block = to; 2992 if (waittime > to) waittime = to;
952 } 2993 }
953 2994
2995#if EV_PERIODIC_ENABLE
954 if (periodiccnt) 2996 if (periodiccnt)
955 { 2997 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
957 if (block > to) block = to; 2999 if (waittime > to) waittime = to;
958 } 3000 }
3001#endif
959 3002
960 if (block < 0.) block = 0.; 3003 /* don't let timeouts decrease the waittime below timeout_blocktime */
3004 if (expect_false (waittime < timeout_blocktime))
3005 waittime = timeout_blocktime;
3006
3007 /* at this point, we NEED to wait, so we have to ensure */
3008 /* to pass a minimum nonzero value to the backend */
3009 if (expect_false (waittime < backend_mintime))
3010 waittime = backend_mintime;
3011
3012 /* extra check because io_blocktime is commonly 0 */
3013 if (expect_false (io_blocktime))
3014 {
3015 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3016
3017 if (sleeptime > waittime - backend_mintime)
3018 sleeptime = waittime - backend_mintime;
3019
3020 if (expect_true (sleeptime > 0.))
3021 {
3022 ev_sleep (sleeptime);
3023 waittime -= sleeptime;
3024 }
3025 }
961 } 3026 }
962 3027
963 method_poll (EV_A_ block); 3028#if EV_FEATURE_API
3029 ++loop_count;
3030#endif
3031 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3032 backend_poll (EV_A_ waittime);
3033 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
964 3034
3035 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3036
3037 if (pipe_write_skipped)
3038 {
3039 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3040 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3041 }
3042
3043
965 /* update rt_now, do magic */ 3044 /* update ev_rt_now, do magic */
966 time_update (EV_A); 3045 time_update (EV_A_ waittime + sleeptime);
3046 }
967 3047
968 /* queue pending timers and reschedule them */ 3048 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 3049 timers_reify (EV_A); /* relative timers called last */
3050#if EV_PERIODIC_ENABLE
970 periodics_reify (EV_A); /* absolute timers called first */ 3051 periodics_reify (EV_A); /* absolute timers called first */
3052#endif
971 3053
3054#if EV_IDLE_ENABLE
972 /* queue idle watchers unless io or timers are pending */ 3055 /* queue idle watchers unless other events are pending */
973 if (!pendingcnt) 3056 idle_reify (EV_A);
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3057#endif
975 3058
3059#if EV_CHECK_ENABLE
976 /* queue check watchers, to be executed first */ 3060 /* queue check watchers, to be executed first */
977 if (checkcnt) 3061 if (expect_false (checkcnt))
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3062 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3063#endif
979 3064
980 call_pending (EV_A); 3065 EV_INVOKE_PENDING;
981 } 3066 }
982 while (activecnt && !loop_done); 3067 while (expect_true (
3068 activecnt
3069 && !loop_done
3070 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3071 ));
983 3072
984 if (loop_done != 2) 3073 if (loop_done == EVBREAK_ONE)
985 loop_done = 0; 3074 loop_done = EVBREAK_CANCEL;
3075
3076#if EV_FEATURE_API
3077 --loop_depth;
3078#endif
986} 3079}
987 3080
988void 3081void
989ev_unloop (EV_P_ int how) 3082ev_break (EV_P_ int how)
990{ 3083{
991 loop_done = how; 3084 loop_done = how;
992} 3085}
993 3086
3087void
3088ev_ref (EV_P)
3089{
3090 ++activecnt;
3091}
3092
3093void
3094ev_unref (EV_P)
3095{
3096 --activecnt;
3097}
3098
3099void
3100ev_now_update (EV_P)
3101{
3102 time_update (EV_A_ 1e100);
3103}
3104
3105void
3106ev_suspend (EV_P)
3107{
3108 ev_now_update (EV_A);
3109}
3110
3111void
3112ev_resume (EV_P)
3113{
3114 ev_tstamp mn_prev = mn_now;
3115
3116 ev_now_update (EV_A);
3117 timers_reschedule (EV_A_ mn_now - mn_prev);
3118#if EV_PERIODIC_ENABLE
3119 /* TODO: really do this? */
3120 periodics_reschedule (EV_A);
3121#endif
3122}
3123
994/*****************************************************************************/ 3124/*****************************************************************************/
3125/* singly-linked list management, used when the expected list length is short */
995 3126
996inline void 3127inline_size void
997wlist_add (WL *head, WL elem) 3128wlist_add (WL *head, WL elem)
998{ 3129{
999 elem->next = *head; 3130 elem->next = *head;
1000 *head = elem; 3131 *head = elem;
1001} 3132}
1002 3133
1003inline void 3134inline_size void
1004wlist_del (WL *head, WL elem) 3135wlist_del (WL *head, WL elem)
1005{ 3136{
1006 while (*head) 3137 while (*head)
1007 { 3138 {
1008 if (*head == elem) 3139 if (expect_true (*head == elem))
1009 { 3140 {
1010 *head = elem->next; 3141 *head = elem->next;
1011 return; 3142 break;
1012 } 3143 }
1013 3144
1014 head = &(*head)->next; 3145 head = &(*head)->next;
1015 } 3146 }
1016} 3147}
1017 3148
3149/* internal, faster, version of ev_clear_pending */
1018inline void 3150inline_speed void
1019ev_clear_pending (EV_P_ W w) 3151clear_pending (EV_P_ W w)
1020{ 3152{
1021 if (w->pending) 3153 if (w->pending)
1022 { 3154 {
1023 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3155 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1024 w->pending = 0; 3156 w->pending = 0;
1025 } 3157 }
1026} 3158}
1027 3159
3160int
3161ev_clear_pending (EV_P_ void *w)
3162{
3163 W w_ = (W)w;
3164 int pending = w_->pending;
3165
3166 if (expect_true (pending))
3167 {
3168 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3169 p->w = (W)&pending_w;
3170 w_->pending = 0;
3171 return p->events;
3172 }
3173 else
3174 return 0;
3175}
3176
1028inline void 3177inline_size void
3178pri_adjust (EV_P_ W w)
3179{
3180 int pri = ev_priority (w);
3181 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3182 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3183 ev_set_priority (w, pri);
3184}
3185
3186inline_speed void
1029ev_start (EV_P_ W w, int active) 3187ev_start (EV_P_ W w, int active)
1030{ 3188{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3189 pri_adjust (EV_A_ w);
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
1034 w->active = active; 3190 w->active = active;
1035 ev_ref (EV_A); 3191 ev_ref (EV_A);
1036} 3192}
1037 3193
1038inline void 3194inline_size void
1039ev_stop (EV_P_ W w) 3195ev_stop (EV_P_ W w)
1040{ 3196{
1041 ev_unref (EV_A); 3197 ev_unref (EV_A);
1042 w->active = 0; 3198 w->active = 0;
1043} 3199}
1044 3200
1045/*****************************************************************************/ 3201/*****************************************************************************/
1046 3202
1047void 3203void noinline
1048ev_io_start (EV_P_ struct ev_io *w) 3204ev_io_start (EV_P_ ev_io *w)
1049{ 3205{
1050 int fd = w->fd; 3206 int fd = w->fd;
1051 3207
1052 if (ev_is_active (w)) 3208 if (expect_false (ev_is_active (w)))
1053 return; 3209 return;
1054 3210
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 3211 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3212 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3213
3214 EV_FREQUENT_CHECK;
1056 3215
1057 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3217 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3218 wlist_add (&anfds[fd].head, (WL)w);
1060 3219
1061 fd_change (EV_A_ fd); 3220 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1062} 3221 w->events &= ~EV__IOFDSET;
1063 3222
1064void 3223 EV_FREQUENT_CHECK;
3224}
3225
3226void noinline
1065ev_io_stop (EV_P_ struct ev_io *w) 3227ev_io_stop (EV_P_ ev_io *w)
1066{ 3228{
1067 ev_clear_pending (EV_A_ (W)w); 3229 clear_pending (EV_A_ (W)w);
1068 if (!ev_is_active (w)) 3230 if (expect_false (!ev_is_active (w)))
1069 return; 3231 return;
1070 3232
3233 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3234
3235 EV_FREQUENT_CHECK;
3236
1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3237 wlist_del (&anfds[w->fd].head, (WL)w);
1072 ev_stop (EV_A_ (W)w); 3238 ev_stop (EV_A_ (W)w);
1073 3239
1074 fd_change (EV_A_ w->fd); 3240 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1075}
1076 3241
1077void 3242 EV_FREQUENT_CHECK;
3243}
3244
3245void noinline
1078ev_timer_start (EV_P_ struct ev_timer *w) 3246ev_timer_start (EV_P_ ev_timer *w)
1079{ 3247{
1080 if (ev_is_active (w)) 3248 if (expect_false (ev_is_active (w)))
1081 return; 3249 return;
1082 3250
1083 w->at += mn_now; 3251 ev_at (w) += mn_now;
1084 3252
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3253 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 3254
3255 EV_FREQUENT_CHECK;
3256
3257 ++timercnt;
1087 ev_start (EV_A_ (W)w, ++timercnt); 3258 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1088 array_needsize (timers, timermax, timercnt, ); 3259 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1089 timers [timercnt - 1] = w; 3260 ANHE_w (timers [ev_active (w)]) = (WT)w;
1090 upheap ((WT *)timers, timercnt - 1); 3261 ANHE_at_cache (timers [ev_active (w)]);
1091} 3262 upheap (timers, ev_active (w));
1092 3263
1093void 3264 EV_FREQUENT_CHECK;
3265
3266 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3267}
3268
3269void noinline
1094ev_timer_stop (EV_P_ struct ev_timer *w) 3270ev_timer_stop (EV_P_ ev_timer *w)
1095{ 3271{
1096 ev_clear_pending (EV_A_ (W)w); 3272 clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 3273 if (expect_false (!ev_is_active (w)))
1098 return; 3274 return;
1099 3275
1100 if (w->active < timercnt--) 3276 EV_FREQUENT_CHECK;
3277
3278 {
3279 int active = ev_active (w);
3280
3281 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3282
3283 --timercnt;
3284
3285 if (expect_true (active < timercnt + HEAP0))
1101 { 3286 {
1102 timers [w->active - 1] = timers [timercnt]; 3287 timers [active] = timers [timercnt + HEAP0];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 3288 adjustheap (timers, timercnt, active);
1104 } 3289 }
3290 }
1105 3291
1106 w->at = w->repeat; 3292 ev_at (w) -= mn_now;
1107 3293
1108 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
1109}
1110 3295
1111void 3296 EV_FREQUENT_CHECK;
3297}
3298
3299void noinline
1112ev_timer_again (EV_P_ struct ev_timer *w) 3300ev_timer_again (EV_P_ ev_timer *w)
1113{ 3301{
3302 EV_FREQUENT_CHECK;
3303
3304 clear_pending (EV_A_ (W)w);
3305
1114 if (ev_is_active (w)) 3306 if (ev_is_active (w))
1115 { 3307 {
1116 if (w->repeat) 3308 if (w->repeat)
1117 { 3309 {
1118 w->at = mn_now + w->repeat; 3310 ev_at (w) = mn_now + w->repeat;
3311 ANHE_at_cache (timers [ev_active (w)]);
1119 downheap ((WT *)timers, timercnt, w->active - 1); 3312 adjustheap (timers, timercnt, ev_active (w));
1120 } 3313 }
1121 else 3314 else
1122 ev_timer_stop (EV_A_ w); 3315 ev_timer_stop (EV_A_ w);
1123 } 3316 }
1124 else if (w->repeat) 3317 else if (w->repeat)
3318 {
3319 ev_at (w) = w->repeat;
1125 ev_timer_start (EV_A_ w); 3320 ev_timer_start (EV_A_ w);
1126} 3321 }
1127 3322
1128void 3323 EV_FREQUENT_CHECK;
3324}
3325
3326ev_tstamp
3327ev_timer_remaining (EV_P_ ev_timer *w)
3328{
3329 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3330}
3331
3332#if EV_PERIODIC_ENABLE
3333void noinline
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 3334ev_periodic_start (EV_P_ ev_periodic *w)
1130{ 3335{
1131 if (ev_is_active (w)) 3336 if (expect_false (ev_is_active (w)))
1132 return; 3337 return;
1133 3338
3339 if (w->reschedule_cb)
3340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3341 else if (w->interval)
3342 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3343 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3344 periodic_recalc (EV_A_ w);
3345 }
3346 else
3347 ev_at (w) = w->offset;
1135 3348
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 3349 EV_FREQUENT_CHECK;
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1139 3350
3351 ++periodiccnt;
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 3352 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 3353 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1142 periodics [periodiccnt - 1] = w; 3354 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 3355 ANHE_at_cache (periodics [ev_active (w)]);
1144} 3356 upheap (periodics, ev_active (w));
1145 3357
1146void 3358 EV_FREQUENT_CHECK;
3359
3360 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3361}
3362
3363void noinline
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 3364ev_periodic_stop (EV_P_ ev_periodic *w)
1148{ 3365{
1149 ev_clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 3367 if (expect_false (!ev_is_active (w)))
1151 return; 3368 return;
1152 3369
1153 if (w->active < periodiccnt--) 3370 EV_FREQUENT_CHECK;
3371
3372 {
3373 int active = ev_active (w);
3374
3375 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3376
3377 --periodiccnt;
3378
3379 if (expect_true (active < periodiccnt + HEAP0))
1154 { 3380 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 3381 periodics [active] = periodics [periodiccnt + HEAP0];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 3382 adjustheap (periodics, periodiccnt, active);
1157 } 3383 }
3384 }
1158 3385
1159 ev_stop (EV_A_ (W)w); 3386 ev_stop (EV_A_ (W)w);
1160}
1161 3387
1162void 3388 EV_FREQUENT_CHECK;
1163ev_idle_start (EV_P_ struct ev_idle *w)
1164{
1165 if (ev_is_active (w))
1166 return;
1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171} 3389}
1172 3390
1173void 3391void noinline
1174ev_idle_stop (EV_P_ struct ev_idle *w) 3392ev_periodic_again (EV_P_ ev_periodic *w)
1175{ 3393{
1176 ev_clear_pending (EV_A_ (W)w); 3394 /* TODO: use adjustheap and recalculation */
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 3395 ev_periodic_stop (EV_A_ w);
3396 ev_periodic_start (EV_A_ w);
1182} 3397}
1183 3398#endif
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227 3399
1228#ifndef SA_RESTART 3400#ifndef SA_RESTART
1229# define SA_RESTART 0 3401# define SA_RESTART 0
1230#endif 3402#endif
1231 3403
3404#if EV_SIGNAL_ENABLE
3405
3406void noinline
3407ev_signal_start (EV_P_ ev_signal *w)
3408{
3409 if (expect_false (ev_is_active (w)))
3410 return;
3411
3412 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3413
3414#if EV_MULTIPLICITY
3415 assert (("libev: a signal must not be attached to two different loops",
3416 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3417
3418 signals [w->signum - 1].loop = EV_A;
3419#endif
3420
3421 EV_FREQUENT_CHECK;
3422
3423#if EV_USE_SIGNALFD
3424 if (sigfd == -2)
3425 {
3426 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3427 if (sigfd < 0 && errno == EINVAL)
3428 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3429
3430 if (sigfd >= 0)
3431 {
3432 fd_intern (sigfd); /* doing it twice will not hurt */
3433
3434 sigemptyset (&sigfd_set);
3435
3436 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3437 ev_set_priority (&sigfd_w, EV_MAXPRI);
3438 ev_io_start (EV_A_ &sigfd_w);
3439 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3440 }
3441 }
3442
3443 if (sigfd >= 0)
3444 {
3445 /* TODO: check .head */
3446 sigaddset (&sigfd_set, w->signum);
3447 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3448
3449 signalfd (sigfd, &sigfd_set, 0);
3450 }
3451#endif
3452
3453 ev_start (EV_A_ (W)w, 1);
3454 wlist_add (&signals [w->signum - 1].head, (WL)w);
3455
3456 if (!((WL)w)->next)
3457# if EV_USE_SIGNALFD
3458 if (sigfd < 0) /*TODO*/
3459# endif
3460 {
3461# ifdef _WIN32
3462 evpipe_init (EV_A);
3463
3464 signal (w->signum, ev_sighandler);
3465# else
3466 struct sigaction sa;
3467
3468 evpipe_init (EV_A);
3469
3470 sa.sa_handler = ev_sighandler;
3471 sigfillset (&sa.sa_mask);
3472 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3473 sigaction (w->signum, &sa, 0);
3474
3475 if (origflags & EVFLAG_NOSIGMASK)
3476 {
3477 sigemptyset (&sa.sa_mask);
3478 sigaddset (&sa.sa_mask, w->signum);
3479 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3480 }
3481#endif
3482 }
3483
3484 EV_FREQUENT_CHECK;
3485}
3486
3487void noinline
3488ev_signal_stop (EV_P_ ev_signal *w)
3489{
3490 clear_pending (EV_A_ (W)w);
3491 if (expect_false (!ev_is_active (w)))
3492 return;
3493
3494 EV_FREQUENT_CHECK;
3495
3496 wlist_del (&signals [w->signum - 1].head, (WL)w);
3497 ev_stop (EV_A_ (W)w);
3498
3499 if (!signals [w->signum - 1].head)
3500 {
3501#if EV_MULTIPLICITY
3502 signals [w->signum - 1].loop = 0; /* unattach from signal */
3503#endif
3504#if EV_USE_SIGNALFD
3505 if (sigfd >= 0)
3506 {
3507 sigset_t ss;
3508
3509 sigemptyset (&ss);
3510 sigaddset (&ss, w->signum);
3511 sigdelset (&sigfd_set, w->signum);
3512
3513 signalfd (sigfd, &sigfd_set, 0);
3514 sigprocmask (SIG_UNBLOCK, &ss, 0);
3515 }
3516 else
3517#endif
3518 signal (w->signum, SIG_DFL);
3519 }
3520
3521 EV_FREQUENT_CHECK;
3522}
3523
3524#endif
3525
3526#if EV_CHILD_ENABLE
3527
1232void 3528void
1233ev_signal_start (EV_P_ struct ev_signal *w) 3529ev_child_start (EV_P_ ev_child *w)
1234{ 3530{
1235#if EV_MULTIPLICITY 3531#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1237#endif 3533#endif
1238 if (ev_is_active (w)) 3534 if (expect_false (ev_is_active (w)))
1239 return; 3535 return;
1240 3536
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3537 EV_FREQUENT_CHECK;
1242 3538
1243 ev_start (EV_A_ (W)w, 1); 3539 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 3540 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 3541
1247 if (!w->next) 3542 EV_FREQUENT_CHECK;
1248 {
1249 struct sigaction sa;
1250 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0);
1254 }
1255} 3543}
1256 3544
1257void 3545void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 3546ev_child_stop (EV_P_ ev_child *w)
1259{ 3547{
1260 ev_clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
1261 if (!ev_is_active (w)) 3549 if (expect_false (!ev_is_active (w)))
1262 return; 3550 return;
1263 3551
1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3552 EV_FREQUENT_CHECK;
3553
3554 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1265 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
1266 3556
1267 if (!signals [w->signum - 1].head) 3557 EV_FREQUENT_CHECK;
1268 signal (w->signum, SIG_DFL);
1269} 3558}
3559
3560#endif
3561
3562#if EV_STAT_ENABLE
3563
3564# ifdef _WIN32
3565# undef lstat
3566# define lstat(a,b) _stati64 (a,b)
3567# endif
3568
3569#define DEF_STAT_INTERVAL 5.0074891
3570#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3571#define MIN_STAT_INTERVAL 0.1074891
3572
3573static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3574
3575#if EV_USE_INOTIFY
3576
3577/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3578# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3579
3580static void noinline
3581infy_add (EV_P_ ev_stat *w)
3582{
3583 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3584
3585 if (w->wd >= 0)
3586 {
3587 struct statfs sfs;
3588
3589 /* now local changes will be tracked by inotify, but remote changes won't */
3590 /* unless the filesystem is known to be local, we therefore still poll */
3591 /* also do poll on <2.6.25, but with normal frequency */
3592
3593 if (!fs_2625)
3594 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3595 else if (!statfs (w->path, &sfs)
3596 && (sfs.f_type == 0x1373 /* devfs */
3597 || sfs.f_type == 0xEF53 /* ext2/3 */
3598 || sfs.f_type == 0x3153464a /* jfs */
3599 || sfs.f_type == 0x52654973 /* reiser3 */
3600 || sfs.f_type == 0x01021994 /* tempfs */
3601 || sfs.f_type == 0x58465342 /* xfs */))
3602 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3603 else
3604 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3605 }
3606 else
3607 {
3608 /* can't use inotify, continue to stat */
3609 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3610
3611 /* if path is not there, monitor some parent directory for speedup hints */
3612 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3613 /* but an efficiency issue only */
3614 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3615 {
3616 char path [4096];
3617 strcpy (path, w->path);
3618
3619 do
3620 {
3621 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3622 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3623
3624 char *pend = strrchr (path, '/');
3625
3626 if (!pend || pend == path)
3627 break;
3628
3629 *pend = 0;
3630 w->wd = inotify_add_watch (fs_fd, path, mask);
3631 }
3632 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3633 }
3634 }
3635
3636 if (w->wd >= 0)
3637 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3638
3639 /* now re-arm timer, if required */
3640 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3641 ev_timer_again (EV_A_ &w->timer);
3642 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3643}
3644
3645static void noinline
3646infy_del (EV_P_ ev_stat *w)
3647{
3648 int slot;
3649 int wd = w->wd;
3650
3651 if (wd < 0)
3652 return;
3653
3654 w->wd = -2;
3655 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3656 wlist_del (&fs_hash [slot].head, (WL)w);
3657
3658 /* remove this watcher, if others are watching it, they will rearm */
3659 inotify_rm_watch (fs_fd, wd);
3660}
3661
3662static void noinline
3663infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3664{
3665 if (slot < 0)
3666 /* overflow, need to check for all hash slots */
3667 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3668 infy_wd (EV_A_ slot, wd, ev);
3669 else
3670 {
3671 WL w_;
3672
3673 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3674 {
3675 ev_stat *w = (ev_stat *)w_;
3676 w_ = w_->next; /* lets us remove this watcher and all before it */
3677
3678 if (w->wd == wd || wd == -1)
3679 {
3680 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3681 {
3682 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3683 w->wd = -1;
3684 infy_add (EV_A_ w); /* re-add, no matter what */
3685 }
3686
3687 stat_timer_cb (EV_A_ &w->timer, 0);
3688 }
3689 }
3690 }
3691}
3692
3693static void
3694infy_cb (EV_P_ ev_io *w, int revents)
3695{
3696 char buf [EV_INOTIFY_BUFSIZE];
3697 int ofs;
3698 int len = read (fs_fd, buf, sizeof (buf));
3699
3700 for (ofs = 0; ofs < len; )
3701 {
3702 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3703 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3704 ofs += sizeof (struct inotify_event) + ev->len;
3705 }
3706}
3707
3708inline_size void ecb_cold
3709ev_check_2625 (EV_P)
3710{
3711 /* kernels < 2.6.25 are borked
3712 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3713 */
3714 if (ev_linux_version () < 0x020619)
3715 return;
3716
3717 fs_2625 = 1;
3718}
3719
3720inline_size int
3721infy_newfd (void)
3722{
3723#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3724 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3725 if (fd >= 0)
3726 return fd;
3727#endif
3728 return inotify_init ();
3729}
3730
3731inline_size void
3732infy_init (EV_P)
3733{
3734 if (fs_fd != -2)
3735 return;
3736
3737 fs_fd = -1;
3738
3739 ev_check_2625 (EV_A);
3740
3741 fs_fd = infy_newfd ();
3742
3743 if (fs_fd >= 0)
3744 {
3745 fd_intern (fs_fd);
3746 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3747 ev_set_priority (&fs_w, EV_MAXPRI);
3748 ev_io_start (EV_A_ &fs_w);
3749 ev_unref (EV_A);
3750 }
3751}
3752
3753inline_size void
3754infy_fork (EV_P)
3755{
3756 int slot;
3757
3758 if (fs_fd < 0)
3759 return;
3760
3761 ev_ref (EV_A);
3762 ev_io_stop (EV_A_ &fs_w);
3763 close (fs_fd);
3764 fs_fd = infy_newfd ();
3765
3766 if (fs_fd >= 0)
3767 {
3768 fd_intern (fs_fd);
3769 ev_io_set (&fs_w, fs_fd, EV_READ);
3770 ev_io_start (EV_A_ &fs_w);
3771 ev_unref (EV_A);
3772 }
3773
3774 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3775 {
3776 WL w_ = fs_hash [slot].head;
3777 fs_hash [slot].head = 0;
3778
3779 while (w_)
3780 {
3781 ev_stat *w = (ev_stat *)w_;
3782 w_ = w_->next; /* lets us add this watcher */
3783
3784 w->wd = -1;
3785
3786 if (fs_fd >= 0)
3787 infy_add (EV_A_ w); /* re-add, no matter what */
3788 else
3789 {
3790 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3791 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3792 ev_timer_again (EV_A_ &w->timer);
3793 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3794 }
3795 }
3796 }
3797}
3798
3799#endif
3800
3801#ifdef _WIN32
3802# define EV_LSTAT(p,b) _stati64 (p, b)
3803#else
3804# define EV_LSTAT(p,b) lstat (p, b)
3805#endif
1270 3806
1271void 3807void
1272ev_child_start (EV_P_ struct ev_child *w) 3808ev_stat_stat (EV_P_ ev_stat *w)
1273{ 3809{
1274#if EV_MULTIPLICITY 3810 if (lstat (w->path, &w->attr) < 0)
1275 assert (("child watchers are only supported in the default loop", loop == default_loop)); 3811 w->attr.st_nlink = 0;
1276#endif 3812 else if (!w->attr.st_nlink)
3813 w->attr.st_nlink = 1;
3814}
3815
3816static void noinline
3817stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3818{
3819 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3820
3821 ev_statdata prev = w->attr;
3822 ev_stat_stat (EV_A_ w);
3823
3824 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3825 if (
3826 prev.st_dev != w->attr.st_dev
3827 || prev.st_ino != w->attr.st_ino
3828 || prev.st_mode != w->attr.st_mode
3829 || prev.st_nlink != w->attr.st_nlink
3830 || prev.st_uid != w->attr.st_uid
3831 || prev.st_gid != w->attr.st_gid
3832 || prev.st_rdev != w->attr.st_rdev
3833 || prev.st_size != w->attr.st_size
3834 || prev.st_atime != w->attr.st_atime
3835 || prev.st_mtime != w->attr.st_mtime
3836 || prev.st_ctime != w->attr.st_ctime
3837 ) {
3838 /* we only update w->prev on actual differences */
3839 /* in case we test more often than invoke the callback, */
3840 /* to ensure that prev is always different to attr */
3841 w->prev = prev;
3842
3843 #if EV_USE_INOTIFY
3844 if (fs_fd >= 0)
3845 {
3846 infy_del (EV_A_ w);
3847 infy_add (EV_A_ w);
3848 ev_stat_stat (EV_A_ w); /* avoid race... */
3849 }
3850 #endif
3851
3852 ev_feed_event (EV_A_ w, EV_STAT);
3853 }
3854}
3855
3856void
3857ev_stat_start (EV_P_ ev_stat *w)
3858{
1277 if (ev_is_active (w)) 3859 if (expect_false (ev_is_active (w)))
1278 return; 3860 return;
1279 3861
3862 ev_stat_stat (EV_A_ w);
3863
3864 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3865 w->interval = MIN_STAT_INTERVAL;
3866
3867 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3868 ev_set_priority (&w->timer, ev_priority (w));
3869
3870#if EV_USE_INOTIFY
3871 infy_init (EV_A);
3872
3873 if (fs_fd >= 0)
3874 infy_add (EV_A_ w);
3875 else
3876#endif
3877 {
3878 ev_timer_again (EV_A_ &w->timer);
3879 ev_unref (EV_A);
3880 }
3881
1280 ev_start (EV_A_ (W)w, 1); 3882 ev_start (EV_A_ (W)w, 1);
1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3883
3884 EV_FREQUENT_CHECK;
1282} 3885}
1283 3886
1284void 3887void
1285ev_child_stop (EV_P_ struct ev_child *w) 3888ev_stat_stop (EV_P_ ev_stat *w)
1286{ 3889{
1287 ev_clear_pending (EV_A_ (W)w); 3890 clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 3891 if (expect_false (!ev_is_active (w)))
1289 return; 3892 return;
1290 3893
1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3894 EV_FREQUENT_CHECK;
3895
3896#if EV_USE_INOTIFY
3897 infy_del (EV_A_ w);
3898#endif
3899
3900 if (ev_is_active (&w->timer))
3901 {
3902 ev_ref (EV_A);
3903 ev_timer_stop (EV_A_ &w->timer);
3904 }
3905
1292 ev_stop (EV_A_ (W)w); 3906 ev_stop (EV_A_ (W)w);
3907
3908 EV_FREQUENT_CHECK;
1293} 3909}
3910#endif
3911
3912#if EV_IDLE_ENABLE
3913void
3914ev_idle_start (EV_P_ ev_idle *w)
3915{
3916 if (expect_false (ev_is_active (w)))
3917 return;
3918
3919 pri_adjust (EV_A_ (W)w);
3920
3921 EV_FREQUENT_CHECK;
3922
3923 {
3924 int active = ++idlecnt [ABSPRI (w)];
3925
3926 ++idleall;
3927 ev_start (EV_A_ (W)w, active);
3928
3929 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3930 idles [ABSPRI (w)][active - 1] = w;
3931 }
3932
3933 EV_FREQUENT_CHECK;
3934}
3935
3936void
3937ev_idle_stop (EV_P_ ev_idle *w)
3938{
3939 clear_pending (EV_A_ (W)w);
3940 if (expect_false (!ev_is_active (w)))
3941 return;
3942
3943 EV_FREQUENT_CHECK;
3944
3945 {
3946 int active = ev_active (w);
3947
3948 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3949 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3950
3951 ev_stop (EV_A_ (W)w);
3952 --idleall;
3953 }
3954
3955 EV_FREQUENT_CHECK;
3956}
3957#endif
3958
3959#if EV_PREPARE_ENABLE
3960void
3961ev_prepare_start (EV_P_ ev_prepare *w)
3962{
3963 if (expect_false (ev_is_active (w)))
3964 return;
3965
3966 EV_FREQUENT_CHECK;
3967
3968 ev_start (EV_A_ (W)w, ++preparecnt);
3969 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3970 prepares [preparecnt - 1] = w;
3971
3972 EV_FREQUENT_CHECK;
3973}
3974
3975void
3976ev_prepare_stop (EV_P_ ev_prepare *w)
3977{
3978 clear_pending (EV_A_ (W)w);
3979 if (expect_false (!ev_is_active (w)))
3980 return;
3981
3982 EV_FREQUENT_CHECK;
3983
3984 {
3985 int active = ev_active (w);
3986
3987 prepares [active - 1] = prepares [--preparecnt];
3988 ev_active (prepares [active - 1]) = active;
3989 }
3990
3991 ev_stop (EV_A_ (W)w);
3992
3993 EV_FREQUENT_CHECK;
3994}
3995#endif
3996
3997#if EV_CHECK_ENABLE
3998void
3999ev_check_start (EV_P_ ev_check *w)
4000{
4001 if (expect_false (ev_is_active (w)))
4002 return;
4003
4004 EV_FREQUENT_CHECK;
4005
4006 ev_start (EV_A_ (W)w, ++checkcnt);
4007 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4008 checks [checkcnt - 1] = w;
4009
4010 EV_FREQUENT_CHECK;
4011}
4012
4013void
4014ev_check_stop (EV_P_ ev_check *w)
4015{
4016 clear_pending (EV_A_ (W)w);
4017 if (expect_false (!ev_is_active (w)))
4018 return;
4019
4020 EV_FREQUENT_CHECK;
4021
4022 {
4023 int active = ev_active (w);
4024
4025 checks [active - 1] = checks [--checkcnt];
4026 ev_active (checks [active - 1]) = active;
4027 }
4028
4029 ev_stop (EV_A_ (W)w);
4030
4031 EV_FREQUENT_CHECK;
4032}
4033#endif
4034
4035#if EV_EMBED_ENABLE
4036void noinline
4037ev_embed_sweep (EV_P_ ev_embed *w)
4038{
4039 ev_run (w->other, EVRUN_NOWAIT);
4040}
4041
4042static void
4043embed_io_cb (EV_P_ ev_io *io, int revents)
4044{
4045 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4046
4047 if (ev_cb (w))
4048 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4049 else
4050 ev_run (w->other, EVRUN_NOWAIT);
4051}
4052
4053static void
4054embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4055{
4056 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4057
4058 {
4059 EV_P = w->other;
4060
4061 while (fdchangecnt)
4062 {
4063 fd_reify (EV_A);
4064 ev_run (EV_A_ EVRUN_NOWAIT);
4065 }
4066 }
4067}
4068
4069static void
4070embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4071{
4072 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4073
4074 ev_embed_stop (EV_A_ w);
4075
4076 {
4077 EV_P = w->other;
4078
4079 ev_loop_fork (EV_A);
4080 ev_run (EV_A_ EVRUN_NOWAIT);
4081 }
4082
4083 ev_embed_start (EV_A_ w);
4084}
4085
4086#if 0
4087static void
4088embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4089{
4090 ev_idle_stop (EV_A_ idle);
4091}
4092#endif
4093
4094void
4095ev_embed_start (EV_P_ ev_embed *w)
4096{
4097 if (expect_false (ev_is_active (w)))
4098 return;
4099
4100 {
4101 EV_P = w->other;
4102 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4103 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4104 }
4105
4106 EV_FREQUENT_CHECK;
4107
4108 ev_set_priority (&w->io, ev_priority (w));
4109 ev_io_start (EV_A_ &w->io);
4110
4111 ev_prepare_init (&w->prepare, embed_prepare_cb);
4112 ev_set_priority (&w->prepare, EV_MINPRI);
4113 ev_prepare_start (EV_A_ &w->prepare);
4114
4115 ev_fork_init (&w->fork, embed_fork_cb);
4116 ev_fork_start (EV_A_ &w->fork);
4117
4118 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4119
4120 ev_start (EV_A_ (W)w, 1);
4121
4122 EV_FREQUENT_CHECK;
4123}
4124
4125void
4126ev_embed_stop (EV_P_ ev_embed *w)
4127{
4128 clear_pending (EV_A_ (W)w);
4129 if (expect_false (!ev_is_active (w)))
4130 return;
4131
4132 EV_FREQUENT_CHECK;
4133
4134 ev_io_stop (EV_A_ &w->io);
4135 ev_prepare_stop (EV_A_ &w->prepare);
4136 ev_fork_stop (EV_A_ &w->fork);
4137
4138 ev_stop (EV_A_ (W)w);
4139
4140 EV_FREQUENT_CHECK;
4141}
4142#endif
4143
4144#if EV_FORK_ENABLE
4145void
4146ev_fork_start (EV_P_ ev_fork *w)
4147{
4148 if (expect_false (ev_is_active (w)))
4149 return;
4150
4151 EV_FREQUENT_CHECK;
4152
4153 ev_start (EV_A_ (W)w, ++forkcnt);
4154 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4155 forks [forkcnt - 1] = w;
4156
4157 EV_FREQUENT_CHECK;
4158}
4159
4160void
4161ev_fork_stop (EV_P_ ev_fork *w)
4162{
4163 clear_pending (EV_A_ (W)w);
4164 if (expect_false (!ev_is_active (w)))
4165 return;
4166
4167 EV_FREQUENT_CHECK;
4168
4169 {
4170 int active = ev_active (w);
4171
4172 forks [active - 1] = forks [--forkcnt];
4173 ev_active (forks [active - 1]) = active;
4174 }
4175
4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
4179}
4180#endif
4181
4182#if EV_CLEANUP_ENABLE
4183void
4184ev_cleanup_start (EV_P_ ev_cleanup *w)
4185{
4186 if (expect_false (ev_is_active (w)))
4187 return;
4188
4189 EV_FREQUENT_CHECK;
4190
4191 ev_start (EV_A_ (W)w, ++cleanupcnt);
4192 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4193 cleanups [cleanupcnt - 1] = w;
4194
4195 /* cleanup watchers should never keep a refcount on the loop */
4196 ev_unref (EV_A);
4197 EV_FREQUENT_CHECK;
4198}
4199
4200void
4201ev_cleanup_stop (EV_P_ ev_cleanup *w)
4202{
4203 clear_pending (EV_A_ (W)w);
4204 if (expect_false (!ev_is_active (w)))
4205 return;
4206
4207 EV_FREQUENT_CHECK;
4208 ev_ref (EV_A);
4209
4210 {
4211 int active = ev_active (w);
4212
4213 cleanups [active - 1] = cleanups [--cleanupcnt];
4214 ev_active (cleanups [active - 1]) = active;
4215 }
4216
4217 ev_stop (EV_A_ (W)w);
4218
4219 EV_FREQUENT_CHECK;
4220}
4221#endif
4222
4223#if EV_ASYNC_ENABLE
4224void
4225ev_async_start (EV_P_ ev_async *w)
4226{
4227 if (expect_false (ev_is_active (w)))
4228 return;
4229
4230 w->sent = 0;
4231
4232 evpipe_init (EV_A);
4233
4234 EV_FREQUENT_CHECK;
4235
4236 ev_start (EV_A_ (W)w, ++asynccnt);
4237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4238 asyncs [asynccnt - 1] = w;
4239
4240 EV_FREQUENT_CHECK;
4241}
4242
4243void
4244ev_async_stop (EV_P_ ev_async *w)
4245{
4246 clear_pending (EV_A_ (W)w);
4247 if (expect_false (!ev_is_active (w)))
4248 return;
4249
4250 EV_FREQUENT_CHECK;
4251
4252 {
4253 int active = ev_active (w);
4254
4255 asyncs [active - 1] = asyncs [--asynccnt];
4256 ev_active (asyncs [active - 1]) = active;
4257 }
4258
4259 ev_stop (EV_A_ (W)w);
4260
4261 EV_FREQUENT_CHECK;
4262}
4263
4264void
4265ev_async_send (EV_P_ ev_async *w)
4266{
4267 w->sent = 1;
4268 evpipe_write (EV_A_ &async_pending);
4269}
4270#endif
1294 4271
1295/*****************************************************************************/ 4272/*****************************************************************************/
1296 4273
1297struct ev_once 4274struct ev_once
1298{ 4275{
1299 struct ev_io io; 4276 ev_io io;
1300 struct ev_timer to; 4277 ev_timer to;
1301 void (*cb)(int revents, void *arg); 4278 void (*cb)(int revents, void *arg);
1302 void *arg; 4279 void *arg;
1303}; 4280};
1304 4281
1305static void 4282static void
1306once_cb (EV_P_ struct ev_once *once, int revents) 4283once_cb (EV_P_ struct ev_once *once, int revents)
1307{ 4284{
1308 void (*cb)(int revents, void *arg) = once->cb; 4285 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 4286 void *arg = once->arg;
1310 4287
1311 ev_io_stop (EV_A_ &once->io); 4288 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 4289 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 4290 ev_free (once);
1314 4291
1315 cb (revents, arg); 4292 cb (revents, arg);
1316} 4293}
1317 4294
1318static void 4295static void
1319once_cb_io (EV_P_ struct ev_io *w, int revents) 4296once_cb_io (EV_P_ ev_io *w, int revents)
1320{ 4297{
1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4299
4300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1322} 4301}
1323 4302
1324static void 4303static void
1325once_cb_to (EV_P_ struct ev_timer *w, int revents) 4304once_cb_to (EV_P_ ev_timer *w, int revents)
1326{ 4305{
1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4307
4308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1328} 4309}
1329 4310
1330void 4311void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 4313{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 4314 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 4315
1335 if (!once) 4316 if (expect_false (!once))
4317 {
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4318 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1337 else 4319 return;
1338 { 4320 }
4321
1339 once->cb = cb; 4322 once->cb = cb;
1340 once->arg = arg; 4323 once->arg = arg;
1341 4324
1342 ev_watcher_init (&once->io, once_cb_io); 4325 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 4326 if (fd >= 0)
4327 {
4328 ev_io_set (&once->io, fd, events);
4329 ev_io_start (EV_A_ &once->io);
4330 }
4331
4332 ev_init (&once->to, once_cb_to);
4333 if (timeout >= 0.)
4334 {
4335 ev_timer_set (&once->to, timeout, 0.);
4336 ev_timer_start (EV_A_ &once->to);
4337 }
4338}
4339
4340/*****************************************************************************/
4341
4342#if EV_WALK_ENABLE
4343void ecb_cold
4344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4345{
4346 int i, j;
4347 ev_watcher_list *wl, *wn;
4348
4349 if (types & (EV_IO | EV_EMBED))
4350 for (i = 0; i < anfdmax; ++i)
4351 for (wl = anfds [i].head; wl; )
1344 { 4352 {
1345 ev_io_set (&once->io, fd, events); 4353 wn = wl->next;
1346 ev_io_start (EV_A_ &once->io); 4354
4355#if EV_EMBED_ENABLE
4356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4357 {
4358 if (types & EV_EMBED)
4359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4360 }
4361 else
4362#endif
4363#if EV_USE_INOTIFY
4364 if (ev_cb ((ev_io *)wl) == infy_cb)
4365 ;
4366 else
4367#endif
4368 if ((ev_io *)wl != &pipe_w)
4369 if (types & EV_IO)
4370 cb (EV_A_ EV_IO, wl);
4371
4372 wl = wn;
1347 } 4373 }
1348 4374
1349 ev_watcher_init (&once->to, once_cb_to); 4375 if (types & (EV_TIMER | EV_STAT))
1350 if (timeout >= 0.) 4376 for (i = timercnt + HEAP0; i-- > HEAP0; )
4377#if EV_STAT_ENABLE
4378 /*TODO: timer is not always active*/
4379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1351 { 4380 {
1352 ev_timer_set (&once->to, timeout, 0.); 4381 if (types & EV_STAT)
1353 ev_timer_start (EV_A_ &once->to); 4382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1354 } 4383 }
1355 } 4384 else
1356} 4385#endif
4386 if (types & EV_TIMER)
4387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1357 4388
4389#if EV_PERIODIC_ENABLE
4390 if (types & EV_PERIODIC)
4391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4393#endif
4394
4395#if EV_IDLE_ENABLE
4396 if (types & EV_IDLE)
4397 for (j = NUMPRI; j--; )
4398 for (i = idlecnt [j]; i--; )
4399 cb (EV_A_ EV_IDLE, idles [j][i]);
4400#endif
4401
4402#if EV_FORK_ENABLE
4403 if (types & EV_FORK)
4404 for (i = forkcnt; i--; )
4405 if (ev_cb (forks [i]) != embed_fork_cb)
4406 cb (EV_A_ EV_FORK, forks [i]);
4407#endif
4408
4409#if EV_ASYNC_ENABLE
4410 if (types & EV_ASYNC)
4411 for (i = asynccnt; i--; )
4412 cb (EV_A_ EV_ASYNC, asyncs [i]);
4413#endif
4414
4415#if EV_PREPARE_ENABLE
4416 if (types & EV_PREPARE)
4417 for (i = preparecnt; i--; )
4418# if EV_EMBED_ENABLE
4419 if (ev_cb (prepares [i]) != embed_prepare_cb)
4420# endif
4421 cb (EV_A_ EV_PREPARE, prepares [i]);
4422#endif
4423
4424#if EV_CHECK_ENABLE
4425 if (types & EV_CHECK)
4426 for (i = checkcnt; i--; )
4427 cb (EV_A_ EV_CHECK, checks [i]);
4428#endif
4429
4430#if EV_SIGNAL_ENABLE
4431 if (types & EV_SIGNAL)
4432 for (i = 0; i < EV_NSIG - 1; ++i)
4433 for (wl = signals [i].head; wl; )
4434 {
4435 wn = wl->next;
4436 cb (EV_A_ EV_SIGNAL, wl);
4437 wl = wn;
4438 }
4439#endif
4440
4441#if EV_CHILD_ENABLE
4442 if (types & EV_CHILD)
4443 for (i = (EV_PID_HASHSIZE); i--; )
4444 for (wl = childs [i]; wl; )
4445 {
4446 wn = wl->next;
4447 cb (EV_A_ EV_CHILD, wl);
4448 wl = wn;
4449 }
4450#endif
4451/* EV_STAT 0x00001000 /* stat data changed */
4452/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4453}
4454#endif
4455
4456#if EV_MULTIPLICITY
4457 #include "ev_wrap.h"
4458#endif
4459

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines