ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.123 by root, Sat Nov 17 02:23:54 2007 UTC vs.
Revision 1.408 by root, Fri Jan 27 22:28:49 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
66# endif 127# endif
67 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
68#endif 136# endif
69 137
70#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
71#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
72#include <fcntl.h> 169#include <fcntl.h>
73#include <stddef.h> 170#include <stddef.h>
74 171
75#include <stdio.h> 172#include <stdio.h>
76 173
77#include <assert.h> 174#include <assert.h>
78#include <errno.h> 175#include <errno.h>
79#include <sys/types.h> 176#include <sys/types.h>
80#include <time.h> 177#include <time.h>
178#include <limits.h>
81 179
82#include <signal.h> 180#include <signal.h>
83 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
84#ifndef _WIN32 188#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 189# include <sys/time.h>
87# include <sys/wait.h> 190# include <sys/wait.h>
191# include <unistd.h>
88#else 192#else
193# include <io.h>
89# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 195# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
93# endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
94#endif 249# endif
95 250#endif
96/**/
97 251
98#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
99# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
100#endif 258#endif
101 259
102#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262#endif
263
264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
268# define EV_USE_NANOSLEEP 0
269# endif
104#endif 270#endif
105 271
106#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 274#endif
109 275
110#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
111# ifdef _WIN32 277# ifdef _WIN32
112# define EV_USE_POLL 0 278# define EV_USE_POLL 0
113# else 279# else
114# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 281# endif
116#endif 282#endif
117 283
118#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
119# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
120#endif 290#endif
121 291
122#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
124#endif 294#endif
125 295
126#ifndef EV_USE_PORT 296#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 297# define EV_USE_PORT 0
128#endif 298#endif
129 299
130/**/ 300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
304# define EV_USE_INOTIFY 0
305# endif
306#endif
131 307
132/* darwin simply cannot be helped */ 308#ifndef EV_PID_HASHSIZE
133#ifdef __APPLE__ 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
319# else
320# define EV_USE_EVENTFD 0
321# endif
322#endif
323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 368# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 369# define EV_USE_POLL 0
136#endif 370#endif
137 371
138#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
143#ifndef CLOCK_REALTIME 377#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 378# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 379# define EV_USE_REALTIME 0
146#endif 380#endif
147 381
382#if !EV_STAT_ENABLE
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385#endif
386
387#if !EV_USE_NANOSLEEP
388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
390# include <sys/select.h>
391# endif
392#endif
393
394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
402#endif
403
148#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 405# include <winsock.h>
150#endif 406#endif
151 407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
152/**/ 446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to work around floating point rounding problems.
456 * This value is good at least till the year 4000.
457 */
458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
153 460
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
159#ifdef EV_H 498#ifndef ECB_H
160# include EV_H 499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
508 #if __GNUC__
509 typedef signed long long int64_t;
510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
161#else 515#else
162# include "ev.h" 516 #include <inttypes.h>
517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
163#endif 531 #endif
532#endif
164 533
165#if __GNUC__ >= 3 534/*****************************************************************************/
166# define expect(expr,value) __builtin_expect ((expr),(value)) 535
167# define inline static inline 536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 #if __i386 || __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif __sparc || __sparc__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 #elif defined(__s390__) || defined(__s390x__)
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
567 #endif
568 #endif
569#endif
570
571#ifndef ECB_MEMORY_FENCE
572 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
573 #define ECB_MEMORY_FENCE __sync_synchronize ()
574 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
575 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
576 #elif _MSC_VER >= 1400 /* VC++ 2005 */
577 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
578 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
579 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
580 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
581 #elif defined(_WIN32)
582 #include <WinNT.h>
583 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
584 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
585 #include <mbarrier.h>
586 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
587 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
588 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
589 #endif
590#endif
591
592#ifndef ECB_MEMORY_FENCE
593 #if !ECB_AVOID_PTHREADS
594 /*
595 * if you get undefined symbol references to pthread_mutex_lock,
596 * or failure to find pthread.h, then you should implement
597 * the ECB_MEMORY_FENCE operations for your cpu/compiler
598 * OR provide pthread.h and link against the posix thread library
599 * of your system.
600 */
601 #include <pthread.h>
602 #define ECB_NEEDS_PTHREADS 1
603 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
604
605 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
606 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
607 #endif
608#endif
609
610#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
611 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
612#endif
613
614#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
615 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
616#endif
617
618/*****************************************************************************/
619
620#define ECB_C99 (__STDC_VERSION__ >= 199901L)
621
622#if __cplusplus
623 #define ecb_inline static inline
624#elif ECB_GCC_VERSION(2,5)
625 #define ecb_inline static __inline__
626#elif ECB_C99
627 #define ecb_inline static inline
168#else 628#else
629 #define ecb_inline static
630#endif
631
632#if ECB_GCC_VERSION(3,3)
633 #define ecb_restrict __restrict__
634#elif ECB_C99
635 #define ecb_restrict restrict
636#else
637 #define ecb_restrict
638#endif
639
640typedef int ecb_bool;
641
642#define ECB_CONCAT_(a, b) a ## b
643#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
644#define ECB_STRINGIFY_(a) # a
645#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
646
647#define ecb_function_ ecb_inline
648
649#if ECB_GCC_VERSION(3,1)
650 #define ecb_attribute(attrlist) __attribute__(attrlist)
651 #define ecb_is_constant(expr) __builtin_constant_p (expr)
652 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
653 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
654#else
655 #define ecb_attribute(attrlist)
656 #define ecb_is_constant(expr) 0
169# define expect(expr,value) (expr) 657 #define ecb_expect(expr,value) (expr)
170# define inline static 658 #define ecb_prefetch(addr,rw,locality)
171#endif 659#endif
172 660
661/* no emulation for ecb_decltype */
662#if ECB_GCC_VERSION(4,5)
663 #define ecb_decltype(x) __decltype(x)
664#elif ECB_GCC_VERSION(3,0)
665 #define ecb_decltype(x) __typeof(x)
666#endif
667
668#define ecb_noinline ecb_attribute ((__noinline__))
669#define ecb_noreturn ecb_attribute ((__noreturn__))
670#define ecb_unused ecb_attribute ((__unused__))
671#define ecb_const ecb_attribute ((__const__))
672#define ecb_pure ecb_attribute ((__pure__))
673
674#if ECB_GCC_VERSION(4,3)
675 #define ecb_artificial ecb_attribute ((__artificial__))
676 #define ecb_hot ecb_attribute ((__hot__))
677 #define ecb_cold ecb_attribute ((__cold__))
678#else
679 #define ecb_artificial
680 #define ecb_hot
681 #define ecb_cold
682#endif
683
684/* put around conditional expressions if you are very sure that the */
685/* expression is mostly true or mostly false. note that these return */
686/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 687#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 688#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
689/* for compatibility to the rest of the world */
690#define ecb_likely(expr) ecb_expect_true (expr)
691#define ecb_unlikely(expr) ecb_expect_false (expr)
175 692
693/* count trailing zero bits and count # of one bits */
694#if ECB_GCC_VERSION(3,4)
695 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
696 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
697 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
698 #define ecb_ctz32(x) __builtin_ctz (x)
699 #define ecb_ctz64(x) __builtin_ctzll (x)
700 #define ecb_popcount32(x) __builtin_popcount (x)
701 /* no popcountll */
702#else
703 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
704 ecb_function_ int
705 ecb_ctz32 (uint32_t x)
706 {
707 int r = 0;
708
709 x &= ~x + 1; /* this isolates the lowest bit */
710
711#if ECB_branchless_on_i386
712 r += !!(x & 0xaaaaaaaa) << 0;
713 r += !!(x & 0xcccccccc) << 1;
714 r += !!(x & 0xf0f0f0f0) << 2;
715 r += !!(x & 0xff00ff00) << 3;
716 r += !!(x & 0xffff0000) << 4;
717#else
718 if (x & 0xaaaaaaaa) r += 1;
719 if (x & 0xcccccccc) r += 2;
720 if (x & 0xf0f0f0f0) r += 4;
721 if (x & 0xff00ff00) r += 8;
722 if (x & 0xffff0000) r += 16;
723#endif
724
725 return r;
726 }
727
728 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
729 ecb_function_ int
730 ecb_ctz64 (uint64_t x)
731 {
732 int shift = x & 0xffffffffU ? 0 : 32;
733 return ecb_ctz32 (x >> shift) + shift;
734 }
735
736 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
737 ecb_function_ int
738 ecb_popcount32 (uint32_t x)
739 {
740 x -= (x >> 1) & 0x55555555;
741 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
742 x = ((x >> 4) + x) & 0x0f0f0f0f;
743 x *= 0x01010101;
744
745 return x >> 24;
746 }
747
748 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
749 ecb_function_ int ecb_ld32 (uint32_t x)
750 {
751 int r = 0;
752
753 if (x >> 16) { x >>= 16; r += 16; }
754 if (x >> 8) { x >>= 8; r += 8; }
755 if (x >> 4) { x >>= 4; r += 4; }
756 if (x >> 2) { x >>= 2; r += 2; }
757 if (x >> 1) { r += 1; }
758
759 return r;
760 }
761
762 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
763 ecb_function_ int ecb_ld64 (uint64_t x)
764 {
765 int r = 0;
766
767 if (x >> 32) { x >>= 32; r += 32; }
768
769 return r + ecb_ld32 (x);
770 }
771#endif
772
773ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
774ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
775{
776 return ( (x * 0x0802U & 0x22110U)
777 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
778}
779
780ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
781ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
782{
783 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
784 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
785 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
786 x = ( x >> 8 ) | ( x << 8);
787
788 return x;
789}
790
791ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
792ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
793{
794 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
795 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
796 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
797 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
798 x = ( x >> 16 ) | ( x << 16);
799
800 return x;
801}
802
803/* popcount64 is only available on 64 bit cpus as gcc builtin */
804/* so for this version we are lazy */
805ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
806ecb_function_ int
807ecb_popcount64 (uint64_t x)
808{
809 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
810}
811
812ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
813ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
814ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
815ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
816ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
817ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
818ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
819ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
820
821ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
822ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
823ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
824ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
825ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
826ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
827ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
828ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
829
830#if ECB_GCC_VERSION(4,3)
831 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
832 #define ecb_bswap32(x) __builtin_bswap32 (x)
833 #define ecb_bswap64(x) __builtin_bswap64 (x)
834#else
835 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
836 ecb_function_ uint16_t
837 ecb_bswap16 (uint16_t x)
838 {
839 return ecb_rotl16 (x, 8);
840 }
841
842 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
843 ecb_function_ uint32_t
844 ecb_bswap32 (uint32_t x)
845 {
846 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
847 }
848
849 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
850 ecb_function_ uint64_t
851 ecb_bswap64 (uint64_t x)
852 {
853 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
854 }
855#endif
856
857#if ECB_GCC_VERSION(4,5)
858 #define ecb_unreachable() __builtin_unreachable ()
859#else
860 /* this seems to work fine, but gcc always emits a warning for it :/ */
861 ecb_inline void ecb_unreachable (void) ecb_noreturn;
862 ecb_inline void ecb_unreachable (void) { }
863#endif
864
865/* try to tell the compiler that some condition is definitely true */
866#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
867
868ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
869ecb_inline unsigned char
870ecb_byteorder_helper (void)
871{
872 const uint32_t u = 0x11223344;
873 return *(unsigned char *)&u;
874}
875
876ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
877ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
878ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
879ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
880
881#if ECB_GCC_VERSION(3,0) || ECB_C99
882 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
883#else
884 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
885#endif
886
887#if __cplusplus
888 template<typename T>
889 static inline T ecb_div_rd (T val, T div)
890 {
891 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
892 }
893 template<typename T>
894 static inline T ecb_div_ru (T val, T div)
895 {
896 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
897 }
898#else
899 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
900 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
901#endif
902
903#if ecb_cplusplus_does_not_suck
904 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
905 template<typename T, int N>
906 static inline int ecb_array_length (const T (&arr)[N])
907 {
908 return N;
909 }
910#else
911 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
912#endif
913
914#endif
915
916/* ECB.H END */
917
918#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
919/* if your architecture doesn't need memory fences, e.g. because it is
920 * single-cpu/core, or if you use libev in a project that doesn't use libev
921 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
922 * libev, in which cases the memory fences become nops.
923 * alternatively, you can remove this #error and link against libpthread,
924 * which will then provide the memory fences.
925 */
926# error "memory fences not defined for your architecture, please report"
927#endif
928
929#ifndef ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE do { } while (0)
931# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
932# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
933#endif
934
935#define expect_false(cond) ecb_expect_false (cond)
936#define expect_true(cond) ecb_expect_true (cond)
937#define noinline ecb_noinline
938
939#define inline_size ecb_inline
940
941#if EV_FEATURE_CODE
942# define inline_speed ecb_inline
943#else
944# define inline_speed static noinline
945#endif
946
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 947#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
948
949#if EV_MINPRI == EV_MAXPRI
950# define ABSPRI(w) (((W)w), 0)
951#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 952# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
953#endif
178 954
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 955#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 956#define EMPTY2(a,b) /* used to suppress some warnings */
181 957
182typedef struct ev_watcher *W; 958typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 959typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 960typedef ev_watcher_time *WT;
185 961
962#define ev_active(w) ((W)(w))->active
963#define ev_at(w) ((WT)(w))->at
964
965#if EV_USE_REALTIME
966/* sig_atomic_t is used to avoid per-thread variables or locking but still */
967/* giving it a reasonably high chance of working on typical architectures */
968static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
969#endif
970
971#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 972static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
973#endif
974
975#ifndef EV_FD_TO_WIN32_HANDLE
976# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
977#endif
978#ifndef EV_WIN32_HANDLE_TO_FD
979# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
980#endif
981#ifndef EV_WIN32_CLOSE_FD
982# define EV_WIN32_CLOSE_FD(fd) close (fd)
983#endif
187 984
188#ifdef _WIN32 985#ifdef _WIN32
189# include "ev_win32.c" 986# include "ev_win32.c"
190#endif 987#endif
191 988
192/*****************************************************************************/ 989/*****************************************************************************/
193 990
991/* define a suitable floor function (only used by periodics atm) */
992
993#if EV_USE_FLOOR
994# include <math.h>
995# define ev_floor(v) floor (v)
996#else
997
998#include <float.h>
999
1000/* a floor() replacement function, should be independent of ev_tstamp type */
1001static ev_tstamp noinline
1002ev_floor (ev_tstamp v)
1003{
1004 /* the choice of shift factor is not terribly important */
1005#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1007#else
1008 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1009#endif
1010
1011 /* argument too large for an unsigned long? */
1012 if (expect_false (v >= shift))
1013 {
1014 ev_tstamp f;
1015
1016 if (v == v - 1.)
1017 return v; /* very large number */
1018
1019 f = shift * ev_floor (v * (1. / shift));
1020 return f + ev_floor (v - f);
1021 }
1022
1023 /* special treatment for negative args? */
1024 if (expect_false (v < 0.))
1025 {
1026 ev_tstamp f = -ev_floor (-v);
1027
1028 return f - (f == v ? 0 : 1);
1029 }
1030
1031 /* fits into an unsigned long */
1032 return (unsigned long)v;
1033}
1034
1035#endif
1036
1037/*****************************************************************************/
1038
1039#ifdef __linux
1040# include <sys/utsname.h>
1041#endif
1042
1043static unsigned int noinline ecb_cold
1044ev_linux_version (void)
1045{
1046#ifdef __linux
1047 unsigned int v = 0;
1048 struct utsname buf;
1049 int i;
1050 char *p = buf.release;
1051
1052 if (uname (&buf))
1053 return 0;
1054
1055 for (i = 3+1; --i; )
1056 {
1057 unsigned int c = 0;
1058
1059 for (;;)
1060 {
1061 if (*p >= '0' && *p <= '9')
1062 c = c * 10 + *p++ - '0';
1063 else
1064 {
1065 p += *p == '.';
1066 break;
1067 }
1068 }
1069
1070 v = (v << 8) | c;
1071 }
1072
1073 return v;
1074#else
1075 return 0;
1076#endif
1077}
1078
1079/*****************************************************************************/
1080
1081#if EV_AVOID_STDIO
1082static void noinline ecb_cold
1083ev_printerr (const char *msg)
1084{
1085 write (STDERR_FILENO, msg, strlen (msg));
1086}
1087#endif
1088
194static void (*syserr_cb)(const char *msg); 1089static void (*syserr_cb)(const char *msg);
195 1090
1091void ecb_cold
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 1092ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 1093{
198 syserr_cb = cb; 1094 syserr_cb = cb;
199} 1095}
200 1096
201static void 1097static void noinline ecb_cold
202syserr (const char *msg) 1098ev_syserr (const char *msg)
203{ 1099{
204 if (!msg) 1100 if (!msg)
205 msg = "(libev) system error"; 1101 msg = "(libev) system error";
206 1102
207 if (syserr_cb) 1103 if (syserr_cb)
208 syserr_cb (msg); 1104 syserr_cb (msg);
209 else 1105 else
210 { 1106 {
1107#if EV_AVOID_STDIO
1108 ev_printerr (msg);
1109 ev_printerr (": ");
1110 ev_printerr (strerror (errno));
1111 ev_printerr ("\n");
1112#else
211 perror (msg); 1113 perror (msg);
1114#endif
212 abort (); 1115 abort ();
213 } 1116 }
214} 1117}
215 1118
1119static void *
1120ev_realloc_emul (void *ptr, long size)
1121{
1122#if __GLIBC__
1123 return realloc (ptr, size);
1124#else
1125 /* some systems, notably openbsd and darwin, fail to properly
1126 * implement realloc (x, 0) (as required by both ansi c-89 and
1127 * the single unix specification, so work around them here.
1128 */
1129
1130 if (size)
1131 return realloc (ptr, size);
1132
1133 free (ptr);
1134 return 0;
1135#endif
1136}
1137
216static void *(*alloc)(void *ptr, long size); 1138static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 1139
1140void ecb_cold
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1141ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 1142{
220 alloc = cb; 1143 alloc = cb;
221} 1144}
222 1145
223static void * 1146inline_speed void *
224ev_realloc (void *ptr, long size) 1147ev_realloc (void *ptr, long size)
225{ 1148{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1149 ptr = alloc (ptr, size);
227 1150
228 if (!ptr && size) 1151 if (!ptr && size)
229 { 1152 {
1153#if EV_AVOID_STDIO
1154 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1155#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1156 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1157#endif
231 abort (); 1158 abort ();
232 } 1159 }
233 1160
234 return ptr; 1161 return ptr;
235} 1162}
237#define ev_malloc(size) ev_realloc (0, (size)) 1164#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 1165#define ev_free(ptr) ev_realloc ((ptr), 0)
239 1166
240/*****************************************************************************/ 1167/*****************************************************************************/
241 1168
1169/* set in reify when reification needed */
1170#define EV_ANFD_REIFY 1
1171
1172/* file descriptor info structure */
242typedef struct 1173typedef struct
243{ 1174{
244 WL head; 1175 WL head;
245 unsigned char events; 1176 unsigned char events; /* the events watched for */
1177 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1178 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 1179 unsigned char unused;
1180#if EV_USE_EPOLL
1181 unsigned int egen; /* generation counter to counter epoll bugs */
1182#endif
247#if EV_SELECT_IS_WINSOCKET 1183#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 1184 SOCKET handle;
249#endif 1185#endif
1186#if EV_USE_IOCP
1187 OVERLAPPED or, ow;
1188#endif
250} ANFD; 1189} ANFD;
251 1190
1191/* stores the pending event set for a given watcher */
252typedef struct 1192typedef struct
253{ 1193{
254 W w; 1194 W w;
255 int events; 1195 int events; /* the pending event set for the given watcher */
256} ANPENDING; 1196} ANPENDING;
1197
1198#if EV_USE_INOTIFY
1199/* hash table entry per inotify-id */
1200typedef struct
1201{
1202 WL head;
1203} ANFS;
1204#endif
1205
1206/* Heap Entry */
1207#if EV_HEAP_CACHE_AT
1208 /* a heap element */
1209 typedef struct {
1210 ev_tstamp at;
1211 WT w;
1212 } ANHE;
1213
1214 #define ANHE_w(he) (he).w /* access watcher, read-write */
1215 #define ANHE_at(he) (he).at /* access cached at, read-only */
1216 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1217#else
1218 /* a heap element */
1219 typedef WT ANHE;
1220
1221 #define ANHE_w(he) (he)
1222 #define ANHE_at(he) (he)->at
1223 #define ANHE_at_cache(he)
1224#endif
257 1225
258#if EV_MULTIPLICITY 1226#if EV_MULTIPLICITY
259 1227
260 struct ev_loop 1228 struct ev_loop
261 { 1229 {
266 #undef VAR 1234 #undef VAR
267 }; 1235 };
268 #include "ev_wrap.h" 1236 #include "ev_wrap.h"
269 1237
270 static struct ev_loop default_loop_struct; 1238 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr; 1239 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
272 1240
273#else 1241#else
274 1242
275 ev_tstamp ev_rt_now; 1243 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
276 #define VAR(name,decl) static decl; 1244 #define VAR(name,decl) static decl;
277 #include "ev_vars.h" 1245 #include "ev_vars.h"
278 #undef VAR 1246 #undef VAR
279 1247
280 static int ev_default_loop_ptr; 1248 static int ev_default_loop_ptr;
281 1249
282#endif 1250#endif
283 1251
1252#if EV_FEATURE_API
1253# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1254# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1255# define EV_INVOKE_PENDING invoke_cb (EV_A)
1256#else
1257# define EV_RELEASE_CB (void)0
1258# define EV_ACQUIRE_CB (void)0
1259# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1260#endif
1261
1262#define EVBREAK_RECURSE 0x80
1263
284/*****************************************************************************/ 1264/*****************************************************************************/
285 1265
1266#ifndef EV_HAVE_EV_TIME
286ev_tstamp 1267ev_tstamp
287ev_time (void) 1268ev_time (void)
288{ 1269{
289#if EV_USE_REALTIME 1270#if EV_USE_REALTIME
1271 if (expect_true (have_realtime))
1272 {
290 struct timespec ts; 1273 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 1274 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 1275 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 1276 }
1277#endif
1278
294 struct timeval tv; 1279 struct timeval tv;
295 gettimeofday (&tv, 0); 1280 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 1281 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 1282}
1283#endif
299 1284
300inline ev_tstamp 1285inline_size ev_tstamp
301get_clock (void) 1286get_clock (void)
302{ 1287{
303#if EV_USE_MONOTONIC 1288#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 1289 if (expect_true (have_monotonic))
305 { 1290 {
318{ 1303{
319 return ev_rt_now; 1304 return ev_rt_now;
320} 1305}
321#endif 1306#endif
322 1307
323#define array_roundsize(type,n) (((n) | 4) & ~3) 1308void
1309ev_sleep (ev_tstamp delay)
1310{
1311 if (delay > 0.)
1312 {
1313#if EV_USE_NANOSLEEP
1314 struct timespec ts;
1315
1316 EV_TS_SET (ts, delay);
1317 nanosleep (&ts, 0);
1318#elif defined(_WIN32)
1319 Sleep ((unsigned long)(delay * 1e3));
1320#else
1321 struct timeval tv;
1322
1323 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1324 /* something not guaranteed by newer posix versions, but guaranteed */
1325 /* by older ones */
1326 EV_TV_SET (tv, delay);
1327 select (0, 0, 0, 0, &tv);
1328#endif
1329 }
1330}
1331
1332/*****************************************************************************/
1333
1334#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1335
1336/* find a suitable new size for the given array, */
1337/* hopefully by rounding to a nice-to-malloc size */
1338inline_size int
1339array_nextsize (int elem, int cur, int cnt)
1340{
1341 int ncur = cur + 1;
1342
1343 do
1344 ncur <<= 1;
1345 while (cnt > ncur);
1346
1347 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1348 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1349 {
1350 ncur *= elem;
1351 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1352 ncur = ncur - sizeof (void *) * 4;
1353 ncur /= elem;
1354 }
1355
1356 return ncur;
1357}
1358
1359static void * noinline ecb_cold
1360array_realloc (int elem, void *base, int *cur, int cnt)
1361{
1362 *cur = array_nextsize (elem, *cur, cnt);
1363 return ev_realloc (base, elem * *cur);
1364}
1365
1366#define array_init_zero(base,count) \
1367 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 1368
325#define array_needsize(type,base,cur,cnt,init) \ 1369#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 1370 if (expect_false ((cnt) > (cur))) \
327 { \ 1371 { \
328 int newcnt = cur; \ 1372 int ecb_unused ocur_ = (cur); \
329 do \ 1373 (base) = (type *)array_realloc \
330 { \ 1374 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 1375 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 1376 }
339 1377
1378#if 0
340#define array_slim(type,stem) \ 1379#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1380 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 1381 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1382 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1383 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1384 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 1385 }
1386#endif
347 1387
348#define array_free(stem, idx) \ 1388#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1389 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 1390
351/*****************************************************************************/ 1391/*****************************************************************************/
352 1392
353static void 1393/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 1394static void noinline
1395pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 1396{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 1397}
365 1398
366void 1399void noinline
367ev_feed_event (EV_P_ void *w, int revents) 1400ev_feed_event (EV_P_ void *w, int revents)
368{ 1401{
369 W w_ = (W)w; 1402 W w_ = (W)w;
1403 int pri = ABSPRI (w_);
370 1404
371 if (expect_false (w_->pending)) 1405 if (expect_false (w_->pending))
1406 pendings [pri][w_->pending - 1].events |= revents;
1407 else
372 { 1408 {
1409 w_->pending = ++pendingcnt [pri];
1410 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1411 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1412 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 1413 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 1414}
382 1415
383static void 1416inline_speed void
1417feed_reverse (EV_P_ W w)
1418{
1419 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1420 rfeeds [rfeedcnt++] = w;
1421}
1422
1423inline_size void
1424feed_reverse_done (EV_P_ int revents)
1425{
1426 do
1427 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1428 while (rfeedcnt);
1429}
1430
1431inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 1432queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 1433{
386 int i; 1434 int i;
387 1435
388 for (i = 0; i < eventcnt; ++i) 1436 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 1437 ev_feed_event (EV_A_ events [i], type);
390} 1438}
391 1439
1440/*****************************************************************************/
1441
392inline void 1442inline_speed void
393fd_event (EV_P_ int fd, int revents) 1443fd_event_nocheck (EV_P_ int fd, int revents)
394{ 1444{
395 ANFD *anfd = anfds + fd; 1445 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 1446 ev_io *w;
397 1447
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1448 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 1449 {
400 int ev = w->events & revents; 1450 int ev = w->events & revents;
401 1451
402 if (ev) 1452 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 1453 ev_feed_event (EV_A_ (W)w, ev);
404 } 1454 }
405} 1455}
406 1456
1457/* do not submit kernel events for fds that have reify set */
1458/* because that means they changed while we were polling for new events */
1459inline_speed void
1460fd_event (EV_P_ int fd, int revents)
1461{
1462 ANFD *anfd = anfds + fd;
1463
1464 if (expect_true (!anfd->reify))
1465 fd_event_nocheck (EV_A_ fd, revents);
1466}
1467
407void 1468void
408ev_feed_fd_event (EV_P_ int fd, int revents) 1469ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 1470{
1471 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 1472 fd_event_nocheck (EV_A_ fd, revents);
411} 1473}
412 1474
413/*****************************************************************************/ 1475/* make sure the external fd watch events are in-sync */
414 1476/* with the kernel/libev internal state */
415inline void 1477inline_size void
416fd_reify (EV_P) 1478fd_reify (EV_P)
417{ 1479{
418 int i; 1480 int i;
419 1481
1482#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 1483 for (i = 0; i < fdchangecnt; ++i)
421 { 1484 {
422 int fd = fdchanges [i]; 1485 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 1486 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 1487
426 int events = 0; 1488 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 1489 {
1490 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1491
1492 if (handle != anfd->handle)
1493 {
434 unsigned long argp; 1494 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 1495
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1496 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1497
1498 /* handle changed, but fd didn't - we need to do it in two steps */
1499 backend_modify (EV_A_ fd, anfd->events, 0);
1500 anfd->events = 0;
1501 anfd->handle = handle;
1502 }
437 } 1503 }
1504 }
438#endif 1505#endif
439 1506
1507 for (i = 0; i < fdchangecnt; ++i)
1508 {
1509 int fd = fdchanges [i];
1510 ANFD *anfd = anfds + fd;
1511 ev_io *w;
1512
1513 unsigned char o_events = anfd->events;
1514 unsigned char o_reify = anfd->reify;
1515
440 anfd->reify = 0; 1516 anfd->reify = 0;
441 1517
442 method_modify (EV_A_ fd, anfd->events, events); 1518 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1519 {
443 anfd->events = events; 1520 anfd->events = 0;
1521
1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1523 anfd->events |= (unsigned char)w->events;
1524
1525 if (o_events != anfd->events)
1526 o_reify = EV__IOFDSET; /* actually |= */
1527 }
1528
1529 if (o_reify & EV__IOFDSET)
1530 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 1531 }
445 1532
446 fdchangecnt = 0; 1533 fdchangecnt = 0;
447} 1534}
448 1535
449static void 1536/* something about the given fd changed */
1537inline_size void
450fd_change (EV_P_ int fd) 1538fd_change (EV_P_ int fd, int flags)
451{ 1539{
452 if (expect_false (anfds [fd].reify)) 1540 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 1541 anfds [fd].reify |= flags;
456 1542
1543 if (expect_true (!reify))
1544 {
457 ++fdchangecnt; 1545 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1546 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 1547 fdchanges [fdchangecnt - 1] = fd;
1548 }
460} 1549}
461 1550
462static void 1551/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1552inline_speed void ecb_cold
463fd_kill (EV_P_ int fd) 1553fd_kill (EV_P_ int fd)
464{ 1554{
465 struct ev_io *w; 1555 ev_io *w;
466 1556
467 while ((w = (struct ev_io *)anfds [fd].head)) 1557 while ((w = (ev_io *)anfds [fd].head))
468 { 1558 {
469 ev_io_stop (EV_A_ w); 1559 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1560 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 1561 }
472} 1562}
473 1563
474inline int 1564/* check whether the given fd is actually valid, for error recovery */
1565inline_size int ecb_cold
475fd_valid (int fd) 1566fd_valid (int fd)
476{ 1567{
477#ifdef _WIN32 1568#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 1569 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 1570#else
480 return fcntl (fd, F_GETFD) != -1; 1571 return fcntl (fd, F_GETFD) != -1;
481#endif 1572#endif
482} 1573}
483 1574
484/* called on EBADF to verify fds */ 1575/* called on EBADF to verify fds */
485static void 1576static void noinline ecb_cold
486fd_ebadf (EV_P) 1577fd_ebadf (EV_P)
487{ 1578{
488 int fd; 1579 int fd;
489 1580
490 for (fd = 0; fd < anfdmax; ++fd) 1581 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 1582 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 1583 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 1584 fd_kill (EV_A_ fd);
494} 1585}
495 1586
496/* called on ENOMEM in select/poll to kill some fds and retry */ 1587/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 1588static void noinline ecb_cold
498fd_enomem (EV_P) 1589fd_enomem (EV_P)
499{ 1590{
500 int fd; 1591 int fd;
501 1592
502 for (fd = anfdmax; fd--; ) 1593 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 1594 if (anfds [fd].events)
504 { 1595 {
505 fd_kill (EV_A_ fd); 1596 fd_kill (EV_A_ fd);
506 return; 1597 break;
507 } 1598 }
508} 1599}
509 1600
510/* usually called after fork if method needs to re-arm all fds from scratch */ 1601/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 1602static void noinline
512fd_rearm_all (EV_P) 1603fd_rearm_all (EV_P)
513{ 1604{
514 int fd; 1605 int fd;
515 1606
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 1607 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1608 if (anfds [fd].events)
519 { 1609 {
520 anfds [fd].events = 0; 1610 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 1611 anfds [fd].emask = 0;
1612 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 1613 }
523} 1614}
524 1615
525/*****************************************************************************/ 1616/* used to prepare libev internal fd's */
526 1617/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 1618inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 1619fd_intern (int fd)
655{ 1620{
656#ifdef _WIN32 1621#ifdef _WIN32
657 int arg = 1; 1622 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1623 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 1624#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1625 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1626 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1627#endif
663} 1628}
664 1629
1630/*****************************************************************************/
1631
1632/*
1633 * the heap functions want a real array index. array index 0 is guaranteed to not
1634 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1635 * the branching factor of the d-tree.
1636 */
1637
1638/*
1639 * at the moment we allow libev the luxury of two heaps,
1640 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1641 * which is more cache-efficient.
1642 * the difference is about 5% with 50000+ watchers.
1643 */
1644#if EV_USE_4HEAP
1645
1646#define DHEAP 4
1647#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1648#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1649#define UPHEAP_DONE(p,k) ((p) == (k))
1650
1651/* away from the root */
1652inline_speed void
1653downheap (ANHE *heap, int N, int k)
1654{
1655 ANHE he = heap [k];
1656 ANHE *E = heap + N + HEAP0;
1657
1658 for (;;)
1659 {
1660 ev_tstamp minat;
1661 ANHE *minpos;
1662 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1663
1664 /* find minimum child */
1665 if (expect_true (pos + DHEAP - 1 < E))
1666 {
1667 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1669 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1670 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1671 }
1672 else if (pos < E)
1673 {
1674 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1675 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1676 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1677 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1678 }
1679 else
1680 break;
1681
1682 if (ANHE_at (he) <= minat)
1683 break;
1684
1685 heap [k] = *minpos;
1686 ev_active (ANHE_w (*minpos)) = k;
1687
1688 k = minpos - heap;
1689 }
1690
1691 heap [k] = he;
1692 ev_active (ANHE_w (he)) = k;
1693}
1694
1695#else /* 4HEAP */
1696
1697#define HEAP0 1
1698#define HPARENT(k) ((k) >> 1)
1699#define UPHEAP_DONE(p,k) (!(p))
1700
1701/* away from the root */
1702inline_speed void
1703downheap (ANHE *heap, int N, int k)
1704{
1705 ANHE he = heap [k];
1706
1707 for (;;)
1708 {
1709 int c = k << 1;
1710
1711 if (c >= N + HEAP0)
1712 break;
1713
1714 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1715 ? 1 : 0;
1716
1717 if (ANHE_at (he) <= ANHE_at (heap [c]))
1718 break;
1719
1720 heap [k] = heap [c];
1721 ev_active (ANHE_w (heap [k])) = k;
1722
1723 k = c;
1724 }
1725
1726 heap [k] = he;
1727 ev_active (ANHE_w (he)) = k;
1728}
1729#endif
1730
1731/* towards the root */
1732inline_speed void
1733upheap (ANHE *heap, int k)
1734{
1735 ANHE he = heap [k];
1736
1737 for (;;)
1738 {
1739 int p = HPARENT (k);
1740
1741 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1742 break;
1743
1744 heap [k] = heap [p];
1745 ev_active (ANHE_w (heap [k])) = k;
1746 k = p;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752
1753/* move an element suitably so it is in a correct place */
1754inline_size void
1755adjustheap (ANHE *heap, int N, int k)
1756{
1757 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1758 upheap (heap, k);
1759 else
1760 downheap (heap, N, k);
1761}
1762
1763/* rebuild the heap: this function is used only once and executed rarely */
1764inline_size void
1765reheap (ANHE *heap, int N)
1766{
1767 int i;
1768
1769 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1770 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1771 for (i = 0; i < N; ++i)
1772 upheap (heap, i + HEAP0);
1773}
1774
1775/*****************************************************************************/
1776
1777/* associate signal watchers to a signal signal */
1778typedef struct
1779{
1780 EV_ATOMIC_T pending;
1781#if EV_MULTIPLICITY
1782 EV_P;
1783#endif
1784 WL head;
1785} ANSIG;
1786
1787static ANSIG signals [EV_NSIG - 1];
1788
1789/*****************************************************************************/
1790
1791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1792
1793static void noinline ecb_cold
1794evpipe_init (EV_P)
1795{
1796 if (!ev_is_active (&pipe_w))
1797 {
1798# if EV_USE_EVENTFD
1799 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1800 if (evfd < 0 && errno == EINVAL)
1801 evfd = eventfd (0, 0);
1802
1803 if (evfd >= 0)
1804 {
1805 evpipe [0] = -1;
1806 fd_intern (evfd); /* doing it twice doesn't hurt */
1807 ev_io_set (&pipe_w, evfd, EV_READ);
1808 }
1809 else
1810# endif
1811 {
1812 while (pipe (evpipe))
1813 ev_syserr ("(libev) error creating signal/async pipe");
1814
1815 fd_intern (evpipe [0]);
1816 fd_intern (evpipe [1]);
1817 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1818 }
1819
1820 ev_io_start (EV_A_ &pipe_w);
1821 ev_unref (EV_A); /* watcher should not keep loop alive */
1822 }
1823}
1824
1825inline_speed void
1826evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1827{
1828 if (expect_true (*flag))
1829 return;
1830
1831 *flag = 1;
1832
1833 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1834
1835 pipe_write_skipped = 1;
1836
1837 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1838
1839 if (pipe_write_wanted)
1840 {
1841 int old_errno;
1842
1843 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1844
1845 old_errno = errno; /* save errno because write will clobber it */
1846
1847#if EV_USE_EVENTFD
1848 if (evfd >= 0)
1849 {
1850 uint64_t counter = 1;
1851 write (evfd, &counter, sizeof (uint64_t));
1852 }
1853 else
1854#endif
1855 {
1856 /* win32 people keep sending patches that change this write() to send() */
1857 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1858 /* so when you think this write should be a send instead, please find out */
1859 /* where your send() is from - it's definitely not the microsoft send, and */
1860 /* tell me. thank you. */
1861 write (evpipe [1], &(evpipe [1]), 1);
1862 }
1863
1864 errno = old_errno;
1865 }
1866}
1867
1868/* called whenever the libev signal pipe */
1869/* got some events (signal, async) */
665static void 1870static void
666siginit (EV_P) 1871pipecb (EV_P_ ev_io *iow, int revents)
667{ 1872{
668 fd_intern (sigpipe [0]); 1873 int i;
669 fd_intern (sigpipe [1]);
670 1874
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1875 if (revents & EV_READ)
672 ev_io_start (EV_A_ &sigev); 1876 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1877#if EV_USE_EVENTFD
1878 if (evfd >= 0)
1879 {
1880 uint64_t counter;
1881 read (evfd, &counter, sizeof (uint64_t));
1882 }
1883 else
1884#endif
1885 {
1886 char dummy;
1887 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1888 read (evpipe [0], &dummy, 1);
1889 }
1890 }
1891
1892 pipe_write_skipped = 0;
1893
1894#if EV_SIGNAL_ENABLE
1895 if (sig_pending)
1896 {
1897 sig_pending = 0;
1898
1899 for (i = EV_NSIG - 1; i--; )
1900 if (expect_false (signals [i].pending))
1901 ev_feed_signal_event (EV_A_ i + 1);
1902 }
1903#endif
1904
1905#if EV_ASYNC_ENABLE
1906 if (async_pending)
1907 {
1908 async_pending = 0;
1909
1910 for (i = asynccnt; i--; )
1911 if (asyncs [i]->sent)
1912 {
1913 asyncs [i]->sent = 0;
1914 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1915 }
1916 }
1917#endif
674} 1918}
675 1919
676/*****************************************************************************/ 1920/*****************************************************************************/
677 1921
678static struct ev_child *childs [PID_HASHSIZE]; 1922void
1923ev_feed_signal (int signum)
1924{
1925#if EV_MULTIPLICITY
1926 EV_P = signals [signum - 1].loop;
679 1927
1928 if (!EV_A)
1929 return;
1930#endif
1931
1932 if (!ev_active (&pipe_w))
1933 return;
1934
1935 signals [signum - 1].pending = 1;
1936 evpipe_write (EV_A_ &sig_pending);
1937}
1938
1939static void
1940ev_sighandler (int signum)
1941{
680#ifndef _WIN32 1942#ifdef _WIN32
1943 signal (signum, ev_sighandler);
1944#endif
681 1945
1946 ev_feed_signal (signum);
1947}
1948
1949void noinline
1950ev_feed_signal_event (EV_P_ int signum)
1951{
1952 WL w;
1953
1954 if (expect_false (signum <= 0 || signum > EV_NSIG))
1955 return;
1956
1957 --signum;
1958
1959#if EV_MULTIPLICITY
1960 /* it is permissible to try to feed a signal to the wrong loop */
1961 /* or, likely more useful, feeding a signal nobody is waiting for */
1962
1963 if (expect_false (signals [signum].loop != EV_A))
1964 return;
1965#endif
1966
1967 signals [signum].pending = 0;
1968
1969 for (w = signals [signum].head; w; w = w->next)
1970 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1971}
1972
1973#if EV_USE_SIGNALFD
1974static void
1975sigfdcb (EV_P_ ev_io *iow, int revents)
1976{
1977 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1978
1979 for (;;)
1980 {
1981 ssize_t res = read (sigfd, si, sizeof (si));
1982
1983 /* not ISO-C, as res might be -1, but works with SuS */
1984 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1985 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1986
1987 if (res < (ssize_t)sizeof (si))
1988 break;
1989 }
1990}
1991#endif
1992
1993#endif
1994
1995/*****************************************************************************/
1996
1997#if EV_CHILD_ENABLE
1998static WL childs [EV_PID_HASHSIZE];
1999
682static struct ev_signal childev; 2000static ev_signal childev;
2001
2002#ifndef WIFCONTINUED
2003# define WIFCONTINUED(status) 0
2004#endif
2005
2006/* handle a single child status event */
2007inline_speed void
2008child_reap (EV_P_ int chain, int pid, int status)
2009{
2010 ev_child *w;
2011 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2012
2013 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2014 {
2015 if ((w->pid == pid || !w->pid)
2016 && (!traced || (w->flags & 1)))
2017 {
2018 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2019 w->rpid = pid;
2020 w->rstatus = status;
2021 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2022 }
2023 }
2024}
683 2025
684#ifndef WCONTINUED 2026#ifndef WCONTINUED
685# define WCONTINUED 0 2027# define WCONTINUED 0
686#endif 2028#endif
687 2029
2030/* called on sigchld etc., calls waitpid */
688static void 2031static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 2032childcb (EV_P_ ev_signal *sw, int revents)
705{ 2033{
706 int pid, status; 2034 int pid, status;
707 2035
2036 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2037 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 2038 if (!WCONTINUED
2039 || errno != EINVAL
2040 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2041 return;
2042
710 /* make sure we are called again until all childs have been reaped */ 2043 /* make sure we are called again until all children have been reaped */
2044 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2045 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 2046
713 child_reap (EV_A_ sw, pid, pid, status); 2047 child_reap (EV_A_ pid, pid, status);
2048 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2049 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 2050}
717 2051
718#endif 2052#endif
719 2053
720/*****************************************************************************/ 2054/*****************************************************************************/
721 2055
2056#if EV_USE_IOCP
2057# include "ev_iocp.c"
2058#endif
722#if EV_USE_PORT 2059#if EV_USE_PORT
723# include "ev_port.c" 2060# include "ev_port.c"
724#endif 2061#endif
725#if EV_USE_KQUEUE 2062#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 2063# include "ev_kqueue.c"
733#endif 2070#endif
734#if EV_USE_SELECT 2071#if EV_USE_SELECT
735# include "ev_select.c" 2072# include "ev_select.c"
736#endif 2073#endif
737 2074
738int 2075int ecb_cold
739ev_version_major (void) 2076ev_version_major (void)
740{ 2077{
741 return EV_VERSION_MAJOR; 2078 return EV_VERSION_MAJOR;
742} 2079}
743 2080
744int 2081int ecb_cold
745ev_version_minor (void) 2082ev_version_minor (void)
746{ 2083{
747 return EV_VERSION_MINOR; 2084 return EV_VERSION_MINOR;
748} 2085}
749 2086
750/* return true if we are running with elevated privileges and should ignore env variables */ 2087/* return true if we are running with elevated privileges and should ignore env variables */
751static int 2088int inline_size ecb_cold
752enable_secure (void) 2089enable_secure (void)
753{ 2090{
754#ifdef _WIN32 2091#ifdef _WIN32
755 return 0; 2092 return 0;
756#else 2093#else
757 return getuid () != geteuid () 2094 return getuid () != geteuid ()
758 || getgid () != getegid (); 2095 || getgid () != getegid ();
759#endif 2096#endif
760} 2097}
761 2098
2099unsigned int ecb_cold
2100ev_supported_backends (void)
2101{
2102 unsigned int flags = 0;
2103
2104 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2105 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2106 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2107 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2108 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2109
2110 return flags;
2111}
2112
2113unsigned int ecb_cold
2114ev_recommended_backends (void)
2115{
2116 unsigned int flags = ev_supported_backends ();
2117
2118#ifndef __NetBSD__
2119 /* kqueue is borked on everything but netbsd apparently */
2120 /* it usually doesn't work correctly on anything but sockets and pipes */
2121 flags &= ~EVBACKEND_KQUEUE;
2122#endif
2123#ifdef __APPLE__
2124 /* only select works correctly on that "unix-certified" platform */
2125 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2126 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2127#endif
2128#ifdef __FreeBSD__
2129 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2130#endif
2131
2132 return flags;
2133}
2134
2135unsigned int ecb_cold
2136ev_embeddable_backends (void)
2137{
2138 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2139
2140 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2141 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2142 flags &= ~EVBACKEND_EPOLL;
2143
2144 return flags;
2145}
2146
762unsigned int 2147unsigned int
2148ev_backend (EV_P)
2149{
2150 return backend;
2151}
2152
2153#if EV_FEATURE_API
2154unsigned int
2155ev_iteration (EV_P)
2156{
2157 return loop_count;
2158}
2159
2160unsigned int
763ev_method (EV_P) 2161ev_depth (EV_P)
764{ 2162{
765 return method; 2163 return loop_depth;
766} 2164}
767 2165
768static void 2166void
2167ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2168{
2169 io_blocktime = interval;
2170}
2171
2172void
2173ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2174{
2175 timeout_blocktime = interval;
2176}
2177
2178void
2179ev_set_userdata (EV_P_ void *data)
2180{
2181 userdata = data;
2182}
2183
2184void *
2185ev_userdata (EV_P)
2186{
2187 return userdata;
2188}
2189
2190void
2191ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2192{
2193 invoke_cb = invoke_pending_cb;
2194}
2195
2196void
2197ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2198{
2199 release_cb = release;
2200 acquire_cb = acquire;
2201}
2202#endif
2203
2204/* initialise a loop structure, must be zero-initialised */
2205static void noinline ecb_cold
769loop_init (EV_P_ unsigned int flags) 2206loop_init (EV_P_ unsigned int flags)
770{ 2207{
771 if (!method) 2208 if (!backend)
772 { 2209 {
2210 origflags = flags;
2211
2212#if EV_USE_REALTIME
2213 if (!have_realtime)
2214 {
2215 struct timespec ts;
2216
2217 if (!clock_gettime (CLOCK_REALTIME, &ts))
2218 have_realtime = 1;
2219 }
2220#endif
2221
773#if EV_USE_MONOTONIC 2222#if EV_USE_MONOTONIC
2223 if (!have_monotonic)
2224 {
2225 struct timespec ts;
2226
2227 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2228 have_monotonic = 1;
2229 }
2230#endif
2231
2232 /* pid check not overridable via env */
2233#ifndef _WIN32
2234 if (flags & EVFLAG_FORKCHECK)
2235 curpid = getpid ();
2236#endif
2237
2238 if (!(flags & EVFLAG_NOENV)
2239 && !enable_secure ()
2240 && getenv ("LIBEV_FLAGS"))
2241 flags = atoi (getenv ("LIBEV_FLAGS"));
2242
2243 ev_rt_now = ev_time ();
2244 mn_now = get_clock ();
2245 now_floor = mn_now;
2246 rtmn_diff = ev_rt_now - mn_now;
2247#if EV_FEATURE_API
2248 invoke_cb = ev_invoke_pending;
2249#endif
2250
2251 io_blocktime = 0.;
2252 timeout_blocktime = 0.;
2253 backend = 0;
2254 backend_fd = -1;
2255 sig_pending = 0;
2256#if EV_ASYNC_ENABLE
2257 async_pending = 0;
2258#endif
2259 pipe_write_skipped = 0;
2260 pipe_write_wanted = 0;
2261#if EV_USE_INOTIFY
2262 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2263#endif
2264#if EV_USE_SIGNALFD
2265 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2266#endif
2267
2268 if (!(flags & EVBACKEND_MASK))
2269 flags |= ev_recommended_backends ();
2270
2271#if EV_USE_IOCP
2272 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2273#endif
2274#if EV_USE_PORT
2275 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2276#endif
2277#if EV_USE_KQUEUE
2278 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2279#endif
2280#if EV_USE_EPOLL
2281 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2282#endif
2283#if EV_USE_POLL
2284 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2285#endif
2286#if EV_USE_SELECT
2287 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2288#endif
2289
2290 ev_prepare_init (&pending_w, pendingcb);
2291
2292#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2293 ev_init (&pipe_w, pipecb);
2294 ev_set_priority (&pipe_w, EV_MAXPRI);
2295#endif
2296 }
2297}
2298
2299/* free up a loop structure */
2300void ecb_cold
2301ev_loop_destroy (EV_P)
2302{
2303 int i;
2304
2305#if EV_MULTIPLICITY
2306 /* mimic free (0) */
2307 if (!EV_A)
2308 return;
2309#endif
2310
2311#if EV_CLEANUP_ENABLE
2312 /* queue cleanup watchers (and execute them) */
2313 if (expect_false (cleanupcnt))
2314 {
2315 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2316 EV_INVOKE_PENDING;
2317 }
2318#endif
2319
2320#if EV_CHILD_ENABLE
2321 if (ev_is_active (&childev))
2322 {
2323 ev_ref (EV_A); /* child watcher */
2324 ev_signal_stop (EV_A_ &childev);
2325 }
2326#endif
2327
2328 if (ev_is_active (&pipe_w))
2329 {
2330 /*ev_ref (EV_A);*/
2331 /*ev_io_stop (EV_A_ &pipe_w);*/
2332
2333#if EV_USE_EVENTFD
2334 if (evfd >= 0)
2335 close (evfd);
2336#endif
2337
2338 if (evpipe [0] >= 0)
2339 {
2340 EV_WIN32_CLOSE_FD (evpipe [0]);
2341 EV_WIN32_CLOSE_FD (evpipe [1]);
2342 }
2343 }
2344
2345#if EV_USE_SIGNALFD
2346 if (ev_is_active (&sigfd_w))
2347 close (sigfd);
2348#endif
2349
2350#if EV_USE_INOTIFY
2351 if (fs_fd >= 0)
2352 close (fs_fd);
2353#endif
2354
2355 if (backend_fd >= 0)
2356 close (backend_fd);
2357
2358#if EV_USE_IOCP
2359 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2360#endif
2361#if EV_USE_PORT
2362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2363#endif
2364#if EV_USE_KQUEUE
2365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2366#endif
2367#if EV_USE_EPOLL
2368 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2369#endif
2370#if EV_USE_POLL
2371 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2372#endif
2373#if EV_USE_SELECT
2374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2375#endif
2376
2377 for (i = NUMPRI; i--; )
2378 {
2379 array_free (pending, [i]);
2380#if EV_IDLE_ENABLE
2381 array_free (idle, [i]);
2382#endif
2383 }
2384
2385 ev_free (anfds); anfds = 0; anfdmax = 0;
2386
2387 /* have to use the microsoft-never-gets-it-right macro */
2388 array_free (rfeed, EMPTY);
2389 array_free (fdchange, EMPTY);
2390 array_free (timer, EMPTY);
2391#if EV_PERIODIC_ENABLE
2392 array_free (periodic, EMPTY);
2393#endif
2394#if EV_FORK_ENABLE
2395 array_free (fork, EMPTY);
2396#endif
2397#if EV_CLEANUP_ENABLE
2398 array_free (cleanup, EMPTY);
2399#endif
2400 array_free (prepare, EMPTY);
2401 array_free (check, EMPTY);
2402#if EV_ASYNC_ENABLE
2403 array_free (async, EMPTY);
2404#endif
2405
2406 backend = 0;
2407
2408#if EV_MULTIPLICITY
2409 if (ev_is_default_loop (EV_A))
2410#endif
2411 ev_default_loop_ptr = 0;
2412#if EV_MULTIPLICITY
2413 else
2414 ev_free (EV_A);
2415#endif
2416}
2417
2418#if EV_USE_INOTIFY
2419inline_size void infy_fork (EV_P);
2420#endif
2421
2422inline_size void
2423loop_fork (EV_P)
2424{
2425#if EV_USE_PORT
2426 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2427#endif
2428#if EV_USE_KQUEUE
2429 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2430#endif
2431#if EV_USE_EPOLL
2432 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2433#endif
2434#if EV_USE_INOTIFY
2435 infy_fork (EV_A);
2436#endif
2437
2438 if (ev_is_active (&pipe_w))
2439 {
2440 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2441
2442 ev_ref (EV_A);
2443 ev_io_stop (EV_A_ &pipe_w);
2444
2445#if EV_USE_EVENTFD
2446 if (evfd >= 0)
2447 close (evfd);
2448#endif
2449
2450 if (evpipe [0] >= 0)
2451 {
2452 EV_WIN32_CLOSE_FD (evpipe [0]);
2453 EV_WIN32_CLOSE_FD (evpipe [1]);
2454 }
2455
2456#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2457 evpipe_init (EV_A);
2458 /* now iterate over everything, in case we missed something */
2459 pipecb (EV_A_ &pipe_w, EV_READ);
2460#endif
2461 }
2462
2463 postfork = 0;
2464}
2465
2466#if EV_MULTIPLICITY
2467
2468struct ev_loop * ecb_cold
2469ev_loop_new (unsigned int flags)
2470{
2471 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2472
2473 memset (EV_A, 0, sizeof (struct ev_loop));
2474 loop_init (EV_A_ flags);
2475
2476 if (ev_backend (EV_A))
2477 return EV_A;
2478
2479 ev_free (EV_A);
2480 return 0;
2481}
2482
2483#endif /* multiplicity */
2484
2485#if EV_VERIFY
2486static void noinline ecb_cold
2487verify_watcher (EV_P_ W w)
2488{
2489 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2490
2491 if (w->pending)
2492 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2493}
2494
2495static void noinline ecb_cold
2496verify_heap (EV_P_ ANHE *heap, int N)
2497{
2498 int i;
2499
2500 for (i = HEAP0; i < N + HEAP0; ++i)
2501 {
2502 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2503 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2504 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2505
2506 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2507 }
2508}
2509
2510static void noinline ecb_cold
2511array_verify (EV_P_ W *ws, int cnt)
2512{
2513 while (cnt--)
2514 {
2515 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2516 verify_watcher (EV_A_ ws [cnt]);
2517 }
2518}
2519#endif
2520
2521#if EV_FEATURE_API
2522void ecb_cold
2523ev_verify (EV_P)
2524{
2525#if EV_VERIFY
2526 int i;
2527 WL w;
2528
2529 assert (activecnt >= -1);
2530
2531 assert (fdchangemax >= fdchangecnt);
2532 for (i = 0; i < fdchangecnt; ++i)
2533 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2534
2535 assert (anfdmax >= 0);
2536 for (i = 0; i < anfdmax; ++i)
2537 for (w = anfds [i].head; w; w = w->next)
774 { 2538 {
775 struct timespec ts; 2539 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2540 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 2541 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 2542 }
779#endif
780 2543
781 ev_rt_now = ev_time (); 2544 assert (timermax >= timercnt);
782 mn_now = get_clock (); 2545 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 2546
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2547#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 2548 assert (periodicmax >= periodiccnt);
788 2549 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 2550#endif
834 2551
835 for (i = NUMPRI; i--; ) 2552 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 2553 {
2554 assert (pendingmax [i] >= pendingcnt [i]);
2555#if EV_IDLE_ENABLE
2556 assert (idleall >= 0);
2557 assert (idlemax [i] >= idlecnt [i]);
2558 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2559#endif
2560 }
837 2561
838 /* have to use the microsoft-never-gets-it-right macro */ 2562#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 2563 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 2564 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 2565#endif
842 array_free (periodic, EMPTY0); 2566
2567#if EV_CLEANUP_ENABLE
2568 assert (cleanupmax >= cleanupcnt);
2569 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2570#endif
2571
2572#if EV_ASYNC_ENABLE
2573 assert (asyncmax >= asynccnt);
2574 array_verify (EV_A_ (W *)asyncs, asynccnt);
2575#endif
2576
2577#if EV_PREPARE_ENABLE
2578 assert (preparemax >= preparecnt);
2579 array_verify (EV_A_ (W *)prepares, preparecnt);
2580#endif
2581
2582#if EV_CHECK_ENABLE
2583 assert (checkmax >= checkcnt);
2584 array_verify (EV_A_ (W *)checks, checkcnt);
2585#endif
2586
2587# if 0
2588#if EV_CHILD_ENABLE
2589 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2590 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2591#endif
843#endif 2592# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 2593#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 2594}
2595#endif
881 2596
882#if EV_MULTIPLICITY 2597#if EV_MULTIPLICITY
883struct ev_loop * 2598struct ev_loop * ecb_cold
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
916#else 2599#else
917int 2600int
2601#endif
918ev_default_loop (unsigned int flags) 2602ev_default_loop (unsigned int flags)
919#endif
920{ 2603{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 2604 if (!ev_default_loop_ptr)
926 { 2605 {
927#if EV_MULTIPLICITY 2606#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2607 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 2608#else
930 ev_default_loop_ptr = 1; 2609 ev_default_loop_ptr = 1;
931#endif 2610#endif
932 2611
933 loop_init (EV_A_ flags); 2612 loop_init (EV_A_ flags);
934 2613
935 if (ev_method (EV_A)) 2614 if (ev_backend (EV_A))
936 { 2615 {
937 siginit (EV_A); 2616#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 2617 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 2618 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 2619 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2620 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 2621#endif
949 2626
950 return ev_default_loop_ptr; 2627 return ev_default_loop_ptr;
951} 2628}
952 2629
953void 2630void
954ev_default_destroy (void) 2631ev_loop_fork (EV_P)
955{ 2632{
956#if EV_MULTIPLICITY 2633 postfork = 1; /* must be in line with ev_default_fork */
957 struct ev_loop *loop = ev_default_loop_ptr;
958#endif
959
960#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev);
963#endif
964
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972} 2634}
2635
2636/*****************************************************************************/
973 2637
974void 2638void
975ev_default_fork (void) 2639ev_invoke (EV_P_ void *w, int revents)
976{ 2640{
977#if EV_MULTIPLICITY 2641 EV_CB_INVOKE ((W)w, revents);
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1;
983} 2642}
984 2643
985/*****************************************************************************/ 2644unsigned int
986 2645ev_pending_count (EV_P)
987static int
988any_pending (EV_P)
989{ 2646{
990 int pri; 2647 int pri;
2648 unsigned int count = 0;
991 2649
992 for (pri = NUMPRI; pri--; ) 2650 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 2651 count += pendingcnt [pri];
994 return 1;
995 2652
996 return 0; 2653 return count;
997} 2654}
998 2655
999inline void 2656void noinline
1000call_pending (EV_P) 2657ev_invoke_pending (EV_P)
1001{ 2658{
1002 int pri; 2659 int pri;
1003 2660
1004 for (pri = NUMPRI; pri--; ) 2661 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 2662 while (pendingcnt [pri])
1006 { 2663 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2664 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 2665
1009 if (expect_true (p->w))
1010 {
1011 p->w->pending = 0; 2666 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 2667 EV_CB_INVOKE (p->w, p->events);
1013 } 2668 EV_FREQUENT_CHECK;
1014 } 2669 }
1015} 2670}
1016 2671
2672#if EV_IDLE_ENABLE
2673/* make idle watchers pending. this handles the "call-idle */
2674/* only when higher priorities are idle" logic */
1017inline void 2675inline_size void
2676idle_reify (EV_P)
2677{
2678 if (expect_false (idleall))
2679 {
2680 int pri;
2681
2682 for (pri = NUMPRI; pri--; )
2683 {
2684 if (pendingcnt [pri])
2685 break;
2686
2687 if (idlecnt [pri])
2688 {
2689 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2690 break;
2691 }
2692 }
2693 }
2694}
2695#endif
2696
2697/* make timers pending */
2698inline_size void
1018timers_reify (EV_P) 2699timers_reify (EV_P)
1019{ 2700{
2701 EV_FREQUENT_CHECK;
2702
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 2703 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 2704 {
1022 struct ev_timer *w = timers [0]; 2705 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2706 {
2707 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2708
2709 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2710
2711 /* first reschedule or stop timer */
2712 if (w->repeat)
2713 {
2714 ev_at (w) += w->repeat;
2715 if (ev_at (w) < mn_now)
2716 ev_at (w) = mn_now;
2717
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2718 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2719
1031 ((WT)w)->at += w->repeat; 2720 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2721 downheap (timers, timercnt, HEAP0);
2722 }
2723 else
2724 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2725
2726 EV_FREQUENT_CHECK;
2727 feed_reverse (EV_A_ (W)w);
1036 } 2728 }
1037 else 2729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2730
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2731 feed_reverse_done (EV_A_ EV_TIMER);
2732 }
2733}
2734
2735#if EV_PERIODIC_ENABLE
2736
2737static void noinline
2738periodic_recalc (EV_P_ ev_periodic *w)
2739{
2740 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2741 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2742
2743 /* the above almost always errs on the low side */
2744 while (at <= ev_rt_now)
1041 } 2745 {
1042} 2746 ev_tstamp nat = at + w->interval;
1043 2747
1044#if EV_PERIODICS 2748 /* when resolution fails us, we use ev_rt_now */
2749 if (expect_false (nat == at))
2750 {
2751 at = ev_rt_now;
2752 break;
2753 }
2754
2755 at = nat;
2756 }
2757
2758 ev_at (w) = at;
2759}
2760
2761/* make periodics pending */
1045inline void 2762inline_size void
1046periodics_reify (EV_P) 2763periodics_reify (EV_P)
1047{ 2764{
2765 EV_FREQUENT_CHECK;
2766
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2767 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2768 {
1050 struct ev_periodic *w = periodics [0]; 2769 int feed_count = 0;
1051 2770
2771 do
2772 {
2773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2774
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2775 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2776
1054 /* first reschedule or stop timer */ 2777 /* first reschedule or stop timer */
2778 if (w->reschedule_cb)
2779 {
2780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2781
2782 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2783
2784 ANHE_at_cache (periodics [HEAP0]);
2785 downheap (periodics, periodiccnt, HEAP0);
2786 }
2787 else if (w->interval)
2788 {
2789 periodic_recalc (EV_A_ w);
2790 ANHE_at_cache (periodics [HEAP0]);
2791 downheap (periodics, periodiccnt, HEAP0);
2792 }
2793 else
2794 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2795
2796 EV_FREQUENT_CHECK;
2797 feed_reverse (EV_A_ (W)w);
2798 }
2799 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2800
2801 feed_reverse_done (EV_A_ EV_PERIODIC);
2802 }
2803}
2804
2805/* simply recalculate all periodics */
2806/* TODO: maybe ensure that at least one event happens when jumping forward? */
2807static void noinline ecb_cold
2808periodics_reschedule (EV_P)
2809{
2810 int i;
2811
2812 /* adjust periodics after time jump */
2813 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2814 {
2815 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2816
1055 if (w->reschedule_cb) 2817 if (w->reschedule_cb)
2818 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2819 else if (w->interval)
2820 periodic_recalc (EV_A_ w);
2821
2822 ANHE_at_cache (periodics [i]);
2823 }
2824
2825 reheap (periodics, periodiccnt);
2826}
2827#endif
2828
2829/* adjust all timers by a given offset */
2830static void noinline ecb_cold
2831timers_reschedule (EV_P_ ev_tstamp adjust)
2832{
2833 int i;
2834
2835 for (i = 0; i < timercnt; ++i)
2836 {
2837 ANHE *he = timers + i + HEAP0;
2838 ANHE_w (*he)->at += adjust;
2839 ANHE_at_cache (*he);
2840 }
2841}
2842
2843/* fetch new monotonic and realtime times from the kernel */
2844/* also detect if there was a timejump, and act accordingly */
2845inline_speed void
2846time_update (EV_P_ ev_tstamp max_block)
2847{
2848#if EV_USE_MONOTONIC
2849 if (expect_true (have_monotonic))
2850 {
2851 int i;
2852 ev_tstamp odiff = rtmn_diff;
2853
2854 mn_now = get_clock ();
2855
2856 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2857 /* interpolate in the meantime */
2858 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2859 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2860 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2861 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2862 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2863
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2864 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2865 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2866
1114inline void 2867 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2868 * on the choice of "4": one iteration isn't enough,
1116{ 2869 * in case we get preempted during the calls to
1117 int i; 2870 * ev_time and get_clock. a second call is almost guaranteed
1118 2871 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2872 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2873 * in the unlikely event of having been preempted here.
1121 { 2874 */
1122 if (time_update_monotonic (EV_A)) 2875 for (i = 4; --i; )
1123 { 2876 {
1124 ev_tstamp odiff = rtmn_diff; 2877 ev_tstamp diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2878 rtmn_diff = ev_rt_now - mn_now;
1129 2879
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2880 diff = odiff - rtmn_diff;
2881
2882 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2883 return; /* all is well */
1132 2884
1133 ev_rt_now = ev_time (); 2885 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2886 mn_now = get_clock ();
1135 now_floor = mn_now; 2887 now_floor = mn_now;
1136 } 2888 }
1137 2889
2890 /* no timer adjustment, as the monotonic clock doesn't jump */
2891 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2892# if EV_PERIODIC_ENABLE
2893 periodics_reschedule (EV_A);
2894# endif
2895 }
2896 else
2897#endif
2898 {
2899 ev_rt_now = ev_time ();
2900
2901 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2902 {
2903 /* adjust timers. this is easy, as the offset is the same for all of them */
2904 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2905#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2906 periodics_reschedule (EV_A);
1140# endif 2907#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2908 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2909
1161 mn_now = ev_rt_now; 2910 mn_now = ev_rt_now;
1162 } 2911 }
1163} 2912}
1164 2913
1165void 2914void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2915ev_run (EV_P_ int flags)
1181{ 2916{
1182 double block; 2917#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2918 ++loop_depth;
2919#endif
1184 2920
1185 while (activecnt) 2921 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2922
2923 loop_done = EVBREAK_CANCEL;
2924
2925 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2926
2927 do
1186 { 2928 {
2929#if EV_VERIFY >= 2
2930 ev_verify (EV_A);
2931#endif
2932
2933#ifndef _WIN32
2934 if (expect_false (curpid)) /* penalise the forking check even more */
2935 if (expect_false (getpid () != curpid))
2936 {
2937 curpid = getpid ();
2938 postfork = 1;
2939 }
2940#endif
2941
2942#if EV_FORK_ENABLE
2943 /* we might have forked, so queue fork handlers */
2944 if (expect_false (postfork))
2945 if (forkcnt)
2946 {
2947 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2948 EV_INVOKE_PENDING;
2949 }
2950#endif
2951
2952#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 2953 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2954 if (expect_false (preparecnt))
1189 { 2955 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2956 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2957 EV_INVOKE_PENDING;
1192 } 2958 }
2959#endif
2960
2961 if (expect_false (loop_done))
2962 break;
1193 2963
1194 /* we might have forked, so reify kernel state if necessary */ 2964 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 2965 if (expect_false (postfork))
1196 loop_fork (EV_A); 2966 loop_fork (EV_A);
1197 2967
1198 /* update fd-related kernel structures */ 2968 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2969 fd_reify (EV_A);
1200 2970
1201 /* calculate blocking time */ 2971 /* calculate blocking time */
2972 {
2973 ev_tstamp waittime = 0.;
2974 ev_tstamp sleeptime = 0.;
1202 2975
1203 /* we only need this for !monotonic clock or timers, but as we basically 2976 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 2977 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 2978
1206 if (expect_true (have_monotonic)) 2979 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 2980 time_update (EV_A_ 1e100);
1208 else 2981
1209#endif 2982 /* from now on, we want a pipe-wake-up */
2983 pipe_write_wanted = 1;
2984
2985 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2986
2987 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1210 { 2988 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 2989 waittime = MAX_BLOCKTIME;
1220 2990
1221 if (timercnt) 2991 if (timercnt)
1222 { 2992 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2993 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1224 if (block > to) block = to; 2994 if (waittime > to) waittime = to;
1225 } 2995 }
1226 2996
1227#if EV_PERIODICS 2997#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2998 if (periodiccnt)
1229 { 2999 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3000 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1231 if (block > to) block = to; 3001 if (waittime > to) waittime = to;
1232 } 3002 }
1233#endif 3003#endif
1234 3004
1235 if (expect_false (block < 0.)) block = 0.; 3005 /* don't let timeouts decrease the waittime below timeout_blocktime */
3006 if (expect_false (waittime < timeout_blocktime))
3007 waittime = timeout_blocktime;
3008
3009 /* at this point, we NEED to wait, so we have to ensure */
3010 /* to pass a minimum nonzero value to the backend */
3011 if (expect_false (waittime < backend_mintime))
3012 waittime = backend_mintime;
3013
3014 /* extra check because io_blocktime is commonly 0 */
3015 if (expect_false (io_blocktime))
3016 {
3017 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3018
3019 if (sleeptime > waittime - backend_mintime)
3020 sleeptime = waittime - backend_mintime;
3021
3022 if (expect_true (sleeptime > 0.))
3023 {
3024 ev_sleep (sleeptime);
3025 waittime -= sleeptime;
3026 }
3027 }
1236 } 3028 }
1237 3029
1238 method_poll (EV_A_ block); 3030#if EV_FEATURE_API
3031 ++loop_count;
3032#endif
3033 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3034 backend_poll (EV_A_ waittime);
3035 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 3036
3037 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3038
3039 if (pipe_write_skipped)
3040 {
3041 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3042 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3043 }
3044
3045
1240 /* update ev_rt_now, do magic */ 3046 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 3047 time_update (EV_A_ waittime + sleeptime);
3048 }
1242 3049
1243 /* queue pending timers and reschedule them */ 3050 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 3051 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 3052#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 3053 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 3054#endif
1248 3055
3056#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 3057 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 3058 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3059#endif
1252 3060
3061#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 3062 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 3063 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3064 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3065#endif
1256 3066
1257 call_pending (EV_A); 3067 EV_INVOKE_PENDING;
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 3068 }
3069 while (expect_true (
3070 activecnt
3071 && !loop_done
3072 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3073 ));
1262 3074
1263 if (loop_done != 2) 3075 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 3076 loop_done = EVBREAK_CANCEL;
3077
3078#if EV_FEATURE_API
3079 --loop_depth;
3080#endif
1265} 3081}
1266 3082
1267void 3083void
1268ev_unloop (EV_P_ int how) 3084ev_break (EV_P_ int how)
1269{ 3085{
1270 loop_done = how; 3086 loop_done = how;
1271} 3087}
1272 3088
3089void
3090ev_ref (EV_P)
3091{
3092 ++activecnt;
3093}
3094
3095void
3096ev_unref (EV_P)
3097{
3098 --activecnt;
3099}
3100
3101void
3102ev_now_update (EV_P)
3103{
3104 time_update (EV_A_ 1e100);
3105}
3106
3107void
3108ev_suspend (EV_P)
3109{
3110 ev_now_update (EV_A);
3111}
3112
3113void
3114ev_resume (EV_P)
3115{
3116 ev_tstamp mn_prev = mn_now;
3117
3118 ev_now_update (EV_A);
3119 timers_reschedule (EV_A_ mn_now - mn_prev);
3120#if EV_PERIODIC_ENABLE
3121 /* TODO: really do this? */
3122 periodics_reschedule (EV_A);
3123#endif
3124}
3125
1273/*****************************************************************************/ 3126/*****************************************************************************/
3127/* singly-linked list management, used when the expected list length is short */
1274 3128
1275inline void 3129inline_size void
1276wlist_add (WL *head, WL elem) 3130wlist_add (WL *head, WL elem)
1277{ 3131{
1278 elem->next = *head; 3132 elem->next = *head;
1279 *head = elem; 3133 *head = elem;
1280} 3134}
1281 3135
1282inline void 3136inline_size void
1283wlist_del (WL *head, WL elem) 3137wlist_del (WL *head, WL elem)
1284{ 3138{
1285 while (*head) 3139 while (*head)
1286 { 3140 {
1287 if (*head == elem) 3141 if (expect_true (*head == elem))
1288 { 3142 {
1289 *head = elem->next; 3143 *head = elem->next;
1290 return; 3144 break;
1291 } 3145 }
1292 3146
1293 head = &(*head)->next; 3147 head = &(*head)->next;
1294 } 3148 }
1295} 3149}
1296 3150
3151/* internal, faster, version of ev_clear_pending */
1297inline void 3152inline_speed void
1298ev_clear_pending (EV_P_ W w) 3153clear_pending (EV_P_ W w)
1299{ 3154{
1300 if (w->pending) 3155 if (w->pending)
1301 { 3156 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3157 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 3158 w->pending = 0;
1304 } 3159 }
1305} 3160}
1306 3161
3162int
3163ev_clear_pending (EV_P_ void *w)
3164{
3165 W w_ = (W)w;
3166 int pending = w_->pending;
3167
3168 if (expect_true (pending))
3169 {
3170 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3171 p->w = (W)&pending_w;
3172 w_->pending = 0;
3173 return p->events;
3174 }
3175 else
3176 return 0;
3177}
3178
1307inline void 3179inline_size void
3180pri_adjust (EV_P_ W w)
3181{
3182 int pri = ev_priority (w);
3183 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3184 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3185 ev_set_priority (w, pri);
3186}
3187
3188inline_speed void
1308ev_start (EV_P_ W w, int active) 3189ev_start (EV_P_ W w, int active)
1309{ 3190{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3191 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 3192 w->active = active;
1314 ev_ref (EV_A); 3193 ev_ref (EV_A);
1315} 3194}
1316 3195
1317inline void 3196inline_size void
1318ev_stop (EV_P_ W w) 3197ev_stop (EV_P_ W w)
1319{ 3198{
1320 ev_unref (EV_A); 3199 ev_unref (EV_A);
1321 w->active = 0; 3200 w->active = 0;
1322} 3201}
1323 3202
1324/*****************************************************************************/ 3203/*****************************************************************************/
1325 3204
1326void 3205void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 3206ev_io_start (EV_P_ ev_io *w)
1328{ 3207{
1329 int fd = w->fd; 3208 int fd = w->fd;
1330 3209
1331 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
1332 return; 3211 return;
1333 3212
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 3213 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3214 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3215
3216 EV_FREQUENT_CHECK;
1335 3217
1336 ev_start (EV_A_ (W)w, 1); 3218 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3219 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3220 wlist_add (&anfds[fd].head, (WL)w);
1339 3221
1340 fd_change (EV_A_ fd); 3222 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1341} 3223 w->events &= ~EV__IOFDSET;
1342 3224
1343void 3225 EV_FREQUENT_CHECK;
3226}
3227
3228void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 3229ev_io_stop (EV_P_ ev_io *w)
1345{ 3230{
1346 ev_clear_pending (EV_A_ (W)w); 3231 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 3232 if (expect_false (!ev_is_active (w)))
1348 return; 3233 return;
1349 3234
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3235 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 3236
3237 EV_FREQUENT_CHECK;
3238
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3239 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
1354 3241
1355 fd_change (EV_A_ w->fd); 3242 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 3243
1358void 3244 EV_FREQUENT_CHECK;
3245}
3246
3247void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 3248ev_timer_start (EV_P_ ev_timer *w)
1360{ 3249{
1361 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
1362 return; 3251 return;
1363 3252
1364 ((WT)w)->at += mn_now; 3253 ev_at (w) += mn_now;
1365 3254
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3255 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 3256
3257 EV_FREQUENT_CHECK;
3258
3259 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 3260 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3261 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 3262 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 3263 ANHE_at_cache (timers [ev_active (w)]);
3264 upheap (timers, ev_active (w));
1372 3265
3266 EV_FREQUENT_CHECK;
3267
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3268 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 3269}
1375 3270
1376void 3271void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 3272ev_timer_stop (EV_P_ ev_timer *w)
1378{ 3273{
1379 ev_clear_pending (EV_A_ (W)w); 3274 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 3275 if (expect_false (!ev_is_active (w)))
1381 return; 3276 return;
1382 3277
3278 EV_FREQUENT_CHECK;
3279
3280 {
3281 int active = ev_active (w);
3282
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3283 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 3284
3285 --timercnt;
3286
1385 if (expect_true (((W)w)->active < timercnt--)) 3287 if (expect_true (active < timercnt + HEAP0))
1386 { 3288 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 3289 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3290 adjustheap (timers, timercnt, active);
1389 } 3291 }
3292 }
1390 3293
1391 ((WT)w)->at -= mn_now; 3294 ev_at (w) -= mn_now;
1392 3295
1393 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
1394}
1395 3297
1396void 3298 EV_FREQUENT_CHECK;
3299}
3300
3301void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 3302ev_timer_again (EV_P_ ev_timer *w)
1398{ 3303{
3304 EV_FREQUENT_CHECK;
3305
3306 clear_pending (EV_A_ (W)w);
3307
1399 if (ev_is_active (w)) 3308 if (ev_is_active (w))
1400 { 3309 {
1401 if (w->repeat) 3310 if (w->repeat)
1402 { 3311 {
1403 ((WT)w)->at = mn_now + w->repeat; 3312 ev_at (w) = mn_now + w->repeat;
3313 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3314 adjustheap (timers, timercnt, ev_active (w));
1405 } 3315 }
1406 else 3316 else
1407 ev_timer_stop (EV_A_ w); 3317 ev_timer_stop (EV_A_ w);
1408 } 3318 }
1409 else if (w->repeat) 3319 else if (w->repeat)
1410 { 3320 {
1411 w->at = w->repeat; 3321 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 3322 ev_timer_start (EV_A_ w);
1413 } 3323 }
1414}
1415 3324
3325 EV_FREQUENT_CHECK;
3326}
3327
3328ev_tstamp
3329ev_timer_remaining (EV_P_ ev_timer *w)
3330{
3331 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3332}
3333
1416#if EV_PERIODICS 3334#if EV_PERIODIC_ENABLE
1417void 3335void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 3336ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 3337{
1420 if (expect_false (ev_is_active (w))) 3338 if (expect_false (ev_is_active (w)))
1421 return; 3339 return;
1422 3340
1423 if (w->reschedule_cb) 3341 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3342 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 3343 else if (w->interval)
1426 { 3344 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3345 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 3346 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 3347 }
3348 else
3349 ev_at (w) = w->offset;
1431 3350
3351 EV_FREQUENT_CHECK;
3352
3353 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 3354 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3355 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 3356 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 3357 ANHE_at_cache (periodics [ev_active (w)]);
3358 upheap (periodics, ev_active (w));
1436 3359
3360 EV_FREQUENT_CHECK;
3361
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3362 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 3363}
1439 3364
1440void 3365void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 3366ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 3367{
1443 ev_clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
1445 return; 3370 return;
1446 3371
3372 EV_FREQUENT_CHECK;
3373
3374 {
3375 int active = ev_active (w);
3376
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3377 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 3378
3379 --periodiccnt;
3380
1449 if (expect_true (((W)w)->active < periodiccnt--)) 3381 if (expect_true (active < periodiccnt + HEAP0))
1450 { 3382 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3383 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3384 adjustheap (periodics, periodiccnt, active);
1453 } 3385 }
3386 }
1454 3387
1455 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
1456}
1457 3389
1458void 3390 EV_FREQUENT_CHECK;
3391}
3392
3393void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 3394ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 3395{
1461 /* TODO: use adjustheap and recalculation */ 3396 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 3397 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 3398 ev_periodic_start (EV_A_ w);
1464} 3399}
1465#endif 3400#endif
1466 3401
1467void 3402#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 3403# define SA_RESTART 0
3404#endif
3405
3406#if EV_SIGNAL_ENABLE
3407
3408void noinline
3409ev_signal_start (EV_P_ ev_signal *w)
1469{ 3410{
1470 if (expect_false (ev_is_active (w))) 3411 if (expect_false (ev_is_active (w)))
1471 return; 3412 return;
1472 3413
3414 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3415
3416#if EV_MULTIPLICITY
3417 assert (("libev: a signal must not be attached to two different loops",
3418 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3419
3420 signals [w->signum - 1].loop = EV_A;
3421#endif
3422
3423 EV_FREQUENT_CHECK;
3424
3425#if EV_USE_SIGNALFD
3426 if (sigfd == -2)
3427 {
3428 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3429 if (sigfd < 0 && errno == EINVAL)
3430 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3431
3432 if (sigfd >= 0)
3433 {
3434 fd_intern (sigfd); /* doing it twice will not hurt */
3435
3436 sigemptyset (&sigfd_set);
3437
3438 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3439 ev_set_priority (&sigfd_w, EV_MAXPRI);
3440 ev_io_start (EV_A_ &sigfd_w);
3441 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3442 }
3443 }
3444
3445 if (sigfd >= 0)
3446 {
3447 /* TODO: check .head */
3448 sigaddset (&sigfd_set, w->signum);
3449 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3450
3451 signalfd (sigfd, &sigfd_set, 0);
3452 }
3453#endif
3454
1473 ev_start (EV_A_ (W)w, ++idlecnt); 3455 ev_start (EV_A_ (W)w, 1);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3456 wlist_add (&signals [w->signum - 1].head, (WL)w);
1475 idles [idlecnt - 1] = w;
1476}
1477 3457
1478void 3458 if (!((WL)w)->next)
1479ev_idle_stop (EV_P_ struct ev_idle *w) 3459# if EV_USE_SIGNALFD
3460 if (sigfd < 0) /*TODO*/
3461# endif
3462 {
3463# ifdef _WIN32
3464 evpipe_init (EV_A);
3465
3466 signal (w->signum, ev_sighandler);
3467# else
3468 struct sigaction sa;
3469
3470 evpipe_init (EV_A);
3471
3472 sa.sa_handler = ev_sighandler;
3473 sigfillset (&sa.sa_mask);
3474 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3475 sigaction (w->signum, &sa, 0);
3476
3477 if (origflags & EVFLAG_NOSIGMASK)
3478 {
3479 sigemptyset (&sa.sa_mask);
3480 sigaddset (&sa.sa_mask, w->signum);
3481 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3482 }
3483#endif
3484 }
3485
3486 EV_FREQUENT_CHECK;
3487}
3488
3489void noinline
3490ev_signal_stop (EV_P_ ev_signal *w)
1480{ 3491{
1481 ev_clear_pending (EV_A_ (W)w); 3492 clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w))) 3493 if (expect_false (!ev_is_active (w)))
1483 return; 3494 return;
1484 3495
1485 idles [((W)w)->active - 1] = idles [--idlecnt]; 3496 EV_FREQUENT_CHECK;
3497
3498 wlist_del (&signals [w->signum - 1].head, (WL)w);
1486 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
3500
3501 if (!signals [w->signum - 1].head)
3502 {
3503#if EV_MULTIPLICITY
3504 signals [w->signum - 1].loop = 0; /* unattach from signal */
3505#endif
3506#if EV_USE_SIGNALFD
3507 if (sigfd >= 0)
3508 {
3509 sigset_t ss;
3510
3511 sigemptyset (&ss);
3512 sigaddset (&ss, w->signum);
3513 sigdelset (&sigfd_set, w->signum);
3514
3515 signalfd (sigfd, &sigfd_set, 0);
3516 sigprocmask (SIG_UNBLOCK, &ss, 0);
3517 }
3518 else
3519#endif
3520 signal (w->signum, SIG_DFL);
3521 }
3522
3523 EV_FREQUENT_CHECK;
1487} 3524}
3525
3526#endif
3527
3528#if EV_CHILD_ENABLE
1488 3529
1489void 3530void
1490ev_prepare_start (EV_P_ struct ev_prepare *w) 3531ev_child_start (EV_P_ ev_child *w)
1491{ 3532{
3533#if EV_MULTIPLICITY
3534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3535#endif
1492 if (expect_false (ev_is_active (w))) 3536 if (expect_false (ev_is_active (w)))
1493 return; 3537 return;
1494 3538
3539 EV_FREQUENT_CHECK;
3540
1495 ev_start (EV_A_ (W)w, ++preparecnt); 3541 ev_start (EV_A_ (W)w, 1);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3542 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1497 prepares [preparecnt - 1] = w; 3543
3544 EV_FREQUENT_CHECK;
1498} 3545}
1499 3546
1500void 3547void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w) 3548ev_child_stop (EV_P_ ev_child *w)
1502{ 3549{
1503 ev_clear_pending (EV_A_ (W)w); 3550 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 3551 if (expect_false (!ev_is_active (w)))
1505 return; 3552 return;
1506 3553
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3554 EV_FREQUENT_CHECK;
3555
3556 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1508 ev_stop (EV_A_ (W)w); 3557 ev_stop (EV_A_ (W)w);
3558
3559 EV_FREQUENT_CHECK;
1509} 3560}
3561
3562#endif
3563
3564#if EV_STAT_ENABLE
3565
3566# ifdef _WIN32
3567# undef lstat
3568# define lstat(a,b) _stati64 (a,b)
3569# endif
3570
3571#define DEF_STAT_INTERVAL 5.0074891
3572#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3573#define MIN_STAT_INTERVAL 0.1074891
3574
3575static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3576
3577#if EV_USE_INOTIFY
3578
3579/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3580# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3581
3582static void noinline
3583infy_add (EV_P_ ev_stat *w)
3584{
3585 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3586
3587 if (w->wd >= 0)
3588 {
3589 struct statfs sfs;
3590
3591 /* now local changes will be tracked by inotify, but remote changes won't */
3592 /* unless the filesystem is known to be local, we therefore still poll */
3593 /* also do poll on <2.6.25, but with normal frequency */
3594
3595 if (!fs_2625)
3596 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3597 else if (!statfs (w->path, &sfs)
3598 && (sfs.f_type == 0x1373 /* devfs */
3599 || sfs.f_type == 0xEF53 /* ext2/3 */
3600 || sfs.f_type == 0x3153464a /* jfs */
3601 || sfs.f_type == 0x52654973 /* reiser3 */
3602 || sfs.f_type == 0x01021994 /* tempfs */
3603 || sfs.f_type == 0x58465342 /* xfs */))
3604 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3605 else
3606 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3607 }
3608 else
3609 {
3610 /* can't use inotify, continue to stat */
3611 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3612
3613 /* if path is not there, monitor some parent directory for speedup hints */
3614 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3615 /* but an efficiency issue only */
3616 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3617 {
3618 char path [4096];
3619 strcpy (path, w->path);
3620
3621 do
3622 {
3623 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3624 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3625
3626 char *pend = strrchr (path, '/');
3627
3628 if (!pend || pend == path)
3629 break;
3630
3631 *pend = 0;
3632 w->wd = inotify_add_watch (fs_fd, path, mask);
3633 }
3634 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3635 }
3636 }
3637
3638 if (w->wd >= 0)
3639 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3640
3641 /* now re-arm timer, if required */
3642 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3643 ev_timer_again (EV_A_ &w->timer);
3644 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3645}
3646
3647static void noinline
3648infy_del (EV_P_ ev_stat *w)
3649{
3650 int slot;
3651 int wd = w->wd;
3652
3653 if (wd < 0)
3654 return;
3655
3656 w->wd = -2;
3657 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3658 wlist_del (&fs_hash [slot].head, (WL)w);
3659
3660 /* remove this watcher, if others are watching it, they will rearm */
3661 inotify_rm_watch (fs_fd, wd);
3662}
3663
3664static void noinline
3665infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3666{
3667 if (slot < 0)
3668 /* overflow, need to check for all hash slots */
3669 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3670 infy_wd (EV_A_ slot, wd, ev);
3671 else
3672 {
3673 WL w_;
3674
3675 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3676 {
3677 ev_stat *w = (ev_stat *)w_;
3678 w_ = w_->next; /* lets us remove this watcher and all before it */
3679
3680 if (w->wd == wd || wd == -1)
3681 {
3682 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3683 {
3684 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3685 w->wd = -1;
3686 infy_add (EV_A_ w); /* re-add, no matter what */
3687 }
3688
3689 stat_timer_cb (EV_A_ &w->timer, 0);
3690 }
3691 }
3692 }
3693}
3694
3695static void
3696infy_cb (EV_P_ ev_io *w, int revents)
3697{
3698 char buf [EV_INOTIFY_BUFSIZE];
3699 int ofs;
3700 int len = read (fs_fd, buf, sizeof (buf));
3701
3702 for (ofs = 0; ofs < len; )
3703 {
3704 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3705 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3706 ofs += sizeof (struct inotify_event) + ev->len;
3707 }
3708}
3709
3710inline_size void ecb_cold
3711ev_check_2625 (EV_P)
3712{
3713 /* kernels < 2.6.25 are borked
3714 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3715 */
3716 if (ev_linux_version () < 0x020619)
3717 return;
3718
3719 fs_2625 = 1;
3720}
3721
3722inline_size int
3723infy_newfd (void)
3724{
3725#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3726 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3727 if (fd >= 0)
3728 return fd;
3729#endif
3730 return inotify_init ();
3731}
3732
3733inline_size void
3734infy_init (EV_P)
3735{
3736 if (fs_fd != -2)
3737 return;
3738
3739 fs_fd = -1;
3740
3741 ev_check_2625 (EV_A);
3742
3743 fs_fd = infy_newfd ();
3744
3745 if (fs_fd >= 0)
3746 {
3747 fd_intern (fs_fd);
3748 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3749 ev_set_priority (&fs_w, EV_MAXPRI);
3750 ev_io_start (EV_A_ &fs_w);
3751 ev_unref (EV_A);
3752 }
3753}
3754
3755inline_size void
3756infy_fork (EV_P)
3757{
3758 int slot;
3759
3760 if (fs_fd < 0)
3761 return;
3762
3763 ev_ref (EV_A);
3764 ev_io_stop (EV_A_ &fs_w);
3765 close (fs_fd);
3766 fs_fd = infy_newfd ();
3767
3768 if (fs_fd >= 0)
3769 {
3770 fd_intern (fs_fd);
3771 ev_io_set (&fs_w, fs_fd, EV_READ);
3772 ev_io_start (EV_A_ &fs_w);
3773 ev_unref (EV_A);
3774 }
3775
3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3777 {
3778 WL w_ = fs_hash [slot].head;
3779 fs_hash [slot].head = 0;
3780
3781 while (w_)
3782 {
3783 ev_stat *w = (ev_stat *)w_;
3784 w_ = w_->next; /* lets us add this watcher */
3785
3786 w->wd = -1;
3787
3788 if (fs_fd >= 0)
3789 infy_add (EV_A_ w); /* re-add, no matter what */
3790 else
3791 {
3792 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3793 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3794 ev_timer_again (EV_A_ &w->timer);
3795 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3796 }
3797 }
3798 }
3799}
3800
3801#endif
3802
3803#ifdef _WIN32
3804# define EV_LSTAT(p,b) _stati64 (p, b)
3805#else
3806# define EV_LSTAT(p,b) lstat (p, b)
3807#endif
1510 3808
1511void 3809void
1512ev_check_start (EV_P_ struct ev_check *w) 3810ev_stat_stat (EV_P_ ev_stat *w)
3811{
3812 if (lstat (w->path, &w->attr) < 0)
3813 w->attr.st_nlink = 0;
3814 else if (!w->attr.st_nlink)
3815 w->attr.st_nlink = 1;
3816}
3817
3818static void noinline
3819stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3820{
3821 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3822
3823 ev_statdata prev = w->attr;
3824 ev_stat_stat (EV_A_ w);
3825
3826 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3827 if (
3828 prev.st_dev != w->attr.st_dev
3829 || prev.st_ino != w->attr.st_ino
3830 || prev.st_mode != w->attr.st_mode
3831 || prev.st_nlink != w->attr.st_nlink
3832 || prev.st_uid != w->attr.st_uid
3833 || prev.st_gid != w->attr.st_gid
3834 || prev.st_rdev != w->attr.st_rdev
3835 || prev.st_size != w->attr.st_size
3836 || prev.st_atime != w->attr.st_atime
3837 || prev.st_mtime != w->attr.st_mtime
3838 || prev.st_ctime != w->attr.st_ctime
3839 ) {
3840 /* we only update w->prev on actual differences */
3841 /* in case we test more often than invoke the callback, */
3842 /* to ensure that prev is always different to attr */
3843 w->prev = prev;
3844
3845 #if EV_USE_INOTIFY
3846 if (fs_fd >= 0)
3847 {
3848 infy_del (EV_A_ w);
3849 infy_add (EV_A_ w);
3850 ev_stat_stat (EV_A_ w); /* avoid race... */
3851 }
3852 #endif
3853
3854 ev_feed_event (EV_A_ w, EV_STAT);
3855 }
3856}
3857
3858void
3859ev_stat_start (EV_P_ ev_stat *w)
1513{ 3860{
1514 if (expect_false (ev_is_active (w))) 3861 if (expect_false (ev_is_active (w)))
1515 return; 3862 return;
1516 3863
3864 ev_stat_stat (EV_A_ w);
3865
3866 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3867 w->interval = MIN_STAT_INTERVAL;
3868
3869 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3870 ev_set_priority (&w->timer, ev_priority (w));
3871
3872#if EV_USE_INOTIFY
3873 infy_init (EV_A);
3874
3875 if (fs_fd >= 0)
3876 infy_add (EV_A_ w);
3877 else
3878#endif
3879 {
3880 ev_timer_again (EV_A_ &w->timer);
3881 ev_unref (EV_A);
3882 }
3883
1517 ev_start (EV_A_ (W)w, ++checkcnt); 3884 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3885
1519 checks [checkcnt - 1] = w; 3886 EV_FREQUENT_CHECK;
1520} 3887}
1521 3888
1522void 3889void
1523ev_check_stop (EV_P_ struct ev_check *w) 3890ev_stat_stop (EV_P_ ev_stat *w)
1524{ 3891{
1525 ev_clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
1527 return; 3894 return;
1528 3895
1529 checks [((W)w)->active - 1] = checks [--checkcnt]; 3896 EV_FREQUENT_CHECK;
3897
3898#if EV_USE_INOTIFY
3899 infy_del (EV_A_ w);
3900#endif
3901
3902 if (ev_is_active (&w->timer))
3903 {
3904 ev_ref (EV_A);
3905 ev_timer_stop (EV_A_ &w->timer);
3906 }
3907
1530 ev_stop (EV_A_ (W)w); 3908 ev_stop (EV_A_ (W)w);
1531}
1532 3909
1533#ifndef SA_RESTART 3910 EV_FREQUENT_CHECK;
1534# define SA_RESTART 0 3911}
1535#endif 3912#endif
1536 3913
3914#if EV_IDLE_ENABLE
1537void 3915void
1538ev_signal_start (EV_P_ struct ev_signal *w) 3916ev_idle_start (EV_P_ ev_idle *w)
1539{ 3917{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w))) 3918 if (expect_false (ev_is_active (w)))
1544 return; 3919 return;
1545 3920
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3921 pri_adjust (EV_A_ (W)w);
1547 3922
3923 EV_FREQUENT_CHECK;
3924
3925 {
3926 int active = ++idlecnt [ABSPRI (w)];
3927
3928 ++idleall;
1548 ev_start (EV_A_ (W)w, 1); 3929 ev_start (EV_A_ (W)w, active);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3930
1552 if (!((WL)w)->next) 3931 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1553 { 3932 idles [ABSPRI (w)][active - 1] = w;
1554#if _WIN32
1555 signal (w->signum, sighandler);
1556#else
1557 struct sigaction sa;
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif
1563 } 3933 }
3934
3935 EV_FREQUENT_CHECK;
1564} 3936}
1565 3937
1566void 3938void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3939ev_idle_stop (EV_P_ ev_idle *w)
1568{ 3940{
1569 ev_clear_pending (EV_A_ (W)w); 3941 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 3942 if (expect_false (!ev_is_active (w)))
1571 return; 3943 return;
1572 3944
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3945 EV_FREQUENT_CHECK;
3946
3947 {
3948 int active = ev_active (w);
3949
3950 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3951 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3952
1574 ev_stop (EV_A_ (W)w); 3953 ev_stop (EV_A_ (W)w);
3954 --idleall;
3955 }
1575 3956
1576 if (!signals [w->signum - 1].head) 3957 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3958}
3959#endif
1579 3960
3961#if EV_PREPARE_ENABLE
1580void 3962void
1581ev_child_start (EV_P_ struct ev_child *w) 3963ev_prepare_start (EV_P_ ev_prepare *w)
1582{ 3964{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif
1586 if (expect_false (ev_is_active (w))) 3965 if (expect_false (ev_is_active (w)))
1587 return; 3966 return;
1588 3967
3968 EV_FREQUENT_CHECK;
3969
1589 ev_start (EV_A_ (W)w, 1); 3970 ev_start (EV_A_ (W)w, ++preparecnt);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3971 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3972 prepares [preparecnt - 1] = w;
3973
3974 EV_FREQUENT_CHECK;
1591} 3975}
1592 3976
1593void 3977void
1594ev_child_stop (EV_P_ struct ev_child *w) 3978ev_prepare_stop (EV_P_ ev_prepare *w)
1595{ 3979{
1596 ev_clear_pending (EV_A_ (W)w); 3980 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3981 if (expect_false (!ev_is_active (w)))
1598 return; 3982 return;
1599 3983
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3984 EV_FREQUENT_CHECK;
3985
3986 {
3987 int active = ev_active (w);
3988
3989 prepares [active - 1] = prepares [--preparecnt];
3990 ev_active (prepares [active - 1]) = active;
3991 }
3992
1601 ev_stop (EV_A_ (W)w); 3993 ev_stop (EV_A_ (W)w);
3994
3995 EV_FREQUENT_CHECK;
1602} 3996}
3997#endif
3998
3999#if EV_CHECK_ENABLE
4000void
4001ev_check_start (EV_P_ ev_check *w)
4002{
4003 if (expect_false (ev_is_active (w)))
4004 return;
4005
4006 EV_FREQUENT_CHECK;
4007
4008 ev_start (EV_A_ (W)w, ++checkcnt);
4009 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4010 checks [checkcnt - 1] = w;
4011
4012 EV_FREQUENT_CHECK;
4013}
4014
4015void
4016ev_check_stop (EV_P_ ev_check *w)
4017{
4018 clear_pending (EV_A_ (W)w);
4019 if (expect_false (!ev_is_active (w)))
4020 return;
4021
4022 EV_FREQUENT_CHECK;
4023
4024 {
4025 int active = ev_active (w);
4026
4027 checks [active - 1] = checks [--checkcnt];
4028 ev_active (checks [active - 1]) = active;
4029 }
4030
4031 ev_stop (EV_A_ (W)w);
4032
4033 EV_FREQUENT_CHECK;
4034}
4035#endif
4036
4037#if EV_EMBED_ENABLE
4038void noinline
4039ev_embed_sweep (EV_P_ ev_embed *w)
4040{
4041 ev_run (w->other, EVRUN_NOWAIT);
4042}
4043
4044static void
4045embed_io_cb (EV_P_ ev_io *io, int revents)
4046{
4047 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4048
4049 if (ev_cb (w))
4050 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4051 else
4052 ev_run (w->other, EVRUN_NOWAIT);
4053}
4054
4055static void
4056embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4057{
4058 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4059
4060 {
4061 EV_P = w->other;
4062
4063 while (fdchangecnt)
4064 {
4065 fd_reify (EV_A);
4066 ev_run (EV_A_ EVRUN_NOWAIT);
4067 }
4068 }
4069}
4070
4071static void
4072embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4073{
4074 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4075
4076 ev_embed_stop (EV_A_ w);
4077
4078 {
4079 EV_P = w->other;
4080
4081 ev_loop_fork (EV_A);
4082 ev_run (EV_A_ EVRUN_NOWAIT);
4083 }
4084
4085 ev_embed_start (EV_A_ w);
4086}
4087
4088#if 0
4089static void
4090embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4091{
4092 ev_idle_stop (EV_A_ idle);
4093}
4094#endif
4095
4096void
4097ev_embed_start (EV_P_ ev_embed *w)
4098{
4099 if (expect_false (ev_is_active (w)))
4100 return;
4101
4102 {
4103 EV_P = w->other;
4104 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4105 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4106 }
4107
4108 EV_FREQUENT_CHECK;
4109
4110 ev_set_priority (&w->io, ev_priority (w));
4111 ev_io_start (EV_A_ &w->io);
4112
4113 ev_prepare_init (&w->prepare, embed_prepare_cb);
4114 ev_set_priority (&w->prepare, EV_MINPRI);
4115 ev_prepare_start (EV_A_ &w->prepare);
4116
4117 ev_fork_init (&w->fork, embed_fork_cb);
4118 ev_fork_start (EV_A_ &w->fork);
4119
4120 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4121
4122 ev_start (EV_A_ (W)w, 1);
4123
4124 EV_FREQUENT_CHECK;
4125}
4126
4127void
4128ev_embed_stop (EV_P_ ev_embed *w)
4129{
4130 clear_pending (EV_A_ (W)w);
4131 if (expect_false (!ev_is_active (w)))
4132 return;
4133
4134 EV_FREQUENT_CHECK;
4135
4136 ev_io_stop (EV_A_ &w->io);
4137 ev_prepare_stop (EV_A_ &w->prepare);
4138 ev_fork_stop (EV_A_ &w->fork);
4139
4140 ev_stop (EV_A_ (W)w);
4141
4142 EV_FREQUENT_CHECK;
4143}
4144#endif
4145
4146#if EV_FORK_ENABLE
4147void
4148ev_fork_start (EV_P_ ev_fork *w)
4149{
4150 if (expect_false (ev_is_active (w)))
4151 return;
4152
4153 EV_FREQUENT_CHECK;
4154
4155 ev_start (EV_A_ (W)w, ++forkcnt);
4156 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4157 forks [forkcnt - 1] = w;
4158
4159 EV_FREQUENT_CHECK;
4160}
4161
4162void
4163ev_fork_stop (EV_P_ ev_fork *w)
4164{
4165 clear_pending (EV_A_ (W)w);
4166 if (expect_false (!ev_is_active (w)))
4167 return;
4168
4169 EV_FREQUENT_CHECK;
4170
4171 {
4172 int active = ev_active (w);
4173
4174 forks [active - 1] = forks [--forkcnt];
4175 ev_active (forks [active - 1]) = active;
4176 }
4177
4178 ev_stop (EV_A_ (W)w);
4179
4180 EV_FREQUENT_CHECK;
4181}
4182#endif
4183
4184#if EV_CLEANUP_ENABLE
4185void
4186ev_cleanup_start (EV_P_ ev_cleanup *w)
4187{
4188 if (expect_false (ev_is_active (w)))
4189 return;
4190
4191 EV_FREQUENT_CHECK;
4192
4193 ev_start (EV_A_ (W)w, ++cleanupcnt);
4194 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4195 cleanups [cleanupcnt - 1] = w;
4196
4197 /* cleanup watchers should never keep a refcount on the loop */
4198 ev_unref (EV_A);
4199 EV_FREQUENT_CHECK;
4200}
4201
4202void
4203ev_cleanup_stop (EV_P_ ev_cleanup *w)
4204{
4205 clear_pending (EV_A_ (W)w);
4206 if (expect_false (!ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210 ev_ref (EV_A);
4211
4212 {
4213 int active = ev_active (w);
4214
4215 cleanups [active - 1] = cleanups [--cleanupcnt];
4216 ev_active (cleanups [active - 1]) = active;
4217 }
4218
4219 ev_stop (EV_A_ (W)w);
4220
4221 EV_FREQUENT_CHECK;
4222}
4223#endif
4224
4225#if EV_ASYNC_ENABLE
4226void
4227ev_async_start (EV_P_ ev_async *w)
4228{
4229 if (expect_false (ev_is_active (w)))
4230 return;
4231
4232 w->sent = 0;
4233
4234 evpipe_init (EV_A);
4235
4236 EV_FREQUENT_CHECK;
4237
4238 ev_start (EV_A_ (W)w, ++asynccnt);
4239 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4240 asyncs [asynccnt - 1] = w;
4241
4242 EV_FREQUENT_CHECK;
4243}
4244
4245void
4246ev_async_stop (EV_P_ ev_async *w)
4247{
4248 clear_pending (EV_A_ (W)w);
4249 if (expect_false (!ev_is_active (w)))
4250 return;
4251
4252 EV_FREQUENT_CHECK;
4253
4254 {
4255 int active = ev_active (w);
4256
4257 asyncs [active - 1] = asyncs [--asynccnt];
4258 ev_active (asyncs [active - 1]) = active;
4259 }
4260
4261 ev_stop (EV_A_ (W)w);
4262
4263 EV_FREQUENT_CHECK;
4264}
4265
4266void
4267ev_async_send (EV_P_ ev_async *w)
4268{
4269 w->sent = 1;
4270 evpipe_write (EV_A_ &async_pending);
4271}
4272#endif
1603 4273
1604/*****************************************************************************/ 4274/*****************************************************************************/
1605 4275
1606struct ev_once 4276struct ev_once
1607{ 4277{
1608 struct ev_io io; 4278 ev_io io;
1609 struct ev_timer to; 4279 ev_timer to;
1610 void (*cb)(int revents, void *arg); 4280 void (*cb)(int revents, void *arg);
1611 void *arg; 4281 void *arg;
1612}; 4282};
1613 4283
1614static void 4284static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 4285once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 4286{
1617 void (*cb)(int revents, void *arg) = once->cb; 4287 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 4288 void *arg = once->arg;
1619 4289
1620 ev_io_stop (EV_A_ &once->io); 4290 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 4291 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 4292 ev_free (once);
1623 4293
1624 cb (revents, arg); 4294 cb (revents, arg);
1625} 4295}
1626 4296
1627static void 4297static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 4298once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 4299{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4300 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4301
4302 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 4303}
1632 4304
1633static void 4305static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 4306once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 4307{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4308 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4309
4310 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 4311}
1638 4312
1639void 4313void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4314ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 4315{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4316 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 4317
1644 if (expect_false (!once)) 4318 if (expect_false (!once))
1645 { 4319 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4320 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1647 return; 4321 return;
1648 } 4322 }
1649 4323
1650 once->cb = cb; 4324 once->cb = cb;
1651 once->arg = arg; 4325 once->arg = arg;
1663 ev_timer_set (&once->to, timeout, 0.); 4337 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 4338 ev_timer_start (EV_A_ &once->to);
1665 } 4339 }
1666} 4340}
1667 4341
1668#ifdef __cplusplus 4342/*****************************************************************************/
1669} 4343
4344#if EV_WALK_ENABLE
4345void ecb_cold
4346ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4347{
4348 int i, j;
4349 ev_watcher_list *wl, *wn;
4350
4351 if (types & (EV_IO | EV_EMBED))
4352 for (i = 0; i < anfdmax; ++i)
4353 for (wl = anfds [i].head; wl; )
4354 {
4355 wn = wl->next;
4356
4357#if EV_EMBED_ENABLE
4358 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4359 {
4360 if (types & EV_EMBED)
4361 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4362 }
4363 else
4364#endif
4365#if EV_USE_INOTIFY
4366 if (ev_cb ((ev_io *)wl) == infy_cb)
4367 ;
4368 else
4369#endif
4370 if ((ev_io *)wl != &pipe_w)
4371 if (types & EV_IO)
4372 cb (EV_A_ EV_IO, wl);
4373
4374 wl = wn;
4375 }
4376
4377 if (types & (EV_TIMER | EV_STAT))
4378 for (i = timercnt + HEAP0; i-- > HEAP0; )
4379#if EV_STAT_ENABLE
4380 /*TODO: timer is not always active*/
4381 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4382 {
4383 if (types & EV_STAT)
4384 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4385 }
4386 else
4387#endif
4388 if (types & EV_TIMER)
4389 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4390
4391#if EV_PERIODIC_ENABLE
4392 if (types & EV_PERIODIC)
4393 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4394 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4395#endif
4396
4397#if EV_IDLE_ENABLE
4398 if (types & EV_IDLE)
4399 for (j = NUMPRI; j--; )
4400 for (i = idlecnt [j]; i--; )
4401 cb (EV_A_ EV_IDLE, idles [j][i]);
4402#endif
4403
4404#if EV_FORK_ENABLE
4405 if (types & EV_FORK)
4406 for (i = forkcnt; i--; )
4407 if (ev_cb (forks [i]) != embed_fork_cb)
4408 cb (EV_A_ EV_FORK, forks [i]);
4409#endif
4410
4411#if EV_ASYNC_ENABLE
4412 if (types & EV_ASYNC)
4413 for (i = asynccnt; i--; )
4414 cb (EV_A_ EV_ASYNC, asyncs [i]);
4415#endif
4416
4417#if EV_PREPARE_ENABLE
4418 if (types & EV_PREPARE)
4419 for (i = preparecnt; i--; )
4420# if EV_EMBED_ENABLE
4421 if (ev_cb (prepares [i]) != embed_prepare_cb)
1670#endif 4422# endif
4423 cb (EV_A_ EV_PREPARE, prepares [i]);
4424#endif
1671 4425
4426#if EV_CHECK_ENABLE
4427 if (types & EV_CHECK)
4428 for (i = checkcnt; i--; )
4429 cb (EV_A_ EV_CHECK, checks [i]);
4430#endif
4431
4432#if EV_SIGNAL_ENABLE
4433 if (types & EV_SIGNAL)
4434 for (i = 0; i < EV_NSIG - 1; ++i)
4435 for (wl = signals [i].head; wl; )
4436 {
4437 wn = wl->next;
4438 cb (EV_A_ EV_SIGNAL, wl);
4439 wl = wn;
4440 }
4441#endif
4442
4443#if EV_CHILD_ENABLE
4444 if (types & EV_CHILD)
4445 for (i = (EV_PID_HASHSIZE); i--; )
4446 for (wl = childs [i]; wl; )
4447 {
4448 wn = wl->next;
4449 cb (EV_A_ EV_CHILD, wl);
4450 wl = wn;
4451 }
4452#endif
4453/* EV_STAT 0x00001000 /* stat data changed */
4454/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4455}
4456#endif
4457
4458#if EV_MULTIPLICITY
4459 #include "ev_wrap.h"
4460#endif
4461

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines