ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.216 by root, Sat Mar 8 07:04:55 2008 UTC vs.
Revision 1.408 by root, Fri Jan 27 22:28:49 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
145#ifndef _WIN32 188#ifndef _WIN32
146# include <sys/time.h> 189# include <sys/time.h>
147# include <sys/wait.h> 190# include <sys/wait.h>
148# include <unistd.h> 191# include <unistd.h>
149#else 192#else
193# include <io.h>
150# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 195# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
154# endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
155#endif 249# endif
156 250#endif
157/**/
158 251
159#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
160# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
161#endif 258#endif
162 259
163#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 262#endif
166 263
167#ifndef EV_USE_NANOSLEEP 264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
168# define EV_USE_NANOSLEEP 0 268# define EV_USE_NANOSLEEP 0
269# endif
169#endif 270#endif
170 271
171#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 274#endif
174 275
175#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
176# ifdef _WIN32 277# ifdef _WIN32
177# define EV_USE_POLL 0 278# define EV_USE_POLL 0
178# else 279# else
179# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 281# endif
181#endif 282#endif
182 283
183#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
184# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
185#endif 290#endif
186 291
187#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
189#endif 294#endif
191#ifndef EV_USE_PORT 296#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 297# define EV_USE_PORT 0
193#endif 298#endif
194 299
195#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
196# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
305# endif
197#endif 306#endif
198 307
199#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 319# else
203# define EV_PID_HASHSIZE 16 320# define EV_USE_EVENTFD 0
204# endif 321# endif
205#endif 322#endif
206 323
207#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 326# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 327# else
211# define EV_INOTIFY_HASHSIZE 16 328# define EV_USE_SIGNALFD 0
212# endif 329# endif
213#endif 330#endif
214 331
215/**/ 332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
216 371
217#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
220#endif 375#endif
228# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
230#endif 385#endif
231 386
232#if !EV_USE_NANOSLEEP 387#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
234# include <sys/select.h> 390# include <sys/select.h>
235# endif 391# endif
236#endif 392#endif
237 393
238#if EV_USE_INOTIFY 394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
239# include <sys/inotify.h> 396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
240#endif 402#endif
241 403
242#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 405# include <winsock.h>
244#endif 406#endif
245 407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
246/**/ 446/**/
247 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
248/* 454/*
249 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 457 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 460
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 508 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
265#else 515#else
266# define expect(expr,value) (expr) 516 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 531 #endif
532#endif
272 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 #if __i386 || __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif __sparc || __sparc__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 #elif defined(__s390__) || defined(__s390x__)
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
567 #endif
568 #endif
569#endif
570
571#ifndef ECB_MEMORY_FENCE
572 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
573 #define ECB_MEMORY_FENCE __sync_synchronize ()
574 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
575 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
576 #elif _MSC_VER >= 1400 /* VC++ 2005 */
577 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
578 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
579 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
580 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
581 #elif defined(_WIN32)
582 #include <WinNT.h>
583 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
584 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
585 #include <mbarrier.h>
586 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
587 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
588 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
589 #endif
590#endif
591
592#ifndef ECB_MEMORY_FENCE
593 #if !ECB_AVOID_PTHREADS
594 /*
595 * if you get undefined symbol references to pthread_mutex_lock,
596 * or failure to find pthread.h, then you should implement
597 * the ECB_MEMORY_FENCE operations for your cpu/compiler
598 * OR provide pthread.h and link against the posix thread library
599 * of your system.
600 */
601 #include <pthread.h>
602 #define ECB_NEEDS_PTHREADS 1
603 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
604
605 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
606 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
607 #endif
608#endif
609
610#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
611 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
612#endif
613
614#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
615 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
616#endif
617
618/*****************************************************************************/
619
620#define ECB_C99 (__STDC_VERSION__ >= 199901L)
621
622#if __cplusplus
623 #define ecb_inline static inline
624#elif ECB_GCC_VERSION(2,5)
625 #define ecb_inline static __inline__
626#elif ECB_C99
627 #define ecb_inline static inline
628#else
629 #define ecb_inline static
630#endif
631
632#if ECB_GCC_VERSION(3,3)
633 #define ecb_restrict __restrict__
634#elif ECB_C99
635 #define ecb_restrict restrict
636#else
637 #define ecb_restrict
638#endif
639
640typedef int ecb_bool;
641
642#define ECB_CONCAT_(a, b) a ## b
643#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
644#define ECB_STRINGIFY_(a) # a
645#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
646
647#define ecb_function_ ecb_inline
648
649#if ECB_GCC_VERSION(3,1)
650 #define ecb_attribute(attrlist) __attribute__(attrlist)
651 #define ecb_is_constant(expr) __builtin_constant_p (expr)
652 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
653 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
654#else
655 #define ecb_attribute(attrlist)
656 #define ecb_is_constant(expr) 0
657 #define ecb_expect(expr,value) (expr)
658 #define ecb_prefetch(addr,rw,locality)
659#endif
660
661/* no emulation for ecb_decltype */
662#if ECB_GCC_VERSION(4,5)
663 #define ecb_decltype(x) __decltype(x)
664#elif ECB_GCC_VERSION(3,0)
665 #define ecb_decltype(x) __typeof(x)
666#endif
667
668#define ecb_noinline ecb_attribute ((__noinline__))
669#define ecb_noreturn ecb_attribute ((__noreturn__))
670#define ecb_unused ecb_attribute ((__unused__))
671#define ecb_const ecb_attribute ((__const__))
672#define ecb_pure ecb_attribute ((__pure__))
673
674#if ECB_GCC_VERSION(4,3)
675 #define ecb_artificial ecb_attribute ((__artificial__))
676 #define ecb_hot ecb_attribute ((__hot__))
677 #define ecb_cold ecb_attribute ((__cold__))
678#else
679 #define ecb_artificial
680 #define ecb_hot
681 #define ecb_cold
682#endif
683
684/* put around conditional expressions if you are very sure that the */
685/* expression is mostly true or mostly false. note that these return */
686/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 687#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 688#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
689/* for compatibility to the rest of the world */
690#define ecb_likely(expr) ecb_expect_true (expr)
691#define ecb_unlikely(expr) ecb_expect_false (expr)
692
693/* count trailing zero bits and count # of one bits */
694#if ECB_GCC_VERSION(3,4)
695 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
696 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
697 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
698 #define ecb_ctz32(x) __builtin_ctz (x)
699 #define ecb_ctz64(x) __builtin_ctzll (x)
700 #define ecb_popcount32(x) __builtin_popcount (x)
701 /* no popcountll */
702#else
703 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
704 ecb_function_ int
705 ecb_ctz32 (uint32_t x)
706 {
707 int r = 0;
708
709 x &= ~x + 1; /* this isolates the lowest bit */
710
711#if ECB_branchless_on_i386
712 r += !!(x & 0xaaaaaaaa) << 0;
713 r += !!(x & 0xcccccccc) << 1;
714 r += !!(x & 0xf0f0f0f0) << 2;
715 r += !!(x & 0xff00ff00) << 3;
716 r += !!(x & 0xffff0000) << 4;
717#else
718 if (x & 0xaaaaaaaa) r += 1;
719 if (x & 0xcccccccc) r += 2;
720 if (x & 0xf0f0f0f0) r += 4;
721 if (x & 0xff00ff00) r += 8;
722 if (x & 0xffff0000) r += 16;
723#endif
724
725 return r;
726 }
727
728 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
729 ecb_function_ int
730 ecb_ctz64 (uint64_t x)
731 {
732 int shift = x & 0xffffffffU ? 0 : 32;
733 return ecb_ctz32 (x >> shift) + shift;
734 }
735
736 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
737 ecb_function_ int
738 ecb_popcount32 (uint32_t x)
739 {
740 x -= (x >> 1) & 0x55555555;
741 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
742 x = ((x >> 4) + x) & 0x0f0f0f0f;
743 x *= 0x01010101;
744
745 return x >> 24;
746 }
747
748 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
749 ecb_function_ int ecb_ld32 (uint32_t x)
750 {
751 int r = 0;
752
753 if (x >> 16) { x >>= 16; r += 16; }
754 if (x >> 8) { x >>= 8; r += 8; }
755 if (x >> 4) { x >>= 4; r += 4; }
756 if (x >> 2) { x >>= 2; r += 2; }
757 if (x >> 1) { r += 1; }
758
759 return r;
760 }
761
762 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
763 ecb_function_ int ecb_ld64 (uint64_t x)
764 {
765 int r = 0;
766
767 if (x >> 32) { x >>= 32; r += 32; }
768
769 return r + ecb_ld32 (x);
770 }
771#endif
772
773ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
774ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
775{
776 return ( (x * 0x0802U & 0x22110U)
777 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
778}
779
780ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
781ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
782{
783 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
784 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
785 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
786 x = ( x >> 8 ) | ( x << 8);
787
788 return x;
789}
790
791ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
792ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
793{
794 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
795 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
796 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
797 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
798 x = ( x >> 16 ) | ( x << 16);
799
800 return x;
801}
802
803/* popcount64 is only available on 64 bit cpus as gcc builtin */
804/* so for this version we are lazy */
805ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
806ecb_function_ int
807ecb_popcount64 (uint64_t x)
808{
809 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
810}
811
812ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
813ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
814ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
815ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
816ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
817ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
818ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
819ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
820
821ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
822ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
823ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
824ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
825ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
826ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
827ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
828ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
829
830#if ECB_GCC_VERSION(4,3)
831 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
832 #define ecb_bswap32(x) __builtin_bswap32 (x)
833 #define ecb_bswap64(x) __builtin_bswap64 (x)
834#else
835 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
836 ecb_function_ uint16_t
837 ecb_bswap16 (uint16_t x)
838 {
839 return ecb_rotl16 (x, 8);
840 }
841
842 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
843 ecb_function_ uint32_t
844 ecb_bswap32 (uint32_t x)
845 {
846 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
847 }
848
849 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
850 ecb_function_ uint64_t
851 ecb_bswap64 (uint64_t x)
852 {
853 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
854 }
855#endif
856
857#if ECB_GCC_VERSION(4,5)
858 #define ecb_unreachable() __builtin_unreachable ()
859#else
860 /* this seems to work fine, but gcc always emits a warning for it :/ */
861 ecb_inline void ecb_unreachable (void) ecb_noreturn;
862 ecb_inline void ecb_unreachable (void) { }
863#endif
864
865/* try to tell the compiler that some condition is definitely true */
866#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
867
868ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
869ecb_inline unsigned char
870ecb_byteorder_helper (void)
871{
872 const uint32_t u = 0x11223344;
873 return *(unsigned char *)&u;
874}
875
876ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
877ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
878ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
879ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
880
881#if ECB_GCC_VERSION(3,0) || ECB_C99
882 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
883#else
884 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
885#endif
886
887#if __cplusplus
888 template<typename T>
889 static inline T ecb_div_rd (T val, T div)
890 {
891 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
892 }
893 template<typename T>
894 static inline T ecb_div_ru (T val, T div)
895 {
896 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
897 }
898#else
899 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
900 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
901#endif
902
903#if ecb_cplusplus_does_not_suck
904 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
905 template<typename T, int N>
906 static inline int ecb_array_length (const T (&arr)[N])
907 {
908 return N;
909 }
910#else
911 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
912#endif
913
914#endif
915
916/* ECB.H END */
917
918#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
919/* if your architecture doesn't need memory fences, e.g. because it is
920 * single-cpu/core, or if you use libev in a project that doesn't use libev
921 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
922 * libev, in which cases the memory fences become nops.
923 * alternatively, you can remove this #error and link against libpthread,
924 * which will then provide the memory fences.
925 */
926# error "memory fences not defined for your architecture, please report"
927#endif
928
929#ifndef ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE do { } while (0)
931# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
932# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
933#endif
934
935#define expect_false(cond) ecb_expect_false (cond)
936#define expect_true(cond) ecb_expect_true (cond)
937#define noinline ecb_noinline
938
275#define inline_size static inline 939#define inline_size ecb_inline
276 940
277#if EV_MINIMAL 941#if EV_FEATURE_CODE
942# define inline_speed ecb_inline
943#else
278# define inline_speed static noinline 944# define inline_speed static noinline
945#endif
946
947#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
948
949#if EV_MINPRI == EV_MAXPRI
950# define ABSPRI(w) (((W)w), 0)
279#else 951#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 952# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
953#endif
285 954
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 955#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 956#define EMPTY2(a,b) /* used to suppress some warnings */
288 957
289typedef ev_watcher *W; 958typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 959typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 960typedef ev_watcher_time *WT;
292 961
962#define ev_active(w) ((W)(w))->active
963#define ev_at(w) ((WT)(w))->at
964
965#if EV_USE_REALTIME
966/* sig_atomic_t is used to avoid per-thread variables or locking but still */
967/* giving it a reasonably high chance of working on typical architectures */
968static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
969#endif
970
293#if EV_USE_MONOTONIC 971#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 972static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
973#endif
974
975#ifndef EV_FD_TO_WIN32_HANDLE
976# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
977#endif
978#ifndef EV_WIN32_HANDLE_TO_FD
979# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
980#endif
981#ifndef EV_WIN32_CLOSE_FD
982# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 983#endif
298 984
299#ifdef _WIN32 985#ifdef _WIN32
300# include "ev_win32.c" 986# include "ev_win32.c"
301#endif 987#endif
302 988
303/*****************************************************************************/ 989/*****************************************************************************/
304 990
991/* define a suitable floor function (only used by periodics atm) */
992
993#if EV_USE_FLOOR
994# include <math.h>
995# define ev_floor(v) floor (v)
996#else
997
998#include <float.h>
999
1000/* a floor() replacement function, should be independent of ev_tstamp type */
1001static ev_tstamp noinline
1002ev_floor (ev_tstamp v)
1003{
1004 /* the choice of shift factor is not terribly important */
1005#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1007#else
1008 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1009#endif
1010
1011 /* argument too large for an unsigned long? */
1012 if (expect_false (v >= shift))
1013 {
1014 ev_tstamp f;
1015
1016 if (v == v - 1.)
1017 return v; /* very large number */
1018
1019 f = shift * ev_floor (v * (1. / shift));
1020 return f + ev_floor (v - f);
1021 }
1022
1023 /* special treatment for negative args? */
1024 if (expect_false (v < 0.))
1025 {
1026 ev_tstamp f = -ev_floor (-v);
1027
1028 return f - (f == v ? 0 : 1);
1029 }
1030
1031 /* fits into an unsigned long */
1032 return (unsigned long)v;
1033}
1034
1035#endif
1036
1037/*****************************************************************************/
1038
1039#ifdef __linux
1040# include <sys/utsname.h>
1041#endif
1042
1043static unsigned int noinline ecb_cold
1044ev_linux_version (void)
1045{
1046#ifdef __linux
1047 unsigned int v = 0;
1048 struct utsname buf;
1049 int i;
1050 char *p = buf.release;
1051
1052 if (uname (&buf))
1053 return 0;
1054
1055 for (i = 3+1; --i; )
1056 {
1057 unsigned int c = 0;
1058
1059 for (;;)
1060 {
1061 if (*p >= '0' && *p <= '9')
1062 c = c * 10 + *p++ - '0';
1063 else
1064 {
1065 p += *p == '.';
1066 break;
1067 }
1068 }
1069
1070 v = (v << 8) | c;
1071 }
1072
1073 return v;
1074#else
1075 return 0;
1076#endif
1077}
1078
1079/*****************************************************************************/
1080
1081#if EV_AVOID_STDIO
1082static void noinline ecb_cold
1083ev_printerr (const char *msg)
1084{
1085 write (STDERR_FILENO, msg, strlen (msg));
1086}
1087#endif
1088
305static void (*syserr_cb)(const char *msg); 1089static void (*syserr_cb)(const char *msg);
306 1090
307void 1091void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1092ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 1093{
310 syserr_cb = cb; 1094 syserr_cb = cb;
311} 1095}
312 1096
313static void noinline 1097static void noinline ecb_cold
314syserr (const char *msg) 1098ev_syserr (const char *msg)
315{ 1099{
316 if (!msg) 1100 if (!msg)
317 msg = "(libev) system error"; 1101 msg = "(libev) system error";
318 1102
319 if (syserr_cb) 1103 if (syserr_cb)
320 syserr_cb (msg); 1104 syserr_cb (msg);
321 else 1105 else
322 { 1106 {
1107#if EV_AVOID_STDIO
1108 ev_printerr (msg);
1109 ev_printerr (": ");
1110 ev_printerr (strerror (errno));
1111 ev_printerr ("\n");
1112#else
323 perror (msg); 1113 perror (msg);
1114#endif
324 abort (); 1115 abort ();
325 } 1116 }
326} 1117}
327 1118
1119static void *
1120ev_realloc_emul (void *ptr, long size)
1121{
1122#if __GLIBC__
1123 return realloc (ptr, size);
1124#else
1125 /* some systems, notably openbsd and darwin, fail to properly
1126 * implement realloc (x, 0) (as required by both ansi c-89 and
1127 * the single unix specification, so work around them here.
1128 */
1129
1130 if (size)
1131 return realloc (ptr, size);
1132
1133 free (ptr);
1134 return 0;
1135#endif
1136}
1137
328static void *(*alloc)(void *ptr, long size); 1138static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 1139
330void 1140void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1141ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 1142{
333 alloc = cb; 1143 alloc = cb;
334} 1144}
335 1145
336inline_speed void * 1146inline_speed void *
337ev_realloc (void *ptr, long size) 1147ev_realloc (void *ptr, long size)
338{ 1148{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1149 ptr = alloc (ptr, size);
340 1150
341 if (!ptr && size) 1151 if (!ptr && size)
342 { 1152 {
1153#if EV_AVOID_STDIO
1154 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1155#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1156 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1157#endif
344 abort (); 1158 abort ();
345 } 1159 }
346 1160
347 return ptr; 1161 return ptr;
348} 1162}
350#define ev_malloc(size) ev_realloc (0, (size)) 1164#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1165#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1166
353/*****************************************************************************/ 1167/*****************************************************************************/
354 1168
1169/* set in reify when reification needed */
1170#define EV_ANFD_REIFY 1
1171
1172/* file descriptor info structure */
355typedef struct 1173typedef struct
356{ 1174{
357 WL head; 1175 WL head;
358 unsigned char events; 1176 unsigned char events; /* the events watched for */
1177 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1178 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1179 unsigned char unused;
1180#if EV_USE_EPOLL
1181 unsigned int egen; /* generation counter to counter epoll bugs */
1182#endif
360#if EV_SELECT_IS_WINSOCKET 1183#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1184 SOCKET handle;
362#endif 1185#endif
1186#if EV_USE_IOCP
1187 OVERLAPPED or, ow;
1188#endif
363} ANFD; 1189} ANFD;
364 1190
1191/* stores the pending event set for a given watcher */
365typedef struct 1192typedef struct
366{ 1193{
367 W w; 1194 W w;
368 int events; 1195 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1196} ANPENDING;
370 1197
371#if EV_USE_INOTIFY 1198#if EV_USE_INOTIFY
1199/* hash table entry per inotify-id */
372typedef struct 1200typedef struct
373{ 1201{
374 WL head; 1202 WL head;
375} ANFS; 1203} ANFS;
1204#endif
1205
1206/* Heap Entry */
1207#if EV_HEAP_CACHE_AT
1208 /* a heap element */
1209 typedef struct {
1210 ev_tstamp at;
1211 WT w;
1212 } ANHE;
1213
1214 #define ANHE_w(he) (he).w /* access watcher, read-write */
1215 #define ANHE_at(he) (he).at /* access cached at, read-only */
1216 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1217#else
1218 /* a heap element */
1219 typedef WT ANHE;
1220
1221 #define ANHE_w(he) (he)
1222 #define ANHE_at(he) (he)->at
1223 #define ANHE_at_cache(he)
376#endif 1224#endif
377 1225
378#if EV_MULTIPLICITY 1226#if EV_MULTIPLICITY
379 1227
380 struct ev_loop 1228 struct ev_loop
386 #undef VAR 1234 #undef VAR
387 }; 1235 };
388 #include "ev_wrap.h" 1236 #include "ev_wrap.h"
389 1237
390 static struct ev_loop default_loop_struct; 1238 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1239 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1240
393#else 1241#else
394 1242
395 ev_tstamp ev_rt_now; 1243 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1244 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1245 #include "ev_vars.h"
398 #undef VAR 1246 #undef VAR
399 1247
400 static int ev_default_loop_ptr; 1248 static int ev_default_loop_ptr;
401 1249
402#endif 1250#endif
403 1251
1252#if EV_FEATURE_API
1253# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1254# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1255# define EV_INVOKE_PENDING invoke_cb (EV_A)
1256#else
1257# define EV_RELEASE_CB (void)0
1258# define EV_ACQUIRE_CB (void)0
1259# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1260#endif
1261
1262#define EVBREAK_RECURSE 0x80
1263
404/*****************************************************************************/ 1264/*****************************************************************************/
405 1265
1266#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1267ev_tstamp
407ev_time (void) 1268ev_time (void)
408{ 1269{
409#if EV_USE_REALTIME 1270#if EV_USE_REALTIME
1271 if (expect_true (have_realtime))
1272 {
410 struct timespec ts; 1273 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1274 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1275 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1276 }
1277#endif
1278
414 struct timeval tv; 1279 struct timeval tv;
415 gettimeofday (&tv, 0); 1280 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1281 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1282}
1283#endif
419 1284
420ev_tstamp inline_size 1285inline_size ev_tstamp
421get_clock (void) 1286get_clock (void)
422{ 1287{
423#if EV_USE_MONOTONIC 1288#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1289 if (expect_true (have_monotonic))
425 { 1290 {
446 if (delay > 0.) 1311 if (delay > 0.)
447 { 1312 {
448#if EV_USE_NANOSLEEP 1313#if EV_USE_NANOSLEEP
449 struct timespec ts; 1314 struct timespec ts;
450 1315
451 ts.tv_sec = (time_t)delay; 1316 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1317 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1318#elif defined(_WIN32)
456 Sleep (delay * 1e3); 1319 Sleep ((unsigned long)(delay * 1e3));
457#else 1320#else
458 struct timeval tv; 1321 struct timeval tv;
459 1322
460 tv.tv_sec = (time_t)delay; 1323 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1324 /* something not guaranteed by newer posix versions, but guaranteed */
462 1325 /* by older ones */
1326 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1327 select (0, 0, 0, 0, &tv);
464#endif 1328#endif
465 } 1329 }
466} 1330}
467 1331
468/*****************************************************************************/ 1332/*****************************************************************************/
469 1333
470int inline_size 1334#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1335
1336/* find a suitable new size for the given array, */
1337/* hopefully by rounding to a nice-to-malloc size */
1338inline_size int
471array_nextsize (int elem, int cur, int cnt) 1339array_nextsize (int elem, int cur, int cnt)
472{ 1340{
473 int ncur = cur + 1; 1341 int ncur = cur + 1;
474 1342
475 do 1343 do
476 ncur <<= 1; 1344 ncur <<= 1;
477 while (cnt > ncur); 1345 while (cnt > ncur);
478 1346
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1347 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1348 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1349 {
482 ncur *= elem; 1350 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1351 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1352 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1353 ncur /= elem;
486 } 1354 }
487 1355
488 return ncur; 1356 return ncur;
489} 1357}
490 1358
491static noinline void * 1359static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1360array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1361{
494 *cur = array_nextsize (elem, *cur, cnt); 1362 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1363 return ev_realloc (base, elem * *cur);
496} 1364}
1365
1366#define array_init_zero(base,count) \
1367 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1368
498#define array_needsize(type,base,cur,cnt,init) \ 1369#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1370 if (expect_false ((cnt) > (cur))) \
500 { \ 1371 { \
501 int ocur_ = (cur); \ 1372 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1373 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1374 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1375 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1376 }
506 1377
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1384 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1385 }
515#endif 1386#endif
516 1387
517#define array_free(stem, idx) \ 1388#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1389 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1390
520/*****************************************************************************/ 1391/*****************************************************************************/
1392
1393/* dummy callback for pending events */
1394static void noinline
1395pendingcb (EV_P_ ev_prepare *w, int revents)
1396{
1397}
521 1398
522void noinline 1399void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1400ev_feed_event (EV_P_ void *w, int revents)
524{ 1401{
525 W w_ = (W)w; 1402 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 1411 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1412 pendings [pri][w_->pending - 1].events = revents;
536 } 1413 }
537} 1414}
538 1415
539void inline_speed 1416inline_speed void
1417feed_reverse (EV_P_ W w)
1418{
1419 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1420 rfeeds [rfeedcnt++] = w;
1421}
1422
1423inline_size void
1424feed_reverse_done (EV_P_ int revents)
1425{
1426 do
1427 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1428 while (rfeedcnt);
1429}
1430
1431inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1432queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1433{
542 int i; 1434 int i;
543 1435
544 for (i = 0; i < eventcnt; ++i) 1436 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1437 ev_feed_event (EV_A_ events [i], type);
546} 1438}
547 1439
548/*****************************************************************************/ 1440/*****************************************************************************/
549 1441
550void inline_size 1442inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1443fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1444{
566 ANFD *anfd = anfds + fd; 1445 ANFD *anfd = anfds + fd;
567 ev_io *w; 1446 ev_io *w;
568 1447
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1448 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1452 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1453 ev_feed_event (EV_A_ (W)w, ev);
575 } 1454 }
576} 1455}
577 1456
1457/* do not submit kernel events for fds that have reify set */
1458/* because that means they changed while we were polling for new events */
1459inline_speed void
1460fd_event (EV_P_ int fd, int revents)
1461{
1462 ANFD *anfd = anfds + fd;
1463
1464 if (expect_true (!anfd->reify))
1465 fd_event_nocheck (EV_A_ fd, revents);
1466}
1467
578void 1468void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1469ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 1470{
581 if (fd >= 0 && fd < anfdmax) 1471 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1472 fd_event_nocheck (EV_A_ fd, revents);
583} 1473}
584 1474
585void inline_size 1475/* make sure the external fd watch events are in-sync */
1476/* with the kernel/libev internal state */
1477inline_size void
586fd_reify (EV_P) 1478fd_reify (EV_P)
587{ 1479{
588 int i; 1480 int i;
1481
1482#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1483 for (i = 0; i < fdchangecnt; ++i)
1484 {
1485 int fd = fdchanges [i];
1486 ANFD *anfd = anfds + fd;
1487
1488 if (anfd->reify & EV__IOFDSET && anfd->head)
1489 {
1490 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1491
1492 if (handle != anfd->handle)
1493 {
1494 unsigned long arg;
1495
1496 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1497
1498 /* handle changed, but fd didn't - we need to do it in two steps */
1499 backend_modify (EV_A_ fd, anfd->events, 0);
1500 anfd->events = 0;
1501 anfd->handle = handle;
1502 }
1503 }
1504 }
1505#endif
589 1506
590 for (i = 0; i < fdchangecnt; ++i) 1507 for (i = 0; i < fdchangecnt; ++i)
591 { 1508 {
592 int fd = fdchanges [i]; 1509 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1510 ANFD *anfd = anfds + fd;
594 ev_io *w; 1511 ev_io *w;
595 1512
596 unsigned char events = 0; 1513 unsigned char o_events = anfd->events;
1514 unsigned char o_reify = anfd->reify;
597 1515
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1516 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1517
601#if EV_SELECT_IS_WINSOCKET 1518 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1519 {
604 unsigned long argp; 1520 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1521
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1523 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1524
609 #endif 1525 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1526 o_reify = EV__IOFDSET; /* actually |= */
611 } 1527 }
612#endif
613 1528
614 { 1529 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1530 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1531 }
625 1532
626 fdchangecnt = 0; 1533 fdchangecnt = 0;
627} 1534}
628 1535
629void inline_size 1536/* something about the given fd changed */
1537inline_size void
630fd_change (EV_P_ int fd, int flags) 1538fd_change (EV_P_ int fd, int flags)
631{ 1539{
632 unsigned char reify = anfds [fd].reify; 1540 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1541 anfds [fd].reify |= flags;
634 1542
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1546 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1547 fdchanges [fdchangecnt - 1] = fd;
640 } 1548 }
641} 1549}
642 1550
643void inline_speed 1551/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1552inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1553fd_kill (EV_P_ int fd)
645{ 1554{
646 ev_io *w; 1555 ev_io *w;
647 1556
648 while ((w = (ev_io *)anfds [fd].head)) 1557 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1559 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1560 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1561 }
653} 1562}
654 1563
655int inline_size 1564/* check whether the given fd is actually valid, for error recovery */
1565inline_size int ecb_cold
656fd_valid (int fd) 1566fd_valid (int fd)
657{ 1567{
658#ifdef _WIN32 1568#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1569 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1570#else
661 return fcntl (fd, F_GETFD) != -1; 1571 return fcntl (fd, F_GETFD) != -1;
662#endif 1572#endif
663} 1573}
664 1574
665/* called on EBADF to verify fds */ 1575/* called on EBADF to verify fds */
666static void noinline 1576static void noinline ecb_cold
667fd_ebadf (EV_P) 1577fd_ebadf (EV_P)
668{ 1578{
669 int fd; 1579 int fd;
670 1580
671 for (fd = 0; fd < anfdmax; ++fd) 1581 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1582 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1583 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1584 fd_kill (EV_A_ fd);
675} 1585}
676 1586
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1587/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1588static void noinline ecb_cold
679fd_enomem (EV_P) 1589fd_enomem (EV_P)
680{ 1590{
681 int fd; 1591 int fd;
682 1592
683 for (fd = anfdmax; fd--; ) 1593 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1594 if (anfds [fd].events)
685 { 1595 {
686 fd_kill (EV_A_ fd); 1596 fd_kill (EV_A_ fd);
687 return; 1597 break;
688 } 1598 }
689} 1599}
690 1600
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1601/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1602static void noinline
696 1606
697 for (fd = 0; fd < anfdmax; ++fd) 1607 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1608 if (anfds [fd].events)
699 { 1609 {
700 anfds [fd].events = 0; 1610 anfds [fd].events = 0;
1611 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1612 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1613 }
703} 1614}
704 1615
705/*****************************************************************************/ 1616/* used to prepare libev internal fd's */
706 1617/* this is not fork-safe */
707void inline_speed 1618inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1619fd_intern (int fd)
792{ 1620{
793#ifdef _WIN32 1621#ifdef _WIN32
794 int arg = 1; 1622 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1623 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1624#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1625 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1626 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1627#endif
800} 1628}
801 1629
1630/*****************************************************************************/
1631
1632/*
1633 * the heap functions want a real array index. array index 0 is guaranteed to not
1634 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1635 * the branching factor of the d-tree.
1636 */
1637
1638/*
1639 * at the moment we allow libev the luxury of two heaps,
1640 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1641 * which is more cache-efficient.
1642 * the difference is about 5% with 50000+ watchers.
1643 */
1644#if EV_USE_4HEAP
1645
1646#define DHEAP 4
1647#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1648#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1649#define UPHEAP_DONE(p,k) ((p) == (k))
1650
1651/* away from the root */
1652inline_speed void
1653downheap (ANHE *heap, int N, int k)
1654{
1655 ANHE he = heap [k];
1656 ANHE *E = heap + N + HEAP0;
1657
1658 for (;;)
1659 {
1660 ev_tstamp minat;
1661 ANHE *minpos;
1662 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1663
1664 /* find minimum child */
1665 if (expect_true (pos + DHEAP - 1 < E))
1666 {
1667 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1669 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1670 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1671 }
1672 else if (pos < E)
1673 {
1674 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1675 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1676 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1677 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1678 }
1679 else
1680 break;
1681
1682 if (ANHE_at (he) <= minat)
1683 break;
1684
1685 heap [k] = *minpos;
1686 ev_active (ANHE_w (*minpos)) = k;
1687
1688 k = minpos - heap;
1689 }
1690
1691 heap [k] = he;
1692 ev_active (ANHE_w (he)) = k;
1693}
1694
1695#else /* 4HEAP */
1696
1697#define HEAP0 1
1698#define HPARENT(k) ((k) >> 1)
1699#define UPHEAP_DONE(p,k) (!(p))
1700
1701/* away from the root */
1702inline_speed void
1703downheap (ANHE *heap, int N, int k)
1704{
1705 ANHE he = heap [k];
1706
1707 for (;;)
1708 {
1709 int c = k << 1;
1710
1711 if (c >= N + HEAP0)
1712 break;
1713
1714 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1715 ? 1 : 0;
1716
1717 if (ANHE_at (he) <= ANHE_at (heap [c]))
1718 break;
1719
1720 heap [k] = heap [c];
1721 ev_active (ANHE_w (heap [k])) = k;
1722
1723 k = c;
1724 }
1725
1726 heap [k] = he;
1727 ev_active (ANHE_w (he)) = k;
1728}
1729#endif
1730
1731/* towards the root */
1732inline_speed void
1733upheap (ANHE *heap, int k)
1734{
1735 ANHE he = heap [k];
1736
1737 for (;;)
1738 {
1739 int p = HPARENT (k);
1740
1741 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1742 break;
1743
1744 heap [k] = heap [p];
1745 ev_active (ANHE_w (heap [k])) = k;
1746 k = p;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752
1753/* move an element suitably so it is in a correct place */
1754inline_size void
1755adjustheap (ANHE *heap, int N, int k)
1756{
1757 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1758 upheap (heap, k);
1759 else
1760 downheap (heap, N, k);
1761}
1762
1763/* rebuild the heap: this function is used only once and executed rarely */
1764inline_size void
1765reheap (ANHE *heap, int N)
1766{
1767 int i;
1768
1769 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1770 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1771 for (i = 0; i < N; ++i)
1772 upheap (heap, i + HEAP0);
1773}
1774
1775/*****************************************************************************/
1776
1777/* associate signal watchers to a signal signal */
1778typedef struct
1779{
1780 EV_ATOMIC_T pending;
1781#if EV_MULTIPLICITY
1782 EV_P;
1783#endif
1784 WL head;
1785} ANSIG;
1786
1787static ANSIG signals [EV_NSIG - 1];
1788
1789/*****************************************************************************/
1790
1791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1792
802static void noinline 1793static void noinline ecb_cold
803evpipe_init (EV_P) 1794evpipe_init (EV_P)
804{ 1795{
805 if (!ev_is_active (&pipeev)) 1796 if (!ev_is_active (&pipe_w))
806 { 1797 {
1798# if EV_USE_EVENTFD
1799 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1800 if (evfd < 0 && errno == EINVAL)
1801 evfd = eventfd (0, 0);
1802
1803 if (evfd >= 0)
1804 {
1805 evpipe [0] = -1;
1806 fd_intern (evfd); /* doing it twice doesn't hurt */
1807 ev_io_set (&pipe_w, evfd, EV_READ);
1808 }
1809 else
1810# endif
1811 {
807 while (pipe (evpipe)) 1812 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1813 ev_syserr ("(libev) error creating signal/async pipe");
809 1814
810 fd_intern (evpipe [0]); 1815 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1816 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1817 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1818 }
1819
814 ev_io_start (EV_A_ &pipeev); 1820 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1821 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1822 }
817} 1823}
818 1824
819void inline_size 1825inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1826evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1827{
822 if (!*flag) 1828 if (expect_true (*flag))
1829 return;
1830
1831 *flag = 1;
1832
1833 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1834
1835 pipe_write_skipped = 1;
1836
1837 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1838
1839 if (pipe_write_wanted)
823 { 1840 {
1841 int old_errno;
1842
1843 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1844
824 int old_errno = errno; /* save errno because write might clobber it */ 1845 old_errno = errno; /* save errno because write will clobber it */
825 1846
826 *flag = 1; 1847#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 1848 if (evfd >= 0)
1849 {
1850 uint64_t counter = 1;
1851 write (evfd, &counter, sizeof (uint64_t));
1852 }
1853 else
1854#endif
1855 {
1856 /* win32 people keep sending patches that change this write() to send() */
1857 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1858 /* so when you think this write should be a send instead, please find out */
1859 /* where your send() is from - it's definitely not the microsoft send, and */
1860 /* tell me. thank you. */
1861 write (evpipe [1], &(evpipe [1]), 1);
1862 }
828 1863
829 errno = old_errno; 1864 errno = old_errno;
830 } 1865 }
831} 1866}
832 1867
1868/* called whenever the libev signal pipe */
1869/* got some events (signal, async) */
833static void 1870static void
834pipecb (EV_P_ ev_io *iow, int revents) 1871pipecb (EV_P_ ev_io *iow, int revents)
835{ 1872{
1873 int i;
1874
1875 if (revents & EV_READ)
836 { 1876 {
837 int dummy; 1877#if EV_USE_EVENTFD
1878 if (evfd >= 0)
1879 {
1880 uint64_t counter;
1881 read (evfd, &counter, sizeof (uint64_t));
1882 }
1883 else
1884#endif
1885 {
1886 char dummy;
1887 /* see discussion in evpipe_write when you think this read should be recv in win32 */
838 read (evpipe [0], &dummy, 1); 1888 read (evpipe [0], &dummy, 1);
1889 }
839 } 1890 }
840 1891
841 if (gotsig && ev_is_default_loop (EV_A)) 1892 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 1893
846 for (signum = signalmax; signum--; ) 1894#if EV_SIGNAL_ENABLE
847 if (signals [signum].gotsig) 1895 if (sig_pending)
1896 {
1897 sig_pending = 0;
1898
1899 for (i = EV_NSIG - 1; i--; )
1900 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 1901 ev_feed_signal_event (EV_A_ i + 1);
849 } 1902 }
1903#endif
850 1904
851#if EV_ASYNC_ENABLE 1905#if EV_ASYNC_ENABLE
852 if (gotasync) 1906 if (async_pending)
853 { 1907 {
854 int i; 1908 async_pending = 0;
855 gotasync = 0;
856 1909
857 for (i = asynccnt; i--; ) 1910 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 1911 if (asyncs [i]->sent)
859 { 1912 {
860 asyncs [i]->sent = 0; 1913 asyncs [i]->sent = 0;
864#endif 1917#endif
865} 1918}
866 1919
867/*****************************************************************************/ 1920/*****************************************************************************/
868 1921
1922void
1923ev_feed_signal (int signum)
1924{
1925#if EV_MULTIPLICITY
1926 EV_P = signals [signum - 1].loop;
1927
1928 if (!EV_A)
1929 return;
1930#endif
1931
1932 if (!ev_active (&pipe_w))
1933 return;
1934
1935 signals [signum - 1].pending = 1;
1936 evpipe_write (EV_A_ &sig_pending);
1937}
1938
869static void 1939static void
870sighandler (int signum) 1940ev_sighandler (int signum)
871{ 1941{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
876#if _WIN32 1942#ifdef _WIN32
877 signal (signum, sighandler); 1943 signal (signum, ev_sighandler);
878#endif 1944#endif
879 1945
880 signals [signum - 1].gotsig = 1; 1946 ev_feed_signal (signum);
881 evpipe_write (EV_A_ &gotsig);
882} 1947}
883 1948
884void noinline 1949void noinline
885ev_feed_signal_event (EV_P_ int signum) 1950ev_feed_signal_event (EV_P_ int signum)
886{ 1951{
887 WL w; 1952 WL w;
888 1953
1954 if (expect_false (signum <= 0 || signum > EV_NSIG))
1955 return;
1956
1957 --signum;
1958
889#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1960 /* it is permissible to try to feed a signal to the wrong loop */
891#endif 1961 /* or, likely more useful, feeding a signal nobody is waiting for */
892 1962
893 --signum; 1963 if (expect_false (signals [signum].loop != EV_A))
894
895 if (signum < 0 || signum >= signalmax)
896 return; 1964 return;
1965#endif
897 1966
898 signals [signum].gotsig = 0; 1967 signals [signum].pending = 0;
899 1968
900 for (w = signals [signum].head; w; w = w->next) 1969 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1970 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 1971}
903 1972
1973#if EV_USE_SIGNALFD
1974static void
1975sigfdcb (EV_P_ ev_io *iow, int revents)
1976{
1977 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1978
1979 for (;;)
1980 {
1981 ssize_t res = read (sigfd, si, sizeof (si));
1982
1983 /* not ISO-C, as res might be -1, but works with SuS */
1984 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1985 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1986
1987 if (res < (ssize_t)sizeof (si))
1988 break;
1989 }
1990}
1991#endif
1992
1993#endif
1994
904/*****************************************************************************/ 1995/*****************************************************************************/
905 1996
1997#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 1998static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 1999
910static ev_signal childev; 2000static ev_signal childev;
911 2001
912#ifndef WIFCONTINUED 2002#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2003# define WIFCONTINUED(status) 0
914#endif 2004#endif
915 2005
916void inline_speed 2006/* handle a single child status event */
2007inline_speed void
917child_reap (EV_P_ int chain, int pid, int status) 2008child_reap (EV_P_ int chain, int pid, int status)
918{ 2009{
919 ev_child *w; 2010 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2011 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2012
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2013 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2014 {
924 if ((w->pid == pid || !w->pid) 2015 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2016 && (!traced || (w->flags & 1)))
926 { 2017 {
927 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2018 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
934 2025
935#ifndef WCONTINUED 2026#ifndef WCONTINUED
936# define WCONTINUED 0 2027# define WCONTINUED 0
937#endif 2028#endif
938 2029
2030/* called on sigchld etc., calls waitpid */
939static void 2031static void
940childcb (EV_P_ ev_signal *sw, int revents) 2032childcb (EV_P_ ev_signal *sw, int revents)
941{ 2033{
942 int pid, status; 2034 int pid, status;
943 2035
951 /* make sure we are called again until all children have been reaped */ 2043 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2044 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2045 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2046
955 child_reap (EV_A_ pid, pid, status); 2047 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2048 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2049 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2050}
959 2051
960#endif 2052#endif
961 2053
962/*****************************************************************************/ 2054/*****************************************************************************/
963 2055
2056#if EV_USE_IOCP
2057# include "ev_iocp.c"
2058#endif
964#if EV_USE_PORT 2059#if EV_USE_PORT
965# include "ev_port.c" 2060# include "ev_port.c"
966#endif 2061#endif
967#if EV_USE_KQUEUE 2062#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2063# include "ev_kqueue.c"
975#endif 2070#endif
976#if EV_USE_SELECT 2071#if EV_USE_SELECT
977# include "ev_select.c" 2072# include "ev_select.c"
978#endif 2073#endif
979 2074
980int 2075int ecb_cold
981ev_version_major (void) 2076ev_version_major (void)
982{ 2077{
983 return EV_VERSION_MAJOR; 2078 return EV_VERSION_MAJOR;
984} 2079}
985 2080
986int 2081int ecb_cold
987ev_version_minor (void) 2082ev_version_minor (void)
988{ 2083{
989 return EV_VERSION_MINOR; 2084 return EV_VERSION_MINOR;
990} 2085}
991 2086
992/* return true if we are running with elevated privileges and should ignore env variables */ 2087/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2088int inline_size ecb_cold
994enable_secure (void) 2089enable_secure (void)
995{ 2090{
996#ifdef _WIN32 2091#ifdef _WIN32
997 return 0; 2092 return 0;
998#else 2093#else
999 return getuid () != geteuid () 2094 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2095 || getgid () != getegid ();
1001#endif 2096#endif
1002} 2097}
1003 2098
1004unsigned int 2099unsigned int ecb_cold
1005ev_supported_backends (void) 2100ev_supported_backends (void)
1006{ 2101{
1007 unsigned int flags = 0; 2102 unsigned int flags = 0;
1008 2103
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2104 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2108 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2109
1015 return flags; 2110 return flags;
1016} 2111}
1017 2112
1018unsigned int 2113unsigned int ecb_cold
1019ev_recommended_backends (void) 2114ev_recommended_backends (void)
1020{ 2115{
1021 unsigned int flags = ev_supported_backends (); 2116 unsigned int flags = ev_supported_backends ();
1022 2117
1023#ifndef __NetBSD__ 2118#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2119 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2120 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2121 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2122#endif
1028#ifdef __APPLE__ 2123#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2124 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2125 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2126 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2127#endif
2128#ifdef __FreeBSD__
2129 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2130#endif
1032 2131
1033 return flags; 2132 return flags;
1034} 2133}
1035 2134
1036unsigned int 2135unsigned int ecb_cold
1037ev_embeddable_backends (void) 2136ev_embeddable_backends (void)
1038{ 2137{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2138 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1040 2139
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2140 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */ 2141 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1043 flags &= ~EVBACKEND_EPOLL; 2142 flags &= ~EVBACKEND_EPOLL;
1044 2143
1045 return flags; 2144 return flags;
1046} 2145}
1047 2146
1048unsigned int 2147unsigned int
1049ev_backend (EV_P) 2148ev_backend (EV_P)
1050{ 2149{
1051 return backend; 2150 return backend;
1052} 2151}
1053 2152
2153#if EV_FEATURE_API
1054unsigned int 2154unsigned int
1055ev_loop_count (EV_P) 2155ev_iteration (EV_P)
1056{ 2156{
1057 return loop_count; 2157 return loop_count;
2158}
2159
2160unsigned int
2161ev_depth (EV_P)
2162{
2163 return loop_depth;
1058} 2164}
1059 2165
1060void 2166void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2167ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{ 2168{
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2173ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{ 2174{
1069 timeout_blocktime = interval; 2175 timeout_blocktime = interval;
1070} 2176}
1071 2177
2178void
2179ev_set_userdata (EV_P_ void *data)
2180{
2181 userdata = data;
2182}
2183
2184void *
2185ev_userdata (EV_P)
2186{
2187 return userdata;
2188}
2189
2190void
2191ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2192{
2193 invoke_cb = invoke_pending_cb;
2194}
2195
2196void
2197ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2198{
2199 release_cb = release;
2200 acquire_cb = acquire;
2201}
2202#endif
2203
2204/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2205static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2206loop_init (EV_P_ unsigned int flags)
1074{ 2207{
1075 if (!backend) 2208 if (!backend)
1076 { 2209 {
2210 origflags = flags;
2211
2212#if EV_USE_REALTIME
2213 if (!have_realtime)
2214 {
2215 struct timespec ts;
2216
2217 if (!clock_gettime (CLOCK_REALTIME, &ts))
2218 have_realtime = 1;
2219 }
2220#endif
2221
1077#if EV_USE_MONOTONIC 2222#if EV_USE_MONOTONIC
2223 if (!have_monotonic)
1078 { 2224 {
1079 struct timespec ts; 2225 struct timespec ts;
2226
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2227 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2228 have_monotonic = 1;
1082 } 2229 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2230#endif
1098 2231
1099 /* pid check not overridable via env */ 2232 /* pid check not overridable via env */
1100#ifndef _WIN32 2233#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2234 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2238 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2239 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2240 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2241 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2242
1110 if (!(flags & 0x0000ffffUL)) 2243 ev_rt_now = ev_time ();
2244 mn_now = get_clock ();
2245 now_floor = mn_now;
2246 rtmn_diff = ev_rt_now - mn_now;
2247#if EV_FEATURE_API
2248 invoke_cb = ev_invoke_pending;
2249#endif
2250
2251 io_blocktime = 0.;
2252 timeout_blocktime = 0.;
2253 backend = 0;
2254 backend_fd = -1;
2255 sig_pending = 0;
2256#if EV_ASYNC_ENABLE
2257 async_pending = 0;
2258#endif
2259 pipe_write_skipped = 0;
2260 pipe_write_wanted = 0;
2261#if EV_USE_INOTIFY
2262 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2263#endif
2264#if EV_USE_SIGNALFD
2265 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2266#endif
2267
2268 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2269 flags |= ev_recommended_backends ();
1112 2270
2271#if EV_USE_IOCP
2272 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2273#endif
1113#if EV_USE_PORT 2274#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2275 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2276#endif
1116#if EV_USE_KQUEUE 2277#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2278 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2285#endif
1125#if EV_USE_SELECT 2286#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2287 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2288#endif
1128 2289
2290 ev_prepare_init (&pending_w, pendingcb);
2291
2292#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2293 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2294 ev_set_priority (&pipe_w, EV_MAXPRI);
2295#endif
1131 } 2296 }
1132} 2297}
1133 2298
1134static void noinline 2299/* free up a loop structure */
2300void ecb_cold
1135loop_destroy (EV_P) 2301ev_loop_destroy (EV_P)
1136{ 2302{
1137 int i; 2303 int i;
1138 2304
2305#if EV_MULTIPLICITY
2306 /* mimic free (0) */
2307 if (!EV_A)
2308 return;
2309#endif
2310
2311#if EV_CLEANUP_ENABLE
2312 /* queue cleanup watchers (and execute them) */
2313 if (expect_false (cleanupcnt))
2314 {
2315 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2316 EV_INVOKE_PENDING;
2317 }
2318#endif
2319
2320#if EV_CHILD_ENABLE
2321 if (ev_is_active (&childev))
2322 {
2323 ev_ref (EV_A); /* child watcher */
2324 ev_signal_stop (EV_A_ &childev);
2325 }
2326#endif
2327
1139 if (ev_is_active (&pipeev)) 2328 if (ev_is_active (&pipe_w))
1140 { 2329 {
1141 ev_ref (EV_A); /* signal watcher */ 2330 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2331 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2332
1144 close (evpipe [0]); evpipe [0] = 0; 2333#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 2334 if (evfd >= 0)
2335 close (evfd);
2336#endif
2337
2338 if (evpipe [0] >= 0)
2339 {
2340 EV_WIN32_CLOSE_FD (evpipe [0]);
2341 EV_WIN32_CLOSE_FD (evpipe [1]);
2342 }
1146 } 2343 }
2344
2345#if EV_USE_SIGNALFD
2346 if (ev_is_active (&sigfd_w))
2347 close (sigfd);
2348#endif
1147 2349
1148#if EV_USE_INOTIFY 2350#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2351 if (fs_fd >= 0)
1150 close (fs_fd); 2352 close (fs_fd);
1151#endif 2353#endif
1152 2354
1153 if (backend_fd >= 0) 2355 if (backend_fd >= 0)
1154 close (backend_fd); 2356 close (backend_fd);
1155 2357
2358#if EV_USE_IOCP
2359 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2360#endif
1156#if EV_USE_PORT 2361#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2363#endif
1159#if EV_USE_KQUEUE 2364#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2380#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2381 array_free (idle, [i]);
1177#endif 2382#endif
1178 } 2383 }
1179 2384
1180 ev_free (anfds); anfdmax = 0; 2385 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2386
1182 /* have to use the microsoft-never-gets-it-right macro */ 2387 /* have to use the microsoft-never-gets-it-right macro */
2388 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2389 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2390 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2391#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2392 array_free (periodic, EMPTY);
1187#endif 2393#endif
1188#if EV_FORK_ENABLE 2394#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2395 array_free (fork, EMPTY);
1190#endif 2396#endif
2397#if EV_CLEANUP_ENABLE
2398 array_free (cleanup, EMPTY);
2399#endif
1191 array_free (prepare, EMPTY); 2400 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2401 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2402#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2403 array_free (async, EMPTY);
1195#endif 2404#endif
1196 2405
1197 backend = 0; 2406 backend = 0;
1198}
1199 2407
2408#if EV_MULTIPLICITY
2409 if (ev_is_default_loop (EV_A))
2410#endif
2411 ev_default_loop_ptr = 0;
2412#if EV_MULTIPLICITY
2413 else
2414 ev_free (EV_A);
2415#endif
2416}
2417
2418#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2419inline_size void infy_fork (EV_P);
2420#endif
1201 2421
1202void inline_size 2422inline_size void
1203loop_fork (EV_P) 2423loop_fork (EV_P)
1204{ 2424{
1205#if EV_USE_PORT 2425#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2426 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2427#endif
1213#endif 2433#endif
1214#if EV_USE_INOTIFY 2434#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2435 infy_fork (EV_A);
1216#endif 2436#endif
1217 2437
1218 if (ev_is_active (&pipeev)) 2438 if (ev_is_active (&pipe_w))
1219 { 2439 {
1220 /* this "locks" the handlers against writing to the pipe */ 2440 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1226 2441
1227 ev_ref (EV_A); 2442 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 2443 ev_io_stop (EV_A_ &pipe_w);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231 2444
2445#if EV_USE_EVENTFD
2446 if (evfd >= 0)
2447 close (evfd);
2448#endif
2449
2450 if (evpipe [0] >= 0)
2451 {
2452 EV_WIN32_CLOSE_FD (evpipe [0]);
2453 EV_WIN32_CLOSE_FD (evpipe [1]);
2454 }
2455
2456#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1232 evpipe_init (EV_A); 2457 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 2458 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 2459 pipecb (EV_A_ &pipe_w, EV_READ);
2460#endif
1235 } 2461 }
1236 2462
1237 postfork = 0; 2463 postfork = 0;
1238} 2464}
1239 2465
1240#if EV_MULTIPLICITY 2466#if EV_MULTIPLICITY
2467
1241struct ev_loop * 2468struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags) 2469ev_loop_new (unsigned int flags)
1243{ 2470{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2471 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 2472
1246 memset (loop, 0, sizeof (struct ev_loop)); 2473 memset (EV_A, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags); 2474 loop_init (EV_A_ flags);
1249 2475
1250 if (ev_backend (EV_A)) 2476 if (ev_backend (EV_A))
1251 return loop; 2477 return EV_A;
1252 2478
2479 ev_free (EV_A);
1253 return 0; 2480 return 0;
1254} 2481}
1255 2482
1256void 2483#endif /* multiplicity */
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262 2484
1263void 2485#if EV_VERIFY
1264ev_loop_fork (EV_P) 2486static void noinline ecb_cold
2487verify_watcher (EV_P_ W w)
1265{ 2488{
1266 postfork = 1; /* must be in line with ev_default_fork */ 2489 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1267}
1268 2490
2491 if (w->pending)
2492 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2493}
2494
2495static void noinline ecb_cold
2496verify_heap (EV_P_ ANHE *heap, int N)
2497{
2498 int i;
2499
2500 for (i = HEAP0; i < N + HEAP0; ++i)
2501 {
2502 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2503 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2504 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2505
2506 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2507 }
2508}
2509
2510static void noinline ecb_cold
2511array_verify (EV_P_ W *ws, int cnt)
2512{
2513 while (cnt--)
2514 {
2515 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2516 verify_watcher (EV_A_ ws [cnt]);
2517 }
2518}
2519#endif
2520
2521#if EV_FEATURE_API
2522void ecb_cold
2523ev_verify (EV_P)
2524{
2525#if EV_VERIFY
2526 int i;
2527 WL w;
2528
2529 assert (activecnt >= -1);
2530
2531 assert (fdchangemax >= fdchangecnt);
2532 for (i = 0; i < fdchangecnt; ++i)
2533 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2534
2535 assert (anfdmax >= 0);
2536 for (i = 0; i < anfdmax; ++i)
2537 for (w = anfds [i].head; w; w = w->next)
2538 {
2539 verify_watcher (EV_A_ (W)w);
2540 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2541 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2542 }
2543
2544 assert (timermax >= timercnt);
2545 verify_heap (EV_A_ timers, timercnt);
2546
2547#if EV_PERIODIC_ENABLE
2548 assert (periodicmax >= periodiccnt);
2549 verify_heap (EV_A_ periodics, periodiccnt);
2550#endif
2551
2552 for (i = NUMPRI; i--; )
2553 {
2554 assert (pendingmax [i] >= pendingcnt [i]);
2555#if EV_IDLE_ENABLE
2556 assert (idleall >= 0);
2557 assert (idlemax [i] >= idlecnt [i]);
2558 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2559#endif
2560 }
2561
2562#if EV_FORK_ENABLE
2563 assert (forkmax >= forkcnt);
2564 array_verify (EV_A_ (W *)forks, forkcnt);
2565#endif
2566
2567#if EV_CLEANUP_ENABLE
2568 assert (cleanupmax >= cleanupcnt);
2569 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2570#endif
2571
2572#if EV_ASYNC_ENABLE
2573 assert (asyncmax >= asynccnt);
2574 array_verify (EV_A_ (W *)asyncs, asynccnt);
2575#endif
2576
2577#if EV_PREPARE_ENABLE
2578 assert (preparemax >= preparecnt);
2579 array_verify (EV_A_ (W *)prepares, preparecnt);
2580#endif
2581
2582#if EV_CHECK_ENABLE
2583 assert (checkmax >= checkcnt);
2584 array_verify (EV_A_ (W *)checks, checkcnt);
2585#endif
2586
2587# if 0
2588#if EV_CHILD_ENABLE
2589 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2590 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2591#endif
2592# endif
2593#endif
2594}
1269#endif 2595#endif
1270 2596
1271#if EV_MULTIPLICITY 2597#if EV_MULTIPLICITY
1272struct ev_loop * 2598struct ev_loop * ecb_cold
1273ev_default_loop_init (unsigned int flags)
1274#else 2599#else
1275int 2600int
2601#endif
1276ev_default_loop (unsigned int flags) 2602ev_default_loop (unsigned int flags)
1277#endif
1278{ 2603{
1279 if (!ev_default_loop_ptr) 2604 if (!ev_default_loop_ptr)
1280 { 2605 {
1281#if EV_MULTIPLICITY 2606#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2607 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 2608#else
1284 ev_default_loop_ptr = 1; 2609 ev_default_loop_ptr = 1;
1285#endif 2610#endif
1286 2611
1287 loop_init (EV_A_ flags); 2612 loop_init (EV_A_ flags);
1288 2613
1289 if (ev_backend (EV_A)) 2614 if (ev_backend (EV_A))
1290 { 2615 {
1291#ifndef _WIN32 2616#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 2617 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 2618 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 2619 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2620 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 2621#endif
1301 2626
1302 return ev_default_loop_ptr; 2627 return ev_default_loop_ptr;
1303} 2628}
1304 2629
1305void 2630void
1306ev_default_destroy (void) 2631ev_loop_fork (EV_P)
1307{ 2632{
1308#if EV_MULTIPLICITY
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */ 2633 postfork = 1; /* must be in line with ev_default_fork */
1329} 2634}
1330 2635
1331/*****************************************************************************/ 2636/*****************************************************************************/
1332 2637
1333void 2638void
1334ev_invoke (EV_P_ void *w, int revents) 2639ev_invoke (EV_P_ void *w, int revents)
1335{ 2640{
1336 EV_CB_INVOKE ((W)w, revents); 2641 EV_CB_INVOKE ((W)w, revents);
1337} 2642}
1338 2643
1339void inline_speed 2644unsigned int
1340call_pending (EV_P) 2645ev_pending_count (EV_P)
2646{
2647 int pri;
2648 unsigned int count = 0;
2649
2650 for (pri = NUMPRI; pri--; )
2651 count += pendingcnt [pri];
2652
2653 return count;
2654}
2655
2656void noinline
2657ev_invoke_pending (EV_P)
1341{ 2658{
1342 int pri; 2659 int pri;
1343 2660
1344 for (pri = NUMPRI; pri--; ) 2661 for (pri = NUMPRI; pri--; )
1345 while (pendingcnt [pri]) 2662 while (pendingcnt [pri])
1346 { 2663 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2664 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348 2665
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0; 2666 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 2667 EV_CB_INVOKE (p->w, p->events);
1355 } 2668 EV_FREQUENT_CHECK;
1356 } 2669 }
1357} 2670}
1358 2671
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 2672#if EV_IDLE_ENABLE
1440void inline_size 2673/* make idle watchers pending. this handles the "call-idle */
2674/* only when higher priorities are idle" logic */
2675inline_size void
1441idle_reify (EV_P) 2676idle_reify (EV_P)
1442{ 2677{
1443 if (expect_false (idleall)) 2678 if (expect_false (idleall))
1444 { 2679 {
1445 int pri; 2680 int pri;
1457 } 2692 }
1458 } 2693 }
1459} 2694}
1460#endif 2695#endif
1461 2696
1462void inline_speed 2697/* make timers pending */
2698inline_size void
2699timers_reify (EV_P)
2700{
2701 EV_FREQUENT_CHECK;
2702
2703 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2704 {
2705 do
2706 {
2707 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2708
2709 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2710
2711 /* first reschedule or stop timer */
2712 if (w->repeat)
2713 {
2714 ev_at (w) += w->repeat;
2715 if (ev_at (w) < mn_now)
2716 ev_at (w) = mn_now;
2717
2718 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2719
2720 ANHE_at_cache (timers [HEAP0]);
2721 downheap (timers, timercnt, HEAP0);
2722 }
2723 else
2724 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2725
2726 EV_FREQUENT_CHECK;
2727 feed_reverse (EV_A_ (W)w);
2728 }
2729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2730
2731 feed_reverse_done (EV_A_ EV_TIMER);
2732 }
2733}
2734
2735#if EV_PERIODIC_ENABLE
2736
2737static void noinline
2738periodic_recalc (EV_P_ ev_periodic *w)
2739{
2740 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2741 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2742
2743 /* the above almost always errs on the low side */
2744 while (at <= ev_rt_now)
2745 {
2746 ev_tstamp nat = at + w->interval;
2747
2748 /* when resolution fails us, we use ev_rt_now */
2749 if (expect_false (nat == at))
2750 {
2751 at = ev_rt_now;
2752 break;
2753 }
2754
2755 at = nat;
2756 }
2757
2758 ev_at (w) = at;
2759}
2760
2761/* make periodics pending */
2762inline_size void
2763periodics_reify (EV_P)
2764{
2765 EV_FREQUENT_CHECK;
2766
2767 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2768 {
2769 int feed_count = 0;
2770
2771 do
2772 {
2773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2774
2775 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2776
2777 /* first reschedule or stop timer */
2778 if (w->reschedule_cb)
2779 {
2780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2781
2782 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2783
2784 ANHE_at_cache (periodics [HEAP0]);
2785 downheap (periodics, periodiccnt, HEAP0);
2786 }
2787 else if (w->interval)
2788 {
2789 periodic_recalc (EV_A_ w);
2790 ANHE_at_cache (periodics [HEAP0]);
2791 downheap (periodics, periodiccnt, HEAP0);
2792 }
2793 else
2794 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2795
2796 EV_FREQUENT_CHECK;
2797 feed_reverse (EV_A_ (W)w);
2798 }
2799 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2800
2801 feed_reverse_done (EV_A_ EV_PERIODIC);
2802 }
2803}
2804
2805/* simply recalculate all periodics */
2806/* TODO: maybe ensure that at least one event happens when jumping forward? */
2807static void noinline ecb_cold
2808periodics_reschedule (EV_P)
2809{
2810 int i;
2811
2812 /* adjust periodics after time jump */
2813 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2814 {
2815 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2816
2817 if (w->reschedule_cb)
2818 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2819 else if (w->interval)
2820 periodic_recalc (EV_A_ w);
2821
2822 ANHE_at_cache (periodics [i]);
2823 }
2824
2825 reheap (periodics, periodiccnt);
2826}
2827#endif
2828
2829/* adjust all timers by a given offset */
2830static void noinline ecb_cold
2831timers_reschedule (EV_P_ ev_tstamp adjust)
2832{
2833 int i;
2834
2835 for (i = 0; i < timercnt; ++i)
2836 {
2837 ANHE *he = timers + i + HEAP0;
2838 ANHE_w (*he)->at += adjust;
2839 ANHE_at_cache (*he);
2840 }
2841}
2842
2843/* fetch new monotonic and realtime times from the kernel */
2844/* also detect if there was a timejump, and act accordingly */
2845inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 2846time_update (EV_P_ ev_tstamp max_block)
1464{ 2847{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 2848#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 2849 if (expect_true (have_monotonic))
1469 { 2850 {
2851 int i;
1470 ev_tstamp odiff = rtmn_diff; 2852 ev_tstamp odiff = rtmn_diff;
1471 2853
1472 mn_now = get_clock (); 2854 mn_now = get_clock ();
1473 2855
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2856 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 2872 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 2873 * in the unlikely event of having been preempted here.
1492 */ 2874 */
1493 for (i = 4; --i; ) 2875 for (i = 4; --i; )
1494 { 2876 {
2877 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 2878 rtmn_diff = ev_rt_now - mn_now;
1496 2879
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2880 diff = odiff - rtmn_diff;
2881
2882 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2883 return; /* all is well */
1499 2884
1500 ev_rt_now = ev_time (); 2885 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2886 mn_now = get_clock ();
1502 now_floor = mn_now; 2887 now_floor = mn_now;
1503 } 2888 }
1504 2889
2890 /* no timer adjustment, as the monotonic clock doesn't jump */
2891 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2892# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2893 periodics_reschedule (EV_A);
1507# endif 2894# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2895 }
1511 else 2896 else
1512#endif 2897#endif
1513 { 2898 {
1514 ev_rt_now = ev_time (); 2899 ev_rt_now = ev_time ();
1515 2900
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2901 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 2902 {
2903 /* adjust timers. this is easy, as the offset is the same for all of them */
2904 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 2905#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 2906 periodics_reschedule (EV_A);
1520#endif 2907#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 2908 }
1525 2909
1526 mn_now = ev_rt_now; 2910 mn_now = ev_rt_now;
1527 } 2911 }
1528} 2912}
1529 2913
1530void 2914void
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 2915ev_run (EV_P_ int flags)
1546{ 2916{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2917#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 2918 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 2919#endif
1550 2920
2921 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2922
2923 loop_done = EVBREAK_CANCEL;
2924
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2925 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 2926
1553 do 2927 do
1554 { 2928 {
2929#if EV_VERIFY >= 2
2930 ev_verify (EV_A);
2931#endif
2932
1555#ifndef _WIN32 2933#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 2934 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 2935 if (expect_false (getpid () != curpid))
1558 { 2936 {
1559 curpid = getpid (); 2937 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 2943 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 2944 if (expect_false (postfork))
1567 if (forkcnt) 2945 if (forkcnt)
1568 { 2946 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2947 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 2948 EV_INVOKE_PENDING;
1571 } 2949 }
1572#endif 2950#endif
1573 2951
2952#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 2953 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 2954 if (expect_false (preparecnt))
1576 { 2955 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2956 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 2957 EV_INVOKE_PENDING;
1579 } 2958 }
2959#endif
1580 2960
1581 if (expect_false (!activecnt)) 2961 if (expect_false (loop_done))
1582 break; 2962 break;
1583 2963
1584 /* we might have forked, so reify kernel state if necessary */ 2964 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 2965 if (expect_false (postfork))
1586 loop_fork (EV_A); 2966 loop_fork (EV_A);
1591 /* calculate blocking time */ 2971 /* calculate blocking time */
1592 { 2972 {
1593 ev_tstamp waittime = 0.; 2973 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 2974 ev_tstamp sleeptime = 0.;
1595 2975
2976 /* remember old timestamp for io_blocktime calculation */
2977 ev_tstamp prev_mn_now = mn_now;
2978
2979 /* update time to cancel out callback processing overhead */
2980 time_update (EV_A_ 1e100);
2981
2982 /* from now on, we want a pipe-wake-up */
2983 pipe_write_wanted = 1;
2984
2985 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2986
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2987 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 2988 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 2989 waittime = MAX_BLOCKTIME;
1602 2990
1603 if (timercnt) 2991 if (timercnt)
1604 { 2992 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2993 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 2994 if (waittime > to) waittime = to;
1607 } 2995 }
1608 2996
1609#if EV_PERIODIC_ENABLE 2997#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 2998 if (periodiccnt)
1611 { 2999 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3000 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 3001 if (waittime > to) waittime = to;
1614 } 3002 }
1615#endif 3003#endif
1616 3004
3005 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 3006 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 3007 waittime = timeout_blocktime;
1619 3008
1620 sleeptime = waittime - backend_fudge; 3009 /* at this point, we NEED to wait, so we have to ensure */
3010 /* to pass a minimum nonzero value to the backend */
3011 if (expect_false (waittime < backend_mintime))
3012 waittime = backend_mintime;
1621 3013
3014 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 3015 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 3016 {
3017 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3018
3019 if (sleeptime > waittime - backend_mintime)
3020 sleeptime = waittime - backend_mintime;
3021
3022 if (expect_true (sleeptime > 0.))
3023 {
1627 ev_sleep (sleeptime); 3024 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 3025 waittime -= sleeptime;
3026 }
1629 } 3027 }
1630 } 3028 }
1631 3029
3030#if EV_FEATURE_API
1632 ++loop_count; 3031 ++loop_count;
3032#endif
3033 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 3034 backend_poll (EV_A_ waittime);
3035 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3036
3037 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3038
3039 if (pipe_write_skipped)
3040 {
3041 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3042 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3043 }
3044
1634 3045
1635 /* update ev_rt_now, do magic */ 3046 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 3047 time_update (EV_A_ waittime + sleeptime);
1637 } 3048 }
1638 3049
1645#if EV_IDLE_ENABLE 3056#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 3057 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 3058 idle_reify (EV_A);
1648#endif 3059#endif
1649 3060
3061#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 3062 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 3063 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3064 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3065#endif
1653 3066
1654 call_pending (EV_A); 3067 EV_INVOKE_PENDING;
1655
1656 } 3068 }
1657 while (expect_true (activecnt && !loop_done)); 3069 while (expect_true (
3070 activecnt
3071 && !loop_done
3072 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3073 ));
1658 3074
1659 if (loop_done == EVUNLOOP_ONE) 3075 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 3076 loop_done = EVBREAK_CANCEL;
3077
3078#if EV_FEATURE_API
3079 --loop_depth;
3080#endif
1661} 3081}
1662 3082
1663void 3083void
1664ev_unloop (EV_P_ int how) 3084ev_break (EV_P_ int how)
1665{ 3085{
1666 loop_done = how; 3086 loop_done = how;
1667} 3087}
1668 3088
3089void
3090ev_ref (EV_P)
3091{
3092 ++activecnt;
3093}
3094
3095void
3096ev_unref (EV_P)
3097{
3098 --activecnt;
3099}
3100
3101void
3102ev_now_update (EV_P)
3103{
3104 time_update (EV_A_ 1e100);
3105}
3106
3107void
3108ev_suspend (EV_P)
3109{
3110 ev_now_update (EV_A);
3111}
3112
3113void
3114ev_resume (EV_P)
3115{
3116 ev_tstamp mn_prev = mn_now;
3117
3118 ev_now_update (EV_A);
3119 timers_reschedule (EV_A_ mn_now - mn_prev);
3120#if EV_PERIODIC_ENABLE
3121 /* TODO: really do this? */
3122 periodics_reschedule (EV_A);
3123#endif
3124}
3125
1669/*****************************************************************************/ 3126/*****************************************************************************/
3127/* singly-linked list management, used when the expected list length is short */
1670 3128
1671void inline_size 3129inline_size void
1672wlist_add (WL *head, WL elem) 3130wlist_add (WL *head, WL elem)
1673{ 3131{
1674 elem->next = *head; 3132 elem->next = *head;
1675 *head = elem; 3133 *head = elem;
1676} 3134}
1677 3135
1678void inline_size 3136inline_size void
1679wlist_del (WL *head, WL elem) 3137wlist_del (WL *head, WL elem)
1680{ 3138{
1681 while (*head) 3139 while (*head)
1682 { 3140 {
1683 if (*head == elem) 3141 if (expect_true (*head == elem))
1684 { 3142 {
1685 *head = elem->next; 3143 *head = elem->next;
1686 return; 3144 break;
1687 } 3145 }
1688 3146
1689 head = &(*head)->next; 3147 head = &(*head)->next;
1690 } 3148 }
1691} 3149}
1692 3150
1693void inline_speed 3151/* internal, faster, version of ev_clear_pending */
3152inline_speed void
1694clear_pending (EV_P_ W w) 3153clear_pending (EV_P_ W w)
1695{ 3154{
1696 if (w->pending) 3155 if (w->pending)
1697 { 3156 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3157 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 3158 w->pending = 0;
1700 } 3159 }
1701} 3160}
1702 3161
1703int 3162int
1707 int pending = w_->pending; 3166 int pending = w_->pending;
1708 3167
1709 if (expect_true (pending)) 3168 if (expect_true (pending))
1710 { 3169 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3170 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3171 p->w = (W)&pending_w;
1712 w_->pending = 0; 3172 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 3173 return p->events;
1715 } 3174 }
1716 else 3175 else
1717 return 0; 3176 return 0;
1718} 3177}
1719 3178
1720void inline_size 3179inline_size void
1721pri_adjust (EV_P_ W w) 3180pri_adjust (EV_P_ W w)
1722{ 3181{
1723 int pri = w->priority; 3182 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3183 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3184 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 3185 ev_set_priority (w, pri);
1727} 3186}
1728 3187
1729void inline_speed 3188inline_speed void
1730ev_start (EV_P_ W w, int active) 3189ev_start (EV_P_ W w, int active)
1731{ 3190{
1732 pri_adjust (EV_A_ w); 3191 pri_adjust (EV_A_ w);
1733 w->active = active; 3192 w->active = active;
1734 ev_ref (EV_A); 3193 ev_ref (EV_A);
1735} 3194}
1736 3195
1737void inline_size 3196inline_size void
1738ev_stop (EV_P_ W w) 3197ev_stop (EV_P_ W w)
1739{ 3198{
1740 ev_unref (EV_A); 3199 ev_unref (EV_A);
1741 w->active = 0; 3200 w->active = 0;
1742} 3201}
1749 int fd = w->fd; 3208 int fd = w->fd;
1750 3209
1751 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
1752 return; 3211 return;
1753 3212
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 3213 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3214 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3215
3216 EV_FREQUENT_CHECK;
1755 3217
1756 ev_start (EV_A_ (W)w, 1); 3218 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3219 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 3220 wlist_add (&anfds[fd].head, (WL)w);
1759 3221
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3222 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 3223 w->events &= ~EV__IOFDSET;
3224
3225 EV_FREQUENT_CHECK;
1762} 3226}
1763 3227
1764void noinline 3228void noinline
1765ev_io_stop (EV_P_ ev_io *w) 3229ev_io_stop (EV_P_ ev_io *w)
1766{ 3230{
1767 clear_pending (EV_A_ (W)w); 3231 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 3232 if (expect_false (!ev_is_active (w)))
1769 return; 3233 return;
1770 3234
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3235 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3236
3237 EV_FREQUENT_CHECK;
1772 3238
1773 wlist_del (&anfds[w->fd].head, (WL)w); 3239 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
1775 3241
1776 fd_change (EV_A_ w->fd, 1); 3242 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3243
3244 EV_FREQUENT_CHECK;
1777} 3245}
1778 3246
1779void noinline 3247void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 3248ev_timer_start (EV_P_ ev_timer *w)
1781{ 3249{
1782 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
1783 return; 3251 return;
1784 3252
1785 ((WT)w)->at += mn_now; 3253 ev_at (w) += mn_now;
1786 3254
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3255 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 3256
3257 EV_FREQUENT_CHECK;
3258
3259 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 3260 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3261 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 3262 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 3263 ANHE_at_cache (timers [ev_active (w)]);
3264 upheap (timers, ev_active (w));
1793 3265
3266 EV_FREQUENT_CHECK;
3267
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3268 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 3269}
1796 3270
1797void noinline 3271void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 3272ev_timer_stop (EV_P_ ev_timer *w)
1799{ 3273{
1800 clear_pending (EV_A_ (W)w); 3274 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3275 if (expect_false (!ev_is_active (w)))
1802 return; 3276 return;
1803 3277
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3278 EV_FREQUENT_CHECK;
1805 3279
1806 { 3280 {
1807 int active = ((W)w)->active; 3281 int active = ev_active (w);
1808 3282
3283 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3284
3285 --timercnt;
3286
1809 if (expect_true (--active < --timercnt)) 3287 if (expect_true (active < timercnt + HEAP0))
1810 { 3288 {
1811 timers [active] = timers [timercnt]; 3289 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 3290 adjustheap (timers, timercnt, active);
1813 } 3291 }
1814 } 3292 }
1815 3293
1816 ((WT)w)->at -= mn_now; 3294 ev_at (w) -= mn_now;
1817 3295
1818 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
3297
3298 EV_FREQUENT_CHECK;
1819} 3299}
1820 3300
1821void noinline 3301void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 3302ev_timer_again (EV_P_ ev_timer *w)
1823{ 3303{
3304 EV_FREQUENT_CHECK;
3305
3306 clear_pending (EV_A_ (W)w);
3307
1824 if (ev_is_active (w)) 3308 if (ev_is_active (w))
1825 { 3309 {
1826 if (w->repeat) 3310 if (w->repeat)
1827 { 3311 {
1828 ((WT)w)->at = mn_now + w->repeat; 3312 ev_at (w) = mn_now + w->repeat;
3313 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 3314 adjustheap (timers, timercnt, ev_active (w));
1830 } 3315 }
1831 else 3316 else
1832 ev_timer_stop (EV_A_ w); 3317 ev_timer_stop (EV_A_ w);
1833 } 3318 }
1834 else if (w->repeat) 3319 else if (w->repeat)
1835 { 3320 {
1836 w->at = w->repeat; 3321 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 3322 ev_timer_start (EV_A_ w);
1838 } 3323 }
3324
3325 EV_FREQUENT_CHECK;
3326}
3327
3328ev_tstamp
3329ev_timer_remaining (EV_P_ ev_timer *w)
3330{
3331 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 3332}
1840 3333
1841#if EV_PERIODIC_ENABLE 3334#if EV_PERIODIC_ENABLE
1842void noinline 3335void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 3336ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 3337{
1845 if (expect_false (ev_is_active (w))) 3338 if (expect_false (ev_is_active (w)))
1846 return; 3339 return;
1847 3340
1848 if (w->reschedule_cb) 3341 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3342 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 3343 else if (w->interval)
1851 { 3344 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3345 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 3346 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 3347 }
1856 else 3348 else
1857 ((WT)w)->at = w->offset; 3349 ev_at (w) = w->offset;
1858 3350
3351 EV_FREQUENT_CHECK;
3352
3353 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 3354 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3355 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 3356 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 3357 ANHE_at_cache (periodics [ev_active (w)]);
3358 upheap (periodics, ev_active (w));
1863 3359
3360 EV_FREQUENT_CHECK;
3361
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3362 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 3363}
1866 3364
1867void noinline 3365void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 3366ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 3367{
1870 clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
1872 return; 3370 return;
1873 3371
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3372 EV_FREQUENT_CHECK;
1875 3373
1876 { 3374 {
1877 int active = ((W)w)->active; 3375 int active = ev_active (w);
1878 3376
3377 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3378
3379 --periodiccnt;
3380
1879 if (expect_true (--active < --periodiccnt)) 3381 if (expect_true (active < periodiccnt + HEAP0))
1880 { 3382 {
1881 periodics [active] = periodics [periodiccnt]; 3383 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 3384 adjustheap (periodics, periodiccnt, active);
1883 } 3385 }
1884 } 3386 }
1885 3387
1886 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
1887} 3391}
1888 3392
1889void noinline 3393void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 3394ev_periodic_again (EV_P_ ev_periodic *w)
1891{ 3395{
1897 3401
1898#ifndef SA_RESTART 3402#ifndef SA_RESTART
1899# define SA_RESTART 0 3403# define SA_RESTART 0
1900#endif 3404#endif
1901 3405
3406#if EV_SIGNAL_ENABLE
3407
1902void noinline 3408void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 3409ev_signal_start (EV_P_ ev_signal *w)
1904{ 3410{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 3411 if (expect_false (ev_is_active (w)))
1909 return; 3412 return;
1910 3413
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3414 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 3415
1913 evpipe_init (EV_A); 3416#if EV_MULTIPLICITY
3417 assert (("libev: a signal must not be attached to two different loops",
3418 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 3419
3420 signals [w->signum - 1].loop = EV_A;
3421#endif
3422
3423 EV_FREQUENT_CHECK;
3424
3425#if EV_USE_SIGNALFD
3426 if (sigfd == -2)
1915 { 3427 {
1916#ifndef _WIN32 3428 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 3429 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 3430 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 3431
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3432 if (sigfd >= 0)
3433 {
3434 fd_intern (sigfd); /* doing it twice will not hurt */
1923 3435
1924#ifndef _WIN32 3436 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 3437
1926#endif 3438 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3439 ev_set_priority (&sigfd_w, EV_MAXPRI);
3440 ev_io_start (EV_A_ &sigfd_w);
3441 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3442 }
1927 } 3443 }
3444
3445 if (sigfd >= 0)
3446 {
3447 /* TODO: check .head */
3448 sigaddset (&sigfd_set, w->signum);
3449 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3450
3451 signalfd (sigfd, &sigfd_set, 0);
3452 }
3453#endif
1928 3454
1929 ev_start (EV_A_ (W)w, 1); 3455 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 3456 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 3457
1932 if (!((WL)w)->next) 3458 if (!((WL)w)->next)
3459# if EV_USE_SIGNALFD
3460 if (sigfd < 0) /*TODO*/
3461# endif
1933 { 3462 {
1934#if _WIN32 3463# ifdef _WIN32
3464 evpipe_init (EV_A);
3465
1935 signal (w->signum, sighandler); 3466 signal (w->signum, ev_sighandler);
1936#else 3467# else
1937 struct sigaction sa; 3468 struct sigaction sa;
3469
3470 evpipe_init (EV_A);
3471
1938 sa.sa_handler = sighandler; 3472 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 3473 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3474 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 3475 sigaction (w->signum, &sa, 0);
3476
3477 if (origflags & EVFLAG_NOSIGMASK)
3478 {
3479 sigemptyset (&sa.sa_mask);
3480 sigaddset (&sa.sa_mask, w->signum);
3481 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3482 }
1942#endif 3483#endif
1943 } 3484 }
3485
3486 EV_FREQUENT_CHECK;
1944} 3487}
1945 3488
1946void noinline 3489void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 3490ev_signal_stop (EV_P_ ev_signal *w)
1948{ 3491{
1949 clear_pending (EV_A_ (W)w); 3492 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 3493 if (expect_false (!ev_is_active (w)))
1951 return; 3494 return;
1952 3495
3496 EV_FREQUENT_CHECK;
3497
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 3498 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
1955 3500
1956 if (!signals [w->signum - 1].head) 3501 if (!signals [w->signum - 1].head)
3502 {
3503#if EV_MULTIPLICITY
3504 signals [w->signum - 1].loop = 0; /* unattach from signal */
3505#endif
3506#if EV_USE_SIGNALFD
3507 if (sigfd >= 0)
3508 {
3509 sigset_t ss;
3510
3511 sigemptyset (&ss);
3512 sigaddset (&ss, w->signum);
3513 sigdelset (&sigfd_set, w->signum);
3514
3515 signalfd (sigfd, &sigfd_set, 0);
3516 sigprocmask (SIG_UNBLOCK, &ss, 0);
3517 }
3518 else
3519#endif
1957 signal (w->signum, SIG_DFL); 3520 signal (w->signum, SIG_DFL);
3521 }
3522
3523 EV_FREQUENT_CHECK;
1958} 3524}
3525
3526#endif
3527
3528#if EV_CHILD_ENABLE
1959 3529
1960void 3530void
1961ev_child_start (EV_P_ ev_child *w) 3531ev_child_start (EV_P_ ev_child *w)
1962{ 3532{
1963#if EV_MULTIPLICITY 3533#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 3535#endif
1966 if (expect_false (ev_is_active (w))) 3536 if (expect_false (ev_is_active (w)))
1967 return; 3537 return;
1968 3538
3539 EV_FREQUENT_CHECK;
3540
1969 ev_start (EV_A_ (W)w, 1); 3541 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3542 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3543
3544 EV_FREQUENT_CHECK;
1971} 3545}
1972 3546
1973void 3547void
1974ev_child_stop (EV_P_ ev_child *w) 3548ev_child_stop (EV_P_ ev_child *w)
1975{ 3549{
1976 clear_pending (EV_A_ (W)w); 3550 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3551 if (expect_false (!ev_is_active (w)))
1978 return; 3552 return;
1979 3553
3554 EV_FREQUENT_CHECK;
3555
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3556 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 3557 ev_stop (EV_A_ (W)w);
3558
3559 EV_FREQUENT_CHECK;
1982} 3560}
3561
3562#endif
1983 3563
1984#if EV_STAT_ENABLE 3564#if EV_STAT_ENABLE
1985 3565
1986# ifdef _WIN32 3566# ifdef _WIN32
1987# undef lstat 3567# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 3568# define lstat(a,b) _stati64 (a,b)
1989# endif 3569# endif
1990 3570
1991#define DEF_STAT_INTERVAL 5.0074891 3571#define DEF_STAT_INTERVAL 5.0074891
3572#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 3573#define MIN_STAT_INTERVAL 0.1074891
1993 3574
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3575static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 3576
1996#if EV_USE_INOTIFY 3577#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 3578
3579/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3580# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 3581
1999static void noinline 3582static void noinline
2000infy_add (EV_P_ ev_stat *w) 3583infy_add (EV_P_ ev_stat *w)
2001{ 3584{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3585 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 3586
2004 if (w->wd < 0) 3587 if (w->wd >= 0)
3588 {
3589 struct statfs sfs;
3590
3591 /* now local changes will be tracked by inotify, but remote changes won't */
3592 /* unless the filesystem is known to be local, we therefore still poll */
3593 /* also do poll on <2.6.25, but with normal frequency */
3594
3595 if (!fs_2625)
3596 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3597 else if (!statfs (w->path, &sfs)
3598 && (sfs.f_type == 0x1373 /* devfs */
3599 || sfs.f_type == 0xEF53 /* ext2/3 */
3600 || sfs.f_type == 0x3153464a /* jfs */
3601 || sfs.f_type == 0x52654973 /* reiser3 */
3602 || sfs.f_type == 0x01021994 /* tempfs */
3603 || sfs.f_type == 0x58465342 /* xfs */))
3604 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3605 else
3606 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 3607 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3608 else
3609 {
3610 /* can't use inotify, continue to stat */
3611 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 3612
2008 /* monitor some parent directory for speedup hints */ 3613 /* if path is not there, monitor some parent directory for speedup hints */
3614 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3615 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3616 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 3617 {
2011 char path [4096]; 3618 char path [4096];
2012 strcpy (path, w->path); 3619 strcpy (path, w->path);
2013 3620
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3623 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3624 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 3625
2019 char *pend = strrchr (path, '/'); 3626 char *pend = strrchr (path, '/');
2020 3627
2021 if (!pend) 3628 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 3629 break;
2023 3630
2024 *pend = 0; 3631 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 3632 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 3633 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3634 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 3635 }
2029 } 3636 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 3637
2033 if (w->wd >= 0) 3638 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3639 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3640
3641 /* now re-arm timer, if required */
3642 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3643 ev_timer_again (EV_A_ &w->timer);
3644 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 3645}
2036 3646
2037static void noinline 3647static void noinline
2038infy_del (EV_P_ ev_stat *w) 3648infy_del (EV_P_ ev_stat *w)
2039{ 3649{
2042 3652
2043 if (wd < 0) 3653 if (wd < 0)
2044 return; 3654 return;
2045 3655
2046 w->wd = -2; 3656 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3657 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 3658 wlist_del (&fs_hash [slot].head, (WL)w);
2049 3659
2050 /* remove this watcher, if others are watching it, they will rearm */ 3660 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 3661 inotify_rm_watch (fs_fd, wd);
2052} 3662}
2053 3663
2054static void noinline 3664static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3665infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 3666{
2057 if (slot < 0) 3667 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 3668 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3669 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 3670 infy_wd (EV_A_ slot, wd, ev);
2061 else 3671 else
2062 { 3672 {
2063 WL w_; 3673 WL w_;
2064 3674
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3675 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 3676 {
2067 ev_stat *w = (ev_stat *)w_; 3677 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 3678 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 3679
2070 if (w->wd == wd || wd == -1) 3680 if (w->wd == wd || wd == -1)
2071 { 3681 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3682 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 3683 {
3684 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 3685 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 3686 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 3687 }
2077 3688
2078 stat_timer_cb (EV_A_ &w->timer, 0); 3689 stat_timer_cb (EV_A_ &w->timer, 0);
2083 3694
2084static void 3695static void
2085infy_cb (EV_P_ ev_io *w, int revents) 3696infy_cb (EV_P_ ev_io *w, int revents)
2086{ 3697{
2087 char buf [EV_INOTIFY_BUFSIZE]; 3698 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 3699 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 3700 int len = read (fs_fd, buf, sizeof (buf));
2091 3701
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3702 for (ofs = 0; ofs < len; )
3703 {
3704 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3705 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3706 ofs += sizeof (struct inotify_event) + ev->len;
3707 }
2094} 3708}
2095 3709
2096void inline_size 3710inline_size void ecb_cold
3711ev_check_2625 (EV_P)
3712{
3713 /* kernels < 2.6.25 are borked
3714 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3715 */
3716 if (ev_linux_version () < 0x020619)
3717 return;
3718
3719 fs_2625 = 1;
3720}
3721
3722inline_size int
3723infy_newfd (void)
3724{
3725#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3726 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3727 if (fd >= 0)
3728 return fd;
3729#endif
3730 return inotify_init ();
3731}
3732
3733inline_size void
2097infy_init (EV_P) 3734infy_init (EV_P)
2098{ 3735{
2099 if (fs_fd != -2) 3736 if (fs_fd != -2)
2100 return; 3737 return;
2101 3738
3739 fs_fd = -1;
3740
3741 ev_check_2625 (EV_A);
3742
2102 fs_fd = inotify_init (); 3743 fs_fd = infy_newfd ();
2103 3744
2104 if (fs_fd >= 0) 3745 if (fs_fd >= 0)
2105 { 3746 {
3747 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3748 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 3749 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 3750 ev_io_start (EV_A_ &fs_w);
3751 ev_unref (EV_A);
2109 } 3752 }
2110} 3753}
2111 3754
2112void inline_size 3755inline_size void
2113infy_fork (EV_P) 3756infy_fork (EV_P)
2114{ 3757{
2115 int slot; 3758 int slot;
2116 3759
2117 if (fs_fd < 0) 3760 if (fs_fd < 0)
2118 return; 3761 return;
2119 3762
3763 ev_ref (EV_A);
3764 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 3765 close (fs_fd);
2121 fs_fd = inotify_init (); 3766 fs_fd = infy_newfd ();
2122 3767
3768 if (fs_fd >= 0)
3769 {
3770 fd_intern (fs_fd);
3771 ev_io_set (&fs_w, fs_fd, EV_READ);
3772 ev_io_start (EV_A_ &fs_w);
3773 ev_unref (EV_A);
3774 }
3775
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 3777 {
2125 WL w_ = fs_hash [slot].head; 3778 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 3779 fs_hash [slot].head = 0;
2127 3780
2128 while (w_) 3781 while (w_)
2133 w->wd = -1; 3786 w->wd = -1;
2134 3787
2135 if (fs_fd >= 0) 3788 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 3789 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 3790 else
3791 {
3792 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3793 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 3794 ev_timer_again (EV_A_ &w->timer);
3795 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3796 }
2139 } 3797 }
2140
2141 } 3798 }
2142} 3799}
2143 3800
3801#endif
3802
3803#ifdef _WIN32
3804# define EV_LSTAT(p,b) _stati64 (p, b)
3805#else
3806# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 3807#endif
2145 3808
2146void 3809void
2147ev_stat_stat (EV_P_ ev_stat *w) 3810ev_stat_stat (EV_P_ ev_stat *w)
2148{ 3811{
2155static void noinline 3818static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3819stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 3820{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3821 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 3822
2160 /* we copy this here each the time so that */ 3823 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 3824 ev_stat_stat (EV_A_ w);
2164 3825
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3826 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 3827 if (
2167 w->prev.st_dev != w->attr.st_dev 3828 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 3829 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 3830 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 3831 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 3832 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 3833 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 3834 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 3835 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 3836 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 3837 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 3838 || prev.st_ctime != w->attr.st_ctime
2178 ) { 3839 ) {
3840 /* we only update w->prev on actual differences */
3841 /* in case we test more often than invoke the callback, */
3842 /* to ensure that prev is always different to attr */
3843 w->prev = prev;
3844
2179 #if EV_USE_INOTIFY 3845 #if EV_USE_INOTIFY
3846 if (fs_fd >= 0)
3847 {
2180 infy_del (EV_A_ w); 3848 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 3849 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 3850 ev_stat_stat (EV_A_ w); /* avoid race... */
3851 }
2183 #endif 3852 #endif
2184 3853
2185 ev_feed_event (EV_A_ w, EV_STAT); 3854 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 3855 }
2187} 3856}
2190ev_stat_start (EV_P_ ev_stat *w) 3859ev_stat_start (EV_P_ ev_stat *w)
2191{ 3860{
2192 if (expect_false (ev_is_active (w))) 3861 if (expect_false (ev_is_active (w)))
2193 return; 3862 return;
2194 3863
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 3864 ev_stat_stat (EV_A_ w);
2200 3865
3866 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 3867 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 3868
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3869 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 3870 ev_set_priority (&w->timer, ev_priority (w));
2206 3871
2207#if EV_USE_INOTIFY 3872#if EV_USE_INOTIFY
2208 infy_init (EV_A); 3873 infy_init (EV_A);
2209 3874
2210 if (fs_fd >= 0) 3875 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 3876 infy_add (EV_A_ w);
2212 else 3877 else
2213#endif 3878#endif
3879 {
2214 ev_timer_start (EV_A_ &w->timer); 3880 ev_timer_again (EV_A_ &w->timer);
3881 ev_unref (EV_A);
3882 }
2215 3883
2216 ev_start (EV_A_ (W)w, 1); 3884 ev_start (EV_A_ (W)w, 1);
3885
3886 EV_FREQUENT_CHECK;
2217} 3887}
2218 3888
2219void 3889void
2220ev_stat_stop (EV_P_ ev_stat *w) 3890ev_stat_stop (EV_P_ ev_stat *w)
2221{ 3891{
2222 clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
2224 return; 3894 return;
2225 3895
3896 EV_FREQUENT_CHECK;
3897
2226#if EV_USE_INOTIFY 3898#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 3899 infy_del (EV_A_ w);
2228#endif 3900#endif
3901
3902 if (ev_is_active (&w->timer))
3903 {
3904 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 3905 ev_timer_stop (EV_A_ &w->timer);
3906 }
2230 3907
2231 ev_stop (EV_A_ (W)w); 3908 ev_stop (EV_A_ (W)w);
3909
3910 EV_FREQUENT_CHECK;
2232} 3911}
2233#endif 3912#endif
2234 3913
2235#if EV_IDLE_ENABLE 3914#if EV_IDLE_ENABLE
2236void 3915void
2239 if (expect_false (ev_is_active (w))) 3918 if (expect_false (ev_is_active (w)))
2240 return; 3919 return;
2241 3920
2242 pri_adjust (EV_A_ (W)w); 3921 pri_adjust (EV_A_ (W)w);
2243 3922
3923 EV_FREQUENT_CHECK;
3924
2244 { 3925 {
2245 int active = ++idlecnt [ABSPRI (w)]; 3926 int active = ++idlecnt [ABSPRI (w)];
2246 3927
2247 ++idleall; 3928 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 3929 ev_start (EV_A_ (W)w, active);
2249 3930
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3931 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 3932 idles [ABSPRI (w)][active - 1] = w;
2252 } 3933 }
3934
3935 EV_FREQUENT_CHECK;
2253} 3936}
2254 3937
2255void 3938void
2256ev_idle_stop (EV_P_ ev_idle *w) 3939ev_idle_stop (EV_P_ ev_idle *w)
2257{ 3940{
2258 clear_pending (EV_A_ (W)w); 3941 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 3942 if (expect_false (!ev_is_active (w)))
2260 return; 3943 return;
2261 3944
3945 EV_FREQUENT_CHECK;
3946
2262 { 3947 {
2263 int active = ((W)w)->active; 3948 int active = ev_active (w);
2264 3949
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3950 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3951 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 3952
2268 ev_stop (EV_A_ (W)w); 3953 ev_stop (EV_A_ (W)w);
2269 --idleall; 3954 --idleall;
2270 } 3955 }
2271}
2272#endif
2273 3956
3957 EV_FREQUENT_CHECK;
3958}
3959#endif
3960
3961#if EV_PREPARE_ENABLE
2274void 3962void
2275ev_prepare_start (EV_P_ ev_prepare *w) 3963ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 3964{
2277 if (expect_false (ev_is_active (w))) 3965 if (expect_false (ev_is_active (w)))
2278 return; 3966 return;
3967
3968 EV_FREQUENT_CHECK;
2279 3969
2280 ev_start (EV_A_ (W)w, ++preparecnt); 3970 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3971 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 3972 prepares [preparecnt - 1] = w;
3973
3974 EV_FREQUENT_CHECK;
2283} 3975}
2284 3976
2285void 3977void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 3978ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 3979{
2288 clear_pending (EV_A_ (W)w); 3980 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 3981 if (expect_false (!ev_is_active (w)))
2290 return; 3982 return;
2291 3983
3984 EV_FREQUENT_CHECK;
3985
2292 { 3986 {
2293 int active = ((W)w)->active; 3987 int active = ev_active (w);
3988
2294 prepares [active - 1] = prepares [--preparecnt]; 3989 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 3990 ev_active (prepares [active - 1]) = active;
2296 } 3991 }
2297 3992
2298 ev_stop (EV_A_ (W)w); 3993 ev_stop (EV_A_ (W)w);
2299}
2300 3994
3995 EV_FREQUENT_CHECK;
3996}
3997#endif
3998
3999#if EV_CHECK_ENABLE
2301void 4000void
2302ev_check_start (EV_P_ ev_check *w) 4001ev_check_start (EV_P_ ev_check *w)
2303{ 4002{
2304 if (expect_false (ev_is_active (w))) 4003 if (expect_false (ev_is_active (w)))
2305 return; 4004 return;
4005
4006 EV_FREQUENT_CHECK;
2306 4007
2307 ev_start (EV_A_ (W)w, ++checkcnt); 4008 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4009 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 4010 checks [checkcnt - 1] = w;
4011
4012 EV_FREQUENT_CHECK;
2310} 4013}
2311 4014
2312void 4015void
2313ev_check_stop (EV_P_ ev_check *w) 4016ev_check_stop (EV_P_ ev_check *w)
2314{ 4017{
2315 clear_pending (EV_A_ (W)w); 4018 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 4019 if (expect_false (!ev_is_active (w)))
2317 return; 4020 return;
2318 4021
4022 EV_FREQUENT_CHECK;
4023
2319 { 4024 {
2320 int active = ((W)w)->active; 4025 int active = ev_active (w);
4026
2321 checks [active - 1] = checks [--checkcnt]; 4027 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 4028 ev_active (checks [active - 1]) = active;
2323 } 4029 }
2324 4030
2325 ev_stop (EV_A_ (W)w); 4031 ev_stop (EV_A_ (W)w);
4032
4033 EV_FREQUENT_CHECK;
2326} 4034}
4035#endif
2327 4036
2328#if EV_EMBED_ENABLE 4037#if EV_EMBED_ENABLE
2329void noinline 4038void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 4039ev_embed_sweep (EV_P_ ev_embed *w)
2331{ 4040{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 4041 ev_run (w->other, EVRUN_NOWAIT);
2333} 4042}
2334 4043
2335static void 4044static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 4045embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 4046{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4047 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 4048
2340 if (ev_cb (w)) 4049 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4050 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 4051 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 4052 ev_run (w->other, EVRUN_NOWAIT);
2344} 4053}
2345 4054
2346static void 4055static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4056embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 4057{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4058 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 4059
2351 { 4060 {
2352 struct ev_loop *loop = w->other; 4061 EV_P = w->other;
2353 4062
2354 while (fdchangecnt) 4063 while (fdchangecnt)
2355 { 4064 {
2356 fd_reify (EV_A); 4065 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4066 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 4067 }
2359 } 4068 }
4069}
4070
4071static void
4072embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4073{
4074 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4075
4076 ev_embed_stop (EV_A_ w);
4077
4078 {
4079 EV_P = w->other;
4080
4081 ev_loop_fork (EV_A);
4082 ev_run (EV_A_ EVRUN_NOWAIT);
4083 }
4084
4085 ev_embed_start (EV_A_ w);
2360} 4086}
2361 4087
2362#if 0 4088#if 0
2363static void 4089static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4090embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2372{ 4098{
2373 if (expect_false (ev_is_active (w))) 4099 if (expect_false (ev_is_active (w)))
2374 return; 4100 return;
2375 4101
2376 { 4102 {
2377 struct ev_loop *loop = w->other; 4103 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4104 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4105 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 4106 }
4107
4108 EV_FREQUENT_CHECK;
2381 4109
2382 ev_set_priority (&w->io, ev_priority (w)); 4110 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 4111 ev_io_start (EV_A_ &w->io);
2384 4112
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 4113 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 4114 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 4115 ev_prepare_start (EV_A_ &w->prepare);
2388 4116
4117 ev_fork_init (&w->fork, embed_fork_cb);
4118 ev_fork_start (EV_A_ &w->fork);
4119
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4120 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 4121
2391 ev_start (EV_A_ (W)w, 1); 4122 ev_start (EV_A_ (W)w, 1);
4123
4124 EV_FREQUENT_CHECK;
2392} 4125}
2393 4126
2394void 4127void
2395ev_embed_stop (EV_P_ ev_embed *w) 4128ev_embed_stop (EV_P_ ev_embed *w)
2396{ 4129{
2397 clear_pending (EV_A_ (W)w); 4130 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4131 if (expect_false (!ev_is_active (w)))
2399 return; 4132 return;
2400 4133
4134 EV_FREQUENT_CHECK;
4135
2401 ev_io_stop (EV_A_ &w->io); 4136 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 4137 ev_prepare_stop (EV_A_ &w->prepare);
4138 ev_fork_stop (EV_A_ &w->fork);
2403 4139
2404 ev_stop (EV_A_ (W)w); 4140 ev_stop (EV_A_ (W)w);
4141
4142 EV_FREQUENT_CHECK;
2405} 4143}
2406#endif 4144#endif
2407 4145
2408#if EV_FORK_ENABLE 4146#if EV_FORK_ENABLE
2409void 4147void
2410ev_fork_start (EV_P_ ev_fork *w) 4148ev_fork_start (EV_P_ ev_fork *w)
2411{ 4149{
2412 if (expect_false (ev_is_active (w))) 4150 if (expect_false (ev_is_active (w)))
2413 return; 4151 return;
2414 4152
4153 EV_FREQUENT_CHECK;
4154
2415 ev_start (EV_A_ (W)w, ++forkcnt); 4155 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4156 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 4157 forks [forkcnt - 1] = w;
4158
4159 EV_FREQUENT_CHECK;
2418} 4160}
2419 4161
2420void 4162void
2421ev_fork_stop (EV_P_ ev_fork *w) 4163ev_fork_stop (EV_P_ ev_fork *w)
2422{ 4164{
2423 clear_pending (EV_A_ (W)w); 4165 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 4166 if (expect_false (!ev_is_active (w)))
2425 return; 4167 return;
2426 4168
4169 EV_FREQUENT_CHECK;
4170
2427 { 4171 {
2428 int active = ((W)w)->active; 4172 int active = ev_active (w);
4173
2429 forks [active - 1] = forks [--forkcnt]; 4174 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 4175 ev_active (forks [active - 1]) = active;
2431 } 4176 }
2432 4177
2433 ev_stop (EV_A_ (W)w); 4178 ev_stop (EV_A_ (W)w);
4179
4180 EV_FREQUENT_CHECK;
4181}
4182#endif
4183
4184#if EV_CLEANUP_ENABLE
4185void
4186ev_cleanup_start (EV_P_ ev_cleanup *w)
4187{
4188 if (expect_false (ev_is_active (w)))
4189 return;
4190
4191 EV_FREQUENT_CHECK;
4192
4193 ev_start (EV_A_ (W)w, ++cleanupcnt);
4194 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4195 cleanups [cleanupcnt - 1] = w;
4196
4197 /* cleanup watchers should never keep a refcount on the loop */
4198 ev_unref (EV_A);
4199 EV_FREQUENT_CHECK;
4200}
4201
4202void
4203ev_cleanup_stop (EV_P_ ev_cleanup *w)
4204{
4205 clear_pending (EV_A_ (W)w);
4206 if (expect_false (!ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210 ev_ref (EV_A);
4211
4212 {
4213 int active = ev_active (w);
4214
4215 cleanups [active - 1] = cleanups [--cleanupcnt];
4216 ev_active (cleanups [active - 1]) = active;
4217 }
4218
4219 ev_stop (EV_A_ (W)w);
4220
4221 EV_FREQUENT_CHECK;
2434} 4222}
2435#endif 4223#endif
2436 4224
2437#if EV_ASYNC_ENABLE 4225#if EV_ASYNC_ENABLE
2438void 4226void
2439ev_async_start (EV_P_ ev_async *w) 4227ev_async_start (EV_P_ ev_async *w)
2440{ 4228{
2441 if (expect_false (ev_is_active (w))) 4229 if (expect_false (ev_is_active (w)))
2442 return; 4230 return;
2443 4231
4232 w->sent = 0;
4233
2444 evpipe_init (EV_A); 4234 evpipe_init (EV_A);
4235
4236 EV_FREQUENT_CHECK;
2445 4237
2446 ev_start (EV_A_ (W)w, ++asynccnt); 4238 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4239 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 4240 asyncs [asynccnt - 1] = w;
4241
4242 EV_FREQUENT_CHECK;
2449} 4243}
2450 4244
2451void 4245void
2452ev_async_stop (EV_P_ ev_async *w) 4246ev_async_stop (EV_P_ ev_async *w)
2453{ 4247{
2454 clear_pending (EV_A_ (W)w); 4248 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 4249 if (expect_false (!ev_is_active (w)))
2456 return; 4250 return;
2457 4251
4252 EV_FREQUENT_CHECK;
4253
2458 { 4254 {
2459 int active = ((W)w)->active; 4255 int active = ev_active (w);
4256
2460 asyncs [active - 1] = asyncs [--asynccnt]; 4257 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 4258 ev_active (asyncs [active - 1]) = active;
2462 } 4259 }
2463 4260
2464 ev_stop (EV_A_ (W)w); 4261 ev_stop (EV_A_ (W)w);
4262
4263 EV_FREQUENT_CHECK;
2465} 4264}
2466 4265
2467void 4266void
2468ev_async_send (EV_P_ ev_async *w) 4267ev_async_send (EV_P_ ev_async *w)
2469{ 4268{
2470 w->sent = 1; 4269 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 4270 evpipe_write (EV_A_ &async_pending);
2472} 4271}
2473#endif 4272#endif
2474 4273
2475/*****************************************************************************/ 4274/*****************************************************************************/
2476 4275
2486once_cb (EV_P_ struct ev_once *once, int revents) 4285once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 4286{
2488 void (*cb)(int revents, void *arg) = once->cb; 4287 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 4288 void *arg = once->arg;
2490 4289
2491 ev_io_stop (EV_A_ &once->io); 4290 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 4291 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 4292 ev_free (once);
2494 4293
2495 cb (revents, arg); 4294 cb (revents, arg);
2496} 4295}
2497 4296
2498static void 4297static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 4298once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 4299{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4300 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4301
4302 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 4303}
2503 4304
2504static void 4305static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 4306once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 4307{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4308 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4309
4310 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 4311}
2509 4312
2510void 4313void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4314ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2512{ 4315{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4316 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 4317
2515 if (expect_false (!once)) 4318 if (expect_false (!once))
2516 { 4319 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4320 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 4321 return;
2519 } 4322 }
2520 4323
2521 once->cb = cb; 4324 once->cb = cb;
2522 once->arg = arg; 4325 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 4337 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 4338 ev_timer_start (EV_A_ &once->to);
2536 } 4339 }
2537} 4340}
2538 4341
4342/*****************************************************************************/
4343
4344#if EV_WALK_ENABLE
4345void ecb_cold
4346ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4347{
4348 int i, j;
4349 ev_watcher_list *wl, *wn;
4350
4351 if (types & (EV_IO | EV_EMBED))
4352 for (i = 0; i < anfdmax; ++i)
4353 for (wl = anfds [i].head; wl; )
4354 {
4355 wn = wl->next;
4356
4357#if EV_EMBED_ENABLE
4358 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4359 {
4360 if (types & EV_EMBED)
4361 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4362 }
4363 else
4364#endif
4365#if EV_USE_INOTIFY
4366 if (ev_cb ((ev_io *)wl) == infy_cb)
4367 ;
4368 else
4369#endif
4370 if ((ev_io *)wl != &pipe_w)
4371 if (types & EV_IO)
4372 cb (EV_A_ EV_IO, wl);
4373
4374 wl = wn;
4375 }
4376
4377 if (types & (EV_TIMER | EV_STAT))
4378 for (i = timercnt + HEAP0; i-- > HEAP0; )
4379#if EV_STAT_ENABLE
4380 /*TODO: timer is not always active*/
4381 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4382 {
4383 if (types & EV_STAT)
4384 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4385 }
4386 else
4387#endif
4388 if (types & EV_TIMER)
4389 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4390
4391#if EV_PERIODIC_ENABLE
4392 if (types & EV_PERIODIC)
4393 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4394 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4395#endif
4396
4397#if EV_IDLE_ENABLE
4398 if (types & EV_IDLE)
4399 for (j = NUMPRI; j--; )
4400 for (i = idlecnt [j]; i--; )
4401 cb (EV_A_ EV_IDLE, idles [j][i]);
4402#endif
4403
4404#if EV_FORK_ENABLE
4405 if (types & EV_FORK)
4406 for (i = forkcnt; i--; )
4407 if (ev_cb (forks [i]) != embed_fork_cb)
4408 cb (EV_A_ EV_FORK, forks [i]);
4409#endif
4410
4411#if EV_ASYNC_ENABLE
4412 if (types & EV_ASYNC)
4413 for (i = asynccnt; i--; )
4414 cb (EV_A_ EV_ASYNC, asyncs [i]);
4415#endif
4416
4417#if EV_PREPARE_ENABLE
4418 if (types & EV_PREPARE)
4419 for (i = preparecnt; i--; )
4420# if EV_EMBED_ENABLE
4421 if (ev_cb (prepares [i]) != embed_prepare_cb)
4422# endif
4423 cb (EV_A_ EV_PREPARE, prepares [i]);
4424#endif
4425
4426#if EV_CHECK_ENABLE
4427 if (types & EV_CHECK)
4428 for (i = checkcnt; i--; )
4429 cb (EV_A_ EV_CHECK, checks [i]);
4430#endif
4431
4432#if EV_SIGNAL_ENABLE
4433 if (types & EV_SIGNAL)
4434 for (i = 0; i < EV_NSIG - 1; ++i)
4435 for (wl = signals [i].head; wl; )
4436 {
4437 wn = wl->next;
4438 cb (EV_A_ EV_SIGNAL, wl);
4439 wl = wn;
4440 }
4441#endif
4442
4443#if EV_CHILD_ENABLE
4444 if (types & EV_CHILD)
4445 for (i = (EV_PID_HASHSIZE); i--; )
4446 for (wl = childs [i]; wl; )
4447 {
4448 wn = wl->next;
4449 cb (EV_A_ EV_CHILD, wl);
4450 wl = wn;
4451 }
4452#endif
4453/* EV_STAT 0x00001000 /* stat data changed */
4454/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4455}
4456#endif
4457
2539#if EV_MULTIPLICITY 4458#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 4459 #include "ev_wrap.h"
2541#endif 4460#endif
2542 4461
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines