ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.408 by root, Fri Jan 27 22:28:49 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
154#ifndef _WIN32 188#ifndef _WIN32
155# include <sys/time.h> 189# include <sys/time.h>
156# include <sys/wait.h> 190# include <sys/wait.h>
157# include <unistd.h> 191# include <unistd.h>
158#else 192#else
193# include <io.h>
159# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 195# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
163# endif 198# endif
199# undef EV_AVOID_STDIO
164#endif 200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
165 209
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 210/* this block tries to deduce configuration from header-defined symbols and defaults */
167 211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
249# endif
250#endif
251
168#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
169# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
170#endif 258#endif
171 259
172#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 262#endif
175 263
176#ifndef EV_USE_NANOSLEEP 264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
177# define EV_USE_NANOSLEEP 0 268# define EV_USE_NANOSLEEP 0
269# endif
178#endif 270#endif
179 271
180#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 274#endif
183 275
184#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
185# ifdef _WIN32 277# ifdef _WIN32
186# define EV_USE_POLL 0 278# define EV_USE_POLL 0
187# else 279# else
188# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 281# endif
190#endif 282#endif
191 283
192#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 287# else
196# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
197# endif 289# endif
198#endif 290#endif
199 291
205# define EV_USE_PORT 0 297# define EV_USE_PORT 0
206#endif 298#endif
207 299
208#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 302# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 303# else
212# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
213# endif 305# endif
214#endif 306#endif
215 307
216#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 310#endif
223 311
224#ifndef EV_INOTIFY_HASHSIZE 312#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 314#endif
231 315
232#ifndef EV_USE_EVENTFD 316#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 318# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 319# else
236# define EV_USE_EVENTFD 0 320# define EV_USE_EVENTFD 0
237# endif 321# endif
238#endif 322#endif
239 323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
241 371
242#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
245#endif 375#endif
253# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
255#endif 385#endif
256 386
257#if !EV_USE_NANOSLEEP 387#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 390# include <sys/select.h>
260# endif 391# endif
261#endif 392#endif
262 393
263#if EV_USE_INOTIFY 394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
264# include <sys/inotify.h> 396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
265#endif 402#endif
266 403
267#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 405# include <winsock.h>
269#endif 406#endif
270 407
271#if EV_USE_EVENTFD 408#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 410# include <stdint.h>
274# ifdef __cplusplus 411# ifndef EFD_NONBLOCK
275extern "C" { 412# define EFD_NONBLOCK O_NONBLOCK
276# endif 413# endif
277int eventfd (unsigned int initval, int flags); 414# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 415# ifdef O_CLOEXEC
279} 416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
280# endif 420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
281#endif 444#endif
282 445
283/**/ 446/**/
284 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
285/* 454/*
286 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 457 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 460
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 508 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
302#else 515#else
303# define expect(expr,value) (expr) 516 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 531 #endif
532#endif
309 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 #if __i386 || __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif __sparc || __sparc__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 #elif defined(__s390__) || defined(__s390x__)
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
567 #endif
568 #endif
569#endif
570
571#ifndef ECB_MEMORY_FENCE
572 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
573 #define ECB_MEMORY_FENCE __sync_synchronize ()
574 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
575 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
576 #elif _MSC_VER >= 1400 /* VC++ 2005 */
577 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
578 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
579 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
580 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
581 #elif defined(_WIN32)
582 #include <WinNT.h>
583 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
584 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
585 #include <mbarrier.h>
586 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
587 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
588 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
589 #endif
590#endif
591
592#ifndef ECB_MEMORY_FENCE
593 #if !ECB_AVOID_PTHREADS
594 /*
595 * if you get undefined symbol references to pthread_mutex_lock,
596 * or failure to find pthread.h, then you should implement
597 * the ECB_MEMORY_FENCE operations for your cpu/compiler
598 * OR provide pthread.h and link against the posix thread library
599 * of your system.
600 */
601 #include <pthread.h>
602 #define ECB_NEEDS_PTHREADS 1
603 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
604
605 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
606 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
607 #endif
608#endif
609
610#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
611 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
612#endif
613
614#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
615 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
616#endif
617
618/*****************************************************************************/
619
620#define ECB_C99 (__STDC_VERSION__ >= 199901L)
621
622#if __cplusplus
623 #define ecb_inline static inline
624#elif ECB_GCC_VERSION(2,5)
625 #define ecb_inline static __inline__
626#elif ECB_C99
627 #define ecb_inline static inline
628#else
629 #define ecb_inline static
630#endif
631
632#if ECB_GCC_VERSION(3,3)
633 #define ecb_restrict __restrict__
634#elif ECB_C99
635 #define ecb_restrict restrict
636#else
637 #define ecb_restrict
638#endif
639
640typedef int ecb_bool;
641
642#define ECB_CONCAT_(a, b) a ## b
643#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
644#define ECB_STRINGIFY_(a) # a
645#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
646
647#define ecb_function_ ecb_inline
648
649#if ECB_GCC_VERSION(3,1)
650 #define ecb_attribute(attrlist) __attribute__(attrlist)
651 #define ecb_is_constant(expr) __builtin_constant_p (expr)
652 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
653 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
654#else
655 #define ecb_attribute(attrlist)
656 #define ecb_is_constant(expr) 0
657 #define ecb_expect(expr,value) (expr)
658 #define ecb_prefetch(addr,rw,locality)
659#endif
660
661/* no emulation for ecb_decltype */
662#if ECB_GCC_VERSION(4,5)
663 #define ecb_decltype(x) __decltype(x)
664#elif ECB_GCC_VERSION(3,0)
665 #define ecb_decltype(x) __typeof(x)
666#endif
667
668#define ecb_noinline ecb_attribute ((__noinline__))
669#define ecb_noreturn ecb_attribute ((__noreturn__))
670#define ecb_unused ecb_attribute ((__unused__))
671#define ecb_const ecb_attribute ((__const__))
672#define ecb_pure ecb_attribute ((__pure__))
673
674#if ECB_GCC_VERSION(4,3)
675 #define ecb_artificial ecb_attribute ((__artificial__))
676 #define ecb_hot ecb_attribute ((__hot__))
677 #define ecb_cold ecb_attribute ((__cold__))
678#else
679 #define ecb_artificial
680 #define ecb_hot
681 #define ecb_cold
682#endif
683
684/* put around conditional expressions if you are very sure that the */
685/* expression is mostly true or mostly false. note that these return */
686/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 687#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 688#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
689/* for compatibility to the rest of the world */
690#define ecb_likely(expr) ecb_expect_true (expr)
691#define ecb_unlikely(expr) ecb_expect_false (expr)
692
693/* count trailing zero bits and count # of one bits */
694#if ECB_GCC_VERSION(3,4)
695 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
696 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
697 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
698 #define ecb_ctz32(x) __builtin_ctz (x)
699 #define ecb_ctz64(x) __builtin_ctzll (x)
700 #define ecb_popcount32(x) __builtin_popcount (x)
701 /* no popcountll */
702#else
703 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
704 ecb_function_ int
705 ecb_ctz32 (uint32_t x)
706 {
707 int r = 0;
708
709 x &= ~x + 1; /* this isolates the lowest bit */
710
711#if ECB_branchless_on_i386
712 r += !!(x & 0xaaaaaaaa) << 0;
713 r += !!(x & 0xcccccccc) << 1;
714 r += !!(x & 0xf0f0f0f0) << 2;
715 r += !!(x & 0xff00ff00) << 3;
716 r += !!(x & 0xffff0000) << 4;
717#else
718 if (x & 0xaaaaaaaa) r += 1;
719 if (x & 0xcccccccc) r += 2;
720 if (x & 0xf0f0f0f0) r += 4;
721 if (x & 0xff00ff00) r += 8;
722 if (x & 0xffff0000) r += 16;
723#endif
724
725 return r;
726 }
727
728 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
729 ecb_function_ int
730 ecb_ctz64 (uint64_t x)
731 {
732 int shift = x & 0xffffffffU ? 0 : 32;
733 return ecb_ctz32 (x >> shift) + shift;
734 }
735
736 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
737 ecb_function_ int
738 ecb_popcount32 (uint32_t x)
739 {
740 x -= (x >> 1) & 0x55555555;
741 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
742 x = ((x >> 4) + x) & 0x0f0f0f0f;
743 x *= 0x01010101;
744
745 return x >> 24;
746 }
747
748 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
749 ecb_function_ int ecb_ld32 (uint32_t x)
750 {
751 int r = 0;
752
753 if (x >> 16) { x >>= 16; r += 16; }
754 if (x >> 8) { x >>= 8; r += 8; }
755 if (x >> 4) { x >>= 4; r += 4; }
756 if (x >> 2) { x >>= 2; r += 2; }
757 if (x >> 1) { r += 1; }
758
759 return r;
760 }
761
762 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
763 ecb_function_ int ecb_ld64 (uint64_t x)
764 {
765 int r = 0;
766
767 if (x >> 32) { x >>= 32; r += 32; }
768
769 return r + ecb_ld32 (x);
770 }
771#endif
772
773ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
774ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
775{
776 return ( (x * 0x0802U & 0x22110U)
777 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
778}
779
780ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
781ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
782{
783 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
784 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
785 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
786 x = ( x >> 8 ) | ( x << 8);
787
788 return x;
789}
790
791ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
792ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
793{
794 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
795 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
796 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
797 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
798 x = ( x >> 16 ) | ( x << 16);
799
800 return x;
801}
802
803/* popcount64 is only available on 64 bit cpus as gcc builtin */
804/* so for this version we are lazy */
805ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
806ecb_function_ int
807ecb_popcount64 (uint64_t x)
808{
809 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
810}
811
812ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
813ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
814ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
815ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
816ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
817ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
818ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
819ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
820
821ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
822ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
823ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
824ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
825ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
826ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
827ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
828ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
829
830#if ECB_GCC_VERSION(4,3)
831 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
832 #define ecb_bswap32(x) __builtin_bswap32 (x)
833 #define ecb_bswap64(x) __builtin_bswap64 (x)
834#else
835 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
836 ecb_function_ uint16_t
837 ecb_bswap16 (uint16_t x)
838 {
839 return ecb_rotl16 (x, 8);
840 }
841
842 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
843 ecb_function_ uint32_t
844 ecb_bswap32 (uint32_t x)
845 {
846 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
847 }
848
849 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
850 ecb_function_ uint64_t
851 ecb_bswap64 (uint64_t x)
852 {
853 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
854 }
855#endif
856
857#if ECB_GCC_VERSION(4,5)
858 #define ecb_unreachable() __builtin_unreachable ()
859#else
860 /* this seems to work fine, but gcc always emits a warning for it :/ */
861 ecb_inline void ecb_unreachable (void) ecb_noreturn;
862 ecb_inline void ecb_unreachable (void) { }
863#endif
864
865/* try to tell the compiler that some condition is definitely true */
866#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
867
868ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
869ecb_inline unsigned char
870ecb_byteorder_helper (void)
871{
872 const uint32_t u = 0x11223344;
873 return *(unsigned char *)&u;
874}
875
876ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
877ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
878ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
879ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
880
881#if ECB_GCC_VERSION(3,0) || ECB_C99
882 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
883#else
884 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
885#endif
886
887#if __cplusplus
888 template<typename T>
889 static inline T ecb_div_rd (T val, T div)
890 {
891 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
892 }
893 template<typename T>
894 static inline T ecb_div_ru (T val, T div)
895 {
896 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
897 }
898#else
899 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
900 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
901#endif
902
903#if ecb_cplusplus_does_not_suck
904 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
905 template<typename T, int N>
906 static inline int ecb_array_length (const T (&arr)[N])
907 {
908 return N;
909 }
910#else
911 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
912#endif
913
914#endif
915
916/* ECB.H END */
917
918#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
919/* if your architecture doesn't need memory fences, e.g. because it is
920 * single-cpu/core, or if you use libev in a project that doesn't use libev
921 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
922 * libev, in which cases the memory fences become nops.
923 * alternatively, you can remove this #error and link against libpthread,
924 * which will then provide the memory fences.
925 */
926# error "memory fences not defined for your architecture, please report"
927#endif
928
929#ifndef ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE do { } while (0)
931# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
932# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
933#endif
934
935#define expect_false(cond) ecb_expect_false (cond)
936#define expect_true(cond) ecb_expect_true (cond)
937#define noinline ecb_noinline
938
312#define inline_size static inline 939#define inline_size ecb_inline
313 940
314#if EV_MINIMAL 941#if EV_FEATURE_CODE
942# define inline_speed ecb_inline
943#else
315# define inline_speed static noinline 944# define inline_speed static noinline
945#endif
946
947#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
948
949#if EV_MINPRI == EV_MAXPRI
950# define ABSPRI(w) (((W)w), 0)
316#else 951#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 952# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
953#endif
322 954
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 955#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 956#define EMPTY2(a,b) /* used to suppress some warnings */
325 957
326typedef ev_watcher *W; 958typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 959typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 960typedef ev_watcher_time *WT;
329 961
962#define ev_active(w) ((W)(w))->active
963#define ev_at(w) ((WT)(w))->at
964
965#if EV_USE_REALTIME
966/* sig_atomic_t is used to avoid per-thread variables or locking but still */
967/* giving it a reasonably high chance of working on typical architectures */
968static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
969#endif
970
330#if EV_USE_MONOTONIC 971#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 972static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
973#endif
974
975#ifndef EV_FD_TO_WIN32_HANDLE
976# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
977#endif
978#ifndef EV_WIN32_HANDLE_TO_FD
979# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
980#endif
981#ifndef EV_WIN32_CLOSE_FD
982# define EV_WIN32_CLOSE_FD(fd) close (fd)
334#endif 983#endif
335 984
336#ifdef _WIN32 985#ifdef _WIN32
337# include "ev_win32.c" 986# include "ev_win32.c"
338#endif 987#endif
339 988
340/*****************************************************************************/ 989/*****************************************************************************/
341 990
991/* define a suitable floor function (only used by periodics atm) */
992
993#if EV_USE_FLOOR
994# include <math.h>
995# define ev_floor(v) floor (v)
996#else
997
998#include <float.h>
999
1000/* a floor() replacement function, should be independent of ev_tstamp type */
1001static ev_tstamp noinline
1002ev_floor (ev_tstamp v)
1003{
1004 /* the choice of shift factor is not terribly important */
1005#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1007#else
1008 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1009#endif
1010
1011 /* argument too large for an unsigned long? */
1012 if (expect_false (v >= shift))
1013 {
1014 ev_tstamp f;
1015
1016 if (v == v - 1.)
1017 return v; /* very large number */
1018
1019 f = shift * ev_floor (v * (1. / shift));
1020 return f + ev_floor (v - f);
1021 }
1022
1023 /* special treatment for negative args? */
1024 if (expect_false (v < 0.))
1025 {
1026 ev_tstamp f = -ev_floor (-v);
1027
1028 return f - (f == v ? 0 : 1);
1029 }
1030
1031 /* fits into an unsigned long */
1032 return (unsigned long)v;
1033}
1034
1035#endif
1036
1037/*****************************************************************************/
1038
1039#ifdef __linux
1040# include <sys/utsname.h>
1041#endif
1042
1043static unsigned int noinline ecb_cold
1044ev_linux_version (void)
1045{
1046#ifdef __linux
1047 unsigned int v = 0;
1048 struct utsname buf;
1049 int i;
1050 char *p = buf.release;
1051
1052 if (uname (&buf))
1053 return 0;
1054
1055 for (i = 3+1; --i; )
1056 {
1057 unsigned int c = 0;
1058
1059 for (;;)
1060 {
1061 if (*p >= '0' && *p <= '9')
1062 c = c * 10 + *p++ - '0';
1063 else
1064 {
1065 p += *p == '.';
1066 break;
1067 }
1068 }
1069
1070 v = (v << 8) | c;
1071 }
1072
1073 return v;
1074#else
1075 return 0;
1076#endif
1077}
1078
1079/*****************************************************************************/
1080
1081#if EV_AVOID_STDIO
1082static void noinline ecb_cold
1083ev_printerr (const char *msg)
1084{
1085 write (STDERR_FILENO, msg, strlen (msg));
1086}
1087#endif
1088
342static void (*syserr_cb)(const char *msg); 1089static void (*syserr_cb)(const char *msg);
343 1090
344void 1091void ecb_cold
345ev_set_syserr_cb (void (*cb)(const char *msg)) 1092ev_set_syserr_cb (void (*cb)(const char *msg))
346{ 1093{
347 syserr_cb = cb; 1094 syserr_cb = cb;
348} 1095}
349 1096
350static void noinline 1097static void noinline ecb_cold
351syserr (const char *msg) 1098ev_syserr (const char *msg)
352{ 1099{
353 if (!msg) 1100 if (!msg)
354 msg = "(libev) system error"; 1101 msg = "(libev) system error";
355 1102
356 if (syserr_cb) 1103 if (syserr_cb)
357 syserr_cb (msg); 1104 syserr_cb (msg);
358 else 1105 else
359 { 1106 {
1107#if EV_AVOID_STDIO
1108 ev_printerr (msg);
1109 ev_printerr (": ");
1110 ev_printerr (strerror (errno));
1111 ev_printerr ("\n");
1112#else
360 perror (msg); 1113 perror (msg);
1114#endif
361 abort (); 1115 abort ();
362 } 1116 }
363} 1117}
364 1118
365static void * 1119static void *
366ev_realloc_emul (void *ptr, long size) 1120ev_realloc_emul (void *ptr, long size)
367{ 1121{
1122#if __GLIBC__
1123 return realloc (ptr, size);
1124#else
368 /* some systems, notably openbsd and darwin, fail to properly 1125 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and 1126 * implement realloc (x, 0) (as required by both ansi c-89 and
370 * the single unix specification, so work around them here. 1127 * the single unix specification, so work around them here.
371 */ 1128 */
372 1129
373 if (size) 1130 if (size)
374 return realloc (ptr, size); 1131 return realloc (ptr, size);
375 1132
376 free (ptr); 1133 free (ptr);
377 return 0; 1134 return 0;
1135#endif
378} 1136}
379 1137
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1138static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
381 1139
382void 1140void ecb_cold
383ev_set_allocator (void *(*cb)(void *ptr, long size)) 1141ev_set_allocator (void *(*cb)(void *ptr, long size))
384{ 1142{
385 alloc = cb; 1143 alloc = cb;
386} 1144}
387 1145
390{ 1148{
391 ptr = alloc (ptr, size); 1149 ptr = alloc (ptr, size);
392 1150
393 if (!ptr && size) 1151 if (!ptr && size)
394 { 1152 {
1153#if EV_AVOID_STDIO
1154 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1155#else
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1156 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1157#endif
396 abort (); 1158 abort ();
397 } 1159 }
398 1160
399 return ptr; 1161 return ptr;
400} 1162}
402#define ev_malloc(size) ev_realloc (0, (size)) 1164#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 1165#define ev_free(ptr) ev_realloc ((ptr), 0)
404 1166
405/*****************************************************************************/ 1167/*****************************************************************************/
406 1168
1169/* set in reify when reification needed */
1170#define EV_ANFD_REIFY 1
1171
1172/* file descriptor info structure */
407typedef struct 1173typedef struct
408{ 1174{
409 WL head; 1175 WL head;
410 unsigned char events; 1176 unsigned char events; /* the events watched for */
1177 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1178 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 1179 unsigned char unused;
1180#if EV_USE_EPOLL
1181 unsigned int egen; /* generation counter to counter epoll bugs */
1182#endif
412#if EV_SELECT_IS_WINSOCKET 1183#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
413 SOCKET handle; 1184 SOCKET handle;
414#endif 1185#endif
1186#if EV_USE_IOCP
1187 OVERLAPPED or, ow;
1188#endif
415} ANFD; 1189} ANFD;
416 1190
1191/* stores the pending event set for a given watcher */
417typedef struct 1192typedef struct
418{ 1193{
419 W w; 1194 W w;
420 int events; 1195 int events; /* the pending event set for the given watcher */
421} ANPENDING; 1196} ANPENDING;
422 1197
423#if EV_USE_INOTIFY 1198#if EV_USE_INOTIFY
1199/* hash table entry per inotify-id */
424typedef struct 1200typedef struct
425{ 1201{
426 WL head; 1202 WL head;
427} ANFS; 1203} ANFS;
1204#endif
1205
1206/* Heap Entry */
1207#if EV_HEAP_CACHE_AT
1208 /* a heap element */
1209 typedef struct {
1210 ev_tstamp at;
1211 WT w;
1212 } ANHE;
1213
1214 #define ANHE_w(he) (he).w /* access watcher, read-write */
1215 #define ANHE_at(he) (he).at /* access cached at, read-only */
1216 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1217#else
1218 /* a heap element */
1219 typedef WT ANHE;
1220
1221 #define ANHE_w(he) (he)
1222 #define ANHE_at(he) (he)->at
1223 #define ANHE_at_cache(he)
428#endif 1224#endif
429 1225
430#if EV_MULTIPLICITY 1226#if EV_MULTIPLICITY
431 1227
432 struct ev_loop 1228 struct ev_loop
438 #undef VAR 1234 #undef VAR
439 }; 1235 };
440 #include "ev_wrap.h" 1236 #include "ev_wrap.h"
441 1237
442 static struct ev_loop default_loop_struct; 1238 static struct ev_loop default_loop_struct;
443 struct ev_loop *ev_default_loop_ptr; 1239 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
444 1240
445#else 1241#else
446 1242
447 ev_tstamp ev_rt_now; 1243 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
448 #define VAR(name,decl) static decl; 1244 #define VAR(name,decl) static decl;
449 #include "ev_vars.h" 1245 #include "ev_vars.h"
450 #undef VAR 1246 #undef VAR
451 1247
452 static int ev_default_loop_ptr; 1248 static int ev_default_loop_ptr;
453 1249
454#endif 1250#endif
455 1251
1252#if EV_FEATURE_API
1253# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1254# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1255# define EV_INVOKE_PENDING invoke_cb (EV_A)
1256#else
1257# define EV_RELEASE_CB (void)0
1258# define EV_ACQUIRE_CB (void)0
1259# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1260#endif
1261
1262#define EVBREAK_RECURSE 0x80
1263
456/*****************************************************************************/ 1264/*****************************************************************************/
457 1265
1266#ifndef EV_HAVE_EV_TIME
458ev_tstamp 1267ev_tstamp
459ev_time (void) 1268ev_time (void)
460{ 1269{
461#if EV_USE_REALTIME 1270#if EV_USE_REALTIME
1271 if (expect_true (have_realtime))
1272 {
462 struct timespec ts; 1273 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 1274 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 1275 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 1276 }
1277#endif
1278
466 struct timeval tv; 1279 struct timeval tv;
467 gettimeofday (&tv, 0); 1280 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 1281 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 1282}
1283#endif
471 1284
472ev_tstamp inline_size 1285inline_size ev_tstamp
473get_clock (void) 1286get_clock (void)
474{ 1287{
475#if EV_USE_MONOTONIC 1288#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 1289 if (expect_true (have_monotonic))
477 { 1290 {
498 if (delay > 0.) 1311 if (delay > 0.)
499 { 1312 {
500#if EV_USE_NANOSLEEP 1313#if EV_USE_NANOSLEEP
501 struct timespec ts; 1314 struct timespec ts;
502 1315
503 ts.tv_sec = (time_t)delay; 1316 EV_TS_SET (ts, delay);
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0); 1317 nanosleep (&ts, 0);
507#elif defined(_WIN32) 1318#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3)); 1319 Sleep ((unsigned long)(delay * 1e3));
509#else 1320#else
510 struct timeval tv; 1321 struct timeval tv;
511 1322
512 tv.tv_sec = (time_t)delay; 1323 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1324 /* something not guaranteed by newer posix versions, but guaranteed */
514 1325 /* by older ones */
1326 EV_TV_SET (tv, delay);
515 select (0, 0, 0, 0, &tv); 1327 select (0, 0, 0, 0, &tv);
516#endif 1328#endif
517 } 1329 }
518} 1330}
519 1331
520/*****************************************************************************/ 1332/*****************************************************************************/
521 1333
522int inline_size 1334#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1335
1336/* find a suitable new size for the given array, */
1337/* hopefully by rounding to a nice-to-malloc size */
1338inline_size int
523array_nextsize (int elem, int cur, int cnt) 1339array_nextsize (int elem, int cur, int cnt)
524{ 1340{
525 int ncur = cur + 1; 1341 int ncur = cur + 1;
526 1342
527 do 1343 do
528 ncur <<= 1; 1344 ncur <<= 1;
529 while (cnt > ncur); 1345 while (cnt > ncur);
530 1346
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1347 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
532 if (elem * ncur > 4096) 1348 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 1349 {
534 ncur *= elem; 1350 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1351 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 1352 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 1353 ncur /= elem;
538 } 1354 }
539 1355
540 return ncur; 1356 return ncur;
541} 1357}
542 1358
543static noinline void * 1359static void * noinline ecb_cold
544array_realloc (int elem, void *base, int *cur, int cnt) 1360array_realloc (int elem, void *base, int *cur, int cnt)
545{ 1361{
546 *cur = array_nextsize (elem, *cur, cnt); 1362 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 1363 return ev_realloc (base, elem * *cur);
548} 1364}
1365
1366#define array_init_zero(base,count) \
1367 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 1368
550#define array_needsize(type,base,cur,cnt,init) \ 1369#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 1370 if (expect_false ((cnt) > (cur))) \
552 { \ 1371 { \
553 int ocur_ = (cur); \ 1372 int ecb_unused ocur_ = (cur); \
554 (base) = (type *)array_realloc \ 1373 (base) = (type *)array_realloc \
555 (sizeof (type), (base), &(cur), (cnt)); \ 1374 (sizeof (type), (base), &(cur), (cnt)); \
556 init ((base) + (ocur_), (cur) - ocur_); \ 1375 init ((base) + (ocur_), (cur) - ocur_); \
557 } 1376 }
558 1377
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1384 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 1385 }
567#endif 1386#endif
568 1387
569#define array_free(stem, idx) \ 1388#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1389 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 1390
572/*****************************************************************************/ 1391/*****************************************************************************/
1392
1393/* dummy callback for pending events */
1394static void noinline
1395pendingcb (EV_P_ ev_prepare *w, int revents)
1396{
1397}
573 1398
574void noinline 1399void noinline
575ev_feed_event (EV_P_ void *w, int revents) 1400ev_feed_event (EV_P_ void *w, int revents)
576{ 1401{
577 W w_ = (W)w; 1402 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 1411 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 1412 pendings [pri][w_->pending - 1].events = revents;
588 } 1413 }
589} 1414}
590 1415
591void inline_speed 1416inline_speed void
1417feed_reverse (EV_P_ W w)
1418{
1419 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1420 rfeeds [rfeedcnt++] = w;
1421}
1422
1423inline_size void
1424feed_reverse_done (EV_P_ int revents)
1425{
1426 do
1427 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1428 while (rfeedcnt);
1429}
1430
1431inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 1432queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 1433{
594 int i; 1434 int i;
595 1435
596 for (i = 0; i < eventcnt; ++i) 1436 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 1437 ev_feed_event (EV_A_ events [i], type);
598} 1438}
599 1439
600/*****************************************************************************/ 1440/*****************************************************************************/
601 1441
602void inline_size 1442inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 1443fd_event_nocheck (EV_P_ int fd, int revents)
617{ 1444{
618 ANFD *anfd = anfds + fd; 1445 ANFD *anfd = anfds + fd;
619 ev_io *w; 1446 ev_io *w;
620 1447
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1448 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 1452 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 1453 ev_feed_event (EV_A_ (W)w, ev);
627 } 1454 }
628} 1455}
629 1456
1457/* do not submit kernel events for fds that have reify set */
1458/* because that means they changed while we were polling for new events */
1459inline_speed void
1460fd_event (EV_P_ int fd, int revents)
1461{
1462 ANFD *anfd = anfds + fd;
1463
1464 if (expect_true (!anfd->reify))
1465 fd_event_nocheck (EV_A_ fd, revents);
1466}
1467
630void 1468void
631ev_feed_fd_event (EV_P_ int fd, int revents) 1469ev_feed_fd_event (EV_P_ int fd, int revents)
632{ 1470{
633 if (fd >= 0 && fd < anfdmax) 1471 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 1472 fd_event_nocheck (EV_A_ fd, revents);
635} 1473}
636 1474
637void inline_size 1475/* make sure the external fd watch events are in-sync */
1476/* with the kernel/libev internal state */
1477inline_size void
638fd_reify (EV_P) 1478fd_reify (EV_P)
639{ 1479{
640 int i; 1480 int i;
1481
1482#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1483 for (i = 0; i < fdchangecnt; ++i)
1484 {
1485 int fd = fdchanges [i];
1486 ANFD *anfd = anfds + fd;
1487
1488 if (anfd->reify & EV__IOFDSET && anfd->head)
1489 {
1490 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1491
1492 if (handle != anfd->handle)
1493 {
1494 unsigned long arg;
1495
1496 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1497
1498 /* handle changed, but fd didn't - we need to do it in two steps */
1499 backend_modify (EV_A_ fd, anfd->events, 0);
1500 anfd->events = 0;
1501 anfd->handle = handle;
1502 }
1503 }
1504 }
1505#endif
641 1506
642 for (i = 0; i < fdchangecnt; ++i) 1507 for (i = 0; i < fdchangecnt; ++i)
643 { 1508 {
644 int fd = fdchanges [i]; 1509 int fd = fdchanges [i];
645 ANFD *anfd = anfds + fd; 1510 ANFD *anfd = anfds + fd;
646 ev_io *w; 1511 ev_io *w;
647 1512
648 unsigned char events = 0; 1513 unsigned char o_events = anfd->events;
1514 unsigned char o_reify = anfd->reify;
649 1515
650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1516 anfd->reify = 0;
651 events |= (unsigned char)w->events;
652 1517
653#if EV_SELECT_IS_WINSOCKET 1518 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
654 if (events)
655 { 1519 {
656 unsigned long argp; 1520 anfd->events = 0;
657 #ifdef EV_FD_TO_WIN32_HANDLE 1521
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
659 #else 1523 anfd->events |= (unsigned char)w->events;
660 anfd->handle = _get_osfhandle (fd); 1524
661 #endif 1525 if (o_events != anfd->events)
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1526 o_reify = EV__IOFDSET; /* actually |= */
663 } 1527 }
664#endif
665 1528
666 { 1529 if (o_reify & EV__IOFDSET)
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
670 anfd->reify = 0;
671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 1530 backend_modify (EV_A_ fd, o_events, anfd->events);
675 }
676 } 1531 }
677 1532
678 fdchangecnt = 0; 1533 fdchangecnt = 0;
679} 1534}
680 1535
681void inline_size 1536/* something about the given fd changed */
1537inline_size void
682fd_change (EV_P_ int fd, int flags) 1538fd_change (EV_P_ int fd, int flags)
683{ 1539{
684 unsigned char reify = anfds [fd].reify; 1540 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 1541 anfds [fd].reify |= flags;
686 1542
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1546 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 1547 fdchanges [fdchangecnt - 1] = fd;
692 } 1548 }
693} 1549}
694 1550
695void inline_speed 1551/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1552inline_speed void ecb_cold
696fd_kill (EV_P_ int fd) 1553fd_kill (EV_P_ int fd)
697{ 1554{
698 ev_io *w; 1555 ev_io *w;
699 1556
700 while ((w = (ev_io *)anfds [fd].head)) 1557 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 1559 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1560 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 1561 }
705} 1562}
706 1563
707int inline_size 1564/* check whether the given fd is actually valid, for error recovery */
1565inline_size int ecb_cold
708fd_valid (int fd) 1566fd_valid (int fd)
709{ 1567{
710#ifdef _WIN32 1568#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 1569 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
712#else 1570#else
713 return fcntl (fd, F_GETFD) != -1; 1571 return fcntl (fd, F_GETFD) != -1;
714#endif 1572#endif
715} 1573}
716 1574
717/* called on EBADF to verify fds */ 1575/* called on EBADF to verify fds */
718static void noinline 1576static void noinline ecb_cold
719fd_ebadf (EV_P) 1577fd_ebadf (EV_P)
720{ 1578{
721 int fd; 1579 int fd;
722 1580
723 for (fd = 0; fd < anfdmax; ++fd) 1581 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 1582 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 1583 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 1584 fd_kill (EV_A_ fd);
727} 1585}
728 1586
729/* called on ENOMEM in select/poll to kill some fds and retry */ 1587/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 1588static void noinline ecb_cold
731fd_enomem (EV_P) 1589fd_enomem (EV_P)
732{ 1590{
733 int fd; 1591 int fd;
734 1592
735 for (fd = anfdmax; fd--; ) 1593 for (fd = anfdmax; fd--; )
736 if (anfds [fd].events) 1594 if (anfds [fd].events)
737 { 1595 {
738 fd_kill (EV_A_ fd); 1596 fd_kill (EV_A_ fd);
739 return; 1597 break;
740 } 1598 }
741} 1599}
742 1600
743/* usually called after fork if backend needs to re-arm all fds from scratch */ 1601/* usually called after fork if backend needs to re-arm all fds from scratch */
744static void noinline 1602static void noinline
748 1606
749 for (fd = 0; fd < anfdmax; ++fd) 1607 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 1608 if (anfds [fd].events)
751 { 1609 {
752 anfds [fd].events = 0; 1610 anfds [fd].events = 0;
1611 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1612 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 1613 }
755} 1614}
756 1615
757/*****************************************************************************/ 1616/* used to prepare libev internal fd's */
758 1617/* this is not fork-safe */
759void inline_speed 1618inline_speed void
760upheap (WT *heap, int k)
761{
762 WT w = heap [k];
763
764 while (k)
765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
771 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1;
773 k = p;
774 }
775
776 heap [k] = w;
777 ((W)heap [k])->active = k + 1;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806}
807
808void inline_size
809adjustheap (WT *heap, int N, int k)
810{
811 upheap (heap, k);
812 downheap (heap, N, k);
813}
814
815/*****************************************************************************/
816
817typedef struct
818{
819 WL head;
820 EV_ATOMIC_T gotsig;
821} ANSIG;
822
823static ANSIG *signals;
824static int signalmax;
825
826static EV_ATOMIC_T gotsig;
827
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/
841
842void inline_speed
843fd_intern (int fd) 1619fd_intern (int fd)
844{ 1620{
845#ifdef _WIN32 1621#ifdef _WIN32
846 int arg = 1; 1622 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1623 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
848#else 1624#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 1625 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 1626 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 1627#endif
852} 1628}
853 1629
1630/*****************************************************************************/
1631
1632/*
1633 * the heap functions want a real array index. array index 0 is guaranteed to not
1634 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1635 * the branching factor of the d-tree.
1636 */
1637
1638/*
1639 * at the moment we allow libev the luxury of two heaps,
1640 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1641 * which is more cache-efficient.
1642 * the difference is about 5% with 50000+ watchers.
1643 */
1644#if EV_USE_4HEAP
1645
1646#define DHEAP 4
1647#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1648#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1649#define UPHEAP_DONE(p,k) ((p) == (k))
1650
1651/* away from the root */
1652inline_speed void
1653downheap (ANHE *heap, int N, int k)
1654{
1655 ANHE he = heap [k];
1656 ANHE *E = heap + N + HEAP0;
1657
1658 for (;;)
1659 {
1660 ev_tstamp minat;
1661 ANHE *minpos;
1662 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1663
1664 /* find minimum child */
1665 if (expect_true (pos + DHEAP - 1 < E))
1666 {
1667 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1669 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1670 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1671 }
1672 else if (pos < E)
1673 {
1674 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1675 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1676 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1677 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1678 }
1679 else
1680 break;
1681
1682 if (ANHE_at (he) <= minat)
1683 break;
1684
1685 heap [k] = *minpos;
1686 ev_active (ANHE_w (*minpos)) = k;
1687
1688 k = minpos - heap;
1689 }
1690
1691 heap [k] = he;
1692 ev_active (ANHE_w (he)) = k;
1693}
1694
1695#else /* 4HEAP */
1696
1697#define HEAP0 1
1698#define HPARENT(k) ((k) >> 1)
1699#define UPHEAP_DONE(p,k) (!(p))
1700
1701/* away from the root */
1702inline_speed void
1703downheap (ANHE *heap, int N, int k)
1704{
1705 ANHE he = heap [k];
1706
1707 for (;;)
1708 {
1709 int c = k << 1;
1710
1711 if (c >= N + HEAP0)
1712 break;
1713
1714 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1715 ? 1 : 0;
1716
1717 if (ANHE_at (he) <= ANHE_at (heap [c]))
1718 break;
1719
1720 heap [k] = heap [c];
1721 ev_active (ANHE_w (heap [k])) = k;
1722
1723 k = c;
1724 }
1725
1726 heap [k] = he;
1727 ev_active (ANHE_w (he)) = k;
1728}
1729#endif
1730
1731/* towards the root */
1732inline_speed void
1733upheap (ANHE *heap, int k)
1734{
1735 ANHE he = heap [k];
1736
1737 for (;;)
1738 {
1739 int p = HPARENT (k);
1740
1741 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1742 break;
1743
1744 heap [k] = heap [p];
1745 ev_active (ANHE_w (heap [k])) = k;
1746 k = p;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752
1753/* move an element suitably so it is in a correct place */
1754inline_size void
1755adjustheap (ANHE *heap, int N, int k)
1756{
1757 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1758 upheap (heap, k);
1759 else
1760 downheap (heap, N, k);
1761}
1762
1763/* rebuild the heap: this function is used only once and executed rarely */
1764inline_size void
1765reheap (ANHE *heap, int N)
1766{
1767 int i;
1768
1769 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1770 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1771 for (i = 0; i < N; ++i)
1772 upheap (heap, i + HEAP0);
1773}
1774
1775/*****************************************************************************/
1776
1777/* associate signal watchers to a signal signal */
1778typedef struct
1779{
1780 EV_ATOMIC_T pending;
1781#if EV_MULTIPLICITY
1782 EV_P;
1783#endif
1784 WL head;
1785} ANSIG;
1786
1787static ANSIG signals [EV_NSIG - 1];
1788
1789/*****************************************************************************/
1790
1791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1792
854static void noinline 1793static void noinline ecb_cold
855evpipe_init (EV_P) 1794evpipe_init (EV_P)
856{ 1795{
857 if (!ev_is_active (&pipeev)) 1796 if (!ev_is_active (&pipe_w))
858 { 1797 {
859#if EV_USE_EVENTFD 1798# if EV_USE_EVENTFD
1799 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1800 if (evfd < 0 && errno == EINVAL)
860 if ((evfd = eventfd (0, 0)) >= 0) 1801 evfd = eventfd (0, 0);
1802
1803 if (evfd >= 0)
861 { 1804 {
862 evpipe [0] = -1; 1805 evpipe [0] = -1;
863 fd_intern (evfd); 1806 fd_intern (evfd); /* doing it twice doesn't hurt */
864 ev_io_set (&pipeev, evfd, EV_READ); 1807 ev_io_set (&pipe_w, evfd, EV_READ);
865 } 1808 }
866 else 1809 else
867#endif 1810# endif
868 { 1811 {
869 while (pipe (evpipe)) 1812 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe"); 1813 ev_syserr ("(libev) error creating signal/async pipe");
871 1814
872 fd_intern (evpipe [0]); 1815 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]); 1816 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ); 1817 ev_io_set (&pipe_w, evpipe [0], EV_READ);
875 } 1818 }
876 1819
877 ev_io_start (EV_A_ &pipeev); 1820 ev_io_start (EV_A_ &pipe_w);
878 ev_unref (EV_A); /* watcher should not keep loop alive */ 1821 ev_unref (EV_A); /* watcher should not keep loop alive */
879 } 1822 }
880} 1823}
881 1824
882void inline_size 1825inline_speed void
883evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1826evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{ 1827{
885 if (!*flag) 1828 if (expect_true (*flag))
1829 return;
1830
1831 *flag = 1;
1832
1833 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1834
1835 pipe_write_skipped = 1;
1836
1837 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1838
1839 if (pipe_write_wanted)
886 { 1840 {
1841 int old_errno;
1842
1843 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1844
887 int old_errno = errno; /* save errno because write might clobber it */ 1845 old_errno = errno; /* save errno because write will clobber it */
888
889 *flag = 1;
890 1846
891#if EV_USE_EVENTFD 1847#if EV_USE_EVENTFD
892 if (evfd >= 0) 1848 if (evfd >= 0)
893 { 1849 {
894 uint64_t counter = 1; 1850 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t)); 1851 write (evfd, &counter, sizeof (uint64_t));
896 } 1852 }
897 else 1853 else
898#endif 1854#endif
1855 {
1856 /* win32 people keep sending patches that change this write() to send() */
1857 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1858 /* so when you think this write should be a send instead, please find out */
1859 /* where your send() is from - it's definitely not the microsoft send, and */
1860 /* tell me. thank you. */
899 write (evpipe [1], &old_errno, 1); 1861 write (evpipe [1], &(evpipe [1]), 1);
1862 }
900 1863
901 errno = old_errno; 1864 errno = old_errno;
902 } 1865 }
903} 1866}
904 1867
1868/* called whenever the libev signal pipe */
1869/* got some events (signal, async) */
905static void 1870static void
906pipecb (EV_P_ ev_io *iow, int revents) 1871pipecb (EV_P_ ev_io *iow, int revents)
907{ 1872{
1873 int i;
1874
1875 if (revents & EV_READ)
1876 {
908#if EV_USE_EVENTFD 1877#if EV_USE_EVENTFD
909 if (evfd >= 0) 1878 if (evfd >= 0)
910 { 1879 {
911 uint64_t counter = 1; 1880 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1881 read (evfd, &counter, sizeof (uint64_t));
913 } 1882 }
914 else 1883 else
915#endif 1884#endif
916 { 1885 {
917 char dummy; 1886 char dummy;
1887 /* see discussion in evpipe_write when you think this read should be recv in win32 */
918 read (evpipe [0], &dummy, 1); 1888 read (evpipe [0], &dummy, 1);
1889 }
1890 }
1891
1892 pipe_write_skipped = 0;
1893
1894#if EV_SIGNAL_ENABLE
1895 if (sig_pending)
919 } 1896 {
1897 sig_pending = 0;
920 1898
921 if (gotsig && ev_is_default_loop (EV_A)) 1899 for (i = EV_NSIG - 1; i--; )
922 { 1900 if (expect_false (signals [i].pending))
923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1); 1901 ev_feed_signal_event (EV_A_ i + 1);
929 } 1902 }
1903#endif
930 1904
931#if EV_ASYNC_ENABLE 1905#if EV_ASYNC_ENABLE
932 if (gotasync) 1906 if (async_pending)
933 { 1907 {
934 int i; 1908 async_pending = 0;
935 gotasync = 0;
936 1909
937 for (i = asynccnt; i--; ) 1910 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent) 1911 if (asyncs [i]->sent)
939 { 1912 {
940 asyncs [i]->sent = 0; 1913 asyncs [i]->sent = 0;
944#endif 1917#endif
945} 1918}
946 1919
947/*****************************************************************************/ 1920/*****************************************************************************/
948 1921
1922void
1923ev_feed_signal (int signum)
1924{
1925#if EV_MULTIPLICITY
1926 EV_P = signals [signum - 1].loop;
1927
1928 if (!EV_A)
1929 return;
1930#endif
1931
1932 if (!ev_active (&pipe_w))
1933 return;
1934
1935 signals [signum - 1].pending = 1;
1936 evpipe_write (EV_A_ &sig_pending);
1937}
1938
949static void 1939static void
950ev_sighandler (int signum) 1940ev_sighandler (int signum)
951{ 1941{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32 1942#ifdef _WIN32
957 signal (signum, ev_sighandler); 1943 signal (signum, ev_sighandler);
958#endif 1944#endif
959 1945
960 signals [signum - 1].gotsig = 1; 1946 ev_feed_signal (signum);
961 evpipe_write (EV_A_ &gotsig);
962} 1947}
963 1948
964void noinline 1949void noinline
965ev_feed_signal_event (EV_P_ int signum) 1950ev_feed_signal_event (EV_P_ int signum)
966{ 1951{
967 WL w; 1952 WL w;
968 1953
1954 if (expect_false (signum <= 0 || signum > EV_NSIG))
1955 return;
1956
1957 --signum;
1958
969#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1960 /* it is permissible to try to feed a signal to the wrong loop */
971#endif 1961 /* or, likely more useful, feeding a signal nobody is waiting for */
972 1962
973 --signum; 1963 if (expect_false (signals [signum].loop != EV_A))
974
975 if (signum < 0 || signum >= signalmax)
976 return; 1964 return;
1965#endif
977 1966
978 signals [signum].gotsig = 0; 1967 signals [signum].pending = 0;
979 1968
980 for (w = signals [signum].head; w; w = w->next) 1969 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1970 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982} 1971}
983 1972
1973#if EV_USE_SIGNALFD
1974static void
1975sigfdcb (EV_P_ ev_io *iow, int revents)
1976{
1977 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1978
1979 for (;;)
1980 {
1981 ssize_t res = read (sigfd, si, sizeof (si));
1982
1983 /* not ISO-C, as res might be -1, but works with SuS */
1984 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1985 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1986
1987 if (res < (ssize_t)sizeof (si))
1988 break;
1989 }
1990}
1991#endif
1992
1993#endif
1994
984/*****************************************************************************/ 1995/*****************************************************************************/
985 1996
1997#if EV_CHILD_ENABLE
986static WL childs [EV_PID_HASHSIZE]; 1998static WL childs [EV_PID_HASHSIZE];
987
988#ifndef _WIN32
989 1999
990static ev_signal childev; 2000static ev_signal childev;
991 2001
992#ifndef WIFCONTINUED 2002#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0 2003# define WIFCONTINUED(status) 0
994#endif 2004#endif
995 2005
996void inline_speed 2006/* handle a single child status event */
2007inline_speed void
997child_reap (EV_P_ int chain, int pid, int status) 2008child_reap (EV_P_ int chain, int pid, int status)
998{ 2009{
999 ev_child *w; 2010 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2011 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001 2012
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2013 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 { 2014 {
1004 if ((w->pid == pid || !w->pid) 2015 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1))) 2016 && (!traced || (w->flags & 1)))
1006 { 2017 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2018 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 2025
1015#ifndef WCONTINUED 2026#ifndef WCONTINUED
1016# define WCONTINUED 0 2027# define WCONTINUED 0
1017#endif 2028#endif
1018 2029
2030/* called on sigchld etc., calls waitpid */
1019static void 2031static void
1020childcb (EV_P_ ev_signal *sw, int revents) 2032childcb (EV_P_ ev_signal *sw, int revents)
1021{ 2033{
1022 int pid, status; 2034 int pid, status;
1023 2035
1031 /* make sure we are called again until all children have been reaped */ 2043 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */ 2044 /* we need to do it this way so that the callback gets called before we continue */
1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2045 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1034 2046
1035 child_reap (EV_A_ pid, pid, status); 2047 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1) 2048 if ((EV_PID_HASHSIZE) > 1)
1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2049 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1038} 2050}
1039 2051
1040#endif 2052#endif
1041 2053
1042/*****************************************************************************/ 2054/*****************************************************************************/
1043 2055
2056#if EV_USE_IOCP
2057# include "ev_iocp.c"
2058#endif
1044#if EV_USE_PORT 2059#if EV_USE_PORT
1045# include "ev_port.c" 2060# include "ev_port.c"
1046#endif 2061#endif
1047#if EV_USE_KQUEUE 2062#if EV_USE_KQUEUE
1048# include "ev_kqueue.c" 2063# include "ev_kqueue.c"
1055#endif 2070#endif
1056#if EV_USE_SELECT 2071#if EV_USE_SELECT
1057# include "ev_select.c" 2072# include "ev_select.c"
1058#endif 2073#endif
1059 2074
1060int 2075int ecb_cold
1061ev_version_major (void) 2076ev_version_major (void)
1062{ 2077{
1063 return EV_VERSION_MAJOR; 2078 return EV_VERSION_MAJOR;
1064} 2079}
1065 2080
1066int 2081int ecb_cold
1067ev_version_minor (void) 2082ev_version_minor (void)
1068{ 2083{
1069 return EV_VERSION_MINOR; 2084 return EV_VERSION_MINOR;
1070} 2085}
1071 2086
1072/* return true if we are running with elevated privileges and should ignore env variables */ 2087/* return true if we are running with elevated privileges and should ignore env variables */
1073int inline_size 2088int inline_size ecb_cold
1074enable_secure (void) 2089enable_secure (void)
1075{ 2090{
1076#ifdef _WIN32 2091#ifdef _WIN32
1077 return 0; 2092 return 0;
1078#else 2093#else
1079 return getuid () != geteuid () 2094 return getuid () != geteuid ()
1080 || getgid () != getegid (); 2095 || getgid () != getegid ();
1081#endif 2096#endif
1082} 2097}
1083 2098
1084unsigned int 2099unsigned int ecb_cold
1085ev_supported_backends (void) 2100ev_supported_backends (void)
1086{ 2101{
1087 unsigned int flags = 0; 2102 unsigned int flags = 0;
1088 2103
1089 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2104 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1093 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2108 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1094 2109
1095 return flags; 2110 return flags;
1096} 2111}
1097 2112
1098unsigned int 2113unsigned int ecb_cold
1099ev_recommended_backends (void) 2114ev_recommended_backends (void)
1100{ 2115{
1101 unsigned int flags = ev_supported_backends (); 2116 unsigned int flags = ev_supported_backends ();
1102 2117
1103#ifndef __NetBSD__ 2118#ifndef __NetBSD__
1104 /* kqueue is borked on everything but netbsd apparently */ 2119 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */ 2120 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE; 2121 flags &= ~EVBACKEND_KQUEUE;
1107#endif 2122#endif
1108#ifdef __APPLE__ 2123#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation 2124 /* only select works correctly on that "unix-certified" platform */
1110 flags &= ~EVBACKEND_POLL; 2125 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2126 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2127#endif
2128#ifdef __FreeBSD__
2129 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1111#endif 2130#endif
1112 2131
1113 return flags; 2132 return flags;
1114} 2133}
1115 2134
1116unsigned int 2135unsigned int ecb_cold
1117ev_embeddable_backends (void) 2136ev_embeddable_backends (void)
1118{ 2137{
1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2138 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1120 2139
1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2140 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */ 2141 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1123 flags &= ~EVBACKEND_EPOLL; 2142 flags &= ~EVBACKEND_EPOLL;
1124 2143
1125 return flags; 2144 return flags;
1126} 2145}
1127 2146
1128unsigned int 2147unsigned int
1129ev_backend (EV_P) 2148ev_backend (EV_P)
1130{ 2149{
1131 return backend; 2150 return backend;
1132} 2151}
1133 2152
2153#if EV_FEATURE_API
1134unsigned int 2154unsigned int
1135ev_loop_count (EV_P) 2155ev_iteration (EV_P)
1136{ 2156{
1137 return loop_count; 2157 return loop_count;
2158}
2159
2160unsigned int
2161ev_depth (EV_P)
2162{
2163 return loop_depth;
1138} 2164}
1139 2165
1140void 2166void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2167ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{ 2168{
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2173ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{ 2174{
1149 timeout_blocktime = interval; 2175 timeout_blocktime = interval;
1150} 2176}
1151 2177
2178void
2179ev_set_userdata (EV_P_ void *data)
2180{
2181 userdata = data;
2182}
2183
2184void *
2185ev_userdata (EV_P)
2186{
2187 return userdata;
2188}
2189
2190void
2191ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2192{
2193 invoke_cb = invoke_pending_cb;
2194}
2195
2196void
2197ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2198{
2199 release_cb = release;
2200 acquire_cb = acquire;
2201}
2202#endif
2203
2204/* initialise a loop structure, must be zero-initialised */
1152static void noinline 2205static void noinline ecb_cold
1153loop_init (EV_P_ unsigned int flags) 2206loop_init (EV_P_ unsigned int flags)
1154{ 2207{
1155 if (!backend) 2208 if (!backend)
1156 { 2209 {
2210 origflags = flags;
2211
2212#if EV_USE_REALTIME
2213 if (!have_realtime)
2214 {
2215 struct timespec ts;
2216
2217 if (!clock_gettime (CLOCK_REALTIME, &ts))
2218 have_realtime = 1;
2219 }
2220#endif
2221
1157#if EV_USE_MONOTONIC 2222#if EV_USE_MONOTONIC
2223 if (!have_monotonic)
1158 { 2224 {
1159 struct timespec ts; 2225 struct timespec ts;
2226
1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2227 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1161 have_monotonic = 1; 2228 have_monotonic = 1;
1162 } 2229 }
1163#endif
1164
1165 ev_rt_now = ev_time ();
1166 mn_now = get_clock ();
1167 now_floor = mn_now;
1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif 2230#endif
1178 2231
1179 /* pid check not overridable via env */ 2232 /* pid check not overridable via env */
1180#ifndef _WIN32 2233#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK) 2234 if (flags & EVFLAG_FORKCHECK)
1185 if (!(flags & EVFLAG_NOENV) 2238 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 2239 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 2240 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 2241 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 2242
1190 if (!(flags & 0x0000ffffU)) 2243 ev_rt_now = ev_time ();
2244 mn_now = get_clock ();
2245 now_floor = mn_now;
2246 rtmn_diff = ev_rt_now - mn_now;
2247#if EV_FEATURE_API
2248 invoke_cb = ev_invoke_pending;
2249#endif
2250
2251 io_blocktime = 0.;
2252 timeout_blocktime = 0.;
2253 backend = 0;
2254 backend_fd = -1;
2255 sig_pending = 0;
2256#if EV_ASYNC_ENABLE
2257 async_pending = 0;
2258#endif
2259 pipe_write_skipped = 0;
2260 pipe_write_wanted = 0;
2261#if EV_USE_INOTIFY
2262 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2263#endif
2264#if EV_USE_SIGNALFD
2265 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2266#endif
2267
2268 if (!(flags & EVBACKEND_MASK))
1191 flags |= ev_recommended_backends (); 2269 flags |= ev_recommended_backends ();
1192 2270
2271#if EV_USE_IOCP
2272 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2273#endif
1193#if EV_USE_PORT 2274#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2275 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 2276#endif
1196#if EV_USE_KQUEUE 2277#if EV_USE_KQUEUE
1197 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2278 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1204#endif 2285#endif
1205#if EV_USE_SELECT 2286#if EV_USE_SELECT
1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2287 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1207#endif 2288#endif
1208 2289
2290 ev_prepare_init (&pending_w, pendingcb);
2291
2292#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1209 ev_init (&pipeev, pipecb); 2293 ev_init (&pipe_w, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI); 2294 ev_set_priority (&pipe_w, EV_MAXPRI);
2295#endif
1211 } 2296 }
1212} 2297}
1213 2298
1214static void noinline 2299/* free up a loop structure */
2300void ecb_cold
1215loop_destroy (EV_P) 2301ev_loop_destroy (EV_P)
1216{ 2302{
1217 int i; 2303 int i;
1218 2304
2305#if EV_MULTIPLICITY
2306 /* mimic free (0) */
2307 if (!EV_A)
2308 return;
2309#endif
2310
2311#if EV_CLEANUP_ENABLE
2312 /* queue cleanup watchers (and execute them) */
2313 if (expect_false (cleanupcnt))
2314 {
2315 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2316 EV_INVOKE_PENDING;
2317 }
2318#endif
2319
2320#if EV_CHILD_ENABLE
2321 if (ev_is_active (&childev))
2322 {
2323 ev_ref (EV_A); /* child watcher */
2324 ev_signal_stop (EV_A_ &childev);
2325 }
2326#endif
2327
1219 if (ev_is_active (&pipeev)) 2328 if (ev_is_active (&pipe_w))
1220 { 2329 {
1221 ev_ref (EV_A); /* signal watcher */ 2330 /*ev_ref (EV_A);*/
1222 ev_io_stop (EV_A_ &pipeev); 2331 /*ev_io_stop (EV_A_ &pipe_w);*/
1223 2332
1224#if EV_USE_EVENTFD 2333#if EV_USE_EVENTFD
1225 if (evfd >= 0) 2334 if (evfd >= 0)
1226 close (evfd); 2335 close (evfd);
1227#endif 2336#endif
1228 2337
1229 if (evpipe [0] >= 0) 2338 if (evpipe [0] >= 0)
1230 { 2339 {
1231 close (evpipe [0]); 2340 EV_WIN32_CLOSE_FD (evpipe [0]);
1232 close (evpipe [1]); 2341 EV_WIN32_CLOSE_FD (evpipe [1]);
1233 } 2342 }
1234 } 2343 }
2344
2345#if EV_USE_SIGNALFD
2346 if (ev_is_active (&sigfd_w))
2347 close (sigfd);
2348#endif
1235 2349
1236#if EV_USE_INOTIFY 2350#if EV_USE_INOTIFY
1237 if (fs_fd >= 0) 2351 if (fs_fd >= 0)
1238 close (fs_fd); 2352 close (fs_fd);
1239#endif 2353#endif
1240 2354
1241 if (backend_fd >= 0) 2355 if (backend_fd >= 0)
1242 close (backend_fd); 2356 close (backend_fd);
1243 2357
2358#if EV_USE_IOCP
2359 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2360#endif
1244#if EV_USE_PORT 2361#if EV_USE_PORT
1245 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1246#endif 2363#endif
1247#if EV_USE_KQUEUE 2364#if EV_USE_KQUEUE
1248 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1263#if EV_IDLE_ENABLE 2380#if EV_IDLE_ENABLE
1264 array_free (idle, [i]); 2381 array_free (idle, [i]);
1265#endif 2382#endif
1266 } 2383 }
1267 2384
1268 ev_free (anfds); anfdmax = 0; 2385 ev_free (anfds); anfds = 0; anfdmax = 0;
1269 2386
1270 /* have to use the microsoft-never-gets-it-right macro */ 2387 /* have to use the microsoft-never-gets-it-right macro */
2388 array_free (rfeed, EMPTY);
1271 array_free (fdchange, EMPTY); 2389 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY); 2390 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE 2391#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY); 2392 array_free (periodic, EMPTY);
1275#endif 2393#endif
1276#if EV_FORK_ENABLE 2394#if EV_FORK_ENABLE
1277 array_free (fork, EMPTY); 2395 array_free (fork, EMPTY);
1278#endif 2396#endif
2397#if EV_CLEANUP_ENABLE
2398 array_free (cleanup, EMPTY);
2399#endif
1279 array_free (prepare, EMPTY); 2400 array_free (prepare, EMPTY);
1280 array_free (check, EMPTY); 2401 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE 2402#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY); 2403 array_free (async, EMPTY);
1283#endif 2404#endif
1284 2405
1285 backend = 0; 2406 backend = 0;
2407
2408#if EV_MULTIPLICITY
2409 if (ev_is_default_loop (EV_A))
2410#endif
2411 ev_default_loop_ptr = 0;
2412#if EV_MULTIPLICITY
2413 else
2414 ev_free (EV_A);
2415#endif
1286} 2416}
1287 2417
1288#if EV_USE_INOTIFY 2418#if EV_USE_INOTIFY
1289void inline_size infy_fork (EV_P); 2419inline_size void infy_fork (EV_P);
1290#endif 2420#endif
1291 2421
1292void inline_size 2422inline_size void
1293loop_fork (EV_P) 2423loop_fork (EV_P)
1294{ 2424{
1295#if EV_USE_PORT 2425#if EV_USE_PORT
1296 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2426 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1297#endif 2427#endif
1303#endif 2433#endif
1304#if EV_USE_INOTIFY 2434#if EV_USE_INOTIFY
1305 infy_fork (EV_A); 2435 infy_fork (EV_A);
1306#endif 2436#endif
1307 2437
1308 if (ev_is_active (&pipeev)) 2438 if (ev_is_active (&pipe_w))
1309 { 2439 {
1310 /* this "locks" the handlers against writing to the pipe */ 2440 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1311 /* while we modify the fd vars */
1312 gotsig = 1;
1313#if EV_ASYNC_ENABLE
1314 gotasync = 1;
1315#endif
1316 2441
1317 ev_ref (EV_A); 2442 ev_ref (EV_A);
1318 ev_io_stop (EV_A_ &pipeev); 2443 ev_io_stop (EV_A_ &pipe_w);
1319 2444
1320#if EV_USE_EVENTFD 2445#if EV_USE_EVENTFD
1321 if (evfd >= 0) 2446 if (evfd >= 0)
1322 close (evfd); 2447 close (evfd);
1323#endif 2448#endif
1324 2449
1325 if (evpipe [0] >= 0) 2450 if (evpipe [0] >= 0)
1326 { 2451 {
1327 close (evpipe [0]); 2452 EV_WIN32_CLOSE_FD (evpipe [0]);
1328 close (evpipe [1]); 2453 EV_WIN32_CLOSE_FD (evpipe [1]);
1329 } 2454 }
1330 2455
2456#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1331 evpipe_init (EV_A); 2457 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */ 2458 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ); 2459 pipecb (EV_A_ &pipe_w, EV_READ);
2460#endif
1334 } 2461 }
1335 2462
1336 postfork = 0; 2463 postfork = 0;
1337} 2464}
1338 2465
1339#if EV_MULTIPLICITY 2466#if EV_MULTIPLICITY
2467
1340struct ev_loop * 2468struct ev_loop * ecb_cold
1341ev_loop_new (unsigned int flags) 2469ev_loop_new (unsigned int flags)
1342{ 2470{
1343 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2471 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1344 2472
1345 memset (loop, 0, sizeof (struct ev_loop)); 2473 memset (EV_A, 0, sizeof (struct ev_loop));
1346
1347 loop_init (EV_A_ flags); 2474 loop_init (EV_A_ flags);
1348 2475
1349 if (ev_backend (EV_A)) 2476 if (ev_backend (EV_A))
1350 return loop; 2477 return EV_A;
1351 2478
2479 ev_free (EV_A);
1352 return 0; 2480 return 0;
1353} 2481}
1354 2482
1355void 2483#endif /* multiplicity */
1356ev_loop_destroy (EV_P)
1357{
1358 loop_destroy (EV_A);
1359 ev_free (loop);
1360}
1361 2484
1362void 2485#if EV_VERIFY
1363ev_loop_fork (EV_P) 2486static void noinline ecb_cold
2487verify_watcher (EV_P_ W w)
1364{ 2488{
1365 postfork = 1; /* must be in line with ev_default_fork */ 2489 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1366}
1367 2490
2491 if (w->pending)
2492 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2493}
2494
2495static void noinline ecb_cold
2496verify_heap (EV_P_ ANHE *heap, int N)
2497{
2498 int i;
2499
2500 for (i = HEAP0; i < N + HEAP0; ++i)
2501 {
2502 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2503 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2504 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2505
2506 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2507 }
2508}
2509
2510static void noinline ecb_cold
2511array_verify (EV_P_ W *ws, int cnt)
2512{
2513 while (cnt--)
2514 {
2515 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2516 verify_watcher (EV_A_ ws [cnt]);
2517 }
2518}
2519#endif
2520
2521#if EV_FEATURE_API
2522void ecb_cold
2523ev_verify (EV_P)
2524{
2525#if EV_VERIFY
2526 int i;
2527 WL w;
2528
2529 assert (activecnt >= -1);
2530
2531 assert (fdchangemax >= fdchangecnt);
2532 for (i = 0; i < fdchangecnt; ++i)
2533 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2534
2535 assert (anfdmax >= 0);
2536 for (i = 0; i < anfdmax; ++i)
2537 for (w = anfds [i].head; w; w = w->next)
2538 {
2539 verify_watcher (EV_A_ (W)w);
2540 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2541 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2542 }
2543
2544 assert (timermax >= timercnt);
2545 verify_heap (EV_A_ timers, timercnt);
2546
2547#if EV_PERIODIC_ENABLE
2548 assert (periodicmax >= periodiccnt);
2549 verify_heap (EV_A_ periodics, periodiccnt);
2550#endif
2551
2552 for (i = NUMPRI; i--; )
2553 {
2554 assert (pendingmax [i] >= pendingcnt [i]);
2555#if EV_IDLE_ENABLE
2556 assert (idleall >= 0);
2557 assert (idlemax [i] >= idlecnt [i]);
2558 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2559#endif
2560 }
2561
2562#if EV_FORK_ENABLE
2563 assert (forkmax >= forkcnt);
2564 array_verify (EV_A_ (W *)forks, forkcnt);
2565#endif
2566
2567#if EV_CLEANUP_ENABLE
2568 assert (cleanupmax >= cleanupcnt);
2569 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2570#endif
2571
2572#if EV_ASYNC_ENABLE
2573 assert (asyncmax >= asynccnt);
2574 array_verify (EV_A_ (W *)asyncs, asynccnt);
2575#endif
2576
2577#if EV_PREPARE_ENABLE
2578 assert (preparemax >= preparecnt);
2579 array_verify (EV_A_ (W *)prepares, preparecnt);
2580#endif
2581
2582#if EV_CHECK_ENABLE
2583 assert (checkmax >= checkcnt);
2584 array_verify (EV_A_ (W *)checks, checkcnt);
2585#endif
2586
2587# if 0
2588#if EV_CHILD_ENABLE
2589 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2590 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2591#endif
2592# endif
2593#endif
2594}
1368#endif 2595#endif
1369 2596
1370#if EV_MULTIPLICITY 2597#if EV_MULTIPLICITY
1371struct ev_loop * 2598struct ev_loop * ecb_cold
1372ev_default_loop_init (unsigned int flags)
1373#else 2599#else
1374int 2600int
2601#endif
1375ev_default_loop (unsigned int flags) 2602ev_default_loop (unsigned int flags)
1376#endif
1377{ 2603{
1378 if (!ev_default_loop_ptr) 2604 if (!ev_default_loop_ptr)
1379 { 2605 {
1380#if EV_MULTIPLICITY 2606#if EV_MULTIPLICITY
1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2607 EV_P = ev_default_loop_ptr = &default_loop_struct;
1382#else 2608#else
1383 ev_default_loop_ptr = 1; 2609 ev_default_loop_ptr = 1;
1384#endif 2610#endif
1385 2611
1386 loop_init (EV_A_ flags); 2612 loop_init (EV_A_ flags);
1387 2613
1388 if (ev_backend (EV_A)) 2614 if (ev_backend (EV_A))
1389 { 2615 {
1390#ifndef _WIN32 2616#if EV_CHILD_ENABLE
1391 ev_signal_init (&childev, childcb, SIGCHLD); 2617 ev_signal_init (&childev, childcb, SIGCHLD);
1392 ev_set_priority (&childev, EV_MAXPRI); 2618 ev_set_priority (&childev, EV_MAXPRI);
1393 ev_signal_start (EV_A_ &childev); 2619 ev_signal_start (EV_A_ &childev);
1394 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2620 ev_unref (EV_A); /* child watcher should not keep loop alive */
1395#endif 2621#endif
1400 2626
1401 return ev_default_loop_ptr; 2627 return ev_default_loop_ptr;
1402} 2628}
1403 2629
1404void 2630void
1405ev_default_destroy (void) 2631ev_loop_fork (EV_P)
1406{ 2632{
1407#if EV_MULTIPLICITY
1408 struct ev_loop *loop = ev_default_loop_ptr;
1409#endif
1410
1411#ifndef _WIN32
1412 ev_ref (EV_A); /* child watcher */
1413 ev_signal_stop (EV_A_ &childev);
1414#endif
1415
1416 loop_destroy (EV_A);
1417}
1418
1419void
1420ev_default_fork (void)
1421{
1422#if EV_MULTIPLICITY
1423 struct ev_loop *loop = ev_default_loop_ptr;
1424#endif
1425
1426 if (backend)
1427 postfork = 1; /* must be in line with ev_loop_fork */ 2633 postfork = 1; /* must be in line with ev_default_fork */
1428} 2634}
1429 2635
1430/*****************************************************************************/ 2636/*****************************************************************************/
1431 2637
1432void 2638void
1433ev_invoke (EV_P_ void *w, int revents) 2639ev_invoke (EV_P_ void *w, int revents)
1434{ 2640{
1435 EV_CB_INVOKE ((W)w, revents); 2641 EV_CB_INVOKE ((W)w, revents);
1436} 2642}
1437 2643
1438void inline_speed 2644unsigned int
1439call_pending (EV_P) 2645ev_pending_count (EV_P)
2646{
2647 int pri;
2648 unsigned int count = 0;
2649
2650 for (pri = NUMPRI; pri--; )
2651 count += pendingcnt [pri];
2652
2653 return count;
2654}
2655
2656void noinline
2657ev_invoke_pending (EV_P)
1440{ 2658{
1441 int pri; 2659 int pri;
1442 2660
1443 for (pri = NUMPRI; pri--; ) 2661 for (pri = NUMPRI; pri--; )
1444 while (pendingcnt [pri]) 2662 while (pendingcnt [pri])
1445 { 2663 {
1446 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2664 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1447 2665
1448 if (expect_true (p->w))
1449 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1451
1452 p->w->pending = 0; 2666 p->w->pending = 0;
1453 EV_CB_INVOKE (p->w, p->events); 2667 EV_CB_INVOKE (p->w, p->events);
1454 } 2668 EV_FREQUENT_CHECK;
1455 } 2669 }
1456} 2670}
1457 2671
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537
1538#if EV_IDLE_ENABLE 2672#if EV_IDLE_ENABLE
1539void inline_size 2673/* make idle watchers pending. this handles the "call-idle */
2674/* only when higher priorities are idle" logic */
2675inline_size void
1540idle_reify (EV_P) 2676idle_reify (EV_P)
1541{ 2677{
1542 if (expect_false (idleall)) 2678 if (expect_false (idleall))
1543 { 2679 {
1544 int pri; 2680 int pri;
1556 } 2692 }
1557 } 2693 }
1558} 2694}
1559#endif 2695#endif
1560 2696
1561void inline_speed 2697/* make timers pending */
2698inline_size void
2699timers_reify (EV_P)
2700{
2701 EV_FREQUENT_CHECK;
2702
2703 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2704 {
2705 do
2706 {
2707 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2708
2709 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2710
2711 /* first reschedule or stop timer */
2712 if (w->repeat)
2713 {
2714 ev_at (w) += w->repeat;
2715 if (ev_at (w) < mn_now)
2716 ev_at (w) = mn_now;
2717
2718 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2719
2720 ANHE_at_cache (timers [HEAP0]);
2721 downheap (timers, timercnt, HEAP0);
2722 }
2723 else
2724 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2725
2726 EV_FREQUENT_CHECK;
2727 feed_reverse (EV_A_ (W)w);
2728 }
2729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2730
2731 feed_reverse_done (EV_A_ EV_TIMER);
2732 }
2733}
2734
2735#if EV_PERIODIC_ENABLE
2736
2737static void noinline
2738periodic_recalc (EV_P_ ev_periodic *w)
2739{
2740 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2741 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2742
2743 /* the above almost always errs on the low side */
2744 while (at <= ev_rt_now)
2745 {
2746 ev_tstamp nat = at + w->interval;
2747
2748 /* when resolution fails us, we use ev_rt_now */
2749 if (expect_false (nat == at))
2750 {
2751 at = ev_rt_now;
2752 break;
2753 }
2754
2755 at = nat;
2756 }
2757
2758 ev_at (w) = at;
2759}
2760
2761/* make periodics pending */
2762inline_size void
2763periodics_reify (EV_P)
2764{
2765 EV_FREQUENT_CHECK;
2766
2767 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2768 {
2769 int feed_count = 0;
2770
2771 do
2772 {
2773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2774
2775 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2776
2777 /* first reschedule or stop timer */
2778 if (w->reschedule_cb)
2779 {
2780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2781
2782 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2783
2784 ANHE_at_cache (periodics [HEAP0]);
2785 downheap (periodics, periodiccnt, HEAP0);
2786 }
2787 else if (w->interval)
2788 {
2789 periodic_recalc (EV_A_ w);
2790 ANHE_at_cache (periodics [HEAP0]);
2791 downheap (periodics, periodiccnt, HEAP0);
2792 }
2793 else
2794 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2795
2796 EV_FREQUENT_CHECK;
2797 feed_reverse (EV_A_ (W)w);
2798 }
2799 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2800
2801 feed_reverse_done (EV_A_ EV_PERIODIC);
2802 }
2803}
2804
2805/* simply recalculate all periodics */
2806/* TODO: maybe ensure that at least one event happens when jumping forward? */
2807static void noinline ecb_cold
2808periodics_reschedule (EV_P)
2809{
2810 int i;
2811
2812 /* adjust periodics after time jump */
2813 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2814 {
2815 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2816
2817 if (w->reschedule_cb)
2818 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2819 else if (w->interval)
2820 periodic_recalc (EV_A_ w);
2821
2822 ANHE_at_cache (periodics [i]);
2823 }
2824
2825 reheap (periodics, periodiccnt);
2826}
2827#endif
2828
2829/* adjust all timers by a given offset */
2830static void noinline ecb_cold
2831timers_reschedule (EV_P_ ev_tstamp adjust)
2832{
2833 int i;
2834
2835 for (i = 0; i < timercnt; ++i)
2836 {
2837 ANHE *he = timers + i + HEAP0;
2838 ANHE_w (*he)->at += adjust;
2839 ANHE_at_cache (*he);
2840 }
2841}
2842
2843/* fetch new monotonic and realtime times from the kernel */
2844/* also detect if there was a timejump, and act accordingly */
2845inline_speed void
1562time_update (EV_P_ ev_tstamp max_block) 2846time_update (EV_P_ ev_tstamp max_block)
1563{ 2847{
1564 int i;
1565
1566#if EV_USE_MONOTONIC 2848#if EV_USE_MONOTONIC
1567 if (expect_true (have_monotonic)) 2849 if (expect_true (have_monotonic))
1568 { 2850 {
2851 int i;
1569 ev_tstamp odiff = rtmn_diff; 2852 ev_tstamp odiff = rtmn_diff;
1570 2853
1571 mn_now = get_clock (); 2854 mn_now = get_clock ();
1572 2855
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2856 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1589 * doesn't hurt either as we only do this on time-jumps or 2872 * doesn't hurt either as we only do this on time-jumps or
1590 * in the unlikely event of having been preempted here. 2873 * in the unlikely event of having been preempted here.
1591 */ 2874 */
1592 for (i = 4; --i; ) 2875 for (i = 4; --i; )
1593 { 2876 {
2877 ev_tstamp diff;
1594 rtmn_diff = ev_rt_now - mn_now; 2878 rtmn_diff = ev_rt_now - mn_now;
1595 2879
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2880 diff = odiff - rtmn_diff;
2881
2882 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 2883 return; /* all is well */
1598 2884
1599 ev_rt_now = ev_time (); 2885 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 2886 mn_now = get_clock ();
1601 now_floor = mn_now; 2887 now_floor = mn_now;
1602 } 2888 }
1603 2889
2890 /* no timer adjustment, as the monotonic clock doesn't jump */
2891 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1604# if EV_PERIODIC_ENABLE 2892# if EV_PERIODIC_ENABLE
1605 periodics_reschedule (EV_A); 2893 periodics_reschedule (EV_A);
1606# endif 2894# endif
1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609 } 2895 }
1610 else 2896 else
1611#endif 2897#endif
1612 { 2898 {
1613 ev_rt_now = ev_time (); 2899 ev_rt_now = ev_time ();
1614 2900
1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2901 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1616 { 2902 {
2903 /* adjust timers. this is easy, as the offset is the same for all of them */
2904 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1617#if EV_PERIODIC_ENABLE 2905#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 2906 periodics_reschedule (EV_A);
1619#endif 2907#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i)
1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1623 } 2908 }
1624 2909
1625 mn_now = ev_rt_now; 2910 mn_now = ev_rt_now;
1626 } 2911 }
1627} 2912}
1628 2913
1629void 2914void
1630ev_ref (EV_P)
1631{
1632 ++activecnt;
1633}
1634
1635void
1636ev_unref (EV_P)
1637{
1638 --activecnt;
1639}
1640
1641static int loop_done;
1642
1643void
1644ev_loop (EV_P_ int flags) 2915ev_run (EV_P_ int flags)
1645{ 2916{
2917#if EV_FEATURE_API
2918 ++loop_depth;
2919#endif
2920
2921 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2922
1646 loop_done = EVUNLOOP_CANCEL; 2923 loop_done = EVBREAK_CANCEL;
1647 2924
1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2925 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1649 2926
1650 do 2927 do
1651 { 2928 {
2929#if EV_VERIFY >= 2
2930 ev_verify (EV_A);
2931#endif
2932
1652#ifndef _WIN32 2933#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */ 2934 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid)) 2935 if (expect_false (getpid () != curpid))
1655 { 2936 {
1656 curpid = getpid (); 2937 curpid = getpid ();
1662 /* we might have forked, so queue fork handlers */ 2943 /* we might have forked, so queue fork handlers */
1663 if (expect_false (postfork)) 2944 if (expect_false (postfork))
1664 if (forkcnt) 2945 if (forkcnt)
1665 { 2946 {
1666 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2947 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1667 call_pending (EV_A); 2948 EV_INVOKE_PENDING;
1668 } 2949 }
1669#endif 2950#endif
1670 2951
2952#if EV_PREPARE_ENABLE
1671 /* queue prepare watchers (and execute them) */ 2953 /* queue prepare watchers (and execute them) */
1672 if (expect_false (preparecnt)) 2954 if (expect_false (preparecnt))
1673 { 2955 {
1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2956 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1675 call_pending (EV_A); 2957 EV_INVOKE_PENDING;
1676 } 2958 }
2959#endif
1677 2960
1678 if (expect_false (!activecnt)) 2961 if (expect_false (loop_done))
1679 break; 2962 break;
1680 2963
1681 /* we might have forked, so reify kernel state if necessary */ 2964 /* we might have forked, so reify kernel state if necessary */
1682 if (expect_false (postfork)) 2965 if (expect_false (postfork))
1683 loop_fork (EV_A); 2966 loop_fork (EV_A);
1688 /* calculate blocking time */ 2971 /* calculate blocking time */
1689 { 2972 {
1690 ev_tstamp waittime = 0.; 2973 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.; 2974 ev_tstamp sleeptime = 0.;
1692 2975
2976 /* remember old timestamp for io_blocktime calculation */
2977 ev_tstamp prev_mn_now = mn_now;
2978
2979 /* update time to cancel out callback processing overhead */
2980 time_update (EV_A_ 1e100);
2981
2982 /* from now on, we want a pipe-wake-up */
2983 pipe_write_wanted = 1;
2984
2985 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2986
1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2987 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1694 { 2988 {
1695 /* update time to cancel out callback processing overhead */
1696 time_update (EV_A_ 1e100);
1697
1698 waittime = MAX_BLOCKTIME; 2989 waittime = MAX_BLOCKTIME;
1699 2990
1700 if (timercnt) 2991 if (timercnt)
1701 { 2992 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2993 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1703 if (waittime > to) waittime = to; 2994 if (waittime > to) waittime = to;
1704 } 2995 }
1705 2996
1706#if EV_PERIODIC_ENABLE 2997#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 2998 if (periodiccnt)
1708 { 2999 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3000 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1710 if (waittime > to) waittime = to; 3001 if (waittime > to) waittime = to;
1711 } 3002 }
1712#endif 3003#endif
1713 3004
3005 /* don't let timeouts decrease the waittime below timeout_blocktime */
1714 if (expect_false (waittime < timeout_blocktime)) 3006 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime; 3007 waittime = timeout_blocktime;
1716 3008
1717 sleeptime = waittime - backend_fudge; 3009 /* at this point, we NEED to wait, so we have to ensure */
3010 /* to pass a minimum nonzero value to the backend */
3011 if (expect_false (waittime < backend_mintime))
3012 waittime = backend_mintime;
1718 3013
3014 /* extra check because io_blocktime is commonly 0 */
1719 if (expect_true (sleeptime > io_blocktime)) 3015 if (expect_false (io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 { 3016 {
3017 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3018
3019 if (sleeptime > waittime - backend_mintime)
3020 sleeptime = waittime - backend_mintime;
3021
3022 if (expect_true (sleeptime > 0.))
3023 {
1724 ev_sleep (sleeptime); 3024 ev_sleep (sleeptime);
1725 waittime -= sleeptime; 3025 waittime -= sleeptime;
3026 }
1726 } 3027 }
1727 } 3028 }
1728 3029
3030#if EV_FEATURE_API
1729 ++loop_count; 3031 ++loop_count;
3032#endif
3033 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1730 backend_poll (EV_A_ waittime); 3034 backend_poll (EV_A_ waittime);
3035 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3036
3037 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3038
3039 if (pipe_write_skipped)
3040 {
3041 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3042 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3043 }
3044
1731 3045
1732 /* update ev_rt_now, do magic */ 3046 /* update ev_rt_now, do magic */
1733 time_update (EV_A_ waittime + sleeptime); 3047 time_update (EV_A_ waittime + sleeptime);
1734 } 3048 }
1735 3049
1742#if EV_IDLE_ENABLE 3056#if EV_IDLE_ENABLE
1743 /* queue idle watchers unless other events are pending */ 3057 /* queue idle watchers unless other events are pending */
1744 idle_reify (EV_A); 3058 idle_reify (EV_A);
1745#endif 3059#endif
1746 3060
3061#if EV_CHECK_ENABLE
1747 /* queue check watchers, to be executed first */ 3062 /* queue check watchers, to be executed first */
1748 if (expect_false (checkcnt)) 3063 if (expect_false (checkcnt))
1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3064 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3065#endif
1750 3066
1751 call_pending (EV_A); 3067 EV_INVOKE_PENDING;
1752 } 3068 }
1753 while (expect_true ( 3069 while (expect_true (
1754 activecnt 3070 activecnt
1755 && !loop_done 3071 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3072 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1757 )); 3073 ));
1758 3074
1759 if (loop_done == EVUNLOOP_ONE) 3075 if (loop_done == EVBREAK_ONE)
1760 loop_done = EVUNLOOP_CANCEL; 3076 loop_done = EVBREAK_CANCEL;
3077
3078#if EV_FEATURE_API
3079 --loop_depth;
3080#endif
1761} 3081}
1762 3082
1763void 3083void
1764ev_unloop (EV_P_ int how) 3084ev_break (EV_P_ int how)
1765{ 3085{
1766 loop_done = how; 3086 loop_done = how;
1767} 3087}
1768 3088
3089void
3090ev_ref (EV_P)
3091{
3092 ++activecnt;
3093}
3094
3095void
3096ev_unref (EV_P)
3097{
3098 --activecnt;
3099}
3100
3101void
3102ev_now_update (EV_P)
3103{
3104 time_update (EV_A_ 1e100);
3105}
3106
3107void
3108ev_suspend (EV_P)
3109{
3110 ev_now_update (EV_A);
3111}
3112
3113void
3114ev_resume (EV_P)
3115{
3116 ev_tstamp mn_prev = mn_now;
3117
3118 ev_now_update (EV_A);
3119 timers_reschedule (EV_A_ mn_now - mn_prev);
3120#if EV_PERIODIC_ENABLE
3121 /* TODO: really do this? */
3122 periodics_reschedule (EV_A);
3123#endif
3124}
3125
1769/*****************************************************************************/ 3126/*****************************************************************************/
3127/* singly-linked list management, used when the expected list length is short */
1770 3128
1771void inline_size 3129inline_size void
1772wlist_add (WL *head, WL elem) 3130wlist_add (WL *head, WL elem)
1773{ 3131{
1774 elem->next = *head; 3132 elem->next = *head;
1775 *head = elem; 3133 *head = elem;
1776} 3134}
1777 3135
1778void inline_size 3136inline_size void
1779wlist_del (WL *head, WL elem) 3137wlist_del (WL *head, WL elem)
1780{ 3138{
1781 while (*head) 3139 while (*head)
1782 { 3140 {
1783 if (*head == elem) 3141 if (expect_true (*head == elem))
1784 { 3142 {
1785 *head = elem->next; 3143 *head = elem->next;
1786 return; 3144 break;
1787 } 3145 }
1788 3146
1789 head = &(*head)->next; 3147 head = &(*head)->next;
1790 } 3148 }
1791} 3149}
1792 3150
1793void inline_speed 3151/* internal, faster, version of ev_clear_pending */
3152inline_speed void
1794clear_pending (EV_P_ W w) 3153clear_pending (EV_P_ W w)
1795{ 3154{
1796 if (w->pending) 3155 if (w->pending)
1797 { 3156 {
1798 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3157 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1799 w->pending = 0; 3158 w->pending = 0;
1800 } 3159 }
1801} 3160}
1802 3161
1803int 3162int
1807 int pending = w_->pending; 3166 int pending = w_->pending;
1808 3167
1809 if (expect_true (pending)) 3168 if (expect_true (pending))
1810 { 3169 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3170 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3171 p->w = (W)&pending_w;
1812 w_->pending = 0; 3172 w_->pending = 0;
1813 p->w = 0;
1814 return p->events; 3173 return p->events;
1815 } 3174 }
1816 else 3175 else
1817 return 0; 3176 return 0;
1818} 3177}
1819 3178
1820void inline_size 3179inline_size void
1821pri_adjust (EV_P_ W w) 3180pri_adjust (EV_P_ W w)
1822{ 3181{
1823 int pri = w->priority; 3182 int pri = ev_priority (w);
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3183 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3184 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri; 3185 ev_set_priority (w, pri);
1827} 3186}
1828 3187
1829void inline_speed 3188inline_speed void
1830ev_start (EV_P_ W w, int active) 3189ev_start (EV_P_ W w, int active)
1831{ 3190{
1832 pri_adjust (EV_A_ w); 3191 pri_adjust (EV_A_ w);
1833 w->active = active; 3192 w->active = active;
1834 ev_ref (EV_A); 3193 ev_ref (EV_A);
1835} 3194}
1836 3195
1837void inline_size 3196inline_size void
1838ev_stop (EV_P_ W w) 3197ev_stop (EV_P_ W w)
1839{ 3198{
1840 ev_unref (EV_A); 3199 ev_unref (EV_A);
1841 w->active = 0; 3200 w->active = 0;
1842} 3201}
1849 int fd = w->fd; 3208 int fd = w->fd;
1850 3209
1851 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
1852 return; 3211 return;
1853 3212
1854 assert (("ev_io_start called with negative fd", fd >= 0)); 3213 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3214 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3215
3216 EV_FREQUENT_CHECK;
1855 3217
1856 ev_start (EV_A_ (W)w, 1); 3218 ev_start (EV_A_ (W)w, 1);
1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3219 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1858 wlist_add (&anfds[fd].head, (WL)w); 3220 wlist_add (&anfds[fd].head, (WL)w);
1859 3221
1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3222 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1861 w->events &= ~EV_IOFDSET; 3223 w->events &= ~EV__IOFDSET;
3224
3225 EV_FREQUENT_CHECK;
1862} 3226}
1863 3227
1864void noinline 3228void noinline
1865ev_io_stop (EV_P_ ev_io *w) 3229ev_io_stop (EV_P_ ev_io *w)
1866{ 3230{
1867 clear_pending (EV_A_ (W)w); 3231 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 3232 if (expect_false (!ev_is_active (w)))
1869 return; 3233 return;
1870 3234
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3235 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3236
3237 EV_FREQUENT_CHECK;
1872 3238
1873 wlist_del (&anfds[w->fd].head, (WL)w); 3239 wlist_del (&anfds[w->fd].head, (WL)w);
1874 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
1875 3241
1876 fd_change (EV_A_ w->fd, 1); 3242 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3243
3244 EV_FREQUENT_CHECK;
1877} 3245}
1878 3246
1879void noinline 3247void noinline
1880ev_timer_start (EV_P_ ev_timer *w) 3248ev_timer_start (EV_P_ ev_timer *w)
1881{ 3249{
1882 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
1883 return; 3251 return;
1884 3252
1885 ((WT)w)->at += mn_now; 3253 ev_at (w) += mn_now;
1886 3254
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3255 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 3256
3257 EV_FREQUENT_CHECK;
3258
3259 ++timercnt;
1889 ev_start (EV_A_ (W)w, ++timercnt); 3260 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3261 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 3262 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 3263 ANHE_at_cache (timers [ev_active (w)]);
3264 upheap (timers, ev_active (w));
1893 3265
3266 EV_FREQUENT_CHECK;
3267
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3268 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1895} 3269}
1896 3270
1897void noinline 3271void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 3272ev_timer_stop (EV_P_ ev_timer *w)
1899{ 3273{
1900 clear_pending (EV_A_ (W)w); 3274 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 3275 if (expect_false (!ev_is_active (w)))
1902 return; 3276 return;
1903 3277
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3278 EV_FREQUENT_CHECK;
1905 3279
1906 { 3280 {
1907 int active = ((W)w)->active; 3281 int active = ev_active (w);
1908 3282
3283 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3284
3285 --timercnt;
3286
1909 if (expect_true (--active < --timercnt)) 3287 if (expect_true (active < timercnt + HEAP0))
1910 { 3288 {
1911 timers [active] = timers [timercnt]; 3289 timers [active] = timers [timercnt + HEAP0];
1912 adjustheap (timers, timercnt, active); 3290 adjustheap (timers, timercnt, active);
1913 } 3291 }
1914 } 3292 }
1915 3293
1916 ((WT)w)->at -= mn_now; 3294 ev_at (w) -= mn_now;
1917 3295
1918 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
3297
3298 EV_FREQUENT_CHECK;
1919} 3299}
1920 3300
1921void noinline 3301void noinline
1922ev_timer_again (EV_P_ ev_timer *w) 3302ev_timer_again (EV_P_ ev_timer *w)
1923{ 3303{
3304 EV_FREQUENT_CHECK;
3305
3306 clear_pending (EV_A_ (W)w);
3307
1924 if (ev_is_active (w)) 3308 if (ev_is_active (w))
1925 { 3309 {
1926 if (w->repeat) 3310 if (w->repeat)
1927 { 3311 {
1928 ((WT)w)->at = mn_now + w->repeat; 3312 ev_at (w) = mn_now + w->repeat;
3313 ANHE_at_cache (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 3314 adjustheap (timers, timercnt, ev_active (w));
1930 } 3315 }
1931 else 3316 else
1932 ev_timer_stop (EV_A_ w); 3317 ev_timer_stop (EV_A_ w);
1933 } 3318 }
1934 else if (w->repeat) 3319 else if (w->repeat)
1935 { 3320 {
1936 w->at = w->repeat; 3321 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 3322 ev_timer_start (EV_A_ w);
1938 } 3323 }
3324
3325 EV_FREQUENT_CHECK;
3326}
3327
3328ev_tstamp
3329ev_timer_remaining (EV_P_ ev_timer *w)
3330{
3331 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1939} 3332}
1940 3333
1941#if EV_PERIODIC_ENABLE 3334#if EV_PERIODIC_ENABLE
1942void noinline 3335void noinline
1943ev_periodic_start (EV_P_ ev_periodic *w) 3336ev_periodic_start (EV_P_ ev_periodic *w)
1944{ 3337{
1945 if (expect_false (ev_is_active (w))) 3338 if (expect_false (ev_is_active (w)))
1946 return; 3339 return;
1947 3340
1948 if (w->reschedule_cb) 3341 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3342 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 3343 else if (w->interval)
1951 { 3344 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3345 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 3346 periodic_recalc (EV_A_ w);
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 3347 }
1956 else 3348 else
1957 ((WT)w)->at = w->offset; 3349 ev_at (w) = w->offset;
1958 3350
3351 EV_FREQUENT_CHECK;
3352
3353 ++periodiccnt;
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 3354 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3355 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 3356 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 3357 ANHE_at_cache (periodics [ev_active (w)]);
3358 upheap (periodics, ev_active (w));
1963 3359
3360 EV_FREQUENT_CHECK;
3361
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3362 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 3363}
1966 3364
1967void noinline 3365void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 3366ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 3367{
1970 clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
1972 return; 3370 return;
1973 3371
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3372 EV_FREQUENT_CHECK;
1975 3373
1976 { 3374 {
1977 int active = ((W)w)->active; 3375 int active = ev_active (w);
1978 3376
3377 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3378
3379 --periodiccnt;
3380
1979 if (expect_true (--active < --periodiccnt)) 3381 if (expect_true (active < periodiccnt + HEAP0))
1980 { 3382 {
1981 periodics [active] = periodics [periodiccnt]; 3383 periodics [active] = periodics [periodiccnt + HEAP0];
1982 adjustheap (periodics, periodiccnt, active); 3384 adjustheap (periodics, periodiccnt, active);
1983 } 3385 }
1984 } 3386 }
1985 3387
1986 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
1987} 3391}
1988 3392
1989void noinline 3393void noinline
1990ev_periodic_again (EV_P_ ev_periodic *w) 3394ev_periodic_again (EV_P_ ev_periodic *w)
1991{ 3395{
1997 3401
1998#ifndef SA_RESTART 3402#ifndef SA_RESTART
1999# define SA_RESTART 0 3403# define SA_RESTART 0
2000#endif 3404#endif
2001 3405
3406#if EV_SIGNAL_ENABLE
3407
2002void noinline 3408void noinline
2003ev_signal_start (EV_P_ ev_signal *w) 3409ev_signal_start (EV_P_ ev_signal *w)
2004{ 3410{
2005#if EV_MULTIPLICITY
2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2007#endif
2008 if (expect_false (ev_is_active (w))) 3411 if (expect_false (ev_is_active (w)))
2009 return; 3412 return;
2010 3413
2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3414 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2012 3415
2013 evpipe_init (EV_A); 3416#if EV_MULTIPLICITY
3417 assert (("libev: a signal must not be attached to two different loops",
3418 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2014 3419
3420 signals [w->signum - 1].loop = EV_A;
3421#endif
3422
3423 EV_FREQUENT_CHECK;
3424
3425#if EV_USE_SIGNALFD
3426 if (sigfd == -2)
2015 { 3427 {
2016#ifndef _WIN32 3428 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2017 sigset_t full, prev; 3429 if (sigfd < 0 && errno == EINVAL)
2018 sigfillset (&full); 3430 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021 3431
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3432 if (sigfd >= 0)
3433 {
3434 fd_intern (sigfd); /* doing it twice will not hurt */
2023 3435
2024#ifndef _WIN32 3436 sigemptyset (&sigfd_set);
2025 sigprocmask (SIG_SETMASK, &prev, 0); 3437
2026#endif 3438 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3439 ev_set_priority (&sigfd_w, EV_MAXPRI);
3440 ev_io_start (EV_A_ &sigfd_w);
3441 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3442 }
2027 } 3443 }
3444
3445 if (sigfd >= 0)
3446 {
3447 /* TODO: check .head */
3448 sigaddset (&sigfd_set, w->signum);
3449 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3450
3451 signalfd (sigfd, &sigfd_set, 0);
3452 }
3453#endif
2028 3454
2029 ev_start (EV_A_ (W)w, 1); 3455 ev_start (EV_A_ (W)w, 1);
2030 wlist_add (&signals [w->signum - 1].head, (WL)w); 3456 wlist_add (&signals [w->signum - 1].head, (WL)w);
2031 3457
2032 if (!((WL)w)->next) 3458 if (!((WL)w)->next)
3459# if EV_USE_SIGNALFD
3460 if (sigfd < 0) /*TODO*/
3461# endif
2033 { 3462 {
2034#if _WIN32 3463# ifdef _WIN32
3464 evpipe_init (EV_A);
3465
2035 signal (w->signum, ev_sighandler); 3466 signal (w->signum, ev_sighandler);
2036#else 3467# else
2037 struct sigaction sa; 3468 struct sigaction sa;
3469
3470 evpipe_init (EV_A);
3471
2038 sa.sa_handler = ev_sighandler; 3472 sa.sa_handler = ev_sighandler;
2039 sigfillset (&sa.sa_mask); 3473 sigfillset (&sa.sa_mask);
2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3474 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2041 sigaction (w->signum, &sa, 0); 3475 sigaction (w->signum, &sa, 0);
3476
3477 if (origflags & EVFLAG_NOSIGMASK)
3478 {
3479 sigemptyset (&sa.sa_mask);
3480 sigaddset (&sa.sa_mask, w->signum);
3481 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3482 }
2042#endif 3483#endif
2043 } 3484 }
3485
3486 EV_FREQUENT_CHECK;
2044} 3487}
2045 3488
2046void noinline 3489void noinline
2047ev_signal_stop (EV_P_ ev_signal *w) 3490ev_signal_stop (EV_P_ ev_signal *w)
2048{ 3491{
2049 clear_pending (EV_A_ (W)w); 3492 clear_pending (EV_A_ (W)w);
2050 if (expect_false (!ev_is_active (w))) 3493 if (expect_false (!ev_is_active (w)))
2051 return; 3494 return;
2052 3495
3496 EV_FREQUENT_CHECK;
3497
2053 wlist_del (&signals [w->signum - 1].head, (WL)w); 3498 wlist_del (&signals [w->signum - 1].head, (WL)w);
2054 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
2055 3500
2056 if (!signals [w->signum - 1].head) 3501 if (!signals [w->signum - 1].head)
3502 {
3503#if EV_MULTIPLICITY
3504 signals [w->signum - 1].loop = 0; /* unattach from signal */
3505#endif
3506#if EV_USE_SIGNALFD
3507 if (sigfd >= 0)
3508 {
3509 sigset_t ss;
3510
3511 sigemptyset (&ss);
3512 sigaddset (&ss, w->signum);
3513 sigdelset (&sigfd_set, w->signum);
3514
3515 signalfd (sigfd, &sigfd_set, 0);
3516 sigprocmask (SIG_UNBLOCK, &ss, 0);
3517 }
3518 else
3519#endif
2057 signal (w->signum, SIG_DFL); 3520 signal (w->signum, SIG_DFL);
3521 }
3522
3523 EV_FREQUENT_CHECK;
2058} 3524}
3525
3526#endif
3527
3528#if EV_CHILD_ENABLE
2059 3529
2060void 3530void
2061ev_child_start (EV_P_ ev_child *w) 3531ev_child_start (EV_P_ ev_child *w)
2062{ 3532{
2063#if EV_MULTIPLICITY 3533#if EV_MULTIPLICITY
2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2065#endif 3535#endif
2066 if (expect_false (ev_is_active (w))) 3536 if (expect_false (ev_is_active (w)))
2067 return; 3537 return;
2068 3538
3539 EV_FREQUENT_CHECK;
3540
2069 ev_start (EV_A_ (W)w, 1); 3541 ev_start (EV_A_ (W)w, 1);
2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3542 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3543
3544 EV_FREQUENT_CHECK;
2071} 3545}
2072 3546
2073void 3547void
2074ev_child_stop (EV_P_ ev_child *w) 3548ev_child_stop (EV_P_ ev_child *w)
2075{ 3549{
2076 clear_pending (EV_A_ (W)w); 3550 clear_pending (EV_A_ (W)w);
2077 if (expect_false (!ev_is_active (w))) 3551 if (expect_false (!ev_is_active (w)))
2078 return; 3552 return;
2079 3553
3554 EV_FREQUENT_CHECK;
3555
2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3556 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2081 ev_stop (EV_A_ (W)w); 3557 ev_stop (EV_A_ (W)w);
3558
3559 EV_FREQUENT_CHECK;
2082} 3560}
3561
3562#endif
2083 3563
2084#if EV_STAT_ENABLE 3564#if EV_STAT_ENABLE
2085 3565
2086# ifdef _WIN32 3566# ifdef _WIN32
2087# undef lstat 3567# undef lstat
2088# define lstat(a,b) _stati64 (a,b) 3568# define lstat(a,b) _stati64 (a,b)
2089# endif 3569# endif
2090 3570
2091#define DEF_STAT_INTERVAL 5.0074891 3571#define DEF_STAT_INTERVAL 5.0074891
3572#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2092#define MIN_STAT_INTERVAL 0.1074891 3573#define MIN_STAT_INTERVAL 0.1074891
2093 3574
2094static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3575static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2095 3576
2096#if EV_USE_INOTIFY 3577#if EV_USE_INOTIFY
2097# define EV_INOTIFY_BUFSIZE 8192 3578
3579/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3580# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2098 3581
2099static void noinline 3582static void noinline
2100infy_add (EV_P_ ev_stat *w) 3583infy_add (EV_P_ ev_stat *w)
2101{ 3584{
2102 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3585 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2103 3586
2104 if (w->wd < 0) 3587 if (w->wd >= 0)
3588 {
3589 struct statfs sfs;
3590
3591 /* now local changes will be tracked by inotify, but remote changes won't */
3592 /* unless the filesystem is known to be local, we therefore still poll */
3593 /* also do poll on <2.6.25, but with normal frequency */
3594
3595 if (!fs_2625)
3596 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3597 else if (!statfs (w->path, &sfs)
3598 && (sfs.f_type == 0x1373 /* devfs */
3599 || sfs.f_type == 0xEF53 /* ext2/3 */
3600 || sfs.f_type == 0x3153464a /* jfs */
3601 || sfs.f_type == 0x52654973 /* reiser3 */
3602 || sfs.f_type == 0x01021994 /* tempfs */
3603 || sfs.f_type == 0x58465342 /* xfs */))
3604 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3605 else
3606 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2105 { 3607 }
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3608 else
3609 {
3610 /* can't use inotify, continue to stat */
3611 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2107 3612
2108 /* monitor some parent directory for speedup hints */ 3613 /* if path is not there, monitor some parent directory for speedup hints */
3614 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3615 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3616 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 3617 {
2111 char path [4096]; 3618 char path [4096];
2112 strcpy (path, w->path); 3619 strcpy (path, w->path);
2113 3620
2116 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3623 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2117 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3624 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2118 3625
2119 char *pend = strrchr (path, '/'); 3626 char *pend = strrchr (path, '/');
2120 3627
2121 if (!pend) 3628 if (!pend || pend == path)
2122 break; /* whoops, no '/', complain to your admin */ 3629 break;
2123 3630
2124 *pend = 0; 3631 *pend = 0;
2125 w->wd = inotify_add_watch (fs_fd, path, mask); 3632 w->wd = inotify_add_watch (fs_fd, path, mask);
2126 } 3633 }
2127 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3634 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2128 } 3635 }
2129 } 3636 }
2130 else
2131 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2132 3637
2133 if (w->wd >= 0) 3638 if (w->wd >= 0)
2134 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3639 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3640
3641 /* now re-arm timer, if required */
3642 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3643 ev_timer_again (EV_A_ &w->timer);
3644 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2135} 3645}
2136 3646
2137static void noinline 3647static void noinline
2138infy_del (EV_P_ ev_stat *w) 3648infy_del (EV_P_ ev_stat *w)
2139{ 3649{
2142 3652
2143 if (wd < 0) 3653 if (wd < 0)
2144 return; 3654 return;
2145 3655
2146 w->wd = -2; 3656 w->wd = -2;
2147 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3657 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2148 wlist_del (&fs_hash [slot].head, (WL)w); 3658 wlist_del (&fs_hash [slot].head, (WL)w);
2149 3659
2150 /* remove this watcher, if others are watching it, they will rearm */ 3660 /* remove this watcher, if others are watching it, they will rearm */
2151 inotify_rm_watch (fs_fd, wd); 3661 inotify_rm_watch (fs_fd, wd);
2152} 3662}
2153 3663
2154static void noinline 3664static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3665infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{ 3666{
2157 if (slot < 0) 3667 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */ 3668 /* overflow, need to check for all hash slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3669 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2160 infy_wd (EV_A_ slot, wd, ev); 3670 infy_wd (EV_A_ slot, wd, ev);
2161 else 3671 else
2162 { 3672 {
2163 WL w_; 3673 WL w_;
2164 3674
2165 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3675 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2166 { 3676 {
2167 ev_stat *w = (ev_stat *)w_; 3677 ev_stat *w = (ev_stat *)w_;
2168 w_ = w_->next; /* lets us remove this watcher and all before it */ 3678 w_ = w_->next; /* lets us remove this watcher and all before it */
2169 3679
2170 if (w->wd == wd || wd == -1) 3680 if (w->wd == wd || wd == -1)
2171 { 3681 {
2172 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3682 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2173 { 3683 {
3684 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2174 w->wd = -1; 3685 w->wd = -1;
2175 infy_add (EV_A_ w); /* re-add, no matter what */ 3686 infy_add (EV_A_ w); /* re-add, no matter what */
2176 } 3687 }
2177 3688
2178 stat_timer_cb (EV_A_ &w->timer, 0); 3689 stat_timer_cb (EV_A_ &w->timer, 0);
2183 3694
2184static void 3695static void
2185infy_cb (EV_P_ ev_io *w, int revents) 3696infy_cb (EV_P_ ev_io *w, int revents)
2186{ 3697{
2187 char buf [EV_INOTIFY_BUFSIZE]; 3698 char buf [EV_INOTIFY_BUFSIZE];
2188 struct inotify_event *ev = (struct inotify_event *)buf;
2189 int ofs; 3699 int ofs;
2190 int len = read (fs_fd, buf, sizeof (buf)); 3700 int len = read (fs_fd, buf, sizeof (buf));
2191 3701
2192 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3702 for (ofs = 0; ofs < len; )
3703 {
3704 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2193 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3705 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3706 ofs += sizeof (struct inotify_event) + ev->len;
3707 }
2194} 3708}
2195 3709
2196void inline_size 3710inline_size void ecb_cold
3711ev_check_2625 (EV_P)
3712{
3713 /* kernels < 2.6.25 are borked
3714 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3715 */
3716 if (ev_linux_version () < 0x020619)
3717 return;
3718
3719 fs_2625 = 1;
3720}
3721
3722inline_size int
3723infy_newfd (void)
3724{
3725#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3726 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3727 if (fd >= 0)
3728 return fd;
3729#endif
3730 return inotify_init ();
3731}
3732
3733inline_size void
2197infy_init (EV_P) 3734infy_init (EV_P)
2198{ 3735{
2199 if (fs_fd != -2) 3736 if (fs_fd != -2)
2200 return; 3737 return;
2201 3738
3739 fs_fd = -1;
3740
3741 ev_check_2625 (EV_A);
3742
2202 fs_fd = inotify_init (); 3743 fs_fd = infy_newfd ();
2203 3744
2204 if (fs_fd >= 0) 3745 if (fs_fd >= 0)
2205 { 3746 {
3747 fd_intern (fs_fd);
2206 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3748 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2207 ev_set_priority (&fs_w, EV_MAXPRI); 3749 ev_set_priority (&fs_w, EV_MAXPRI);
2208 ev_io_start (EV_A_ &fs_w); 3750 ev_io_start (EV_A_ &fs_w);
3751 ev_unref (EV_A);
2209 } 3752 }
2210} 3753}
2211 3754
2212void inline_size 3755inline_size void
2213infy_fork (EV_P) 3756infy_fork (EV_P)
2214{ 3757{
2215 int slot; 3758 int slot;
2216 3759
2217 if (fs_fd < 0) 3760 if (fs_fd < 0)
2218 return; 3761 return;
2219 3762
3763 ev_ref (EV_A);
3764 ev_io_stop (EV_A_ &fs_w);
2220 close (fs_fd); 3765 close (fs_fd);
2221 fs_fd = inotify_init (); 3766 fs_fd = infy_newfd ();
2222 3767
3768 if (fs_fd >= 0)
3769 {
3770 fd_intern (fs_fd);
3771 ev_io_set (&fs_w, fs_fd, EV_READ);
3772 ev_io_start (EV_A_ &fs_w);
3773 ev_unref (EV_A);
3774 }
3775
2223 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2224 { 3777 {
2225 WL w_ = fs_hash [slot].head; 3778 WL w_ = fs_hash [slot].head;
2226 fs_hash [slot].head = 0; 3779 fs_hash [slot].head = 0;
2227 3780
2228 while (w_) 3781 while (w_)
2233 w->wd = -1; 3786 w->wd = -1;
2234 3787
2235 if (fs_fd >= 0) 3788 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */ 3789 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else 3790 else
3791 {
3792 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3793 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2238 ev_timer_start (EV_A_ &w->timer); 3794 ev_timer_again (EV_A_ &w->timer);
3795 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3796 }
2239 } 3797 }
2240
2241 } 3798 }
2242} 3799}
2243 3800
3801#endif
3802
3803#ifdef _WIN32
3804# define EV_LSTAT(p,b) _stati64 (p, b)
3805#else
3806# define EV_LSTAT(p,b) lstat (p, b)
2244#endif 3807#endif
2245 3808
2246void 3809void
2247ev_stat_stat (EV_P_ ev_stat *w) 3810ev_stat_stat (EV_P_ ev_stat *w)
2248{ 3811{
2255static void noinline 3818static void noinline
2256stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3819stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2257{ 3820{
2258 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3821 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2259 3822
2260 /* we copy this here each the time so that */ 3823 ev_statdata prev = w->attr;
2261 /* prev has the old value when the callback gets invoked */
2262 w->prev = w->attr;
2263 ev_stat_stat (EV_A_ w); 3824 ev_stat_stat (EV_A_ w);
2264 3825
2265 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3826 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2266 if ( 3827 if (
2267 w->prev.st_dev != w->attr.st_dev 3828 prev.st_dev != w->attr.st_dev
2268 || w->prev.st_ino != w->attr.st_ino 3829 || prev.st_ino != w->attr.st_ino
2269 || w->prev.st_mode != w->attr.st_mode 3830 || prev.st_mode != w->attr.st_mode
2270 || w->prev.st_nlink != w->attr.st_nlink 3831 || prev.st_nlink != w->attr.st_nlink
2271 || w->prev.st_uid != w->attr.st_uid 3832 || prev.st_uid != w->attr.st_uid
2272 || w->prev.st_gid != w->attr.st_gid 3833 || prev.st_gid != w->attr.st_gid
2273 || w->prev.st_rdev != w->attr.st_rdev 3834 || prev.st_rdev != w->attr.st_rdev
2274 || w->prev.st_size != w->attr.st_size 3835 || prev.st_size != w->attr.st_size
2275 || w->prev.st_atime != w->attr.st_atime 3836 || prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime 3837 || prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime 3838 || prev.st_ctime != w->attr.st_ctime
2278 ) { 3839 ) {
3840 /* we only update w->prev on actual differences */
3841 /* in case we test more often than invoke the callback, */
3842 /* to ensure that prev is always different to attr */
3843 w->prev = prev;
3844
2279 #if EV_USE_INOTIFY 3845 #if EV_USE_INOTIFY
3846 if (fs_fd >= 0)
3847 {
2280 infy_del (EV_A_ w); 3848 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w); 3849 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */ 3850 ev_stat_stat (EV_A_ w); /* avoid race... */
3851 }
2283 #endif 3852 #endif
2284 3853
2285 ev_feed_event (EV_A_ w, EV_STAT); 3854 ev_feed_event (EV_A_ w, EV_STAT);
2286 } 3855 }
2287} 3856}
2290ev_stat_start (EV_P_ ev_stat *w) 3859ev_stat_start (EV_P_ ev_stat *w)
2291{ 3860{
2292 if (expect_false (ev_is_active (w))) 3861 if (expect_false (ev_is_active (w)))
2293 return; 3862 return;
2294 3863
2295 /* since we use memcmp, we need to clear any padding data etc. */
2296 memset (&w->prev, 0, sizeof (ev_statdata));
2297 memset (&w->attr, 0, sizeof (ev_statdata));
2298
2299 ev_stat_stat (EV_A_ w); 3864 ev_stat_stat (EV_A_ w);
2300 3865
3866 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2301 if (w->interval < MIN_STAT_INTERVAL) 3867 w->interval = MIN_STAT_INTERVAL;
2302 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2303 3868
2304 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3869 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2305 ev_set_priority (&w->timer, ev_priority (w)); 3870 ev_set_priority (&w->timer, ev_priority (w));
2306 3871
2307#if EV_USE_INOTIFY 3872#if EV_USE_INOTIFY
2308 infy_init (EV_A); 3873 infy_init (EV_A);
2309 3874
2310 if (fs_fd >= 0) 3875 if (fs_fd >= 0)
2311 infy_add (EV_A_ w); 3876 infy_add (EV_A_ w);
2312 else 3877 else
2313#endif 3878#endif
3879 {
2314 ev_timer_start (EV_A_ &w->timer); 3880 ev_timer_again (EV_A_ &w->timer);
3881 ev_unref (EV_A);
3882 }
2315 3883
2316 ev_start (EV_A_ (W)w, 1); 3884 ev_start (EV_A_ (W)w, 1);
3885
3886 EV_FREQUENT_CHECK;
2317} 3887}
2318 3888
2319void 3889void
2320ev_stat_stop (EV_P_ ev_stat *w) 3890ev_stat_stop (EV_P_ ev_stat *w)
2321{ 3891{
2322 clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
2324 return; 3894 return;
2325 3895
3896 EV_FREQUENT_CHECK;
3897
2326#if EV_USE_INOTIFY 3898#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w); 3899 infy_del (EV_A_ w);
2328#endif 3900#endif
3901
3902 if (ev_is_active (&w->timer))
3903 {
3904 ev_ref (EV_A);
2329 ev_timer_stop (EV_A_ &w->timer); 3905 ev_timer_stop (EV_A_ &w->timer);
3906 }
2330 3907
2331 ev_stop (EV_A_ (W)w); 3908 ev_stop (EV_A_ (W)w);
3909
3910 EV_FREQUENT_CHECK;
2332} 3911}
2333#endif 3912#endif
2334 3913
2335#if EV_IDLE_ENABLE 3914#if EV_IDLE_ENABLE
2336void 3915void
2339 if (expect_false (ev_is_active (w))) 3918 if (expect_false (ev_is_active (w)))
2340 return; 3919 return;
2341 3920
2342 pri_adjust (EV_A_ (W)w); 3921 pri_adjust (EV_A_ (W)w);
2343 3922
3923 EV_FREQUENT_CHECK;
3924
2344 { 3925 {
2345 int active = ++idlecnt [ABSPRI (w)]; 3926 int active = ++idlecnt [ABSPRI (w)];
2346 3927
2347 ++idleall; 3928 ++idleall;
2348 ev_start (EV_A_ (W)w, active); 3929 ev_start (EV_A_ (W)w, active);
2349 3930
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3931 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w; 3932 idles [ABSPRI (w)][active - 1] = w;
2352 } 3933 }
3934
3935 EV_FREQUENT_CHECK;
2353} 3936}
2354 3937
2355void 3938void
2356ev_idle_stop (EV_P_ ev_idle *w) 3939ev_idle_stop (EV_P_ ev_idle *w)
2357{ 3940{
2358 clear_pending (EV_A_ (W)w); 3941 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 3942 if (expect_false (!ev_is_active (w)))
2360 return; 3943 return;
2361 3944
3945 EV_FREQUENT_CHECK;
3946
2362 { 3947 {
2363 int active = ((W)w)->active; 3948 int active = ev_active (w);
2364 3949
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3950 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3951 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 3952
2368 ev_stop (EV_A_ (W)w); 3953 ev_stop (EV_A_ (W)w);
2369 --idleall; 3954 --idleall;
2370 } 3955 }
2371}
2372#endif
2373 3956
3957 EV_FREQUENT_CHECK;
3958}
3959#endif
3960
3961#if EV_PREPARE_ENABLE
2374void 3962void
2375ev_prepare_start (EV_P_ ev_prepare *w) 3963ev_prepare_start (EV_P_ ev_prepare *w)
2376{ 3964{
2377 if (expect_false (ev_is_active (w))) 3965 if (expect_false (ev_is_active (w)))
2378 return; 3966 return;
3967
3968 EV_FREQUENT_CHECK;
2379 3969
2380 ev_start (EV_A_ (W)w, ++preparecnt); 3970 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3971 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w; 3972 prepares [preparecnt - 1] = w;
3973
3974 EV_FREQUENT_CHECK;
2383} 3975}
2384 3976
2385void 3977void
2386ev_prepare_stop (EV_P_ ev_prepare *w) 3978ev_prepare_stop (EV_P_ ev_prepare *w)
2387{ 3979{
2388 clear_pending (EV_A_ (W)w); 3980 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 3981 if (expect_false (!ev_is_active (w)))
2390 return; 3982 return;
2391 3983
3984 EV_FREQUENT_CHECK;
3985
2392 { 3986 {
2393 int active = ((W)w)->active; 3987 int active = ev_active (w);
3988
2394 prepares [active - 1] = prepares [--preparecnt]; 3989 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 3990 ev_active (prepares [active - 1]) = active;
2396 } 3991 }
2397 3992
2398 ev_stop (EV_A_ (W)w); 3993 ev_stop (EV_A_ (W)w);
2399}
2400 3994
3995 EV_FREQUENT_CHECK;
3996}
3997#endif
3998
3999#if EV_CHECK_ENABLE
2401void 4000void
2402ev_check_start (EV_P_ ev_check *w) 4001ev_check_start (EV_P_ ev_check *w)
2403{ 4002{
2404 if (expect_false (ev_is_active (w))) 4003 if (expect_false (ev_is_active (w)))
2405 return; 4004 return;
4005
4006 EV_FREQUENT_CHECK;
2406 4007
2407 ev_start (EV_A_ (W)w, ++checkcnt); 4008 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4009 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w; 4010 checks [checkcnt - 1] = w;
4011
4012 EV_FREQUENT_CHECK;
2410} 4013}
2411 4014
2412void 4015void
2413ev_check_stop (EV_P_ ev_check *w) 4016ev_check_stop (EV_P_ ev_check *w)
2414{ 4017{
2415 clear_pending (EV_A_ (W)w); 4018 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 4019 if (expect_false (!ev_is_active (w)))
2417 return; 4020 return;
2418 4021
4022 EV_FREQUENT_CHECK;
4023
2419 { 4024 {
2420 int active = ((W)w)->active; 4025 int active = ev_active (w);
4026
2421 checks [active - 1] = checks [--checkcnt]; 4027 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 4028 ev_active (checks [active - 1]) = active;
2423 } 4029 }
2424 4030
2425 ev_stop (EV_A_ (W)w); 4031 ev_stop (EV_A_ (W)w);
4032
4033 EV_FREQUENT_CHECK;
2426} 4034}
4035#endif
2427 4036
2428#if EV_EMBED_ENABLE 4037#if EV_EMBED_ENABLE
2429void noinline 4038void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w) 4039ev_embed_sweep (EV_P_ ev_embed *w)
2431{ 4040{
2432 ev_loop (w->other, EVLOOP_NONBLOCK); 4041 ev_run (w->other, EVRUN_NOWAIT);
2433} 4042}
2434 4043
2435static void 4044static void
2436embed_io_cb (EV_P_ ev_io *io, int revents) 4045embed_io_cb (EV_P_ ev_io *io, int revents)
2437{ 4046{
2438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4047 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2439 4048
2440 if (ev_cb (w)) 4049 if (ev_cb (w))
2441 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4050 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2442 else 4051 else
2443 ev_loop (w->other, EVLOOP_NONBLOCK); 4052 ev_run (w->other, EVRUN_NOWAIT);
2444} 4053}
2445 4054
2446static void 4055static void
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4056embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{ 4057{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4058 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450 4059
2451 { 4060 {
2452 struct ev_loop *loop = w->other; 4061 EV_P = w->other;
2453 4062
2454 while (fdchangecnt) 4063 while (fdchangecnt)
2455 { 4064 {
2456 fd_reify (EV_A); 4065 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4066 ev_run (EV_A_ EVRUN_NOWAIT);
2458 } 4067 }
2459 } 4068 }
4069}
4070
4071static void
4072embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4073{
4074 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4075
4076 ev_embed_stop (EV_A_ w);
4077
4078 {
4079 EV_P = w->other;
4080
4081 ev_loop_fork (EV_A);
4082 ev_run (EV_A_ EVRUN_NOWAIT);
4083 }
4084
4085 ev_embed_start (EV_A_ w);
2460} 4086}
2461 4087
2462#if 0 4088#if 0
2463static void 4089static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4090embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2472{ 4098{
2473 if (expect_false (ev_is_active (w))) 4099 if (expect_false (ev_is_active (w)))
2474 return; 4100 return;
2475 4101
2476 { 4102 {
2477 struct ev_loop *loop = w->other; 4103 EV_P = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4104 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4105 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 } 4106 }
4107
4108 EV_FREQUENT_CHECK;
2481 4109
2482 ev_set_priority (&w->io, ev_priority (w)); 4110 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io); 4111 ev_io_start (EV_A_ &w->io);
2484 4112
2485 ev_prepare_init (&w->prepare, embed_prepare_cb); 4113 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI); 4114 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare); 4115 ev_prepare_start (EV_A_ &w->prepare);
2488 4116
4117 ev_fork_init (&w->fork, embed_fork_cb);
4118 ev_fork_start (EV_A_ &w->fork);
4119
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4120 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490 4121
2491 ev_start (EV_A_ (W)w, 1); 4122 ev_start (EV_A_ (W)w, 1);
4123
4124 EV_FREQUENT_CHECK;
2492} 4125}
2493 4126
2494void 4127void
2495ev_embed_stop (EV_P_ ev_embed *w) 4128ev_embed_stop (EV_P_ ev_embed *w)
2496{ 4129{
2497 clear_pending (EV_A_ (W)w); 4130 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w))) 4131 if (expect_false (!ev_is_active (w)))
2499 return; 4132 return;
2500 4133
4134 EV_FREQUENT_CHECK;
4135
2501 ev_io_stop (EV_A_ &w->io); 4136 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare); 4137 ev_prepare_stop (EV_A_ &w->prepare);
4138 ev_fork_stop (EV_A_ &w->fork);
2503 4139
2504 ev_stop (EV_A_ (W)w); 4140 ev_stop (EV_A_ (W)w);
4141
4142 EV_FREQUENT_CHECK;
2505} 4143}
2506#endif 4144#endif
2507 4145
2508#if EV_FORK_ENABLE 4146#if EV_FORK_ENABLE
2509void 4147void
2510ev_fork_start (EV_P_ ev_fork *w) 4148ev_fork_start (EV_P_ ev_fork *w)
2511{ 4149{
2512 if (expect_false (ev_is_active (w))) 4150 if (expect_false (ev_is_active (w)))
2513 return; 4151 return;
2514 4152
4153 EV_FREQUENT_CHECK;
4154
2515 ev_start (EV_A_ (W)w, ++forkcnt); 4155 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4156 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w; 4157 forks [forkcnt - 1] = w;
4158
4159 EV_FREQUENT_CHECK;
2518} 4160}
2519 4161
2520void 4162void
2521ev_fork_stop (EV_P_ ev_fork *w) 4163ev_fork_stop (EV_P_ ev_fork *w)
2522{ 4164{
2523 clear_pending (EV_A_ (W)w); 4165 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 4166 if (expect_false (!ev_is_active (w)))
2525 return; 4167 return;
2526 4168
4169 EV_FREQUENT_CHECK;
4170
2527 { 4171 {
2528 int active = ((W)w)->active; 4172 int active = ev_active (w);
4173
2529 forks [active - 1] = forks [--forkcnt]; 4174 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 4175 ev_active (forks [active - 1]) = active;
2531 } 4176 }
2532 4177
2533 ev_stop (EV_A_ (W)w); 4178 ev_stop (EV_A_ (W)w);
4179
4180 EV_FREQUENT_CHECK;
4181}
4182#endif
4183
4184#if EV_CLEANUP_ENABLE
4185void
4186ev_cleanup_start (EV_P_ ev_cleanup *w)
4187{
4188 if (expect_false (ev_is_active (w)))
4189 return;
4190
4191 EV_FREQUENT_CHECK;
4192
4193 ev_start (EV_A_ (W)w, ++cleanupcnt);
4194 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4195 cleanups [cleanupcnt - 1] = w;
4196
4197 /* cleanup watchers should never keep a refcount on the loop */
4198 ev_unref (EV_A);
4199 EV_FREQUENT_CHECK;
4200}
4201
4202void
4203ev_cleanup_stop (EV_P_ ev_cleanup *w)
4204{
4205 clear_pending (EV_A_ (W)w);
4206 if (expect_false (!ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210 ev_ref (EV_A);
4211
4212 {
4213 int active = ev_active (w);
4214
4215 cleanups [active - 1] = cleanups [--cleanupcnt];
4216 ev_active (cleanups [active - 1]) = active;
4217 }
4218
4219 ev_stop (EV_A_ (W)w);
4220
4221 EV_FREQUENT_CHECK;
2534} 4222}
2535#endif 4223#endif
2536 4224
2537#if EV_ASYNC_ENABLE 4225#if EV_ASYNC_ENABLE
2538void 4226void
2539ev_async_start (EV_P_ ev_async *w) 4227ev_async_start (EV_P_ ev_async *w)
2540{ 4228{
2541 if (expect_false (ev_is_active (w))) 4229 if (expect_false (ev_is_active (w)))
2542 return; 4230 return;
2543 4231
4232 w->sent = 0;
4233
2544 evpipe_init (EV_A); 4234 evpipe_init (EV_A);
4235
4236 EV_FREQUENT_CHECK;
2545 4237
2546 ev_start (EV_A_ (W)w, ++asynccnt); 4238 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4239 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w; 4240 asyncs [asynccnt - 1] = w;
4241
4242 EV_FREQUENT_CHECK;
2549} 4243}
2550 4244
2551void 4245void
2552ev_async_stop (EV_P_ ev_async *w) 4246ev_async_stop (EV_P_ ev_async *w)
2553{ 4247{
2554 clear_pending (EV_A_ (W)w); 4248 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 4249 if (expect_false (!ev_is_active (w)))
2556 return; 4250 return;
2557 4251
4252 EV_FREQUENT_CHECK;
4253
2558 { 4254 {
2559 int active = ((W)w)->active; 4255 int active = ev_active (w);
4256
2560 asyncs [active - 1] = asyncs [--asynccnt]; 4257 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 4258 ev_active (asyncs [active - 1]) = active;
2562 } 4259 }
2563 4260
2564 ev_stop (EV_A_ (W)w); 4261 ev_stop (EV_A_ (W)w);
4262
4263 EV_FREQUENT_CHECK;
2565} 4264}
2566 4265
2567void 4266void
2568ev_async_send (EV_P_ ev_async *w) 4267ev_async_send (EV_P_ ev_async *w)
2569{ 4268{
2570 w->sent = 1; 4269 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync); 4270 evpipe_write (EV_A_ &async_pending);
2572} 4271}
2573#endif 4272#endif
2574 4273
2575/*****************************************************************************/ 4274/*****************************************************************************/
2576 4275
2586once_cb (EV_P_ struct ev_once *once, int revents) 4285once_cb (EV_P_ struct ev_once *once, int revents)
2587{ 4286{
2588 void (*cb)(int revents, void *arg) = once->cb; 4287 void (*cb)(int revents, void *arg) = once->cb;
2589 void *arg = once->arg; 4288 void *arg = once->arg;
2590 4289
2591 ev_io_stop (EV_A_ &once->io); 4290 ev_io_stop (EV_A_ &once->io);
2592 ev_timer_stop (EV_A_ &once->to); 4291 ev_timer_stop (EV_A_ &once->to);
2593 ev_free (once); 4292 ev_free (once);
2594 4293
2595 cb (revents, arg); 4294 cb (revents, arg);
2596} 4295}
2597 4296
2598static void 4297static void
2599once_cb_io (EV_P_ ev_io *w, int revents) 4298once_cb_io (EV_P_ ev_io *w, int revents)
2600{ 4299{
2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4300 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4301
4302 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2602} 4303}
2603 4304
2604static void 4305static void
2605once_cb_to (EV_P_ ev_timer *w, int revents) 4306once_cb_to (EV_P_ ev_timer *w, int revents)
2606{ 4307{
2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4308 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4309
4310 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2608} 4311}
2609 4312
2610void 4313void
2611ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4314ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2612{ 4315{
2613 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4316 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2614 4317
2615 if (expect_false (!once)) 4318 if (expect_false (!once))
2616 { 4319 {
2617 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4320 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2618 return; 4321 return;
2619 } 4322 }
2620 4323
2621 once->cb = cb; 4324 once->cb = cb;
2622 once->arg = arg; 4325 once->arg = arg;
2634 ev_timer_set (&once->to, timeout, 0.); 4337 ev_timer_set (&once->to, timeout, 0.);
2635 ev_timer_start (EV_A_ &once->to); 4338 ev_timer_start (EV_A_ &once->to);
2636 } 4339 }
2637} 4340}
2638 4341
4342/*****************************************************************************/
4343
4344#if EV_WALK_ENABLE
4345void ecb_cold
4346ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4347{
4348 int i, j;
4349 ev_watcher_list *wl, *wn;
4350
4351 if (types & (EV_IO | EV_EMBED))
4352 for (i = 0; i < anfdmax; ++i)
4353 for (wl = anfds [i].head; wl; )
4354 {
4355 wn = wl->next;
4356
4357#if EV_EMBED_ENABLE
4358 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4359 {
4360 if (types & EV_EMBED)
4361 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4362 }
4363 else
4364#endif
4365#if EV_USE_INOTIFY
4366 if (ev_cb ((ev_io *)wl) == infy_cb)
4367 ;
4368 else
4369#endif
4370 if ((ev_io *)wl != &pipe_w)
4371 if (types & EV_IO)
4372 cb (EV_A_ EV_IO, wl);
4373
4374 wl = wn;
4375 }
4376
4377 if (types & (EV_TIMER | EV_STAT))
4378 for (i = timercnt + HEAP0; i-- > HEAP0; )
4379#if EV_STAT_ENABLE
4380 /*TODO: timer is not always active*/
4381 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4382 {
4383 if (types & EV_STAT)
4384 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4385 }
4386 else
4387#endif
4388 if (types & EV_TIMER)
4389 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4390
4391#if EV_PERIODIC_ENABLE
4392 if (types & EV_PERIODIC)
4393 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4394 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4395#endif
4396
4397#if EV_IDLE_ENABLE
4398 if (types & EV_IDLE)
4399 for (j = NUMPRI; j--; )
4400 for (i = idlecnt [j]; i--; )
4401 cb (EV_A_ EV_IDLE, idles [j][i]);
4402#endif
4403
4404#if EV_FORK_ENABLE
4405 if (types & EV_FORK)
4406 for (i = forkcnt; i--; )
4407 if (ev_cb (forks [i]) != embed_fork_cb)
4408 cb (EV_A_ EV_FORK, forks [i]);
4409#endif
4410
4411#if EV_ASYNC_ENABLE
4412 if (types & EV_ASYNC)
4413 for (i = asynccnt; i--; )
4414 cb (EV_A_ EV_ASYNC, asyncs [i]);
4415#endif
4416
4417#if EV_PREPARE_ENABLE
4418 if (types & EV_PREPARE)
4419 for (i = preparecnt; i--; )
4420# if EV_EMBED_ENABLE
4421 if (ev_cb (prepares [i]) != embed_prepare_cb)
4422# endif
4423 cb (EV_A_ EV_PREPARE, prepares [i]);
4424#endif
4425
4426#if EV_CHECK_ENABLE
4427 if (types & EV_CHECK)
4428 for (i = checkcnt; i--; )
4429 cb (EV_A_ EV_CHECK, checks [i]);
4430#endif
4431
4432#if EV_SIGNAL_ENABLE
4433 if (types & EV_SIGNAL)
4434 for (i = 0; i < EV_NSIG - 1; ++i)
4435 for (wl = signals [i].head; wl; )
4436 {
4437 wn = wl->next;
4438 cb (EV_A_ EV_SIGNAL, wl);
4439 wl = wn;
4440 }
4441#endif
4442
4443#if EV_CHILD_ENABLE
4444 if (types & EV_CHILD)
4445 for (i = (EV_PID_HASHSIZE); i--; )
4446 for (wl = childs [i]; wl; )
4447 {
4448 wn = wl->next;
4449 cb (EV_A_ EV_CHILD, wl);
4450 wl = wn;
4451 }
4452#endif
4453/* EV_STAT 0x00001000 /* stat data changed */
4454/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4455}
4456#endif
4457
2639#if EV_MULTIPLICITY 4458#if EV_MULTIPLICITY
2640 #include "ev_wrap.h" 4459 #include "ev_wrap.h"
2641#endif 4460#endif
2642 4461
2643#ifdef __cplusplus
2644}
2645#endif
2646

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines