ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.91 by root, Sun Nov 11 00:06:48 2007 UTC vs.
Revision 1.408 by root, Fri Jan 27 22:28:49 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
42# endif 82# endif
43 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
44# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
45# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
46# endif 100# endif
47 101
48# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
49# define EV_USE_POLL 1 108# define EV_USE_POLL 0
50# endif 109# endif
51 110
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
53# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
54# endif 118# endif
55 119
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
57# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
58# endif 127# endif
59 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
60#endif 136# endif
61 137
62#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
63#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
64#include <fcntl.h> 169#include <fcntl.h>
65#include <stddef.h> 170#include <stddef.h>
66 171
67#include <stdio.h> 172#include <stdio.h>
68 173
69#include <assert.h> 174#include <assert.h>
70#include <errno.h> 175#include <errno.h>
71#include <sys/types.h> 176#include <sys/types.h>
72#include <time.h> 177#include <time.h>
178#include <limits.h>
73 179
74#include <signal.h> 180#include <signal.h>
75
76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
79# include <sys/wait.h>
80#endif
81/**/
82
83#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1
85#endif
86
87#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1
89#endif
90
91#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
93#endif
94
95#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0
97#endif
98
99#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME
114# define EV_USE_REALTIME 1
115#endif
116
117/**/
118
119#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0
122#endif
123
124#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0
127#endif
128
129/**/
130
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135 181
136#ifdef EV_H 182#ifdef EV_H
137# include EV_H 183# include EV_H
138#else 184#else
139# include "ev.h" 185# include "ev.h"
140#endif 186#endif
141 187
142#if __GNUC__ >= 3 188#ifndef _WIN32
143# define expect(expr,value) __builtin_expect ((expr),(value)) 189# include <sys/time.h>
144# define inline inline 190# include <sys/wait.h>
191# include <unistd.h>
145#else 192#else
146# define expect(expr,value) (expr) 193# include <io.h>
147# define inline static 194# define WIN32_LEAN_AND_MEAN
195# include <windows.h>
196# ifndef EV_SELECT_IS_WINSOCKET
197# define EV_SELECT_IS_WINSOCKET 1
148#endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
149 201
150#define expect_false(expr) expect ((expr) != 0, 0) 202/* OS X, in its infinite idiocy, actually HARDCODES
151#define expect_true(expr) expect ((expr) != 0, 1) 203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
152 209
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210/* this block tries to deduce configuration from header-defined symbols and defaults */
154#define ABSPRI(w) ((w)->priority - EV_MINPRI)
155 211
156typedef struct ev_watcher *W; 212/* try to deduce the maximum number of signals on this platform */
157typedef struct ev_watcher_list *WL; 213#if defined (EV_NSIG)
158typedef struct ev_watcher_time *WT; 214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
159 239
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
161 243
162#include "ev_win32.c" 244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
249# endif
250#endif
251
252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
256# define EV_USE_MONOTONIC 0
257# endif
258#endif
259
260#ifndef EV_USE_REALTIME
261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262#endif
263
264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
268# define EV_USE_NANOSLEEP 0
269# endif
270#endif
271
272#ifndef EV_USE_SELECT
273# define EV_USE_SELECT EV_FEATURE_BACKENDS
274#endif
275
276#ifndef EV_USE_POLL
277# ifdef _WIN32
278# define EV_USE_POLL 0
279# else
280# define EV_USE_POLL EV_FEATURE_BACKENDS
281# endif
282#endif
283
284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
288# define EV_USE_EPOLL 0
289# endif
290#endif
291
292#ifndef EV_USE_KQUEUE
293# define EV_USE_KQUEUE 0
294#endif
295
296#ifndef EV_USE_PORT
297# define EV_USE_PORT 0
298#endif
299
300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
304# define EV_USE_INOTIFY 0
305# endif
306#endif
307
308#ifndef EV_PID_HASHSIZE
309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
319# else
320# define EV_USE_EVENTFD 0
321# endif
322#endif
323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
371
372#ifndef CLOCK_MONOTONIC
373# undef EV_USE_MONOTONIC
374# define EV_USE_MONOTONIC 0
375#endif
376
377#ifndef CLOCK_REALTIME
378# undef EV_USE_REALTIME
379# define EV_USE_REALTIME 0
380#endif
381
382#if !EV_STAT_ENABLE
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385#endif
386
387#if !EV_USE_NANOSLEEP
388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
390# include <sys/select.h>
391# endif
392#endif
393
394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
402#endif
403
404#if EV_SELECT_IS_WINSOCKET
405# include <winsock.h>
406#endif
407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to work around floating point rounding problems.
456 * This value is good at least till the year 4000.
457 */
458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
460
461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
508 #if __GNUC__
509 typedef signed long long int64_t;
510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
515#else
516 #include <inttypes.h>
517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
531 #endif
532#endif
163 533
164/*****************************************************************************/ 534/*****************************************************************************/
165 535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 #if __i386 || __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif __sparc || __sparc__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 #elif defined(__s390__) || defined(__s390x__)
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
567 #endif
568 #endif
569#endif
570
571#ifndef ECB_MEMORY_FENCE
572 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
573 #define ECB_MEMORY_FENCE __sync_synchronize ()
574 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
575 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
576 #elif _MSC_VER >= 1400 /* VC++ 2005 */
577 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
578 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
579 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
580 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
581 #elif defined(_WIN32)
582 #include <WinNT.h>
583 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
584 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
585 #include <mbarrier.h>
586 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
587 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
588 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
589 #endif
590#endif
591
592#ifndef ECB_MEMORY_FENCE
593 #if !ECB_AVOID_PTHREADS
594 /*
595 * if you get undefined symbol references to pthread_mutex_lock,
596 * or failure to find pthread.h, then you should implement
597 * the ECB_MEMORY_FENCE operations for your cpu/compiler
598 * OR provide pthread.h and link against the posix thread library
599 * of your system.
600 */
601 #include <pthread.h>
602 #define ECB_NEEDS_PTHREADS 1
603 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
604
605 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
606 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
607 #endif
608#endif
609
610#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
611 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
612#endif
613
614#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
615 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
616#endif
617
618/*****************************************************************************/
619
620#define ECB_C99 (__STDC_VERSION__ >= 199901L)
621
622#if __cplusplus
623 #define ecb_inline static inline
624#elif ECB_GCC_VERSION(2,5)
625 #define ecb_inline static __inline__
626#elif ECB_C99
627 #define ecb_inline static inline
628#else
629 #define ecb_inline static
630#endif
631
632#if ECB_GCC_VERSION(3,3)
633 #define ecb_restrict __restrict__
634#elif ECB_C99
635 #define ecb_restrict restrict
636#else
637 #define ecb_restrict
638#endif
639
640typedef int ecb_bool;
641
642#define ECB_CONCAT_(a, b) a ## b
643#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
644#define ECB_STRINGIFY_(a) # a
645#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
646
647#define ecb_function_ ecb_inline
648
649#if ECB_GCC_VERSION(3,1)
650 #define ecb_attribute(attrlist) __attribute__(attrlist)
651 #define ecb_is_constant(expr) __builtin_constant_p (expr)
652 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
653 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
654#else
655 #define ecb_attribute(attrlist)
656 #define ecb_is_constant(expr) 0
657 #define ecb_expect(expr,value) (expr)
658 #define ecb_prefetch(addr,rw,locality)
659#endif
660
661/* no emulation for ecb_decltype */
662#if ECB_GCC_VERSION(4,5)
663 #define ecb_decltype(x) __decltype(x)
664#elif ECB_GCC_VERSION(3,0)
665 #define ecb_decltype(x) __typeof(x)
666#endif
667
668#define ecb_noinline ecb_attribute ((__noinline__))
669#define ecb_noreturn ecb_attribute ((__noreturn__))
670#define ecb_unused ecb_attribute ((__unused__))
671#define ecb_const ecb_attribute ((__const__))
672#define ecb_pure ecb_attribute ((__pure__))
673
674#if ECB_GCC_VERSION(4,3)
675 #define ecb_artificial ecb_attribute ((__artificial__))
676 #define ecb_hot ecb_attribute ((__hot__))
677 #define ecb_cold ecb_attribute ((__cold__))
678#else
679 #define ecb_artificial
680 #define ecb_hot
681 #define ecb_cold
682#endif
683
684/* put around conditional expressions if you are very sure that the */
685/* expression is mostly true or mostly false. note that these return */
686/* booleans, not the expression. */
687#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
688#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
689/* for compatibility to the rest of the world */
690#define ecb_likely(expr) ecb_expect_true (expr)
691#define ecb_unlikely(expr) ecb_expect_false (expr)
692
693/* count trailing zero bits and count # of one bits */
694#if ECB_GCC_VERSION(3,4)
695 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
696 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
697 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
698 #define ecb_ctz32(x) __builtin_ctz (x)
699 #define ecb_ctz64(x) __builtin_ctzll (x)
700 #define ecb_popcount32(x) __builtin_popcount (x)
701 /* no popcountll */
702#else
703 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
704 ecb_function_ int
705 ecb_ctz32 (uint32_t x)
706 {
707 int r = 0;
708
709 x &= ~x + 1; /* this isolates the lowest bit */
710
711#if ECB_branchless_on_i386
712 r += !!(x & 0xaaaaaaaa) << 0;
713 r += !!(x & 0xcccccccc) << 1;
714 r += !!(x & 0xf0f0f0f0) << 2;
715 r += !!(x & 0xff00ff00) << 3;
716 r += !!(x & 0xffff0000) << 4;
717#else
718 if (x & 0xaaaaaaaa) r += 1;
719 if (x & 0xcccccccc) r += 2;
720 if (x & 0xf0f0f0f0) r += 4;
721 if (x & 0xff00ff00) r += 8;
722 if (x & 0xffff0000) r += 16;
723#endif
724
725 return r;
726 }
727
728 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
729 ecb_function_ int
730 ecb_ctz64 (uint64_t x)
731 {
732 int shift = x & 0xffffffffU ? 0 : 32;
733 return ecb_ctz32 (x >> shift) + shift;
734 }
735
736 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
737 ecb_function_ int
738 ecb_popcount32 (uint32_t x)
739 {
740 x -= (x >> 1) & 0x55555555;
741 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
742 x = ((x >> 4) + x) & 0x0f0f0f0f;
743 x *= 0x01010101;
744
745 return x >> 24;
746 }
747
748 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
749 ecb_function_ int ecb_ld32 (uint32_t x)
750 {
751 int r = 0;
752
753 if (x >> 16) { x >>= 16; r += 16; }
754 if (x >> 8) { x >>= 8; r += 8; }
755 if (x >> 4) { x >>= 4; r += 4; }
756 if (x >> 2) { x >>= 2; r += 2; }
757 if (x >> 1) { r += 1; }
758
759 return r;
760 }
761
762 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
763 ecb_function_ int ecb_ld64 (uint64_t x)
764 {
765 int r = 0;
766
767 if (x >> 32) { x >>= 32; r += 32; }
768
769 return r + ecb_ld32 (x);
770 }
771#endif
772
773ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
774ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
775{
776 return ( (x * 0x0802U & 0x22110U)
777 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
778}
779
780ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
781ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
782{
783 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
784 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
785 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
786 x = ( x >> 8 ) | ( x << 8);
787
788 return x;
789}
790
791ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
792ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
793{
794 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
795 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
796 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
797 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
798 x = ( x >> 16 ) | ( x << 16);
799
800 return x;
801}
802
803/* popcount64 is only available on 64 bit cpus as gcc builtin */
804/* so for this version we are lazy */
805ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
806ecb_function_ int
807ecb_popcount64 (uint64_t x)
808{
809 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
810}
811
812ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
813ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
814ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
815ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
816ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
817ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
818ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
819ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
820
821ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
822ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
823ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
824ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
825ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
826ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
827ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
828ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
829
830#if ECB_GCC_VERSION(4,3)
831 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
832 #define ecb_bswap32(x) __builtin_bswap32 (x)
833 #define ecb_bswap64(x) __builtin_bswap64 (x)
834#else
835 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
836 ecb_function_ uint16_t
837 ecb_bswap16 (uint16_t x)
838 {
839 return ecb_rotl16 (x, 8);
840 }
841
842 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
843 ecb_function_ uint32_t
844 ecb_bswap32 (uint32_t x)
845 {
846 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
847 }
848
849 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
850 ecb_function_ uint64_t
851 ecb_bswap64 (uint64_t x)
852 {
853 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
854 }
855#endif
856
857#if ECB_GCC_VERSION(4,5)
858 #define ecb_unreachable() __builtin_unreachable ()
859#else
860 /* this seems to work fine, but gcc always emits a warning for it :/ */
861 ecb_inline void ecb_unreachable (void) ecb_noreturn;
862 ecb_inline void ecb_unreachable (void) { }
863#endif
864
865/* try to tell the compiler that some condition is definitely true */
866#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
867
868ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
869ecb_inline unsigned char
870ecb_byteorder_helper (void)
871{
872 const uint32_t u = 0x11223344;
873 return *(unsigned char *)&u;
874}
875
876ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
877ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
878ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
879ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
880
881#if ECB_GCC_VERSION(3,0) || ECB_C99
882 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
883#else
884 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
885#endif
886
887#if __cplusplus
888 template<typename T>
889 static inline T ecb_div_rd (T val, T div)
890 {
891 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
892 }
893 template<typename T>
894 static inline T ecb_div_ru (T val, T div)
895 {
896 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
897 }
898#else
899 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
900 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
901#endif
902
903#if ecb_cplusplus_does_not_suck
904 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
905 template<typename T, int N>
906 static inline int ecb_array_length (const T (&arr)[N])
907 {
908 return N;
909 }
910#else
911 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
912#endif
913
914#endif
915
916/* ECB.H END */
917
918#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
919/* if your architecture doesn't need memory fences, e.g. because it is
920 * single-cpu/core, or if you use libev in a project that doesn't use libev
921 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
922 * libev, in which cases the memory fences become nops.
923 * alternatively, you can remove this #error and link against libpthread,
924 * which will then provide the memory fences.
925 */
926# error "memory fences not defined for your architecture, please report"
927#endif
928
929#ifndef ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE do { } while (0)
931# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
932# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
933#endif
934
935#define expect_false(cond) ecb_expect_false (cond)
936#define expect_true(cond) ecb_expect_true (cond)
937#define noinline ecb_noinline
938
939#define inline_size ecb_inline
940
941#if EV_FEATURE_CODE
942# define inline_speed ecb_inline
943#else
944# define inline_speed static noinline
945#endif
946
947#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
948
949#if EV_MINPRI == EV_MAXPRI
950# define ABSPRI(w) (((W)w), 0)
951#else
952# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
953#endif
954
955#define EMPTY /* required for microsofts broken pseudo-c compiler */
956#define EMPTY2(a,b) /* used to suppress some warnings */
957
958typedef ev_watcher *W;
959typedef ev_watcher_list *WL;
960typedef ev_watcher_time *WT;
961
962#define ev_active(w) ((W)(w))->active
963#define ev_at(w) ((WT)(w))->at
964
965#if EV_USE_REALTIME
966/* sig_atomic_t is used to avoid per-thread variables or locking but still */
967/* giving it a reasonably high chance of working on typical architectures */
968static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
969#endif
970
971#if EV_USE_MONOTONIC
972static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
973#endif
974
975#ifndef EV_FD_TO_WIN32_HANDLE
976# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
977#endif
978#ifndef EV_WIN32_HANDLE_TO_FD
979# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
980#endif
981#ifndef EV_WIN32_CLOSE_FD
982# define EV_WIN32_CLOSE_FD(fd) close (fd)
983#endif
984
985#ifdef _WIN32
986# include "ev_win32.c"
987#endif
988
989/*****************************************************************************/
990
991/* define a suitable floor function (only used by periodics atm) */
992
993#if EV_USE_FLOOR
994# include <math.h>
995# define ev_floor(v) floor (v)
996#else
997
998#include <float.h>
999
1000/* a floor() replacement function, should be independent of ev_tstamp type */
1001static ev_tstamp noinline
1002ev_floor (ev_tstamp v)
1003{
1004 /* the choice of shift factor is not terribly important */
1005#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1007#else
1008 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1009#endif
1010
1011 /* argument too large for an unsigned long? */
1012 if (expect_false (v >= shift))
1013 {
1014 ev_tstamp f;
1015
1016 if (v == v - 1.)
1017 return v; /* very large number */
1018
1019 f = shift * ev_floor (v * (1. / shift));
1020 return f + ev_floor (v - f);
1021 }
1022
1023 /* special treatment for negative args? */
1024 if (expect_false (v < 0.))
1025 {
1026 ev_tstamp f = -ev_floor (-v);
1027
1028 return f - (f == v ? 0 : 1);
1029 }
1030
1031 /* fits into an unsigned long */
1032 return (unsigned long)v;
1033}
1034
1035#endif
1036
1037/*****************************************************************************/
1038
1039#ifdef __linux
1040# include <sys/utsname.h>
1041#endif
1042
1043static unsigned int noinline ecb_cold
1044ev_linux_version (void)
1045{
1046#ifdef __linux
1047 unsigned int v = 0;
1048 struct utsname buf;
1049 int i;
1050 char *p = buf.release;
1051
1052 if (uname (&buf))
1053 return 0;
1054
1055 for (i = 3+1; --i; )
1056 {
1057 unsigned int c = 0;
1058
1059 for (;;)
1060 {
1061 if (*p >= '0' && *p <= '9')
1062 c = c * 10 + *p++ - '0';
1063 else
1064 {
1065 p += *p == '.';
1066 break;
1067 }
1068 }
1069
1070 v = (v << 8) | c;
1071 }
1072
1073 return v;
1074#else
1075 return 0;
1076#endif
1077}
1078
1079/*****************************************************************************/
1080
1081#if EV_AVOID_STDIO
1082static void noinline ecb_cold
1083ev_printerr (const char *msg)
1084{
1085 write (STDERR_FILENO, msg, strlen (msg));
1086}
1087#endif
1088
166static void (*syserr_cb)(const char *msg); 1089static void (*syserr_cb)(const char *msg);
167 1090
1091void ecb_cold
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 1092ev_set_syserr_cb (void (*cb)(const char *msg))
169{ 1093{
170 syserr_cb = cb; 1094 syserr_cb = cb;
171} 1095}
172 1096
173static void 1097static void noinline ecb_cold
174syserr (const char *msg) 1098ev_syserr (const char *msg)
175{ 1099{
176 if (!msg) 1100 if (!msg)
177 msg = "(libev) system error"; 1101 msg = "(libev) system error";
178 1102
179 if (syserr_cb) 1103 if (syserr_cb)
180 syserr_cb (msg); 1104 syserr_cb (msg);
181 else 1105 else
182 { 1106 {
1107#if EV_AVOID_STDIO
1108 ev_printerr (msg);
1109 ev_printerr (": ");
1110 ev_printerr (strerror (errno));
1111 ev_printerr ("\n");
1112#else
183 perror (msg); 1113 perror (msg);
1114#endif
184 abort (); 1115 abort ();
185 } 1116 }
186} 1117}
187 1118
1119static void *
1120ev_realloc_emul (void *ptr, long size)
1121{
1122#if __GLIBC__
1123 return realloc (ptr, size);
1124#else
1125 /* some systems, notably openbsd and darwin, fail to properly
1126 * implement realloc (x, 0) (as required by both ansi c-89 and
1127 * the single unix specification, so work around them here.
1128 */
1129
1130 if (size)
1131 return realloc (ptr, size);
1132
1133 free (ptr);
1134 return 0;
1135#endif
1136}
1137
188static void *(*alloc)(void *ptr, long size); 1138static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
189 1139
1140void ecb_cold
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1141ev_set_allocator (void *(*cb)(void *ptr, long size))
191{ 1142{
192 alloc = cb; 1143 alloc = cb;
193} 1144}
194 1145
195static void * 1146inline_speed void *
196ev_realloc (void *ptr, long size) 1147ev_realloc (void *ptr, long size)
197{ 1148{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1149 ptr = alloc (ptr, size);
199 1150
200 if (!ptr && size) 1151 if (!ptr && size)
201 { 1152 {
1153#if EV_AVOID_STDIO
1154 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1155#else
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1156 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1157#endif
203 abort (); 1158 abort ();
204 } 1159 }
205 1160
206 return ptr; 1161 return ptr;
207} 1162}
209#define ev_malloc(size) ev_realloc (0, (size)) 1164#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0) 1165#define ev_free(ptr) ev_realloc ((ptr), 0)
211 1166
212/*****************************************************************************/ 1167/*****************************************************************************/
213 1168
1169/* set in reify when reification needed */
1170#define EV_ANFD_REIFY 1
1171
1172/* file descriptor info structure */
214typedef struct 1173typedef struct
215{ 1174{
216 WL head; 1175 WL head;
217 unsigned char events; 1176 unsigned char events; /* the events watched for */
1177 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1178 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
218 unsigned char reify; 1179 unsigned char unused;
1180#if EV_USE_EPOLL
1181 unsigned int egen; /* generation counter to counter epoll bugs */
1182#endif
1183#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1184 SOCKET handle;
1185#endif
1186#if EV_USE_IOCP
1187 OVERLAPPED or, ow;
1188#endif
219} ANFD; 1189} ANFD;
220 1190
1191/* stores the pending event set for a given watcher */
221typedef struct 1192typedef struct
222{ 1193{
223 W w; 1194 W w;
224 int events; 1195 int events; /* the pending event set for the given watcher */
225} ANPENDING; 1196} ANPENDING;
1197
1198#if EV_USE_INOTIFY
1199/* hash table entry per inotify-id */
1200typedef struct
1201{
1202 WL head;
1203} ANFS;
1204#endif
1205
1206/* Heap Entry */
1207#if EV_HEAP_CACHE_AT
1208 /* a heap element */
1209 typedef struct {
1210 ev_tstamp at;
1211 WT w;
1212 } ANHE;
1213
1214 #define ANHE_w(he) (he).w /* access watcher, read-write */
1215 #define ANHE_at(he) (he).at /* access cached at, read-only */
1216 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1217#else
1218 /* a heap element */
1219 typedef WT ANHE;
1220
1221 #define ANHE_w(he) (he)
1222 #define ANHE_at(he) (he)->at
1223 #define ANHE_at_cache(he)
1224#endif
226 1225
227#if EV_MULTIPLICITY 1226#if EV_MULTIPLICITY
228 1227
229 struct ev_loop 1228 struct ev_loop
230 { 1229 {
231 ev_tstamp ev_rt_now; 1230 ev_tstamp ev_rt_now;
1231 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 1232 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 1233 #include "ev_vars.h"
234 #undef VAR 1234 #undef VAR
235 }; 1235 };
236 #include "ev_wrap.h" 1236 #include "ev_wrap.h"
237 1237
238 struct ev_loop default_loop_struct; 1238 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 1239 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
240 1240
241#else 1241#else
242 1242
243 ev_tstamp ev_rt_now; 1243 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
244 #define VAR(name,decl) static decl; 1244 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 1245 #include "ev_vars.h"
246 #undef VAR 1246 #undef VAR
247 1247
248 static int default_loop; 1248 static int ev_default_loop_ptr;
249 1249
250#endif 1250#endif
1251
1252#if EV_FEATURE_API
1253# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1254# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1255# define EV_INVOKE_PENDING invoke_cb (EV_A)
1256#else
1257# define EV_RELEASE_CB (void)0
1258# define EV_ACQUIRE_CB (void)0
1259# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1260#endif
1261
1262#define EVBREAK_RECURSE 0x80
251 1263
252/*****************************************************************************/ 1264/*****************************************************************************/
253 1265
254inline ev_tstamp 1266#ifndef EV_HAVE_EV_TIME
1267ev_tstamp
255ev_time (void) 1268ev_time (void)
256{ 1269{
257#if EV_USE_REALTIME 1270#if EV_USE_REALTIME
1271 if (expect_true (have_realtime))
1272 {
258 struct timespec ts; 1273 struct timespec ts;
259 clock_gettime (CLOCK_REALTIME, &ts); 1274 clock_gettime (CLOCK_REALTIME, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9; 1275 return ts.tv_sec + ts.tv_nsec * 1e-9;
261#else 1276 }
1277#endif
1278
262 struct timeval tv; 1279 struct timeval tv;
263 gettimeofday (&tv, 0); 1280 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 1281 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif
266} 1282}
1283#endif
267 1284
268inline ev_tstamp 1285inline_size ev_tstamp
269get_clock (void) 1286get_clock (void)
270{ 1287{
271#if EV_USE_MONOTONIC 1288#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 1289 if (expect_true (have_monotonic))
273 { 1290 {
286{ 1303{
287 return ev_rt_now; 1304 return ev_rt_now;
288} 1305}
289#endif 1306#endif
290 1307
291#define array_roundsize(type,n) ((n) | 4 & ~3) 1308void
1309ev_sleep (ev_tstamp delay)
1310{
1311 if (delay > 0.)
1312 {
1313#if EV_USE_NANOSLEEP
1314 struct timespec ts;
1315
1316 EV_TS_SET (ts, delay);
1317 nanosleep (&ts, 0);
1318#elif defined(_WIN32)
1319 Sleep ((unsigned long)(delay * 1e3));
1320#else
1321 struct timeval tv;
1322
1323 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1324 /* something not guaranteed by newer posix versions, but guaranteed */
1325 /* by older ones */
1326 EV_TV_SET (tv, delay);
1327 select (0, 0, 0, 0, &tv);
1328#endif
1329 }
1330}
1331
1332/*****************************************************************************/
1333
1334#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1335
1336/* find a suitable new size for the given array, */
1337/* hopefully by rounding to a nice-to-malloc size */
1338inline_size int
1339array_nextsize (int elem, int cur, int cnt)
1340{
1341 int ncur = cur + 1;
1342
1343 do
1344 ncur <<= 1;
1345 while (cnt > ncur);
1346
1347 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1348 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1349 {
1350 ncur *= elem;
1351 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1352 ncur = ncur - sizeof (void *) * 4;
1353 ncur /= elem;
1354 }
1355
1356 return ncur;
1357}
1358
1359static void * noinline ecb_cold
1360array_realloc (int elem, void *base, int *cur, int cnt)
1361{
1362 *cur = array_nextsize (elem, *cur, cnt);
1363 return ev_realloc (base, elem * *cur);
1364}
1365
1366#define array_init_zero(base,count) \
1367 memset ((void *)(base), 0, sizeof (*(base)) * (count))
292 1368
293#define array_needsize(type,base,cur,cnt,init) \ 1369#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 1370 if (expect_false ((cnt) > (cur))) \
295 { \ 1371 { \
296 int newcnt = cur; \ 1372 int ecb_unused ocur_ = (cur); \
297 do \ 1373 (base) = (type *)array_realloc \
298 { \ 1374 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 1375 init ((base) + (ocur_), (cur) - ocur_); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 1376 }
307 1377
1378#if 0
308#define array_slim(type,stem) \ 1379#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1380 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 1381 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1382 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1383 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1384 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 1385 }
315 1386#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 1387
321#define array_free(stem, idx) \ 1388#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1389 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
323 1390
324/*****************************************************************************/ 1391/*****************************************************************************/
325 1392
326static void 1393/* dummy callback for pending events */
327anfds_init (ANFD *base, int count) 1394static void noinline
1395pendingcb (EV_P_ ev_prepare *w, int revents)
328{ 1396{
329 while (count--)
330 {
331 base->head = 0;
332 base->events = EV_NONE;
333 base->reify = 0;
334
335 ++base;
336 }
337} 1397}
338 1398
339void 1399void noinline
340ev_feed_event (EV_P_ void *w, int revents) 1400ev_feed_event (EV_P_ void *w, int revents)
341{ 1401{
342 W w_ = (W)w; 1402 W w_ = (W)w;
1403 int pri = ABSPRI (w_);
343 1404
344 if (w_->pending) 1405 if (expect_false (w_->pending))
1406 pendings [pri][w_->pending - 1].events |= revents;
1407 else
345 { 1408 {
1409 w_->pending = ++pendingcnt [pri];
1410 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1411 pendings [pri][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1412 pendings [pri][w_->pending - 1].events = revents;
347 return;
348 } 1413 }
349
350 w_->pending = ++pendingcnt [ABSPRI (w_)];
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354} 1414}
355 1415
356static void 1416inline_speed void
1417feed_reverse (EV_P_ W w)
1418{
1419 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1420 rfeeds [rfeedcnt++] = w;
1421}
1422
1423inline_size void
1424feed_reverse_done (EV_P_ int revents)
1425{
1426 do
1427 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1428 while (rfeedcnt);
1429}
1430
1431inline_speed void
357queue_events (EV_P_ W *events, int eventcnt, int type) 1432queue_events (EV_P_ W *events, int eventcnt, int type)
358{ 1433{
359 int i; 1434 int i;
360 1435
361 for (i = 0; i < eventcnt; ++i) 1436 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type); 1437 ev_feed_event (EV_A_ events [i], type);
363} 1438}
364 1439
1440/*****************************************************************************/
1441
365inline void 1442inline_speed void
366fd_event (EV_P_ int fd, int revents) 1443fd_event_nocheck (EV_P_ int fd, int revents)
367{ 1444{
368 ANFD *anfd = anfds + fd; 1445 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 1446 ev_io *w;
370 1447
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1448 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 1449 {
373 int ev = w->events & revents; 1450 int ev = w->events & revents;
374 1451
375 if (ev) 1452 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 1453 ev_feed_event (EV_A_ (W)w, ev);
377 } 1454 }
378} 1455}
379 1456
1457/* do not submit kernel events for fds that have reify set */
1458/* because that means they changed while we were polling for new events */
1459inline_speed void
1460fd_event (EV_P_ int fd, int revents)
1461{
1462 ANFD *anfd = anfds + fd;
1463
1464 if (expect_true (!anfd->reify))
1465 fd_event_nocheck (EV_A_ fd, revents);
1466}
1467
380void 1468void
381ev_feed_fd_event (EV_P_ int fd, int revents) 1469ev_feed_fd_event (EV_P_ int fd, int revents)
382{ 1470{
1471 if (fd >= 0 && fd < anfdmax)
383 fd_event (EV_A_ fd, revents); 1472 fd_event_nocheck (EV_A_ fd, revents);
384} 1473}
385 1474
386/*****************************************************************************/ 1475/* make sure the external fd watch events are in-sync */
387 1476/* with the kernel/libev internal state */
388static void 1477inline_size void
389fd_reify (EV_P) 1478fd_reify (EV_P)
390{ 1479{
391 int i; 1480 int i;
392 1481
1482#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
393 for (i = 0; i < fdchangecnt; ++i) 1483 for (i = 0; i < fdchangecnt; ++i)
394 { 1484 {
395 int fd = fdchanges [i]; 1485 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 1486 ANFD *anfd = anfds + fd;
1487
1488 if (anfd->reify & EV__IOFDSET && anfd->head)
1489 {
1490 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1491
1492 if (handle != anfd->handle)
1493 {
1494 unsigned long arg;
1495
1496 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1497
1498 /* handle changed, but fd didn't - we need to do it in two steps */
1499 backend_modify (EV_A_ fd, anfd->events, 0);
1500 anfd->events = 0;
1501 anfd->handle = handle;
1502 }
1503 }
1504 }
1505#endif
1506
1507 for (i = 0; i < fdchangecnt; ++i)
1508 {
1509 int fd = fdchanges [i];
1510 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 1511 ev_io *w;
398 1512
399 int events = 0; 1513 unsigned char o_events = anfd->events;
1514 unsigned char o_reify = anfd->reify;
400 1515
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
402 events |= w->events;
403
404 anfd->reify = 0; 1516 anfd->reify = 0;
405 1517
406 method_modify (EV_A_ fd, anfd->events, events); 1518 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1519 {
407 anfd->events = events; 1520 anfd->events = 0;
1521
1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1523 anfd->events |= (unsigned char)w->events;
1524
1525 if (o_events != anfd->events)
1526 o_reify = EV__IOFDSET; /* actually |= */
1527 }
1528
1529 if (o_reify & EV__IOFDSET)
1530 backend_modify (EV_A_ fd, o_events, anfd->events);
408 } 1531 }
409 1532
410 fdchangecnt = 0; 1533 fdchangecnt = 0;
411} 1534}
412 1535
413static void 1536/* something about the given fd changed */
1537inline_size void
414fd_change (EV_P_ int fd) 1538fd_change (EV_P_ int fd, int flags)
415{ 1539{
416 if (anfds [fd].reify) 1540 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 1541 anfds [fd].reify |= flags;
420 1542
1543 if (expect_true (!reify))
1544 {
421 ++fdchangecnt; 1545 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1546 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 1547 fdchanges [fdchangecnt - 1] = fd;
1548 }
424} 1549}
425 1550
426static void 1551/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1552inline_speed void ecb_cold
427fd_kill (EV_P_ int fd) 1553fd_kill (EV_P_ int fd)
428{ 1554{
429 struct ev_io *w; 1555 ev_io *w;
430 1556
431 while ((w = (struct ev_io *)anfds [fd].head)) 1557 while ((w = (ev_io *)anfds [fd].head))
432 { 1558 {
433 ev_io_stop (EV_A_ w); 1559 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1560 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 1561 }
436} 1562}
437 1563
438static int 1564/* check whether the given fd is actually valid, for error recovery */
1565inline_size int ecb_cold
439fd_valid (int fd) 1566fd_valid (int fd)
440{ 1567{
441#ifdef WIN32 1568#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 1569 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
443#else 1570#else
444 return fcntl (fd, F_GETFD) != -1; 1571 return fcntl (fd, F_GETFD) != -1;
445#endif 1572#endif
446} 1573}
447 1574
448/* called on EBADF to verify fds */ 1575/* called on EBADF to verify fds */
449static void 1576static void noinline ecb_cold
450fd_ebadf (EV_P) 1577fd_ebadf (EV_P)
451{ 1578{
452 int fd; 1579 int fd;
453 1580
454 for (fd = 0; fd < anfdmax; ++fd) 1581 for (fd = 0; fd < anfdmax; ++fd)
455 if (anfds [fd].events) 1582 if (anfds [fd].events)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 1583 if (!fd_valid (fd) && errno == EBADF)
457 fd_kill (EV_A_ fd); 1584 fd_kill (EV_A_ fd);
458} 1585}
459 1586
460/* called on ENOMEM in select/poll to kill some fds and retry */ 1587/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 1588static void noinline ecb_cold
462fd_enomem (EV_P) 1589fd_enomem (EV_P)
463{ 1590{
464 int fd; 1591 int fd;
465 1592
466 for (fd = anfdmax; fd--; ) 1593 for (fd = anfdmax; fd--; )
467 if (anfds [fd].events) 1594 if (anfds [fd].events)
468 { 1595 {
469 fd_kill (EV_A_ fd); 1596 fd_kill (EV_A_ fd);
470 return; 1597 break;
471 } 1598 }
472} 1599}
473 1600
474/* usually called after fork if method needs to re-arm all fds from scratch */ 1601/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 1602static void noinline
476fd_rearm_all (EV_P) 1603fd_rearm_all (EV_P)
477{ 1604{
478 int fd; 1605 int fd;
479 1606
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 1607 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 1608 if (anfds [fd].events)
483 { 1609 {
484 anfds [fd].events = 0; 1610 anfds [fd].events = 0;
485 fd_change (EV_A_ fd); 1611 anfds [fd].emask = 0;
1612 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
486 } 1613 }
487} 1614}
488 1615
1616/* used to prepare libev internal fd's */
1617/* this is not fork-safe */
1618inline_speed void
1619fd_intern (int fd)
1620{
1621#ifdef _WIN32
1622 unsigned long arg = 1;
1623 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1624#else
1625 fcntl (fd, F_SETFD, FD_CLOEXEC);
1626 fcntl (fd, F_SETFL, O_NONBLOCK);
1627#endif
1628}
1629
489/*****************************************************************************/ 1630/*****************************************************************************/
490 1631
1632/*
1633 * the heap functions want a real array index. array index 0 is guaranteed to not
1634 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1635 * the branching factor of the d-tree.
1636 */
1637
1638/*
1639 * at the moment we allow libev the luxury of two heaps,
1640 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1641 * which is more cache-efficient.
1642 * the difference is about 5% with 50000+ watchers.
1643 */
1644#if EV_USE_4HEAP
1645
1646#define DHEAP 4
1647#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1648#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1649#define UPHEAP_DONE(p,k) ((p) == (k))
1650
1651/* away from the root */
1652inline_speed void
1653downheap (ANHE *heap, int N, int k)
1654{
1655 ANHE he = heap [k];
1656 ANHE *E = heap + N + HEAP0;
1657
1658 for (;;)
1659 {
1660 ev_tstamp minat;
1661 ANHE *minpos;
1662 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1663
1664 /* find minimum child */
1665 if (expect_true (pos + DHEAP - 1 < E))
1666 {
1667 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1669 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1670 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1671 }
1672 else if (pos < E)
1673 {
1674 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1675 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1676 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1677 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1678 }
1679 else
1680 break;
1681
1682 if (ANHE_at (he) <= minat)
1683 break;
1684
1685 heap [k] = *minpos;
1686 ev_active (ANHE_w (*minpos)) = k;
1687
1688 k = minpos - heap;
1689 }
1690
1691 heap [k] = he;
1692 ev_active (ANHE_w (he)) = k;
1693}
1694
1695#else /* 4HEAP */
1696
1697#define HEAP0 1
1698#define HPARENT(k) ((k) >> 1)
1699#define UPHEAP_DONE(p,k) (!(p))
1700
1701/* away from the root */
1702inline_speed void
1703downheap (ANHE *heap, int N, int k)
1704{
1705 ANHE he = heap [k];
1706
1707 for (;;)
1708 {
1709 int c = k << 1;
1710
1711 if (c >= N + HEAP0)
1712 break;
1713
1714 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1715 ? 1 : 0;
1716
1717 if (ANHE_at (he) <= ANHE_at (heap [c]))
1718 break;
1719
1720 heap [k] = heap [c];
1721 ev_active (ANHE_w (heap [k])) = k;
1722
1723 k = c;
1724 }
1725
1726 heap [k] = he;
1727 ev_active (ANHE_w (he)) = k;
1728}
1729#endif
1730
1731/* towards the root */
1732inline_speed void
1733upheap (ANHE *heap, int k)
1734{
1735 ANHE he = heap [k];
1736
1737 for (;;)
1738 {
1739 int p = HPARENT (k);
1740
1741 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1742 break;
1743
1744 heap [k] = heap [p];
1745 ev_active (ANHE_w (heap [k])) = k;
1746 k = p;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752
1753/* move an element suitably so it is in a correct place */
1754inline_size void
1755adjustheap (ANHE *heap, int N, int k)
1756{
1757 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1758 upheap (heap, k);
1759 else
1760 downheap (heap, N, k);
1761}
1762
1763/* rebuild the heap: this function is used only once and executed rarely */
1764inline_size void
1765reheap (ANHE *heap, int N)
1766{
1767 int i;
1768
1769 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1770 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1771 for (i = 0; i < N; ++i)
1772 upheap (heap, i + HEAP0);
1773}
1774
1775/*****************************************************************************/
1776
1777/* associate signal watchers to a signal signal */
1778typedef struct
1779{
1780 EV_ATOMIC_T pending;
1781#if EV_MULTIPLICITY
1782 EV_P;
1783#endif
1784 WL head;
1785} ANSIG;
1786
1787static ANSIG signals [EV_NSIG - 1];
1788
1789/*****************************************************************************/
1790
1791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1792
1793static void noinline ecb_cold
1794evpipe_init (EV_P)
1795{
1796 if (!ev_is_active (&pipe_w))
1797 {
1798# if EV_USE_EVENTFD
1799 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1800 if (evfd < 0 && errno == EINVAL)
1801 evfd = eventfd (0, 0);
1802
1803 if (evfd >= 0)
1804 {
1805 evpipe [0] = -1;
1806 fd_intern (evfd); /* doing it twice doesn't hurt */
1807 ev_io_set (&pipe_w, evfd, EV_READ);
1808 }
1809 else
1810# endif
1811 {
1812 while (pipe (evpipe))
1813 ev_syserr ("(libev) error creating signal/async pipe");
1814
1815 fd_intern (evpipe [0]);
1816 fd_intern (evpipe [1]);
1817 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1818 }
1819
1820 ev_io_start (EV_A_ &pipe_w);
1821 ev_unref (EV_A); /* watcher should not keep loop alive */
1822 }
1823}
1824
1825inline_speed void
1826evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1827{
1828 if (expect_true (*flag))
1829 return;
1830
1831 *flag = 1;
1832
1833 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1834
1835 pipe_write_skipped = 1;
1836
1837 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1838
1839 if (pipe_write_wanted)
1840 {
1841 int old_errno;
1842
1843 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1844
1845 old_errno = errno; /* save errno because write will clobber it */
1846
1847#if EV_USE_EVENTFD
1848 if (evfd >= 0)
1849 {
1850 uint64_t counter = 1;
1851 write (evfd, &counter, sizeof (uint64_t));
1852 }
1853 else
1854#endif
1855 {
1856 /* win32 people keep sending patches that change this write() to send() */
1857 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1858 /* so when you think this write should be a send instead, please find out */
1859 /* where your send() is from - it's definitely not the microsoft send, and */
1860 /* tell me. thank you. */
1861 write (evpipe [1], &(evpipe [1]), 1);
1862 }
1863
1864 errno = old_errno;
1865 }
1866}
1867
1868/* called whenever the libev signal pipe */
1869/* got some events (signal, async) */
491static void 1870static void
492upheap (WT *heap, int k) 1871pipecb (EV_P_ ev_io *iow, int revents)
493{ 1872{
494 WT w = heap [k]; 1873 int i;
495 1874
496 while (k && heap [k >> 1]->at > w->at) 1875 if (revents & EV_READ)
497 {
498 heap [k] = heap [k >> 1];
499 ((W)heap [k])->active = k + 1;
500 k >>= 1;
501 } 1876 {
1877#if EV_USE_EVENTFD
1878 if (evfd >= 0)
1879 {
1880 uint64_t counter;
1881 read (evfd, &counter, sizeof (uint64_t));
1882 }
1883 else
1884#endif
1885 {
1886 char dummy;
1887 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1888 read (evpipe [0], &dummy, 1);
1889 }
1890 }
502 1891
503 heap [k] = w; 1892 pipe_write_skipped = 0;
504 ((W)heap [k])->active = k + 1;
505 1893
1894#if EV_SIGNAL_ENABLE
1895 if (sig_pending)
1896 {
1897 sig_pending = 0;
1898
1899 for (i = EV_NSIG - 1; i--; )
1900 if (expect_false (signals [i].pending))
1901 ev_feed_signal_event (EV_A_ i + 1);
1902 }
1903#endif
1904
1905#if EV_ASYNC_ENABLE
1906 if (async_pending)
1907 {
1908 async_pending = 0;
1909
1910 for (i = asynccnt; i--; )
1911 if (asyncs [i]->sent)
1912 {
1913 asyncs [i]->sent = 0;
1914 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1915 }
1916 }
1917#endif
1918}
1919
1920/*****************************************************************************/
1921
1922void
1923ev_feed_signal (int signum)
1924{
1925#if EV_MULTIPLICITY
1926 EV_P = signals [signum - 1].loop;
1927
1928 if (!EV_A)
1929 return;
1930#endif
1931
1932 if (!ev_active (&pipe_w))
1933 return;
1934
1935 signals [signum - 1].pending = 1;
1936 evpipe_write (EV_A_ &sig_pending);
506} 1937}
507 1938
508static void 1939static void
509downheap (WT *heap, int N, int k)
510{
511 WT w = heap [k];
512
513 while (k < (N >> 1))
514 {
515 int j = k << 1;
516
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
518 ++j;
519
520 if (w->at <= heap [j]->at)
521 break;
522
523 heap [k] = heap [j];
524 ((W)heap [k])->active = k + 1;
525 k = j;
526 }
527
528 heap [k] = w;
529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
544/*****************************************************************************/
545
546typedef struct
547{
548 WL head;
549 sig_atomic_t volatile gotsig;
550} ANSIG;
551
552static ANSIG *signals;
553static int signalmax;
554
555static int sigpipe [2];
556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
558
559static void
560signals_init (ANSIG *base, int count)
561{
562 while (count--)
563 {
564 base->head = 0;
565 base->gotsig = 0;
566
567 ++base;
568 }
569}
570
571static void
572sighandler (int signum) 1940ev_sighandler (int signum)
573{ 1941{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
578 signals [signum - 1].gotsig = 1;
579
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32 1942#ifdef _WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1943 signal (signum, ev_sighandler);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif 1944#endif
589 errno = old_errno;
590 }
591}
592 1945
593void 1946 ev_feed_signal (signum);
1947}
1948
1949void noinline
594ev_feed_signal_event (EV_P_ int signum) 1950ev_feed_signal_event (EV_P_ int signum)
595{ 1951{
596 WL w; 1952 WL w;
597 1953
1954 if (expect_false (signum <= 0 || signum > EV_NSIG))
1955 return;
1956
1957 --signum;
1958
598#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1960 /* it is permissible to try to feed a signal to the wrong loop */
600#endif 1961 /* or, likely more useful, feeding a signal nobody is waiting for */
601 1962
602 --signum; 1963 if (expect_false (signals [signum].loop != EV_A))
603
604 if (signum < 0 || signum >= signalmax)
605 return; 1964 return;
1965#endif
606 1966
607 signals [signum].gotsig = 0; 1967 signals [signum].pending = 0;
608 1968
609 for (w = signals [signum].head; w; w = w->next) 1969 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1970 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 1971}
612 1972
1973#if EV_USE_SIGNALFD
613static void 1974static void
614sigcb (EV_P_ struct ev_io *iow, int revents) 1975sigfdcb (EV_P_ ev_io *iow, int revents)
615{ 1976{
616 int signum; 1977 struct signalfd_siginfo si[2], *sip; /* these structs are big */
617 1978
618#ifdef WIN32 1979 for (;;)
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1980 {
620#else 1981 ssize_t res = read (sigfd, si, sizeof (si));
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624 1982
625 for (signum = signalmax; signum--; ) 1983 /* not ISO-C, as res might be -1, but works with SuS */
626 if (signals [signum].gotsig) 1984 for (sip = si; (char *)sip < (char *)si + res; ++sip)
627 ev_feed_signal_event (EV_A_ signum + 1); 1985 ev_feed_signal_event (EV_A_ sip->ssi_signo);
628}
629 1986
630static void 1987 if (res < (ssize_t)sizeof (si))
631siginit (EV_P) 1988 break;
632{ 1989 }
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645} 1990}
1991#endif
1992
1993#endif
646 1994
647/*****************************************************************************/ 1995/*****************************************************************************/
648 1996
649static struct ev_child *childs [PID_HASHSIZE]; 1997#if EV_CHILD_ENABLE
1998static WL childs [EV_PID_HASHSIZE];
650 1999
651#ifndef WIN32
652
653static struct ev_signal childev; 2000static ev_signal childev;
2001
2002#ifndef WIFCONTINUED
2003# define WIFCONTINUED(status) 0
2004#endif
2005
2006/* handle a single child status event */
2007inline_speed void
2008child_reap (EV_P_ int chain, int pid, int status)
2009{
2010 ev_child *w;
2011 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2012
2013 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2014 {
2015 if ((w->pid == pid || !w->pid)
2016 && (!traced || (w->flags & 1)))
2017 {
2018 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2019 w->rpid = pid;
2020 w->rstatus = status;
2021 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2022 }
2023 }
2024}
654 2025
655#ifndef WCONTINUED 2026#ifndef WCONTINUED
656# define WCONTINUED 0 2027# define WCONTINUED 0
657#endif 2028#endif
658 2029
2030/* called on sigchld etc., calls waitpid */
659static void 2031static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 2032childcb (EV_P_ ev_signal *sw, int revents)
676{ 2033{
677 int pid, status; 2034 int pid, status;
678 2035
2036 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2037 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 2038 if (!WCONTINUED
2039 || errno != EINVAL
2040 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2041 return;
2042
681 /* make sure we are called again until all childs have been reaped */ 2043 /* make sure we are called again until all children have been reaped */
2044 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2045 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 2046
684 child_reap (EV_A_ sw, pid, pid, status); 2047 child_reap (EV_A_ pid, pid, status);
2048 if ((EV_PID_HASHSIZE) > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2049 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 2050}
688 2051
689#endif 2052#endif
690 2053
691/*****************************************************************************/ 2054/*****************************************************************************/
692 2055
2056#if EV_USE_IOCP
2057# include "ev_iocp.c"
2058#endif
2059#if EV_USE_PORT
2060# include "ev_port.c"
2061#endif
693#if EV_USE_KQUEUE 2062#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 2063# include "ev_kqueue.c"
695#endif 2064#endif
696#if EV_USE_EPOLL 2065#if EV_USE_EPOLL
697# include "ev_epoll.c" 2066# include "ev_epoll.c"
701#endif 2070#endif
702#if EV_USE_SELECT 2071#if EV_USE_SELECT
703# include "ev_select.c" 2072# include "ev_select.c"
704#endif 2073#endif
705 2074
706int 2075int ecb_cold
707ev_version_major (void) 2076ev_version_major (void)
708{ 2077{
709 return EV_VERSION_MAJOR; 2078 return EV_VERSION_MAJOR;
710} 2079}
711 2080
712int 2081int ecb_cold
713ev_version_minor (void) 2082ev_version_minor (void)
714{ 2083{
715 return EV_VERSION_MINOR; 2084 return EV_VERSION_MINOR;
716} 2085}
717 2086
718/* return true if we are running with elevated privileges and should ignore env variables */ 2087/* return true if we are running with elevated privileges and should ignore env variables */
719static int 2088int inline_size ecb_cold
720enable_secure (void) 2089enable_secure (void)
721{ 2090{
722#ifdef WIN32 2091#ifdef _WIN32
723 return 0; 2092 return 0;
724#else 2093#else
725 return getuid () != geteuid () 2094 return getuid () != geteuid ()
726 || getgid () != getegid (); 2095 || getgid () != getegid ();
727#endif 2096#endif
728} 2097}
729 2098
730int 2099unsigned int ecb_cold
2100ev_supported_backends (void)
2101{
2102 unsigned int flags = 0;
2103
2104 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2105 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2106 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2107 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2108 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2109
2110 return flags;
2111}
2112
2113unsigned int ecb_cold
2114ev_recommended_backends (void)
2115{
2116 unsigned int flags = ev_supported_backends ();
2117
2118#ifndef __NetBSD__
2119 /* kqueue is borked on everything but netbsd apparently */
2120 /* it usually doesn't work correctly on anything but sockets and pipes */
2121 flags &= ~EVBACKEND_KQUEUE;
2122#endif
2123#ifdef __APPLE__
2124 /* only select works correctly on that "unix-certified" platform */
2125 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2126 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2127#endif
2128#ifdef __FreeBSD__
2129 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2130#endif
2131
2132 return flags;
2133}
2134
2135unsigned int ecb_cold
2136ev_embeddable_backends (void)
2137{
2138 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2139
2140 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2141 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2142 flags &= ~EVBACKEND_EPOLL;
2143
2144 return flags;
2145}
2146
2147unsigned int
2148ev_backend (EV_P)
2149{
2150 return backend;
2151}
2152
2153#if EV_FEATURE_API
2154unsigned int
2155ev_iteration (EV_P)
2156{
2157 return loop_count;
2158}
2159
2160unsigned int
731ev_method (EV_P) 2161ev_depth (EV_P)
732{ 2162{
733 return method; 2163 return loop_depth;
734} 2164}
735 2165
736static void 2166void
737loop_init (EV_P_ int methods) 2167ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
738{ 2168{
739 if (!method) 2169 io_blocktime = interval;
2170}
2171
2172void
2173ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2174{
2175 timeout_blocktime = interval;
2176}
2177
2178void
2179ev_set_userdata (EV_P_ void *data)
2180{
2181 userdata = data;
2182}
2183
2184void *
2185ev_userdata (EV_P)
2186{
2187 return userdata;
2188}
2189
2190void
2191ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2192{
2193 invoke_cb = invoke_pending_cb;
2194}
2195
2196void
2197ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2198{
2199 release_cb = release;
2200 acquire_cb = acquire;
2201}
2202#endif
2203
2204/* initialise a loop structure, must be zero-initialised */
2205static void noinline ecb_cold
2206loop_init (EV_P_ unsigned int flags)
2207{
2208 if (!backend)
740 { 2209 {
2210 origflags = flags;
2211
2212#if EV_USE_REALTIME
2213 if (!have_realtime)
2214 {
2215 struct timespec ts;
2216
2217 if (!clock_gettime (CLOCK_REALTIME, &ts))
2218 have_realtime = 1;
2219 }
2220#endif
2221
741#if EV_USE_MONOTONIC 2222#if EV_USE_MONOTONIC
2223 if (!have_monotonic)
2224 {
2225 struct timespec ts;
2226
2227 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2228 have_monotonic = 1;
2229 }
2230#endif
2231
2232 /* pid check not overridable via env */
2233#ifndef _WIN32
2234 if (flags & EVFLAG_FORKCHECK)
2235 curpid = getpid ();
2236#endif
2237
2238 if (!(flags & EVFLAG_NOENV)
2239 && !enable_secure ()
2240 && getenv ("LIBEV_FLAGS"))
2241 flags = atoi (getenv ("LIBEV_FLAGS"));
2242
2243 ev_rt_now = ev_time ();
2244 mn_now = get_clock ();
2245 now_floor = mn_now;
2246 rtmn_diff = ev_rt_now - mn_now;
2247#if EV_FEATURE_API
2248 invoke_cb = ev_invoke_pending;
2249#endif
2250
2251 io_blocktime = 0.;
2252 timeout_blocktime = 0.;
2253 backend = 0;
2254 backend_fd = -1;
2255 sig_pending = 0;
2256#if EV_ASYNC_ENABLE
2257 async_pending = 0;
2258#endif
2259 pipe_write_skipped = 0;
2260 pipe_write_wanted = 0;
2261#if EV_USE_INOTIFY
2262 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2263#endif
2264#if EV_USE_SIGNALFD
2265 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2266#endif
2267
2268 if (!(flags & EVBACKEND_MASK))
2269 flags |= ev_recommended_backends ();
2270
2271#if EV_USE_IOCP
2272 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2273#endif
2274#if EV_USE_PORT
2275 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2276#endif
2277#if EV_USE_KQUEUE
2278 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2279#endif
2280#if EV_USE_EPOLL
2281 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2282#endif
2283#if EV_USE_POLL
2284 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2285#endif
2286#if EV_USE_SELECT
2287 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2288#endif
2289
2290 ev_prepare_init (&pending_w, pendingcb);
2291
2292#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2293 ev_init (&pipe_w, pipecb);
2294 ev_set_priority (&pipe_w, EV_MAXPRI);
2295#endif
2296 }
2297}
2298
2299/* free up a loop structure */
2300void ecb_cold
2301ev_loop_destroy (EV_P)
2302{
2303 int i;
2304
2305#if EV_MULTIPLICITY
2306 /* mimic free (0) */
2307 if (!EV_A)
2308 return;
2309#endif
2310
2311#if EV_CLEANUP_ENABLE
2312 /* queue cleanup watchers (and execute them) */
2313 if (expect_false (cleanupcnt))
2314 {
2315 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2316 EV_INVOKE_PENDING;
2317 }
2318#endif
2319
2320#if EV_CHILD_ENABLE
2321 if (ev_is_active (&childev))
2322 {
2323 ev_ref (EV_A); /* child watcher */
2324 ev_signal_stop (EV_A_ &childev);
2325 }
2326#endif
2327
2328 if (ev_is_active (&pipe_w))
2329 {
2330 /*ev_ref (EV_A);*/
2331 /*ev_io_stop (EV_A_ &pipe_w);*/
2332
2333#if EV_USE_EVENTFD
2334 if (evfd >= 0)
2335 close (evfd);
2336#endif
2337
2338 if (evpipe [0] >= 0)
2339 {
2340 EV_WIN32_CLOSE_FD (evpipe [0]);
2341 EV_WIN32_CLOSE_FD (evpipe [1]);
2342 }
2343 }
2344
2345#if EV_USE_SIGNALFD
2346 if (ev_is_active (&sigfd_w))
2347 close (sigfd);
2348#endif
2349
2350#if EV_USE_INOTIFY
2351 if (fs_fd >= 0)
2352 close (fs_fd);
2353#endif
2354
2355 if (backend_fd >= 0)
2356 close (backend_fd);
2357
2358#if EV_USE_IOCP
2359 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2360#endif
2361#if EV_USE_PORT
2362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2363#endif
2364#if EV_USE_KQUEUE
2365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2366#endif
2367#if EV_USE_EPOLL
2368 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2369#endif
2370#if EV_USE_POLL
2371 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2372#endif
2373#if EV_USE_SELECT
2374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2375#endif
2376
2377 for (i = NUMPRI; i--; )
2378 {
2379 array_free (pending, [i]);
2380#if EV_IDLE_ENABLE
2381 array_free (idle, [i]);
2382#endif
2383 }
2384
2385 ev_free (anfds); anfds = 0; anfdmax = 0;
2386
2387 /* have to use the microsoft-never-gets-it-right macro */
2388 array_free (rfeed, EMPTY);
2389 array_free (fdchange, EMPTY);
2390 array_free (timer, EMPTY);
2391#if EV_PERIODIC_ENABLE
2392 array_free (periodic, EMPTY);
2393#endif
2394#if EV_FORK_ENABLE
2395 array_free (fork, EMPTY);
2396#endif
2397#if EV_CLEANUP_ENABLE
2398 array_free (cleanup, EMPTY);
2399#endif
2400 array_free (prepare, EMPTY);
2401 array_free (check, EMPTY);
2402#if EV_ASYNC_ENABLE
2403 array_free (async, EMPTY);
2404#endif
2405
2406 backend = 0;
2407
2408#if EV_MULTIPLICITY
2409 if (ev_is_default_loop (EV_A))
2410#endif
2411 ev_default_loop_ptr = 0;
2412#if EV_MULTIPLICITY
2413 else
2414 ev_free (EV_A);
2415#endif
2416}
2417
2418#if EV_USE_INOTIFY
2419inline_size void infy_fork (EV_P);
2420#endif
2421
2422inline_size void
2423loop_fork (EV_P)
2424{
2425#if EV_USE_PORT
2426 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2427#endif
2428#if EV_USE_KQUEUE
2429 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2430#endif
2431#if EV_USE_EPOLL
2432 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2433#endif
2434#if EV_USE_INOTIFY
2435 infy_fork (EV_A);
2436#endif
2437
2438 if (ev_is_active (&pipe_w))
2439 {
2440 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2441
2442 ev_ref (EV_A);
2443 ev_io_stop (EV_A_ &pipe_w);
2444
2445#if EV_USE_EVENTFD
2446 if (evfd >= 0)
2447 close (evfd);
2448#endif
2449
2450 if (evpipe [0] >= 0)
2451 {
2452 EV_WIN32_CLOSE_FD (evpipe [0]);
2453 EV_WIN32_CLOSE_FD (evpipe [1]);
2454 }
2455
2456#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2457 evpipe_init (EV_A);
2458 /* now iterate over everything, in case we missed something */
2459 pipecb (EV_A_ &pipe_w, EV_READ);
2460#endif
2461 }
2462
2463 postfork = 0;
2464}
2465
2466#if EV_MULTIPLICITY
2467
2468struct ev_loop * ecb_cold
2469ev_loop_new (unsigned int flags)
2470{
2471 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2472
2473 memset (EV_A, 0, sizeof (struct ev_loop));
2474 loop_init (EV_A_ flags);
2475
2476 if (ev_backend (EV_A))
2477 return EV_A;
2478
2479 ev_free (EV_A);
2480 return 0;
2481}
2482
2483#endif /* multiplicity */
2484
2485#if EV_VERIFY
2486static void noinline ecb_cold
2487verify_watcher (EV_P_ W w)
2488{
2489 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2490
2491 if (w->pending)
2492 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2493}
2494
2495static void noinline ecb_cold
2496verify_heap (EV_P_ ANHE *heap, int N)
2497{
2498 int i;
2499
2500 for (i = HEAP0; i < N + HEAP0; ++i)
2501 {
2502 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2503 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2504 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2505
2506 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2507 }
2508}
2509
2510static void noinline ecb_cold
2511array_verify (EV_P_ W *ws, int cnt)
2512{
2513 while (cnt--)
2514 {
2515 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2516 verify_watcher (EV_A_ ws [cnt]);
2517 }
2518}
2519#endif
2520
2521#if EV_FEATURE_API
2522void ecb_cold
2523ev_verify (EV_P)
2524{
2525#if EV_VERIFY
2526 int i;
2527 WL w;
2528
2529 assert (activecnt >= -1);
2530
2531 assert (fdchangemax >= fdchangecnt);
2532 for (i = 0; i < fdchangecnt; ++i)
2533 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2534
2535 assert (anfdmax >= 0);
2536 for (i = 0; i < anfdmax; ++i)
2537 for (w = anfds [i].head; w; w = w->next)
742 { 2538 {
743 struct timespec ts; 2539 verify_watcher (EV_A_ (W)w);
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2540 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
745 have_monotonic = 1; 2541 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
746 } 2542 }
747#endif
748 2543
749 ev_rt_now = ev_time (); 2544 assert (timermax >= timercnt);
750 mn_now = get_clock (); 2545 verify_heap (EV_A_ timers, timercnt);
751 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now;
753 2546
754 if (methods == EVMETHOD_AUTO) 2547#if EV_PERIODIC_ENABLE
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2548 assert (periodicmax >= periodiccnt);
756 methods = atoi (getenv ("LIBEV_METHODS")); 2549 verify_heap (EV_A_ periodics, periodiccnt);
757 else
758 methods = EVMETHOD_ANY;
759
760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
764#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
766#endif
767#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
769#endif
770#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
772#endif
773#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif 2550#endif
802 2551
803 for (i = NUMPRI; i--; ) 2552 for (i = NUMPRI; i--; )
804 array_free (pending, [i]); 2553 {
2554 assert (pendingmax [i] >= pendingcnt [i]);
2555#if EV_IDLE_ENABLE
2556 assert (idleall >= 0);
2557 assert (idlemax [i] >= idlecnt [i]);
2558 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2559#endif
2560 }
805 2561
806 /* have to use the microsoft-never-gets-it-right macro */ 2562#if EV_FORK_ENABLE
807 array_free_microshit (fdchange); 2563 assert (forkmax >= forkcnt);
808 array_free_microshit (timer); 2564 array_verify (EV_A_ (W *)forks, forkcnt);
809 array_free_microshit (periodic); 2565#endif
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813 2566
814 method = 0; 2567#if EV_CLEANUP_ENABLE
815} 2568 assert (cleanupmax >= cleanupcnt);
2569 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2570#endif
816 2571
817static void 2572#if EV_ASYNC_ENABLE
818loop_fork (EV_P) 2573 assert (asyncmax >= asynccnt);
819{ 2574 array_verify (EV_A_ (W *)asyncs, asynccnt);
820#if EV_USE_EPOLL 2575#endif
821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2576
2577#if EV_PREPARE_ENABLE
2578 assert (preparemax >= preparecnt);
2579 array_verify (EV_A_ (W *)prepares, preparecnt);
2580#endif
2581
2582#if EV_CHECK_ENABLE
2583 assert (checkmax >= checkcnt);
2584 array_verify (EV_A_ (W *)checks, checkcnt);
2585#endif
2586
2587# if 0
2588#if EV_CHILD_ENABLE
2589 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2590 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2591#endif
822#endif 2592# endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
825#endif 2593#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
843} 2594}
2595#endif
844 2596
845#if EV_MULTIPLICITY 2597#if EV_MULTIPLICITY
846struct ev_loop * 2598struct ev_loop * ecb_cold
847ev_loop_new (int methods)
848{
849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
852
853 loop_init (EV_A_ methods);
854
855 if (ev_method (EV_A))
856 return loop;
857
858 return 0;
859}
860
861void
862ev_loop_destroy (EV_P)
863{
864 loop_destroy (EV_A);
865 ev_free (loop);
866}
867
868void
869ev_loop_fork (EV_P)
870{
871 postfork = 1;
872}
873
874#endif
875
876#if EV_MULTIPLICITY
877struct ev_loop *
878#else 2599#else
879int 2600int
880#endif 2601#endif
881ev_default_loop (int methods) 2602ev_default_loop (unsigned int flags)
882{ 2603{
883 if (sigpipe [0] == sigpipe [1])
884 if (pipe (sigpipe))
885 return 0;
886
887 if (!default_loop) 2604 if (!ev_default_loop_ptr)
888 { 2605 {
889#if EV_MULTIPLICITY 2606#if EV_MULTIPLICITY
890 struct ev_loop *loop = default_loop = &default_loop_struct; 2607 EV_P = ev_default_loop_ptr = &default_loop_struct;
891#else 2608#else
892 default_loop = 1; 2609 ev_default_loop_ptr = 1;
893#endif 2610#endif
894 2611
895 loop_init (EV_A_ methods); 2612 loop_init (EV_A_ flags);
896 2613
897 if (ev_method (EV_A)) 2614 if (ev_backend (EV_A))
898 { 2615 {
899 siginit (EV_A); 2616#if EV_CHILD_ENABLE
900
901#ifndef WIN32
902 ev_signal_init (&childev, childcb, SIGCHLD); 2617 ev_signal_init (&childev, childcb, SIGCHLD);
903 ev_set_priority (&childev, EV_MAXPRI); 2618 ev_set_priority (&childev, EV_MAXPRI);
904 ev_signal_start (EV_A_ &childev); 2619 ev_signal_start (EV_A_ &childev);
905 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2620 ev_unref (EV_A); /* child watcher should not keep loop alive */
906#endif 2621#endif
907 } 2622 }
908 else 2623 else
909 default_loop = 0; 2624 ev_default_loop_ptr = 0;
910 } 2625 }
911 2626
912 return default_loop; 2627 return ev_default_loop_ptr;
913} 2628}
914 2629
915void 2630void
916ev_default_destroy (void) 2631ev_loop_fork (EV_P)
917{ 2632{
918#if EV_MULTIPLICITY 2633 postfork = 1; /* must be in line with ev_default_fork */
919 struct ev_loop *loop = default_loop;
920#endif
921
922#ifndef WIN32
923 ev_ref (EV_A); /* child watcher */
924 ev_signal_stop (EV_A_ &childev);
925#endif
926
927 ev_ref (EV_A); /* signal watcher */
928 ev_io_stop (EV_A_ &sigev);
929
930 close (sigpipe [0]); sigpipe [0] = 0;
931 close (sigpipe [1]); sigpipe [1] = 0;
932
933 loop_destroy (EV_A);
934} 2634}
2635
2636/*****************************************************************************/
935 2637
936void 2638void
937ev_default_fork (void) 2639ev_invoke (EV_P_ void *w, int revents)
938{ 2640{
939#if EV_MULTIPLICITY 2641 EV_CB_INVOKE ((W)w, revents);
940 struct ev_loop *loop = default_loop;
941#endif
942
943 if (method)
944 postfork = 1;
945} 2642}
946 2643
947/*****************************************************************************/ 2644unsigned int
948 2645ev_pending_count (EV_P)
949static int
950any_pending (EV_P)
951{ 2646{
952 int pri; 2647 int pri;
2648 unsigned int count = 0;
953 2649
954 for (pri = NUMPRI; pri--; ) 2650 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri]) 2651 count += pendingcnt [pri];
956 return 1;
957 2652
958 return 0; 2653 return count;
959} 2654}
960 2655
961static void 2656void noinline
962call_pending (EV_P) 2657ev_invoke_pending (EV_P)
963{ 2658{
964 int pri; 2659 int pri;
965 2660
966 for (pri = NUMPRI; pri--; ) 2661 for (pri = NUMPRI; pri--; )
967 while (pendingcnt [pri]) 2662 while (pendingcnt [pri])
968 { 2663 {
969 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2664 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
970 2665
971 if (p->w)
972 {
973 p->w->pending = 0; 2666 p->w->pending = 0;
974 EV_CB_INVOKE (p->w, p->events); 2667 EV_CB_INVOKE (p->w, p->events);
975 } 2668 EV_FREQUENT_CHECK;
976 } 2669 }
977} 2670}
978 2671
979static void 2672#if EV_IDLE_ENABLE
2673/* make idle watchers pending. this handles the "call-idle */
2674/* only when higher priorities are idle" logic */
2675inline_size void
2676idle_reify (EV_P)
2677{
2678 if (expect_false (idleall))
2679 {
2680 int pri;
2681
2682 for (pri = NUMPRI; pri--; )
2683 {
2684 if (pendingcnt [pri])
2685 break;
2686
2687 if (idlecnt [pri])
2688 {
2689 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2690 break;
2691 }
2692 }
2693 }
2694}
2695#endif
2696
2697/* make timers pending */
2698inline_size void
980timers_reify (EV_P) 2699timers_reify (EV_P)
981{ 2700{
2701 EV_FREQUENT_CHECK;
2702
982 while (timercnt && ((WT)timers [0])->at <= mn_now) 2703 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
983 { 2704 {
984 struct ev_timer *w = timers [0]; 2705 do
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
987
988 /* first reschedule or stop timer */
989 if (w->repeat)
990 { 2706 {
2707 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2708
2709 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2710
2711 /* first reschedule or stop timer */
2712 if (w->repeat)
2713 {
2714 ev_at (w) += w->repeat;
2715 if (ev_at (w) < mn_now)
2716 ev_at (w) = mn_now;
2717
991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2718 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992 2719
993 ((WT)w)->at += w->repeat; 2720 ANHE_at_cache (timers [HEAP0]);
994 if (((WT)w)->at < mn_now)
995 ((WT)w)->at = mn_now;
996
997 downheap ((WT *)timers, timercnt, 0); 2721 downheap (timers, timercnt, HEAP0);
2722 }
2723 else
2724 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2725
2726 EV_FREQUENT_CHECK;
2727 feed_reverse (EV_A_ (W)w);
998 } 2728 }
999 else 2729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1000 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1001 2730
1002 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2731 feed_reverse_done (EV_A_ EV_TIMER);
2732 }
2733}
2734
2735#if EV_PERIODIC_ENABLE
2736
2737static void noinline
2738periodic_recalc (EV_P_ ev_periodic *w)
2739{
2740 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2741 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2742
2743 /* the above almost always errs on the low side */
2744 while (at <= ev_rt_now)
1003 } 2745 {
1004} 2746 ev_tstamp nat = at + w->interval;
1005 2747
1006static void 2748 /* when resolution fails us, we use ev_rt_now */
2749 if (expect_false (nat == at))
2750 {
2751 at = ev_rt_now;
2752 break;
2753 }
2754
2755 at = nat;
2756 }
2757
2758 ev_at (w) = at;
2759}
2760
2761/* make periodics pending */
2762inline_size void
1007periodics_reify (EV_P) 2763periodics_reify (EV_P)
1008{ 2764{
2765 EV_FREQUENT_CHECK;
2766
1009 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2767 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1010 { 2768 {
1011 struct ev_periodic *w = periodics [0]; 2769 int feed_count = 0;
1012 2770
2771 do
2772 {
2773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2774
1013 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2775 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1014 2776
1015 /* first reschedule or stop timer */ 2777 /* first reschedule or stop timer */
2778 if (w->reschedule_cb)
2779 {
2780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2781
2782 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2783
2784 ANHE_at_cache (periodics [HEAP0]);
2785 downheap (periodics, periodiccnt, HEAP0);
2786 }
2787 else if (w->interval)
2788 {
2789 periodic_recalc (EV_A_ w);
2790 ANHE_at_cache (periodics [HEAP0]);
2791 downheap (periodics, periodiccnt, HEAP0);
2792 }
2793 else
2794 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2795
2796 EV_FREQUENT_CHECK;
2797 feed_reverse (EV_A_ (W)w);
2798 }
2799 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2800
2801 feed_reverse_done (EV_A_ EV_PERIODIC);
2802 }
2803}
2804
2805/* simply recalculate all periodics */
2806/* TODO: maybe ensure that at least one event happens when jumping forward? */
2807static void noinline ecb_cold
2808periodics_reschedule (EV_P)
2809{
2810 int i;
2811
2812 /* adjust periodics after time jump */
2813 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2814 {
2815 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2816
1016 if (w->reschedule_cb) 2817 if (w->reschedule_cb)
2818 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2819 else if (w->interval)
2820 periodic_recalc (EV_A_ w);
2821
2822 ANHE_at_cache (periodics [i]);
2823 }
2824
2825 reheap (periodics, periodiccnt);
2826}
2827#endif
2828
2829/* adjust all timers by a given offset */
2830static void noinline ecb_cold
2831timers_reschedule (EV_P_ ev_tstamp adjust)
2832{
2833 int i;
2834
2835 for (i = 0; i < timercnt; ++i)
2836 {
2837 ANHE *he = timers + i + HEAP0;
2838 ANHE_w (*he)->at += adjust;
2839 ANHE_at_cache (*he);
2840 }
2841}
2842
2843/* fetch new monotonic and realtime times from the kernel */
2844/* also detect if there was a timejump, and act accordingly */
2845inline_speed void
2846time_update (EV_P_ ev_tstamp max_block)
2847{
2848#if EV_USE_MONOTONIC
2849 if (expect_true (have_monotonic))
2850 {
2851 int i;
2852 ev_tstamp odiff = rtmn_diff;
2853
2854 mn_now = get_clock ();
2855
2856 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2857 /* interpolate in the meantime */
2858 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1017 { 2859 {
1018 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2860 ev_rt_now = rtmn_diff + mn_now;
1019 2861 return;
1020 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1021 downheap ((WT *)periodics, periodiccnt, 0);
1022 } 2862 }
1023 else if (w->interval)
1024 {
1025 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1026 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1027 downheap ((WT *)periodics, periodiccnt, 0);
1028 }
1029 else
1030 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1031 2863
1032 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1033 }
1034}
1035
1036static void
1037periodics_reschedule (EV_P)
1038{
1039 int i;
1040
1041 /* adjust periodics after time jump */
1042 for (i = 0; i < periodiccnt; ++i)
1043 {
1044 struct ev_periodic *w = periodics [i];
1045
1046 if (w->reschedule_cb)
1047 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1048 else if (w->interval)
1049 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1050 }
1051
1052 /* now rebuild the heap */
1053 for (i = periodiccnt >> 1; i--; )
1054 downheap ((WT *)periodics, periodiccnt, i);
1055}
1056
1057inline int
1058time_update_monotonic (EV_P)
1059{
1060 mn_now = get_clock ();
1061
1062 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1063 {
1064 ev_rt_now = rtmn_diff + mn_now;
1065 return 0;
1066 }
1067 else
1068 {
1069 now_floor = mn_now; 2864 now_floor = mn_now;
1070 ev_rt_now = ev_time (); 2865 ev_rt_now = ev_time ();
1071 return 1;
1072 }
1073}
1074 2866
1075static void 2867 /* loop a few times, before making important decisions.
1076time_update (EV_P) 2868 * on the choice of "4": one iteration isn't enough,
1077{ 2869 * in case we get preempted during the calls to
1078 int i; 2870 * ev_time and get_clock. a second call is almost guaranteed
1079 2871 * to succeed in that case, though. and looping a few more times
1080#if EV_USE_MONOTONIC 2872 * doesn't hurt either as we only do this on time-jumps or
1081 if (expect_true (have_monotonic)) 2873 * in the unlikely event of having been preempted here.
1082 { 2874 */
1083 if (time_update_monotonic (EV_A)) 2875 for (i = 4; --i; )
1084 { 2876 {
1085 ev_tstamp odiff = rtmn_diff; 2877 ev_tstamp diff;
1086
1087 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1088 {
1089 rtmn_diff = ev_rt_now - mn_now; 2878 rtmn_diff = ev_rt_now - mn_now;
1090 2879
1091 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2880 diff = odiff - rtmn_diff;
2881
2882 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1092 return; /* all is well */ 2883 return; /* all is well */
1093 2884
1094 ev_rt_now = ev_time (); 2885 ev_rt_now = ev_time ();
1095 mn_now = get_clock (); 2886 mn_now = get_clock ();
1096 now_floor = mn_now; 2887 now_floor = mn_now;
1097 } 2888 }
1098 2889
2890 /* no timer adjustment, as the monotonic clock doesn't jump */
2891 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2892# if EV_PERIODIC_ENABLE
2893 periodics_reschedule (EV_A);
2894# endif
2895 }
2896 else
2897#endif
2898 {
2899 ev_rt_now = ev_time ();
2900
2901 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2902 {
2903 /* adjust timers. this is easy, as the offset is the same for all of them */
2904 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2905#if EV_PERIODIC_ENABLE
1099 periodics_reschedule (EV_A); 2906 periodics_reschedule (EV_A);
1100 /* no timer adjustment, as the monotonic clock doesn't jump */ 2907#endif
1101 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1102 } 2908 }
1103 }
1104 else
1105#endif
1106 {
1107 ev_rt_now = ev_time ();
1108
1109 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1110 {
1111 periodics_reschedule (EV_A);
1112
1113 /* adjust timers. this is easy, as the offset is the same for all */
1114 for (i = 0; i < timercnt; ++i)
1115 ((WT)timers [i])->at += ev_rt_now - mn_now;
1116 }
1117 2909
1118 mn_now = ev_rt_now; 2910 mn_now = ev_rt_now;
1119 } 2911 }
1120} 2912}
1121 2913
1122void 2914void
1123ev_ref (EV_P)
1124{
1125 ++activecnt;
1126}
1127
1128void
1129ev_unref (EV_P)
1130{
1131 --activecnt;
1132}
1133
1134static int loop_done;
1135
1136void
1137ev_loop (EV_P_ int flags) 2915ev_run (EV_P_ int flags)
1138{ 2916{
1139 double block; 2917#if EV_FEATURE_API
1140 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2918 ++loop_depth;
2919#endif
2920
2921 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2922
2923 loop_done = EVBREAK_CANCEL;
2924
2925 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1141 2926
1142 do 2927 do
1143 { 2928 {
2929#if EV_VERIFY >= 2
2930 ev_verify (EV_A);
2931#endif
2932
2933#ifndef _WIN32
2934 if (expect_false (curpid)) /* penalise the forking check even more */
2935 if (expect_false (getpid () != curpid))
2936 {
2937 curpid = getpid ();
2938 postfork = 1;
2939 }
2940#endif
2941
2942#if EV_FORK_ENABLE
2943 /* we might have forked, so queue fork handlers */
2944 if (expect_false (postfork))
2945 if (forkcnt)
2946 {
2947 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2948 EV_INVOKE_PENDING;
2949 }
2950#endif
2951
2952#if EV_PREPARE_ENABLE
1144 /* queue check watchers (and execute them) */ 2953 /* queue prepare watchers (and execute them) */
1145 if (expect_false (preparecnt)) 2954 if (expect_false (preparecnt))
1146 { 2955 {
1147 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2956 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1148 call_pending (EV_A); 2957 EV_INVOKE_PENDING;
1149 } 2958 }
2959#endif
2960
2961 if (expect_false (loop_done))
2962 break;
1150 2963
1151 /* we might have forked, so reify kernel state if necessary */ 2964 /* we might have forked, so reify kernel state if necessary */
1152 if (expect_false (postfork)) 2965 if (expect_false (postfork))
1153 loop_fork (EV_A); 2966 loop_fork (EV_A);
1154 2967
1155 /* update fd-related kernel structures */ 2968 /* update fd-related kernel structures */
1156 fd_reify (EV_A); 2969 fd_reify (EV_A);
1157 2970
1158 /* calculate blocking time */ 2971 /* calculate blocking time */
2972 {
2973 ev_tstamp waittime = 0.;
2974 ev_tstamp sleeptime = 0.;
1159 2975
1160 /* we only need this for !monotonic clock or timers, but as we basically 2976 /* remember old timestamp for io_blocktime calculation */
1161 always have timers, we just calculate it always */ 2977 ev_tstamp prev_mn_now = mn_now;
1162#if EV_USE_MONOTONIC 2978
1163 if (expect_true (have_monotonic)) 2979 /* update time to cancel out callback processing overhead */
1164 time_update_monotonic (EV_A); 2980 time_update (EV_A_ 1e100);
1165 else 2981
1166#endif 2982 /* from now on, we want a pipe-wake-up */
2983 pipe_write_wanted = 1;
2984
2985 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2986
2987 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1167 { 2988 {
1168 ev_rt_now = ev_time ();
1169 mn_now = ev_rt_now;
1170 }
1171
1172 if (flags & EVLOOP_NONBLOCK || idlecnt)
1173 block = 0.;
1174 else
1175 {
1176 block = MAX_BLOCKTIME; 2989 waittime = MAX_BLOCKTIME;
1177 2990
1178 if (timercnt) 2991 if (timercnt)
1179 { 2992 {
1180 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2993 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1181 if (block > to) block = to; 2994 if (waittime > to) waittime = to;
1182 } 2995 }
1183 2996
2997#if EV_PERIODIC_ENABLE
1184 if (periodiccnt) 2998 if (periodiccnt)
1185 { 2999 {
1186 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3000 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1187 if (block > to) block = to; 3001 if (waittime > to) waittime = to;
1188 } 3002 }
3003#endif
1189 3004
1190 if (block < 0.) block = 0.; 3005 /* don't let timeouts decrease the waittime below timeout_blocktime */
3006 if (expect_false (waittime < timeout_blocktime))
3007 waittime = timeout_blocktime;
3008
3009 /* at this point, we NEED to wait, so we have to ensure */
3010 /* to pass a minimum nonzero value to the backend */
3011 if (expect_false (waittime < backend_mintime))
3012 waittime = backend_mintime;
3013
3014 /* extra check because io_blocktime is commonly 0 */
3015 if (expect_false (io_blocktime))
3016 {
3017 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3018
3019 if (sleeptime > waittime - backend_mintime)
3020 sleeptime = waittime - backend_mintime;
3021
3022 if (expect_true (sleeptime > 0.))
3023 {
3024 ev_sleep (sleeptime);
3025 waittime -= sleeptime;
3026 }
3027 }
1191 } 3028 }
1192 3029
1193 method_poll (EV_A_ block); 3030#if EV_FEATURE_API
3031 ++loop_count;
3032#endif
3033 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3034 backend_poll (EV_A_ waittime);
3035 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1194 3036
3037 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3038
3039 if (pipe_write_skipped)
3040 {
3041 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3042 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3043 }
3044
3045
1195 /* update ev_rt_now, do magic */ 3046 /* update ev_rt_now, do magic */
1196 time_update (EV_A); 3047 time_update (EV_A_ waittime + sleeptime);
3048 }
1197 3049
1198 /* queue pending timers and reschedule them */ 3050 /* queue pending timers and reschedule them */
1199 timers_reify (EV_A); /* relative timers called last */ 3051 timers_reify (EV_A); /* relative timers called last */
3052#if EV_PERIODIC_ENABLE
1200 periodics_reify (EV_A); /* absolute timers called first */ 3053 periodics_reify (EV_A); /* absolute timers called first */
3054#endif
1201 3055
3056#if EV_IDLE_ENABLE
1202 /* queue idle watchers unless io or timers are pending */ 3057 /* queue idle watchers unless other events are pending */
1203 if (idlecnt && !any_pending (EV_A)) 3058 idle_reify (EV_A);
1204 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3059#endif
1205 3060
3061#if EV_CHECK_ENABLE
1206 /* queue check watchers, to be executed first */ 3062 /* queue check watchers, to be executed first */
1207 if (checkcnt) 3063 if (expect_false (checkcnt))
1208 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3064 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3065#endif
1209 3066
1210 call_pending (EV_A); 3067 EV_INVOKE_PENDING;
1211 } 3068 }
1212 while (activecnt && !loop_done); 3069 while (expect_true (
3070 activecnt
3071 && !loop_done
3072 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3073 ));
1213 3074
1214 if (loop_done != 2) 3075 if (loop_done == EVBREAK_ONE)
1215 loop_done = 0; 3076 loop_done = EVBREAK_CANCEL;
3077
3078#if EV_FEATURE_API
3079 --loop_depth;
3080#endif
1216} 3081}
1217 3082
1218void 3083void
1219ev_unloop (EV_P_ int how) 3084ev_break (EV_P_ int how)
1220{ 3085{
1221 loop_done = how; 3086 loop_done = how;
1222} 3087}
1223 3088
3089void
3090ev_ref (EV_P)
3091{
3092 ++activecnt;
3093}
3094
3095void
3096ev_unref (EV_P)
3097{
3098 --activecnt;
3099}
3100
3101void
3102ev_now_update (EV_P)
3103{
3104 time_update (EV_A_ 1e100);
3105}
3106
3107void
3108ev_suspend (EV_P)
3109{
3110 ev_now_update (EV_A);
3111}
3112
3113void
3114ev_resume (EV_P)
3115{
3116 ev_tstamp mn_prev = mn_now;
3117
3118 ev_now_update (EV_A);
3119 timers_reschedule (EV_A_ mn_now - mn_prev);
3120#if EV_PERIODIC_ENABLE
3121 /* TODO: really do this? */
3122 periodics_reschedule (EV_A);
3123#endif
3124}
3125
1224/*****************************************************************************/ 3126/*****************************************************************************/
3127/* singly-linked list management, used when the expected list length is short */
1225 3128
1226inline void 3129inline_size void
1227wlist_add (WL *head, WL elem) 3130wlist_add (WL *head, WL elem)
1228{ 3131{
1229 elem->next = *head; 3132 elem->next = *head;
1230 *head = elem; 3133 *head = elem;
1231} 3134}
1232 3135
1233inline void 3136inline_size void
1234wlist_del (WL *head, WL elem) 3137wlist_del (WL *head, WL elem)
1235{ 3138{
1236 while (*head) 3139 while (*head)
1237 { 3140 {
1238 if (*head == elem) 3141 if (expect_true (*head == elem))
1239 { 3142 {
1240 *head = elem->next; 3143 *head = elem->next;
1241 return; 3144 break;
1242 } 3145 }
1243 3146
1244 head = &(*head)->next; 3147 head = &(*head)->next;
1245 } 3148 }
1246} 3149}
1247 3150
3151/* internal, faster, version of ev_clear_pending */
1248inline void 3152inline_speed void
1249ev_clear_pending (EV_P_ W w) 3153clear_pending (EV_P_ W w)
1250{ 3154{
1251 if (w->pending) 3155 if (w->pending)
1252 { 3156 {
1253 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3157 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1254 w->pending = 0; 3158 w->pending = 0;
1255 } 3159 }
1256} 3160}
1257 3161
3162int
3163ev_clear_pending (EV_P_ void *w)
3164{
3165 W w_ = (W)w;
3166 int pending = w_->pending;
3167
3168 if (expect_true (pending))
3169 {
3170 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3171 p->w = (W)&pending_w;
3172 w_->pending = 0;
3173 return p->events;
3174 }
3175 else
3176 return 0;
3177}
3178
1258inline void 3179inline_size void
3180pri_adjust (EV_P_ W w)
3181{
3182 int pri = ev_priority (w);
3183 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3184 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3185 ev_set_priority (w, pri);
3186}
3187
3188inline_speed void
1259ev_start (EV_P_ W w, int active) 3189ev_start (EV_P_ W w, int active)
1260{ 3190{
1261 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3191 pri_adjust (EV_A_ w);
1262 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1263
1264 w->active = active; 3192 w->active = active;
1265 ev_ref (EV_A); 3193 ev_ref (EV_A);
1266} 3194}
1267 3195
1268inline void 3196inline_size void
1269ev_stop (EV_P_ W w) 3197ev_stop (EV_P_ W w)
1270{ 3198{
1271 ev_unref (EV_A); 3199 ev_unref (EV_A);
1272 w->active = 0; 3200 w->active = 0;
1273} 3201}
1274 3202
1275/*****************************************************************************/ 3203/*****************************************************************************/
1276 3204
1277void 3205void noinline
1278ev_io_start (EV_P_ struct ev_io *w) 3206ev_io_start (EV_P_ ev_io *w)
1279{ 3207{
1280 int fd = w->fd; 3208 int fd = w->fd;
1281 3209
3210 if (expect_false (ev_is_active (w)))
3211 return;
3212
3213 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3214 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3215
3216 EV_FREQUENT_CHECK;
3217
3218 ev_start (EV_A_ (W)w, 1);
3219 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3220 wlist_add (&anfds[fd].head, (WL)w);
3221
3222 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3223 w->events &= ~EV__IOFDSET;
3224
3225 EV_FREQUENT_CHECK;
3226}
3227
3228void noinline
3229ev_io_stop (EV_P_ ev_io *w)
3230{
3231 clear_pending (EV_A_ (W)w);
3232 if (expect_false (!ev_is_active (w)))
3233 return;
3234
3235 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3236
3237 EV_FREQUENT_CHECK;
3238
3239 wlist_del (&anfds[w->fd].head, (WL)w);
3240 ev_stop (EV_A_ (W)w);
3241
3242 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3243
3244 EV_FREQUENT_CHECK;
3245}
3246
3247void noinline
3248ev_timer_start (EV_P_ ev_timer *w)
3249{
3250 if (expect_false (ev_is_active (w)))
3251 return;
3252
3253 ev_at (w) += mn_now;
3254
3255 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3256
3257 EV_FREQUENT_CHECK;
3258
3259 ++timercnt;
3260 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3261 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3262 ANHE_w (timers [ev_active (w)]) = (WT)w;
3263 ANHE_at_cache (timers [ev_active (w)]);
3264 upheap (timers, ev_active (w));
3265
3266 EV_FREQUENT_CHECK;
3267
3268 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3269}
3270
3271void noinline
3272ev_timer_stop (EV_P_ ev_timer *w)
3273{
3274 clear_pending (EV_A_ (W)w);
3275 if (expect_false (!ev_is_active (w)))
3276 return;
3277
3278 EV_FREQUENT_CHECK;
3279
3280 {
3281 int active = ev_active (w);
3282
3283 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3284
3285 --timercnt;
3286
3287 if (expect_true (active < timercnt + HEAP0))
3288 {
3289 timers [active] = timers [timercnt + HEAP0];
3290 adjustheap (timers, timercnt, active);
3291 }
3292 }
3293
3294 ev_at (w) -= mn_now;
3295
3296 ev_stop (EV_A_ (W)w);
3297
3298 EV_FREQUENT_CHECK;
3299}
3300
3301void noinline
3302ev_timer_again (EV_P_ ev_timer *w)
3303{
3304 EV_FREQUENT_CHECK;
3305
3306 clear_pending (EV_A_ (W)w);
3307
1282 if (ev_is_active (w)) 3308 if (ev_is_active (w))
1283 return;
1284
1285 assert (("ev_io_start called with negative fd", fd >= 0));
1286
1287 ev_start (EV_A_ (W)w, 1);
1288 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1289 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1290
1291 fd_change (EV_A_ fd);
1292}
1293
1294void
1295ev_io_stop (EV_P_ struct ev_io *w)
1296{
1297 ev_clear_pending (EV_A_ (W)w);
1298 if (!ev_is_active (w))
1299 return;
1300
1301 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1302
1303 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1304 ev_stop (EV_A_ (W)w);
1305
1306 fd_change (EV_A_ w->fd);
1307}
1308
1309void
1310ev_timer_start (EV_P_ struct ev_timer *w)
1311{
1312 if (ev_is_active (w))
1313 return;
1314
1315 ((WT)w)->at += mn_now;
1316
1317 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1318
1319 ev_start (EV_A_ (W)w, ++timercnt);
1320 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1321 timers [timercnt - 1] = w;
1322 upheap ((WT *)timers, timercnt - 1);
1323
1324 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1325}
1326
1327void
1328ev_timer_stop (EV_P_ struct ev_timer *w)
1329{
1330 ev_clear_pending (EV_A_ (W)w);
1331 if (!ev_is_active (w))
1332 return;
1333
1334 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1335
1336 if (((W)w)->active < timercnt--)
1337 {
1338 timers [((W)w)->active - 1] = timers [timercnt];
1339 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1340 }
1341
1342 ((WT)w)->at -= mn_now;
1343
1344 ev_stop (EV_A_ (W)w);
1345}
1346
1347void
1348ev_timer_again (EV_P_ struct ev_timer *w)
1349{
1350 if (ev_is_active (w))
1351 { 3309 {
1352 if (w->repeat) 3310 if (w->repeat)
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 3311 {
3312 ev_at (w) = mn_now + w->repeat;
3313 ANHE_at_cache (timers [ev_active (w)]);
3314 adjustheap (timers, timercnt, ev_active (w));
3315 }
1354 else 3316 else
1355 ev_timer_stop (EV_A_ w); 3317 ev_timer_stop (EV_A_ w);
1356 } 3318 }
1357 else if (w->repeat) 3319 else if (w->repeat)
3320 {
3321 ev_at (w) = w->repeat;
1358 ev_timer_start (EV_A_ w); 3322 ev_timer_start (EV_A_ w);
1359} 3323 }
1360 3324
1361void 3325 EV_FREQUENT_CHECK;
3326}
3327
3328ev_tstamp
3329ev_timer_remaining (EV_P_ ev_timer *w)
3330{
3331 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3332}
3333
3334#if EV_PERIODIC_ENABLE
3335void noinline
1362ev_periodic_start (EV_P_ struct ev_periodic *w) 3336ev_periodic_start (EV_P_ ev_periodic *w)
1363{ 3337{
1364 if (ev_is_active (w)) 3338 if (expect_false (ev_is_active (w)))
1365 return; 3339 return;
1366 3340
1367 if (w->reschedule_cb) 3341 if (w->reschedule_cb)
1368 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3342 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1369 else if (w->interval) 3343 else if (w->interval)
1370 { 3344 {
1371 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3345 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1372 /* this formula differs from the one in periodic_reify because we do not always round up */ 3346 periodic_recalc (EV_A_ w);
1373 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1374 } 3347 }
3348 else
3349 ev_at (w) = w->offset;
1375 3350
3351 EV_FREQUENT_CHECK;
3352
3353 ++periodiccnt;
1376 ev_start (EV_A_ (W)w, ++periodiccnt); 3354 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1377 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3355 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1378 periodics [periodiccnt - 1] = w; 3356 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1379 upheap ((WT *)periodics, periodiccnt - 1); 3357 ANHE_at_cache (periodics [ev_active (w)]);
3358 upheap (periodics, ev_active (w));
1380 3359
3360 EV_FREQUENT_CHECK;
3361
1381 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3362 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1382} 3363}
1383 3364
1384void 3365void noinline
1385ev_periodic_stop (EV_P_ struct ev_periodic *w) 3366ev_periodic_stop (EV_P_ ev_periodic *w)
1386{ 3367{
1387 ev_clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
1388 if (!ev_is_active (w)) 3369 if (expect_false (!ev_is_active (w)))
1389 return; 3370 return;
1390 3371
3372 EV_FREQUENT_CHECK;
3373
3374 {
3375 int active = ev_active (w);
3376
1391 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3377 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1392 3378
1393 if (((W)w)->active < periodiccnt--) 3379 --periodiccnt;
3380
3381 if (expect_true (active < periodiccnt + HEAP0))
1394 { 3382 {
1395 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3383 periodics [active] = periodics [periodiccnt + HEAP0];
1396 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3384 adjustheap (periodics, periodiccnt, active);
1397 } 3385 }
3386 }
1398 3387
1399 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
1400}
1401 3389
1402void 3390 EV_FREQUENT_CHECK;
3391}
3392
3393void noinline
1403ev_periodic_again (EV_P_ struct ev_periodic *w) 3394ev_periodic_again (EV_P_ ev_periodic *w)
1404{ 3395{
1405 /* TODO: use adjustheap and recalculation */ 3396 /* TODO: use adjustheap and recalculation */
1406 ev_periodic_stop (EV_A_ w); 3397 ev_periodic_stop (EV_A_ w);
1407 ev_periodic_start (EV_A_ w); 3398 ev_periodic_start (EV_A_ w);
1408} 3399}
1409 3400#endif
1410void
1411ev_idle_start (EV_P_ struct ev_idle *w)
1412{
1413 if (ev_is_active (w))
1414 return;
1415
1416 ev_start (EV_A_ (W)w, ++idlecnt);
1417 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1418 idles [idlecnt - 1] = w;
1419}
1420
1421void
1422ev_idle_stop (EV_P_ struct ev_idle *w)
1423{
1424 ev_clear_pending (EV_A_ (W)w);
1425 if (ev_is_active (w))
1426 return;
1427
1428 idles [((W)w)->active - 1] = idles [--idlecnt];
1429 ev_stop (EV_A_ (W)w);
1430}
1431
1432void
1433ev_prepare_start (EV_P_ struct ev_prepare *w)
1434{
1435 if (ev_is_active (w))
1436 return;
1437
1438 ev_start (EV_A_ (W)w, ++preparecnt);
1439 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1440 prepares [preparecnt - 1] = w;
1441}
1442
1443void
1444ev_prepare_stop (EV_P_ struct ev_prepare *w)
1445{
1446 ev_clear_pending (EV_A_ (W)w);
1447 if (ev_is_active (w))
1448 return;
1449
1450 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1451 ev_stop (EV_A_ (W)w);
1452}
1453
1454void
1455ev_check_start (EV_P_ struct ev_check *w)
1456{
1457 if (ev_is_active (w))
1458 return;
1459
1460 ev_start (EV_A_ (W)w, ++checkcnt);
1461 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1462 checks [checkcnt - 1] = w;
1463}
1464
1465void
1466ev_check_stop (EV_P_ struct ev_check *w)
1467{
1468 ev_clear_pending (EV_A_ (W)w);
1469 if (ev_is_active (w))
1470 return;
1471
1472 checks [((W)w)->active - 1] = checks [--checkcnt];
1473 ev_stop (EV_A_ (W)w);
1474}
1475 3401
1476#ifndef SA_RESTART 3402#ifndef SA_RESTART
1477# define SA_RESTART 0 3403# define SA_RESTART 0
1478#endif 3404#endif
1479 3405
3406#if EV_SIGNAL_ENABLE
3407
3408void noinline
3409ev_signal_start (EV_P_ ev_signal *w)
3410{
3411 if (expect_false (ev_is_active (w)))
3412 return;
3413
3414 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3415
3416#if EV_MULTIPLICITY
3417 assert (("libev: a signal must not be attached to two different loops",
3418 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3419
3420 signals [w->signum - 1].loop = EV_A;
3421#endif
3422
3423 EV_FREQUENT_CHECK;
3424
3425#if EV_USE_SIGNALFD
3426 if (sigfd == -2)
3427 {
3428 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3429 if (sigfd < 0 && errno == EINVAL)
3430 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3431
3432 if (sigfd >= 0)
3433 {
3434 fd_intern (sigfd); /* doing it twice will not hurt */
3435
3436 sigemptyset (&sigfd_set);
3437
3438 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3439 ev_set_priority (&sigfd_w, EV_MAXPRI);
3440 ev_io_start (EV_A_ &sigfd_w);
3441 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3442 }
3443 }
3444
3445 if (sigfd >= 0)
3446 {
3447 /* TODO: check .head */
3448 sigaddset (&sigfd_set, w->signum);
3449 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3450
3451 signalfd (sigfd, &sigfd_set, 0);
3452 }
3453#endif
3454
3455 ev_start (EV_A_ (W)w, 1);
3456 wlist_add (&signals [w->signum - 1].head, (WL)w);
3457
3458 if (!((WL)w)->next)
3459# if EV_USE_SIGNALFD
3460 if (sigfd < 0) /*TODO*/
3461# endif
3462 {
3463# ifdef _WIN32
3464 evpipe_init (EV_A);
3465
3466 signal (w->signum, ev_sighandler);
3467# else
3468 struct sigaction sa;
3469
3470 evpipe_init (EV_A);
3471
3472 sa.sa_handler = ev_sighandler;
3473 sigfillset (&sa.sa_mask);
3474 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3475 sigaction (w->signum, &sa, 0);
3476
3477 if (origflags & EVFLAG_NOSIGMASK)
3478 {
3479 sigemptyset (&sa.sa_mask);
3480 sigaddset (&sa.sa_mask, w->signum);
3481 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3482 }
3483#endif
3484 }
3485
3486 EV_FREQUENT_CHECK;
3487}
3488
3489void noinline
3490ev_signal_stop (EV_P_ ev_signal *w)
3491{
3492 clear_pending (EV_A_ (W)w);
3493 if (expect_false (!ev_is_active (w)))
3494 return;
3495
3496 EV_FREQUENT_CHECK;
3497
3498 wlist_del (&signals [w->signum - 1].head, (WL)w);
3499 ev_stop (EV_A_ (W)w);
3500
3501 if (!signals [w->signum - 1].head)
3502 {
3503#if EV_MULTIPLICITY
3504 signals [w->signum - 1].loop = 0; /* unattach from signal */
3505#endif
3506#if EV_USE_SIGNALFD
3507 if (sigfd >= 0)
3508 {
3509 sigset_t ss;
3510
3511 sigemptyset (&ss);
3512 sigaddset (&ss, w->signum);
3513 sigdelset (&sigfd_set, w->signum);
3514
3515 signalfd (sigfd, &sigfd_set, 0);
3516 sigprocmask (SIG_UNBLOCK, &ss, 0);
3517 }
3518 else
3519#endif
3520 signal (w->signum, SIG_DFL);
3521 }
3522
3523 EV_FREQUENT_CHECK;
3524}
3525
3526#endif
3527
3528#if EV_CHILD_ENABLE
3529
1480void 3530void
1481ev_signal_start (EV_P_ struct ev_signal *w) 3531ev_child_start (EV_P_ ev_child *w)
1482{ 3532{
1483#if EV_MULTIPLICITY 3533#if EV_MULTIPLICITY
1484 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1485#endif 3535#endif
1486 if (ev_is_active (w)) 3536 if (expect_false (ev_is_active (w)))
1487 return; 3537 return;
1488 3538
1489 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3539 EV_FREQUENT_CHECK;
1490 3540
1491 ev_start (EV_A_ (W)w, 1); 3541 ev_start (EV_A_ (W)w, 1);
1492 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3542 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1493 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1494 3543
1495 if (!((WL)w)->next) 3544 EV_FREQUENT_CHECK;
3545}
3546
3547void
3548ev_child_stop (EV_P_ ev_child *w)
3549{
3550 clear_pending (EV_A_ (W)w);
3551 if (expect_false (!ev_is_active (w)))
3552 return;
3553
3554 EV_FREQUENT_CHECK;
3555
3556 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3557 ev_stop (EV_A_ (W)w);
3558
3559 EV_FREQUENT_CHECK;
3560}
3561
3562#endif
3563
3564#if EV_STAT_ENABLE
3565
3566# ifdef _WIN32
3567# undef lstat
3568# define lstat(a,b) _stati64 (a,b)
3569# endif
3570
3571#define DEF_STAT_INTERVAL 5.0074891
3572#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3573#define MIN_STAT_INTERVAL 0.1074891
3574
3575static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3576
3577#if EV_USE_INOTIFY
3578
3579/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3580# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3581
3582static void noinline
3583infy_add (EV_P_ ev_stat *w)
3584{
3585 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3586
3587 if (w->wd >= 0)
3588 {
3589 struct statfs sfs;
3590
3591 /* now local changes will be tracked by inotify, but remote changes won't */
3592 /* unless the filesystem is known to be local, we therefore still poll */
3593 /* also do poll on <2.6.25, but with normal frequency */
3594
3595 if (!fs_2625)
3596 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3597 else if (!statfs (w->path, &sfs)
3598 && (sfs.f_type == 0x1373 /* devfs */
3599 || sfs.f_type == 0xEF53 /* ext2/3 */
3600 || sfs.f_type == 0x3153464a /* jfs */
3601 || sfs.f_type == 0x52654973 /* reiser3 */
3602 || sfs.f_type == 0x01021994 /* tempfs */
3603 || sfs.f_type == 0x58465342 /* xfs */))
3604 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3605 else
3606 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1496 { 3607 }
1497#if WIN32 3608 else
1498 signal (w->signum, sighandler); 3609 {
3610 /* can't use inotify, continue to stat */
3611 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3612
3613 /* if path is not there, monitor some parent directory for speedup hints */
3614 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3615 /* but an efficiency issue only */
3616 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3617 {
3618 char path [4096];
3619 strcpy (path, w->path);
3620
3621 do
3622 {
3623 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3624 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3625
3626 char *pend = strrchr (path, '/');
3627
3628 if (!pend || pend == path)
3629 break;
3630
3631 *pend = 0;
3632 w->wd = inotify_add_watch (fs_fd, path, mask);
3633 }
3634 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3635 }
3636 }
3637
3638 if (w->wd >= 0)
3639 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3640
3641 /* now re-arm timer, if required */
3642 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3643 ev_timer_again (EV_A_ &w->timer);
3644 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3645}
3646
3647static void noinline
3648infy_del (EV_P_ ev_stat *w)
3649{
3650 int slot;
3651 int wd = w->wd;
3652
3653 if (wd < 0)
3654 return;
3655
3656 w->wd = -2;
3657 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3658 wlist_del (&fs_hash [slot].head, (WL)w);
3659
3660 /* remove this watcher, if others are watching it, they will rearm */
3661 inotify_rm_watch (fs_fd, wd);
3662}
3663
3664static void noinline
3665infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3666{
3667 if (slot < 0)
3668 /* overflow, need to check for all hash slots */
3669 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3670 infy_wd (EV_A_ slot, wd, ev);
3671 else
3672 {
3673 WL w_;
3674
3675 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3676 {
3677 ev_stat *w = (ev_stat *)w_;
3678 w_ = w_->next; /* lets us remove this watcher and all before it */
3679
3680 if (w->wd == wd || wd == -1)
3681 {
3682 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3683 {
3684 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3685 w->wd = -1;
3686 infy_add (EV_A_ w); /* re-add, no matter what */
3687 }
3688
3689 stat_timer_cb (EV_A_ &w->timer, 0);
3690 }
3691 }
3692 }
3693}
3694
3695static void
3696infy_cb (EV_P_ ev_io *w, int revents)
3697{
3698 char buf [EV_INOTIFY_BUFSIZE];
3699 int ofs;
3700 int len = read (fs_fd, buf, sizeof (buf));
3701
3702 for (ofs = 0; ofs < len; )
3703 {
3704 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3705 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3706 ofs += sizeof (struct inotify_event) + ev->len;
3707 }
3708}
3709
3710inline_size void ecb_cold
3711ev_check_2625 (EV_P)
3712{
3713 /* kernels < 2.6.25 are borked
3714 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3715 */
3716 if (ev_linux_version () < 0x020619)
3717 return;
3718
3719 fs_2625 = 1;
3720}
3721
3722inline_size int
3723infy_newfd (void)
3724{
3725#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3726 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3727 if (fd >= 0)
3728 return fd;
3729#endif
3730 return inotify_init ();
3731}
3732
3733inline_size void
3734infy_init (EV_P)
3735{
3736 if (fs_fd != -2)
3737 return;
3738
3739 fs_fd = -1;
3740
3741 ev_check_2625 (EV_A);
3742
3743 fs_fd = infy_newfd ();
3744
3745 if (fs_fd >= 0)
3746 {
3747 fd_intern (fs_fd);
3748 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3749 ev_set_priority (&fs_w, EV_MAXPRI);
3750 ev_io_start (EV_A_ &fs_w);
3751 ev_unref (EV_A);
3752 }
3753}
3754
3755inline_size void
3756infy_fork (EV_P)
3757{
3758 int slot;
3759
3760 if (fs_fd < 0)
3761 return;
3762
3763 ev_ref (EV_A);
3764 ev_io_stop (EV_A_ &fs_w);
3765 close (fs_fd);
3766 fs_fd = infy_newfd ();
3767
3768 if (fs_fd >= 0)
3769 {
3770 fd_intern (fs_fd);
3771 ev_io_set (&fs_w, fs_fd, EV_READ);
3772 ev_io_start (EV_A_ &fs_w);
3773 ev_unref (EV_A);
3774 }
3775
3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3777 {
3778 WL w_ = fs_hash [slot].head;
3779 fs_hash [slot].head = 0;
3780
3781 while (w_)
3782 {
3783 ev_stat *w = (ev_stat *)w_;
3784 w_ = w_->next; /* lets us add this watcher */
3785
3786 w->wd = -1;
3787
3788 if (fs_fd >= 0)
3789 infy_add (EV_A_ w); /* re-add, no matter what */
3790 else
3791 {
3792 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3793 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3794 ev_timer_again (EV_A_ &w->timer);
3795 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3796 }
3797 }
3798 }
3799}
3800
3801#endif
3802
3803#ifdef _WIN32
3804# define EV_LSTAT(p,b) _stati64 (p, b)
1499#else 3805#else
1500 struct sigaction sa; 3806# define EV_LSTAT(p,b) lstat (p, b)
1501 sa.sa_handler = sighandler;
1502 sigfillset (&sa.sa_mask);
1503 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1504 sigaction (w->signum, &sa, 0);
1505#endif 3807#endif
1506 }
1507}
1508 3808
1509void 3809void
1510ev_signal_stop (EV_P_ struct ev_signal *w) 3810ev_stat_stat (EV_P_ ev_stat *w)
1511{ 3811{
1512 ev_clear_pending (EV_A_ (W)w); 3812 if (lstat (w->path, &w->attr) < 0)
1513 if (!ev_is_active (w)) 3813 w->attr.st_nlink = 0;
3814 else if (!w->attr.st_nlink)
3815 w->attr.st_nlink = 1;
3816}
3817
3818static void noinline
3819stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3820{
3821 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3822
3823 ev_statdata prev = w->attr;
3824 ev_stat_stat (EV_A_ w);
3825
3826 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3827 if (
3828 prev.st_dev != w->attr.st_dev
3829 || prev.st_ino != w->attr.st_ino
3830 || prev.st_mode != w->attr.st_mode
3831 || prev.st_nlink != w->attr.st_nlink
3832 || prev.st_uid != w->attr.st_uid
3833 || prev.st_gid != w->attr.st_gid
3834 || prev.st_rdev != w->attr.st_rdev
3835 || prev.st_size != w->attr.st_size
3836 || prev.st_atime != w->attr.st_atime
3837 || prev.st_mtime != w->attr.st_mtime
3838 || prev.st_ctime != w->attr.st_ctime
3839 ) {
3840 /* we only update w->prev on actual differences */
3841 /* in case we test more often than invoke the callback, */
3842 /* to ensure that prev is always different to attr */
3843 w->prev = prev;
3844
3845 #if EV_USE_INOTIFY
3846 if (fs_fd >= 0)
3847 {
3848 infy_del (EV_A_ w);
3849 infy_add (EV_A_ w);
3850 ev_stat_stat (EV_A_ w); /* avoid race... */
3851 }
3852 #endif
3853
3854 ev_feed_event (EV_A_ w, EV_STAT);
3855 }
3856}
3857
3858void
3859ev_stat_start (EV_P_ ev_stat *w)
3860{
3861 if (expect_false (ev_is_active (w)))
1514 return; 3862 return;
1515 3863
1516 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3864 ev_stat_stat (EV_A_ w);
3865
3866 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3867 w->interval = MIN_STAT_INTERVAL;
3868
3869 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3870 ev_set_priority (&w->timer, ev_priority (w));
3871
3872#if EV_USE_INOTIFY
3873 infy_init (EV_A);
3874
3875 if (fs_fd >= 0)
3876 infy_add (EV_A_ w);
3877 else
3878#endif
3879 {
3880 ev_timer_again (EV_A_ &w->timer);
3881 ev_unref (EV_A);
3882 }
3883
3884 ev_start (EV_A_ (W)w, 1);
3885
3886 EV_FREQUENT_CHECK;
3887}
3888
3889void
3890ev_stat_stop (EV_P_ ev_stat *w)
3891{
3892 clear_pending (EV_A_ (W)w);
3893 if (expect_false (!ev_is_active (w)))
3894 return;
3895
3896 EV_FREQUENT_CHECK;
3897
3898#if EV_USE_INOTIFY
3899 infy_del (EV_A_ w);
3900#endif
3901
3902 if (ev_is_active (&w->timer))
3903 {
3904 ev_ref (EV_A);
3905 ev_timer_stop (EV_A_ &w->timer);
3906 }
3907
1517 ev_stop (EV_A_ (W)w); 3908 ev_stop (EV_A_ (W)w);
1518 3909
1519 if (!signals [w->signum - 1].head) 3910 EV_FREQUENT_CHECK;
1520 signal (w->signum, SIG_DFL);
1521} 3911}
3912#endif
1522 3913
3914#if EV_IDLE_ENABLE
1523void 3915void
1524ev_child_start (EV_P_ struct ev_child *w) 3916ev_idle_start (EV_P_ ev_idle *w)
1525{ 3917{
1526#if EV_MULTIPLICITY
1527 assert (("child watchers are only supported in the default loop", loop == default_loop));
1528#endif
1529 if (ev_is_active (w)) 3918 if (expect_false (ev_is_active (w)))
1530 return; 3919 return;
1531 3920
3921 pri_adjust (EV_A_ (W)w);
3922
3923 EV_FREQUENT_CHECK;
3924
3925 {
3926 int active = ++idlecnt [ABSPRI (w)];
3927
3928 ++idleall;
3929 ev_start (EV_A_ (W)w, active);
3930
3931 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3932 idles [ABSPRI (w)][active - 1] = w;
3933 }
3934
3935 EV_FREQUENT_CHECK;
3936}
3937
3938void
3939ev_idle_stop (EV_P_ ev_idle *w)
3940{
3941 clear_pending (EV_A_ (W)w);
3942 if (expect_false (!ev_is_active (w)))
3943 return;
3944
3945 EV_FREQUENT_CHECK;
3946
3947 {
3948 int active = ev_active (w);
3949
3950 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3951 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3952
3953 ev_stop (EV_A_ (W)w);
3954 --idleall;
3955 }
3956
3957 EV_FREQUENT_CHECK;
3958}
3959#endif
3960
3961#if EV_PREPARE_ENABLE
3962void
3963ev_prepare_start (EV_P_ ev_prepare *w)
3964{
3965 if (expect_false (ev_is_active (w)))
3966 return;
3967
3968 EV_FREQUENT_CHECK;
3969
3970 ev_start (EV_A_ (W)w, ++preparecnt);
3971 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3972 prepares [preparecnt - 1] = w;
3973
3974 EV_FREQUENT_CHECK;
3975}
3976
3977void
3978ev_prepare_stop (EV_P_ ev_prepare *w)
3979{
3980 clear_pending (EV_A_ (W)w);
3981 if (expect_false (!ev_is_active (w)))
3982 return;
3983
3984 EV_FREQUENT_CHECK;
3985
3986 {
3987 int active = ev_active (w);
3988
3989 prepares [active - 1] = prepares [--preparecnt];
3990 ev_active (prepares [active - 1]) = active;
3991 }
3992
3993 ev_stop (EV_A_ (W)w);
3994
3995 EV_FREQUENT_CHECK;
3996}
3997#endif
3998
3999#if EV_CHECK_ENABLE
4000void
4001ev_check_start (EV_P_ ev_check *w)
4002{
4003 if (expect_false (ev_is_active (w)))
4004 return;
4005
4006 EV_FREQUENT_CHECK;
4007
4008 ev_start (EV_A_ (W)w, ++checkcnt);
4009 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4010 checks [checkcnt - 1] = w;
4011
4012 EV_FREQUENT_CHECK;
4013}
4014
4015void
4016ev_check_stop (EV_P_ ev_check *w)
4017{
4018 clear_pending (EV_A_ (W)w);
4019 if (expect_false (!ev_is_active (w)))
4020 return;
4021
4022 EV_FREQUENT_CHECK;
4023
4024 {
4025 int active = ev_active (w);
4026
4027 checks [active - 1] = checks [--checkcnt];
4028 ev_active (checks [active - 1]) = active;
4029 }
4030
4031 ev_stop (EV_A_ (W)w);
4032
4033 EV_FREQUENT_CHECK;
4034}
4035#endif
4036
4037#if EV_EMBED_ENABLE
4038void noinline
4039ev_embed_sweep (EV_P_ ev_embed *w)
4040{
4041 ev_run (w->other, EVRUN_NOWAIT);
4042}
4043
4044static void
4045embed_io_cb (EV_P_ ev_io *io, int revents)
4046{
4047 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4048
4049 if (ev_cb (w))
4050 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4051 else
4052 ev_run (w->other, EVRUN_NOWAIT);
4053}
4054
4055static void
4056embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4057{
4058 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4059
4060 {
4061 EV_P = w->other;
4062
4063 while (fdchangecnt)
4064 {
4065 fd_reify (EV_A);
4066 ev_run (EV_A_ EVRUN_NOWAIT);
4067 }
4068 }
4069}
4070
4071static void
4072embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4073{
4074 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4075
4076 ev_embed_stop (EV_A_ w);
4077
4078 {
4079 EV_P = w->other;
4080
4081 ev_loop_fork (EV_A);
4082 ev_run (EV_A_ EVRUN_NOWAIT);
4083 }
4084
4085 ev_embed_start (EV_A_ w);
4086}
4087
4088#if 0
4089static void
4090embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4091{
4092 ev_idle_stop (EV_A_ idle);
4093}
4094#endif
4095
4096void
4097ev_embed_start (EV_P_ ev_embed *w)
4098{
4099 if (expect_false (ev_is_active (w)))
4100 return;
4101
4102 {
4103 EV_P = w->other;
4104 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4105 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4106 }
4107
4108 EV_FREQUENT_CHECK;
4109
4110 ev_set_priority (&w->io, ev_priority (w));
4111 ev_io_start (EV_A_ &w->io);
4112
4113 ev_prepare_init (&w->prepare, embed_prepare_cb);
4114 ev_set_priority (&w->prepare, EV_MINPRI);
4115 ev_prepare_start (EV_A_ &w->prepare);
4116
4117 ev_fork_init (&w->fork, embed_fork_cb);
4118 ev_fork_start (EV_A_ &w->fork);
4119
4120 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4121
1532 ev_start (EV_A_ (W)w, 1); 4122 ev_start (EV_A_ (W)w, 1);
1533 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4123
4124 EV_FREQUENT_CHECK;
1534} 4125}
1535 4126
1536void 4127void
1537ev_child_stop (EV_P_ struct ev_child *w) 4128ev_embed_stop (EV_P_ ev_embed *w)
1538{ 4129{
1539 ev_clear_pending (EV_A_ (W)w); 4130 clear_pending (EV_A_ (W)w);
1540 if (ev_is_active (w)) 4131 if (expect_false (!ev_is_active (w)))
1541 return; 4132 return;
1542 4133
1543 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4134 EV_FREQUENT_CHECK;
4135
4136 ev_io_stop (EV_A_ &w->io);
4137 ev_prepare_stop (EV_A_ &w->prepare);
4138 ev_fork_stop (EV_A_ &w->fork);
4139
1544 ev_stop (EV_A_ (W)w); 4140 ev_stop (EV_A_ (W)w);
4141
4142 EV_FREQUENT_CHECK;
1545} 4143}
4144#endif
4145
4146#if EV_FORK_ENABLE
4147void
4148ev_fork_start (EV_P_ ev_fork *w)
4149{
4150 if (expect_false (ev_is_active (w)))
4151 return;
4152
4153 EV_FREQUENT_CHECK;
4154
4155 ev_start (EV_A_ (W)w, ++forkcnt);
4156 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4157 forks [forkcnt - 1] = w;
4158
4159 EV_FREQUENT_CHECK;
4160}
4161
4162void
4163ev_fork_stop (EV_P_ ev_fork *w)
4164{
4165 clear_pending (EV_A_ (W)w);
4166 if (expect_false (!ev_is_active (w)))
4167 return;
4168
4169 EV_FREQUENT_CHECK;
4170
4171 {
4172 int active = ev_active (w);
4173
4174 forks [active - 1] = forks [--forkcnt];
4175 ev_active (forks [active - 1]) = active;
4176 }
4177
4178 ev_stop (EV_A_ (W)w);
4179
4180 EV_FREQUENT_CHECK;
4181}
4182#endif
4183
4184#if EV_CLEANUP_ENABLE
4185void
4186ev_cleanup_start (EV_P_ ev_cleanup *w)
4187{
4188 if (expect_false (ev_is_active (w)))
4189 return;
4190
4191 EV_FREQUENT_CHECK;
4192
4193 ev_start (EV_A_ (W)w, ++cleanupcnt);
4194 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4195 cleanups [cleanupcnt - 1] = w;
4196
4197 /* cleanup watchers should never keep a refcount on the loop */
4198 ev_unref (EV_A);
4199 EV_FREQUENT_CHECK;
4200}
4201
4202void
4203ev_cleanup_stop (EV_P_ ev_cleanup *w)
4204{
4205 clear_pending (EV_A_ (W)w);
4206 if (expect_false (!ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210 ev_ref (EV_A);
4211
4212 {
4213 int active = ev_active (w);
4214
4215 cleanups [active - 1] = cleanups [--cleanupcnt];
4216 ev_active (cleanups [active - 1]) = active;
4217 }
4218
4219 ev_stop (EV_A_ (W)w);
4220
4221 EV_FREQUENT_CHECK;
4222}
4223#endif
4224
4225#if EV_ASYNC_ENABLE
4226void
4227ev_async_start (EV_P_ ev_async *w)
4228{
4229 if (expect_false (ev_is_active (w)))
4230 return;
4231
4232 w->sent = 0;
4233
4234 evpipe_init (EV_A);
4235
4236 EV_FREQUENT_CHECK;
4237
4238 ev_start (EV_A_ (W)w, ++asynccnt);
4239 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4240 asyncs [asynccnt - 1] = w;
4241
4242 EV_FREQUENT_CHECK;
4243}
4244
4245void
4246ev_async_stop (EV_P_ ev_async *w)
4247{
4248 clear_pending (EV_A_ (W)w);
4249 if (expect_false (!ev_is_active (w)))
4250 return;
4251
4252 EV_FREQUENT_CHECK;
4253
4254 {
4255 int active = ev_active (w);
4256
4257 asyncs [active - 1] = asyncs [--asynccnt];
4258 ev_active (asyncs [active - 1]) = active;
4259 }
4260
4261 ev_stop (EV_A_ (W)w);
4262
4263 EV_FREQUENT_CHECK;
4264}
4265
4266void
4267ev_async_send (EV_P_ ev_async *w)
4268{
4269 w->sent = 1;
4270 evpipe_write (EV_A_ &async_pending);
4271}
4272#endif
1546 4273
1547/*****************************************************************************/ 4274/*****************************************************************************/
1548 4275
1549struct ev_once 4276struct ev_once
1550{ 4277{
1551 struct ev_io io; 4278 ev_io io;
1552 struct ev_timer to; 4279 ev_timer to;
1553 void (*cb)(int revents, void *arg); 4280 void (*cb)(int revents, void *arg);
1554 void *arg; 4281 void *arg;
1555}; 4282};
1556 4283
1557static void 4284static void
1558once_cb (EV_P_ struct ev_once *once, int revents) 4285once_cb (EV_P_ struct ev_once *once, int revents)
1559{ 4286{
1560 void (*cb)(int revents, void *arg) = once->cb; 4287 void (*cb)(int revents, void *arg) = once->cb;
1561 void *arg = once->arg; 4288 void *arg = once->arg;
1562 4289
1563 ev_io_stop (EV_A_ &once->io); 4290 ev_io_stop (EV_A_ &once->io);
1564 ev_timer_stop (EV_A_ &once->to); 4291 ev_timer_stop (EV_A_ &once->to);
1565 ev_free (once); 4292 ev_free (once);
1566 4293
1567 cb (revents, arg); 4294 cb (revents, arg);
1568} 4295}
1569 4296
1570static void 4297static void
1571once_cb_io (EV_P_ struct ev_io *w, int revents) 4298once_cb_io (EV_P_ ev_io *w, int revents)
1572{ 4299{
1573 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4300 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4301
4302 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1574} 4303}
1575 4304
1576static void 4305static void
1577once_cb_to (EV_P_ struct ev_timer *w, int revents) 4306once_cb_to (EV_P_ ev_timer *w, int revents)
1578{ 4307{
1579 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4308 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4309
4310 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1580} 4311}
1581 4312
1582void 4313void
1583ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4314ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1584{ 4315{
1585 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4316 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1586 4317
1587 if (!once) 4318 if (expect_false (!once))
4319 {
1588 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4320 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1589 else 4321 return;
1590 { 4322 }
4323
1591 once->cb = cb; 4324 once->cb = cb;
1592 once->arg = arg; 4325 once->arg = arg;
1593 4326
1594 ev_init (&once->io, once_cb_io); 4327 ev_init (&once->io, once_cb_io);
1595 if (fd >= 0) 4328 if (fd >= 0)
4329 {
4330 ev_io_set (&once->io, fd, events);
4331 ev_io_start (EV_A_ &once->io);
4332 }
4333
4334 ev_init (&once->to, once_cb_to);
4335 if (timeout >= 0.)
4336 {
4337 ev_timer_set (&once->to, timeout, 0.);
4338 ev_timer_start (EV_A_ &once->to);
4339 }
4340}
4341
4342/*****************************************************************************/
4343
4344#if EV_WALK_ENABLE
4345void ecb_cold
4346ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4347{
4348 int i, j;
4349 ev_watcher_list *wl, *wn;
4350
4351 if (types & (EV_IO | EV_EMBED))
4352 for (i = 0; i < anfdmax; ++i)
4353 for (wl = anfds [i].head; wl; )
1596 { 4354 {
1597 ev_io_set (&once->io, fd, events); 4355 wn = wl->next;
1598 ev_io_start (EV_A_ &once->io); 4356
4357#if EV_EMBED_ENABLE
4358 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4359 {
4360 if (types & EV_EMBED)
4361 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4362 }
4363 else
4364#endif
4365#if EV_USE_INOTIFY
4366 if (ev_cb ((ev_io *)wl) == infy_cb)
4367 ;
4368 else
4369#endif
4370 if ((ev_io *)wl != &pipe_w)
4371 if (types & EV_IO)
4372 cb (EV_A_ EV_IO, wl);
4373
4374 wl = wn;
1599 } 4375 }
1600 4376
1601 ev_init (&once->to, once_cb_to); 4377 if (types & (EV_TIMER | EV_STAT))
1602 if (timeout >= 0.) 4378 for (i = timercnt + HEAP0; i-- > HEAP0; )
4379#if EV_STAT_ENABLE
4380 /*TODO: timer is not always active*/
4381 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1603 { 4382 {
1604 ev_timer_set (&once->to, timeout, 0.); 4383 if (types & EV_STAT)
1605 ev_timer_start (EV_A_ &once->to); 4384 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1606 } 4385 }
1607 } 4386 else
1608} 4387#endif
4388 if (types & EV_TIMER)
4389 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1609 4390
1610#ifdef __cplusplus 4391#if EV_PERIODIC_ENABLE
1611} 4392 if (types & EV_PERIODIC)
4393 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4394 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4395#endif
4396
4397#if EV_IDLE_ENABLE
4398 if (types & EV_IDLE)
4399 for (j = NUMPRI; j--; )
4400 for (i = idlecnt [j]; i--; )
4401 cb (EV_A_ EV_IDLE, idles [j][i]);
4402#endif
4403
4404#if EV_FORK_ENABLE
4405 if (types & EV_FORK)
4406 for (i = forkcnt; i--; )
4407 if (ev_cb (forks [i]) != embed_fork_cb)
4408 cb (EV_A_ EV_FORK, forks [i]);
4409#endif
4410
4411#if EV_ASYNC_ENABLE
4412 if (types & EV_ASYNC)
4413 for (i = asynccnt; i--; )
4414 cb (EV_A_ EV_ASYNC, asyncs [i]);
4415#endif
4416
4417#if EV_PREPARE_ENABLE
4418 if (types & EV_PREPARE)
4419 for (i = preparecnt; i--; )
4420# if EV_EMBED_ENABLE
4421 if (ev_cb (prepares [i]) != embed_prepare_cb)
1612#endif 4422# endif
4423 cb (EV_A_ EV_PREPARE, prepares [i]);
4424#endif
1613 4425
4426#if EV_CHECK_ENABLE
4427 if (types & EV_CHECK)
4428 for (i = checkcnt; i--; )
4429 cb (EV_A_ EV_CHECK, checks [i]);
4430#endif
4431
4432#if EV_SIGNAL_ENABLE
4433 if (types & EV_SIGNAL)
4434 for (i = 0; i < EV_NSIG - 1; ++i)
4435 for (wl = signals [i].head; wl; )
4436 {
4437 wn = wl->next;
4438 cb (EV_A_ EV_SIGNAL, wl);
4439 wl = wn;
4440 }
4441#endif
4442
4443#if EV_CHILD_ENABLE
4444 if (types & EV_CHILD)
4445 for (i = (EV_PID_HASHSIZE); i--; )
4446 for (wl = childs [i]; wl; )
4447 {
4448 wn = wl->next;
4449 cb (EV_A_ EV_CHILD, wl);
4450 wl = wn;
4451 }
4452#endif
4453/* EV_STAT 0x00001000 /* stat data changed */
4454/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4455}
4456#endif
4457
4458#if EV_MULTIPLICITY
4459 #include "ev_wrap.h"
4460#endif
4461

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines