ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.41 by root, Fri Nov 2 16:54:34 2007 UTC vs.
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
100#endif 136#endif
101 137
102#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
104 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
105typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
106typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
107typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
108 147
109static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
110ev_tstamp ev_now;
111int ev_method;
112
113static int have_monotonic; /* runtime */
114
115static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
116static void (*method_modify)(int fd, int oev, int nev);
117static void (*method_poll)(ev_tstamp timeout);
118 149
119/*****************************************************************************/ 150/*****************************************************************************/
120 151
121ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
122ev_time (void) 186ev_time (void)
123{ 187{
124#if EV_USE_REALTIME 188#if EV_USE_REALTIME
125 struct timespec ts; 189 struct timespec ts;
126 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
130 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
131 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
132#endif 196#endif
133} 197}
134 198
135static ev_tstamp 199inline ev_tstamp
136get_clock (void) 200get_clock (void)
137{ 201{
138#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
139 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
140 { 204 {
143 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
144 } 208 }
145#endif 209#endif
146 210
147 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
148} 218}
149 219
150#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
151 221
152#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
164 cur = newcnt; \ 234 cur = newcnt; \
165 } 235 }
166 236
167/*****************************************************************************/ 237/*****************************************************************************/
168 238
169typedef struct
170{
171 struct ev_io *head;
172 unsigned char events;
173 unsigned char reify;
174} ANFD;
175
176static ANFD *anfds;
177static int anfdmax;
178
179static void 239static void
180anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
181{ 241{
182 while (count--) 242 while (count--)
183 { 243 {
187 247
188 ++base; 248 ++base;
189 } 249 }
190} 250}
191 251
192typedef struct
193{
194 W w;
195 int events;
196} ANPENDING;
197
198static ANPENDING *pendings;
199static int pendingmax, pendingcnt;
200
201static void 252static void
202event (W w, int events) 253event (EV_P_ W w, int events)
203{ 254{
204 if (w->pending) 255 if (w->pending)
205 { 256 {
206 pendings [w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
207 return; 258 return;
208 } 259 }
209 260
210 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
211 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
212 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
213 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
214} 265}
215 266
216static void 267static void
217queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
218{ 269{
219 int i; 270 int i;
220 271
221 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
222 event (events [i], type); 273 event (EV_A_ events [i], type);
223} 274}
224 275
225static void 276static void
226fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
227{ 278{
228 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
229 struct ev_io *w; 280 struct ev_io *w;
230 281
231 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
232 { 283 {
233 int ev = w->events & events; 284 int ev = w->events & events;
234 285
235 if (ev) 286 if (ev)
236 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
237 } 288 }
238} 289}
239 290
240/*****************************************************************************/ 291/*****************************************************************************/
241 292
242static int *fdchanges;
243static int fdchangemax, fdchangecnt;
244
245static void 293static void
246fd_reify (void) 294fd_reify (EV_P)
247{ 295{
248 int i; 296 int i;
249 297
250 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
251 { 299 {
253 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
254 struct ev_io *w; 302 struct ev_io *w;
255 303
256 int events = 0; 304 int events = 0;
257 305
258 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
259 events |= w->events; 307 events |= w->events;
260 308
261 anfd->reify = 0; 309 anfd->reify = 0;
262 310
263 if (anfd->events != events) 311 if (anfd->events != events)
264 { 312 {
265 method_modify (fd, anfd->events, events); 313 method_modify (EV_A_ fd, anfd->events, events);
266 anfd->events = events; 314 anfd->events = events;
267 } 315 }
268 } 316 }
269 317
270 fdchangecnt = 0; 318 fdchangecnt = 0;
271} 319}
272 320
273static void 321static void
274fd_change (int fd) 322fd_change (EV_P_ int fd)
275{ 323{
276 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
277 return; 325 return;
278 326
279 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
282 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
283 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
284} 332}
285 333
286static void 334static void
287fd_kill (int fd) 335fd_kill (EV_P_ int fd)
288{ 336{
289 struct ev_io *w; 337 struct ev_io *w;
290 338
291 printf ("killing fd %d\n", fd);//D
292 while ((w = anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
293 { 340 {
294 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
295 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
296 } 343 }
297} 344}
298 345
299/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
300static void 347static void
301fd_ebadf (void) 348fd_ebadf (EV_P)
302{ 349{
303 int fd; 350 int fd;
304 351
305 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
306 if (anfds [fd].events) 353 if (anfds [fd].events)
307 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
308 fd_kill (fd); 355 fd_kill (EV_A_ fd);
309} 356}
310 357
311/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
312static void 359static void
313fd_enomem (void) 360fd_enomem (EV_P)
314{ 361{
315 int fd = anfdmax; 362 int fd;
316 363
317 while (fd--) 364 for (fd = anfdmax; fd--; )
318 if (anfds [fd].events) 365 if (anfds [fd].events)
319 { 366 {
320 close (fd); 367 close (fd);
321 fd_kill (fd); 368 fd_kill (EV_A_ fd);
322 return; 369 return;
323 } 370 }
324} 371}
325 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
326/*****************************************************************************/ 388/*****************************************************************************/
327 389
328static struct ev_timer **timers;
329static int timermax, timercnt;
330
331static struct ev_periodic **periodics;
332static int periodicmax, periodiccnt;
333
334static void 390static void
335upheap (WT *timers, int k) 391upheap (WT *heap, int k)
336{ 392{
337 WT w = timers [k]; 393 WT w = heap [k];
338 394
339 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
340 { 396 {
341 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
342 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
343 k >>= 1; 399 k >>= 1;
344 } 400 }
345 401
346 timers [k] = w; 402 heap [k] = w;
347 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
348 404
349} 405}
350 406
351static void 407static void
352downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
353{ 409{
354 WT w = timers [k]; 410 WT w = heap [k];
355 411
356 while (k < (N >> 1)) 412 while (k < (N >> 1))
357 { 413 {
358 int j = k << 1; 414 int j = k << 1;
359 415
360 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
361 ++j; 417 ++j;
362 418
363 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
364 break; 420 break;
365 421
366 timers [k] = timers [j]; 422 heap [k] = heap [j];
367 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
368 k = j; 424 k = j;
369 } 425 }
370 426
371 timers [k] = w; 427 heap [k] = w;
372 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
373} 429}
374 430
375/*****************************************************************************/ 431/*****************************************************************************/
376 432
377typedef struct 433typedef struct
378{ 434{
379 struct ev_signal *head; 435 struct ev_watcher_list *head;
380 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
381} ANSIG; 437} ANSIG;
382 438
383static ANSIG *signals; 439static ANSIG *signals;
384static int signalmax; 440static int signalmax;
404{ 460{
405 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
406 462
407 if (!gotsig) 463 if (!gotsig)
408 { 464 {
465 int old_errno = errno;
409 gotsig = 1; 466 gotsig = 1;
410 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
411 } 469 }
412} 470}
413 471
414static void 472static void
415sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
416{ 474{
417 struct ev_signal *w; 475 struct ev_watcher_list *w;
418 int signum; 476 int signum;
419 477
420 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
421 gotsig = 0; 479 gotsig = 0;
422 480
424 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
425 { 483 {
426 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
427 485
428 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
429 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
430 } 488 }
431} 489}
432 490
433static void 491static void
434siginit (void) 492siginit (EV_P)
435{ 493{
494#ifndef WIN32
436 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
437 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
438 497
439 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
440 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
441 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
442 502
443 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
444 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
445} 506}
446 507
447/*****************************************************************************/ 508/*****************************************************************************/
448 509
449static struct ev_idle **idles; 510#ifndef WIN32
450static int idlemax, idlecnt;
451
452static struct ev_prepare **prepares;
453static int preparemax, preparecnt;
454
455static struct ev_check **checks;
456static int checkmax, checkcnt;
457
458/*****************************************************************************/
459 511
460static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
461static struct ev_signal childev; 513static struct ev_signal childev;
462 514
463#ifndef WCONTINUED 515#ifndef WCONTINUED
464# define WCONTINUED 0 516# define WCONTINUED 0
465#endif 517#endif
466 518
467static void 519static void
468childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
469{ 521{
470 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
471 int pid, status; 537 int pid, status;
472 538
473 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
474 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
475 if (w->pid == pid || !w->pid) 541 /* make sure we are called again until all childs have been reaped */
476 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
477 w->status = status; 543
478 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
479 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
480} 547}
548
549#endif
481 550
482/*****************************************************************************/ 551/*****************************************************************************/
483 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
484#if EV_USE_EPOLL 556#if EV_USE_EPOLL
485# include "ev_epoll.c" 557# include "ev_epoll.c"
486#endif 558#endif
487#if EV_USE_POLL 559#if EV_USE_POLL
488# include "ev_poll.c" 560# include "ev_poll.c"
501ev_version_minor (void) 573ev_version_minor (void)
502{ 574{
503 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
504} 576}
505 577
506/* return true if we are running with elevated privileges and ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
507static int 579static int
508enable_secure () 580enable_secure (void)
509{ 581{
582#ifdef WIN32
583 return 0;
584#else
510 return getuid () != geteuid () 585 return getuid () != geteuid ()
511 || getgid () != getegid (); 586 || getgid () != getegid ();
587#endif
512} 588}
513 589
514int ev_init (int methods) 590int
591ev_method (EV_P)
515{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
516 if (!ev_method) 599 if (!method)
517 { 600 {
518#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
519 { 602 {
520 struct timespec ts; 603 struct timespec ts;
521 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
522 have_monotonic = 1; 605 have_monotonic = 1;
523 } 606 }
524#endif 607#endif
525 608
526 ev_now = ev_time (); 609 rt_now = ev_time ();
527 now = get_clock (); 610 mn_now = get_clock ();
528 now_floor = now; 611 now_floor = mn_now;
529 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
530
531 if (pipe (sigpipe))
532 return 0;
533 613
534 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
535 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
536 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
537 else 617 else
538 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
539 619
540 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
541#if EV_USE_EPOLL 627#if EV_USE_EPOLL
542 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
543#endif 629#endif
544#if EV_USE_POLL 630#if EV_USE_POLL
545 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
546#endif 632#endif
547#if EV_USE_SELECT 633#if EV_USE_SELECT
548 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
549#endif 635#endif
636 }
637}
550 638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
551 if (ev_method) 729 if (ev_method (EV_A))
552 { 730 {
553 ev_watcher_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
554 siginit (); 733 siginit (EV_A);
555 734
735#ifndef WIN32
556 ev_signal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI);
557 ev_signal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif
558 } 741 }
742 else
743 default_loop = 0;
559 } 744 }
560 745
561 return ev_method; 746 return default_loop;
562} 747}
563 748
564/*****************************************************************************/
565
566void 749void
567ev_fork_prepare (void) 750ev_default_destroy (void)
568{ 751{
569 /* nop */ 752#if EV_MULTIPLICITY
570} 753 struct ev_loop *loop = default_loop;
571
572void
573ev_fork_parent (void)
574{
575 /* nop */
576}
577
578void
579ev_fork_child (void)
580{
581#if EV_USE_EPOLL
582 if (ev_method == EVMETHOD_EPOLL)
583 epoll_postfork_child ();
584#endif 754#endif
585 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
586 ev_io_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
587 close (sigpipe [0]); 778 close (sigpipe [0]);
588 close (sigpipe [1]); 779 close (sigpipe [1]);
589 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
590 siginit (); 783 siginit (EV_A);
591} 784}
592 785
593/*****************************************************************************/ 786/*****************************************************************************/
594 787
595static void 788static void
596call_pending (void) 789call_pending (EV_P)
597{ 790{
791 int pri;
792
793 for (pri = NUMPRI; pri--; )
598 while (pendingcnt) 794 while (pendingcnt [pri])
599 { 795 {
600 ANPENDING *p = pendings + --pendingcnt; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
601 797
602 if (p->w) 798 if (p->w)
603 { 799 {
604 p->w->pending = 0; 800 p->w->pending = 0;
605 p->w->cb (p->w, p->events); 801
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
606 } 803 }
607 } 804 }
608} 805}
609 806
610static void 807static void
611timers_reify (void) 808timers_reify (EV_P)
612{ 809{
613 while (timercnt && timers [0]->at <= now) 810 while (timercnt && ((WT)timers [0])->at <= mn_now)
614 { 811 {
615 struct ev_timer *w = timers [0]; 812 struct ev_timer *w = timers [0];
813
814 assert (("inactive timer on timer heap detected", ev_is_active (w)));
616 815
617 /* first reschedule or stop timer */ 816 /* first reschedule or stop timer */
618 if (w->repeat) 817 if (w->repeat)
619 { 818 {
620 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
621 w->at = now + w->repeat; 820 ((WT)w)->at = mn_now + w->repeat;
622 downheap ((WT *)timers, timercnt, 0); 821 downheap ((WT *)timers, timercnt, 0);
623 } 822 }
624 else 823 else
625 ev_timer_stop (w); /* nonrepeating: stop timer */ 824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
626 825
627 event ((W)w, EV_TIMEOUT); 826 event (EV_A_ (W)w, EV_TIMEOUT);
628 } 827 }
629} 828}
630 829
631static void 830static void
632periodics_reify (void) 831periodics_reify (EV_P)
633{ 832{
634 while (periodiccnt && periodics [0]->at <= ev_now) 833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
635 { 834 {
636 struct ev_periodic *w = periodics [0]; 835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
637 838
638 /* first reschedule or stop timer */ 839 /* first reschedule or stop timer */
639 if (w->interval) 840 if (w->interval)
640 { 841 {
641 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
642 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
643 downheap ((WT *)periodics, periodiccnt, 0); 844 downheap ((WT *)periodics, periodiccnt, 0);
644 } 845 }
645 else 846 else
646 ev_periodic_stop (w); /* nonrepeating: stop timer */ 847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
647 848
648 event ((W)w, EV_PERIODIC); 849 event (EV_A_ (W)w, EV_PERIODIC);
649 } 850 }
650} 851}
651 852
652static void 853static void
653periodics_reschedule (ev_tstamp diff) 854periodics_reschedule (EV_P)
654{ 855{
655 int i; 856 int i;
656 857
657 /* adjust periodics after time jump */ 858 /* adjust periodics after time jump */
658 for (i = 0; i < periodiccnt; ++i) 859 for (i = 0; i < periodiccnt; ++i)
659 { 860 {
660 struct ev_periodic *w = periodics [i]; 861 struct ev_periodic *w = periodics [i];
661 862
662 if (w->interval) 863 if (w->interval)
663 { 864 {
664 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
665 866
666 if (fabs (diff) >= 1e-4) 867 if (fabs (diff) >= 1e-4)
667 { 868 {
668 ev_periodic_stop (w); 869 ev_periodic_stop (EV_A_ w);
669 ev_periodic_start (w); 870 ev_periodic_start (EV_A_ w);
670 871
671 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
672 } 873 }
673 } 874 }
674 } 875 }
675} 876}
676 877
677static int 878inline int
678time_update_monotonic (void) 879time_update_monotonic (EV_P)
679{ 880{
680 now = get_clock (); 881 mn_now = get_clock ();
681 882
682 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
683 { 884 {
684 ev_now = now + diff; 885 rt_now = rtmn_diff + mn_now;
685 return 0; 886 return 0;
686 } 887 }
687 else 888 else
688 { 889 {
689 now_floor = now; 890 now_floor = mn_now;
690 ev_now = ev_time (); 891 rt_now = ev_time ();
691 return 1; 892 return 1;
692 } 893 }
693} 894}
694 895
695static void 896static void
696time_update (void) 897time_update (EV_P)
697{ 898{
698 int i; 899 int i;
699 900
700#if EV_USE_MONOTONIC 901#if EV_USE_MONOTONIC
701 if (expect_true (have_monotonic)) 902 if (expect_true (have_monotonic))
702 { 903 {
703 if (time_update_monotonic ()) 904 if (time_update_monotonic (EV_A))
704 { 905 {
705 ev_tstamp odiff = diff; 906 ev_tstamp odiff = rtmn_diff;
706 907
707 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
708 { 909 {
709 diff = ev_now - now; 910 rtmn_diff = rt_now - mn_now;
710 911
711 if (fabs (odiff - diff) < MIN_TIMEJUMP) 912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
712 return; /* all is well */ 913 return; /* all is well */
713 914
714 ev_now = ev_time (); 915 rt_now = ev_time ();
715 now = get_clock (); 916 mn_now = get_clock ();
716 now_floor = now; 917 now_floor = mn_now;
717 } 918 }
718 919
719 periodics_reschedule (diff - odiff); 920 periodics_reschedule (EV_A);
720 /* no timer adjustment, as the monotonic clock doesn't jump */ 921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
721 } 923 }
722 } 924 }
723 else 925 else
724#endif 926#endif
725 { 927 {
726 ev_now = ev_time (); 928 rt_now = ev_time ();
727 929
728 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
729 { 931 {
730 periodics_reschedule (ev_now - now); 932 periodics_reschedule (EV_A);
731 933
732 /* adjust timers. this is easy, as the offset is the same for all */ 934 /* adjust timers. this is easy, as the offset is the same for all */
733 for (i = 0; i < timercnt; ++i) 935 for (i = 0; i < timercnt; ++i)
734 timers [i]->at += diff; 936 ((WT)timers [i])->at += rt_now - mn_now;
735 } 937 }
736 938
737 now = ev_now; 939 mn_now = rt_now;
738 } 940 }
739} 941}
740 942
741int ev_loop_done; 943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
742 948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956
957void
743void ev_loop (int flags) 958ev_loop (EV_P_ int flags)
744{ 959{
745 double block; 960 double block;
746 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
747 962
748 do 963 do
749 { 964 {
750 /* queue check watchers (and execute them) */ 965 /* queue check watchers (and execute them) */
751 if (expect_false (preparecnt)) 966 if (expect_false (preparecnt))
752 { 967 {
753 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
754 call_pending (); 969 call_pending (EV_A);
755 } 970 }
756 971
757 /* update fd-related kernel structures */ 972 /* update fd-related kernel structures */
758 fd_reify (); 973 fd_reify (EV_A);
759 974
760 /* calculate blocking time */ 975 /* calculate blocking time */
761 976
762 /* we only need this for !monotonic clockor timers, but as we basically 977 /* we only need this for !monotonic clockor timers, but as we basically
763 always have timers, we just calculate it always */ 978 always have timers, we just calculate it always */
764#if EV_USE_MONOTONIC 979#if EV_USE_MONOTONIC
765 if (expect_true (have_monotonic)) 980 if (expect_true (have_monotonic))
766 time_update_monotonic (); 981 time_update_monotonic (EV_A);
767 else 982 else
768#endif 983#endif
769 { 984 {
770 ev_now = ev_time (); 985 rt_now = ev_time ();
771 now = ev_now; 986 mn_now = rt_now;
772 } 987 }
773 988
774 if (flags & EVLOOP_NONBLOCK || idlecnt) 989 if (flags & EVLOOP_NONBLOCK || idlecnt)
775 block = 0.; 990 block = 0.;
776 else 991 else
777 { 992 {
778 block = MAX_BLOCKTIME; 993 block = MAX_BLOCKTIME;
779 994
780 if (timercnt) 995 if (timercnt)
781 { 996 {
782 ev_tstamp to = timers [0]->at - now + method_fudge; 997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
783 if (block > to) block = to; 998 if (block > to) block = to;
784 } 999 }
785 1000
786 if (periodiccnt) 1001 if (periodiccnt)
787 { 1002 {
788 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
789 if (block > to) block = to; 1004 if (block > to) block = to;
790 } 1005 }
791 1006
792 if (block < 0.) block = 0.; 1007 if (block < 0.) block = 0.;
793 } 1008 }
794 1009
795 method_poll (block); 1010 method_poll (EV_A_ block);
796 1011
797 /* update ev_now, do magic */ 1012 /* update rt_now, do magic */
798 time_update (); 1013 time_update (EV_A);
799 1014
800 /* queue pending timers and reschedule them */ 1015 /* queue pending timers and reschedule them */
801 timers_reify (); /* relative timers called last */ 1016 timers_reify (EV_A); /* relative timers called last */
802 periodics_reify (); /* absolute timers called first */ 1017 periodics_reify (EV_A); /* absolute timers called first */
803 1018
804 /* queue idle watchers unless io or timers are pending */ 1019 /* queue idle watchers unless io or timers are pending */
805 if (!pendingcnt) 1020 if (!pendingcnt)
806 queue_events ((W *)idles, idlecnt, EV_IDLE); 1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
807 1022
808 /* queue check watchers, to be executed first */ 1023 /* queue check watchers, to be executed first */
809 if (checkcnt) 1024 if (checkcnt)
810 queue_events ((W *)checks, checkcnt, EV_CHECK); 1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
811 1026
812 call_pending (); 1027 call_pending (EV_A);
813 } 1028 }
814 while (!ev_loop_done); 1029 while (activecnt && !loop_done);
815 1030
816 if (ev_loop_done != 2) 1031 if (loop_done != 2)
817 ev_loop_done = 0; 1032 loop_done = 0;
1033}
1034
1035void
1036ev_unloop (EV_P_ int how)
1037{
1038 loop_done = how;
818} 1039}
819 1040
820/*****************************************************************************/ 1041/*****************************************************************************/
821 1042
822static void 1043inline void
823wlist_add (WL *head, WL elem) 1044wlist_add (WL *head, WL elem)
824{ 1045{
825 elem->next = *head; 1046 elem->next = *head;
826 *head = elem; 1047 *head = elem;
827} 1048}
828 1049
829static void 1050inline void
830wlist_del (WL *head, WL elem) 1051wlist_del (WL *head, WL elem)
831{ 1052{
832 while (*head) 1053 while (*head)
833 { 1054 {
834 if (*head == elem) 1055 if (*head == elem)
839 1060
840 head = &(*head)->next; 1061 head = &(*head)->next;
841 } 1062 }
842} 1063}
843 1064
844static void 1065inline void
845ev_clear_pending (W w) 1066ev_clear_pending (EV_P_ W w)
846{ 1067{
847 if (w->pending) 1068 if (w->pending)
848 { 1069 {
849 pendings [w->pending - 1].w = 0; 1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
850 w->pending = 0; 1071 w->pending = 0;
851 } 1072 }
852} 1073}
853 1074
854static void 1075inline void
855ev_start (W w, int active) 1076ev_start (EV_P_ W w, int active)
856{ 1077{
1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080
857 w->active = active; 1081 w->active = active;
1082 ev_ref (EV_A);
858} 1083}
859 1084
860static void 1085inline void
861ev_stop (W w) 1086ev_stop (EV_P_ W w)
862{ 1087{
1088 ev_unref (EV_A);
863 w->active = 0; 1089 w->active = 0;
864} 1090}
865 1091
866/*****************************************************************************/ 1092/*****************************************************************************/
867 1093
868void 1094void
869ev_io_start (struct ev_io *w) 1095ev_io_start (EV_P_ struct ev_io *w)
870{ 1096{
871 int fd = w->fd; 1097 int fd = w->fd;
872 1098
873 if (ev_is_active (w)) 1099 if (ev_is_active (w))
874 return; 1100 return;
875 1101
876 assert (("ev_io_start called with negative fd", fd >= 0)); 1102 assert (("ev_io_start called with negative fd", fd >= 0));
877 1103
878 ev_start ((W)w, 1); 1104 ev_start (EV_A_ (W)w, 1);
879 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
880 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
881 1107
882 fd_change (fd); 1108 fd_change (EV_A_ fd);
883} 1109}
884 1110
885void 1111void
886ev_io_stop (struct ev_io *w) 1112ev_io_stop (EV_P_ struct ev_io *w)
887{ 1113{
888 ev_clear_pending ((W)w); 1114 ev_clear_pending (EV_A_ (W)w);
889 if (!ev_is_active (w)) 1115 if (!ev_is_active (w))
890 return; 1116 return;
891 1117
892 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
893 ev_stop ((W)w); 1119 ev_stop (EV_A_ (W)w);
894 1120
895 fd_change (w->fd); 1121 fd_change (EV_A_ w->fd);
896} 1122}
897 1123
898void 1124void
899ev_timer_start (struct ev_timer *w) 1125ev_timer_start (EV_P_ struct ev_timer *w)
900{ 1126{
901 if (ev_is_active (w)) 1127 if (ev_is_active (w))
902 return; 1128 return;
903 1129
904 w->at += now; 1130 ((WT)w)->at += mn_now;
905 1131
906 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
907 1133
908 ev_start ((W)w, ++timercnt); 1134 ev_start (EV_A_ (W)w, ++timercnt);
909 array_needsize (timers, timermax, timercnt, ); 1135 array_needsize (timers, timermax, timercnt, );
910 timers [timercnt - 1] = w; 1136 timers [timercnt - 1] = w;
911 upheap ((WT *)timers, timercnt - 1); 1137 upheap ((WT *)timers, timercnt - 1);
912}
913 1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140}
1141
914void 1142void
915ev_timer_stop (struct ev_timer *w) 1143ev_timer_stop (EV_P_ struct ev_timer *w)
916{ 1144{
917 ev_clear_pending ((W)w); 1145 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1146 if (!ev_is_active (w))
919 return; 1147 return;
920 1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
921 if (w->active < timercnt--) 1151 if (((W)w)->active < timercnt--)
922 { 1152 {
923 timers [w->active - 1] = timers [timercnt]; 1153 timers [((W)w)->active - 1] = timers [timercnt];
924 downheap ((WT *)timers, timercnt, w->active - 1); 1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
925 } 1155 }
926 1156
927 w->at = w->repeat; 1157 ((WT)w)->at = w->repeat;
928 1158
929 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
930} 1160}
931 1161
932void 1162void
933ev_timer_again (struct ev_timer *w) 1163ev_timer_again (EV_P_ struct ev_timer *w)
934{ 1164{
935 if (ev_is_active (w)) 1165 if (ev_is_active (w))
936 { 1166 {
937 if (w->repeat) 1167 if (w->repeat)
938 { 1168 {
939 w->at = now + w->repeat; 1169 ((WT)w)->at = mn_now + w->repeat;
940 downheap ((WT *)timers, timercnt, w->active - 1); 1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
941 } 1171 }
942 else 1172 else
943 ev_timer_stop (w); 1173 ev_timer_stop (EV_A_ w);
944 } 1174 }
945 else if (w->repeat) 1175 else if (w->repeat)
946 ev_timer_start (w); 1176 ev_timer_start (EV_A_ w);
947} 1177}
948 1178
949void 1179void
950ev_periodic_start (struct ev_periodic *w) 1180ev_periodic_start (EV_P_ struct ev_periodic *w)
951{ 1181{
952 if (ev_is_active (w)) 1182 if (ev_is_active (w))
953 return; 1183 return;
954 1184
955 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
956 1186
957 /* this formula differs from the one in periodic_reify because we do not always round up */ 1187 /* this formula differs from the one in periodic_reify because we do not always round up */
958 if (w->interval) 1188 if (w->interval)
959 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
960 1190
961 ev_start ((W)w, ++periodiccnt); 1191 ev_start (EV_A_ (W)w, ++periodiccnt);
962 array_needsize (periodics, periodicmax, periodiccnt, ); 1192 array_needsize (periodics, periodicmax, periodiccnt, );
963 periodics [periodiccnt - 1] = w; 1193 periodics [periodiccnt - 1] = w;
964 upheap ((WT *)periodics, periodiccnt - 1); 1194 upheap ((WT *)periodics, periodiccnt - 1);
965}
966 1195
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197}
1198
967void 1199void
968ev_periodic_stop (struct ev_periodic *w) 1200ev_periodic_stop (EV_P_ struct ev_periodic *w)
969{ 1201{
970 ev_clear_pending ((W)w); 1202 ev_clear_pending (EV_A_ (W)w);
971 if (!ev_is_active (w)) 1203 if (!ev_is_active (w))
972 return; 1204 return;
973 1205
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207
974 if (w->active < periodiccnt--) 1208 if (((W)w)->active < periodiccnt--)
975 { 1209 {
976 periodics [w->active - 1] = periodics [periodiccnt]; 1210 periodics [((W)w)->active - 1] = periodics [periodiccnt];
977 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
978 } 1212 }
979 1213
980 ev_stop ((W)w); 1214 ev_stop (EV_A_ (W)w);
981} 1215}
982 1216
983void 1217void
984ev_signal_start (struct ev_signal *w) 1218ev_idle_start (EV_P_ struct ev_idle *w)
985{ 1219{
986 if (ev_is_active (w)) 1220 if (ev_is_active (w))
987 return; 1221 return;
988 1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226}
1227
1228void
1229ev_idle_stop (EV_P_ struct ev_idle *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w);
1237}
1238
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281}
1282
1283#ifndef SA_RESTART
1284# define SA_RESTART 0
1285#endif
1286
1287void
1288ev_signal_start (EV_P_ struct ev_signal *w)
1289{
1290#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292#endif
1293 if (ev_is_active (w))
1294 return;
1295
989 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
990 1297
991 ev_start ((W)w, 1); 1298 ev_start (EV_A_ (W)w, 1);
992 array_needsize (signals, signalmax, w->signum, signals_init); 1299 array_needsize (signals, signalmax, w->signum, signals_init);
993 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
994 1301
995 if (!w->next) 1302 if (!((WL)w)->next)
996 { 1303 {
997 struct sigaction sa; 1304 struct sigaction sa;
998 sa.sa_handler = sighandler; 1305 sa.sa_handler = sighandler;
999 sigfillset (&sa.sa_mask); 1306 sigfillset (&sa.sa_mask);
1000 sa.sa_flags = 0; 1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1001 sigaction (w->signum, &sa, 0); 1308 sigaction (w->signum, &sa, 0);
1002 } 1309 }
1003} 1310}
1004 1311
1005void 1312void
1006ev_signal_stop (struct ev_signal *w) 1313ev_signal_stop (EV_P_ struct ev_signal *w)
1007{ 1314{
1008 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1009 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1010 return; 1317 return;
1011 1318
1012 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
1014 1321
1015 if (!signals [w->signum - 1].head) 1322 if (!signals [w->signum - 1].head)
1016 signal (w->signum, SIG_DFL); 1323 signal (w->signum, SIG_DFL);
1017} 1324}
1018 1325
1019void 1326void
1020ev_idle_start (struct ev_idle *w) 1327ev_child_start (EV_P_ struct ev_child *w)
1021{ 1328{
1329#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop));
1331#endif
1022 if (ev_is_active (w)) 1332 if (ev_is_active (w))
1023 return; 1333 return;
1024 1334
1025 ev_start ((W)w, ++idlecnt); 1335 ev_start (EV_A_ (W)w, 1);
1026 array_needsize (idles, idlemax, idlecnt, ); 1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1027 idles [idlecnt - 1] = w;
1028} 1337}
1029 1338
1030void 1339void
1031ev_idle_stop (struct ev_idle *w) 1340ev_child_stop (EV_P_ struct ev_child *w)
1032{ 1341{
1033 ev_clear_pending ((W)w); 1342 ev_clear_pending (EV_A_ (W)w);
1034 if (ev_is_active (w)) 1343 if (ev_is_active (w))
1035 return; 1344 return;
1036 1345
1037 idles [w->active - 1] = idles [--idlecnt];
1038 ev_stop ((W)w);
1039}
1040
1041void
1042ev_prepare_start (struct ev_prepare *w)
1043{
1044 if (ev_is_active (w))
1045 return;
1046
1047 ev_start ((W)w, ++preparecnt);
1048 array_needsize (prepares, preparemax, preparecnt, );
1049 prepares [preparecnt - 1] = w;
1050}
1051
1052void
1053ev_prepare_stop (struct ev_prepare *w)
1054{
1055 ev_clear_pending ((W)w);
1056 if (ev_is_active (w))
1057 return;
1058
1059 prepares [w->active - 1] = prepares [--preparecnt];
1060 ev_stop ((W)w);
1061}
1062
1063void
1064ev_check_start (struct ev_check *w)
1065{
1066 if (ev_is_active (w))
1067 return;
1068
1069 ev_start ((W)w, ++checkcnt);
1070 array_needsize (checks, checkmax, checkcnt, );
1071 checks [checkcnt - 1] = w;
1072}
1073
1074void
1075ev_check_stop (struct ev_check *w)
1076{
1077 ev_clear_pending ((W)w);
1078 if (ev_is_active (w))
1079 return;
1080
1081 checks [w->active - 1] = checks [--checkcnt];
1082 ev_stop ((W)w);
1083}
1084
1085void
1086ev_child_start (struct ev_child *w)
1087{
1088 if (ev_is_active (w))
1089 return;
1090
1091 ev_start ((W)w, 1);
1092 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1093}
1094
1095void
1096ev_child_stop (struct ev_child *w)
1097{
1098 ev_clear_pending ((W)w);
1099 if (ev_is_active (w))
1100 return;
1101
1102 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1103 ev_stop ((W)w); 1347 ev_stop (EV_A_ (W)w);
1104} 1348}
1105 1349
1106/*****************************************************************************/ 1350/*****************************************************************************/
1107 1351
1108struct ev_once 1352struct ev_once
1112 void (*cb)(int revents, void *arg); 1356 void (*cb)(int revents, void *arg);
1113 void *arg; 1357 void *arg;
1114}; 1358};
1115 1359
1116static void 1360static void
1117once_cb (struct ev_once *once, int revents) 1361once_cb (EV_P_ struct ev_once *once, int revents)
1118{ 1362{
1119 void (*cb)(int revents, void *arg) = once->cb; 1363 void (*cb)(int revents, void *arg) = once->cb;
1120 void *arg = once->arg; 1364 void *arg = once->arg;
1121 1365
1122 ev_io_stop (&once->io); 1366 ev_io_stop (EV_A_ &once->io);
1123 ev_timer_stop (&once->to); 1367 ev_timer_stop (EV_A_ &once->to);
1124 free (once); 1368 free (once);
1125 1369
1126 cb (revents, arg); 1370 cb (revents, arg);
1127} 1371}
1128 1372
1129static void 1373static void
1130once_cb_io (struct ev_io *w, int revents) 1374once_cb_io (EV_P_ struct ev_io *w, int revents)
1131{ 1375{
1132 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1133} 1377}
1134 1378
1135static void 1379static void
1136once_cb_to (struct ev_timer *w, int revents) 1380once_cb_to (EV_P_ struct ev_timer *w, int revents)
1137{ 1381{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1139} 1383}
1140 1384
1141void 1385void
1142ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1143{ 1387{
1144 struct ev_once *once = malloc (sizeof (struct ev_once)); 1388 struct ev_once *once = malloc (sizeof (struct ev_once));
1145 1389
1146 if (!once) 1390 if (!once)
1147 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1152 1396
1153 ev_watcher_init (&once->io, once_cb_io); 1397 ev_watcher_init (&once->io, once_cb_io);
1154 if (fd >= 0) 1398 if (fd >= 0)
1155 { 1399 {
1156 ev_io_set (&once->io, fd, events); 1400 ev_io_set (&once->io, fd, events);
1157 ev_io_start (&once->io); 1401 ev_io_start (EV_A_ &once->io);
1158 } 1402 }
1159 1403
1160 ev_watcher_init (&once->to, once_cb_to); 1404 ev_watcher_init (&once->to, once_cb_to);
1161 if (timeout >= 0.) 1405 if (timeout >= 0.)
1162 { 1406 {
1163 ev_timer_set (&once->to, timeout, 0.); 1407 ev_timer_set (&once->to, timeout, 0.);
1164 ev_timer_start (&once->to); 1408 ev_timer_start (EV_A_ &once->to);
1165 } 1409 }
1166 } 1410 }
1167} 1411}
1168 1412
1169/*****************************************************************************/
1170
1171#if 0
1172
1173struct ev_io wio;
1174
1175static void
1176sin_cb (struct ev_io *w, int revents)
1177{
1178 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1179}
1180
1181static void
1182ocb (struct ev_timer *w, int revents)
1183{
1184 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1185 ev_timer_stop (w);
1186 ev_timer_start (w);
1187}
1188
1189static void
1190scb (struct ev_signal *w, int revents)
1191{
1192 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1193 ev_io_stop (&wio);
1194 ev_io_start (&wio);
1195}
1196
1197static void
1198gcb (struct ev_signal *w, int revents)
1199{
1200 fprintf (stderr, "generic %x\n", revents);
1201
1202}
1203
1204int main (void)
1205{
1206 ev_init (0);
1207
1208 ev_io_init (&wio, sin_cb, 0, EV_READ);
1209 ev_io_start (&wio);
1210
1211 struct ev_timer t[10000];
1212
1213#if 0
1214 int i;
1215 for (i = 0; i < 10000; ++i)
1216 {
1217 struct ev_timer *w = t + i;
1218 ev_watcher_init (w, ocb, i);
1219 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1220 ev_timer_start (w);
1221 if (drand48 () < 0.5)
1222 ev_timer_stop (w);
1223 }
1224#endif
1225
1226 struct ev_timer t1;
1227 ev_timer_init (&t1, ocb, 5, 10);
1228 ev_timer_start (&t1);
1229
1230 struct ev_signal sig;
1231 ev_signal_init (&sig, scb, SIGQUIT);
1232 ev_signal_start (&sig);
1233
1234 struct ev_check cw;
1235 ev_check_init (&cw, gcb);
1236 ev_check_start (&cw);
1237
1238 struct ev_idle iw;
1239 ev_idle_init (&iw, gcb);
1240 ev_idle_start (&iw);
1241
1242 ev_loop (0);
1243
1244 return 0;
1245}
1246
1247#endif
1248
1249
1250
1251

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines