ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.41 by root, Fri Nov 2 16:54:34 2007 UTC vs.
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
100#endif 136#endif
101 137
102#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
104 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
105typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
106typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
107typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
108 147
109static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
110ev_tstamp ev_now;
111int ev_method;
112
113static int have_monotonic; /* runtime */
114
115static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
116static void (*method_modify)(int fd, int oev, int nev);
117static void (*method_poll)(ev_tstamp timeout);
118 149
119/*****************************************************************************/ 150/*****************************************************************************/
120 151
121ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
122ev_time (void) 186ev_time (void)
123{ 187{
124#if EV_USE_REALTIME 188#if EV_USE_REALTIME
125 struct timespec ts; 189 struct timespec ts;
126 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
130 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
131 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
132#endif 196#endif
133} 197}
134 198
135static ev_tstamp 199inline ev_tstamp
136get_clock (void) 200get_clock (void)
137{ 201{
138#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
139 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
140 { 204 {
143 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
144 } 208 }
145#endif 209#endif
146 210
147 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
148} 218}
149 219
150#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
151 221
152#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
162 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
163 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
164 cur = newcnt; \ 234 cur = newcnt; \
165 } 235 }
166 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
167/*****************************************************************************/ 240/*****************************************************************************/
168
169typedef struct
170{
171 struct ev_io *head;
172 unsigned char events;
173 unsigned char reify;
174} ANFD;
175
176static ANFD *anfds;
177static int anfdmax;
178 241
179static void 242static void
180anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
181{ 244{
182 while (count--) 245 while (count--)
187 250
188 ++base; 251 ++base;
189 } 252 }
190} 253}
191 254
192typedef struct
193{
194 W w;
195 int events;
196} ANPENDING;
197
198static ANPENDING *pendings;
199static int pendingmax, pendingcnt;
200
201static void 255static void
202event (W w, int events) 256event (EV_P_ W w, int events)
203{ 257{
204 if (w->pending) 258 if (w->pending)
205 { 259 {
206 pendings [w->pending - 1].events |= events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
207 return; 261 return;
208 } 262 }
209 263
210 w->pending = ++pendingcnt; 264 w->pending = ++pendingcnt [ABSPRI (w)];
211 array_needsize (pendings, pendingmax, pendingcnt, ); 265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
212 pendings [pendingcnt - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
213 pendings [pendingcnt - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
214} 268}
215 269
216static void 270static void
217queue_events (W *events, int eventcnt, int type) 271queue_events (EV_P_ W *events, int eventcnt, int type)
218{ 272{
219 int i; 273 int i;
220 274
221 for (i = 0; i < eventcnt; ++i) 275 for (i = 0; i < eventcnt; ++i)
222 event (events [i], type); 276 event (EV_A_ events [i], type);
223} 277}
224 278
225static void 279static void
226fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
227{ 281{
228 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
229 struct ev_io *w; 283 struct ev_io *w;
230 284
231 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
232 { 286 {
233 int ev = w->events & events; 287 int ev = w->events & events;
234 288
235 if (ev) 289 if (ev)
236 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
237 } 291 }
238} 292}
239 293
240/*****************************************************************************/ 294/*****************************************************************************/
241 295
242static int *fdchanges;
243static int fdchangemax, fdchangecnt;
244
245static void 296static void
246fd_reify (void) 297fd_reify (EV_P)
247{ 298{
248 int i; 299 int i;
249 300
250 for (i = 0; i < fdchangecnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
251 { 302 {
253 ANFD *anfd = anfds + fd; 304 ANFD *anfd = anfds + fd;
254 struct ev_io *w; 305 struct ev_io *w;
255 306
256 int events = 0; 307 int events = 0;
257 308
258 for (w = anfd->head; w; w = w->next) 309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
259 events |= w->events; 310 events |= w->events;
260 311
261 anfd->reify = 0; 312 anfd->reify = 0;
262 313
263 if (anfd->events != events)
264 {
265 method_modify (fd, anfd->events, events); 314 method_modify (EV_A_ fd, anfd->events, events);
266 anfd->events = events; 315 anfd->events = events;
267 }
268 } 316 }
269 317
270 fdchangecnt = 0; 318 fdchangecnt = 0;
271} 319}
272 320
273static void 321static void
274fd_change (int fd) 322fd_change (EV_P_ int fd)
275{ 323{
276 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
277 return; 325 return;
278 326
279 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
282 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
283 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
284} 332}
285 333
286static void 334static void
287fd_kill (int fd) 335fd_kill (EV_P_ int fd)
288{ 336{
289 struct ev_io *w; 337 struct ev_io *w;
290 338
291 printf ("killing fd %d\n", fd);//D
292 while ((w = anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
293 { 340 {
294 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
295 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
296 } 343 }
297} 344}
298 345
299/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
300static void 347static void
301fd_ebadf (void) 348fd_ebadf (EV_P)
302{ 349{
303 int fd; 350 int fd;
304 351
305 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
306 if (anfds [fd].events) 353 if (anfds [fd].events)
307 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
308 fd_kill (fd); 355 fd_kill (EV_A_ fd);
309} 356}
310 357
311/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
312static void 359static void
313fd_enomem (void) 360fd_enomem (EV_P)
314{ 361{
315 int fd = anfdmax; 362 int fd;
316 363
317 while (fd--) 364 for (fd = anfdmax; fd--; )
318 if (anfds [fd].events) 365 if (anfds [fd].events)
319 { 366 {
320 close (fd); 367 close (fd);
321 fd_kill (fd); 368 fd_kill (EV_A_ fd);
322 return; 369 return;
323 } 370 }
324} 371}
325 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
326/*****************************************************************************/ 388/*****************************************************************************/
327 389
328static struct ev_timer **timers;
329static int timermax, timercnt;
330
331static struct ev_periodic **periodics;
332static int periodicmax, periodiccnt;
333
334static void 390static void
335upheap (WT *timers, int k) 391upheap (WT *heap, int k)
336{ 392{
337 WT w = timers [k]; 393 WT w = heap [k];
338 394
339 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
340 { 396 {
341 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
342 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
343 k >>= 1; 399 k >>= 1;
344 } 400 }
345 401
346 timers [k] = w; 402 heap [k] = w;
347 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
348 404
349} 405}
350 406
351static void 407static void
352downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
353{ 409{
354 WT w = timers [k]; 410 WT w = heap [k];
355 411
356 while (k < (N >> 1)) 412 while (k < (N >> 1))
357 { 413 {
358 int j = k << 1; 414 int j = k << 1;
359 415
360 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
361 ++j; 417 ++j;
362 418
363 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
364 break; 420 break;
365 421
366 timers [k] = timers [j]; 422 heap [k] = heap [j];
367 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
368 k = j; 424 k = j;
369 } 425 }
370 426
371 timers [k] = w; 427 heap [k] = w;
372 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
373} 429}
374 430
375/*****************************************************************************/ 431/*****************************************************************************/
376 432
377typedef struct 433typedef struct
378{ 434{
379 struct ev_signal *head; 435 struct ev_watcher_list *head;
380 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
381} ANSIG; 437} ANSIG;
382 438
383static ANSIG *signals; 439static ANSIG *signals;
384static int signalmax; 440static int signalmax;
404{ 460{
405 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
406 462
407 if (!gotsig) 463 if (!gotsig)
408 { 464 {
465 int old_errno = errno;
409 gotsig = 1; 466 gotsig = 1;
410 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
411 } 469 }
412} 470}
413 471
414static void 472static void
415sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
416{ 474{
417 struct ev_signal *w; 475 struct ev_watcher_list *w;
418 int signum; 476 int signum;
419 477
420 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
421 gotsig = 0; 479 gotsig = 0;
422 480
424 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
425 { 483 {
426 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
427 485
428 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
429 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
430 } 488 }
431} 489}
432 490
433static void 491static void
434siginit (void) 492siginit (EV_P)
435{ 493{
494#ifndef WIN32
436 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
437 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
438 497
439 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
440 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
441 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
442 502
443 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
444 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
445} 506}
446 507
447/*****************************************************************************/ 508/*****************************************************************************/
448 509
449static struct ev_idle **idles; 510#ifndef WIN32
450static int idlemax, idlecnt;
451
452static struct ev_prepare **prepares;
453static int preparemax, preparecnt;
454
455static struct ev_check **checks;
456static int checkmax, checkcnt;
457
458/*****************************************************************************/
459 511
460static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
461static struct ev_signal childev; 513static struct ev_signal childev;
462 514
463#ifndef WCONTINUED 515#ifndef WCONTINUED
464# define WCONTINUED 0 516# define WCONTINUED 0
465#endif 517#endif
466 518
467static void 519static void
468childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
469{ 521{
470 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
471 int pid, status; 537 int pid, status;
472 538
473 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
474 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
475 if (w->pid == pid || !w->pid) 541 /* make sure we are called again until all childs have been reaped */
476 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
477 w->status = status; 543
478 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
479 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
480} 547}
548
549#endif
481 550
482/*****************************************************************************/ 551/*****************************************************************************/
483 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
484#if EV_USE_EPOLL 556#if EV_USE_EPOLL
485# include "ev_epoll.c" 557# include "ev_epoll.c"
486#endif 558#endif
487#if EV_USE_POLL 559#if EV_USE_POLL
488# include "ev_poll.c" 560# include "ev_poll.c"
501ev_version_minor (void) 573ev_version_minor (void)
502{ 574{
503 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
504} 576}
505 577
506/* return true if we are running with elevated privileges and ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
507static int 579static int
508enable_secure () 580enable_secure (void)
509{ 581{
582#ifdef WIN32
583 return 0;
584#else
510 return getuid () != geteuid () 585 return getuid () != geteuid ()
511 || getgid () != getegid (); 586 || getgid () != getegid ();
587#endif
512} 588}
513 589
514int ev_init (int methods) 590int
591ev_method (EV_P)
515{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
516 if (!ev_method) 599 if (!method)
517 { 600 {
518#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
519 { 602 {
520 struct timespec ts; 603 struct timespec ts;
521 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
522 have_monotonic = 1; 605 have_monotonic = 1;
523 } 606 }
524#endif 607#endif
525 608
526 ev_now = ev_time (); 609 rt_now = ev_time ();
527 now = get_clock (); 610 mn_now = get_clock ();
528 now_floor = now; 611 now_floor = mn_now;
529 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
530
531 if (pipe (sigpipe))
532 return 0;
533 613
534 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
535 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
536 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
537 else 617 else
538 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
539 619
540 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
541#if EV_USE_EPOLL 627#if EV_USE_EPOLL
542 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
543#endif 629#endif
544#if EV_USE_POLL 630#if EV_USE_POLL
545 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
546#endif 632#endif
547#if EV_USE_SELECT 633#if EV_USE_SELECT
548 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
549#endif 635#endif
636 }
637}
550 638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
551 if (ev_method) 741 if (ev_method (EV_A))
552 { 742 {
553 ev_watcher_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
554 siginit (); 745 siginit (EV_A);
555 746
747#ifndef WIN32
556 ev_signal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
557 ev_signal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif
558 } 753 }
754 else
755 default_loop = 0;
559 } 756 }
560 757
561 return ev_method; 758 return default_loop;
562} 759}
563 760
564/*****************************************************************************/
565
566void 761void
567ev_fork_prepare (void) 762ev_default_destroy (void)
568{ 763{
569 /* nop */ 764#if EV_MULTIPLICITY
570} 765 struct ev_loop *loop = default_loop;
571
572void
573ev_fork_parent (void)
574{
575 /* nop */
576}
577
578void
579ev_fork_child (void)
580{
581#if EV_USE_EPOLL
582 if (ev_method == EVMETHOD_EPOLL)
583 epoll_postfork_child ();
584#endif 766#endif
585 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
586 ev_io_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
587 close (sigpipe [0]); 790 close (sigpipe [0]);
588 close (sigpipe [1]); 791 close (sigpipe [1]);
589 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
590 siginit (); 795 siginit (EV_A);
591} 796}
592 797
593/*****************************************************************************/ 798/*****************************************************************************/
594 799
595static void 800static void
596call_pending (void) 801call_pending (EV_P)
597{ 802{
803 int pri;
804
805 for (pri = NUMPRI; pri--; )
598 while (pendingcnt) 806 while (pendingcnt [pri])
599 { 807 {
600 ANPENDING *p = pendings + --pendingcnt; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
601 809
602 if (p->w) 810 if (p->w)
603 { 811 {
604 p->w->pending = 0; 812 p->w->pending = 0;
605 p->w->cb (p->w, p->events); 813 p->w->cb (EV_A_ p->w, p->events);
606 } 814 }
607 } 815 }
608} 816}
609 817
610static void 818static void
611timers_reify (void) 819timers_reify (EV_P)
612{ 820{
613 while (timercnt && timers [0]->at <= now) 821 while (timercnt && ((WT)timers [0])->at <= mn_now)
614 { 822 {
615 struct ev_timer *w = timers [0]; 823 struct ev_timer *w = timers [0];
824
825 assert (("inactive timer on timer heap detected", ev_is_active (w)));
616 826
617 /* first reschedule or stop timer */ 827 /* first reschedule or stop timer */
618 if (w->repeat) 828 if (w->repeat)
619 { 829 {
620 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
621 w->at = now + w->repeat; 831 ((WT)w)->at = mn_now + w->repeat;
622 downheap ((WT *)timers, timercnt, 0); 832 downheap ((WT *)timers, timercnt, 0);
623 } 833 }
624 else 834 else
625 ev_timer_stop (w); /* nonrepeating: stop timer */ 835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
626 836
627 event ((W)w, EV_TIMEOUT); 837 event (EV_A_ (W)w, EV_TIMEOUT);
628 } 838 }
629} 839}
630 840
631static void 841static void
632periodics_reify (void) 842periodics_reify (EV_P)
633{ 843{
634 while (periodiccnt && periodics [0]->at <= ev_now) 844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
635 { 845 {
636 struct ev_periodic *w = periodics [0]; 846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
637 849
638 /* first reschedule or stop timer */ 850 /* first reschedule or stop timer */
639 if (w->interval) 851 if (w->interval)
640 { 852 {
641 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
642 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
643 downheap ((WT *)periodics, periodiccnt, 0); 855 downheap ((WT *)periodics, periodiccnt, 0);
644 } 856 }
645 else 857 else
646 ev_periodic_stop (w); /* nonrepeating: stop timer */ 858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
647 859
648 event ((W)w, EV_PERIODIC); 860 event (EV_A_ (W)w, EV_PERIODIC);
649 } 861 }
650} 862}
651 863
652static void 864static void
653periodics_reschedule (ev_tstamp diff) 865periodics_reschedule (EV_P)
654{ 866{
655 int i; 867 int i;
656 868
657 /* adjust periodics after time jump */ 869 /* adjust periodics after time jump */
658 for (i = 0; i < periodiccnt; ++i) 870 for (i = 0; i < periodiccnt; ++i)
659 { 871 {
660 struct ev_periodic *w = periodics [i]; 872 struct ev_periodic *w = periodics [i];
661 873
662 if (w->interval) 874 if (w->interval)
663 { 875 {
664 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
665 877
666 if (fabs (diff) >= 1e-4) 878 if (fabs (diff) >= 1e-4)
667 { 879 {
668 ev_periodic_stop (w); 880 ev_periodic_stop (EV_A_ w);
669 ev_periodic_start (w); 881 ev_periodic_start (EV_A_ w);
670 882
671 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
672 } 884 }
673 } 885 }
674 } 886 }
675} 887}
676 888
677static int 889inline int
678time_update_monotonic (void) 890time_update_monotonic (EV_P)
679{ 891{
680 now = get_clock (); 892 mn_now = get_clock ();
681 893
682 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
683 { 895 {
684 ev_now = now + diff; 896 rt_now = rtmn_diff + mn_now;
685 return 0; 897 return 0;
686 } 898 }
687 else 899 else
688 { 900 {
689 now_floor = now; 901 now_floor = mn_now;
690 ev_now = ev_time (); 902 rt_now = ev_time ();
691 return 1; 903 return 1;
692 } 904 }
693} 905}
694 906
695static void 907static void
696time_update (void) 908time_update (EV_P)
697{ 909{
698 int i; 910 int i;
699 911
700#if EV_USE_MONOTONIC 912#if EV_USE_MONOTONIC
701 if (expect_true (have_monotonic)) 913 if (expect_true (have_monotonic))
702 { 914 {
703 if (time_update_monotonic ()) 915 if (time_update_monotonic (EV_A))
704 { 916 {
705 ev_tstamp odiff = diff; 917 ev_tstamp odiff = rtmn_diff;
706 918
707 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 919 for (i = 4; --i; ) /* loop a few times, before making important decisions */
708 { 920 {
709 diff = ev_now - now; 921 rtmn_diff = rt_now - mn_now;
710 922
711 if (fabs (odiff - diff) < MIN_TIMEJUMP) 923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
712 return; /* all is well */ 924 return; /* all is well */
713 925
714 ev_now = ev_time (); 926 rt_now = ev_time ();
715 now = get_clock (); 927 mn_now = get_clock ();
716 now_floor = now; 928 now_floor = mn_now;
717 } 929 }
718 930
719 periodics_reschedule (diff - odiff); 931 periodics_reschedule (EV_A);
720 /* no timer adjustment, as the monotonic clock doesn't jump */ 932 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
721 } 934 }
722 } 935 }
723 else 936 else
724#endif 937#endif
725 { 938 {
726 ev_now = ev_time (); 939 rt_now = ev_time ();
727 940
728 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
729 { 942 {
730 periodics_reschedule (ev_now - now); 943 periodics_reschedule (EV_A);
731 944
732 /* adjust timers. this is easy, as the offset is the same for all */ 945 /* adjust timers. this is easy, as the offset is the same for all */
733 for (i = 0; i < timercnt; ++i) 946 for (i = 0; i < timercnt; ++i)
734 timers [i]->at += diff; 947 ((WT)timers [i])->at += rt_now - mn_now;
735 } 948 }
736 949
737 now = ev_now; 950 mn_now = rt_now;
738 } 951 }
739} 952}
740 953
741int ev_loop_done; 954void
955ev_ref (EV_P)
956{
957 ++activecnt;
958}
742 959
960void
961ev_unref (EV_P)
962{
963 --activecnt;
964}
965
966static int loop_done;
967
968void
743void ev_loop (int flags) 969ev_loop (EV_P_ int flags)
744{ 970{
745 double block; 971 double block;
746 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
747 973
748 do 974 do
749 { 975 {
750 /* queue check watchers (and execute them) */ 976 /* queue check watchers (and execute them) */
751 if (expect_false (preparecnt)) 977 if (expect_false (preparecnt))
752 { 978 {
753 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
754 call_pending (); 980 call_pending (EV_A);
755 } 981 }
756 982
757 /* update fd-related kernel structures */ 983 /* update fd-related kernel structures */
758 fd_reify (); 984 fd_reify (EV_A);
759 985
760 /* calculate blocking time */ 986 /* calculate blocking time */
761 987
762 /* we only need this for !monotonic clockor timers, but as we basically 988 /* we only need this for !monotonic clockor timers, but as we basically
763 always have timers, we just calculate it always */ 989 always have timers, we just calculate it always */
764#if EV_USE_MONOTONIC 990#if EV_USE_MONOTONIC
765 if (expect_true (have_monotonic)) 991 if (expect_true (have_monotonic))
766 time_update_monotonic (); 992 time_update_monotonic (EV_A);
767 else 993 else
768#endif 994#endif
769 { 995 {
770 ev_now = ev_time (); 996 rt_now = ev_time ();
771 now = ev_now; 997 mn_now = rt_now;
772 } 998 }
773 999
774 if (flags & EVLOOP_NONBLOCK || idlecnt) 1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
775 block = 0.; 1001 block = 0.;
776 else 1002 else
777 { 1003 {
778 block = MAX_BLOCKTIME; 1004 block = MAX_BLOCKTIME;
779 1005
780 if (timercnt) 1006 if (timercnt)
781 { 1007 {
782 ev_tstamp to = timers [0]->at - now + method_fudge; 1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
783 if (block > to) block = to; 1009 if (block > to) block = to;
784 } 1010 }
785 1011
786 if (periodiccnt) 1012 if (periodiccnt)
787 { 1013 {
788 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
789 if (block > to) block = to; 1015 if (block > to) block = to;
790 } 1016 }
791 1017
792 if (block < 0.) block = 0.; 1018 if (block < 0.) block = 0.;
793 } 1019 }
794 1020
795 method_poll (block); 1021 method_poll (EV_A_ block);
796 1022
797 /* update ev_now, do magic */ 1023 /* update rt_now, do magic */
798 time_update (); 1024 time_update (EV_A);
799 1025
800 /* queue pending timers and reschedule them */ 1026 /* queue pending timers and reschedule them */
801 timers_reify (); /* relative timers called last */ 1027 timers_reify (EV_A); /* relative timers called last */
802 periodics_reify (); /* absolute timers called first */ 1028 periodics_reify (EV_A); /* absolute timers called first */
803 1029
804 /* queue idle watchers unless io or timers are pending */ 1030 /* queue idle watchers unless io or timers are pending */
805 if (!pendingcnt) 1031 if (!pendingcnt)
806 queue_events ((W *)idles, idlecnt, EV_IDLE); 1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
807 1033
808 /* queue check watchers, to be executed first */ 1034 /* queue check watchers, to be executed first */
809 if (checkcnt) 1035 if (checkcnt)
810 queue_events ((W *)checks, checkcnt, EV_CHECK); 1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
811 1037
812 call_pending (); 1038 call_pending (EV_A);
813 } 1039 }
814 while (!ev_loop_done); 1040 while (activecnt && !loop_done);
815 1041
816 if (ev_loop_done != 2) 1042 if (loop_done != 2)
817 ev_loop_done = 0; 1043 loop_done = 0;
1044}
1045
1046void
1047ev_unloop (EV_P_ int how)
1048{
1049 loop_done = how;
818} 1050}
819 1051
820/*****************************************************************************/ 1052/*****************************************************************************/
821 1053
822static void 1054inline void
823wlist_add (WL *head, WL elem) 1055wlist_add (WL *head, WL elem)
824{ 1056{
825 elem->next = *head; 1057 elem->next = *head;
826 *head = elem; 1058 *head = elem;
827} 1059}
828 1060
829static void 1061inline void
830wlist_del (WL *head, WL elem) 1062wlist_del (WL *head, WL elem)
831{ 1063{
832 while (*head) 1064 while (*head)
833 { 1065 {
834 if (*head == elem) 1066 if (*head == elem)
839 1071
840 head = &(*head)->next; 1072 head = &(*head)->next;
841 } 1073 }
842} 1074}
843 1075
844static void 1076inline void
845ev_clear_pending (W w) 1077ev_clear_pending (EV_P_ W w)
846{ 1078{
847 if (w->pending) 1079 if (w->pending)
848 { 1080 {
849 pendings [w->pending - 1].w = 0; 1081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
850 w->pending = 0; 1082 w->pending = 0;
851 } 1083 }
852} 1084}
853 1085
854static void 1086inline void
855ev_start (W w, int active) 1087ev_start (EV_P_ W w, int active)
856{ 1088{
1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
857 w->active = active; 1092 w->active = active;
1093 ev_ref (EV_A);
858} 1094}
859 1095
860static void 1096inline void
861ev_stop (W w) 1097ev_stop (EV_P_ W w)
862{ 1098{
1099 ev_unref (EV_A);
863 w->active = 0; 1100 w->active = 0;
864} 1101}
865 1102
866/*****************************************************************************/ 1103/*****************************************************************************/
867 1104
868void 1105void
869ev_io_start (struct ev_io *w) 1106ev_io_start (EV_P_ struct ev_io *w)
870{ 1107{
871 int fd = w->fd; 1108 int fd = w->fd;
872 1109
873 if (ev_is_active (w)) 1110 if (ev_is_active (w))
874 return; 1111 return;
875 1112
876 assert (("ev_io_start called with negative fd", fd >= 0)); 1113 assert (("ev_io_start called with negative fd", fd >= 0));
877 1114
878 ev_start ((W)w, 1); 1115 ev_start (EV_A_ (W)w, 1);
879 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
880 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1117 wlist_add ((WL *)&anfds[fd].head, (WL)w);
881 1118
882 fd_change (fd); 1119 fd_change (EV_A_ fd);
883} 1120}
884 1121
885void 1122void
886ev_io_stop (struct ev_io *w) 1123ev_io_stop (EV_P_ struct ev_io *w)
887{ 1124{
888 ev_clear_pending ((W)w); 1125 ev_clear_pending (EV_A_ (W)w);
889 if (!ev_is_active (w)) 1126 if (!ev_is_active (w))
890 return; 1127 return;
891 1128
892 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
893 ev_stop ((W)w); 1130 ev_stop (EV_A_ (W)w);
894 1131
895 fd_change (w->fd); 1132 fd_change (EV_A_ w->fd);
896} 1133}
897 1134
898void 1135void
899ev_timer_start (struct ev_timer *w) 1136ev_timer_start (EV_P_ struct ev_timer *w)
900{ 1137{
901 if (ev_is_active (w)) 1138 if (ev_is_active (w))
902 return; 1139 return;
903 1140
904 w->at += now; 1141 ((WT)w)->at += mn_now;
905 1142
906 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
907 1144
908 ev_start ((W)w, ++timercnt); 1145 ev_start (EV_A_ (W)w, ++timercnt);
909 array_needsize (timers, timermax, timercnt, ); 1146 array_needsize (timers, timermax, timercnt, );
910 timers [timercnt - 1] = w; 1147 timers [timercnt - 1] = w;
911 upheap ((WT *)timers, timercnt - 1); 1148 upheap ((WT *)timers, timercnt - 1);
912}
913 1149
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151}
1152
914void 1153void
915ev_timer_stop (struct ev_timer *w) 1154ev_timer_stop (EV_P_ struct ev_timer *w)
916{ 1155{
917 ev_clear_pending ((W)w); 1156 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1157 if (!ev_is_active (w))
919 return; 1158 return;
920 1159
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1161
921 if (w->active < timercnt--) 1162 if (((W)w)->active < timercnt--)
922 { 1163 {
923 timers [w->active - 1] = timers [timercnt]; 1164 timers [((W)w)->active - 1] = timers [timercnt];
924 downheap ((WT *)timers, timercnt, w->active - 1); 1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
925 } 1166 }
926 1167
927 w->at = w->repeat; 1168 ((WT)w)->at = w->repeat;
928 1169
929 ev_stop ((W)w); 1170 ev_stop (EV_A_ (W)w);
930} 1171}
931 1172
932void 1173void
933ev_timer_again (struct ev_timer *w) 1174ev_timer_again (EV_P_ struct ev_timer *w)
934{ 1175{
935 if (ev_is_active (w)) 1176 if (ev_is_active (w))
936 { 1177 {
937 if (w->repeat) 1178 if (w->repeat)
938 { 1179 {
939 w->at = now + w->repeat; 1180 ((WT)w)->at = mn_now + w->repeat;
940 downheap ((WT *)timers, timercnt, w->active - 1); 1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
941 } 1182 }
942 else 1183 else
943 ev_timer_stop (w); 1184 ev_timer_stop (EV_A_ w);
944 } 1185 }
945 else if (w->repeat) 1186 else if (w->repeat)
946 ev_timer_start (w); 1187 ev_timer_start (EV_A_ w);
947} 1188}
948 1189
949void 1190void
950ev_periodic_start (struct ev_periodic *w) 1191ev_periodic_start (EV_P_ struct ev_periodic *w)
951{ 1192{
952 if (ev_is_active (w)) 1193 if (ev_is_active (w))
953 return; 1194 return;
954 1195
955 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
956 1197
957 /* this formula differs from the one in periodic_reify because we do not always round up */ 1198 /* this formula differs from the one in periodic_reify because we do not always round up */
958 if (w->interval) 1199 if (w->interval)
959 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
960 1201
961 ev_start ((W)w, ++periodiccnt); 1202 ev_start (EV_A_ (W)w, ++periodiccnt);
962 array_needsize (periodics, periodicmax, periodiccnt, ); 1203 array_needsize (periodics, periodicmax, periodiccnt, );
963 periodics [periodiccnt - 1] = w; 1204 periodics [periodiccnt - 1] = w;
964 upheap ((WT *)periodics, periodiccnt - 1); 1205 upheap ((WT *)periodics, periodiccnt - 1);
965}
966 1206
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208}
1209
967void 1210void
968ev_periodic_stop (struct ev_periodic *w) 1211ev_periodic_stop (EV_P_ struct ev_periodic *w)
969{ 1212{
970 ev_clear_pending ((W)w); 1213 ev_clear_pending (EV_A_ (W)w);
971 if (!ev_is_active (w)) 1214 if (!ev_is_active (w))
972 return; 1215 return;
973 1216
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1218
974 if (w->active < periodiccnt--) 1219 if (((W)w)->active < periodiccnt--)
975 { 1220 {
976 periodics [w->active - 1] = periodics [periodiccnt]; 1221 periodics [((W)w)->active - 1] = periodics [periodiccnt];
977 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
978 } 1223 }
979 1224
980 ev_stop ((W)w); 1225 ev_stop (EV_A_ (W)w);
981} 1226}
982 1227
983void 1228void
984ev_signal_start (struct ev_signal *w) 1229ev_idle_start (EV_P_ struct ev_idle *w)
985{ 1230{
986 if (ev_is_active (w)) 1231 if (ev_is_active (w))
987 return; 1232 return;
988 1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w);
1248}
1249
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293
1294#ifndef SA_RESTART
1295# define SA_RESTART 0
1296#endif
1297
1298void
1299ev_signal_start (EV_P_ struct ev_signal *w)
1300{
1301#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1303#endif
1304 if (ev_is_active (w))
1305 return;
1306
989 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
990 1308
991 ev_start ((W)w, 1); 1309 ev_start (EV_A_ (W)w, 1);
992 array_needsize (signals, signalmax, w->signum, signals_init); 1310 array_needsize (signals, signalmax, w->signum, signals_init);
993 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
994 1312
995 if (!w->next) 1313 if (!((WL)w)->next)
996 { 1314 {
997 struct sigaction sa; 1315 struct sigaction sa;
998 sa.sa_handler = sighandler; 1316 sa.sa_handler = sighandler;
999 sigfillset (&sa.sa_mask); 1317 sigfillset (&sa.sa_mask);
1000 sa.sa_flags = 0; 1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1001 sigaction (w->signum, &sa, 0); 1319 sigaction (w->signum, &sa, 0);
1002 } 1320 }
1003} 1321}
1004 1322
1005void 1323void
1006ev_signal_stop (struct ev_signal *w) 1324ev_signal_stop (EV_P_ struct ev_signal *w)
1007{ 1325{
1008 ev_clear_pending ((W)w); 1326 ev_clear_pending (EV_A_ (W)w);
1009 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
1010 return; 1328 return;
1011 1329
1012 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
1014 1332
1015 if (!signals [w->signum - 1].head) 1333 if (!signals [w->signum - 1].head)
1016 signal (w->signum, SIG_DFL); 1334 signal (w->signum, SIG_DFL);
1017} 1335}
1018 1336
1019void 1337void
1020ev_idle_start (struct ev_idle *w) 1338ev_child_start (EV_P_ struct ev_child *w)
1021{ 1339{
1340#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop));
1342#endif
1022 if (ev_is_active (w)) 1343 if (ev_is_active (w))
1023 return; 1344 return;
1024 1345
1025 ev_start ((W)w, ++idlecnt); 1346 ev_start (EV_A_ (W)w, 1);
1026 array_needsize (idles, idlemax, idlecnt, ); 1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1027 idles [idlecnt - 1] = w;
1028} 1348}
1029 1349
1030void 1350void
1031ev_idle_stop (struct ev_idle *w) 1351ev_child_stop (EV_P_ struct ev_child *w)
1032{ 1352{
1033 ev_clear_pending ((W)w); 1353 ev_clear_pending (EV_A_ (W)w);
1034 if (ev_is_active (w)) 1354 if (ev_is_active (w))
1035 return; 1355 return;
1036 1356
1037 idles [w->active - 1] = idles [--idlecnt];
1038 ev_stop ((W)w);
1039}
1040
1041void
1042ev_prepare_start (struct ev_prepare *w)
1043{
1044 if (ev_is_active (w))
1045 return;
1046
1047 ev_start ((W)w, ++preparecnt);
1048 array_needsize (prepares, preparemax, preparecnt, );
1049 prepares [preparecnt - 1] = w;
1050}
1051
1052void
1053ev_prepare_stop (struct ev_prepare *w)
1054{
1055 ev_clear_pending ((W)w);
1056 if (ev_is_active (w))
1057 return;
1058
1059 prepares [w->active - 1] = prepares [--preparecnt];
1060 ev_stop ((W)w);
1061}
1062
1063void
1064ev_check_start (struct ev_check *w)
1065{
1066 if (ev_is_active (w))
1067 return;
1068
1069 ev_start ((W)w, ++checkcnt);
1070 array_needsize (checks, checkmax, checkcnt, );
1071 checks [checkcnt - 1] = w;
1072}
1073
1074void
1075ev_check_stop (struct ev_check *w)
1076{
1077 ev_clear_pending ((W)w);
1078 if (ev_is_active (w))
1079 return;
1080
1081 checks [w->active - 1] = checks [--checkcnt];
1082 ev_stop ((W)w);
1083}
1084
1085void
1086ev_child_start (struct ev_child *w)
1087{
1088 if (ev_is_active (w))
1089 return;
1090
1091 ev_start ((W)w, 1);
1092 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1093}
1094
1095void
1096ev_child_stop (struct ev_child *w)
1097{
1098 ev_clear_pending ((W)w);
1099 if (ev_is_active (w))
1100 return;
1101
1102 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1103 ev_stop ((W)w); 1358 ev_stop (EV_A_ (W)w);
1104} 1359}
1105 1360
1106/*****************************************************************************/ 1361/*****************************************************************************/
1107 1362
1108struct ev_once 1363struct ev_once
1112 void (*cb)(int revents, void *arg); 1367 void (*cb)(int revents, void *arg);
1113 void *arg; 1368 void *arg;
1114}; 1369};
1115 1370
1116static void 1371static void
1117once_cb (struct ev_once *once, int revents) 1372once_cb (EV_P_ struct ev_once *once, int revents)
1118{ 1373{
1119 void (*cb)(int revents, void *arg) = once->cb; 1374 void (*cb)(int revents, void *arg) = once->cb;
1120 void *arg = once->arg; 1375 void *arg = once->arg;
1121 1376
1122 ev_io_stop (&once->io); 1377 ev_io_stop (EV_A_ &once->io);
1123 ev_timer_stop (&once->to); 1378 ev_timer_stop (EV_A_ &once->to);
1124 free (once); 1379 free (once);
1125 1380
1126 cb (revents, arg); 1381 cb (revents, arg);
1127} 1382}
1128 1383
1129static void 1384static void
1130once_cb_io (struct ev_io *w, int revents) 1385once_cb_io (EV_P_ struct ev_io *w, int revents)
1131{ 1386{
1132 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1133} 1388}
1134 1389
1135static void 1390static void
1136once_cb_to (struct ev_timer *w, int revents) 1391once_cb_to (EV_P_ struct ev_timer *w, int revents)
1137{ 1392{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1139} 1394}
1140 1395
1141void 1396void
1142ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1143{ 1398{
1144 struct ev_once *once = malloc (sizeof (struct ev_once)); 1399 struct ev_once *once = malloc (sizeof (struct ev_once));
1145 1400
1146 if (!once) 1401 if (!once)
1147 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1152 1407
1153 ev_watcher_init (&once->io, once_cb_io); 1408 ev_watcher_init (&once->io, once_cb_io);
1154 if (fd >= 0) 1409 if (fd >= 0)
1155 { 1410 {
1156 ev_io_set (&once->io, fd, events); 1411 ev_io_set (&once->io, fd, events);
1157 ev_io_start (&once->io); 1412 ev_io_start (EV_A_ &once->io);
1158 } 1413 }
1159 1414
1160 ev_watcher_init (&once->to, once_cb_to); 1415 ev_watcher_init (&once->to, once_cb_to);
1161 if (timeout >= 0.) 1416 if (timeout >= 0.)
1162 { 1417 {
1163 ev_timer_set (&once->to, timeout, 0.); 1418 ev_timer_set (&once->to, timeout, 0.);
1164 ev_timer_start (&once->to); 1419 ev_timer_start (EV_A_ &once->to);
1165 } 1420 }
1166 } 1421 }
1167} 1422}
1168 1423
1169/*****************************************************************************/
1170
1171#if 0
1172
1173struct ev_io wio;
1174
1175static void
1176sin_cb (struct ev_io *w, int revents)
1177{
1178 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1179}
1180
1181static void
1182ocb (struct ev_timer *w, int revents)
1183{
1184 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1185 ev_timer_stop (w);
1186 ev_timer_start (w);
1187}
1188
1189static void
1190scb (struct ev_signal *w, int revents)
1191{
1192 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1193 ev_io_stop (&wio);
1194 ev_io_start (&wio);
1195}
1196
1197static void
1198gcb (struct ev_signal *w, int revents)
1199{
1200 fprintf (stderr, "generic %x\n", revents);
1201
1202}
1203
1204int main (void)
1205{
1206 ev_init (0);
1207
1208 ev_io_init (&wio, sin_cb, 0, EV_READ);
1209 ev_io_start (&wio);
1210
1211 struct ev_timer t[10000];
1212
1213#if 0
1214 int i;
1215 for (i = 0; i < 10000; ++i)
1216 {
1217 struct ev_timer *w = t + i;
1218 ev_watcher_init (w, ocb, i);
1219 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1220 ev_timer_start (w);
1221 if (drand48 () < 0.5)
1222 ev_timer_stop (w);
1223 }
1224#endif
1225
1226 struct ev_timer t1;
1227 ev_timer_init (&t1, ocb, 5, 10);
1228 ev_timer_start (&t1);
1229
1230 struct ev_signal sig;
1231 ev_signal_init (&sig, scb, SIGQUIT);
1232 ev_signal_start (&sig);
1233
1234 struct ev_check cw;
1235 ev_check_init (&cw, gcb);
1236 ev_check_start (&cw);
1237
1238 struct ev_idle iw;
1239 ev_idle_init (&iw, gcb);
1240 ev_idle_start (&iw);
1241
1242 ev_loop (0);
1243
1244 return 0;
1245}
1246
1247#endif
1248
1249
1250
1251

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines