ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.41 by root, Fri Nov 2 16:54:34 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
100#endif 136#endif
101 137
102#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
104 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
105typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
106typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
107typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
108 147
109static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
110ev_tstamp ev_now;
111int ev_method;
112 149
113static int have_monotonic; /* runtime */ 150#if WIN32
114 151/* note: the comment below could not be substantiated, but what would I care */
115static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
116static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
117static void (*method_poll)(ev_tstamp timeout); 154#endif
118 155
119/*****************************************************************************/ 156/*****************************************************************************/
120 157
121ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
122ev_time (void) 192ev_time (void)
123{ 193{
124#if EV_USE_REALTIME 194#if EV_USE_REALTIME
125 struct timespec ts; 195 struct timespec ts;
126 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
130 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
131 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
132#endif 202#endif
133} 203}
134 204
135static ev_tstamp 205inline ev_tstamp
136get_clock (void) 206get_clock (void)
137{ 207{
138#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
139 if (expect_true (have_monotonic)) 209 if (expect_true (have_monotonic))
140 { 210 {
143 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
144 } 214 }
145#endif 215#endif
146 216
147 return ev_time (); 217 return ev_time ();
218}
219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
148} 224}
149 225
150#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
151 227
152#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
162 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
163 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
164 cur = newcnt; \ 240 cur = newcnt; \
165 } 241 }
166 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
167/*****************************************************************************/ 254/*****************************************************************************/
168
169typedef struct
170{
171 struct ev_io *head;
172 unsigned char events;
173 unsigned char reify;
174} ANFD;
175
176static ANFD *anfds;
177static int anfdmax;
178 255
179static void 256static void
180anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
181{ 258{
182 while (count--) 259 while (count--)
187 264
188 ++base; 265 ++base;
189 } 266 }
190} 267}
191 268
192typedef struct
193{
194 W w;
195 int events;
196} ANPENDING;
197
198static ANPENDING *pendings;
199static int pendingmax, pendingcnt;
200
201static void 269static void
202event (W w, int events) 270event (EV_P_ W w, int events)
203{ 271{
204 if (w->pending) 272 if (w->pending)
205 { 273 {
206 pendings [w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
207 return; 275 return;
208 } 276 }
209 277
210 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
211 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
212 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
213 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
214} 282}
215 283
216static void 284static void
217queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
218{ 286{
219 int i; 287 int i;
220 288
221 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
222 event (events [i], type); 290 event (EV_A_ events [i], type);
223} 291}
224 292
225static void 293static void
226fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
227{ 295{
228 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
229 struct ev_io *w; 297 struct ev_io *w;
230 298
231 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
232 { 300 {
233 int ev = w->events & events; 301 int ev = w->events & events;
234 302
235 if (ev) 303 if (ev)
236 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
237 } 305 }
238} 306}
239 307
240/*****************************************************************************/ 308/*****************************************************************************/
241 309
242static int *fdchanges;
243static int fdchangemax, fdchangecnt;
244
245static void 310static void
246fd_reify (void) 311fd_reify (EV_P)
247{ 312{
248 int i; 313 int i;
249 314
250 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
251 { 316 {
253 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
254 struct ev_io *w; 319 struct ev_io *w;
255 320
256 int events = 0; 321 int events = 0;
257 322
258 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
259 events |= w->events; 324 events |= w->events;
260 325
261 anfd->reify = 0; 326 anfd->reify = 0;
262 327
263 if (anfd->events != events)
264 {
265 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
266 anfd->events = events; 329 anfd->events = events;
267 }
268 } 330 }
269 331
270 fdchangecnt = 0; 332 fdchangecnt = 0;
271} 333}
272 334
273static void 335static void
274fd_change (int fd) 336fd_change (EV_P_ int fd)
275{ 337{
276 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
277 return; 339 return;
278 340
279 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
282 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
283 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
284} 346}
285 347
286static void 348static void
287fd_kill (int fd) 349fd_kill (EV_P_ int fd)
288{ 350{
289 struct ev_io *w; 351 struct ev_io *w;
290 352
291 printf ("killing fd %d\n", fd);//D
292 while ((w = anfds [fd].head)) 353 while ((w = (struct ev_io *)anfds [fd].head))
293 { 354 {
294 ev_io_stop (w); 355 ev_io_stop (EV_A_ w);
295 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
296 } 357 }
297} 358}
298 359
299/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
300static void 361static void
301fd_ebadf (void) 362fd_ebadf (EV_P)
302{ 363{
303 int fd; 364 int fd;
304 365
305 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
306 if (anfds [fd].events) 367 if (anfds [fd].events)
307 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
308 fd_kill (fd); 369 fd_kill (EV_A_ fd);
309} 370}
310 371
311/* called on ENOMEM in select/poll to kill some fds and retry */ 372/* called on ENOMEM in select/poll to kill some fds and retry */
312static void 373static void
313fd_enomem (void) 374fd_enomem (EV_P)
314{ 375{
315 int fd = anfdmax; 376 int fd;
316 377
317 while (fd--) 378 for (fd = anfdmax; fd--; )
318 if (anfds [fd].events) 379 if (anfds [fd].events)
319 { 380 {
320 close (fd); 381 close (fd);
321 fd_kill (fd); 382 fd_kill (EV_A_ fd);
322 return; 383 return;
323 } 384 }
324} 385}
325 386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
400}
401
326/*****************************************************************************/ 402/*****************************************************************************/
327 403
328static struct ev_timer **timers;
329static int timermax, timercnt;
330
331static struct ev_periodic **periodics;
332static int periodicmax, periodiccnt;
333
334static void 404static void
335upheap (WT *timers, int k) 405upheap (WT *heap, int k)
336{ 406{
337 WT w = timers [k]; 407 WT w = heap [k];
338 408
339 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
340 { 410 {
341 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
342 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
343 k >>= 1; 413 k >>= 1;
344 } 414 }
345 415
346 timers [k] = w; 416 heap [k] = w;
347 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
348 418
349} 419}
350 420
351static void 421static void
352downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
353{ 423{
354 WT w = timers [k]; 424 WT w = heap [k];
355 425
356 while (k < (N >> 1)) 426 while (k < (N >> 1))
357 { 427 {
358 int j = k << 1; 428 int j = k << 1;
359 429
360 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
361 ++j; 431 ++j;
362 432
363 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
364 break; 434 break;
365 435
366 timers [k] = timers [j]; 436 heap [k] = heap [j];
367 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
368 k = j; 438 k = j;
369 } 439 }
370 440
371 timers [k] = w; 441 heap [k] = w;
372 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
373} 443}
374 444
375/*****************************************************************************/ 445/*****************************************************************************/
376 446
377typedef struct 447typedef struct
378{ 448{
379 struct ev_signal *head; 449 struct ev_watcher_list *head;
380 sig_atomic_t volatile gotsig; 450 sig_atomic_t volatile gotsig;
381} ANSIG; 451} ANSIG;
382 452
383static ANSIG *signals; 453static ANSIG *signals;
384static int signalmax; 454static int signalmax;
400} 470}
401 471
402static void 472static void
403sighandler (int signum) 473sighandler (int signum)
404{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
405 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
406 480
407 if (!gotsig) 481 if (!gotsig)
408 { 482 {
483 int old_errno = errno;
409 gotsig = 1; 484 gotsig = 1;
410 write (sigpipe [1], &signum, 1); 485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
411 } 487 }
412} 488}
413 489
414static void 490static void
415sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
416{ 492{
417 struct ev_signal *w; 493 struct ev_watcher_list *w;
418 int signum; 494 int signum;
419 495
420 read (sigpipe [0], &revents, 1); 496 read (sigpipe [0], &revents, 1);
421 gotsig = 0; 497 gotsig = 0;
422 498
424 if (signals [signum].gotsig) 500 if (signals [signum].gotsig)
425 { 501 {
426 signals [signum].gotsig = 0; 502 signals [signum].gotsig = 0;
427 503
428 for (w = signals [signum].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
429 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
430 } 506 }
431} 507}
432 508
433static void 509static void
434siginit (void) 510siginit (EV_P)
435{ 511{
512#ifndef WIN32
436 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
437 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
438 515
439 /* rather than sort out wether we really need nb, set it */ 516 /* rather than sort out wether we really need nb, set it */
440 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
441 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
442 520
443 ev_io_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
444 ev_io_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
445} 524}
446 525
447/*****************************************************************************/ 526/*****************************************************************************/
448 527
449static struct ev_idle **idles; 528#ifndef WIN32
450static int idlemax, idlecnt;
451
452static struct ev_prepare **prepares;
453static int preparemax, preparecnt;
454
455static struct ev_check **checks;
456static int checkmax, checkcnt;
457
458/*****************************************************************************/
459 529
460static struct ev_child *childs [PID_HASHSIZE]; 530static struct ev_child *childs [PID_HASHSIZE];
461static struct ev_signal childev; 531static struct ev_signal childev;
462 532
463#ifndef WCONTINUED 533#ifndef WCONTINUED
464# define WCONTINUED 0 534# define WCONTINUED 0
465#endif 535#endif
466 536
467static void 537static void
468childcb (struct ev_signal *sw, int revents) 538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
469{ 539{
470 struct ev_child *w; 540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
471 int pid, status; 555 int pid, status;
472 556
473 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
474 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 558 {
475 if (w->pid == pid || !w->pid) 559 /* make sure we are called again until all childs have been reaped */
476 { 560 event (EV_A_ (W)sw, EV_SIGNAL);
477 w->status = status; 561
478 event ((W)w, EV_CHILD); 562 child_reap (EV_A_ sw, pid, pid, status);
479 } 563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
480} 565}
566
567#endif
481 568
482/*****************************************************************************/ 569/*****************************************************************************/
483 570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
484#if EV_USE_EPOLL 574#if EV_USE_EPOLL
485# include "ev_epoll.c" 575# include "ev_epoll.c"
486#endif 576#endif
487#if EV_USE_POLL 577#if EV_USE_POLL
488# include "ev_poll.c" 578# include "ev_poll.c"
501ev_version_minor (void) 591ev_version_minor (void)
502{ 592{
503 return EV_VERSION_MINOR; 593 return EV_VERSION_MINOR;
504} 594}
505 595
506/* return true if we are running with elevated privileges and ignore env variables */ 596/* return true if we are running with elevated privileges and should ignore env variables */
507static int 597static int
508enable_secure () 598enable_secure (void)
509{ 599{
600#ifdef WIN32
601 return 0;
602#else
510 return getuid () != geteuid () 603 return getuid () != geteuid ()
511 || getgid () != getegid (); 604 || getgid () != getegid ();
605#endif
512} 606}
513 607
514int ev_init (int methods) 608int
609ev_method (EV_P)
515{ 610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
516 if (!ev_method) 617 if (!method)
517 { 618 {
518#if EV_USE_MONOTONIC 619#if EV_USE_MONOTONIC
519 { 620 {
520 struct timespec ts; 621 struct timespec ts;
521 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
522 have_monotonic = 1; 623 have_monotonic = 1;
523 } 624 }
524#endif 625#endif
525 626
526 ev_now = ev_time (); 627 rt_now = ev_time ();
527 now = get_clock (); 628 mn_now = get_clock ();
528 now_floor = now; 629 now_floor = mn_now;
529 diff = ev_now - now; 630 rtmn_diff = rt_now - mn_now;
530
531 if (pipe (sigpipe))
532 return 0;
533 631
534 if (methods == EVMETHOD_AUTO) 632 if (methods == EVMETHOD_AUTO)
535 if (!enable_secure () && getenv ("LIBEV_METHODS")) 633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
536 methods = atoi (getenv ("LIBEV_METHODS")); 634 methods = atoi (getenv ("LIBEV_METHODS"));
537 else 635 else
538 methods = EVMETHOD_ANY; 636 methods = EVMETHOD_ANY;
539 637
540 ev_method = 0; 638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
541#if EV_USE_EPOLL 645#if EV_USE_EPOLL
542 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
543#endif 647#endif
544#if EV_USE_POLL 648#if EV_USE_POLL
545 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
546#endif 650#endif
547#if EV_USE_SELECT 651#if EV_USE_SELECT
548 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
549#endif 653#endif
654 }
655}
550 656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop)
750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
551 if (ev_method) 759 if (ev_method (EV_A))
552 { 760 {
553 ev_watcher_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
554 siginit (); 763 siginit (EV_A);
555 764
765#ifndef WIN32
556 ev_signal_init (&childev, childcb, SIGCHLD); 766 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI);
557 ev_signal_start (&childev); 768 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif
558 } 771 }
772 else
773 default_loop = 0;
559 } 774 }
560 775
561 return ev_method; 776 return default_loop;
562} 777}
563 778
564/*****************************************************************************/
565
566void 779void
567ev_fork_prepare (void) 780ev_default_destroy (void)
568{ 781{
569 /* nop */ 782#if EV_MULTIPLICITY
570} 783 struct ev_loop *loop = default_loop;
571
572void
573ev_fork_parent (void)
574{
575 /* nop */
576}
577
578void
579ev_fork_child (void)
580{
581#if EV_USE_EPOLL
582 if (ev_method == EVMETHOD_EPOLL)
583 epoll_postfork_child ();
584#endif 784#endif
585 785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
586 ev_io_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
587 close (sigpipe [0]); 808 close (sigpipe [0]);
588 close (sigpipe [1]); 809 close (sigpipe [1]);
589 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
590 siginit (); 813 siginit (EV_A);
591} 814}
592 815
593/*****************************************************************************/ 816/*****************************************************************************/
594 817
595static void 818static void
596call_pending (void) 819call_pending (EV_P)
597{ 820{
821 int pri;
822
823 for (pri = NUMPRI; pri--; )
598 while (pendingcnt) 824 while (pendingcnt [pri])
599 { 825 {
600 ANPENDING *p = pendings + --pendingcnt; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
601 827
602 if (p->w) 828 if (p->w)
603 { 829 {
604 p->w->pending = 0; 830 p->w->pending = 0;
605 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
606 } 832 }
607 } 833 }
608} 834}
609 835
610static void 836static void
611timers_reify (void) 837timers_reify (EV_P)
612{ 838{
613 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
614 { 840 {
615 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
616 844
617 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
618 if (w->repeat) 846 if (w->repeat)
619 { 847 {
620 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
621 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
622 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
623 } 851 }
624 else 852 else
625 ev_timer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
626 854
627 event ((W)w, EV_TIMEOUT); 855 event (EV_A_ (W)w, EV_TIMEOUT);
628 } 856 }
629} 857}
630 858
631static void 859static void
632periodics_reify (void) 860periodics_reify (EV_P)
633{ 861{
634 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
635 { 863 {
636 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
637 867
638 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
639 if (w->interval) 869 if (w->interval)
640 { 870 {
641 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
642 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
643 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
644 } 874 }
645 else 875 else
646 ev_periodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
647 877
648 event ((W)w, EV_PERIODIC); 878 event (EV_A_ (W)w, EV_PERIODIC);
649 } 879 }
650} 880}
651 881
652static void 882static void
653periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
654{ 884{
655 int i; 885 int i;
656 886
657 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
658 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
659 { 889 {
660 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
661 891
662 if (w->interval) 892 if (w->interval)
663 { 893 {
664 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
665 895
666 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
667 { 897 {
668 ev_periodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
669 ev_periodic_start (w); 899 ev_periodic_start (EV_A_ w);
670 900
671 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
672 } 902 }
673 } 903 }
674 } 904 }
675} 905}
676 906
677static int 907inline int
678time_update_monotonic (void) 908time_update_monotonic (EV_P)
679{ 909{
680 now = get_clock (); 910 mn_now = get_clock ();
681 911
682 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
683 { 913 {
684 ev_now = now + diff; 914 rt_now = rtmn_diff + mn_now;
685 return 0; 915 return 0;
686 } 916 }
687 else 917 else
688 { 918 {
689 now_floor = now; 919 now_floor = mn_now;
690 ev_now = ev_time (); 920 rt_now = ev_time ();
691 return 1; 921 return 1;
692 } 922 }
693} 923}
694 924
695static void 925static void
696time_update (void) 926time_update (EV_P)
697{ 927{
698 int i; 928 int i;
699 929
700#if EV_USE_MONOTONIC 930#if EV_USE_MONOTONIC
701 if (expect_true (have_monotonic)) 931 if (expect_true (have_monotonic))
702 { 932 {
703 if (time_update_monotonic ()) 933 if (time_update_monotonic (EV_A))
704 { 934 {
705 ev_tstamp odiff = diff; 935 ev_tstamp odiff = rtmn_diff;
706 936
707 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
708 { 938 {
709 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
710 940
711 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
712 return; /* all is well */ 942 return; /* all is well */
713 943
714 ev_now = ev_time (); 944 rt_now = ev_time ();
715 now = get_clock (); 945 mn_now = get_clock ();
716 now_floor = now; 946 now_floor = mn_now;
717 } 947 }
718 948
719 periodics_reschedule (diff - odiff); 949 periodics_reschedule (EV_A);
720 /* no timer adjustment, as the monotonic clock doesn't jump */ 950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
721 } 952 }
722 } 953 }
723 else 954 else
724#endif 955#endif
725 { 956 {
726 ev_now = ev_time (); 957 rt_now = ev_time ();
727 958
728 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
729 { 960 {
730 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
731 962
732 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
733 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
734 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
735 } 966 }
736 967
737 now = ev_now; 968 mn_now = rt_now;
738 } 969 }
739} 970}
740 971
741int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
742 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
743void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
744{ 988{
745 double block; 989 double block;
746 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
747 991
748 do 992 do
749 { 993 {
750 /* queue check watchers (and execute them) */ 994 /* queue check watchers (and execute them) */
751 if (expect_false (preparecnt)) 995 if (expect_false (preparecnt))
752 { 996 {
753 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
754 call_pending (); 998 call_pending (EV_A);
755 } 999 }
756 1000
757 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
758 fd_reify (); 1002 fd_reify (EV_A);
759 1003
760 /* calculate blocking time */ 1004 /* calculate blocking time */
761 1005
762 /* we only need this for !monotonic clockor timers, but as we basically 1006 /* we only need this for !monotonic clockor timers, but as we basically
763 always have timers, we just calculate it always */ 1007 always have timers, we just calculate it always */
764#if EV_USE_MONOTONIC 1008#if EV_USE_MONOTONIC
765 if (expect_true (have_monotonic)) 1009 if (expect_true (have_monotonic))
766 time_update_monotonic (); 1010 time_update_monotonic (EV_A);
767 else 1011 else
768#endif 1012#endif
769 { 1013 {
770 ev_now = ev_time (); 1014 rt_now = ev_time ();
771 now = ev_now; 1015 mn_now = rt_now;
772 } 1016 }
773 1017
774 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
775 block = 0.; 1019 block = 0.;
776 else 1020 else
777 { 1021 {
778 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
779 1023
780 if (timercnt) 1024 if (timercnt)
781 { 1025 {
782 ev_tstamp to = timers [0]->at - now + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
783 if (block > to) block = to; 1027 if (block > to) block = to;
784 } 1028 }
785 1029
786 if (periodiccnt) 1030 if (periodiccnt)
787 { 1031 {
788 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
789 if (block > to) block = to; 1033 if (block > to) block = to;
790 } 1034 }
791 1035
792 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
793 } 1037 }
794 1038
795 method_poll (block); 1039 method_poll (EV_A_ block);
796 1040
797 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
798 time_update (); 1042 time_update (EV_A);
799 1043
800 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
801 timers_reify (); /* relative timers called last */ 1045 timers_reify (EV_A); /* relative timers called last */
802 periodics_reify (); /* absolute timers called first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
803 1047
804 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
805 if (!pendingcnt) 1049 if (!pendingcnt)
806 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
807 1051
808 /* queue check watchers, to be executed first */ 1052 /* queue check watchers, to be executed first */
809 if (checkcnt) 1053 if (checkcnt)
810 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
811 1055
812 call_pending (); 1056 call_pending (EV_A);
813 } 1057 }
814 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
815 1059
816 if (ev_loop_done != 2) 1060 if (loop_done != 2)
817 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
818} 1068}
819 1069
820/*****************************************************************************/ 1070/*****************************************************************************/
821 1071
822static void 1072inline void
823wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
824{ 1074{
825 elem->next = *head; 1075 elem->next = *head;
826 *head = elem; 1076 *head = elem;
827} 1077}
828 1078
829static void 1079inline void
830wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
831{ 1081{
832 while (*head) 1082 while (*head)
833 { 1083 {
834 if (*head == elem) 1084 if (*head == elem)
839 1089
840 head = &(*head)->next; 1090 head = &(*head)->next;
841 } 1091 }
842} 1092}
843 1093
844static void 1094inline void
845ev_clear_pending (W w) 1095ev_clear_pending (EV_P_ W w)
846{ 1096{
847 if (w->pending) 1097 if (w->pending)
848 { 1098 {
849 pendings [w->pending - 1].w = 0; 1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
850 w->pending = 0; 1100 w->pending = 0;
851 } 1101 }
852} 1102}
853 1103
854static void 1104inline void
855ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
856{ 1106{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
857 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
858} 1112}
859 1113
860static void 1114inline void
861ev_stop (W w) 1115ev_stop (EV_P_ W w)
862{ 1116{
1117 ev_unref (EV_A);
863 w->active = 0; 1118 w->active = 0;
864} 1119}
865 1120
866/*****************************************************************************/ 1121/*****************************************************************************/
867 1122
868void 1123void
869ev_io_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
870{ 1125{
871 int fd = w->fd; 1126 int fd = w->fd;
872 1127
873 if (ev_is_active (w)) 1128 if (ev_is_active (w))
874 return; 1129 return;
875 1130
876 assert (("ev_io_start called with negative fd", fd >= 0)); 1131 assert (("ev_io_start called with negative fd", fd >= 0));
877 1132
878 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
879 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
880 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
881 1136
882 fd_change (fd); 1137 fd_change (EV_A_ fd);
883} 1138}
884 1139
885void 1140void
886ev_io_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
887{ 1142{
888 ev_clear_pending ((W)w); 1143 ev_clear_pending (EV_A_ (W)w);
889 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
890 return; 1145 return;
891 1146
892 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
893 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
894 1149
895 fd_change (w->fd); 1150 fd_change (EV_A_ w->fd);
896} 1151}
897 1152
898void 1153void
899ev_timer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
900{ 1155{
901 if (ev_is_active (w)) 1156 if (ev_is_active (w))
902 return; 1157 return;
903 1158
904 w->at += now; 1159 ((WT)w)->at += mn_now;
905 1160
906 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
907 1162
908 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
909 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
910 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
911 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
912}
913 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
914void 1171void
915ev_timer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
916{ 1173{
917 ev_clear_pending ((W)w); 1174 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
919 return; 1176 return;
920 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
921 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
922 { 1181 {
923 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
924 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
925 } 1184 }
926 1185
927 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
928 1187
929 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
930} 1189}
931 1190
932void 1191void
933ev_timer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
934{ 1193{
935 if (ev_is_active (w)) 1194 if (ev_is_active (w))
936 { 1195 {
937 if (w->repeat) 1196 if (w->repeat)
938 { 1197 {
939 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
940 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
941 } 1200 }
942 else 1201 else
943 ev_timer_stop (w); 1202 ev_timer_stop (EV_A_ w);
944 } 1203 }
945 else if (w->repeat) 1204 else if (w->repeat)
946 ev_timer_start (w); 1205 ev_timer_start (EV_A_ w);
947} 1206}
948 1207
949void 1208void
950ev_periodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
951{ 1210{
952 if (ev_is_active (w)) 1211 if (ev_is_active (w))
953 return; 1212 return;
954 1213
955 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
956 1215
957 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
958 if (w->interval) 1217 if (w->interval)
959 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
960 1219
961 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
962 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
963 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
964 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
965}
966 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
967void 1228void
968ev_periodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
969{ 1230{
970 ev_clear_pending ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
971 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
972 return; 1233 return;
973 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
974 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
975 { 1238 {
976 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
977 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
978 } 1241 }
979 1242
980 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
981} 1244}
982 1245
983void 1246void
984ev_signal_start (struct ev_signal *w) 1247ev_idle_start (EV_P_ struct ev_idle *w)
985{ 1248{
986 if (ev_is_active (w)) 1249 if (ev_is_active (w))
987 return; 1250 return;
988 1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
989 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
990 1326
991 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
992 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
993 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
994 1330
995 if (!w->next) 1331 if (!((WL)w)->next)
996 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
997 struct sigaction sa; 1336 struct sigaction sa;
998 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
999 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
1000 sa.sa_flags = 0; 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1001 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
1002 } 1342 }
1003} 1343}
1004 1344
1005void 1345void
1006ev_signal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
1007{ 1347{
1008 ev_clear_pending ((W)w); 1348 ev_clear_pending (EV_A_ (W)w);
1009 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
1010 return; 1350 return;
1011 1351
1012 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
1014 1354
1015 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
1016 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
1017} 1357}
1018 1358
1019void 1359void
1020ev_idle_start (struct ev_idle *w) 1360ev_child_start (EV_P_ struct ev_child *w)
1021{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
1022 if (ev_is_active (w)) 1365 if (ev_is_active (w))
1023 return; 1366 return;
1024 1367
1025 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
1026 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1027 idles [idlecnt - 1] = w;
1028} 1370}
1029 1371
1030void 1372void
1031ev_idle_stop (struct ev_idle *w) 1373ev_child_stop (EV_P_ struct ev_child *w)
1032{ 1374{
1033 ev_clear_pending ((W)w); 1375 ev_clear_pending (EV_A_ (W)w);
1034 if (ev_is_active (w)) 1376 if (ev_is_active (w))
1035 return; 1377 return;
1036 1378
1037 idles [w->active - 1] = idles [--idlecnt];
1038 ev_stop ((W)w);
1039}
1040
1041void
1042ev_prepare_start (struct ev_prepare *w)
1043{
1044 if (ev_is_active (w))
1045 return;
1046
1047 ev_start ((W)w, ++preparecnt);
1048 array_needsize (prepares, preparemax, preparecnt, );
1049 prepares [preparecnt - 1] = w;
1050}
1051
1052void
1053ev_prepare_stop (struct ev_prepare *w)
1054{
1055 ev_clear_pending ((W)w);
1056 if (ev_is_active (w))
1057 return;
1058
1059 prepares [w->active - 1] = prepares [--preparecnt];
1060 ev_stop ((W)w);
1061}
1062
1063void
1064ev_check_start (struct ev_check *w)
1065{
1066 if (ev_is_active (w))
1067 return;
1068
1069 ev_start ((W)w, ++checkcnt);
1070 array_needsize (checks, checkmax, checkcnt, );
1071 checks [checkcnt - 1] = w;
1072}
1073
1074void
1075ev_check_stop (struct ev_check *w)
1076{
1077 ev_clear_pending ((W)w);
1078 if (ev_is_active (w))
1079 return;
1080
1081 checks [w->active - 1] = checks [--checkcnt];
1082 ev_stop ((W)w);
1083}
1084
1085void
1086ev_child_start (struct ev_child *w)
1087{
1088 if (ev_is_active (w))
1089 return;
1090
1091 ev_start ((W)w, 1);
1092 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1093}
1094
1095void
1096ev_child_stop (struct ev_child *w)
1097{
1098 ev_clear_pending ((W)w);
1099 if (ev_is_active (w))
1100 return;
1101
1102 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1103 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
1104} 1381}
1105 1382
1106/*****************************************************************************/ 1383/*****************************************************************************/
1107 1384
1108struct ev_once 1385struct ev_once
1112 void (*cb)(int revents, void *arg); 1389 void (*cb)(int revents, void *arg);
1113 void *arg; 1390 void *arg;
1114}; 1391};
1115 1392
1116static void 1393static void
1117once_cb (struct ev_once *once, int revents) 1394once_cb (EV_P_ struct ev_once *once, int revents)
1118{ 1395{
1119 void (*cb)(int revents, void *arg) = once->cb; 1396 void (*cb)(int revents, void *arg) = once->cb;
1120 void *arg = once->arg; 1397 void *arg = once->arg;
1121 1398
1122 ev_io_stop (&once->io); 1399 ev_io_stop (EV_A_ &once->io);
1123 ev_timer_stop (&once->to); 1400 ev_timer_stop (EV_A_ &once->to);
1124 free (once); 1401 free (once);
1125 1402
1126 cb (revents, arg); 1403 cb (revents, arg);
1127} 1404}
1128 1405
1129static void 1406static void
1130once_cb_io (struct ev_io *w, int revents) 1407once_cb_io (EV_P_ struct ev_io *w, int revents)
1131{ 1408{
1132 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1133} 1410}
1134 1411
1135static void 1412static void
1136once_cb_to (struct ev_timer *w, int revents) 1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
1137{ 1414{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1139} 1416}
1140 1417
1141void 1418void
1142ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1143{ 1420{
1144 struct ev_once *once = malloc (sizeof (struct ev_once)); 1421 struct ev_once *once = malloc (sizeof (struct ev_once));
1145 1422
1146 if (!once) 1423 if (!once)
1147 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1152 1429
1153 ev_watcher_init (&once->io, once_cb_io); 1430 ev_watcher_init (&once->io, once_cb_io);
1154 if (fd >= 0) 1431 if (fd >= 0)
1155 { 1432 {
1156 ev_io_set (&once->io, fd, events); 1433 ev_io_set (&once->io, fd, events);
1157 ev_io_start (&once->io); 1434 ev_io_start (EV_A_ &once->io);
1158 } 1435 }
1159 1436
1160 ev_watcher_init (&once->to, once_cb_to); 1437 ev_watcher_init (&once->to, once_cb_to);
1161 if (timeout >= 0.) 1438 if (timeout >= 0.)
1162 { 1439 {
1163 ev_timer_set (&once->to, timeout, 0.); 1440 ev_timer_set (&once->to, timeout, 0.);
1164 ev_timer_start (&once->to); 1441 ev_timer_start (EV_A_ &once->to);
1165 } 1442 }
1166 } 1443 }
1167} 1444}
1168 1445
1169/*****************************************************************************/
1170
1171#if 0
1172
1173struct ev_io wio;
1174
1175static void
1176sin_cb (struct ev_io *w, int revents)
1177{
1178 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1179}
1180
1181static void
1182ocb (struct ev_timer *w, int revents)
1183{
1184 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1185 ev_timer_stop (w);
1186 ev_timer_start (w);
1187}
1188
1189static void
1190scb (struct ev_signal *w, int revents)
1191{
1192 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1193 ev_io_stop (&wio);
1194 ev_io_start (&wio);
1195}
1196
1197static void
1198gcb (struct ev_signal *w, int revents)
1199{
1200 fprintf (stderr, "generic %x\n", revents);
1201
1202}
1203
1204int main (void)
1205{
1206 ev_init (0);
1207
1208 ev_io_init (&wio, sin_cb, 0, EV_READ);
1209 ev_io_start (&wio);
1210
1211 struct ev_timer t[10000];
1212
1213#if 0
1214 int i;
1215 for (i = 0; i < 10000; ++i)
1216 {
1217 struct ev_timer *w = t + i;
1218 ev_watcher_init (w, ocb, i);
1219 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1220 ev_timer_start (w);
1221 if (drand48 () < 0.5)
1222 ev_timer_stop (w);
1223 }
1224#endif
1225
1226 struct ev_timer t1;
1227 ev_timer_init (&t1, ocb, 5, 10);
1228 ev_timer_start (&t1);
1229
1230 struct ev_signal sig;
1231 ev_signal_init (&sig, scb, SIGQUIT);
1232 ev_signal_start (&sig);
1233
1234 struct ev_check cw;
1235 ev_check_init (&cw, gcb);
1236 ev_check_start (&cw);
1237
1238 struct ev_idle iw;
1239 ev_idle_init (&iw, gcb);
1240 ev_idle_start (&iw);
1241
1242 ev_loop (0);
1243
1244 return 0;
1245}
1246
1247#endif
1248
1249
1250
1251

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines