ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.412 by root, Wed Feb 22 01:53:00 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 206# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
154# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
155#endif 260# endif
156 261#endif
157/**/
158 262
159#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
160# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
161#endif 269#endif
162 270
163#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 273#endif
166 274
167#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
168# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
169#endif 281#endif
170 282
171#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 285#endif
174 286
175#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
176# ifdef _WIN32 288# ifdef _WIN32
177# define EV_USE_POLL 0 289# define EV_USE_POLL 0
178# else 290# else
179# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 292# endif
181#endif 293#endif
182 294
183#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
184# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
185#endif 301#endif
186 302
187#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
189#endif 305#endif
191#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 308# define EV_USE_PORT 0
193#endif 309#endif
194 310
195#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
196# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
316# endif
197#endif 317#endif
198 318
199#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 330# else
203# define EV_PID_HASHSIZE 16 331# define EV_USE_EVENTFD 0
204# endif 332# endif
205#endif 333#endif
206 334
207#ifndef EV_INOTIFY_HASHSIZE 335#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 337# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 338# else
211# define EV_INOTIFY_HASHSIZE 16 339# define EV_USE_SIGNALFD 0
212# endif 340# endif
213#endif 341#endif
214 342
215/**/ 343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
216 382
217#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
220#endif 386#endif
228# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
230#endif 396#endif
231 397
232#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
234# include <sys/select.h> 401# include <sys/select.h>
235# endif 402# endif
236#endif 403#endif
237 404
238#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
239# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
240#endif 413#endif
241 414
242#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 416# include <winsock.h>
244#endif 417#endif
245 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
246/**/ 457/**/
247 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
248/* 465/*
249 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 468 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 471
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 519 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
265#else 526#else
266# define expect(expr,value) (expr) 527 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 542 #endif
543#endif
272 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #endif
607#endif
608
609#ifndef ECB_MEMORY_FENCE
610 #if !ECB_AVOID_PTHREADS
611 /*
612 * if you get undefined symbol references to pthread_mutex_lock,
613 * or failure to find pthread.h, then you should implement
614 * the ECB_MEMORY_FENCE operations for your cpu/compiler
615 * OR provide pthread.h and link against the posix thread library
616 * of your system.
617 */
618 #include <pthread.h>
619 #define ECB_NEEDS_PTHREADS 1
620 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
621
622 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
623 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
624 #endif
625#endif
626
627#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
628 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
629#endif
630
631#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
632 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
633#endif
634
635/*****************************************************************************/
636
637#define ECB_C99 (__STDC_VERSION__ >= 199901L)
638
639#if __cplusplus
640 #define ecb_inline static inline
641#elif ECB_GCC_VERSION(2,5)
642 #define ecb_inline static __inline__
643#elif ECB_C99
644 #define ecb_inline static inline
645#else
646 #define ecb_inline static
647#endif
648
649#if ECB_GCC_VERSION(3,3)
650 #define ecb_restrict __restrict__
651#elif ECB_C99
652 #define ecb_restrict restrict
653#else
654 #define ecb_restrict
655#endif
656
657typedef int ecb_bool;
658
659#define ECB_CONCAT_(a, b) a ## b
660#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
661#define ECB_STRINGIFY_(a) # a
662#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
663
664#define ecb_function_ ecb_inline
665
666#if ECB_GCC_VERSION(3,1)
667 #define ecb_attribute(attrlist) __attribute__(attrlist)
668 #define ecb_is_constant(expr) __builtin_constant_p (expr)
669 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
670 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
671#else
672 #define ecb_attribute(attrlist)
673 #define ecb_is_constant(expr) 0
674 #define ecb_expect(expr,value) (expr)
675 #define ecb_prefetch(addr,rw,locality)
676#endif
677
678/* no emulation for ecb_decltype */
679#if ECB_GCC_VERSION(4,5)
680 #define ecb_decltype(x) __decltype(x)
681#elif ECB_GCC_VERSION(3,0)
682 #define ecb_decltype(x) __typeof(x)
683#endif
684
685#define ecb_noinline ecb_attribute ((__noinline__))
686#define ecb_noreturn ecb_attribute ((__noreturn__))
687#define ecb_unused ecb_attribute ((__unused__))
688#define ecb_const ecb_attribute ((__const__))
689#define ecb_pure ecb_attribute ((__pure__))
690
691#if ECB_GCC_VERSION(4,3)
692 #define ecb_artificial ecb_attribute ((__artificial__))
693 #define ecb_hot ecb_attribute ((__hot__))
694 #define ecb_cold ecb_attribute ((__cold__))
695#else
696 #define ecb_artificial
697 #define ecb_hot
698 #define ecb_cold
699#endif
700
701/* put around conditional expressions if you are very sure that the */
702/* expression is mostly true or mostly false. note that these return */
703/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 704#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 705#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
706/* for compatibility to the rest of the world */
707#define ecb_likely(expr) ecb_expect_true (expr)
708#define ecb_unlikely(expr) ecb_expect_false (expr)
709
710/* count trailing zero bits and count # of one bits */
711#if ECB_GCC_VERSION(3,4)
712 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
713 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
714 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
715 #define ecb_ctz32(x) __builtin_ctz (x)
716 #define ecb_ctz64(x) __builtin_ctzll (x)
717 #define ecb_popcount32(x) __builtin_popcount (x)
718 /* no popcountll */
719#else
720 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
721 ecb_function_ int
722 ecb_ctz32 (uint32_t x)
723 {
724 int r = 0;
725
726 x &= ~x + 1; /* this isolates the lowest bit */
727
728#if ECB_branchless_on_i386
729 r += !!(x & 0xaaaaaaaa) << 0;
730 r += !!(x & 0xcccccccc) << 1;
731 r += !!(x & 0xf0f0f0f0) << 2;
732 r += !!(x & 0xff00ff00) << 3;
733 r += !!(x & 0xffff0000) << 4;
734#else
735 if (x & 0xaaaaaaaa) r += 1;
736 if (x & 0xcccccccc) r += 2;
737 if (x & 0xf0f0f0f0) r += 4;
738 if (x & 0xff00ff00) r += 8;
739 if (x & 0xffff0000) r += 16;
740#endif
741
742 return r;
743 }
744
745 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
746 ecb_function_ int
747 ecb_ctz64 (uint64_t x)
748 {
749 int shift = x & 0xffffffffU ? 0 : 32;
750 return ecb_ctz32 (x >> shift) + shift;
751 }
752
753 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
754 ecb_function_ int
755 ecb_popcount32 (uint32_t x)
756 {
757 x -= (x >> 1) & 0x55555555;
758 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
759 x = ((x >> 4) + x) & 0x0f0f0f0f;
760 x *= 0x01010101;
761
762 return x >> 24;
763 }
764
765 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
766 ecb_function_ int ecb_ld32 (uint32_t x)
767 {
768 int r = 0;
769
770 if (x >> 16) { x >>= 16; r += 16; }
771 if (x >> 8) { x >>= 8; r += 8; }
772 if (x >> 4) { x >>= 4; r += 4; }
773 if (x >> 2) { x >>= 2; r += 2; }
774 if (x >> 1) { r += 1; }
775
776 return r;
777 }
778
779 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
780 ecb_function_ int ecb_ld64 (uint64_t x)
781 {
782 int r = 0;
783
784 if (x >> 32) { x >>= 32; r += 32; }
785
786 return r + ecb_ld32 (x);
787 }
788#endif
789
790ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
792{
793 return ( (x * 0x0802U & 0x22110U)
794 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
795}
796
797ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
799{
800 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
801 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
802 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
803 x = ( x >> 8 ) | ( x << 8);
804
805 return x;
806}
807
808ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
810{
811 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
812 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
813 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
814 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
815 x = ( x >> 16 ) | ( x << 16);
816
817 return x;
818}
819
820/* popcount64 is only available on 64 bit cpus as gcc builtin */
821/* so for this version we are lazy */
822ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
823ecb_function_ int
824ecb_popcount64 (uint64_t x)
825{
826 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
827}
828
829ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
830ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
837
838ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
839ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
840ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
841ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
842ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
843ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
844ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
845ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
846
847#if ECB_GCC_VERSION(4,3)
848 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
849 #define ecb_bswap32(x) __builtin_bswap32 (x)
850 #define ecb_bswap64(x) __builtin_bswap64 (x)
851#else
852 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
853 ecb_function_ uint16_t
854 ecb_bswap16 (uint16_t x)
855 {
856 return ecb_rotl16 (x, 8);
857 }
858
859 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
860 ecb_function_ uint32_t
861 ecb_bswap32 (uint32_t x)
862 {
863 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
864 }
865
866 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
867 ecb_function_ uint64_t
868 ecb_bswap64 (uint64_t x)
869 {
870 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
871 }
872#endif
873
874#if ECB_GCC_VERSION(4,5)
875 #define ecb_unreachable() __builtin_unreachable ()
876#else
877 /* this seems to work fine, but gcc always emits a warning for it :/ */
878 ecb_inline void ecb_unreachable (void) ecb_noreturn;
879 ecb_inline void ecb_unreachable (void) { }
880#endif
881
882/* try to tell the compiler that some condition is definitely true */
883#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
884
885ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
886ecb_inline unsigned char
887ecb_byteorder_helper (void)
888{
889 const uint32_t u = 0x11223344;
890 return *(unsigned char *)&u;
891}
892
893ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
895ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
896ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
897
898#if ECB_GCC_VERSION(3,0) || ECB_C99
899 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
900#else
901 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
902#endif
903
904#if __cplusplus
905 template<typename T>
906 static inline T ecb_div_rd (T val, T div)
907 {
908 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
909 }
910 template<typename T>
911 static inline T ecb_div_ru (T val, T div)
912 {
913 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
914 }
915#else
916 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
917 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
918#endif
919
920#if ecb_cplusplus_does_not_suck
921 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
922 template<typename T, int N>
923 static inline int ecb_array_length (const T (&arr)[N])
924 {
925 return N;
926 }
927#else
928 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
929#endif
930
931#endif
932
933/* ECB.H END */
934
935#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
936/* if your architecture doesn't need memory fences, e.g. because it is
937 * single-cpu/core, or if you use libev in a project that doesn't use libev
938 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
939 * libev, in which cases the memory fences become nops.
940 * alternatively, you can remove this #error and link against libpthread,
941 * which will then provide the memory fences.
942 */
943# error "memory fences not defined for your architecture, please report"
944#endif
945
946#ifndef ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE do { } while (0)
948# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
949# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
950#endif
951
952#define expect_false(cond) ecb_expect_false (cond)
953#define expect_true(cond) ecb_expect_true (cond)
954#define noinline ecb_noinline
955
275#define inline_size static inline 956#define inline_size ecb_inline
276 957
277#if EV_MINIMAL 958#if EV_FEATURE_CODE
959# define inline_speed ecb_inline
960#else
278# define inline_speed static noinline 961# define inline_speed static noinline
962#endif
963
964#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
965
966#if EV_MINPRI == EV_MAXPRI
967# define ABSPRI(w) (((W)w), 0)
279#else 968#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 969# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
970#endif
285 971
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 972#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 973#define EMPTY2(a,b) /* used to suppress some warnings */
288 974
289typedef ev_watcher *W; 975typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 976typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 977typedef ev_watcher_time *WT;
292 978
979#define ev_active(w) ((W)(w))->active
980#define ev_at(w) ((WT)(w))->at
981
982#if EV_USE_REALTIME
983/* sig_atomic_t is used to avoid per-thread variables or locking but still */
984/* giving it a reasonably high chance of working on typical architectures */
985static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
986#endif
987
293#if EV_USE_MONOTONIC 988#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 989static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
990#endif
991
992#ifndef EV_FD_TO_WIN32_HANDLE
993# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
994#endif
995#ifndef EV_WIN32_HANDLE_TO_FD
996# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
997#endif
998#ifndef EV_WIN32_CLOSE_FD
999# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1000#endif
298 1001
299#ifdef _WIN32 1002#ifdef _WIN32
300# include "ev_win32.c" 1003# include "ev_win32.c"
301#endif 1004#endif
302 1005
303/*****************************************************************************/ 1006/*****************************************************************************/
304 1007
1008/* define a suitable floor function (only used by periodics atm) */
1009
1010#if EV_USE_FLOOR
1011# include <math.h>
1012# define ev_floor(v) floor (v)
1013#else
1014
1015#include <float.h>
1016
1017/* a floor() replacement function, should be independent of ev_tstamp type */
1018static ev_tstamp noinline
1019ev_floor (ev_tstamp v)
1020{
1021 /* the choice of shift factor is not terribly important */
1022#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1024#else
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1026#endif
1027
1028 /* argument too large for an unsigned long? */
1029 if (expect_false (v >= shift))
1030 {
1031 ev_tstamp f;
1032
1033 if (v == v - 1.)
1034 return v; /* very large number */
1035
1036 f = shift * ev_floor (v * (1. / shift));
1037 return f + ev_floor (v - f);
1038 }
1039
1040 /* special treatment for negative args? */
1041 if (expect_false (v < 0.))
1042 {
1043 ev_tstamp f = -ev_floor (-v);
1044
1045 return f - (f == v ? 0 : 1);
1046 }
1047
1048 /* fits into an unsigned long */
1049 return (unsigned long)v;
1050}
1051
1052#endif
1053
1054/*****************************************************************************/
1055
1056#ifdef __linux
1057# include <sys/utsname.h>
1058#endif
1059
1060static unsigned int noinline ecb_cold
1061ev_linux_version (void)
1062{
1063#ifdef __linux
1064 unsigned int v = 0;
1065 struct utsname buf;
1066 int i;
1067 char *p = buf.release;
1068
1069 if (uname (&buf))
1070 return 0;
1071
1072 for (i = 3+1; --i; )
1073 {
1074 unsigned int c = 0;
1075
1076 for (;;)
1077 {
1078 if (*p >= '0' && *p <= '9')
1079 c = c * 10 + *p++ - '0';
1080 else
1081 {
1082 p += *p == '.';
1083 break;
1084 }
1085 }
1086
1087 v = (v << 8) | c;
1088 }
1089
1090 return v;
1091#else
1092 return 0;
1093#endif
1094}
1095
1096/*****************************************************************************/
1097
1098#if EV_AVOID_STDIO
1099static void noinline ecb_cold
1100ev_printerr (const char *msg)
1101{
1102 write (STDERR_FILENO, msg, strlen (msg));
1103}
1104#endif
1105
305static void (*syserr_cb)(const char *msg); 1106static void (*syserr_cb)(const char *msg);
306 1107
307void 1108void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1109ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 1110{
310 syserr_cb = cb; 1111 syserr_cb = cb;
311} 1112}
312 1113
313static void noinline 1114static void noinline ecb_cold
314syserr (const char *msg) 1115ev_syserr (const char *msg)
315{ 1116{
316 if (!msg) 1117 if (!msg)
317 msg = "(libev) system error"; 1118 msg = "(libev) system error";
318 1119
319 if (syserr_cb) 1120 if (syserr_cb)
320 syserr_cb (msg); 1121 syserr_cb (msg);
321 else 1122 else
322 { 1123 {
1124#if EV_AVOID_STDIO
1125 ev_printerr (msg);
1126 ev_printerr (": ");
1127 ev_printerr (strerror (errno));
1128 ev_printerr ("\n");
1129#else
323 perror (msg); 1130 perror (msg);
1131#endif
324 abort (); 1132 abort ();
325 } 1133 }
326} 1134}
327 1135
1136static void *
1137ev_realloc_emul (void *ptr, long size)
1138{
1139#if __GLIBC__
1140 return realloc (ptr, size);
1141#else
1142 /* some systems, notably openbsd and darwin, fail to properly
1143 * implement realloc (x, 0) (as required by both ansi c-89 and
1144 * the single unix specification, so work around them here.
1145 */
1146
1147 if (size)
1148 return realloc (ptr, size);
1149
1150 free (ptr);
1151 return 0;
1152#endif
1153}
1154
328static void *(*alloc)(void *ptr, long size); 1155static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 1156
330void 1157void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1158ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 1159{
333 alloc = cb; 1160 alloc = cb;
334} 1161}
335 1162
336inline_speed void * 1163inline_speed void *
337ev_realloc (void *ptr, long size) 1164ev_realloc (void *ptr, long size)
338{ 1165{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1166 ptr = alloc (ptr, size);
340 1167
341 if (!ptr && size) 1168 if (!ptr && size)
342 { 1169 {
1170#if EV_AVOID_STDIO
1171 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1172#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1173 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1174#endif
344 abort (); 1175 abort ();
345 } 1176 }
346 1177
347 return ptr; 1178 return ptr;
348} 1179}
350#define ev_malloc(size) ev_realloc (0, (size)) 1181#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1182#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1183
353/*****************************************************************************/ 1184/*****************************************************************************/
354 1185
1186/* set in reify when reification needed */
1187#define EV_ANFD_REIFY 1
1188
1189/* file descriptor info structure */
355typedef struct 1190typedef struct
356{ 1191{
357 WL head; 1192 WL head;
358 unsigned char events; 1193 unsigned char events; /* the events watched for */
1194 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1195 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1196 unsigned char unused;
1197#if EV_USE_EPOLL
1198 unsigned int egen; /* generation counter to counter epoll bugs */
1199#endif
360#if EV_SELECT_IS_WINSOCKET 1200#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1201 SOCKET handle;
362#endif 1202#endif
1203#if EV_USE_IOCP
1204 OVERLAPPED or, ow;
1205#endif
363} ANFD; 1206} ANFD;
364 1207
1208/* stores the pending event set for a given watcher */
365typedef struct 1209typedef struct
366{ 1210{
367 W w; 1211 W w;
368 int events; 1212 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1213} ANPENDING;
370 1214
371#if EV_USE_INOTIFY 1215#if EV_USE_INOTIFY
1216/* hash table entry per inotify-id */
372typedef struct 1217typedef struct
373{ 1218{
374 WL head; 1219 WL head;
375} ANFS; 1220} ANFS;
1221#endif
1222
1223/* Heap Entry */
1224#if EV_HEAP_CACHE_AT
1225 /* a heap element */
1226 typedef struct {
1227 ev_tstamp at;
1228 WT w;
1229 } ANHE;
1230
1231 #define ANHE_w(he) (he).w /* access watcher, read-write */
1232 #define ANHE_at(he) (he).at /* access cached at, read-only */
1233 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1234#else
1235 /* a heap element */
1236 typedef WT ANHE;
1237
1238 #define ANHE_w(he) (he)
1239 #define ANHE_at(he) (he)->at
1240 #define ANHE_at_cache(he)
376#endif 1241#endif
377 1242
378#if EV_MULTIPLICITY 1243#if EV_MULTIPLICITY
379 1244
380 struct ev_loop 1245 struct ev_loop
386 #undef VAR 1251 #undef VAR
387 }; 1252 };
388 #include "ev_wrap.h" 1253 #include "ev_wrap.h"
389 1254
390 static struct ev_loop default_loop_struct; 1255 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1256 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1257
393#else 1258#else
394 1259
395 ev_tstamp ev_rt_now; 1260 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1261 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1262 #include "ev_vars.h"
398 #undef VAR 1263 #undef VAR
399 1264
400 static int ev_default_loop_ptr; 1265 static int ev_default_loop_ptr;
401 1266
402#endif 1267#endif
403 1268
1269#if EV_FEATURE_API
1270# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1271# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1272# define EV_INVOKE_PENDING invoke_cb (EV_A)
1273#else
1274# define EV_RELEASE_CB (void)0
1275# define EV_ACQUIRE_CB (void)0
1276# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1277#endif
1278
1279#define EVBREAK_RECURSE 0x80
1280
404/*****************************************************************************/ 1281/*****************************************************************************/
405 1282
1283#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1284ev_tstamp
407ev_time (void) 1285ev_time (void)
408{ 1286{
409#if EV_USE_REALTIME 1287#if EV_USE_REALTIME
1288 if (expect_true (have_realtime))
1289 {
410 struct timespec ts; 1290 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1291 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1292 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1293 }
1294#endif
1295
414 struct timeval tv; 1296 struct timeval tv;
415 gettimeofday (&tv, 0); 1297 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1298 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1299}
1300#endif
419 1301
420ev_tstamp inline_size 1302inline_size ev_tstamp
421get_clock (void) 1303get_clock (void)
422{ 1304{
423#if EV_USE_MONOTONIC 1305#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1306 if (expect_true (have_monotonic))
425 { 1307 {
446 if (delay > 0.) 1328 if (delay > 0.)
447 { 1329 {
448#if EV_USE_NANOSLEEP 1330#if EV_USE_NANOSLEEP
449 struct timespec ts; 1331 struct timespec ts;
450 1332
451 ts.tv_sec = (time_t)delay; 1333 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1334 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1335#elif defined(_WIN32)
456 Sleep (delay * 1e3); 1336 Sleep ((unsigned long)(delay * 1e3));
457#else 1337#else
458 struct timeval tv; 1338 struct timeval tv;
459 1339
460 tv.tv_sec = (time_t)delay; 1340 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1341 /* something not guaranteed by newer posix versions, but guaranteed */
462 1342 /* by older ones */
1343 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1344 select (0, 0, 0, 0, &tv);
464#endif 1345#endif
465 } 1346 }
466} 1347}
467 1348
468/*****************************************************************************/ 1349/*****************************************************************************/
469 1350
470int inline_size 1351#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1352
1353/* find a suitable new size for the given array, */
1354/* hopefully by rounding to a nice-to-malloc size */
1355inline_size int
471array_nextsize (int elem, int cur, int cnt) 1356array_nextsize (int elem, int cur, int cnt)
472{ 1357{
473 int ncur = cur + 1; 1358 int ncur = cur + 1;
474 1359
475 do 1360 do
476 ncur <<= 1; 1361 ncur <<= 1;
477 while (cnt > ncur); 1362 while (cnt > ncur);
478 1363
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1364 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1365 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1366 {
482 ncur *= elem; 1367 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1368 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1369 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1370 ncur /= elem;
486 } 1371 }
487 1372
488 return ncur; 1373 return ncur;
489} 1374}
490 1375
491static noinline void * 1376static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1377array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1378{
494 *cur = array_nextsize (elem, *cur, cnt); 1379 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1380 return ev_realloc (base, elem * *cur);
496} 1381}
1382
1383#define array_init_zero(base,count) \
1384 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1385
498#define array_needsize(type,base,cur,cnt,init) \ 1386#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1387 if (expect_false ((cnt) > (cur))) \
500 { \ 1388 { \
501 int ocur_ = (cur); \ 1389 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1390 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1391 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1392 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1393 }
506 1394
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1401 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1402 }
515#endif 1403#endif
516 1404
517#define array_free(stem, idx) \ 1405#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1406 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1407
520/*****************************************************************************/ 1408/*****************************************************************************/
1409
1410/* dummy callback for pending events */
1411static void noinline
1412pendingcb (EV_P_ ev_prepare *w, int revents)
1413{
1414}
521 1415
522void noinline 1416void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1417ev_feed_event (EV_P_ void *w, int revents)
524{ 1418{
525 W w_ = (W)w; 1419 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 1428 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1429 pendings [pri][w_->pending - 1].events = revents;
536 } 1430 }
537} 1431}
538 1432
539void inline_speed 1433inline_speed void
1434feed_reverse (EV_P_ W w)
1435{
1436 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1437 rfeeds [rfeedcnt++] = w;
1438}
1439
1440inline_size void
1441feed_reverse_done (EV_P_ int revents)
1442{
1443 do
1444 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1445 while (rfeedcnt);
1446}
1447
1448inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1449queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1450{
542 int i; 1451 int i;
543 1452
544 for (i = 0; i < eventcnt; ++i) 1453 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1454 ev_feed_event (EV_A_ events [i], type);
546} 1455}
547 1456
548/*****************************************************************************/ 1457/*****************************************************************************/
549 1458
550void inline_size 1459inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1460fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1461{
566 ANFD *anfd = anfds + fd; 1462 ANFD *anfd = anfds + fd;
567 ev_io *w; 1463 ev_io *w;
568 1464
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1465 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1469 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1470 ev_feed_event (EV_A_ (W)w, ev);
575 } 1471 }
576} 1472}
577 1473
1474/* do not submit kernel events for fds that have reify set */
1475/* because that means they changed while we were polling for new events */
1476inline_speed void
1477fd_event (EV_P_ int fd, int revents)
1478{
1479 ANFD *anfd = anfds + fd;
1480
1481 if (expect_true (!anfd->reify))
1482 fd_event_nocheck (EV_A_ fd, revents);
1483}
1484
578void 1485void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1486ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 1487{
581 if (fd >= 0 && fd < anfdmax) 1488 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1489 fd_event_nocheck (EV_A_ fd, revents);
583} 1490}
584 1491
585void inline_size 1492/* make sure the external fd watch events are in-sync */
1493/* with the kernel/libev internal state */
1494inline_size void
586fd_reify (EV_P) 1495fd_reify (EV_P)
587{ 1496{
588 int i; 1497 int i;
1498
1499#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1500 for (i = 0; i < fdchangecnt; ++i)
1501 {
1502 int fd = fdchanges [i];
1503 ANFD *anfd = anfds + fd;
1504
1505 if (anfd->reify & EV__IOFDSET && anfd->head)
1506 {
1507 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1508
1509 if (handle != anfd->handle)
1510 {
1511 unsigned long arg;
1512
1513 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1514
1515 /* handle changed, but fd didn't - we need to do it in two steps */
1516 backend_modify (EV_A_ fd, anfd->events, 0);
1517 anfd->events = 0;
1518 anfd->handle = handle;
1519 }
1520 }
1521 }
1522#endif
589 1523
590 for (i = 0; i < fdchangecnt; ++i) 1524 for (i = 0; i < fdchangecnt; ++i)
591 { 1525 {
592 int fd = fdchanges [i]; 1526 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1527 ANFD *anfd = anfds + fd;
594 ev_io *w; 1528 ev_io *w;
595 1529
596 unsigned char events = 0; 1530 unsigned char o_events = anfd->events;
1531 unsigned char o_reify = anfd->reify;
597 1532
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1533 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1534
601#if EV_SELECT_IS_WINSOCKET 1535 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1536 {
604 unsigned long argp; 1537 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1538
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1539 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1540 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1541
609 #endif 1542 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1543 o_reify = EV__IOFDSET; /* actually |= */
611 } 1544 }
612#endif
613 1545
614 { 1546 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1547 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1548 }
625 1549
626 fdchangecnt = 0; 1550 fdchangecnt = 0;
627} 1551}
628 1552
629void inline_size 1553/* something about the given fd changed */
1554inline_size void
630fd_change (EV_P_ int fd, int flags) 1555fd_change (EV_P_ int fd, int flags)
631{ 1556{
632 unsigned char reify = anfds [fd].reify; 1557 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1558 anfds [fd].reify |= flags;
634 1559
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1563 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1564 fdchanges [fdchangecnt - 1] = fd;
640 } 1565 }
641} 1566}
642 1567
643void inline_speed 1568/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1569inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1570fd_kill (EV_P_ int fd)
645{ 1571{
646 ev_io *w; 1572 ev_io *w;
647 1573
648 while ((w = (ev_io *)anfds [fd].head)) 1574 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1576 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1577 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1578 }
653} 1579}
654 1580
655int inline_size 1581/* check whether the given fd is actually valid, for error recovery */
1582inline_size int ecb_cold
656fd_valid (int fd) 1583fd_valid (int fd)
657{ 1584{
658#ifdef _WIN32 1585#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1586 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1587#else
661 return fcntl (fd, F_GETFD) != -1; 1588 return fcntl (fd, F_GETFD) != -1;
662#endif 1589#endif
663} 1590}
664 1591
665/* called on EBADF to verify fds */ 1592/* called on EBADF to verify fds */
666static void noinline 1593static void noinline ecb_cold
667fd_ebadf (EV_P) 1594fd_ebadf (EV_P)
668{ 1595{
669 int fd; 1596 int fd;
670 1597
671 for (fd = 0; fd < anfdmax; ++fd) 1598 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1599 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1600 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1601 fd_kill (EV_A_ fd);
675} 1602}
676 1603
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1604/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1605static void noinline ecb_cold
679fd_enomem (EV_P) 1606fd_enomem (EV_P)
680{ 1607{
681 int fd; 1608 int fd;
682 1609
683 for (fd = anfdmax; fd--; ) 1610 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1611 if (anfds [fd].events)
685 { 1612 {
686 fd_kill (EV_A_ fd); 1613 fd_kill (EV_A_ fd);
687 return; 1614 break;
688 } 1615 }
689} 1616}
690 1617
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1618/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1619static void noinline
696 1623
697 for (fd = 0; fd < anfdmax; ++fd) 1624 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1625 if (anfds [fd].events)
699 { 1626 {
700 anfds [fd].events = 0; 1627 anfds [fd].events = 0;
1628 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1629 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1630 }
703} 1631}
704 1632
705/*****************************************************************************/ 1633/* used to prepare libev internal fd's */
706 1634/* this is not fork-safe */
707void inline_speed 1635inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1636fd_intern (int fd)
792{ 1637{
793#ifdef _WIN32 1638#ifdef _WIN32
794 int arg = 1; 1639 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1640 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1641#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1642 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1643 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1644#endif
800} 1645}
801 1646
1647/*****************************************************************************/
1648
1649/*
1650 * the heap functions want a real array index. array index 0 is guaranteed to not
1651 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1652 * the branching factor of the d-tree.
1653 */
1654
1655/*
1656 * at the moment we allow libev the luxury of two heaps,
1657 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1658 * which is more cache-efficient.
1659 * the difference is about 5% with 50000+ watchers.
1660 */
1661#if EV_USE_4HEAP
1662
1663#define DHEAP 4
1664#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1665#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1666#define UPHEAP_DONE(p,k) ((p) == (k))
1667
1668/* away from the root */
1669inline_speed void
1670downheap (ANHE *heap, int N, int k)
1671{
1672 ANHE he = heap [k];
1673 ANHE *E = heap + N + HEAP0;
1674
1675 for (;;)
1676 {
1677 ev_tstamp minat;
1678 ANHE *minpos;
1679 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1680
1681 /* find minimum child */
1682 if (expect_true (pos + DHEAP - 1 < E))
1683 {
1684 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1686 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1688 }
1689 else if (pos < E)
1690 {
1691 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 }
1696 else
1697 break;
1698
1699 if (ANHE_at (he) <= minat)
1700 break;
1701
1702 heap [k] = *minpos;
1703 ev_active (ANHE_w (*minpos)) = k;
1704
1705 k = minpos - heap;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710}
1711
1712#else /* 4HEAP */
1713
1714#define HEAP0 1
1715#define HPARENT(k) ((k) >> 1)
1716#define UPHEAP_DONE(p,k) (!(p))
1717
1718/* away from the root */
1719inline_speed void
1720downheap (ANHE *heap, int N, int k)
1721{
1722 ANHE he = heap [k];
1723
1724 for (;;)
1725 {
1726 int c = k << 1;
1727
1728 if (c >= N + HEAP0)
1729 break;
1730
1731 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1732 ? 1 : 0;
1733
1734 if (ANHE_at (he) <= ANHE_at (heap [c]))
1735 break;
1736
1737 heap [k] = heap [c];
1738 ev_active (ANHE_w (heap [k])) = k;
1739
1740 k = c;
1741 }
1742
1743 heap [k] = he;
1744 ev_active (ANHE_w (he)) = k;
1745}
1746#endif
1747
1748/* towards the root */
1749inline_speed void
1750upheap (ANHE *heap, int k)
1751{
1752 ANHE he = heap [k];
1753
1754 for (;;)
1755 {
1756 int p = HPARENT (k);
1757
1758 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1759 break;
1760
1761 heap [k] = heap [p];
1762 ev_active (ANHE_w (heap [k])) = k;
1763 k = p;
1764 }
1765
1766 heap [k] = he;
1767 ev_active (ANHE_w (he)) = k;
1768}
1769
1770/* move an element suitably so it is in a correct place */
1771inline_size void
1772adjustheap (ANHE *heap, int N, int k)
1773{
1774 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1775 upheap (heap, k);
1776 else
1777 downheap (heap, N, k);
1778}
1779
1780/* rebuild the heap: this function is used only once and executed rarely */
1781inline_size void
1782reheap (ANHE *heap, int N)
1783{
1784 int i;
1785
1786 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1787 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1788 for (i = 0; i < N; ++i)
1789 upheap (heap, i + HEAP0);
1790}
1791
1792/*****************************************************************************/
1793
1794/* associate signal watchers to a signal signal */
1795typedef struct
1796{
1797 EV_ATOMIC_T pending;
1798#if EV_MULTIPLICITY
1799 EV_P;
1800#endif
1801 WL head;
1802} ANSIG;
1803
1804static ANSIG signals [EV_NSIG - 1];
1805
1806/*****************************************************************************/
1807
1808#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1809
802static void noinline 1810static void noinline ecb_cold
803evpipe_init (EV_P) 1811evpipe_init (EV_P)
804{ 1812{
805 if (!ev_is_active (&pipeev)) 1813 if (!ev_is_active (&pipe_w))
806 { 1814 {
1815# if EV_USE_EVENTFD
1816 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1817 if (evfd < 0 && errno == EINVAL)
1818 evfd = eventfd (0, 0);
1819
1820 if (evfd >= 0)
1821 {
1822 evpipe [0] = -1;
1823 fd_intern (evfd); /* doing it twice doesn't hurt */
1824 ev_io_set (&pipe_w, evfd, EV_READ);
1825 }
1826 else
1827# endif
1828 {
807 while (pipe (evpipe)) 1829 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1830 ev_syserr ("(libev) error creating signal/async pipe");
809 1831
810 fd_intern (evpipe [0]); 1832 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1833 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1834 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1835 }
1836
814 ev_io_start (EV_A_ &pipeev); 1837 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1838 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1839 }
817} 1840}
818 1841
819void inline_size 1842inline_speed void
820evpipe_write (EV_P_ int sig, int async) 1843evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1844{
822 if (!(gotasync || gotsig)) 1845 if (expect_true (*flag))
1846 return;
1847
1848 *flag = 1;
1849
1850 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1851
1852 pipe_write_skipped = 1;
1853
1854 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1855
1856 if (pipe_write_wanted)
823 { 1857 {
1858 int old_errno;
1859
1860 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1861
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1862 old_errno = errno; /* save errno because write will clobber it */
825 1863
826 if (sig) gotsig = 1; 1864#if EV_USE_EVENTFD
827 if (async) gotasync = 1; 1865 if (evfd >= 0)
828 1866 {
829 write (evpipe [1], &old_errno, 1); 1867 uint64_t counter = 1;
1868 write (evfd, &counter, sizeof (uint64_t));
1869 }
1870 else
1871#endif
1872 {
1873 /* win32 people keep sending patches that change this write() to send() */
1874 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1875 /* so when you think this write should be a send instead, please find out */
1876 /* where your send() is from - it's definitely not the microsoft send, and */
1877 /* tell me. thank you. */
1878 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1879 /* check the ev documentation on how to use this flag */
1880 write (evpipe [1], &(evpipe [1]), 1);
1881 }
830 1882
831 errno = old_errno; 1883 errno = old_errno;
832 } 1884 }
833} 1885}
834 1886
1887/* called whenever the libev signal pipe */
1888/* got some events (signal, async) */
835static void 1889static void
836pipecb (EV_P_ ev_io *iow, int revents) 1890pipecb (EV_P_ ev_io *iow, int revents)
837{ 1891{
1892 int i;
1893
1894 if (revents & EV_READ)
838 { 1895 {
839 int dummy; 1896#if EV_USE_EVENTFD
1897 if (evfd >= 0)
1898 {
1899 uint64_t counter;
1900 read (evfd, &counter, sizeof (uint64_t));
1901 }
1902 else
1903#endif
1904 {
1905 char dummy;
1906 /* see discussion in evpipe_write when you think this read should be recv in win32 */
840 read (evpipe [0], &dummy, 1); 1907 read (evpipe [0], &dummy, 1);
1908 }
841 } 1909 }
842 1910
843 if (gotsig) 1911 pipe_write_skipped = 0;
844 {
845 int signum;
846 gotsig = 0;
847 1912
848 for (signum = signalmax; signum--; ) 1913#if EV_SIGNAL_ENABLE
849 if (signals [signum].gotsig) 1914 if (sig_pending)
1915 {
1916 sig_pending = 0;
1917
1918 for (i = EV_NSIG - 1; i--; )
1919 if (expect_false (signals [i].pending))
850 ev_feed_signal_event (EV_A_ signum + 1); 1920 ev_feed_signal_event (EV_A_ i + 1);
851 } 1921 }
1922#endif
852 1923
853#if EV_ASYNC_ENABLE 1924#if EV_ASYNC_ENABLE
854 if (gotasync) 1925 if (async_pending)
855 { 1926 {
856 int i; 1927 async_pending = 0;
857 gotasync = 0;
858 1928
859 for (i = asynccnt; i--; ) 1929 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent) 1930 if (asyncs [i]->sent)
861 { 1931 {
862 asyncs [i]->sent = 0; 1932 asyncs [i]->sent = 0;
866#endif 1936#endif
867} 1937}
868 1938
869/*****************************************************************************/ 1939/*****************************************************************************/
870 1940
1941void
1942ev_feed_signal (int signum)
1943{
1944#if EV_MULTIPLICITY
1945 EV_P = signals [signum - 1].loop;
1946
1947 if (!EV_A)
1948 return;
1949#endif
1950
1951 if (!ev_active (&pipe_w))
1952 return;
1953
1954 signals [signum - 1].pending = 1;
1955 evpipe_write (EV_A_ &sig_pending);
1956}
1957
871static void 1958static void
872sighandler (int signum) 1959ev_sighandler (int signum)
873{ 1960{
874#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct;
876#endif
877
878#if _WIN32 1961#ifdef _WIN32
879 signal (signum, sighandler); 1962 signal (signum, ev_sighandler);
880#endif 1963#endif
881 1964
882 signals [signum - 1].gotsig = 1; 1965 ev_feed_signal (signum);
883 evpipe_write (EV_A_ 1, 0);
884} 1966}
885 1967
886void noinline 1968void noinline
887ev_feed_signal_event (EV_P_ int signum) 1969ev_feed_signal_event (EV_P_ int signum)
888{ 1970{
889 WL w; 1971 WL w;
890 1972
1973 if (expect_false (signum <= 0 || signum > EV_NSIG))
1974 return;
1975
1976 --signum;
1977
891#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1979 /* it is permissible to try to feed a signal to the wrong loop */
893#endif 1980 /* or, likely more useful, feeding a signal nobody is waiting for */
894 1981
895 --signum; 1982 if (expect_false (signals [signum].loop != EV_A))
896
897 if (signum < 0 || signum >= signalmax)
898 return; 1983 return;
1984#endif
899 1985
900 signals [signum].gotsig = 0; 1986 signals [signum].pending = 0;
901 1987
902 for (w = signals [signum].head; w; w = w->next) 1988 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904} 1990}
905 1991
1992#if EV_USE_SIGNALFD
1993static void
1994sigfdcb (EV_P_ ev_io *iow, int revents)
1995{
1996 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1997
1998 for (;;)
1999 {
2000 ssize_t res = read (sigfd, si, sizeof (si));
2001
2002 /* not ISO-C, as res might be -1, but works with SuS */
2003 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2004 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2005
2006 if (res < (ssize_t)sizeof (si))
2007 break;
2008 }
2009}
2010#endif
2011
2012#endif
2013
906/*****************************************************************************/ 2014/*****************************************************************************/
907 2015
2016#if EV_CHILD_ENABLE
908static WL childs [EV_PID_HASHSIZE]; 2017static WL childs [EV_PID_HASHSIZE];
909
910#ifndef _WIN32
911 2018
912static ev_signal childev; 2019static ev_signal childev;
913 2020
914#ifndef WIFCONTINUED 2021#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 2022# define WIFCONTINUED(status) 0
916#endif 2023#endif
917 2024
918void inline_speed 2025/* handle a single child status event */
2026inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2027child_reap (EV_P_ int chain, int pid, int status)
920{ 2028{
921 ev_child *w; 2029 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2030 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 2031
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2032 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 2033 {
926 if ((w->pid == pid || !w->pid) 2034 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 2035 && (!traced || (w->flags & 1)))
928 { 2036 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2037 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 2038 w->rpid = pid;
931 w->rstatus = status; 2039 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2040 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 2041 }
934 } 2042 }
936 2044
937#ifndef WCONTINUED 2045#ifndef WCONTINUED
938# define WCONTINUED 0 2046# define WCONTINUED 0
939#endif 2047#endif
940 2048
2049/* called on sigchld etc., calls waitpid */
941static void 2050static void
942childcb (EV_P_ ev_signal *sw, int revents) 2051childcb (EV_P_ ev_signal *sw, int revents)
943{ 2052{
944 int pid, status; 2053 int pid, status;
945 2054
948 if (!WCONTINUED 2057 if (!WCONTINUED
949 || errno != EINVAL 2058 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2059 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 2060 return;
952 2061
953 /* make sure we are called again until all childs have been reaped */ 2062 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 2063 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 2065
957 child_reap (EV_A_ sw, pid, pid, status); 2066 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 2067 if ((EV_PID_HASHSIZE) > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2068 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 2069}
961 2070
962#endif 2071#endif
963 2072
964/*****************************************************************************/ 2073/*****************************************************************************/
965 2074
2075#if EV_USE_IOCP
2076# include "ev_iocp.c"
2077#endif
966#if EV_USE_PORT 2078#if EV_USE_PORT
967# include "ev_port.c" 2079# include "ev_port.c"
968#endif 2080#endif
969#if EV_USE_KQUEUE 2081#if EV_USE_KQUEUE
970# include "ev_kqueue.c" 2082# include "ev_kqueue.c"
977#endif 2089#endif
978#if EV_USE_SELECT 2090#if EV_USE_SELECT
979# include "ev_select.c" 2091# include "ev_select.c"
980#endif 2092#endif
981 2093
982int 2094int ecb_cold
983ev_version_major (void) 2095ev_version_major (void)
984{ 2096{
985 return EV_VERSION_MAJOR; 2097 return EV_VERSION_MAJOR;
986} 2098}
987 2099
988int 2100int ecb_cold
989ev_version_minor (void) 2101ev_version_minor (void)
990{ 2102{
991 return EV_VERSION_MINOR; 2103 return EV_VERSION_MINOR;
992} 2104}
993 2105
994/* return true if we are running with elevated privileges and should ignore env variables */ 2106/* return true if we are running with elevated privileges and should ignore env variables */
995int inline_size 2107int inline_size ecb_cold
996enable_secure (void) 2108enable_secure (void)
997{ 2109{
998#ifdef _WIN32 2110#ifdef _WIN32
999 return 0; 2111 return 0;
1000#else 2112#else
1001 return getuid () != geteuid () 2113 return getuid () != geteuid ()
1002 || getgid () != getegid (); 2114 || getgid () != getegid ();
1003#endif 2115#endif
1004} 2116}
1005 2117
1006unsigned int 2118unsigned int ecb_cold
1007ev_supported_backends (void) 2119ev_supported_backends (void)
1008{ 2120{
1009 unsigned int flags = 0; 2121 unsigned int flags = 0;
1010 2122
1011 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2123 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1015 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2127 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1016 2128
1017 return flags; 2129 return flags;
1018} 2130}
1019 2131
1020unsigned int 2132unsigned int ecb_cold
1021ev_recommended_backends (void) 2133ev_recommended_backends (void)
1022{ 2134{
1023 unsigned int flags = ev_supported_backends (); 2135 unsigned int flags = ev_supported_backends ();
1024 2136
1025#ifndef __NetBSD__ 2137#ifndef __NetBSD__
1026 /* kqueue is borked on everything but netbsd apparently */ 2138 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 2139 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 2140 flags &= ~EVBACKEND_KQUEUE;
1029#endif 2141#endif
1030#ifdef __APPLE__ 2142#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 2143 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 2144 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2145 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2146#endif
2147#ifdef __FreeBSD__
2148 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1033#endif 2149#endif
1034 2150
1035 return flags; 2151 return flags;
1036} 2152}
1037 2153
1038unsigned int 2154unsigned int ecb_cold
1039ev_embeddable_backends (void) 2155ev_embeddable_backends (void)
1040{ 2156{
1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2157 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1042 2158
1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2159 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */ 2160 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1045 flags &= ~EVBACKEND_EPOLL; 2161 flags &= ~EVBACKEND_EPOLL;
1046 2162
1047 return flags; 2163 return flags;
1048} 2164}
1049 2165
1050unsigned int 2166unsigned int
1051ev_backend (EV_P) 2167ev_backend (EV_P)
1052{ 2168{
1053 return backend; 2169 return backend;
1054} 2170}
1055 2171
2172#if EV_FEATURE_API
1056unsigned int 2173unsigned int
1057ev_loop_count (EV_P) 2174ev_iteration (EV_P)
1058{ 2175{
1059 return loop_count; 2176 return loop_count;
2177}
2178
2179unsigned int
2180ev_depth (EV_P)
2181{
2182 return loop_depth;
1060} 2183}
1061 2184
1062void 2185void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2186ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{ 2187{
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2192ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{ 2193{
1071 timeout_blocktime = interval; 2194 timeout_blocktime = interval;
1072} 2195}
1073 2196
2197void
2198ev_set_userdata (EV_P_ void *data)
2199{
2200 userdata = data;
2201}
2202
2203void *
2204ev_userdata (EV_P)
2205{
2206 return userdata;
2207}
2208
2209void
2210ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2211{
2212 invoke_cb = invoke_pending_cb;
2213}
2214
2215void
2216ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2217{
2218 release_cb = release;
2219 acquire_cb = acquire;
2220}
2221#endif
2222
2223/* initialise a loop structure, must be zero-initialised */
1074static void noinline 2224static void noinline ecb_cold
1075loop_init (EV_P_ unsigned int flags) 2225loop_init (EV_P_ unsigned int flags)
1076{ 2226{
1077 if (!backend) 2227 if (!backend)
1078 { 2228 {
2229 origflags = flags;
2230
2231#if EV_USE_REALTIME
2232 if (!have_realtime)
2233 {
2234 struct timespec ts;
2235
2236 if (!clock_gettime (CLOCK_REALTIME, &ts))
2237 have_realtime = 1;
2238 }
2239#endif
2240
1079#if EV_USE_MONOTONIC 2241#if EV_USE_MONOTONIC
2242 if (!have_monotonic)
1080 { 2243 {
1081 struct timespec ts; 2244 struct timespec ts;
2245
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2246 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 2247 have_monotonic = 1;
1084 } 2248 }
1085#endif
1086
1087 ev_rt_now = ev_time ();
1088 mn_now = get_clock ();
1089 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now;
1091
1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif 2249#endif
1100 2250
1101 /* pid check not overridable via env */ 2251 /* pid check not overridable via env */
1102#ifndef _WIN32 2252#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK) 2253 if (flags & EVFLAG_FORKCHECK)
1107 if (!(flags & EVFLAG_NOENV) 2257 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 2258 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 2259 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 2260 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 2261
1112 if (!(flags & 0x0000ffffUL)) 2262 ev_rt_now = ev_time ();
2263 mn_now = get_clock ();
2264 now_floor = mn_now;
2265 rtmn_diff = ev_rt_now - mn_now;
2266#if EV_FEATURE_API
2267 invoke_cb = ev_invoke_pending;
2268#endif
2269
2270 io_blocktime = 0.;
2271 timeout_blocktime = 0.;
2272 backend = 0;
2273 backend_fd = -1;
2274 sig_pending = 0;
2275#if EV_ASYNC_ENABLE
2276 async_pending = 0;
2277#endif
2278 pipe_write_skipped = 0;
2279 pipe_write_wanted = 0;
2280#if EV_USE_INOTIFY
2281 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2282#endif
2283#if EV_USE_SIGNALFD
2284 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2285#endif
2286
2287 if (!(flags & EVBACKEND_MASK))
1113 flags |= ev_recommended_backends (); 2288 flags |= ev_recommended_backends ();
1114 2289
2290#if EV_USE_IOCP
2291 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2292#endif
1115#if EV_USE_PORT 2293#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2294 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 2295#endif
1118#if EV_USE_KQUEUE 2296#if EV_USE_KQUEUE
1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2297 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1126#endif 2304#endif
1127#if EV_USE_SELECT 2305#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2306 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 2307#endif
1130 2308
2309 ev_prepare_init (&pending_w, pendingcb);
2310
2311#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1131 ev_init (&pipeev, pipecb); 2312 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 2313 ev_set_priority (&pipe_w, EV_MAXPRI);
2314#endif
1133 } 2315 }
1134} 2316}
1135 2317
1136static void noinline 2318/* free up a loop structure */
2319void ecb_cold
1137loop_destroy (EV_P) 2320ev_loop_destroy (EV_P)
1138{ 2321{
1139 int i; 2322 int i;
1140 2323
2324#if EV_MULTIPLICITY
2325 /* mimic free (0) */
2326 if (!EV_A)
2327 return;
2328#endif
2329
2330#if EV_CLEANUP_ENABLE
2331 /* queue cleanup watchers (and execute them) */
2332 if (expect_false (cleanupcnt))
2333 {
2334 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2335 EV_INVOKE_PENDING;
2336 }
2337#endif
2338
2339#if EV_CHILD_ENABLE
2340 if (ev_is_active (&childev))
2341 {
2342 ev_ref (EV_A); /* child watcher */
2343 ev_signal_stop (EV_A_ &childev);
2344 }
2345#endif
2346
1141 if (ev_is_active (&pipeev)) 2347 if (ev_is_active (&pipe_w))
1142 { 2348 {
1143 ev_ref (EV_A); /* signal watcher */ 2349 /*ev_ref (EV_A);*/
1144 ev_io_stop (EV_A_ &pipeev); 2350 /*ev_io_stop (EV_A_ &pipe_w);*/
1145 2351
1146 close (evpipe [0]); evpipe [0] = 0; 2352#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 2353 if (evfd >= 0)
2354 close (evfd);
2355#endif
2356
2357 if (evpipe [0] >= 0)
2358 {
2359 EV_WIN32_CLOSE_FD (evpipe [0]);
2360 EV_WIN32_CLOSE_FD (evpipe [1]);
2361 }
1148 } 2362 }
2363
2364#if EV_USE_SIGNALFD
2365 if (ev_is_active (&sigfd_w))
2366 close (sigfd);
2367#endif
1149 2368
1150#if EV_USE_INOTIFY 2369#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 2370 if (fs_fd >= 0)
1152 close (fs_fd); 2371 close (fs_fd);
1153#endif 2372#endif
1154 2373
1155 if (backend_fd >= 0) 2374 if (backend_fd >= 0)
1156 close (backend_fd); 2375 close (backend_fd);
1157 2376
2377#if EV_USE_IOCP
2378 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2379#endif
1158#if EV_USE_PORT 2380#if EV_USE_PORT
1159 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1160#endif 2382#endif
1161#if EV_USE_KQUEUE 2383#if EV_USE_KQUEUE
1162 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1177#if EV_IDLE_ENABLE 2399#if EV_IDLE_ENABLE
1178 array_free (idle, [i]); 2400 array_free (idle, [i]);
1179#endif 2401#endif
1180 } 2402 }
1181 2403
1182 ev_free (anfds); anfdmax = 0; 2404 ev_free (anfds); anfds = 0; anfdmax = 0;
1183 2405
1184 /* have to use the microsoft-never-gets-it-right macro */ 2406 /* have to use the microsoft-never-gets-it-right macro */
2407 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 2408 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 2409 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 2410#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 2411 array_free (periodic, EMPTY);
1189#endif 2412#endif
1190#if EV_FORK_ENABLE 2413#if EV_FORK_ENABLE
1191 array_free (fork, EMPTY); 2414 array_free (fork, EMPTY);
1192#endif 2415#endif
2416#if EV_CLEANUP_ENABLE
2417 array_free (cleanup, EMPTY);
2418#endif
1193 array_free (prepare, EMPTY); 2419 array_free (prepare, EMPTY);
1194 array_free (check, EMPTY); 2420 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE 2421#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY); 2422 array_free (async, EMPTY);
1197#endif 2423#endif
1198 2424
1199 backend = 0; 2425 backend = 0;
1200}
1201 2426
2427#if EV_MULTIPLICITY
2428 if (ev_is_default_loop (EV_A))
2429#endif
2430 ev_default_loop_ptr = 0;
2431#if EV_MULTIPLICITY
2432 else
2433 ev_free (EV_A);
2434#endif
2435}
2436
2437#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 2438inline_size void infy_fork (EV_P);
2439#endif
1203 2440
1204void inline_size 2441inline_size void
1205loop_fork (EV_P) 2442loop_fork (EV_P)
1206{ 2443{
1207#if EV_USE_PORT 2444#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2445 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 2446#endif
1215#endif 2452#endif
1216#if EV_USE_INOTIFY 2453#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 2454 infy_fork (EV_A);
1218#endif 2455#endif
1219 2456
1220 if (ev_is_active (&pipeev)) 2457 if (ev_is_active (&pipe_w))
1221 { 2458 {
1222 /* this "locks" the handlers against writing to the pipe */ 2459 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1223 gotsig = gotasync = 1;
1224 2460
1225 ev_ref (EV_A); 2461 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 2462 ev_io_stop (EV_A_ &pipe_w);
1227 close (evpipe [0]);
1228 close (evpipe [1]);
1229 2463
2464#if EV_USE_EVENTFD
2465 if (evfd >= 0)
2466 close (evfd);
2467#endif
2468
2469 if (evpipe [0] >= 0)
2470 {
2471 EV_WIN32_CLOSE_FD (evpipe [0]);
2472 EV_WIN32_CLOSE_FD (evpipe [1]);
2473 }
2474
2475#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1230 evpipe_init (EV_A); 2476 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 2477 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 2478 pipecb (EV_A_ &pipe_w, EV_READ);
2479#endif
1233 } 2480 }
1234 2481
1235 postfork = 0; 2482 postfork = 0;
1236} 2483}
1237 2484
1238#if EV_MULTIPLICITY 2485#if EV_MULTIPLICITY
2486
1239struct ev_loop * 2487struct ev_loop * ecb_cold
1240ev_loop_new (unsigned int flags) 2488ev_loop_new (unsigned int flags)
1241{ 2489{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2490 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 2491
1244 memset (loop, 0, sizeof (struct ev_loop)); 2492 memset (EV_A, 0, sizeof (struct ev_loop));
1245
1246 loop_init (EV_A_ flags); 2493 loop_init (EV_A_ flags);
1247 2494
1248 if (ev_backend (EV_A)) 2495 if (ev_backend (EV_A))
1249 return loop; 2496 return EV_A;
1250 2497
2498 ev_free (EV_A);
1251 return 0; 2499 return 0;
1252} 2500}
1253 2501
1254void 2502#endif /* multiplicity */
1255ev_loop_destroy (EV_P)
1256{
1257 loop_destroy (EV_A);
1258 ev_free (loop);
1259}
1260 2503
1261void 2504#if EV_VERIFY
1262ev_loop_fork (EV_P) 2505static void noinline ecb_cold
2506verify_watcher (EV_P_ W w)
1263{ 2507{
1264 postfork = 1; /* must be in line with ev_default_fork */ 2508 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1265}
1266 2509
2510 if (w->pending)
2511 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2512}
2513
2514static void noinline ecb_cold
2515verify_heap (EV_P_ ANHE *heap, int N)
2516{
2517 int i;
2518
2519 for (i = HEAP0; i < N + HEAP0; ++i)
2520 {
2521 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2522 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2523 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2524
2525 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2526 }
2527}
2528
2529static void noinline ecb_cold
2530array_verify (EV_P_ W *ws, int cnt)
2531{
2532 while (cnt--)
2533 {
2534 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2535 verify_watcher (EV_A_ ws [cnt]);
2536 }
2537}
2538#endif
2539
2540#if EV_FEATURE_API
2541void ecb_cold
2542ev_verify (EV_P)
2543{
2544#if EV_VERIFY
2545 int i;
2546 WL w;
2547
2548 assert (activecnt >= -1);
2549
2550 assert (fdchangemax >= fdchangecnt);
2551 for (i = 0; i < fdchangecnt; ++i)
2552 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2553
2554 assert (anfdmax >= 0);
2555 for (i = 0; i < anfdmax; ++i)
2556 for (w = anfds [i].head; w; w = w->next)
2557 {
2558 verify_watcher (EV_A_ (W)w);
2559 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2560 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2561 }
2562
2563 assert (timermax >= timercnt);
2564 verify_heap (EV_A_ timers, timercnt);
2565
2566#if EV_PERIODIC_ENABLE
2567 assert (periodicmax >= periodiccnt);
2568 verify_heap (EV_A_ periodics, periodiccnt);
2569#endif
2570
2571 for (i = NUMPRI; i--; )
2572 {
2573 assert (pendingmax [i] >= pendingcnt [i]);
2574#if EV_IDLE_ENABLE
2575 assert (idleall >= 0);
2576 assert (idlemax [i] >= idlecnt [i]);
2577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2578#endif
2579 }
2580
2581#if EV_FORK_ENABLE
2582 assert (forkmax >= forkcnt);
2583 array_verify (EV_A_ (W *)forks, forkcnt);
2584#endif
2585
2586#if EV_CLEANUP_ENABLE
2587 assert (cleanupmax >= cleanupcnt);
2588 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2589#endif
2590
2591#if EV_ASYNC_ENABLE
2592 assert (asyncmax >= asynccnt);
2593 array_verify (EV_A_ (W *)asyncs, asynccnt);
2594#endif
2595
2596#if EV_PREPARE_ENABLE
2597 assert (preparemax >= preparecnt);
2598 array_verify (EV_A_ (W *)prepares, preparecnt);
2599#endif
2600
2601#if EV_CHECK_ENABLE
2602 assert (checkmax >= checkcnt);
2603 array_verify (EV_A_ (W *)checks, checkcnt);
2604#endif
2605
2606# if 0
2607#if EV_CHILD_ENABLE
2608 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2609 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2610#endif
2611# endif
2612#endif
2613}
1267#endif 2614#endif
1268 2615
1269#if EV_MULTIPLICITY 2616#if EV_MULTIPLICITY
1270struct ev_loop * 2617struct ev_loop * ecb_cold
1271ev_default_loop_init (unsigned int flags)
1272#else 2618#else
1273int 2619int
2620#endif
1274ev_default_loop (unsigned int flags) 2621ev_default_loop (unsigned int flags)
1275#endif
1276{ 2622{
1277 if (!ev_default_loop_ptr) 2623 if (!ev_default_loop_ptr)
1278 { 2624 {
1279#if EV_MULTIPLICITY 2625#if EV_MULTIPLICITY
1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2626 EV_P = ev_default_loop_ptr = &default_loop_struct;
1281#else 2627#else
1282 ev_default_loop_ptr = 1; 2628 ev_default_loop_ptr = 1;
1283#endif 2629#endif
1284 2630
1285 loop_init (EV_A_ flags); 2631 loop_init (EV_A_ flags);
1286 2632
1287 if (ev_backend (EV_A)) 2633 if (ev_backend (EV_A))
1288 { 2634 {
1289#ifndef _WIN32 2635#if EV_CHILD_ENABLE
1290 ev_signal_init (&childev, childcb, SIGCHLD); 2636 ev_signal_init (&childev, childcb, SIGCHLD);
1291 ev_set_priority (&childev, EV_MAXPRI); 2637 ev_set_priority (&childev, EV_MAXPRI);
1292 ev_signal_start (EV_A_ &childev); 2638 ev_signal_start (EV_A_ &childev);
1293 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2639 ev_unref (EV_A); /* child watcher should not keep loop alive */
1294#endif 2640#endif
1299 2645
1300 return ev_default_loop_ptr; 2646 return ev_default_loop_ptr;
1301} 2647}
1302 2648
1303void 2649void
1304ev_default_destroy (void) 2650ev_loop_fork (EV_P)
1305{ 2651{
1306#if EV_MULTIPLICITY
1307 struct ev_loop *loop = ev_default_loop_ptr;
1308#endif
1309
1310#ifndef _WIN32
1311 ev_ref (EV_A); /* child watcher */
1312 ev_signal_stop (EV_A_ &childev);
1313#endif
1314
1315 loop_destroy (EV_A);
1316}
1317
1318void
1319ev_default_fork (void)
1320{
1321#if EV_MULTIPLICITY
1322 struct ev_loop *loop = ev_default_loop_ptr;
1323#endif
1324
1325 if (backend)
1326 postfork = 1; /* must be in line with ev_loop_fork */ 2652 postfork = 1; /* must be in line with ev_default_fork */
1327} 2653}
1328 2654
1329/*****************************************************************************/ 2655/*****************************************************************************/
1330 2656
1331void 2657void
1332ev_invoke (EV_P_ void *w, int revents) 2658ev_invoke (EV_P_ void *w, int revents)
1333{ 2659{
1334 EV_CB_INVOKE ((W)w, revents); 2660 EV_CB_INVOKE ((W)w, revents);
1335} 2661}
1336 2662
1337void inline_speed 2663unsigned int
1338call_pending (EV_P) 2664ev_pending_count (EV_P)
2665{
2666 int pri;
2667 unsigned int count = 0;
2668
2669 for (pri = NUMPRI; pri--; )
2670 count += pendingcnt [pri];
2671
2672 return count;
2673}
2674
2675void noinline
2676ev_invoke_pending (EV_P)
1339{ 2677{
1340 int pri; 2678 int pri;
1341 2679
1342 for (pri = NUMPRI; pri--; ) 2680 for (pri = NUMPRI; pri--; )
1343 while (pendingcnt [pri]) 2681 while (pendingcnt [pri])
1344 { 2682 {
1345 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2683 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1346 2684
1347 if (expect_true (p->w))
1348 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1350
1351 p->w->pending = 0; 2685 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events); 2686 EV_CB_INVOKE (p->w, p->events);
1353 } 2687 EV_FREQUENT_CHECK;
1354 } 2688 }
1355} 2689}
1356 2690
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436
1437#if EV_IDLE_ENABLE 2691#if EV_IDLE_ENABLE
1438void inline_size 2692/* make idle watchers pending. this handles the "call-idle */
2693/* only when higher priorities are idle" logic */
2694inline_size void
1439idle_reify (EV_P) 2695idle_reify (EV_P)
1440{ 2696{
1441 if (expect_false (idleall)) 2697 if (expect_false (idleall))
1442 { 2698 {
1443 int pri; 2699 int pri;
1455 } 2711 }
1456 } 2712 }
1457} 2713}
1458#endif 2714#endif
1459 2715
1460void inline_speed 2716/* make timers pending */
2717inline_size void
2718timers_reify (EV_P)
2719{
2720 EV_FREQUENT_CHECK;
2721
2722 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2723 {
2724 do
2725 {
2726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2727
2728 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2729
2730 /* first reschedule or stop timer */
2731 if (w->repeat)
2732 {
2733 ev_at (w) += w->repeat;
2734 if (ev_at (w) < mn_now)
2735 ev_at (w) = mn_now;
2736
2737 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2738
2739 ANHE_at_cache (timers [HEAP0]);
2740 downheap (timers, timercnt, HEAP0);
2741 }
2742 else
2743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2744
2745 EV_FREQUENT_CHECK;
2746 feed_reverse (EV_A_ (W)w);
2747 }
2748 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2749
2750 feed_reverse_done (EV_A_ EV_TIMER);
2751 }
2752}
2753
2754#if EV_PERIODIC_ENABLE
2755
2756static void noinline
2757periodic_recalc (EV_P_ ev_periodic *w)
2758{
2759 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2760 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2761
2762 /* the above almost always errs on the low side */
2763 while (at <= ev_rt_now)
2764 {
2765 ev_tstamp nat = at + w->interval;
2766
2767 /* when resolution fails us, we use ev_rt_now */
2768 if (expect_false (nat == at))
2769 {
2770 at = ev_rt_now;
2771 break;
2772 }
2773
2774 at = nat;
2775 }
2776
2777 ev_at (w) = at;
2778}
2779
2780/* make periodics pending */
2781inline_size void
2782periodics_reify (EV_P)
2783{
2784 EV_FREQUENT_CHECK;
2785
2786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2787 {
2788 int feed_count = 0;
2789
2790 do
2791 {
2792 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2793
2794 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2795
2796 /* first reschedule or stop timer */
2797 if (w->reschedule_cb)
2798 {
2799 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2800
2801 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2802
2803 ANHE_at_cache (periodics [HEAP0]);
2804 downheap (periodics, periodiccnt, HEAP0);
2805 }
2806 else if (w->interval)
2807 {
2808 periodic_recalc (EV_A_ w);
2809 ANHE_at_cache (periodics [HEAP0]);
2810 downheap (periodics, periodiccnt, HEAP0);
2811 }
2812 else
2813 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2814
2815 EV_FREQUENT_CHECK;
2816 feed_reverse (EV_A_ (W)w);
2817 }
2818 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2819
2820 feed_reverse_done (EV_A_ EV_PERIODIC);
2821 }
2822}
2823
2824/* simply recalculate all periodics */
2825/* TODO: maybe ensure that at least one event happens when jumping forward? */
2826static void noinline ecb_cold
2827periodics_reschedule (EV_P)
2828{
2829 int i;
2830
2831 /* adjust periodics after time jump */
2832 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2833 {
2834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2835
2836 if (w->reschedule_cb)
2837 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2838 else if (w->interval)
2839 periodic_recalc (EV_A_ w);
2840
2841 ANHE_at_cache (periodics [i]);
2842 }
2843
2844 reheap (periodics, periodiccnt);
2845}
2846#endif
2847
2848/* adjust all timers by a given offset */
2849static void noinline ecb_cold
2850timers_reschedule (EV_P_ ev_tstamp adjust)
2851{
2852 int i;
2853
2854 for (i = 0; i < timercnt; ++i)
2855 {
2856 ANHE *he = timers + i + HEAP0;
2857 ANHE_w (*he)->at += adjust;
2858 ANHE_at_cache (*he);
2859 }
2860}
2861
2862/* fetch new monotonic and realtime times from the kernel */
2863/* also detect if there was a timejump, and act accordingly */
2864inline_speed void
1461time_update (EV_P_ ev_tstamp max_block) 2865time_update (EV_P_ ev_tstamp max_block)
1462{ 2866{
1463 int i;
1464
1465#if EV_USE_MONOTONIC 2867#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic)) 2868 if (expect_true (have_monotonic))
1467 { 2869 {
2870 int i;
1468 ev_tstamp odiff = rtmn_diff; 2871 ev_tstamp odiff = rtmn_diff;
1469 2872
1470 mn_now = get_clock (); 2873 mn_now = get_clock ();
1471 2874
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2875 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1488 * doesn't hurt either as we only do this on time-jumps or 2891 * doesn't hurt either as we only do this on time-jumps or
1489 * in the unlikely event of having been preempted here. 2892 * in the unlikely event of having been preempted here.
1490 */ 2893 */
1491 for (i = 4; --i; ) 2894 for (i = 4; --i; )
1492 { 2895 {
2896 ev_tstamp diff;
1493 rtmn_diff = ev_rt_now - mn_now; 2897 rtmn_diff = ev_rt_now - mn_now;
1494 2898
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2899 diff = odiff - rtmn_diff;
2900
2901 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 2902 return; /* all is well */
1497 2903
1498 ev_rt_now = ev_time (); 2904 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 2905 mn_now = get_clock ();
1500 now_floor = mn_now; 2906 now_floor = mn_now;
1501 } 2907 }
1502 2908
2909 /* no timer adjustment, as the monotonic clock doesn't jump */
2910 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1503# if EV_PERIODIC_ENABLE 2911# if EV_PERIODIC_ENABLE
1504 periodics_reschedule (EV_A); 2912 periodics_reschedule (EV_A);
1505# endif 2913# endif
1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1508 } 2914 }
1509 else 2915 else
1510#endif 2916#endif
1511 { 2917 {
1512 ev_rt_now = ev_time (); 2918 ev_rt_now = ev_time ();
1513 2919
1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2920 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1515 { 2921 {
2922 /* adjust timers. this is easy, as the offset is the same for all of them */
2923 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1516#if EV_PERIODIC_ENABLE 2924#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 2925 periodics_reschedule (EV_A);
1518#endif 2926#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i)
1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1522 } 2927 }
1523 2928
1524 mn_now = ev_rt_now; 2929 mn_now = ev_rt_now;
1525 } 2930 }
1526} 2931}
1527 2932
1528void 2933void
1529ev_ref (EV_P)
1530{
1531 ++activecnt;
1532}
1533
1534void
1535ev_unref (EV_P)
1536{
1537 --activecnt;
1538}
1539
1540static int loop_done;
1541
1542void
1543ev_loop (EV_P_ int flags) 2934ev_run (EV_P_ int flags)
1544{ 2935{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2936#if EV_FEATURE_API
1546 ? EVUNLOOP_ONE 2937 ++loop_depth;
1547 : EVUNLOOP_CANCEL; 2938#endif
1548 2939
2940 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2941
2942 loop_done = EVBREAK_CANCEL;
2943
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2944 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1550 2945
1551 do 2946 do
1552 { 2947 {
2948#if EV_VERIFY >= 2
2949 ev_verify (EV_A);
2950#endif
2951
1553#ifndef _WIN32 2952#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 2953 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 2954 if (expect_false (getpid () != curpid))
1556 { 2955 {
1557 curpid = getpid (); 2956 curpid = getpid ();
1563 /* we might have forked, so queue fork handlers */ 2962 /* we might have forked, so queue fork handlers */
1564 if (expect_false (postfork)) 2963 if (expect_false (postfork))
1565 if (forkcnt) 2964 if (forkcnt)
1566 { 2965 {
1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2966 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1568 call_pending (EV_A); 2967 EV_INVOKE_PENDING;
1569 } 2968 }
1570#endif 2969#endif
1571 2970
2971#if EV_PREPARE_ENABLE
1572 /* queue prepare watchers (and execute them) */ 2972 /* queue prepare watchers (and execute them) */
1573 if (expect_false (preparecnt)) 2973 if (expect_false (preparecnt))
1574 { 2974 {
1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2975 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1576 call_pending (EV_A); 2976 EV_INVOKE_PENDING;
1577 } 2977 }
2978#endif
1578 2979
1579 if (expect_false (!activecnt)) 2980 if (expect_false (loop_done))
1580 break; 2981 break;
1581 2982
1582 /* we might have forked, so reify kernel state if necessary */ 2983 /* we might have forked, so reify kernel state if necessary */
1583 if (expect_false (postfork)) 2984 if (expect_false (postfork))
1584 loop_fork (EV_A); 2985 loop_fork (EV_A);
1589 /* calculate blocking time */ 2990 /* calculate blocking time */
1590 { 2991 {
1591 ev_tstamp waittime = 0.; 2992 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.; 2993 ev_tstamp sleeptime = 0.;
1593 2994
2995 /* remember old timestamp for io_blocktime calculation */
2996 ev_tstamp prev_mn_now = mn_now;
2997
2998 /* update time to cancel out callback processing overhead */
2999 time_update (EV_A_ 1e100);
3000
3001 /* from now on, we want a pipe-wake-up */
3002 pipe_write_wanted = 1;
3003
3004 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3005
1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3006 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1595 { 3007 {
1596 /* update time to cancel out callback processing overhead */
1597 time_update (EV_A_ 1e100);
1598
1599 waittime = MAX_BLOCKTIME; 3008 waittime = MAX_BLOCKTIME;
1600 3009
1601 if (timercnt) 3010 if (timercnt)
1602 { 3011 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3012 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1604 if (waittime > to) waittime = to; 3013 if (waittime > to) waittime = to;
1605 } 3014 }
1606 3015
1607#if EV_PERIODIC_ENABLE 3016#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 3017 if (periodiccnt)
1609 { 3018 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3019 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1611 if (waittime > to) waittime = to; 3020 if (waittime > to) waittime = to;
1612 } 3021 }
1613#endif 3022#endif
1614 3023
3024 /* don't let timeouts decrease the waittime below timeout_blocktime */
1615 if (expect_false (waittime < timeout_blocktime)) 3025 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime; 3026 waittime = timeout_blocktime;
1617 3027
1618 sleeptime = waittime - backend_fudge; 3028 /* at this point, we NEED to wait, so we have to ensure */
3029 /* to pass a minimum nonzero value to the backend */
3030 if (expect_false (waittime < backend_mintime))
3031 waittime = backend_mintime;
1619 3032
3033 /* extra check because io_blocktime is commonly 0 */
1620 if (expect_true (sleeptime > io_blocktime)) 3034 if (expect_false (io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 { 3035 {
3036 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3037
3038 if (sleeptime > waittime - backend_mintime)
3039 sleeptime = waittime - backend_mintime;
3040
3041 if (expect_true (sleeptime > 0.))
3042 {
1625 ev_sleep (sleeptime); 3043 ev_sleep (sleeptime);
1626 waittime -= sleeptime; 3044 waittime -= sleeptime;
3045 }
1627 } 3046 }
1628 } 3047 }
1629 3048
3049#if EV_FEATURE_API
1630 ++loop_count; 3050 ++loop_count;
3051#endif
3052 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1631 backend_poll (EV_A_ waittime); 3053 backend_poll (EV_A_ waittime);
3054 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3055
3056 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3057
3058 if (pipe_write_skipped)
3059 {
3060 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3061 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3062 }
3063
1632 3064
1633 /* update ev_rt_now, do magic */ 3065 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime); 3066 time_update (EV_A_ waittime + sleeptime);
1635 } 3067 }
1636 3068
1643#if EV_IDLE_ENABLE 3075#if EV_IDLE_ENABLE
1644 /* queue idle watchers unless other events are pending */ 3076 /* queue idle watchers unless other events are pending */
1645 idle_reify (EV_A); 3077 idle_reify (EV_A);
1646#endif 3078#endif
1647 3079
3080#if EV_CHECK_ENABLE
1648 /* queue check watchers, to be executed first */ 3081 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 3082 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3083 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3084#endif
1651 3085
1652 call_pending (EV_A); 3086 EV_INVOKE_PENDING;
1653
1654 } 3087 }
1655 while (expect_true (activecnt && !loop_done)); 3088 while (expect_true (
3089 activecnt
3090 && !loop_done
3091 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3092 ));
1656 3093
1657 if (loop_done == EVUNLOOP_ONE) 3094 if (loop_done == EVBREAK_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 3095 loop_done = EVBREAK_CANCEL;
3096
3097#if EV_FEATURE_API
3098 --loop_depth;
3099#endif
1659} 3100}
1660 3101
1661void 3102void
1662ev_unloop (EV_P_ int how) 3103ev_break (EV_P_ int how)
1663{ 3104{
1664 loop_done = how; 3105 loop_done = how;
1665} 3106}
1666 3107
3108void
3109ev_ref (EV_P)
3110{
3111 ++activecnt;
3112}
3113
3114void
3115ev_unref (EV_P)
3116{
3117 --activecnt;
3118}
3119
3120void
3121ev_now_update (EV_P)
3122{
3123 time_update (EV_A_ 1e100);
3124}
3125
3126void
3127ev_suspend (EV_P)
3128{
3129 ev_now_update (EV_A);
3130}
3131
3132void
3133ev_resume (EV_P)
3134{
3135 ev_tstamp mn_prev = mn_now;
3136
3137 ev_now_update (EV_A);
3138 timers_reschedule (EV_A_ mn_now - mn_prev);
3139#if EV_PERIODIC_ENABLE
3140 /* TODO: really do this? */
3141 periodics_reschedule (EV_A);
3142#endif
3143}
3144
1667/*****************************************************************************/ 3145/*****************************************************************************/
3146/* singly-linked list management, used when the expected list length is short */
1668 3147
1669void inline_size 3148inline_size void
1670wlist_add (WL *head, WL elem) 3149wlist_add (WL *head, WL elem)
1671{ 3150{
1672 elem->next = *head; 3151 elem->next = *head;
1673 *head = elem; 3152 *head = elem;
1674} 3153}
1675 3154
1676void inline_size 3155inline_size void
1677wlist_del (WL *head, WL elem) 3156wlist_del (WL *head, WL elem)
1678{ 3157{
1679 while (*head) 3158 while (*head)
1680 { 3159 {
1681 if (*head == elem) 3160 if (expect_true (*head == elem))
1682 { 3161 {
1683 *head = elem->next; 3162 *head = elem->next;
1684 return; 3163 break;
1685 } 3164 }
1686 3165
1687 head = &(*head)->next; 3166 head = &(*head)->next;
1688 } 3167 }
1689} 3168}
1690 3169
1691void inline_speed 3170/* internal, faster, version of ev_clear_pending */
3171inline_speed void
1692clear_pending (EV_P_ W w) 3172clear_pending (EV_P_ W w)
1693{ 3173{
1694 if (w->pending) 3174 if (w->pending)
1695 { 3175 {
1696 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3176 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1697 w->pending = 0; 3177 w->pending = 0;
1698 } 3178 }
1699} 3179}
1700 3180
1701int 3181int
1705 int pending = w_->pending; 3185 int pending = w_->pending;
1706 3186
1707 if (expect_true (pending)) 3187 if (expect_true (pending))
1708 { 3188 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3189 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3190 p->w = (W)&pending_w;
1710 w_->pending = 0; 3191 w_->pending = 0;
1711 p->w = 0;
1712 return p->events; 3192 return p->events;
1713 } 3193 }
1714 else 3194 else
1715 return 0; 3195 return 0;
1716} 3196}
1717 3197
1718void inline_size 3198inline_size void
1719pri_adjust (EV_P_ W w) 3199pri_adjust (EV_P_ W w)
1720{ 3200{
1721 int pri = w->priority; 3201 int pri = ev_priority (w);
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3202 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3203 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri; 3204 ev_set_priority (w, pri);
1725} 3205}
1726 3206
1727void inline_speed 3207inline_speed void
1728ev_start (EV_P_ W w, int active) 3208ev_start (EV_P_ W w, int active)
1729{ 3209{
1730 pri_adjust (EV_A_ w); 3210 pri_adjust (EV_A_ w);
1731 w->active = active; 3211 w->active = active;
1732 ev_ref (EV_A); 3212 ev_ref (EV_A);
1733} 3213}
1734 3214
1735void inline_size 3215inline_size void
1736ev_stop (EV_P_ W w) 3216ev_stop (EV_P_ W w)
1737{ 3217{
1738 ev_unref (EV_A); 3218 ev_unref (EV_A);
1739 w->active = 0; 3219 w->active = 0;
1740} 3220}
1747 int fd = w->fd; 3227 int fd = w->fd;
1748 3228
1749 if (expect_false (ev_is_active (w))) 3229 if (expect_false (ev_is_active (w)))
1750 return; 3230 return;
1751 3231
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 3232 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3233 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3234
3235 EV_FREQUENT_CHECK;
1753 3236
1754 ev_start (EV_A_ (W)w, 1); 3237 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3238 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1756 wlist_add (&anfds[fd].head, (WL)w); 3239 wlist_add (&anfds[fd].head, (WL)w);
1757 3240
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3241 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1759 w->events &= ~EV_IOFDSET; 3242 w->events &= ~EV__IOFDSET;
3243
3244 EV_FREQUENT_CHECK;
1760} 3245}
1761 3246
1762void noinline 3247void noinline
1763ev_io_stop (EV_P_ ev_io *w) 3248ev_io_stop (EV_P_ ev_io *w)
1764{ 3249{
1765 clear_pending (EV_A_ (W)w); 3250 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 3251 if (expect_false (!ev_is_active (w)))
1767 return; 3252 return;
1768 3253
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3254 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3255
3256 EV_FREQUENT_CHECK;
1770 3257
1771 wlist_del (&anfds[w->fd].head, (WL)w); 3258 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 3259 ev_stop (EV_A_ (W)w);
1773 3260
1774 fd_change (EV_A_ w->fd, 1); 3261 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3262
3263 EV_FREQUENT_CHECK;
1775} 3264}
1776 3265
1777void noinline 3266void noinline
1778ev_timer_start (EV_P_ ev_timer *w) 3267ev_timer_start (EV_P_ ev_timer *w)
1779{ 3268{
1780 if (expect_false (ev_is_active (w))) 3269 if (expect_false (ev_is_active (w)))
1781 return; 3270 return;
1782 3271
1783 ((WT)w)->at += mn_now; 3272 ev_at (w) += mn_now;
1784 3273
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3274 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 3275
3276 EV_FREQUENT_CHECK;
3277
3278 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 3279 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3280 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 3281 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 3282 ANHE_at_cache (timers [ev_active (w)]);
3283 upheap (timers, ev_active (w));
1791 3284
3285 EV_FREQUENT_CHECK;
3286
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3287 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 3288}
1794 3289
1795void noinline 3290void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 3291ev_timer_stop (EV_P_ ev_timer *w)
1797{ 3292{
1798 clear_pending (EV_A_ (W)w); 3293 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 3294 if (expect_false (!ev_is_active (w)))
1800 return; 3295 return;
1801 3296
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3297 EV_FREQUENT_CHECK;
1803 3298
1804 { 3299 {
1805 int active = ((W)w)->active; 3300 int active = ev_active (w);
1806 3301
3302 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3303
3304 --timercnt;
3305
1807 if (expect_true (--active < --timercnt)) 3306 if (expect_true (active < timercnt + HEAP0))
1808 { 3307 {
1809 timers [active] = timers [timercnt]; 3308 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 3309 adjustheap (timers, timercnt, active);
1811 } 3310 }
1812 } 3311 }
1813 3312
1814 ((WT)w)->at -= mn_now; 3313 ev_at (w) -= mn_now;
1815 3314
1816 ev_stop (EV_A_ (W)w); 3315 ev_stop (EV_A_ (W)w);
3316
3317 EV_FREQUENT_CHECK;
1817} 3318}
1818 3319
1819void noinline 3320void noinline
1820ev_timer_again (EV_P_ ev_timer *w) 3321ev_timer_again (EV_P_ ev_timer *w)
1821{ 3322{
3323 EV_FREQUENT_CHECK;
3324
3325 clear_pending (EV_A_ (W)w);
3326
1822 if (ev_is_active (w)) 3327 if (ev_is_active (w))
1823 { 3328 {
1824 if (w->repeat) 3329 if (w->repeat)
1825 { 3330 {
1826 ((WT)w)->at = mn_now + w->repeat; 3331 ev_at (w) = mn_now + w->repeat;
3332 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 3333 adjustheap (timers, timercnt, ev_active (w));
1828 } 3334 }
1829 else 3335 else
1830 ev_timer_stop (EV_A_ w); 3336 ev_timer_stop (EV_A_ w);
1831 } 3337 }
1832 else if (w->repeat) 3338 else if (w->repeat)
1833 { 3339 {
1834 w->at = w->repeat; 3340 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 3341 ev_timer_start (EV_A_ w);
1836 } 3342 }
3343
3344 EV_FREQUENT_CHECK;
3345}
3346
3347ev_tstamp
3348ev_timer_remaining (EV_P_ ev_timer *w)
3349{
3350 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1837} 3351}
1838 3352
1839#if EV_PERIODIC_ENABLE 3353#if EV_PERIODIC_ENABLE
1840void noinline 3354void noinline
1841ev_periodic_start (EV_P_ ev_periodic *w) 3355ev_periodic_start (EV_P_ ev_periodic *w)
1842{ 3356{
1843 if (expect_false (ev_is_active (w))) 3357 if (expect_false (ev_is_active (w)))
1844 return; 3358 return;
1845 3359
1846 if (w->reschedule_cb) 3360 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3361 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 3362 else if (w->interval)
1849 { 3363 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3364 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 3365 periodic_recalc (EV_A_ w);
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 3366 }
1854 else 3367 else
1855 ((WT)w)->at = w->offset; 3368 ev_at (w) = w->offset;
1856 3369
3370 EV_FREQUENT_CHECK;
3371
3372 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 3373 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3374 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 3375 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 3376 ANHE_at_cache (periodics [ev_active (w)]);
3377 upheap (periodics, ev_active (w));
1861 3378
3379 EV_FREQUENT_CHECK;
3380
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3381 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 3382}
1864 3383
1865void noinline 3384void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 3385ev_periodic_stop (EV_P_ ev_periodic *w)
1867{ 3386{
1868 clear_pending (EV_A_ (W)w); 3387 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 3388 if (expect_false (!ev_is_active (w)))
1870 return; 3389 return;
1871 3390
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3391 EV_FREQUENT_CHECK;
1873 3392
1874 { 3393 {
1875 int active = ((W)w)->active; 3394 int active = ev_active (w);
1876 3395
3396 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3397
3398 --periodiccnt;
3399
1877 if (expect_true (--active < --periodiccnt)) 3400 if (expect_true (active < periodiccnt + HEAP0))
1878 { 3401 {
1879 periodics [active] = periodics [periodiccnt]; 3402 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 3403 adjustheap (periodics, periodiccnt, active);
1881 } 3404 }
1882 } 3405 }
1883 3406
1884 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
1885} 3410}
1886 3411
1887void noinline 3412void noinline
1888ev_periodic_again (EV_P_ ev_periodic *w) 3413ev_periodic_again (EV_P_ ev_periodic *w)
1889{ 3414{
1895 3420
1896#ifndef SA_RESTART 3421#ifndef SA_RESTART
1897# define SA_RESTART 0 3422# define SA_RESTART 0
1898#endif 3423#endif
1899 3424
3425#if EV_SIGNAL_ENABLE
3426
1900void noinline 3427void noinline
1901ev_signal_start (EV_P_ ev_signal *w) 3428ev_signal_start (EV_P_ ev_signal *w)
1902{ 3429{
1903#if EV_MULTIPLICITY
1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1905#endif
1906 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
1907 return; 3431 return;
1908 3432
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3433 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1910 3434
1911 evpipe_init (EV_A); 3435#if EV_MULTIPLICITY
3436 assert (("libev: a signal must not be attached to two different loops",
3437 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1912 3438
3439 signals [w->signum - 1].loop = EV_A;
3440#endif
3441
3442 EV_FREQUENT_CHECK;
3443
3444#if EV_USE_SIGNALFD
3445 if (sigfd == -2)
1913 { 3446 {
1914#ifndef _WIN32 3447 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1915 sigset_t full, prev; 3448 if (sigfd < 0 && errno == EINVAL)
1916 sigfillset (&full); 3449 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919 3450
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3451 if (sigfd >= 0)
3452 {
3453 fd_intern (sigfd); /* doing it twice will not hurt */
1921 3454
1922#ifndef _WIN32 3455 sigemptyset (&sigfd_set);
1923 sigprocmask (SIG_SETMASK, &prev, 0); 3456
1924#endif 3457 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3458 ev_set_priority (&sigfd_w, EV_MAXPRI);
3459 ev_io_start (EV_A_ &sigfd_w);
3460 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3461 }
1925 } 3462 }
3463
3464 if (sigfd >= 0)
3465 {
3466 /* TODO: check .head */
3467 sigaddset (&sigfd_set, w->signum);
3468 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3469
3470 signalfd (sigfd, &sigfd_set, 0);
3471 }
3472#endif
1926 3473
1927 ev_start (EV_A_ (W)w, 1); 3474 ev_start (EV_A_ (W)w, 1);
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 3475 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 3476
1930 if (!((WL)w)->next) 3477 if (!((WL)w)->next)
3478# if EV_USE_SIGNALFD
3479 if (sigfd < 0) /*TODO*/
3480# endif
1931 { 3481 {
1932#if _WIN32 3482# ifdef _WIN32
3483 evpipe_init (EV_A);
3484
1933 signal (w->signum, sighandler); 3485 signal (w->signum, ev_sighandler);
1934#else 3486# else
1935 struct sigaction sa; 3487 struct sigaction sa;
3488
3489 evpipe_init (EV_A);
3490
1936 sa.sa_handler = sighandler; 3491 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 3492 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3493 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 3494 sigaction (w->signum, &sa, 0);
3495
3496 if (origflags & EVFLAG_NOSIGMASK)
3497 {
3498 sigemptyset (&sa.sa_mask);
3499 sigaddset (&sa.sa_mask, w->signum);
3500 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3501 }
1940#endif 3502#endif
1941 } 3503 }
3504
3505 EV_FREQUENT_CHECK;
1942} 3506}
1943 3507
1944void noinline 3508void noinline
1945ev_signal_stop (EV_P_ ev_signal *w) 3509ev_signal_stop (EV_P_ ev_signal *w)
1946{ 3510{
1947 clear_pending (EV_A_ (W)w); 3511 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 3512 if (expect_false (!ev_is_active (w)))
1949 return; 3513 return;
1950 3514
3515 EV_FREQUENT_CHECK;
3516
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 3517 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 3518 ev_stop (EV_A_ (W)w);
1953 3519
1954 if (!signals [w->signum - 1].head) 3520 if (!signals [w->signum - 1].head)
3521 {
3522#if EV_MULTIPLICITY
3523 signals [w->signum - 1].loop = 0; /* unattach from signal */
3524#endif
3525#if EV_USE_SIGNALFD
3526 if (sigfd >= 0)
3527 {
3528 sigset_t ss;
3529
3530 sigemptyset (&ss);
3531 sigaddset (&ss, w->signum);
3532 sigdelset (&sigfd_set, w->signum);
3533
3534 signalfd (sigfd, &sigfd_set, 0);
3535 sigprocmask (SIG_UNBLOCK, &ss, 0);
3536 }
3537 else
3538#endif
1955 signal (w->signum, SIG_DFL); 3539 signal (w->signum, SIG_DFL);
3540 }
3541
3542 EV_FREQUENT_CHECK;
1956} 3543}
3544
3545#endif
3546
3547#if EV_CHILD_ENABLE
1957 3548
1958void 3549void
1959ev_child_start (EV_P_ ev_child *w) 3550ev_child_start (EV_P_ ev_child *w)
1960{ 3551{
1961#if EV_MULTIPLICITY 3552#if EV_MULTIPLICITY
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3553 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 3554#endif
1964 if (expect_false (ev_is_active (w))) 3555 if (expect_false (ev_is_active (w)))
1965 return; 3556 return;
1966 3557
3558 EV_FREQUENT_CHECK;
3559
1967 ev_start (EV_A_ (W)w, 1); 3560 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3561 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3562
3563 EV_FREQUENT_CHECK;
1969} 3564}
1970 3565
1971void 3566void
1972ev_child_stop (EV_P_ ev_child *w) 3567ev_child_stop (EV_P_ ev_child *w)
1973{ 3568{
1974 clear_pending (EV_A_ (W)w); 3569 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 3570 if (expect_false (!ev_is_active (w)))
1976 return; 3571 return;
1977 3572
3573 EV_FREQUENT_CHECK;
3574
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3575 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
1980} 3579}
3580
3581#endif
1981 3582
1982#if EV_STAT_ENABLE 3583#if EV_STAT_ENABLE
1983 3584
1984# ifdef _WIN32 3585# ifdef _WIN32
1985# undef lstat 3586# undef lstat
1986# define lstat(a,b) _stati64 (a,b) 3587# define lstat(a,b) _stati64 (a,b)
1987# endif 3588# endif
1988 3589
1989#define DEF_STAT_INTERVAL 5.0074891 3590#define DEF_STAT_INTERVAL 5.0074891
3591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1990#define MIN_STAT_INTERVAL 0.1074891 3592#define MIN_STAT_INTERVAL 0.1074891
1991 3593
1992static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1993 3595
1994#if EV_USE_INOTIFY 3596#if EV_USE_INOTIFY
1995# define EV_INOTIFY_BUFSIZE 8192 3597
3598/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3599# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1996 3600
1997static void noinline 3601static void noinline
1998infy_add (EV_P_ ev_stat *w) 3602infy_add (EV_P_ ev_stat *w)
1999{ 3603{
2000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3604 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2001 3605
2002 if (w->wd < 0) 3606 if (w->wd >= 0)
3607 {
3608 struct statfs sfs;
3609
3610 /* now local changes will be tracked by inotify, but remote changes won't */
3611 /* unless the filesystem is known to be local, we therefore still poll */
3612 /* also do poll on <2.6.25, but with normal frequency */
3613
3614 if (!fs_2625)
3615 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3616 else if (!statfs (w->path, &sfs)
3617 && (sfs.f_type == 0x1373 /* devfs */
3618 || sfs.f_type == 0xEF53 /* ext2/3 */
3619 || sfs.f_type == 0x3153464a /* jfs */
3620 || sfs.f_type == 0x52654973 /* reiser3 */
3621 || sfs.f_type == 0x01021994 /* tempfs */
3622 || sfs.f_type == 0x58465342 /* xfs */))
3623 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3624 else
3625 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2003 { 3626 }
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3627 else
3628 {
3629 /* can't use inotify, continue to stat */
3630 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2005 3631
2006 /* monitor some parent directory for speedup hints */ 3632 /* if path is not there, monitor some parent directory for speedup hints */
3633 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3634 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3635 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 3636 {
2009 char path [4096]; 3637 char path [4096];
2010 strcpy (path, w->path); 3638 strcpy (path, w->path);
2011 3639
2014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3642 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3643 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2016 3644
2017 char *pend = strrchr (path, '/'); 3645 char *pend = strrchr (path, '/');
2018 3646
2019 if (!pend) 3647 if (!pend || pend == path)
2020 break; /* whoops, no '/', complain to your admin */ 3648 break;
2021 3649
2022 *pend = 0; 3650 *pend = 0;
2023 w->wd = inotify_add_watch (fs_fd, path, mask); 3651 w->wd = inotify_add_watch (fs_fd, path, mask);
2024 } 3652 }
2025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3653 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2026 } 3654 }
2027 } 3655 }
2028 else
2029 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2030 3656
2031 if (w->wd >= 0) 3657 if (w->wd >= 0)
2032 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3658 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3659
3660 /* now re-arm timer, if required */
3661 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3662 ev_timer_again (EV_A_ &w->timer);
3663 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2033} 3664}
2034 3665
2035static void noinline 3666static void noinline
2036infy_del (EV_P_ ev_stat *w) 3667infy_del (EV_P_ ev_stat *w)
2037{ 3668{
2040 3671
2041 if (wd < 0) 3672 if (wd < 0)
2042 return; 3673 return;
2043 3674
2044 w->wd = -2; 3675 w->wd = -2;
2045 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3676 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2046 wlist_del (&fs_hash [slot].head, (WL)w); 3677 wlist_del (&fs_hash [slot].head, (WL)w);
2047 3678
2048 /* remove this watcher, if others are watching it, they will rearm */ 3679 /* remove this watcher, if others are watching it, they will rearm */
2049 inotify_rm_watch (fs_fd, wd); 3680 inotify_rm_watch (fs_fd, wd);
2050} 3681}
2051 3682
2052static void noinline 3683static void noinline
2053infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3684infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2054{ 3685{
2055 if (slot < 0) 3686 if (slot < 0)
2056 /* overflow, need to check for all hahs slots */ 3687 /* overflow, need to check for all hash slots */
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3688 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2058 infy_wd (EV_A_ slot, wd, ev); 3689 infy_wd (EV_A_ slot, wd, ev);
2059 else 3690 else
2060 { 3691 {
2061 WL w_; 3692 WL w_;
2062 3693
2063 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3694 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2064 { 3695 {
2065 ev_stat *w = (ev_stat *)w_; 3696 ev_stat *w = (ev_stat *)w_;
2066 w_ = w_->next; /* lets us remove this watcher and all before it */ 3697 w_ = w_->next; /* lets us remove this watcher and all before it */
2067 3698
2068 if (w->wd == wd || wd == -1) 3699 if (w->wd == wd || wd == -1)
2069 { 3700 {
2070 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3701 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2071 { 3702 {
3703 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2072 w->wd = -1; 3704 w->wd = -1;
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 3705 infy_add (EV_A_ w); /* re-add, no matter what */
2074 } 3706 }
2075 3707
2076 stat_timer_cb (EV_A_ &w->timer, 0); 3708 stat_timer_cb (EV_A_ &w->timer, 0);
2081 3713
2082static void 3714static void
2083infy_cb (EV_P_ ev_io *w, int revents) 3715infy_cb (EV_P_ ev_io *w, int revents)
2084{ 3716{
2085 char buf [EV_INOTIFY_BUFSIZE]; 3717 char buf [EV_INOTIFY_BUFSIZE];
2086 struct inotify_event *ev = (struct inotify_event *)buf;
2087 int ofs; 3718 int ofs;
2088 int len = read (fs_fd, buf, sizeof (buf)); 3719 int len = read (fs_fd, buf, sizeof (buf));
2089 3720
2090 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3721 for (ofs = 0; ofs < len; )
3722 {
3723 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2091 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3724 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3725 ofs += sizeof (struct inotify_event) + ev->len;
3726 }
2092} 3727}
2093 3728
2094void inline_size 3729inline_size void ecb_cold
3730ev_check_2625 (EV_P)
3731{
3732 /* kernels < 2.6.25 are borked
3733 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3734 */
3735 if (ev_linux_version () < 0x020619)
3736 return;
3737
3738 fs_2625 = 1;
3739}
3740
3741inline_size int
3742infy_newfd (void)
3743{
3744#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3745 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3746 if (fd >= 0)
3747 return fd;
3748#endif
3749 return inotify_init ();
3750}
3751
3752inline_size void
2095infy_init (EV_P) 3753infy_init (EV_P)
2096{ 3754{
2097 if (fs_fd != -2) 3755 if (fs_fd != -2)
2098 return; 3756 return;
2099 3757
3758 fs_fd = -1;
3759
3760 ev_check_2625 (EV_A);
3761
2100 fs_fd = inotify_init (); 3762 fs_fd = infy_newfd ();
2101 3763
2102 if (fs_fd >= 0) 3764 if (fs_fd >= 0)
2103 { 3765 {
3766 fd_intern (fs_fd);
2104 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3767 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2105 ev_set_priority (&fs_w, EV_MAXPRI); 3768 ev_set_priority (&fs_w, EV_MAXPRI);
2106 ev_io_start (EV_A_ &fs_w); 3769 ev_io_start (EV_A_ &fs_w);
3770 ev_unref (EV_A);
2107 } 3771 }
2108} 3772}
2109 3773
2110void inline_size 3774inline_size void
2111infy_fork (EV_P) 3775infy_fork (EV_P)
2112{ 3776{
2113 int slot; 3777 int slot;
2114 3778
2115 if (fs_fd < 0) 3779 if (fs_fd < 0)
2116 return; 3780 return;
2117 3781
3782 ev_ref (EV_A);
3783 ev_io_stop (EV_A_ &fs_w);
2118 close (fs_fd); 3784 close (fs_fd);
2119 fs_fd = inotify_init (); 3785 fs_fd = infy_newfd ();
2120 3786
3787 if (fs_fd >= 0)
3788 {
3789 fd_intern (fs_fd);
3790 ev_io_set (&fs_w, fs_fd, EV_READ);
3791 ev_io_start (EV_A_ &fs_w);
3792 ev_unref (EV_A);
3793 }
3794
2121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3795 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2122 { 3796 {
2123 WL w_ = fs_hash [slot].head; 3797 WL w_ = fs_hash [slot].head;
2124 fs_hash [slot].head = 0; 3798 fs_hash [slot].head = 0;
2125 3799
2126 while (w_) 3800 while (w_)
2131 w->wd = -1; 3805 w->wd = -1;
2132 3806
2133 if (fs_fd >= 0) 3807 if (fs_fd >= 0)
2134 infy_add (EV_A_ w); /* re-add, no matter what */ 3808 infy_add (EV_A_ w); /* re-add, no matter what */
2135 else 3809 else
3810 {
3811 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3812 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2136 ev_timer_start (EV_A_ &w->timer); 3813 ev_timer_again (EV_A_ &w->timer);
3814 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3815 }
2137 } 3816 }
2138
2139 } 3817 }
2140} 3818}
2141 3819
3820#endif
3821
3822#ifdef _WIN32
3823# define EV_LSTAT(p,b) _stati64 (p, b)
3824#else
3825# define EV_LSTAT(p,b) lstat (p, b)
2142#endif 3826#endif
2143 3827
2144void 3828void
2145ev_stat_stat (EV_P_ ev_stat *w) 3829ev_stat_stat (EV_P_ ev_stat *w)
2146{ 3830{
2153static void noinline 3837static void noinline
2154stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3838stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2155{ 3839{
2156 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3840 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2157 3841
2158 /* we copy this here each the time so that */ 3842 ev_statdata prev = w->attr;
2159 /* prev has the old value when the callback gets invoked */
2160 w->prev = w->attr;
2161 ev_stat_stat (EV_A_ w); 3843 ev_stat_stat (EV_A_ w);
2162 3844
2163 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3845 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2164 if ( 3846 if (
2165 w->prev.st_dev != w->attr.st_dev 3847 prev.st_dev != w->attr.st_dev
2166 || w->prev.st_ino != w->attr.st_ino 3848 || prev.st_ino != w->attr.st_ino
2167 || w->prev.st_mode != w->attr.st_mode 3849 || prev.st_mode != w->attr.st_mode
2168 || w->prev.st_nlink != w->attr.st_nlink 3850 || prev.st_nlink != w->attr.st_nlink
2169 || w->prev.st_uid != w->attr.st_uid 3851 || prev.st_uid != w->attr.st_uid
2170 || w->prev.st_gid != w->attr.st_gid 3852 || prev.st_gid != w->attr.st_gid
2171 || w->prev.st_rdev != w->attr.st_rdev 3853 || prev.st_rdev != w->attr.st_rdev
2172 || w->prev.st_size != w->attr.st_size 3854 || prev.st_size != w->attr.st_size
2173 || w->prev.st_atime != w->attr.st_atime 3855 || prev.st_atime != w->attr.st_atime
2174 || w->prev.st_mtime != w->attr.st_mtime 3856 || prev.st_mtime != w->attr.st_mtime
2175 || w->prev.st_ctime != w->attr.st_ctime 3857 || prev.st_ctime != w->attr.st_ctime
2176 ) { 3858 ) {
3859 /* we only update w->prev on actual differences */
3860 /* in case we test more often than invoke the callback, */
3861 /* to ensure that prev is always different to attr */
3862 w->prev = prev;
3863
2177 #if EV_USE_INOTIFY 3864 #if EV_USE_INOTIFY
3865 if (fs_fd >= 0)
3866 {
2178 infy_del (EV_A_ w); 3867 infy_del (EV_A_ w);
2179 infy_add (EV_A_ w); 3868 infy_add (EV_A_ w);
2180 ev_stat_stat (EV_A_ w); /* avoid race... */ 3869 ev_stat_stat (EV_A_ w); /* avoid race... */
3870 }
2181 #endif 3871 #endif
2182 3872
2183 ev_feed_event (EV_A_ w, EV_STAT); 3873 ev_feed_event (EV_A_ w, EV_STAT);
2184 } 3874 }
2185} 3875}
2188ev_stat_start (EV_P_ ev_stat *w) 3878ev_stat_start (EV_P_ ev_stat *w)
2189{ 3879{
2190 if (expect_false (ev_is_active (w))) 3880 if (expect_false (ev_is_active (w)))
2191 return; 3881 return;
2192 3882
2193 /* since we use memcmp, we need to clear any padding data etc. */
2194 memset (&w->prev, 0, sizeof (ev_statdata));
2195 memset (&w->attr, 0, sizeof (ev_statdata));
2196
2197 ev_stat_stat (EV_A_ w); 3883 ev_stat_stat (EV_A_ w);
2198 3884
3885 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2199 if (w->interval < MIN_STAT_INTERVAL) 3886 w->interval = MIN_STAT_INTERVAL;
2200 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2201 3887
2202 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3888 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2203 ev_set_priority (&w->timer, ev_priority (w)); 3889 ev_set_priority (&w->timer, ev_priority (w));
2204 3890
2205#if EV_USE_INOTIFY 3891#if EV_USE_INOTIFY
2206 infy_init (EV_A); 3892 infy_init (EV_A);
2207 3893
2208 if (fs_fd >= 0) 3894 if (fs_fd >= 0)
2209 infy_add (EV_A_ w); 3895 infy_add (EV_A_ w);
2210 else 3896 else
2211#endif 3897#endif
3898 {
2212 ev_timer_start (EV_A_ &w->timer); 3899 ev_timer_again (EV_A_ &w->timer);
3900 ev_unref (EV_A);
3901 }
2213 3902
2214 ev_start (EV_A_ (W)w, 1); 3903 ev_start (EV_A_ (W)w, 1);
3904
3905 EV_FREQUENT_CHECK;
2215} 3906}
2216 3907
2217void 3908void
2218ev_stat_stop (EV_P_ ev_stat *w) 3909ev_stat_stop (EV_P_ ev_stat *w)
2219{ 3910{
2220 clear_pending (EV_A_ (W)w); 3911 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3912 if (expect_false (!ev_is_active (w)))
2222 return; 3913 return;
2223 3914
3915 EV_FREQUENT_CHECK;
3916
2224#if EV_USE_INOTIFY 3917#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 3918 infy_del (EV_A_ w);
2226#endif 3919#endif
3920
3921 if (ev_is_active (&w->timer))
3922 {
3923 ev_ref (EV_A);
2227 ev_timer_stop (EV_A_ &w->timer); 3924 ev_timer_stop (EV_A_ &w->timer);
3925 }
2228 3926
2229 ev_stop (EV_A_ (W)w); 3927 ev_stop (EV_A_ (W)w);
3928
3929 EV_FREQUENT_CHECK;
2230} 3930}
2231#endif 3931#endif
2232 3932
2233#if EV_IDLE_ENABLE 3933#if EV_IDLE_ENABLE
2234void 3934void
2237 if (expect_false (ev_is_active (w))) 3937 if (expect_false (ev_is_active (w)))
2238 return; 3938 return;
2239 3939
2240 pri_adjust (EV_A_ (W)w); 3940 pri_adjust (EV_A_ (W)w);
2241 3941
3942 EV_FREQUENT_CHECK;
3943
2242 { 3944 {
2243 int active = ++idlecnt [ABSPRI (w)]; 3945 int active = ++idlecnt [ABSPRI (w)];
2244 3946
2245 ++idleall; 3947 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 3948 ev_start (EV_A_ (W)w, active);
2247 3949
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3950 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 3951 idles [ABSPRI (w)][active - 1] = w;
2250 } 3952 }
3953
3954 EV_FREQUENT_CHECK;
2251} 3955}
2252 3956
2253void 3957void
2254ev_idle_stop (EV_P_ ev_idle *w) 3958ev_idle_stop (EV_P_ ev_idle *w)
2255{ 3959{
2256 clear_pending (EV_A_ (W)w); 3960 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 3961 if (expect_false (!ev_is_active (w)))
2258 return; 3962 return;
2259 3963
3964 EV_FREQUENT_CHECK;
3965
2260 { 3966 {
2261 int active = ((W)w)->active; 3967 int active = ev_active (w);
2262 3968
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3969 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3970 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 3971
2266 ev_stop (EV_A_ (W)w); 3972 ev_stop (EV_A_ (W)w);
2267 --idleall; 3973 --idleall;
2268 } 3974 }
2269}
2270#endif
2271 3975
3976 EV_FREQUENT_CHECK;
3977}
3978#endif
3979
3980#if EV_PREPARE_ENABLE
2272void 3981void
2273ev_prepare_start (EV_P_ ev_prepare *w) 3982ev_prepare_start (EV_P_ ev_prepare *w)
2274{ 3983{
2275 if (expect_false (ev_is_active (w))) 3984 if (expect_false (ev_is_active (w)))
2276 return; 3985 return;
3986
3987 EV_FREQUENT_CHECK;
2277 3988
2278 ev_start (EV_A_ (W)w, ++preparecnt); 3989 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3990 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 3991 prepares [preparecnt - 1] = w;
3992
3993 EV_FREQUENT_CHECK;
2281} 3994}
2282 3995
2283void 3996void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 3997ev_prepare_stop (EV_P_ ev_prepare *w)
2285{ 3998{
2286 clear_pending (EV_A_ (W)w); 3999 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 4000 if (expect_false (!ev_is_active (w)))
2288 return; 4001 return;
2289 4002
4003 EV_FREQUENT_CHECK;
4004
2290 { 4005 {
2291 int active = ((W)w)->active; 4006 int active = ev_active (w);
4007
2292 prepares [active - 1] = prepares [--preparecnt]; 4008 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 4009 ev_active (prepares [active - 1]) = active;
2294 } 4010 }
2295 4011
2296 ev_stop (EV_A_ (W)w); 4012 ev_stop (EV_A_ (W)w);
2297}
2298 4013
4014 EV_FREQUENT_CHECK;
4015}
4016#endif
4017
4018#if EV_CHECK_ENABLE
2299void 4019void
2300ev_check_start (EV_P_ ev_check *w) 4020ev_check_start (EV_P_ ev_check *w)
2301{ 4021{
2302 if (expect_false (ev_is_active (w))) 4022 if (expect_false (ev_is_active (w)))
2303 return; 4023 return;
4024
4025 EV_FREQUENT_CHECK;
2304 4026
2305 ev_start (EV_A_ (W)w, ++checkcnt); 4027 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4028 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 4029 checks [checkcnt - 1] = w;
4030
4031 EV_FREQUENT_CHECK;
2308} 4032}
2309 4033
2310void 4034void
2311ev_check_stop (EV_P_ ev_check *w) 4035ev_check_stop (EV_P_ ev_check *w)
2312{ 4036{
2313 clear_pending (EV_A_ (W)w); 4037 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 4038 if (expect_false (!ev_is_active (w)))
2315 return; 4039 return;
2316 4040
4041 EV_FREQUENT_CHECK;
4042
2317 { 4043 {
2318 int active = ((W)w)->active; 4044 int active = ev_active (w);
4045
2319 checks [active - 1] = checks [--checkcnt]; 4046 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 4047 ev_active (checks [active - 1]) = active;
2321 } 4048 }
2322 4049
2323 ev_stop (EV_A_ (W)w); 4050 ev_stop (EV_A_ (W)w);
4051
4052 EV_FREQUENT_CHECK;
2324} 4053}
4054#endif
2325 4055
2326#if EV_EMBED_ENABLE 4056#if EV_EMBED_ENABLE
2327void noinline 4057void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w) 4058ev_embed_sweep (EV_P_ ev_embed *w)
2329{ 4059{
2330 ev_loop (w->other, EVLOOP_NONBLOCK); 4060 ev_run (w->other, EVRUN_NOWAIT);
2331} 4061}
2332 4062
2333static void 4063static void
2334embed_io_cb (EV_P_ ev_io *io, int revents) 4064embed_io_cb (EV_P_ ev_io *io, int revents)
2335{ 4065{
2336 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4066 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2337 4067
2338 if (ev_cb (w)) 4068 if (ev_cb (w))
2339 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4069 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2340 else 4070 else
2341 ev_loop (w->other, EVLOOP_NONBLOCK); 4071 ev_run (w->other, EVRUN_NOWAIT);
2342} 4072}
2343 4073
2344static void 4074static void
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4075embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{ 4076{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4077 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348 4078
2349 { 4079 {
2350 struct ev_loop *loop = w->other; 4080 EV_P = w->other;
2351 4081
2352 while (fdchangecnt) 4082 while (fdchangecnt)
2353 { 4083 {
2354 fd_reify (EV_A); 4084 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4085 ev_run (EV_A_ EVRUN_NOWAIT);
2356 } 4086 }
2357 } 4087 }
4088}
4089
4090static void
4091embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4092{
4093 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4094
4095 ev_embed_stop (EV_A_ w);
4096
4097 {
4098 EV_P = w->other;
4099
4100 ev_loop_fork (EV_A);
4101 ev_run (EV_A_ EVRUN_NOWAIT);
4102 }
4103
4104 ev_embed_start (EV_A_ w);
2358} 4105}
2359 4106
2360#if 0 4107#if 0
2361static void 4108static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4109embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2370{ 4117{
2371 if (expect_false (ev_is_active (w))) 4118 if (expect_false (ev_is_active (w)))
2372 return; 4119 return;
2373 4120
2374 { 4121 {
2375 struct ev_loop *loop = w->other; 4122 EV_P = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4123 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4124 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 4125 }
4126
4127 EV_FREQUENT_CHECK;
2379 4128
2380 ev_set_priority (&w->io, ev_priority (w)); 4129 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 4130 ev_io_start (EV_A_ &w->io);
2382 4131
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 4132 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 4133 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 4134 ev_prepare_start (EV_A_ &w->prepare);
2386 4135
4136 ev_fork_init (&w->fork, embed_fork_cb);
4137 ev_fork_start (EV_A_ &w->fork);
4138
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4139 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 4140
2389 ev_start (EV_A_ (W)w, 1); 4141 ev_start (EV_A_ (W)w, 1);
4142
4143 EV_FREQUENT_CHECK;
2390} 4144}
2391 4145
2392void 4146void
2393ev_embed_stop (EV_P_ ev_embed *w) 4147ev_embed_stop (EV_P_ ev_embed *w)
2394{ 4148{
2395 clear_pending (EV_A_ (W)w); 4149 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 4150 if (expect_false (!ev_is_active (w)))
2397 return; 4151 return;
2398 4152
4153 EV_FREQUENT_CHECK;
4154
2399 ev_io_stop (EV_A_ &w->io); 4155 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 4156 ev_prepare_stop (EV_A_ &w->prepare);
4157 ev_fork_stop (EV_A_ &w->fork);
2401 4158
2402 ev_stop (EV_A_ (W)w); 4159 ev_stop (EV_A_ (W)w);
4160
4161 EV_FREQUENT_CHECK;
2403} 4162}
2404#endif 4163#endif
2405 4164
2406#if EV_FORK_ENABLE 4165#if EV_FORK_ENABLE
2407void 4166void
2408ev_fork_start (EV_P_ ev_fork *w) 4167ev_fork_start (EV_P_ ev_fork *w)
2409{ 4168{
2410 if (expect_false (ev_is_active (w))) 4169 if (expect_false (ev_is_active (w)))
2411 return; 4170 return;
2412 4171
4172 EV_FREQUENT_CHECK;
4173
2413 ev_start (EV_A_ (W)w, ++forkcnt); 4174 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4175 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 4176 forks [forkcnt - 1] = w;
4177
4178 EV_FREQUENT_CHECK;
2416} 4179}
2417 4180
2418void 4181void
2419ev_fork_stop (EV_P_ ev_fork *w) 4182ev_fork_stop (EV_P_ ev_fork *w)
2420{ 4183{
2421 clear_pending (EV_A_ (W)w); 4184 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 4185 if (expect_false (!ev_is_active (w)))
2423 return; 4186 return;
2424 4187
4188 EV_FREQUENT_CHECK;
4189
2425 { 4190 {
2426 int active = ((W)w)->active; 4191 int active = ev_active (w);
4192
2427 forks [active - 1] = forks [--forkcnt]; 4193 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 4194 ev_active (forks [active - 1]) = active;
2429 } 4195 }
2430 4196
2431 ev_stop (EV_A_ (W)w); 4197 ev_stop (EV_A_ (W)w);
4198
4199 EV_FREQUENT_CHECK;
4200}
4201#endif
4202
4203#if EV_CLEANUP_ENABLE
4204void
4205ev_cleanup_start (EV_P_ ev_cleanup *w)
4206{
4207 if (expect_false (ev_is_active (w)))
4208 return;
4209
4210 EV_FREQUENT_CHECK;
4211
4212 ev_start (EV_A_ (W)w, ++cleanupcnt);
4213 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4214 cleanups [cleanupcnt - 1] = w;
4215
4216 /* cleanup watchers should never keep a refcount on the loop */
4217 ev_unref (EV_A);
4218 EV_FREQUENT_CHECK;
4219}
4220
4221void
4222ev_cleanup_stop (EV_P_ ev_cleanup *w)
4223{
4224 clear_pending (EV_A_ (W)w);
4225 if (expect_false (!ev_is_active (w)))
4226 return;
4227
4228 EV_FREQUENT_CHECK;
4229 ev_ref (EV_A);
4230
4231 {
4232 int active = ev_active (w);
4233
4234 cleanups [active - 1] = cleanups [--cleanupcnt];
4235 ev_active (cleanups [active - 1]) = active;
4236 }
4237
4238 ev_stop (EV_A_ (W)w);
4239
4240 EV_FREQUENT_CHECK;
2432} 4241}
2433#endif 4242#endif
2434 4243
2435#if EV_ASYNC_ENABLE 4244#if EV_ASYNC_ENABLE
2436void 4245void
2437ev_async_start (EV_P_ ev_async *w) 4246ev_async_start (EV_P_ ev_async *w)
2438{ 4247{
2439 if (expect_false (ev_is_active (w))) 4248 if (expect_false (ev_is_active (w)))
2440 return; 4249 return;
2441 4250
4251 w->sent = 0;
4252
2442 evpipe_init (EV_A); 4253 evpipe_init (EV_A);
4254
4255 EV_FREQUENT_CHECK;
2443 4256
2444 ev_start (EV_A_ (W)w, ++asynccnt); 4257 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4258 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 4259 asyncs [asynccnt - 1] = w;
4260
4261 EV_FREQUENT_CHECK;
2447} 4262}
2448 4263
2449void 4264void
2450ev_async_stop (EV_P_ ev_async *w) 4265ev_async_stop (EV_P_ ev_async *w)
2451{ 4266{
2452 clear_pending (EV_A_ (W)w); 4267 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 4268 if (expect_false (!ev_is_active (w)))
2454 return; 4269 return;
2455 4270
4271 EV_FREQUENT_CHECK;
4272
2456 { 4273 {
2457 int active = ((W)w)->active; 4274 int active = ev_active (w);
4275
2458 asyncs [active - 1] = asyncs [--asynccnt]; 4276 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 4277 ev_active (asyncs [active - 1]) = active;
2460 } 4278 }
2461 4279
2462 ev_stop (EV_A_ (W)w); 4280 ev_stop (EV_A_ (W)w);
4281
4282 EV_FREQUENT_CHECK;
2463} 4283}
2464 4284
2465void 4285void
2466ev_async_send (EV_P_ ev_async *w) 4286ev_async_send (EV_P_ ev_async *w)
2467{ 4287{
2468 w->sent = 1; 4288 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 4289 evpipe_write (EV_A_ &async_pending);
2470} 4290}
2471#endif 4291#endif
2472 4292
2473/*****************************************************************************/ 4293/*****************************************************************************/
2474 4294
2484once_cb (EV_P_ struct ev_once *once, int revents) 4304once_cb (EV_P_ struct ev_once *once, int revents)
2485{ 4305{
2486 void (*cb)(int revents, void *arg) = once->cb; 4306 void (*cb)(int revents, void *arg) = once->cb;
2487 void *arg = once->arg; 4307 void *arg = once->arg;
2488 4308
2489 ev_io_stop (EV_A_ &once->io); 4309 ev_io_stop (EV_A_ &once->io);
2490 ev_timer_stop (EV_A_ &once->to); 4310 ev_timer_stop (EV_A_ &once->to);
2491 ev_free (once); 4311 ev_free (once);
2492 4312
2493 cb (revents, arg); 4313 cb (revents, arg);
2494} 4314}
2495 4315
2496static void 4316static void
2497once_cb_io (EV_P_ ev_io *w, int revents) 4317once_cb_io (EV_P_ ev_io *w, int revents)
2498{ 4318{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4319 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4320
4321 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2500} 4322}
2501 4323
2502static void 4324static void
2503once_cb_to (EV_P_ ev_timer *w, int revents) 4325once_cb_to (EV_P_ ev_timer *w, int revents)
2504{ 4326{
2505 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4327 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4328
4329 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2506} 4330}
2507 4331
2508void 4332void
2509ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2510{ 4334{
2511 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4335 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2512 4336
2513 if (expect_false (!once)) 4337 if (expect_false (!once))
2514 { 4338 {
2515 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4339 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2516 return; 4340 return;
2517 } 4341 }
2518 4342
2519 once->cb = cb; 4343 once->cb = cb;
2520 once->arg = arg; 4344 once->arg = arg;
2532 ev_timer_set (&once->to, timeout, 0.); 4356 ev_timer_set (&once->to, timeout, 0.);
2533 ev_timer_start (EV_A_ &once->to); 4357 ev_timer_start (EV_A_ &once->to);
2534 } 4358 }
2535} 4359}
2536 4360
4361/*****************************************************************************/
4362
4363#if EV_WALK_ENABLE
4364void ecb_cold
4365ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4366{
4367 int i, j;
4368 ev_watcher_list *wl, *wn;
4369
4370 if (types & (EV_IO | EV_EMBED))
4371 for (i = 0; i < anfdmax; ++i)
4372 for (wl = anfds [i].head; wl; )
4373 {
4374 wn = wl->next;
4375
4376#if EV_EMBED_ENABLE
4377 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4378 {
4379 if (types & EV_EMBED)
4380 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4381 }
4382 else
4383#endif
4384#if EV_USE_INOTIFY
4385 if (ev_cb ((ev_io *)wl) == infy_cb)
4386 ;
4387 else
4388#endif
4389 if ((ev_io *)wl != &pipe_w)
4390 if (types & EV_IO)
4391 cb (EV_A_ EV_IO, wl);
4392
4393 wl = wn;
4394 }
4395
4396 if (types & (EV_TIMER | EV_STAT))
4397 for (i = timercnt + HEAP0; i-- > HEAP0; )
4398#if EV_STAT_ENABLE
4399 /*TODO: timer is not always active*/
4400 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4401 {
4402 if (types & EV_STAT)
4403 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4404 }
4405 else
4406#endif
4407 if (types & EV_TIMER)
4408 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4409
4410#if EV_PERIODIC_ENABLE
4411 if (types & EV_PERIODIC)
4412 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4413 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4414#endif
4415
4416#if EV_IDLE_ENABLE
4417 if (types & EV_IDLE)
4418 for (j = NUMPRI; j--; )
4419 for (i = idlecnt [j]; i--; )
4420 cb (EV_A_ EV_IDLE, idles [j][i]);
4421#endif
4422
4423#if EV_FORK_ENABLE
4424 if (types & EV_FORK)
4425 for (i = forkcnt; i--; )
4426 if (ev_cb (forks [i]) != embed_fork_cb)
4427 cb (EV_A_ EV_FORK, forks [i]);
4428#endif
4429
4430#if EV_ASYNC_ENABLE
4431 if (types & EV_ASYNC)
4432 for (i = asynccnt; i--; )
4433 cb (EV_A_ EV_ASYNC, asyncs [i]);
4434#endif
4435
4436#if EV_PREPARE_ENABLE
4437 if (types & EV_PREPARE)
4438 for (i = preparecnt; i--; )
4439# if EV_EMBED_ENABLE
4440 if (ev_cb (prepares [i]) != embed_prepare_cb)
4441# endif
4442 cb (EV_A_ EV_PREPARE, prepares [i]);
4443#endif
4444
4445#if EV_CHECK_ENABLE
4446 if (types & EV_CHECK)
4447 for (i = checkcnt; i--; )
4448 cb (EV_A_ EV_CHECK, checks [i]);
4449#endif
4450
4451#if EV_SIGNAL_ENABLE
4452 if (types & EV_SIGNAL)
4453 for (i = 0; i < EV_NSIG - 1; ++i)
4454 for (wl = signals [i].head; wl; )
4455 {
4456 wn = wl->next;
4457 cb (EV_A_ EV_SIGNAL, wl);
4458 wl = wn;
4459 }
4460#endif
4461
4462#if EV_CHILD_ENABLE
4463 if (types & EV_CHILD)
4464 for (i = (EV_PID_HASHSIZE); i--; )
4465 for (wl = childs [i]; wl; )
4466 {
4467 wn = wl->next;
4468 cb (EV_A_ EV_CHILD, wl);
4469 wl = wn;
4470 }
4471#endif
4472/* EV_STAT 0x00001000 /* stat data changed */
4473/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4474}
4475#endif
4476
2537#if EV_MULTIPLICITY 4477#if EV_MULTIPLICITY
2538 #include "ev_wrap.h" 4478 #include "ev_wrap.h"
2539#endif 4479#endif
2540 4480
2541#ifdef __cplusplus
2542}
2543#endif
2544

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines