ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC vs.
Revision 1.412 by root, Wed Feb 22 01:53:00 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 206# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
163# endif 209# endif
210# undef EV_AVOID_STDIO
164#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
165 220
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
167 222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
168#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
169# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
170#endif 269#endif
171 270
172#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 273#endif
175 274
176#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
177# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
178#endif 281#endif
179 282
180#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 285#endif
183 286
184#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
185# ifdef _WIN32 288# ifdef _WIN32
186# define EV_USE_POLL 0 289# define EV_USE_POLL 0
187# else 290# else
188# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 292# endif
190#endif 293#endif
191 294
192#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 298# else
196# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
197# endif 300# endif
198#endif 301#endif
199 302
205# define EV_USE_PORT 0 308# define EV_USE_PORT 0
206#endif 309#endif
207 310
208#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 314# else
212# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
213# endif 316# endif
214#endif 317#endif
215 318
216#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 321#endif
223 322
224#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 325#endif
231 326
232#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 330# else
236# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
237# endif 340# endif
238#endif 341#endif
239 342
240#if 0 /* debugging */ 343#if 0 /* debugging */
241# define EV_VERIFY 3 344# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 345# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 346# define EV_HEAP_CACHE_AT 1
244#endif 347#endif
245 348
246#ifndef EV_VERIFY 349#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 351#endif
249 352
250#ifndef EV_USE_4HEAP 353#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 354# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 355#endif
253 356
254#ifndef EV_HEAP_CACHE_AT 357#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
256#endif 373#endif
257 374
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
259 382
260#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
263#endif 386#endif
271# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
273#endif 396#endif
274 397
275#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
276# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
277# include <sys/select.h> 401# include <sys/select.h>
278# endif 402# endif
279#endif 403#endif
280 404
281#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
282# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
283#endif 413#endif
284 414
285#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h> 416# include <winsock.h>
287#endif 417#endif
288 418
289#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 421# include <stdint.h>
292# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
293extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
294# endif 424# endif
295int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
296# ifdef __cplusplus 426# ifdef O_CLOEXEC
297} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
298# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
299#endif 455#endif
300 456
301/**/ 457/**/
302 458
303#if EV_VERIFY >= 3 459#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 460# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 461#else
306# define EV_FREQUENT_CHECK do { } while (0) 462# define EV_FREQUENT_CHECK do { } while (0)
307#endif 463#endif
308 464
309/* 465/*
310 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */ 468 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
318 471
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
323#if __GNUC__ >= 4 519 #if __GNUC__
324# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
325# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
326#else 526#else
327# define expect(expr,value) (expr) 527 #include <inttypes.h>
328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
332#endif 542 #endif
543#endif
333 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #endif
607#endif
608
609#ifndef ECB_MEMORY_FENCE
610 #if !ECB_AVOID_PTHREADS
611 /*
612 * if you get undefined symbol references to pthread_mutex_lock,
613 * or failure to find pthread.h, then you should implement
614 * the ECB_MEMORY_FENCE operations for your cpu/compiler
615 * OR provide pthread.h and link against the posix thread library
616 * of your system.
617 */
618 #include <pthread.h>
619 #define ECB_NEEDS_PTHREADS 1
620 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
621
622 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
623 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
624 #endif
625#endif
626
627#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
628 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
629#endif
630
631#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
632 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
633#endif
634
635/*****************************************************************************/
636
637#define ECB_C99 (__STDC_VERSION__ >= 199901L)
638
639#if __cplusplus
640 #define ecb_inline static inline
641#elif ECB_GCC_VERSION(2,5)
642 #define ecb_inline static __inline__
643#elif ECB_C99
644 #define ecb_inline static inline
645#else
646 #define ecb_inline static
647#endif
648
649#if ECB_GCC_VERSION(3,3)
650 #define ecb_restrict __restrict__
651#elif ECB_C99
652 #define ecb_restrict restrict
653#else
654 #define ecb_restrict
655#endif
656
657typedef int ecb_bool;
658
659#define ECB_CONCAT_(a, b) a ## b
660#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
661#define ECB_STRINGIFY_(a) # a
662#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
663
664#define ecb_function_ ecb_inline
665
666#if ECB_GCC_VERSION(3,1)
667 #define ecb_attribute(attrlist) __attribute__(attrlist)
668 #define ecb_is_constant(expr) __builtin_constant_p (expr)
669 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
670 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
671#else
672 #define ecb_attribute(attrlist)
673 #define ecb_is_constant(expr) 0
674 #define ecb_expect(expr,value) (expr)
675 #define ecb_prefetch(addr,rw,locality)
676#endif
677
678/* no emulation for ecb_decltype */
679#if ECB_GCC_VERSION(4,5)
680 #define ecb_decltype(x) __decltype(x)
681#elif ECB_GCC_VERSION(3,0)
682 #define ecb_decltype(x) __typeof(x)
683#endif
684
685#define ecb_noinline ecb_attribute ((__noinline__))
686#define ecb_noreturn ecb_attribute ((__noreturn__))
687#define ecb_unused ecb_attribute ((__unused__))
688#define ecb_const ecb_attribute ((__const__))
689#define ecb_pure ecb_attribute ((__pure__))
690
691#if ECB_GCC_VERSION(4,3)
692 #define ecb_artificial ecb_attribute ((__artificial__))
693 #define ecb_hot ecb_attribute ((__hot__))
694 #define ecb_cold ecb_attribute ((__cold__))
695#else
696 #define ecb_artificial
697 #define ecb_hot
698 #define ecb_cold
699#endif
700
701/* put around conditional expressions if you are very sure that the */
702/* expression is mostly true or mostly false. note that these return */
703/* booleans, not the expression. */
334#define expect_false(expr) expect ((expr) != 0, 0) 704#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
335#define expect_true(expr) expect ((expr) != 0, 1) 705#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
706/* for compatibility to the rest of the world */
707#define ecb_likely(expr) ecb_expect_true (expr)
708#define ecb_unlikely(expr) ecb_expect_false (expr)
709
710/* count trailing zero bits and count # of one bits */
711#if ECB_GCC_VERSION(3,4)
712 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
713 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
714 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
715 #define ecb_ctz32(x) __builtin_ctz (x)
716 #define ecb_ctz64(x) __builtin_ctzll (x)
717 #define ecb_popcount32(x) __builtin_popcount (x)
718 /* no popcountll */
719#else
720 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
721 ecb_function_ int
722 ecb_ctz32 (uint32_t x)
723 {
724 int r = 0;
725
726 x &= ~x + 1; /* this isolates the lowest bit */
727
728#if ECB_branchless_on_i386
729 r += !!(x & 0xaaaaaaaa) << 0;
730 r += !!(x & 0xcccccccc) << 1;
731 r += !!(x & 0xf0f0f0f0) << 2;
732 r += !!(x & 0xff00ff00) << 3;
733 r += !!(x & 0xffff0000) << 4;
734#else
735 if (x & 0xaaaaaaaa) r += 1;
736 if (x & 0xcccccccc) r += 2;
737 if (x & 0xf0f0f0f0) r += 4;
738 if (x & 0xff00ff00) r += 8;
739 if (x & 0xffff0000) r += 16;
740#endif
741
742 return r;
743 }
744
745 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
746 ecb_function_ int
747 ecb_ctz64 (uint64_t x)
748 {
749 int shift = x & 0xffffffffU ? 0 : 32;
750 return ecb_ctz32 (x >> shift) + shift;
751 }
752
753 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
754 ecb_function_ int
755 ecb_popcount32 (uint32_t x)
756 {
757 x -= (x >> 1) & 0x55555555;
758 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
759 x = ((x >> 4) + x) & 0x0f0f0f0f;
760 x *= 0x01010101;
761
762 return x >> 24;
763 }
764
765 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
766 ecb_function_ int ecb_ld32 (uint32_t x)
767 {
768 int r = 0;
769
770 if (x >> 16) { x >>= 16; r += 16; }
771 if (x >> 8) { x >>= 8; r += 8; }
772 if (x >> 4) { x >>= 4; r += 4; }
773 if (x >> 2) { x >>= 2; r += 2; }
774 if (x >> 1) { r += 1; }
775
776 return r;
777 }
778
779 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
780 ecb_function_ int ecb_ld64 (uint64_t x)
781 {
782 int r = 0;
783
784 if (x >> 32) { x >>= 32; r += 32; }
785
786 return r + ecb_ld32 (x);
787 }
788#endif
789
790ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
792{
793 return ( (x * 0x0802U & 0x22110U)
794 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
795}
796
797ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
799{
800 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
801 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
802 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
803 x = ( x >> 8 ) | ( x << 8);
804
805 return x;
806}
807
808ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
810{
811 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
812 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
813 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
814 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
815 x = ( x >> 16 ) | ( x << 16);
816
817 return x;
818}
819
820/* popcount64 is only available on 64 bit cpus as gcc builtin */
821/* so for this version we are lazy */
822ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
823ecb_function_ int
824ecb_popcount64 (uint64_t x)
825{
826 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
827}
828
829ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
830ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
837
838ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
839ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
840ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
841ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
842ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
843ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
844ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
845ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
846
847#if ECB_GCC_VERSION(4,3)
848 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
849 #define ecb_bswap32(x) __builtin_bswap32 (x)
850 #define ecb_bswap64(x) __builtin_bswap64 (x)
851#else
852 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
853 ecb_function_ uint16_t
854 ecb_bswap16 (uint16_t x)
855 {
856 return ecb_rotl16 (x, 8);
857 }
858
859 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
860 ecb_function_ uint32_t
861 ecb_bswap32 (uint32_t x)
862 {
863 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
864 }
865
866 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
867 ecb_function_ uint64_t
868 ecb_bswap64 (uint64_t x)
869 {
870 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
871 }
872#endif
873
874#if ECB_GCC_VERSION(4,5)
875 #define ecb_unreachable() __builtin_unreachable ()
876#else
877 /* this seems to work fine, but gcc always emits a warning for it :/ */
878 ecb_inline void ecb_unreachable (void) ecb_noreturn;
879 ecb_inline void ecb_unreachable (void) { }
880#endif
881
882/* try to tell the compiler that some condition is definitely true */
883#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
884
885ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
886ecb_inline unsigned char
887ecb_byteorder_helper (void)
888{
889 const uint32_t u = 0x11223344;
890 return *(unsigned char *)&u;
891}
892
893ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
895ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
896ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
897
898#if ECB_GCC_VERSION(3,0) || ECB_C99
899 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
900#else
901 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
902#endif
903
904#if __cplusplus
905 template<typename T>
906 static inline T ecb_div_rd (T val, T div)
907 {
908 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
909 }
910 template<typename T>
911 static inline T ecb_div_ru (T val, T div)
912 {
913 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
914 }
915#else
916 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
917 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
918#endif
919
920#if ecb_cplusplus_does_not_suck
921 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
922 template<typename T, int N>
923 static inline int ecb_array_length (const T (&arr)[N])
924 {
925 return N;
926 }
927#else
928 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
929#endif
930
931#endif
932
933/* ECB.H END */
934
935#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
936/* if your architecture doesn't need memory fences, e.g. because it is
937 * single-cpu/core, or if you use libev in a project that doesn't use libev
938 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
939 * libev, in which cases the memory fences become nops.
940 * alternatively, you can remove this #error and link against libpthread,
941 * which will then provide the memory fences.
942 */
943# error "memory fences not defined for your architecture, please report"
944#endif
945
946#ifndef ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE do { } while (0)
948# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
949# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
950#endif
951
952#define expect_false(cond) ecb_expect_false (cond)
953#define expect_true(cond) ecb_expect_true (cond)
954#define noinline ecb_noinline
955
336#define inline_size static inline 956#define inline_size ecb_inline
337 957
338#if EV_MINIMAL 958#if EV_FEATURE_CODE
959# define inline_speed ecb_inline
960#else
339# define inline_speed static noinline 961# define inline_speed static noinline
962#endif
963
964#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
965
966#if EV_MINPRI == EV_MAXPRI
967# define ABSPRI(w) (((W)w), 0)
340#else 968#else
341# define inline_speed static inline
342#endif
343
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 969# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
970#endif
346 971
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 972#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 973#define EMPTY2(a,b) /* used to suppress some warnings */
349 974
350typedef ev_watcher *W; 975typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 977typedef ev_watcher_time *WT;
353 978
354#define ev_active(w) ((W)(w))->active 979#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 980#define ev_at(w) ((WT)(w))->at
356 981
982#if EV_USE_REALTIME
983/* sig_atomic_t is used to avoid per-thread variables or locking but still */
984/* giving it a reasonably high chance of working on typical architectures */
985static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
986#endif
987
357#if EV_USE_MONOTONIC 988#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 989static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
990#endif
991
992#ifndef EV_FD_TO_WIN32_HANDLE
993# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
994#endif
995#ifndef EV_WIN32_HANDLE_TO_FD
996# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
997#endif
998#ifndef EV_WIN32_CLOSE_FD
999# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 1000#endif
362 1001
363#ifdef _WIN32 1002#ifdef _WIN32
364# include "ev_win32.c" 1003# include "ev_win32.c"
365#endif 1004#endif
366 1005
367/*****************************************************************************/ 1006/*****************************************************************************/
368 1007
1008/* define a suitable floor function (only used by periodics atm) */
1009
1010#if EV_USE_FLOOR
1011# include <math.h>
1012# define ev_floor(v) floor (v)
1013#else
1014
1015#include <float.h>
1016
1017/* a floor() replacement function, should be independent of ev_tstamp type */
1018static ev_tstamp noinline
1019ev_floor (ev_tstamp v)
1020{
1021 /* the choice of shift factor is not terribly important */
1022#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1024#else
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1026#endif
1027
1028 /* argument too large for an unsigned long? */
1029 if (expect_false (v >= shift))
1030 {
1031 ev_tstamp f;
1032
1033 if (v == v - 1.)
1034 return v; /* very large number */
1035
1036 f = shift * ev_floor (v * (1. / shift));
1037 return f + ev_floor (v - f);
1038 }
1039
1040 /* special treatment for negative args? */
1041 if (expect_false (v < 0.))
1042 {
1043 ev_tstamp f = -ev_floor (-v);
1044
1045 return f - (f == v ? 0 : 1);
1046 }
1047
1048 /* fits into an unsigned long */
1049 return (unsigned long)v;
1050}
1051
1052#endif
1053
1054/*****************************************************************************/
1055
1056#ifdef __linux
1057# include <sys/utsname.h>
1058#endif
1059
1060static unsigned int noinline ecb_cold
1061ev_linux_version (void)
1062{
1063#ifdef __linux
1064 unsigned int v = 0;
1065 struct utsname buf;
1066 int i;
1067 char *p = buf.release;
1068
1069 if (uname (&buf))
1070 return 0;
1071
1072 for (i = 3+1; --i; )
1073 {
1074 unsigned int c = 0;
1075
1076 for (;;)
1077 {
1078 if (*p >= '0' && *p <= '9')
1079 c = c * 10 + *p++ - '0';
1080 else
1081 {
1082 p += *p == '.';
1083 break;
1084 }
1085 }
1086
1087 v = (v << 8) | c;
1088 }
1089
1090 return v;
1091#else
1092 return 0;
1093#endif
1094}
1095
1096/*****************************************************************************/
1097
1098#if EV_AVOID_STDIO
1099static void noinline ecb_cold
1100ev_printerr (const char *msg)
1101{
1102 write (STDERR_FILENO, msg, strlen (msg));
1103}
1104#endif
1105
369static void (*syserr_cb)(const char *msg); 1106static void (*syserr_cb)(const char *msg);
370 1107
371void 1108void ecb_cold
372ev_set_syserr_cb (void (*cb)(const char *msg)) 1109ev_set_syserr_cb (void (*cb)(const char *msg))
373{ 1110{
374 syserr_cb = cb; 1111 syserr_cb = cb;
375} 1112}
376 1113
377static void noinline 1114static void noinline ecb_cold
378syserr (const char *msg) 1115ev_syserr (const char *msg)
379{ 1116{
380 if (!msg) 1117 if (!msg)
381 msg = "(libev) system error"; 1118 msg = "(libev) system error";
382 1119
383 if (syserr_cb) 1120 if (syserr_cb)
384 syserr_cb (msg); 1121 syserr_cb (msg);
385 else 1122 else
386 { 1123 {
1124#if EV_AVOID_STDIO
1125 ev_printerr (msg);
1126 ev_printerr (": ");
1127 ev_printerr (strerror (errno));
1128 ev_printerr ("\n");
1129#else
387 perror (msg); 1130 perror (msg);
1131#endif
388 abort (); 1132 abort ();
389 } 1133 }
390} 1134}
391 1135
392static void * 1136static void *
393ev_realloc_emul (void *ptr, long size) 1137ev_realloc_emul (void *ptr, long size)
394{ 1138{
1139#if __GLIBC__
1140 return realloc (ptr, size);
1141#else
395 /* some systems, notably openbsd and darwin, fail to properly 1142 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 1143 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 1144 * the single unix specification, so work around them here.
398 */ 1145 */
399 1146
400 if (size) 1147 if (size)
401 return realloc (ptr, size); 1148 return realloc (ptr, size);
402 1149
403 free (ptr); 1150 free (ptr);
404 return 0; 1151 return 0;
1152#endif
405} 1153}
406 1154
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1155static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
408 1156
409void 1157void ecb_cold
410ev_set_allocator (void *(*cb)(void *ptr, long size)) 1158ev_set_allocator (void *(*cb)(void *ptr, long size))
411{ 1159{
412 alloc = cb; 1160 alloc = cb;
413} 1161}
414 1162
417{ 1165{
418 ptr = alloc (ptr, size); 1166 ptr = alloc (ptr, size);
419 1167
420 if (!ptr && size) 1168 if (!ptr && size)
421 { 1169 {
1170#if EV_AVOID_STDIO
1171 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1172#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1173 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1174#endif
423 abort (); 1175 abort ();
424 } 1176 }
425 1177
426 return ptr; 1178 return ptr;
427} 1179}
429#define ev_malloc(size) ev_realloc (0, (size)) 1181#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 1182#define ev_free(ptr) ev_realloc ((ptr), 0)
431 1183
432/*****************************************************************************/ 1184/*****************************************************************************/
433 1185
1186/* set in reify when reification needed */
1187#define EV_ANFD_REIFY 1
1188
1189/* file descriptor info structure */
434typedef struct 1190typedef struct
435{ 1191{
436 WL head; 1192 WL head;
437 unsigned char events; 1193 unsigned char events; /* the events watched for */
1194 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1195 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 1196 unsigned char unused;
1197#if EV_USE_EPOLL
1198 unsigned int egen; /* generation counter to counter epoll bugs */
1199#endif
439#if EV_SELECT_IS_WINSOCKET 1200#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
440 SOCKET handle; 1201 SOCKET handle;
441#endif 1202#endif
1203#if EV_USE_IOCP
1204 OVERLAPPED or, ow;
1205#endif
442} ANFD; 1206} ANFD;
443 1207
1208/* stores the pending event set for a given watcher */
444typedef struct 1209typedef struct
445{ 1210{
446 W w; 1211 W w;
447 int events; 1212 int events; /* the pending event set for the given watcher */
448} ANPENDING; 1213} ANPENDING;
449 1214
450#if EV_USE_INOTIFY 1215#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 1216/* hash table entry per inotify-id */
452typedef struct 1217typedef struct
455} ANFS; 1220} ANFS;
456#endif 1221#endif
457 1222
458/* Heap Entry */ 1223/* Heap Entry */
459#if EV_HEAP_CACHE_AT 1224#if EV_HEAP_CACHE_AT
1225 /* a heap element */
460 typedef struct { 1226 typedef struct {
461 ev_tstamp at; 1227 ev_tstamp at;
462 WT w; 1228 WT w;
463 } ANHE; 1229 } ANHE;
464 1230
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1231 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1232 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1233 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 1234#else
1235 /* a heap element */
469 typedef WT ANHE; 1236 typedef WT ANHE;
470 1237
471 #define ANHE_w(he) (he) 1238 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 1239 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 1240 #define ANHE_at_cache(he)
484 #undef VAR 1251 #undef VAR
485 }; 1252 };
486 #include "ev_wrap.h" 1253 #include "ev_wrap.h"
487 1254
488 static struct ev_loop default_loop_struct; 1255 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr; 1256 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
490 1257
491#else 1258#else
492 1259
493 ev_tstamp ev_rt_now; 1260 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
494 #define VAR(name,decl) static decl; 1261 #define VAR(name,decl) static decl;
495 #include "ev_vars.h" 1262 #include "ev_vars.h"
496 #undef VAR 1263 #undef VAR
497 1264
498 static int ev_default_loop_ptr; 1265 static int ev_default_loop_ptr;
499 1266
500#endif 1267#endif
501 1268
1269#if EV_FEATURE_API
1270# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1271# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1272# define EV_INVOKE_PENDING invoke_cb (EV_A)
1273#else
1274# define EV_RELEASE_CB (void)0
1275# define EV_ACQUIRE_CB (void)0
1276# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1277#endif
1278
1279#define EVBREAK_RECURSE 0x80
1280
502/*****************************************************************************/ 1281/*****************************************************************************/
503 1282
1283#ifndef EV_HAVE_EV_TIME
504ev_tstamp 1284ev_tstamp
505ev_time (void) 1285ev_time (void)
506{ 1286{
507#if EV_USE_REALTIME 1287#if EV_USE_REALTIME
1288 if (expect_true (have_realtime))
1289 {
508 struct timespec ts; 1290 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 1291 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 1292 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 1293 }
1294#endif
1295
512 struct timeval tv; 1296 struct timeval tv;
513 gettimeofday (&tv, 0); 1297 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 1298 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 1299}
1300#endif
517 1301
518ev_tstamp inline_size 1302inline_size ev_tstamp
519get_clock (void) 1303get_clock (void)
520{ 1304{
521#if EV_USE_MONOTONIC 1305#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 1306 if (expect_true (have_monotonic))
523 { 1307 {
544 if (delay > 0.) 1328 if (delay > 0.)
545 { 1329 {
546#if EV_USE_NANOSLEEP 1330#if EV_USE_NANOSLEEP
547 struct timespec ts; 1331 struct timespec ts;
548 1332
549 ts.tv_sec = (time_t)delay; 1333 EV_TS_SET (ts, delay);
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0); 1334 nanosleep (&ts, 0);
553#elif defined(_WIN32) 1335#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3)); 1336 Sleep ((unsigned long)(delay * 1e3));
555#else 1337#else
556 struct timeval tv; 1338 struct timeval tv;
557 1339
558 tv.tv_sec = (time_t)delay; 1340 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1341 /* something not guaranteed by newer posix versions, but guaranteed */
560 1342 /* by older ones */
1343 EV_TV_SET (tv, delay);
561 select (0, 0, 0, 0, &tv); 1344 select (0, 0, 0, 0, &tv);
562#endif 1345#endif
563 } 1346 }
564} 1347}
565 1348
566/*****************************************************************************/ 1349/*****************************************************************************/
567 1350
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1351#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 1352
570int inline_size 1353/* find a suitable new size for the given array, */
1354/* hopefully by rounding to a nice-to-malloc size */
1355inline_size int
571array_nextsize (int elem, int cur, int cnt) 1356array_nextsize (int elem, int cur, int cnt)
572{ 1357{
573 int ncur = cur + 1; 1358 int ncur = cur + 1;
574 1359
575 do 1360 do
576 ncur <<= 1; 1361 ncur <<= 1;
577 while (cnt > ncur); 1362 while (cnt > ncur);
578 1363
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1364 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1365 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 { 1366 {
582 ncur *= elem; 1367 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1368 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4; 1369 ncur = ncur - sizeof (void *) * 4;
586 } 1371 }
587 1372
588 return ncur; 1373 return ncur;
589} 1374}
590 1375
591static noinline void * 1376static void * noinline ecb_cold
592array_realloc (int elem, void *base, int *cur, int cnt) 1377array_realloc (int elem, void *base, int *cur, int cnt)
593{ 1378{
594 *cur = array_nextsize (elem, *cur, cnt); 1379 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 1380 return ev_realloc (base, elem * *cur);
596} 1381}
1382
1383#define array_init_zero(base,count) \
1384 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 1385
598#define array_needsize(type,base,cur,cnt,init) \ 1386#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 1387 if (expect_false ((cnt) > (cur))) \
600 { \ 1388 { \
601 int ocur_ = (cur); \ 1389 int ecb_unused ocur_ = (cur); \
602 (base) = (type *)array_realloc \ 1390 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \ 1391 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \ 1392 init ((base) + (ocur_), (cur) - ocur_); \
605 } 1393 }
606 1394
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1401 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 1402 }
615#endif 1403#endif
616 1404
617#define array_free(stem, idx) \ 1405#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1406 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 1407
620/*****************************************************************************/ 1408/*****************************************************************************/
1409
1410/* dummy callback for pending events */
1411static void noinline
1412pendingcb (EV_P_ ev_prepare *w, int revents)
1413{
1414}
621 1415
622void noinline 1416void noinline
623ev_feed_event (EV_P_ void *w, int revents) 1417ev_feed_event (EV_P_ void *w, int revents)
624{ 1418{
625 W w_ = (W)w; 1419 W w_ = (W)w;
634 pendings [pri][w_->pending - 1].w = w_; 1428 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 1429 pendings [pri][w_->pending - 1].events = revents;
636 } 1430 }
637} 1431}
638 1432
639void inline_speed 1433inline_speed void
1434feed_reverse (EV_P_ W w)
1435{
1436 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1437 rfeeds [rfeedcnt++] = w;
1438}
1439
1440inline_size void
1441feed_reverse_done (EV_P_ int revents)
1442{
1443 do
1444 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1445 while (rfeedcnt);
1446}
1447
1448inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 1449queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 1450{
642 int i; 1451 int i;
643 1452
644 for (i = 0; i < eventcnt; ++i) 1453 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 1454 ev_feed_event (EV_A_ events [i], type);
646} 1455}
647 1456
648/*****************************************************************************/ 1457/*****************************************************************************/
649 1458
650void inline_size 1459inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 1460fd_event_nocheck (EV_P_ int fd, int revents)
665{ 1461{
666 ANFD *anfd = anfds + fd; 1462 ANFD *anfd = anfds + fd;
667 ev_io *w; 1463 ev_io *w;
668 1464
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1465 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 1469 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 1470 ev_feed_event (EV_A_ (W)w, ev);
675 } 1471 }
676} 1472}
677 1473
1474/* do not submit kernel events for fds that have reify set */
1475/* because that means they changed while we were polling for new events */
1476inline_speed void
1477fd_event (EV_P_ int fd, int revents)
1478{
1479 ANFD *anfd = anfds + fd;
1480
1481 if (expect_true (!anfd->reify))
1482 fd_event_nocheck (EV_A_ fd, revents);
1483}
1484
678void 1485void
679ev_feed_fd_event (EV_P_ int fd, int revents) 1486ev_feed_fd_event (EV_P_ int fd, int revents)
680{ 1487{
681 if (fd >= 0 && fd < anfdmax) 1488 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 1489 fd_event_nocheck (EV_A_ fd, revents);
683} 1490}
684 1491
685void inline_size 1492/* make sure the external fd watch events are in-sync */
1493/* with the kernel/libev internal state */
1494inline_size void
686fd_reify (EV_P) 1495fd_reify (EV_P)
687{ 1496{
688 int i; 1497 int i;
1498
1499#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1500 for (i = 0; i < fdchangecnt; ++i)
1501 {
1502 int fd = fdchanges [i];
1503 ANFD *anfd = anfds + fd;
1504
1505 if (anfd->reify & EV__IOFDSET && anfd->head)
1506 {
1507 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1508
1509 if (handle != anfd->handle)
1510 {
1511 unsigned long arg;
1512
1513 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1514
1515 /* handle changed, but fd didn't - we need to do it in two steps */
1516 backend_modify (EV_A_ fd, anfd->events, 0);
1517 anfd->events = 0;
1518 anfd->handle = handle;
1519 }
1520 }
1521 }
1522#endif
689 1523
690 for (i = 0; i < fdchangecnt; ++i) 1524 for (i = 0; i < fdchangecnt; ++i)
691 { 1525 {
692 int fd = fdchanges [i]; 1526 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd; 1527 ANFD *anfd = anfds + fd;
694 ev_io *w; 1528 ev_io *w;
695 1529
696 unsigned char events = 0; 1530 unsigned char o_events = anfd->events;
1531 unsigned char o_reify = anfd->reify;
697 1532
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1533 anfd->reify = 0;
699 events |= (unsigned char)w->events;
700 1534
701#if EV_SELECT_IS_WINSOCKET 1535 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
702 if (events)
703 { 1536 {
704 unsigned long argp; 1537 anfd->events = 0;
705 #ifdef EV_FD_TO_WIN32_HANDLE 1538
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1539 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
707 #else 1540 anfd->events |= (unsigned char)w->events;
708 anfd->handle = _get_osfhandle (fd); 1541
709 #endif 1542 if (o_events != anfd->events)
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1543 o_reify = EV__IOFDSET; /* actually |= */
711 } 1544 }
712#endif
713 1545
714 { 1546 if (o_reify & EV__IOFDSET)
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 1547 backend_modify (EV_A_ fd, o_events, anfd->events);
723 }
724 } 1548 }
725 1549
726 fdchangecnt = 0; 1550 fdchangecnt = 0;
727} 1551}
728 1552
729void inline_size 1553/* something about the given fd changed */
1554inline_size void
730fd_change (EV_P_ int fd, int flags) 1555fd_change (EV_P_ int fd, int flags)
731{ 1556{
732 unsigned char reify = anfds [fd].reify; 1557 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 1558 anfds [fd].reify |= flags;
734 1559
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1563 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 1564 fdchanges [fdchangecnt - 1] = fd;
740 } 1565 }
741} 1566}
742 1567
743void inline_speed 1568/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1569inline_speed void ecb_cold
744fd_kill (EV_P_ int fd) 1570fd_kill (EV_P_ int fd)
745{ 1571{
746 ev_io *w; 1572 ev_io *w;
747 1573
748 while ((w = (ev_io *)anfds [fd].head)) 1574 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 1576 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1577 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 1578 }
753} 1579}
754 1580
755int inline_size 1581/* check whether the given fd is actually valid, for error recovery */
1582inline_size int ecb_cold
756fd_valid (int fd) 1583fd_valid (int fd)
757{ 1584{
758#ifdef _WIN32 1585#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 1586 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 1587#else
761 return fcntl (fd, F_GETFD) != -1; 1588 return fcntl (fd, F_GETFD) != -1;
762#endif 1589#endif
763} 1590}
764 1591
765/* called on EBADF to verify fds */ 1592/* called on EBADF to verify fds */
766static void noinline 1593static void noinline ecb_cold
767fd_ebadf (EV_P) 1594fd_ebadf (EV_P)
768{ 1595{
769 int fd; 1596 int fd;
770 1597
771 for (fd = 0; fd < anfdmax; ++fd) 1598 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1599 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1600 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1601 fd_kill (EV_A_ fd);
775} 1602}
776 1603
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1604/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1605static void noinline ecb_cold
779fd_enomem (EV_P) 1606fd_enomem (EV_P)
780{ 1607{
781 int fd; 1608 int fd;
782 1609
783 for (fd = anfdmax; fd--; ) 1610 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1611 if (anfds [fd].events)
785 { 1612 {
786 fd_kill (EV_A_ fd); 1613 fd_kill (EV_A_ fd);
787 return; 1614 break;
788 } 1615 }
789} 1616}
790 1617
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1618/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1619static void noinline
796 1623
797 for (fd = 0; fd < anfdmax; ++fd) 1624 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1625 if (anfds [fd].events)
799 { 1626 {
800 anfds [fd].events = 0; 1627 anfds [fd].events = 0;
1628 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1629 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1630 }
803} 1631}
804 1632
1633/* used to prepare libev internal fd's */
1634/* this is not fork-safe */
1635inline_speed void
1636fd_intern (int fd)
1637{
1638#ifdef _WIN32
1639 unsigned long arg = 1;
1640 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1641#else
1642 fcntl (fd, F_SETFD, FD_CLOEXEC);
1643 fcntl (fd, F_SETFL, O_NONBLOCK);
1644#endif
1645}
1646
805/*****************************************************************************/ 1647/*****************************************************************************/
806 1648
807/* 1649/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 1650 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1651 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 1652 * the branching factor of the d-tree.
811 */ 1653 */
812 1654
813/* 1655/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1664#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1665#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 1666#define UPHEAP_DONE(p,k) ((p) == (k))
825 1667
826/* away from the root */ 1668/* away from the root */
827void inline_speed 1669inline_speed void
828downheap (ANHE *heap, int N, int k) 1670downheap (ANHE *heap, int N, int k)
829{ 1671{
830 ANHE he = heap [k]; 1672 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 1673 ANHE *E = heap + N + HEAP0;
832 1674
872#define HEAP0 1 1714#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 1715#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 1716#define UPHEAP_DONE(p,k) (!(p))
875 1717
876/* away from the root */ 1718/* away from the root */
877void inline_speed 1719inline_speed void
878downheap (ANHE *heap, int N, int k) 1720downheap (ANHE *heap, int N, int k)
879{ 1721{
880 ANHE he = heap [k]; 1722 ANHE he = heap [k];
881 1723
882 for (;;) 1724 for (;;)
883 { 1725 {
884 int c = k << 1; 1726 int c = k << 1;
885 1727
886 if (c > N + HEAP0 - 1) 1728 if (c >= N + HEAP0)
887 break; 1729 break;
888 1730
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1731 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 1732 ? 1 : 0;
891 1733
902 ev_active (ANHE_w (he)) = k; 1744 ev_active (ANHE_w (he)) = k;
903} 1745}
904#endif 1746#endif
905 1747
906/* towards the root */ 1748/* towards the root */
907void inline_speed 1749inline_speed void
908upheap (ANHE *heap, int k) 1750upheap (ANHE *heap, int k)
909{ 1751{
910 ANHE he = heap [k]; 1752 ANHE he = heap [k];
911 1753
912 for (;;) 1754 for (;;)
923 1765
924 heap [k] = he; 1766 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 1767 ev_active (ANHE_w (he)) = k;
926} 1768}
927 1769
928void inline_size 1770/* move an element suitably so it is in a correct place */
1771inline_size void
929adjustheap (ANHE *heap, int N, int k) 1772adjustheap (ANHE *heap, int N, int k)
930{ 1773{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1774 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 1775 upheap (heap, k);
933 else 1776 else
934 downheap (heap, N, k); 1777 downheap (heap, N, k);
935} 1778}
936 1779
937/* rebuild the heap: this function is used only once and executed rarely */ 1780/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 1781inline_size void
939reheap (ANHE *heap, int N) 1782reheap (ANHE *heap, int N)
940{ 1783{
941 int i; 1784 int i;
942 1785
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1786 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
946 upheap (heap, i + HEAP0); 1789 upheap (heap, i + HEAP0);
947} 1790}
948 1791
949/*****************************************************************************/ 1792/*****************************************************************************/
950 1793
1794/* associate signal watchers to a signal signal */
951typedef struct 1795typedef struct
952{ 1796{
1797 EV_ATOMIC_T pending;
1798#if EV_MULTIPLICITY
1799 EV_P;
1800#endif
953 WL head; 1801 WL head;
954 EV_ATOMIC_T gotsig;
955} ANSIG; 1802} ANSIG;
956 1803
957static ANSIG *signals; 1804static ANSIG signals [EV_NSIG - 1];
958static int signalmax;
959
960static EV_ATOMIC_T gotsig;
961
962void inline_size
963signals_init (ANSIG *base, int count)
964{
965 while (count--)
966 {
967 base->head = 0;
968 base->gotsig = 0;
969
970 ++base;
971 }
972}
973 1805
974/*****************************************************************************/ 1806/*****************************************************************************/
975 1807
976void inline_speed 1808#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
977fd_intern (int fd)
978{
979#ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif
986}
987 1809
988static void noinline 1810static void noinline ecb_cold
989evpipe_init (EV_P) 1811evpipe_init (EV_P)
990{ 1812{
991 if (!ev_is_active (&pipeev)) 1813 if (!ev_is_active (&pipe_w))
992 { 1814 {
993#if EV_USE_EVENTFD 1815# if EV_USE_EVENTFD
1816 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1817 if (evfd < 0 && errno == EINVAL)
994 if ((evfd = eventfd (0, 0)) >= 0) 1818 evfd = eventfd (0, 0);
1819
1820 if (evfd >= 0)
995 { 1821 {
996 evpipe [0] = -1; 1822 evpipe [0] = -1;
997 fd_intern (evfd); 1823 fd_intern (evfd); /* doing it twice doesn't hurt */
998 ev_io_set (&pipeev, evfd, EV_READ); 1824 ev_io_set (&pipe_w, evfd, EV_READ);
999 } 1825 }
1000 else 1826 else
1001#endif 1827# endif
1002 { 1828 {
1003 while (pipe (evpipe)) 1829 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe"); 1830 ev_syserr ("(libev) error creating signal/async pipe");
1005 1831
1006 fd_intern (evpipe [0]); 1832 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]); 1833 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ); 1834 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1009 } 1835 }
1010 1836
1011 ev_io_start (EV_A_ &pipeev); 1837 ev_io_start (EV_A_ &pipe_w);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */ 1838 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 } 1839 }
1014} 1840}
1015 1841
1016void inline_size 1842inline_speed void
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1843evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{ 1844{
1019 if (!*flag) 1845 if (expect_true (*flag))
1846 return;
1847
1848 *flag = 1;
1849
1850 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1851
1852 pipe_write_skipped = 1;
1853
1854 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1855
1856 if (pipe_write_wanted)
1020 { 1857 {
1858 int old_errno;
1859
1860 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1861
1021 int old_errno = errno; /* save errno because write might clobber it */ 1862 old_errno = errno; /* save errno because write will clobber it */
1022
1023 *flag = 1;
1024 1863
1025#if EV_USE_EVENTFD 1864#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1865 if (evfd >= 0)
1027 { 1866 {
1028 uint64_t counter = 1; 1867 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t)); 1868 write (evfd, &counter, sizeof (uint64_t));
1030 } 1869 }
1031 else 1870 else
1032#endif 1871#endif
1872 {
1873 /* win32 people keep sending patches that change this write() to send() */
1874 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1875 /* so when you think this write should be a send instead, please find out */
1876 /* where your send() is from - it's definitely not the microsoft send, and */
1877 /* tell me. thank you. */
1878 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1879 /* check the ev documentation on how to use this flag */
1033 write (evpipe [1], &old_errno, 1); 1880 write (evpipe [1], &(evpipe [1]), 1);
1881 }
1034 1882
1035 errno = old_errno; 1883 errno = old_errno;
1036 } 1884 }
1037} 1885}
1038 1886
1887/* called whenever the libev signal pipe */
1888/* got some events (signal, async) */
1039static void 1889static void
1040pipecb (EV_P_ ev_io *iow, int revents) 1890pipecb (EV_P_ ev_io *iow, int revents)
1041{ 1891{
1892 int i;
1893
1894 if (revents & EV_READ)
1895 {
1042#if EV_USE_EVENTFD 1896#if EV_USE_EVENTFD
1043 if (evfd >= 0) 1897 if (evfd >= 0)
1044 { 1898 {
1045 uint64_t counter; 1899 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t)); 1900 read (evfd, &counter, sizeof (uint64_t));
1047 } 1901 }
1048 else 1902 else
1049#endif 1903#endif
1050 { 1904 {
1051 char dummy; 1905 char dummy;
1906 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1052 read (evpipe [0], &dummy, 1); 1907 read (evpipe [0], &dummy, 1);
1908 }
1909 }
1910
1911 pipe_write_skipped = 0;
1912
1913#if EV_SIGNAL_ENABLE
1914 if (sig_pending)
1053 } 1915 {
1916 sig_pending = 0;
1054 1917
1055 if (gotsig && ev_is_default_loop (EV_A)) 1918 for (i = EV_NSIG - 1; i--; )
1056 { 1919 if (expect_false (signals [i].pending))
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1); 1920 ev_feed_signal_event (EV_A_ i + 1);
1063 } 1921 }
1922#endif
1064 1923
1065#if EV_ASYNC_ENABLE 1924#if EV_ASYNC_ENABLE
1066 if (gotasync) 1925 if (async_pending)
1067 { 1926 {
1068 int i; 1927 async_pending = 0;
1069 gotasync = 0;
1070 1928
1071 for (i = asynccnt; i--; ) 1929 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent) 1930 if (asyncs [i]->sent)
1073 { 1931 {
1074 asyncs [i]->sent = 0; 1932 asyncs [i]->sent = 0;
1078#endif 1936#endif
1079} 1937}
1080 1938
1081/*****************************************************************************/ 1939/*****************************************************************************/
1082 1940
1941void
1942ev_feed_signal (int signum)
1943{
1944#if EV_MULTIPLICITY
1945 EV_P = signals [signum - 1].loop;
1946
1947 if (!EV_A)
1948 return;
1949#endif
1950
1951 if (!ev_active (&pipe_w))
1952 return;
1953
1954 signals [signum - 1].pending = 1;
1955 evpipe_write (EV_A_ &sig_pending);
1956}
1957
1083static void 1958static void
1084ev_sighandler (int signum) 1959ev_sighandler (int signum)
1085{ 1960{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32 1961#ifdef _WIN32
1091 signal (signum, ev_sighandler); 1962 signal (signum, ev_sighandler);
1092#endif 1963#endif
1093 1964
1094 signals [signum - 1].gotsig = 1; 1965 ev_feed_signal (signum);
1095 evpipe_write (EV_A_ &gotsig);
1096} 1966}
1097 1967
1098void noinline 1968void noinline
1099ev_feed_signal_event (EV_P_ int signum) 1969ev_feed_signal_event (EV_P_ int signum)
1100{ 1970{
1101 WL w; 1971 WL w;
1102 1972
1973 if (expect_false (signum <= 0 || signum > EV_NSIG))
1974 return;
1975
1976 --signum;
1977
1103#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1979 /* it is permissible to try to feed a signal to the wrong loop */
1105#endif 1980 /* or, likely more useful, feeding a signal nobody is waiting for */
1106 1981
1107 --signum; 1982 if (expect_false (signals [signum].loop != EV_A))
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return; 1983 return;
1984#endif
1111 1985
1112 signals [signum].gotsig = 0; 1986 signals [signum].pending = 0;
1113 1987
1114 for (w = signals [signum].head; w; w = w->next) 1988 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116} 1990}
1117 1991
1992#if EV_USE_SIGNALFD
1993static void
1994sigfdcb (EV_P_ ev_io *iow, int revents)
1995{
1996 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1997
1998 for (;;)
1999 {
2000 ssize_t res = read (sigfd, si, sizeof (si));
2001
2002 /* not ISO-C, as res might be -1, but works with SuS */
2003 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2004 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2005
2006 if (res < (ssize_t)sizeof (si))
2007 break;
2008 }
2009}
2010#endif
2011
2012#endif
2013
1118/*****************************************************************************/ 2014/*****************************************************************************/
1119 2015
2016#if EV_CHILD_ENABLE
1120static WL childs [EV_PID_HASHSIZE]; 2017static WL childs [EV_PID_HASHSIZE];
1121
1122#ifndef _WIN32
1123 2018
1124static ev_signal childev; 2019static ev_signal childev;
1125 2020
1126#ifndef WIFCONTINUED 2021#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0 2022# define WIFCONTINUED(status) 0
1128#endif 2023#endif
1129 2024
1130void inline_speed 2025/* handle a single child status event */
2026inline_speed void
1131child_reap (EV_P_ int chain, int pid, int status) 2027child_reap (EV_P_ int chain, int pid, int status)
1132{ 2028{
1133 ev_child *w; 2029 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2030 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135 2031
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2032 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 { 2033 {
1138 if ((w->pid == pid || !w->pid) 2034 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1))) 2035 && (!traced || (w->flags & 1)))
1140 { 2036 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2037 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1148 2044
1149#ifndef WCONTINUED 2045#ifndef WCONTINUED
1150# define WCONTINUED 0 2046# define WCONTINUED 0
1151#endif 2047#endif
1152 2048
2049/* called on sigchld etc., calls waitpid */
1153static void 2050static void
1154childcb (EV_P_ ev_signal *sw, int revents) 2051childcb (EV_P_ ev_signal *sw, int revents)
1155{ 2052{
1156 int pid, status; 2053 int pid, status;
1157 2054
1165 /* make sure we are called again until all children have been reaped */ 2062 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */ 2063 /* we need to do it this way so that the callback gets called before we continue */
1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1168 2065
1169 child_reap (EV_A_ pid, pid, status); 2066 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1) 2067 if ((EV_PID_HASHSIZE) > 1)
1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2068 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1172} 2069}
1173 2070
1174#endif 2071#endif
1175 2072
1176/*****************************************************************************/ 2073/*****************************************************************************/
1177 2074
2075#if EV_USE_IOCP
2076# include "ev_iocp.c"
2077#endif
1178#if EV_USE_PORT 2078#if EV_USE_PORT
1179# include "ev_port.c" 2079# include "ev_port.c"
1180#endif 2080#endif
1181#if EV_USE_KQUEUE 2081#if EV_USE_KQUEUE
1182# include "ev_kqueue.c" 2082# include "ev_kqueue.c"
1189#endif 2089#endif
1190#if EV_USE_SELECT 2090#if EV_USE_SELECT
1191# include "ev_select.c" 2091# include "ev_select.c"
1192#endif 2092#endif
1193 2093
1194int 2094int ecb_cold
1195ev_version_major (void) 2095ev_version_major (void)
1196{ 2096{
1197 return EV_VERSION_MAJOR; 2097 return EV_VERSION_MAJOR;
1198} 2098}
1199 2099
1200int 2100int ecb_cold
1201ev_version_minor (void) 2101ev_version_minor (void)
1202{ 2102{
1203 return EV_VERSION_MINOR; 2103 return EV_VERSION_MINOR;
1204} 2104}
1205 2105
1206/* return true if we are running with elevated privileges and should ignore env variables */ 2106/* return true if we are running with elevated privileges and should ignore env variables */
1207int inline_size 2107int inline_size ecb_cold
1208enable_secure (void) 2108enable_secure (void)
1209{ 2109{
1210#ifdef _WIN32 2110#ifdef _WIN32
1211 return 0; 2111 return 0;
1212#else 2112#else
1213 return getuid () != geteuid () 2113 return getuid () != geteuid ()
1214 || getgid () != getegid (); 2114 || getgid () != getegid ();
1215#endif 2115#endif
1216} 2116}
1217 2117
1218unsigned int 2118unsigned int ecb_cold
1219ev_supported_backends (void) 2119ev_supported_backends (void)
1220{ 2120{
1221 unsigned int flags = 0; 2121 unsigned int flags = 0;
1222 2122
1223 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2123 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1227 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2127 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1228 2128
1229 return flags; 2129 return flags;
1230} 2130}
1231 2131
1232unsigned int 2132unsigned int ecb_cold
1233ev_recommended_backends (void) 2133ev_recommended_backends (void)
1234{ 2134{
1235 unsigned int flags = ev_supported_backends (); 2135 unsigned int flags = ev_supported_backends ();
1236 2136
1237#ifndef __NetBSD__ 2137#ifndef __NetBSD__
1238 /* kqueue is borked on everything but netbsd apparently */ 2138 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */ 2139 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE; 2140 flags &= ~EVBACKEND_KQUEUE;
1241#endif 2141#endif
1242#ifdef __APPLE__ 2142#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation 2143 /* only select works correctly on that "unix-certified" platform */
1244 flags &= ~EVBACKEND_POLL; 2144 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2145 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2146#endif
2147#ifdef __FreeBSD__
2148 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1245#endif 2149#endif
1246 2150
1247 return flags; 2151 return flags;
1248} 2152}
1249 2153
1250unsigned int 2154unsigned int ecb_cold
1251ev_embeddable_backends (void) 2155ev_embeddable_backends (void)
1252{ 2156{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2157 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1254 2158
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2159 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */ 2160 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1257 flags &= ~EVBACKEND_EPOLL; 2161 flags &= ~EVBACKEND_EPOLL;
1258 2162
1259 return flags; 2163 return flags;
1260} 2164}
1261 2165
1262unsigned int 2166unsigned int
1263ev_backend (EV_P) 2167ev_backend (EV_P)
1264{ 2168{
1265 return backend; 2169 return backend;
1266} 2170}
1267 2171
2172#if EV_FEATURE_API
1268unsigned int 2173unsigned int
1269ev_loop_count (EV_P) 2174ev_iteration (EV_P)
1270{ 2175{
1271 return loop_count; 2176 return loop_count;
2177}
2178
2179unsigned int
2180ev_depth (EV_P)
2181{
2182 return loop_depth;
1272} 2183}
1273 2184
1274void 2185void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2186ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{ 2187{
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2192ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{ 2193{
1283 timeout_blocktime = interval; 2194 timeout_blocktime = interval;
1284} 2195}
1285 2196
2197void
2198ev_set_userdata (EV_P_ void *data)
2199{
2200 userdata = data;
2201}
2202
2203void *
2204ev_userdata (EV_P)
2205{
2206 return userdata;
2207}
2208
2209void
2210ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2211{
2212 invoke_cb = invoke_pending_cb;
2213}
2214
2215void
2216ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2217{
2218 release_cb = release;
2219 acquire_cb = acquire;
2220}
2221#endif
2222
2223/* initialise a loop structure, must be zero-initialised */
1286static void noinline 2224static void noinline ecb_cold
1287loop_init (EV_P_ unsigned int flags) 2225loop_init (EV_P_ unsigned int flags)
1288{ 2226{
1289 if (!backend) 2227 if (!backend)
1290 { 2228 {
2229 origflags = flags;
2230
2231#if EV_USE_REALTIME
2232 if (!have_realtime)
2233 {
2234 struct timespec ts;
2235
2236 if (!clock_gettime (CLOCK_REALTIME, &ts))
2237 have_realtime = 1;
2238 }
2239#endif
2240
1291#if EV_USE_MONOTONIC 2241#if EV_USE_MONOTONIC
2242 if (!have_monotonic)
1292 { 2243 {
1293 struct timespec ts; 2244 struct timespec ts;
2245
1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2246 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1295 have_monotonic = 1; 2247 have_monotonic = 1;
1296 } 2248 }
1297#endif
1298
1299 ev_rt_now = ev_time ();
1300 mn_now = get_clock ();
1301 now_floor = mn_now;
1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif 2249#endif
1312 2250
1313 /* pid check not overridable via env */ 2251 /* pid check not overridable via env */
1314#ifndef _WIN32 2252#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK) 2253 if (flags & EVFLAG_FORKCHECK)
1319 if (!(flags & EVFLAG_NOENV) 2257 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure () 2258 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS")) 2259 && getenv ("LIBEV_FLAGS"))
1322 flags = atoi (getenv ("LIBEV_FLAGS")); 2260 flags = atoi (getenv ("LIBEV_FLAGS"));
1323 2261
1324 if (!(flags & 0x0000ffffU)) 2262 ev_rt_now = ev_time ();
2263 mn_now = get_clock ();
2264 now_floor = mn_now;
2265 rtmn_diff = ev_rt_now - mn_now;
2266#if EV_FEATURE_API
2267 invoke_cb = ev_invoke_pending;
2268#endif
2269
2270 io_blocktime = 0.;
2271 timeout_blocktime = 0.;
2272 backend = 0;
2273 backend_fd = -1;
2274 sig_pending = 0;
2275#if EV_ASYNC_ENABLE
2276 async_pending = 0;
2277#endif
2278 pipe_write_skipped = 0;
2279 pipe_write_wanted = 0;
2280#if EV_USE_INOTIFY
2281 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2282#endif
2283#if EV_USE_SIGNALFD
2284 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2285#endif
2286
2287 if (!(flags & EVBACKEND_MASK))
1325 flags |= ev_recommended_backends (); 2288 flags |= ev_recommended_backends ();
1326 2289
2290#if EV_USE_IOCP
2291 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2292#endif
1327#if EV_USE_PORT 2293#if EV_USE_PORT
1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2294 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1329#endif 2295#endif
1330#if EV_USE_KQUEUE 2296#if EV_USE_KQUEUE
1331 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2297 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1338#endif 2304#endif
1339#if EV_USE_SELECT 2305#if EV_USE_SELECT
1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2306 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1341#endif 2307#endif
1342 2308
2309 ev_prepare_init (&pending_w, pendingcb);
2310
2311#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343 ev_init (&pipeev, pipecb); 2312 ev_init (&pipe_w, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI); 2313 ev_set_priority (&pipe_w, EV_MAXPRI);
2314#endif
1345 } 2315 }
1346} 2316}
1347 2317
1348static void noinline 2318/* free up a loop structure */
2319void ecb_cold
1349loop_destroy (EV_P) 2320ev_loop_destroy (EV_P)
1350{ 2321{
1351 int i; 2322 int i;
1352 2323
2324#if EV_MULTIPLICITY
2325 /* mimic free (0) */
2326 if (!EV_A)
2327 return;
2328#endif
2329
2330#if EV_CLEANUP_ENABLE
2331 /* queue cleanup watchers (and execute them) */
2332 if (expect_false (cleanupcnt))
2333 {
2334 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2335 EV_INVOKE_PENDING;
2336 }
2337#endif
2338
2339#if EV_CHILD_ENABLE
2340 if (ev_is_active (&childev))
2341 {
2342 ev_ref (EV_A); /* child watcher */
2343 ev_signal_stop (EV_A_ &childev);
2344 }
2345#endif
2346
1353 if (ev_is_active (&pipeev)) 2347 if (ev_is_active (&pipe_w))
1354 { 2348 {
1355 ev_ref (EV_A); /* signal watcher */ 2349 /*ev_ref (EV_A);*/
1356 ev_io_stop (EV_A_ &pipeev); 2350 /*ev_io_stop (EV_A_ &pipe_w);*/
1357 2351
1358#if EV_USE_EVENTFD 2352#if EV_USE_EVENTFD
1359 if (evfd >= 0) 2353 if (evfd >= 0)
1360 close (evfd); 2354 close (evfd);
1361#endif 2355#endif
1362 2356
1363 if (evpipe [0] >= 0) 2357 if (evpipe [0] >= 0)
1364 { 2358 {
1365 close (evpipe [0]); 2359 EV_WIN32_CLOSE_FD (evpipe [0]);
1366 close (evpipe [1]); 2360 EV_WIN32_CLOSE_FD (evpipe [1]);
1367 } 2361 }
1368 } 2362 }
2363
2364#if EV_USE_SIGNALFD
2365 if (ev_is_active (&sigfd_w))
2366 close (sigfd);
2367#endif
1369 2368
1370#if EV_USE_INOTIFY 2369#if EV_USE_INOTIFY
1371 if (fs_fd >= 0) 2370 if (fs_fd >= 0)
1372 close (fs_fd); 2371 close (fs_fd);
1373#endif 2372#endif
1374 2373
1375 if (backend_fd >= 0) 2374 if (backend_fd >= 0)
1376 close (backend_fd); 2375 close (backend_fd);
1377 2376
2377#if EV_USE_IOCP
2378 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2379#endif
1378#if EV_USE_PORT 2380#if EV_USE_PORT
1379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1380#endif 2382#endif
1381#if EV_USE_KQUEUE 2383#if EV_USE_KQUEUE
1382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1397#if EV_IDLE_ENABLE 2399#if EV_IDLE_ENABLE
1398 array_free (idle, [i]); 2400 array_free (idle, [i]);
1399#endif 2401#endif
1400 } 2402 }
1401 2403
1402 ev_free (anfds); anfdmax = 0; 2404 ev_free (anfds); anfds = 0; anfdmax = 0;
1403 2405
1404 /* have to use the microsoft-never-gets-it-right macro */ 2406 /* have to use the microsoft-never-gets-it-right macro */
2407 array_free (rfeed, EMPTY);
1405 array_free (fdchange, EMPTY); 2408 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY); 2409 array_free (timer, EMPTY);
1407#if EV_PERIODIC_ENABLE 2410#if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY); 2411 array_free (periodic, EMPTY);
1409#endif 2412#endif
1410#if EV_FORK_ENABLE 2413#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY); 2414 array_free (fork, EMPTY);
1412#endif 2415#endif
2416#if EV_CLEANUP_ENABLE
2417 array_free (cleanup, EMPTY);
2418#endif
1413 array_free (prepare, EMPTY); 2419 array_free (prepare, EMPTY);
1414 array_free (check, EMPTY); 2420 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE 2421#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY); 2422 array_free (async, EMPTY);
1417#endif 2423#endif
1418 2424
1419 backend = 0; 2425 backend = 0;
2426
2427#if EV_MULTIPLICITY
2428 if (ev_is_default_loop (EV_A))
2429#endif
2430 ev_default_loop_ptr = 0;
2431#if EV_MULTIPLICITY
2432 else
2433 ev_free (EV_A);
2434#endif
1420} 2435}
1421 2436
1422#if EV_USE_INOTIFY 2437#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P); 2438inline_size void infy_fork (EV_P);
1424#endif 2439#endif
1425 2440
1426void inline_size 2441inline_size void
1427loop_fork (EV_P) 2442loop_fork (EV_P)
1428{ 2443{
1429#if EV_USE_PORT 2444#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2445 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif 2446#endif
1437#endif 2452#endif
1438#if EV_USE_INOTIFY 2453#if EV_USE_INOTIFY
1439 infy_fork (EV_A); 2454 infy_fork (EV_A);
1440#endif 2455#endif
1441 2456
1442 if (ev_is_active (&pipeev)) 2457 if (ev_is_active (&pipe_w))
1443 { 2458 {
1444 /* this "locks" the handlers against writing to the pipe */ 2459 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1450 2460
1451 ev_ref (EV_A); 2461 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev); 2462 ev_io_stop (EV_A_ &pipe_w);
1453 2463
1454#if EV_USE_EVENTFD 2464#if EV_USE_EVENTFD
1455 if (evfd >= 0) 2465 if (evfd >= 0)
1456 close (evfd); 2466 close (evfd);
1457#endif 2467#endif
1458 2468
1459 if (evpipe [0] >= 0) 2469 if (evpipe [0] >= 0)
1460 { 2470 {
1461 close (evpipe [0]); 2471 EV_WIN32_CLOSE_FD (evpipe [0]);
1462 close (evpipe [1]); 2472 EV_WIN32_CLOSE_FD (evpipe [1]);
1463 } 2473 }
1464 2474
2475#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1465 evpipe_init (EV_A); 2476 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */ 2477 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ); 2478 pipecb (EV_A_ &pipe_w, EV_READ);
2479#endif
1468 } 2480 }
1469 2481
1470 postfork = 0; 2482 postfork = 0;
1471} 2483}
1472 2484
1473#if EV_MULTIPLICITY 2485#if EV_MULTIPLICITY
1474 2486
1475struct ev_loop * 2487struct ev_loop * ecb_cold
1476ev_loop_new (unsigned int flags) 2488ev_loop_new (unsigned int flags)
1477{ 2489{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2490 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479 2491
1480 memset (loop, 0, sizeof (struct ev_loop)); 2492 memset (EV_A, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags); 2493 loop_init (EV_A_ flags);
1483 2494
1484 if (ev_backend (EV_A)) 2495 if (ev_backend (EV_A))
1485 return loop; 2496 return EV_A;
1486 2497
2498 ev_free (EV_A);
1487 return 0; 2499 return 0;
1488} 2500}
1489 2501
1490void 2502#endif /* multiplicity */
1491ev_loop_destroy (EV_P)
1492{
1493 loop_destroy (EV_A);
1494 ev_free (loop);
1495}
1496
1497void
1498ev_loop_fork (EV_P)
1499{
1500 postfork = 1; /* must be in line with ev_default_fork */
1501}
1502 2503
1503#if EV_VERIFY 2504#if EV_VERIFY
1504void noinline 2505static void noinline ecb_cold
1505verify_watcher (EV_P_ W w) 2506verify_watcher (EV_P_ W w)
1506{ 2507{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2508 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508 2509
1509 if (w->pending) 2510 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2511 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511} 2512}
1512 2513
1513static void noinline 2514static void noinline ecb_cold
1514verify_heap (EV_P_ ANHE *heap, int N) 2515verify_heap (EV_P_ ANHE *heap, int N)
1515{ 2516{
1516 int i; 2517 int i;
1517 2518
1518 for (i = HEAP0; i < N + HEAP0; ++i) 2519 for (i = HEAP0; i < N + HEAP0; ++i)
1519 { 2520 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2521 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2522 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2523 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523 2524
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2525 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 } 2526 }
1526} 2527}
1527 2528
1528static void noinline 2529static void noinline ecb_cold
1529array_verify (EV_P_ W *ws, int cnt) 2530array_verify (EV_P_ W *ws, int cnt)
1530{ 2531{
1531 while (cnt--) 2532 while (cnt--)
1532 { 2533 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2534 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]); 2535 verify_watcher (EV_A_ ws [cnt]);
1535 } 2536 }
1536} 2537}
1537#endif 2538#endif
1538 2539
1539void 2540#if EV_FEATURE_API
2541void ecb_cold
1540ev_loop_verify (EV_P) 2542ev_verify (EV_P)
1541{ 2543{
1542#if EV_VERIFY 2544#if EV_VERIFY
1543 int i; 2545 int i;
1544 WL w; 2546 WL w;
1545 2547
1546 assert (activecnt >= -1); 2548 assert (activecnt >= -1);
1547 2549
1548 assert (fdchangemax >= fdchangecnt); 2550 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i) 2551 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2552 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1551 2553
1552 assert (anfdmax >= 0); 2554 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i) 2555 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next) 2556 for (w = anfds [i].head; w; w = w->next)
1555 { 2557 {
1556 verify_watcher (EV_A_ (W)w); 2558 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2559 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2560 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 } 2561 }
1560 2562
1561 assert (timermax >= timercnt); 2563 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt); 2564 verify_heap (EV_A_ timers, timercnt);
1563 2565
1579#if EV_FORK_ENABLE 2581#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt); 2582 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt); 2583 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif 2584#endif
1583 2585
2586#if EV_CLEANUP_ENABLE
2587 assert (cleanupmax >= cleanupcnt);
2588 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2589#endif
2590
1584#if EV_ASYNC_ENABLE 2591#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt); 2592 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt); 2593 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif 2594#endif
1588 2595
2596#if EV_PREPARE_ENABLE
1589 assert (preparemax >= preparecnt); 2597 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt); 2598 array_verify (EV_A_ (W *)prepares, preparecnt);
2599#endif
1591 2600
2601#if EV_CHECK_ENABLE
1592 assert (checkmax >= checkcnt); 2602 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt); 2603 array_verify (EV_A_ (W *)checks, checkcnt);
2604#endif
1594 2605
1595# if 0 2606# if 0
2607#if EV_CHILD_ENABLE
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2608 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2609 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2610#endif
1598# endif 2611# endif
1599#endif 2612#endif
1600} 2613}
1601 2614#endif
1602#endif /* multiplicity */
1603 2615
1604#if EV_MULTIPLICITY 2616#if EV_MULTIPLICITY
1605struct ev_loop * 2617struct ev_loop * ecb_cold
1606ev_default_loop_init (unsigned int flags)
1607#else 2618#else
1608int 2619int
2620#endif
1609ev_default_loop (unsigned int flags) 2621ev_default_loop (unsigned int flags)
1610#endif
1611{ 2622{
1612 if (!ev_default_loop_ptr) 2623 if (!ev_default_loop_ptr)
1613 { 2624 {
1614#if EV_MULTIPLICITY 2625#if EV_MULTIPLICITY
1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2626 EV_P = ev_default_loop_ptr = &default_loop_struct;
1616#else 2627#else
1617 ev_default_loop_ptr = 1; 2628 ev_default_loop_ptr = 1;
1618#endif 2629#endif
1619 2630
1620 loop_init (EV_A_ flags); 2631 loop_init (EV_A_ flags);
1621 2632
1622 if (ev_backend (EV_A)) 2633 if (ev_backend (EV_A))
1623 { 2634 {
1624#ifndef _WIN32 2635#if EV_CHILD_ENABLE
1625 ev_signal_init (&childev, childcb, SIGCHLD); 2636 ev_signal_init (&childev, childcb, SIGCHLD);
1626 ev_set_priority (&childev, EV_MAXPRI); 2637 ev_set_priority (&childev, EV_MAXPRI);
1627 ev_signal_start (EV_A_ &childev); 2638 ev_signal_start (EV_A_ &childev);
1628 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2639 ev_unref (EV_A); /* child watcher should not keep loop alive */
1629#endif 2640#endif
1634 2645
1635 return ev_default_loop_ptr; 2646 return ev_default_loop_ptr;
1636} 2647}
1637 2648
1638void 2649void
1639ev_default_destroy (void) 2650ev_loop_fork (EV_P)
1640{ 2651{
1641#if EV_MULTIPLICITY
1642 struct ev_loop *loop = ev_default_loop_ptr;
1643#endif
1644
1645#ifndef _WIN32
1646 ev_ref (EV_A); /* child watcher */
1647 ev_signal_stop (EV_A_ &childev);
1648#endif
1649
1650 loop_destroy (EV_A);
1651}
1652
1653void
1654ev_default_fork (void)
1655{
1656#if EV_MULTIPLICITY
1657 struct ev_loop *loop = ev_default_loop_ptr;
1658#endif
1659
1660 if (backend)
1661 postfork = 1; /* must be in line with ev_loop_fork */ 2652 postfork = 1; /* must be in line with ev_default_fork */
1662} 2653}
1663 2654
1664/*****************************************************************************/ 2655/*****************************************************************************/
1665 2656
1666void 2657void
1667ev_invoke (EV_P_ void *w, int revents) 2658ev_invoke (EV_P_ void *w, int revents)
1668{ 2659{
1669 EV_CB_INVOKE ((W)w, revents); 2660 EV_CB_INVOKE ((W)w, revents);
1670} 2661}
1671 2662
1672void inline_speed 2663unsigned int
1673call_pending (EV_P) 2664ev_pending_count (EV_P)
2665{
2666 int pri;
2667 unsigned int count = 0;
2668
2669 for (pri = NUMPRI; pri--; )
2670 count += pendingcnt [pri];
2671
2672 return count;
2673}
2674
2675void noinline
2676ev_invoke_pending (EV_P)
1674{ 2677{
1675 int pri; 2678 int pri;
1676 2679
1677 for (pri = NUMPRI; pri--; ) 2680 for (pri = NUMPRI; pri--; )
1678 while (pendingcnt [pri]) 2681 while (pendingcnt [pri])
1679 { 2682 {
1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2683 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1681 2684
1682 if (expect_true (p->w))
1683 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1685
1686 p->w->pending = 0; 2685 p->w->pending = 0;
1687 EV_CB_INVOKE (p->w, p->events); 2686 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK; 2687 EV_FREQUENT_CHECK;
1689 }
1690 } 2688 }
1691} 2689}
1692 2690
1693#if EV_IDLE_ENABLE 2691#if EV_IDLE_ENABLE
1694void inline_size 2692/* make idle watchers pending. this handles the "call-idle */
2693/* only when higher priorities are idle" logic */
2694inline_size void
1695idle_reify (EV_P) 2695idle_reify (EV_P)
1696{ 2696{
1697 if (expect_false (idleall)) 2697 if (expect_false (idleall))
1698 { 2698 {
1699 int pri; 2699 int pri;
1711 } 2711 }
1712 } 2712 }
1713} 2713}
1714#endif 2714#endif
1715 2715
1716void inline_size 2716/* make timers pending */
2717inline_size void
1717timers_reify (EV_P) 2718timers_reify (EV_P)
1718{ 2719{
1719 EV_FREQUENT_CHECK; 2720 EV_FREQUENT_CHECK;
1720 2721
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2722 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 { 2723 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2724 do
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 { 2725 {
2726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2727
2728 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2729
2730 /* first reschedule or stop timer */
2731 if (w->repeat)
2732 {
1730 ev_at (w) += w->repeat; 2733 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now) 2734 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now; 2735 ev_at (w) = mn_now;
1733 2736
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2737 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735 2738
1736 ANHE_at_cache (timers [HEAP0]); 2739 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0); 2740 downheap (timers, timercnt, HEAP0);
2741 }
2742 else
2743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2744
2745 EV_FREQUENT_CHECK;
2746 feed_reverse (EV_A_ (W)w);
1738 } 2747 }
1739 else 2748 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741 2749
1742 EV_FREQUENT_CHECK; 2750 feed_reverse_done (EV_A_ EV_TIMER);
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 } 2751 }
1745} 2752}
1746 2753
1747#if EV_PERIODIC_ENABLE 2754#if EV_PERIODIC_ENABLE
1748void inline_size 2755
2756static void noinline
2757periodic_recalc (EV_P_ ev_periodic *w)
2758{
2759 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2760 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2761
2762 /* the above almost always errs on the low side */
2763 while (at <= ev_rt_now)
2764 {
2765 ev_tstamp nat = at + w->interval;
2766
2767 /* when resolution fails us, we use ev_rt_now */
2768 if (expect_false (nat == at))
2769 {
2770 at = ev_rt_now;
2771 break;
2772 }
2773
2774 at = nat;
2775 }
2776
2777 ev_at (w) = at;
2778}
2779
2780/* make periodics pending */
2781inline_size void
1749periodics_reify (EV_P) 2782periodics_reify (EV_P)
1750{ 2783{
1751 EV_FREQUENT_CHECK; 2784 EV_FREQUENT_CHECK;
1752 2785
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 { 2787 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2788 int feed_count = 0;
1756 2789
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2790 do
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 { 2791 {
2792 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2793
2794 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2795
2796 /* first reschedule or stop timer */
2797 if (w->reschedule_cb)
2798 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2799 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763 2800
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2801 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765 2802
1766 ANHE_at_cache (periodics [HEAP0]); 2803 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0); 2804 downheap (periodics, periodiccnt, HEAP0);
2805 }
2806 else if (w->interval)
2807 {
2808 periodic_recalc (EV_A_ w);
2809 ANHE_at_cache (periodics [HEAP0]);
2810 downheap (periodics, periodiccnt, HEAP0);
2811 }
2812 else
2813 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2814
2815 EV_FREQUENT_CHECK;
2816 feed_reverse (EV_A_ (W)w);
1768 } 2817 }
1769 else if (w->interval) 2818 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777 2819
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2820 feed_reverse_done (EV_A_ EV_PERIODIC);
1793 } 2821 }
1794} 2822}
1795 2823
2824/* simply recalculate all periodics */
2825/* TODO: maybe ensure that at least one event happens when jumping forward? */
1796static void noinline 2826static void noinline ecb_cold
1797periodics_reschedule (EV_P) 2827periodics_reschedule (EV_P)
1798{ 2828{
1799 int i; 2829 int i;
1800 2830
1801 /* adjust periodics after time jump */ 2831 /* adjust periodics after time jump */
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805 2835
1806 if (w->reschedule_cb) 2836 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2837 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval) 2838 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2839 periodic_recalc (EV_A_ w);
1810 2840
1811 ANHE_at_cache (periodics [i]); 2841 ANHE_at_cache (periodics [i]);
1812 } 2842 }
1813 2843
1814 reheap (periodics, periodiccnt); 2844 reheap (periodics, periodiccnt);
1815} 2845}
1816#endif 2846#endif
1817 2847
1818void inline_speed 2848/* adjust all timers by a given offset */
2849static void noinline ecb_cold
2850timers_reschedule (EV_P_ ev_tstamp adjust)
2851{
2852 int i;
2853
2854 for (i = 0; i < timercnt; ++i)
2855 {
2856 ANHE *he = timers + i + HEAP0;
2857 ANHE_w (*he)->at += adjust;
2858 ANHE_at_cache (*he);
2859 }
2860}
2861
2862/* fetch new monotonic and realtime times from the kernel */
2863/* also detect if there was a timejump, and act accordingly */
2864inline_speed void
1819time_update (EV_P_ ev_tstamp max_block) 2865time_update (EV_P_ ev_tstamp max_block)
1820{ 2866{
1821 int i;
1822
1823#if EV_USE_MONOTONIC 2867#if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic)) 2868 if (expect_true (have_monotonic))
1825 { 2869 {
2870 int i;
1826 ev_tstamp odiff = rtmn_diff; 2871 ev_tstamp odiff = rtmn_diff;
1827 2872
1828 mn_now = get_clock (); 2873 mn_now = get_clock ();
1829 2874
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2875 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1846 * doesn't hurt either as we only do this on time-jumps or 2891 * doesn't hurt either as we only do this on time-jumps or
1847 * in the unlikely event of having been preempted here. 2892 * in the unlikely event of having been preempted here.
1848 */ 2893 */
1849 for (i = 4; --i; ) 2894 for (i = 4; --i; )
1850 { 2895 {
2896 ev_tstamp diff;
1851 rtmn_diff = ev_rt_now - mn_now; 2897 rtmn_diff = ev_rt_now - mn_now;
1852 2898
2899 diff = odiff - rtmn_diff;
2900
1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2901 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1854 return; /* all is well */ 2902 return; /* all is well */
1855 2903
1856 ev_rt_now = ev_time (); 2904 ev_rt_now = ev_time ();
1857 mn_now = get_clock (); 2905 mn_now = get_clock ();
1858 now_floor = mn_now; 2906 now_floor = mn_now;
1859 } 2907 }
1860 2908
2909 /* no timer adjustment, as the monotonic clock doesn't jump */
2910 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1861# if EV_PERIODIC_ENABLE 2911# if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A); 2912 periodics_reschedule (EV_A);
1863# endif 2913# endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 } 2914 }
1867 else 2915 else
1868#endif 2916#endif
1869 { 2917 {
1870 ev_rt_now = ev_time (); 2918 ev_rt_now = ev_time ();
1871 2919
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2920 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 { 2921 {
2922 /* adjust timers. this is easy, as the offset is the same for all of them */
2923 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1874#if EV_PERIODIC_ENABLE 2924#if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A); 2925 periodics_reschedule (EV_A);
1876#endif 2926#endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1884 } 2927 }
1885 2928
1886 mn_now = ev_rt_now; 2929 mn_now = ev_rt_now;
1887 } 2930 }
1888} 2931}
1889 2932
1890void 2933void
1891ev_ref (EV_P)
1892{
1893 ++activecnt;
1894}
1895
1896void
1897ev_unref (EV_P)
1898{
1899 --activecnt;
1900}
1901
1902static int loop_done;
1903
1904void
1905ev_loop (EV_P_ int flags) 2934ev_run (EV_P_ int flags)
1906{ 2935{
2936#if EV_FEATURE_API
2937 ++loop_depth;
2938#endif
2939
2940 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2941
1907 loop_done = EVUNLOOP_CANCEL; 2942 loop_done = EVBREAK_CANCEL;
1908 2943
1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2944 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1910 2945
1911 do 2946 do
1912 { 2947 {
1913#if EV_VERIFY >= 2 2948#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A); 2949 ev_verify (EV_A);
1915#endif 2950#endif
1916 2951
1917#ifndef _WIN32 2952#ifndef _WIN32
1918 if (expect_false (curpid)) /* penalise the forking check even more */ 2953 if (expect_false (curpid)) /* penalise the forking check even more */
1919 if (expect_false (getpid () != curpid)) 2954 if (expect_false (getpid () != curpid))
1927 /* we might have forked, so queue fork handlers */ 2962 /* we might have forked, so queue fork handlers */
1928 if (expect_false (postfork)) 2963 if (expect_false (postfork))
1929 if (forkcnt) 2964 if (forkcnt)
1930 { 2965 {
1931 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2966 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1932 call_pending (EV_A); 2967 EV_INVOKE_PENDING;
1933 } 2968 }
1934#endif 2969#endif
1935 2970
2971#if EV_PREPARE_ENABLE
1936 /* queue prepare watchers (and execute them) */ 2972 /* queue prepare watchers (and execute them) */
1937 if (expect_false (preparecnt)) 2973 if (expect_false (preparecnt))
1938 { 2974 {
1939 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2975 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1940 call_pending (EV_A); 2976 EV_INVOKE_PENDING;
1941 } 2977 }
2978#endif
1942 2979
1943 if (expect_false (!activecnt)) 2980 if (expect_false (loop_done))
1944 break; 2981 break;
1945 2982
1946 /* we might have forked, so reify kernel state if necessary */ 2983 /* we might have forked, so reify kernel state if necessary */
1947 if (expect_false (postfork)) 2984 if (expect_false (postfork))
1948 loop_fork (EV_A); 2985 loop_fork (EV_A);
1953 /* calculate blocking time */ 2990 /* calculate blocking time */
1954 { 2991 {
1955 ev_tstamp waittime = 0.; 2992 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.; 2993 ev_tstamp sleeptime = 0.;
1957 2994
2995 /* remember old timestamp for io_blocktime calculation */
2996 ev_tstamp prev_mn_now = mn_now;
2997
2998 /* update time to cancel out callback processing overhead */
2999 time_update (EV_A_ 1e100);
3000
3001 /* from now on, we want a pipe-wake-up */
3002 pipe_write_wanted = 1;
3003
3004 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3005
1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3006 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1959 { 3007 {
1960 /* update time to cancel out callback processing overhead */
1961 time_update (EV_A_ 1e100);
1962
1963 waittime = MAX_BLOCKTIME; 3008 waittime = MAX_BLOCKTIME;
1964 3009
1965 if (timercnt) 3010 if (timercnt)
1966 { 3011 {
1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3012 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1968 if (waittime > to) waittime = to; 3013 if (waittime > to) waittime = to;
1969 } 3014 }
1970 3015
1971#if EV_PERIODIC_ENABLE 3016#if EV_PERIODIC_ENABLE
1972 if (periodiccnt) 3017 if (periodiccnt)
1973 { 3018 {
1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3019 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1975 if (waittime > to) waittime = to; 3020 if (waittime > to) waittime = to;
1976 } 3021 }
1977#endif 3022#endif
1978 3023
3024 /* don't let timeouts decrease the waittime below timeout_blocktime */
1979 if (expect_false (waittime < timeout_blocktime)) 3025 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime; 3026 waittime = timeout_blocktime;
1981 3027
1982 sleeptime = waittime - backend_fudge; 3028 /* at this point, we NEED to wait, so we have to ensure */
3029 /* to pass a minimum nonzero value to the backend */
3030 if (expect_false (waittime < backend_mintime))
3031 waittime = backend_mintime;
1983 3032
3033 /* extra check because io_blocktime is commonly 0 */
1984 if (expect_true (sleeptime > io_blocktime)) 3034 if (expect_false (io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 { 3035 {
3036 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3037
3038 if (sleeptime > waittime - backend_mintime)
3039 sleeptime = waittime - backend_mintime;
3040
3041 if (expect_true (sleeptime > 0.))
3042 {
1989 ev_sleep (sleeptime); 3043 ev_sleep (sleeptime);
1990 waittime -= sleeptime; 3044 waittime -= sleeptime;
3045 }
1991 } 3046 }
1992 } 3047 }
1993 3048
3049#if EV_FEATURE_API
1994 ++loop_count; 3050 ++loop_count;
3051#endif
3052 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1995 backend_poll (EV_A_ waittime); 3053 backend_poll (EV_A_ waittime);
3054 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3055
3056 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3057
3058 if (pipe_write_skipped)
3059 {
3060 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3061 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3062 }
3063
1996 3064
1997 /* update ev_rt_now, do magic */ 3065 /* update ev_rt_now, do magic */
1998 time_update (EV_A_ waittime + sleeptime); 3066 time_update (EV_A_ waittime + sleeptime);
1999 } 3067 }
2000 3068
2007#if EV_IDLE_ENABLE 3075#if EV_IDLE_ENABLE
2008 /* queue idle watchers unless other events are pending */ 3076 /* queue idle watchers unless other events are pending */
2009 idle_reify (EV_A); 3077 idle_reify (EV_A);
2010#endif 3078#endif
2011 3079
3080#if EV_CHECK_ENABLE
2012 /* queue check watchers, to be executed first */ 3081 /* queue check watchers, to be executed first */
2013 if (expect_false (checkcnt)) 3082 if (expect_false (checkcnt))
2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3083 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3084#endif
2015 3085
2016 call_pending (EV_A); 3086 EV_INVOKE_PENDING;
2017 } 3087 }
2018 while (expect_true ( 3088 while (expect_true (
2019 activecnt 3089 activecnt
2020 && !loop_done 3090 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3091 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2022 )); 3092 ));
2023 3093
2024 if (loop_done == EVUNLOOP_ONE) 3094 if (loop_done == EVBREAK_ONE)
2025 loop_done = EVUNLOOP_CANCEL; 3095 loop_done = EVBREAK_CANCEL;
3096
3097#if EV_FEATURE_API
3098 --loop_depth;
3099#endif
2026} 3100}
2027 3101
2028void 3102void
2029ev_unloop (EV_P_ int how) 3103ev_break (EV_P_ int how)
2030{ 3104{
2031 loop_done = how; 3105 loop_done = how;
2032} 3106}
2033 3107
3108void
3109ev_ref (EV_P)
3110{
3111 ++activecnt;
3112}
3113
3114void
3115ev_unref (EV_P)
3116{
3117 --activecnt;
3118}
3119
3120void
3121ev_now_update (EV_P)
3122{
3123 time_update (EV_A_ 1e100);
3124}
3125
3126void
3127ev_suspend (EV_P)
3128{
3129 ev_now_update (EV_A);
3130}
3131
3132void
3133ev_resume (EV_P)
3134{
3135 ev_tstamp mn_prev = mn_now;
3136
3137 ev_now_update (EV_A);
3138 timers_reschedule (EV_A_ mn_now - mn_prev);
3139#if EV_PERIODIC_ENABLE
3140 /* TODO: really do this? */
3141 periodics_reschedule (EV_A);
3142#endif
3143}
3144
2034/*****************************************************************************/ 3145/*****************************************************************************/
3146/* singly-linked list management, used when the expected list length is short */
2035 3147
2036void inline_size 3148inline_size void
2037wlist_add (WL *head, WL elem) 3149wlist_add (WL *head, WL elem)
2038{ 3150{
2039 elem->next = *head; 3151 elem->next = *head;
2040 *head = elem; 3152 *head = elem;
2041} 3153}
2042 3154
2043void inline_size 3155inline_size void
2044wlist_del (WL *head, WL elem) 3156wlist_del (WL *head, WL elem)
2045{ 3157{
2046 while (*head) 3158 while (*head)
2047 { 3159 {
2048 if (*head == elem) 3160 if (expect_true (*head == elem))
2049 { 3161 {
2050 *head = elem->next; 3162 *head = elem->next;
2051 return; 3163 break;
2052 } 3164 }
2053 3165
2054 head = &(*head)->next; 3166 head = &(*head)->next;
2055 } 3167 }
2056} 3168}
2057 3169
2058void inline_speed 3170/* internal, faster, version of ev_clear_pending */
3171inline_speed void
2059clear_pending (EV_P_ W w) 3172clear_pending (EV_P_ W w)
2060{ 3173{
2061 if (w->pending) 3174 if (w->pending)
2062 { 3175 {
2063 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3176 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2064 w->pending = 0; 3177 w->pending = 0;
2065 } 3178 }
2066} 3179}
2067 3180
2068int 3181int
2072 int pending = w_->pending; 3185 int pending = w_->pending;
2073 3186
2074 if (expect_true (pending)) 3187 if (expect_true (pending))
2075 { 3188 {
2076 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3189 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3190 p->w = (W)&pending_w;
2077 w_->pending = 0; 3191 w_->pending = 0;
2078 p->w = 0;
2079 return p->events; 3192 return p->events;
2080 } 3193 }
2081 else 3194 else
2082 return 0; 3195 return 0;
2083} 3196}
2084 3197
2085void inline_size 3198inline_size void
2086pri_adjust (EV_P_ W w) 3199pri_adjust (EV_P_ W w)
2087{ 3200{
2088 int pri = w->priority; 3201 int pri = ev_priority (w);
2089 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3202 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2090 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3203 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2091 w->priority = pri; 3204 ev_set_priority (w, pri);
2092} 3205}
2093 3206
2094void inline_speed 3207inline_speed void
2095ev_start (EV_P_ W w, int active) 3208ev_start (EV_P_ W w, int active)
2096{ 3209{
2097 pri_adjust (EV_A_ w); 3210 pri_adjust (EV_A_ w);
2098 w->active = active; 3211 w->active = active;
2099 ev_ref (EV_A); 3212 ev_ref (EV_A);
2100} 3213}
2101 3214
2102void inline_size 3215inline_size void
2103ev_stop (EV_P_ W w) 3216ev_stop (EV_P_ W w)
2104{ 3217{
2105 ev_unref (EV_A); 3218 ev_unref (EV_A);
2106 w->active = 0; 3219 w->active = 0;
2107} 3220}
2114 int fd = w->fd; 3227 int fd = w->fd;
2115 3228
2116 if (expect_false (ev_is_active (w))) 3229 if (expect_false (ev_is_active (w)))
2117 return; 3230 return;
2118 3231
2119 assert (("ev_io_start called with negative fd", fd >= 0)); 3232 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3233 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2120 3234
2121 EV_FREQUENT_CHECK; 3235 EV_FREQUENT_CHECK;
2122 3236
2123 ev_start (EV_A_ (W)w, 1); 3237 ev_start (EV_A_ (W)w, 1);
2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3238 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2125 wlist_add (&anfds[fd].head, (WL)w); 3239 wlist_add (&anfds[fd].head, (WL)w);
2126 3240
2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3241 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2128 w->events &= ~EV_IOFDSET; 3242 w->events &= ~EV__IOFDSET;
2129 3243
2130 EV_FREQUENT_CHECK; 3244 EV_FREQUENT_CHECK;
2131} 3245}
2132 3246
2133void noinline 3247void noinline
2135{ 3249{
2136 clear_pending (EV_A_ (W)w); 3250 clear_pending (EV_A_ (W)w);
2137 if (expect_false (!ev_is_active (w))) 3251 if (expect_false (!ev_is_active (w)))
2138 return; 3252 return;
2139 3253
2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3254 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141 3255
2142 EV_FREQUENT_CHECK; 3256 EV_FREQUENT_CHECK;
2143 3257
2144 wlist_del (&anfds[w->fd].head, (WL)w); 3258 wlist_del (&anfds[w->fd].head, (WL)w);
2145 ev_stop (EV_A_ (W)w); 3259 ev_stop (EV_A_ (W)w);
2146 3260
2147 fd_change (EV_A_ w->fd, 1); 3261 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2148 3262
2149 EV_FREQUENT_CHECK; 3263 EV_FREQUENT_CHECK;
2150} 3264}
2151 3265
2152void noinline 3266void noinline
2155 if (expect_false (ev_is_active (w))) 3269 if (expect_false (ev_is_active (w)))
2156 return; 3270 return;
2157 3271
2158 ev_at (w) += mn_now; 3272 ev_at (w) += mn_now;
2159 3273
2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3274 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2161 3275
2162 EV_FREQUENT_CHECK; 3276 EV_FREQUENT_CHECK;
2163 3277
2164 ++timercnt; 3278 ++timercnt;
2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3279 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2168 ANHE_at_cache (timers [ev_active (w)]); 3282 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w)); 3283 upheap (timers, ev_active (w));
2170 3284
2171 EV_FREQUENT_CHECK; 3285 EV_FREQUENT_CHECK;
2172 3286
2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3287 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2174} 3288}
2175 3289
2176void noinline 3290void noinline
2177ev_timer_stop (EV_P_ ev_timer *w) 3291ev_timer_stop (EV_P_ ev_timer *w)
2178{ 3292{
2183 EV_FREQUENT_CHECK; 3297 EV_FREQUENT_CHECK;
2184 3298
2185 { 3299 {
2186 int active = ev_active (w); 3300 int active = ev_active (w);
2187 3301
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3302 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189 3303
2190 --timercnt; 3304 --timercnt;
2191 3305
2192 if (expect_true (active < timercnt + HEAP0)) 3306 if (expect_true (active < timercnt + HEAP0))
2193 { 3307 {
2194 timers [active] = timers [timercnt + HEAP0]; 3308 timers [active] = timers [timercnt + HEAP0];
2195 adjustheap (timers, timercnt, active); 3309 adjustheap (timers, timercnt, active);
2196 } 3310 }
2197 } 3311 }
2198 3312
2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now; 3313 ev_at (w) -= mn_now;
2202 3314
2203 ev_stop (EV_A_ (W)w); 3315 ev_stop (EV_A_ (W)w);
3316
3317 EV_FREQUENT_CHECK;
2204} 3318}
2205 3319
2206void noinline 3320void noinline
2207ev_timer_again (EV_P_ ev_timer *w) 3321ev_timer_again (EV_P_ ev_timer *w)
2208{ 3322{
2209 EV_FREQUENT_CHECK; 3323 EV_FREQUENT_CHECK;
3324
3325 clear_pending (EV_A_ (W)w);
2210 3326
2211 if (ev_is_active (w)) 3327 if (ev_is_active (w))
2212 { 3328 {
2213 if (w->repeat) 3329 if (w->repeat)
2214 { 3330 {
2226 } 3342 }
2227 3343
2228 EV_FREQUENT_CHECK; 3344 EV_FREQUENT_CHECK;
2229} 3345}
2230 3346
3347ev_tstamp
3348ev_timer_remaining (EV_P_ ev_timer *w)
3349{
3350 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3351}
3352
2231#if EV_PERIODIC_ENABLE 3353#if EV_PERIODIC_ENABLE
2232void noinline 3354void noinline
2233ev_periodic_start (EV_P_ ev_periodic *w) 3355ev_periodic_start (EV_P_ ev_periodic *w)
2234{ 3356{
2235 if (expect_false (ev_is_active (w))) 3357 if (expect_false (ev_is_active (w)))
2237 3359
2238 if (w->reschedule_cb) 3360 if (w->reschedule_cb)
2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3361 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2240 else if (w->interval) 3362 else if (w->interval)
2241 { 3363 {
2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3364 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2243 /* this formula differs from the one in periodic_reify because we do not always round up */ 3365 periodic_recalc (EV_A_ w);
2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2245 } 3366 }
2246 else 3367 else
2247 ev_at (w) = w->offset; 3368 ev_at (w) = w->offset;
2248 3369
2249 EV_FREQUENT_CHECK; 3370 EV_FREQUENT_CHECK;
2255 ANHE_at_cache (periodics [ev_active (w)]); 3376 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w)); 3377 upheap (periodics, ev_active (w));
2257 3378
2258 EV_FREQUENT_CHECK; 3379 EV_FREQUENT_CHECK;
2259 3380
2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3381 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2261} 3382}
2262 3383
2263void noinline 3384void noinline
2264ev_periodic_stop (EV_P_ ev_periodic *w) 3385ev_periodic_stop (EV_P_ ev_periodic *w)
2265{ 3386{
2270 EV_FREQUENT_CHECK; 3391 EV_FREQUENT_CHECK;
2271 3392
2272 { 3393 {
2273 int active = ev_active (w); 3394 int active = ev_active (w);
2274 3395
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3396 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276 3397
2277 --periodiccnt; 3398 --periodiccnt;
2278 3399
2279 if (expect_true (active < periodiccnt + HEAP0)) 3400 if (expect_true (active < periodiccnt + HEAP0))
2280 { 3401 {
2281 periodics [active] = periodics [periodiccnt + HEAP0]; 3402 periodics [active] = periodics [periodiccnt + HEAP0];
2282 adjustheap (periodics, periodiccnt, active); 3403 adjustheap (periodics, periodiccnt, active);
2283 } 3404 }
2284 } 3405 }
2285 3406
2286 EV_FREQUENT_CHECK;
2287
2288 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
2289} 3410}
2290 3411
2291void noinline 3412void noinline
2292ev_periodic_again (EV_P_ ev_periodic *w) 3413ev_periodic_again (EV_P_ ev_periodic *w)
2293{ 3414{
2299 3420
2300#ifndef SA_RESTART 3421#ifndef SA_RESTART
2301# define SA_RESTART 0 3422# define SA_RESTART 0
2302#endif 3423#endif
2303 3424
3425#if EV_SIGNAL_ENABLE
3426
2304void noinline 3427void noinline
2305ev_signal_start (EV_P_ ev_signal *w) 3428ev_signal_start (EV_P_ ev_signal *w)
2306{ 3429{
2307#if EV_MULTIPLICITY
2308 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2309#endif
2310 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
2311 return; 3431 return;
2312 3432
2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3433 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2314 3434
2315 evpipe_init (EV_A); 3435#if EV_MULTIPLICITY
3436 assert (("libev: a signal must not be attached to two different loops",
3437 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2316 3438
2317 EV_FREQUENT_CHECK; 3439 signals [w->signum - 1].loop = EV_A;
3440#endif
2318 3441
3442 EV_FREQUENT_CHECK;
3443
3444#if EV_USE_SIGNALFD
3445 if (sigfd == -2)
2319 { 3446 {
2320#ifndef _WIN32 3447 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2321 sigset_t full, prev; 3448 if (sigfd < 0 && errno == EINVAL)
2322 sigfillset (&full); 3449 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2323 sigprocmask (SIG_SETMASK, &full, &prev);
2324#endif
2325 3450
2326 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3451 if (sigfd >= 0)
3452 {
3453 fd_intern (sigfd); /* doing it twice will not hurt */
2327 3454
2328#ifndef _WIN32 3455 sigemptyset (&sigfd_set);
2329 sigprocmask (SIG_SETMASK, &prev, 0); 3456
2330#endif 3457 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3458 ev_set_priority (&sigfd_w, EV_MAXPRI);
3459 ev_io_start (EV_A_ &sigfd_w);
3460 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3461 }
2331 } 3462 }
3463
3464 if (sigfd >= 0)
3465 {
3466 /* TODO: check .head */
3467 sigaddset (&sigfd_set, w->signum);
3468 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3469
3470 signalfd (sigfd, &sigfd_set, 0);
3471 }
3472#endif
2332 3473
2333 ev_start (EV_A_ (W)w, 1); 3474 ev_start (EV_A_ (W)w, 1);
2334 wlist_add (&signals [w->signum - 1].head, (WL)w); 3475 wlist_add (&signals [w->signum - 1].head, (WL)w);
2335 3476
2336 if (!((WL)w)->next) 3477 if (!((WL)w)->next)
3478# if EV_USE_SIGNALFD
3479 if (sigfd < 0) /*TODO*/
3480# endif
2337 { 3481 {
2338#if _WIN32 3482# ifdef _WIN32
3483 evpipe_init (EV_A);
3484
2339 signal (w->signum, ev_sighandler); 3485 signal (w->signum, ev_sighandler);
2340#else 3486# else
2341 struct sigaction sa; 3487 struct sigaction sa;
3488
3489 evpipe_init (EV_A);
3490
2342 sa.sa_handler = ev_sighandler; 3491 sa.sa_handler = ev_sighandler;
2343 sigfillset (&sa.sa_mask); 3492 sigfillset (&sa.sa_mask);
2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3493 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2345 sigaction (w->signum, &sa, 0); 3494 sigaction (w->signum, &sa, 0);
3495
3496 if (origflags & EVFLAG_NOSIGMASK)
3497 {
3498 sigemptyset (&sa.sa_mask);
3499 sigaddset (&sa.sa_mask, w->signum);
3500 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3501 }
2346#endif 3502#endif
2347 } 3503 }
2348 3504
2349 EV_FREQUENT_CHECK; 3505 EV_FREQUENT_CHECK;
2350} 3506}
2351 3507
2352void noinline 3508void noinline
2360 3516
2361 wlist_del (&signals [w->signum - 1].head, (WL)w); 3517 wlist_del (&signals [w->signum - 1].head, (WL)w);
2362 ev_stop (EV_A_ (W)w); 3518 ev_stop (EV_A_ (W)w);
2363 3519
2364 if (!signals [w->signum - 1].head) 3520 if (!signals [w->signum - 1].head)
3521 {
3522#if EV_MULTIPLICITY
3523 signals [w->signum - 1].loop = 0; /* unattach from signal */
3524#endif
3525#if EV_USE_SIGNALFD
3526 if (sigfd >= 0)
3527 {
3528 sigset_t ss;
3529
3530 sigemptyset (&ss);
3531 sigaddset (&ss, w->signum);
3532 sigdelset (&sigfd_set, w->signum);
3533
3534 signalfd (sigfd, &sigfd_set, 0);
3535 sigprocmask (SIG_UNBLOCK, &ss, 0);
3536 }
3537 else
3538#endif
2365 signal (w->signum, SIG_DFL); 3539 signal (w->signum, SIG_DFL);
3540 }
2366 3541
2367 EV_FREQUENT_CHECK; 3542 EV_FREQUENT_CHECK;
2368} 3543}
3544
3545#endif
3546
3547#if EV_CHILD_ENABLE
2369 3548
2370void 3549void
2371ev_child_start (EV_P_ ev_child *w) 3550ev_child_start (EV_P_ ev_child *w)
2372{ 3551{
2373#if EV_MULTIPLICITY 3552#if EV_MULTIPLICITY
2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3553 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2375#endif 3554#endif
2376 if (expect_false (ev_is_active (w))) 3555 if (expect_false (ev_is_active (w)))
2377 return; 3556 return;
2378 3557
2379 EV_FREQUENT_CHECK; 3558 EV_FREQUENT_CHECK;
2380 3559
2381 ev_start (EV_A_ (W)w, 1); 3560 ev_start (EV_A_ (W)w, 1);
2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3561 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2383 3562
2384 EV_FREQUENT_CHECK; 3563 EV_FREQUENT_CHECK;
2385} 3564}
2386 3565
2387void 3566void
2391 if (expect_false (!ev_is_active (w))) 3570 if (expect_false (!ev_is_active (w)))
2392 return; 3571 return;
2393 3572
2394 EV_FREQUENT_CHECK; 3573 EV_FREQUENT_CHECK;
2395 3574
2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3575 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2397 ev_stop (EV_A_ (W)w); 3576 ev_stop (EV_A_ (W)w);
2398 3577
2399 EV_FREQUENT_CHECK; 3578 EV_FREQUENT_CHECK;
2400} 3579}
3580
3581#endif
2401 3582
2402#if EV_STAT_ENABLE 3583#if EV_STAT_ENABLE
2403 3584
2404# ifdef _WIN32 3585# ifdef _WIN32
2405# undef lstat 3586# undef lstat
2406# define lstat(a,b) _stati64 (a,b) 3587# define lstat(a,b) _stati64 (a,b)
2407# endif 3588# endif
2408 3589
2409#define DEF_STAT_INTERVAL 5.0074891 3590#define DEF_STAT_INTERVAL 5.0074891
3591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2410#define MIN_STAT_INTERVAL 0.1074891 3592#define MIN_STAT_INTERVAL 0.1074891
2411 3593
2412static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2413 3595
2414#if EV_USE_INOTIFY 3596#if EV_USE_INOTIFY
2415# define EV_INOTIFY_BUFSIZE 8192 3597
3598/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3599# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2416 3600
2417static void noinline 3601static void noinline
2418infy_add (EV_P_ ev_stat *w) 3602infy_add (EV_P_ ev_stat *w)
2419{ 3603{
2420 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3604 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2421 3605
2422 if (w->wd < 0) 3606 if (w->wd >= 0)
3607 {
3608 struct statfs sfs;
3609
3610 /* now local changes will be tracked by inotify, but remote changes won't */
3611 /* unless the filesystem is known to be local, we therefore still poll */
3612 /* also do poll on <2.6.25, but with normal frequency */
3613
3614 if (!fs_2625)
3615 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3616 else if (!statfs (w->path, &sfs)
3617 && (sfs.f_type == 0x1373 /* devfs */
3618 || sfs.f_type == 0xEF53 /* ext2/3 */
3619 || sfs.f_type == 0x3153464a /* jfs */
3620 || sfs.f_type == 0x52654973 /* reiser3 */
3621 || sfs.f_type == 0x01021994 /* tempfs */
3622 || sfs.f_type == 0x58465342 /* xfs */))
3623 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3624 else
3625 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2423 { 3626 }
2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3627 else
3628 {
3629 /* can't use inotify, continue to stat */
3630 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2425 3631
2426 /* monitor some parent directory for speedup hints */ 3632 /* if path is not there, monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3633 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2428 /* but an efficiency issue only */ 3634 /* but an efficiency issue only */
2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3635 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2430 { 3636 {
2431 char path [4096]; 3637 char path [4096];
2432 strcpy (path, w->path); 3638 strcpy (path, w->path);
2436 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3642 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2437 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3643 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2438 3644
2439 char *pend = strrchr (path, '/'); 3645 char *pend = strrchr (path, '/');
2440 3646
2441 if (!pend) 3647 if (!pend || pend == path)
2442 break; /* whoops, no '/', complain to your admin */ 3648 break;
2443 3649
2444 *pend = 0; 3650 *pend = 0;
2445 w->wd = inotify_add_watch (fs_fd, path, mask); 3651 w->wd = inotify_add_watch (fs_fd, path, mask);
2446 } 3652 }
2447 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3653 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2448 } 3654 }
2449 } 3655 }
2450 else
2451 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2452 3656
2453 if (w->wd >= 0) 3657 if (w->wd >= 0)
2454 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3658 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3659
3660 /* now re-arm timer, if required */
3661 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3662 ev_timer_again (EV_A_ &w->timer);
3663 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2455} 3664}
2456 3665
2457static void noinline 3666static void noinline
2458infy_del (EV_P_ ev_stat *w) 3667infy_del (EV_P_ ev_stat *w)
2459{ 3668{
2462 3671
2463 if (wd < 0) 3672 if (wd < 0)
2464 return; 3673 return;
2465 3674
2466 w->wd = -2; 3675 w->wd = -2;
2467 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3676 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2468 wlist_del (&fs_hash [slot].head, (WL)w); 3677 wlist_del (&fs_hash [slot].head, (WL)w);
2469 3678
2470 /* remove this watcher, if others are watching it, they will rearm */ 3679 /* remove this watcher, if others are watching it, they will rearm */
2471 inotify_rm_watch (fs_fd, wd); 3680 inotify_rm_watch (fs_fd, wd);
2472} 3681}
2473 3682
2474static void noinline 3683static void noinline
2475infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3684infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2476{ 3685{
2477 if (slot < 0) 3686 if (slot < 0)
2478 /* overflow, need to check for all hahs slots */ 3687 /* overflow, need to check for all hash slots */
2479 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3688 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2480 infy_wd (EV_A_ slot, wd, ev); 3689 infy_wd (EV_A_ slot, wd, ev);
2481 else 3690 else
2482 { 3691 {
2483 WL w_; 3692 WL w_;
2484 3693
2485 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3694 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2486 { 3695 {
2487 ev_stat *w = (ev_stat *)w_; 3696 ev_stat *w = (ev_stat *)w_;
2488 w_ = w_->next; /* lets us remove this watcher and all before it */ 3697 w_ = w_->next; /* lets us remove this watcher and all before it */
2489 3698
2490 if (w->wd == wd || wd == -1) 3699 if (w->wd == wd || wd == -1)
2491 { 3700 {
2492 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3701 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2493 { 3702 {
3703 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2494 w->wd = -1; 3704 w->wd = -1;
2495 infy_add (EV_A_ w); /* re-add, no matter what */ 3705 infy_add (EV_A_ w); /* re-add, no matter what */
2496 } 3706 }
2497 3707
2498 stat_timer_cb (EV_A_ &w->timer, 0); 3708 stat_timer_cb (EV_A_ &w->timer, 0);
2503 3713
2504static void 3714static void
2505infy_cb (EV_P_ ev_io *w, int revents) 3715infy_cb (EV_P_ ev_io *w, int revents)
2506{ 3716{
2507 char buf [EV_INOTIFY_BUFSIZE]; 3717 char buf [EV_INOTIFY_BUFSIZE];
2508 struct inotify_event *ev = (struct inotify_event *)buf;
2509 int ofs; 3718 int ofs;
2510 int len = read (fs_fd, buf, sizeof (buf)); 3719 int len = read (fs_fd, buf, sizeof (buf));
2511 3720
2512 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3721 for (ofs = 0; ofs < len; )
3722 {
3723 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2513 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3724 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3725 ofs += sizeof (struct inotify_event) + ev->len;
3726 }
2514} 3727}
2515 3728
2516void inline_size 3729inline_size void ecb_cold
3730ev_check_2625 (EV_P)
3731{
3732 /* kernels < 2.6.25 are borked
3733 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3734 */
3735 if (ev_linux_version () < 0x020619)
3736 return;
3737
3738 fs_2625 = 1;
3739}
3740
3741inline_size int
3742infy_newfd (void)
3743{
3744#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3745 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3746 if (fd >= 0)
3747 return fd;
3748#endif
3749 return inotify_init ();
3750}
3751
3752inline_size void
2517infy_init (EV_P) 3753infy_init (EV_P)
2518{ 3754{
2519 if (fs_fd != -2) 3755 if (fs_fd != -2)
2520 return; 3756 return;
2521 3757
3758 fs_fd = -1;
3759
3760 ev_check_2625 (EV_A);
3761
2522 fs_fd = inotify_init (); 3762 fs_fd = infy_newfd ();
2523 3763
2524 if (fs_fd >= 0) 3764 if (fs_fd >= 0)
2525 { 3765 {
3766 fd_intern (fs_fd);
2526 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3767 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2527 ev_set_priority (&fs_w, EV_MAXPRI); 3768 ev_set_priority (&fs_w, EV_MAXPRI);
2528 ev_io_start (EV_A_ &fs_w); 3769 ev_io_start (EV_A_ &fs_w);
3770 ev_unref (EV_A);
2529 } 3771 }
2530} 3772}
2531 3773
2532void inline_size 3774inline_size void
2533infy_fork (EV_P) 3775infy_fork (EV_P)
2534{ 3776{
2535 int slot; 3777 int slot;
2536 3778
2537 if (fs_fd < 0) 3779 if (fs_fd < 0)
2538 return; 3780 return;
2539 3781
3782 ev_ref (EV_A);
3783 ev_io_stop (EV_A_ &fs_w);
2540 close (fs_fd); 3784 close (fs_fd);
2541 fs_fd = inotify_init (); 3785 fs_fd = infy_newfd ();
2542 3786
3787 if (fs_fd >= 0)
3788 {
3789 fd_intern (fs_fd);
3790 ev_io_set (&fs_w, fs_fd, EV_READ);
3791 ev_io_start (EV_A_ &fs_w);
3792 ev_unref (EV_A);
3793 }
3794
2543 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3795 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2544 { 3796 {
2545 WL w_ = fs_hash [slot].head; 3797 WL w_ = fs_hash [slot].head;
2546 fs_hash [slot].head = 0; 3798 fs_hash [slot].head = 0;
2547 3799
2548 while (w_) 3800 while (w_)
2553 w->wd = -1; 3805 w->wd = -1;
2554 3806
2555 if (fs_fd >= 0) 3807 if (fs_fd >= 0)
2556 infy_add (EV_A_ w); /* re-add, no matter what */ 3808 infy_add (EV_A_ w); /* re-add, no matter what */
2557 else 3809 else
3810 {
3811 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3812 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2558 ev_timer_start (EV_A_ &w->timer); 3813 ev_timer_again (EV_A_ &w->timer);
3814 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3815 }
2559 } 3816 }
2560
2561 } 3817 }
2562} 3818}
2563 3819
3820#endif
3821
3822#ifdef _WIN32
3823# define EV_LSTAT(p,b) _stati64 (p, b)
3824#else
3825# define EV_LSTAT(p,b) lstat (p, b)
2564#endif 3826#endif
2565 3827
2566void 3828void
2567ev_stat_stat (EV_P_ ev_stat *w) 3829ev_stat_stat (EV_P_ ev_stat *w)
2568{ 3830{
2575static void noinline 3837static void noinline
2576stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3838stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2577{ 3839{
2578 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3840 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2579 3841
2580 /* we copy this here each the time so that */ 3842 ev_statdata prev = w->attr;
2581 /* prev has the old value when the callback gets invoked */
2582 w->prev = w->attr;
2583 ev_stat_stat (EV_A_ w); 3843 ev_stat_stat (EV_A_ w);
2584 3844
2585 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3845 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2586 if ( 3846 if (
2587 w->prev.st_dev != w->attr.st_dev 3847 prev.st_dev != w->attr.st_dev
2588 || w->prev.st_ino != w->attr.st_ino 3848 || prev.st_ino != w->attr.st_ino
2589 || w->prev.st_mode != w->attr.st_mode 3849 || prev.st_mode != w->attr.st_mode
2590 || w->prev.st_nlink != w->attr.st_nlink 3850 || prev.st_nlink != w->attr.st_nlink
2591 || w->prev.st_uid != w->attr.st_uid 3851 || prev.st_uid != w->attr.st_uid
2592 || w->prev.st_gid != w->attr.st_gid 3852 || prev.st_gid != w->attr.st_gid
2593 || w->prev.st_rdev != w->attr.st_rdev 3853 || prev.st_rdev != w->attr.st_rdev
2594 || w->prev.st_size != w->attr.st_size 3854 || prev.st_size != w->attr.st_size
2595 || w->prev.st_atime != w->attr.st_atime 3855 || prev.st_atime != w->attr.st_atime
2596 || w->prev.st_mtime != w->attr.st_mtime 3856 || prev.st_mtime != w->attr.st_mtime
2597 || w->prev.st_ctime != w->attr.st_ctime 3857 || prev.st_ctime != w->attr.st_ctime
2598 ) { 3858 ) {
3859 /* we only update w->prev on actual differences */
3860 /* in case we test more often than invoke the callback, */
3861 /* to ensure that prev is always different to attr */
3862 w->prev = prev;
3863
2599 #if EV_USE_INOTIFY 3864 #if EV_USE_INOTIFY
3865 if (fs_fd >= 0)
3866 {
2600 infy_del (EV_A_ w); 3867 infy_del (EV_A_ w);
2601 infy_add (EV_A_ w); 3868 infy_add (EV_A_ w);
2602 ev_stat_stat (EV_A_ w); /* avoid race... */ 3869 ev_stat_stat (EV_A_ w); /* avoid race... */
3870 }
2603 #endif 3871 #endif
2604 3872
2605 ev_feed_event (EV_A_ w, EV_STAT); 3873 ev_feed_event (EV_A_ w, EV_STAT);
2606 } 3874 }
2607} 3875}
2610ev_stat_start (EV_P_ ev_stat *w) 3878ev_stat_start (EV_P_ ev_stat *w)
2611{ 3879{
2612 if (expect_false (ev_is_active (w))) 3880 if (expect_false (ev_is_active (w)))
2613 return; 3881 return;
2614 3882
2615 /* since we use memcmp, we need to clear any padding data etc. */
2616 memset (&w->prev, 0, sizeof (ev_statdata));
2617 memset (&w->attr, 0, sizeof (ev_statdata));
2618
2619 ev_stat_stat (EV_A_ w); 3883 ev_stat_stat (EV_A_ w);
2620 3884
3885 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2621 if (w->interval < MIN_STAT_INTERVAL) 3886 w->interval = MIN_STAT_INTERVAL;
2622 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 3887
2624 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3888 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2625 ev_set_priority (&w->timer, ev_priority (w)); 3889 ev_set_priority (&w->timer, ev_priority (w));
2626 3890
2627#if EV_USE_INOTIFY 3891#if EV_USE_INOTIFY
2628 infy_init (EV_A); 3892 infy_init (EV_A);
2629 3893
2630 if (fs_fd >= 0) 3894 if (fs_fd >= 0)
2631 infy_add (EV_A_ w); 3895 infy_add (EV_A_ w);
2632 else 3896 else
2633#endif 3897#endif
3898 {
2634 ev_timer_start (EV_A_ &w->timer); 3899 ev_timer_again (EV_A_ &w->timer);
3900 ev_unref (EV_A);
3901 }
2635 3902
2636 ev_start (EV_A_ (W)w, 1); 3903 ev_start (EV_A_ (W)w, 1);
2637 3904
2638 EV_FREQUENT_CHECK; 3905 EV_FREQUENT_CHECK;
2639} 3906}
2648 EV_FREQUENT_CHECK; 3915 EV_FREQUENT_CHECK;
2649 3916
2650#if EV_USE_INOTIFY 3917#if EV_USE_INOTIFY
2651 infy_del (EV_A_ w); 3918 infy_del (EV_A_ w);
2652#endif 3919#endif
3920
3921 if (ev_is_active (&w->timer))
3922 {
3923 ev_ref (EV_A);
2653 ev_timer_stop (EV_A_ &w->timer); 3924 ev_timer_stop (EV_A_ &w->timer);
3925 }
2654 3926
2655 ev_stop (EV_A_ (W)w); 3927 ev_stop (EV_A_ (W)w);
2656 3928
2657 EV_FREQUENT_CHECK; 3929 EV_FREQUENT_CHECK;
2658} 3930}
2703 3975
2704 EV_FREQUENT_CHECK; 3976 EV_FREQUENT_CHECK;
2705} 3977}
2706#endif 3978#endif
2707 3979
3980#if EV_PREPARE_ENABLE
2708void 3981void
2709ev_prepare_start (EV_P_ ev_prepare *w) 3982ev_prepare_start (EV_P_ ev_prepare *w)
2710{ 3983{
2711 if (expect_false (ev_is_active (w))) 3984 if (expect_false (ev_is_active (w)))
2712 return; 3985 return;
2738 4011
2739 ev_stop (EV_A_ (W)w); 4012 ev_stop (EV_A_ (W)w);
2740 4013
2741 EV_FREQUENT_CHECK; 4014 EV_FREQUENT_CHECK;
2742} 4015}
4016#endif
2743 4017
4018#if EV_CHECK_ENABLE
2744void 4019void
2745ev_check_start (EV_P_ ev_check *w) 4020ev_check_start (EV_P_ ev_check *w)
2746{ 4021{
2747 if (expect_false (ev_is_active (w))) 4022 if (expect_false (ev_is_active (w)))
2748 return; 4023 return;
2774 4049
2775 ev_stop (EV_A_ (W)w); 4050 ev_stop (EV_A_ (W)w);
2776 4051
2777 EV_FREQUENT_CHECK; 4052 EV_FREQUENT_CHECK;
2778} 4053}
4054#endif
2779 4055
2780#if EV_EMBED_ENABLE 4056#if EV_EMBED_ENABLE
2781void noinline 4057void noinline
2782ev_embed_sweep (EV_P_ ev_embed *w) 4058ev_embed_sweep (EV_P_ ev_embed *w)
2783{ 4059{
2784 ev_loop (w->other, EVLOOP_NONBLOCK); 4060 ev_run (w->other, EVRUN_NOWAIT);
2785} 4061}
2786 4062
2787static void 4063static void
2788embed_io_cb (EV_P_ ev_io *io, int revents) 4064embed_io_cb (EV_P_ ev_io *io, int revents)
2789{ 4065{
2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4066 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2791 4067
2792 if (ev_cb (w)) 4068 if (ev_cb (w))
2793 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4069 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2794 else 4070 else
2795 ev_loop (w->other, EVLOOP_NONBLOCK); 4071 ev_run (w->other, EVRUN_NOWAIT);
2796} 4072}
2797 4073
2798static void 4074static void
2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4075embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800{ 4076{
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4077 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802 4078
2803 { 4079 {
2804 struct ev_loop *loop = w->other; 4080 EV_P = w->other;
2805 4081
2806 while (fdchangecnt) 4082 while (fdchangecnt)
2807 { 4083 {
2808 fd_reify (EV_A); 4084 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4085 ev_run (EV_A_ EVRUN_NOWAIT);
2810 } 4086 }
2811 } 4087 }
4088}
4089
4090static void
4091embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4092{
4093 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4094
4095 ev_embed_stop (EV_A_ w);
4096
4097 {
4098 EV_P = w->other;
4099
4100 ev_loop_fork (EV_A);
4101 ev_run (EV_A_ EVRUN_NOWAIT);
4102 }
4103
4104 ev_embed_start (EV_A_ w);
2812} 4105}
2813 4106
2814#if 0 4107#if 0
2815static void 4108static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4109embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2824{ 4117{
2825 if (expect_false (ev_is_active (w))) 4118 if (expect_false (ev_is_active (w)))
2826 return; 4119 return;
2827 4120
2828 { 4121 {
2829 struct ev_loop *loop = w->other; 4122 EV_P = w->other;
2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4123 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4124 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2832 } 4125 }
2833 4126
2834 EV_FREQUENT_CHECK; 4127 EV_FREQUENT_CHECK;
2835 4128
2838 4131
2839 ev_prepare_init (&w->prepare, embed_prepare_cb); 4132 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI); 4133 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare); 4134 ev_prepare_start (EV_A_ &w->prepare);
2842 4135
4136 ev_fork_init (&w->fork, embed_fork_cb);
4137 ev_fork_start (EV_A_ &w->fork);
4138
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4139 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844 4140
2845 ev_start (EV_A_ (W)w, 1); 4141 ev_start (EV_A_ (W)w, 1);
2846 4142
2847 EV_FREQUENT_CHECK; 4143 EV_FREQUENT_CHECK;
2854 if (expect_false (!ev_is_active (w))) 4150 if (expect_false (!ev_is_active (w)))
2855 return; 4151 return;
2856 4152
2857 EV_FREQUENT_CHECK; 4153 EV_FREQUENT_CHECK;
2858 4154
2859 ev_io_stop (EV_A_ &w->io); 4155 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare); 4156 ev_prepare_stop (EV_A_ &w->prepare);
4157 ev_fork_stop (EV_A_ &w->fork);
2861 4158
2862 ev_stop (EV_A_ (W)w); 4159 ev_stop (EV_A_ (W)w);
2863 4160
2864 EV_FREQUENT_CHECK; 4161 EV_FREQUENT_CHECK;
2865} 4162}
2901 4198
2902 EV_FREQUENT_CHECK; 4199 EV_FREQUENT_CHECK;
2903} 4200}
2904#endif 4201#endif
2905 4202
4203#if EV_CLEANUP_ENABLE
4204void
4205ev_cleanup_start (EV_P_ ev_cleanup *w)
4206{
4207 if (expect_false (ev_is_active (w)))
4208 return;
4209
4210 EV_FREQUENT_CHECK;
4211
4212 ev_start (EV_A_ (W)w, ++cleanupcnt);
4213 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4214 cleanups [cleanupcnt - 1] = w;
4215
4216 /* cleanup watchers should never keep a refcount on the loop */
4217 ev_unref (EV_A);
4218 EV_FREQUENT_CHECK;
4219}
4220
4221void
4222ev_cleanup_stop (EV_P_ ev_cleanup *w)
4223{
4224 clear_pending (EV_A_ (W)w);
4225 if (expect_false (!ev_is_active (w)))
4226 return;
4227
4228 EV_FREQUENT_CHECK;
4229 ev_ref (EV_A);
4230
4231 {
4232 int active = ev_active (w);
4233
4234 cleanups [active - 1] = cleanups [--cleanupcnt];
4235 ev_active (cleanups [active - 1]) = active;
4236 }
4237
4238 ev_stop (EV_A_ (W)w);
4239
4240 EV_FREQUENT_CHECK;
4241}
4242#endif
4243
2906#if EV_ASYNC_ENABLE 4244#if EV_ASYNC_ENABLE
2907void 4245void
2908ev_async_start (EV_P_ ev_async *w) 4246ev_async_start (EV_P_ ev_async *w)
2909{ 4247{
2910 if (expect_false (ev_is_active (w))) 4248 if (expect_false (ev_is_active (w)))
2911 return; 4249 return;
2912 4250
4251 w->sent = 0;
4252
2913 evpipe_init (EV_A); 4253 evpipe_init (EV_A);
2914 4254
2915 EV_FREQUENT_CHECK; 4255 EV_FREQUENT_CHECK;
2916 4256
2917 ev_start (EV_A_ (W)w, ++asynccnt); 4257 ev_start (EV_A_ (W)w, ++asynccnt);
2944 4284
2945void 4285void
2946ev_async_send (EV_P_ ev_async *w) 4286ev_async_send (EV_P_ ev_async *w)
2947{ 4287{
2948 w->sent = 1; 4288 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync); 4289 evpipe_write (EV_A_ &async_pending);
2950} 4290}
2951#endif 4291#endif
2952 4292
2953/*****************************************************************************/ 4293/*****************************************************************************/
2954 4294
2964once_cb (EV_P_ struct ev_once *once, int revents) 4304once_cb (EV_P_ struct ev_once *once, int revents)
2965{ 4305{
2966 void (*cb)(int revents, void *arg) = once->cb; 4306 void (*cb)(int revents, void *arg) = once->cb;
2967 void *arg = once->arg; 4307 void *arg = once->arg;
2968 4308
2969 ev_io_stop (EV_A_ &once->io); 4309 ev_io_stop (EV_A_ &once->io);
2970 ev_timer_stop (EV_A_ &once->to); 4310 ev_timer_stop (EV_A_ &once->to);
2971 ev_free (once); 4311 ev_free (once);
2972 4312
2973 cb (revents, arg); 4313 cb (revents, arg);
2974} 4314}
2975 4315
2976static void 4316static void
2977once_cb_io (EV_P_ ev_io *w, int revents) 4317once_cb_io (EV_P_ ev_io *w, int revents)
2978{ 4318{
2979 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4319 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4320
4321 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2980} 4322}
2981 4323
2982static void 4324static void
2983once_cb_to (EV_P_ ev_timer *w, int revents) 4325once_cb_to (EV_P_ ev_timer *w, int revents)
2984{ 4326{
2985 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4327 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4328
4329 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2986} 4330}
2987 4331
2988void 4332void
2989ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2990{ 4334{
2991 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4335 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2992 4336
2993 if (expect_false (!once)) 4337 if (expect_false (!once))
2994 { 4338 {
2995 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4339 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2996 return; 4340 return;
2997 } 4341 }
2998 4342
2999 once->cb = cb; 4343 once->cb = cb;
3000 once->arg = arg; 4344 once->arg = arg;
3012 ev_timer_set (&once->to, timeout, 0.); 4356 ev_timer_set (&once->to, timeout, 0.);
3013 ev_timer_start (EV_A_ &once->to); 4357 ev_timer_start (EV_A_ &once->to);
3014 } 4358 }
3015} 4359}
3016 4360
4361/*****************************************************************************/
4362
4363#if EV_WALK_ENABLE
4364void ecb_cold
4365ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4366{
4367 int i, j;
4368 ev_watcher_list *wl, *wn;
4369
4370 if (types & (EV_IO | EV_EMBED))
4371 for (i = 0; i < anfdmax; ++i)
4372 for (wl = anfds [i].head; wl; )
4373 {
4374 wn = wl->next;
4375
4376#if EV_EMBED_ENABLE
4377 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4378 {
4379 if (types & EV_EMBED)
4380 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4381 }
4382 else
4383#endif
4384#if EV_USE_INOTIFY
4385 if (ev_cb ((ev_io *)wl) == infy_cb)
4386 ;
4387 else
4388#endif
4389 if ((ev_io *)wl != &pipe_w)
4390 if (types & EV_IO)
4391 cb (EV_A_ EV_IO, wl);
4392
4393 wl = wn;
4394 }
4395
4396 if (types & (EV_TIMER | EV_STAT))
4397 for (i = timercnt + HEAP0; i-- > HEAP0; )
4398#if EV_STAT_ENABLE
4399 /*TODO: timer is not always active*/
4400 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4401 {
4402 if (types & EV_STAT)
4403 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4404 }
4405 else
4406#endif
4407 if (types & EV_TIMER)
4408 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4409
4410#if EV_PERIODIC_ENABLE
4411 if (types & EV_PERIODIC)
4412 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4413 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4414#endif
4415
4416#if EV_IDLE_ENABLE
4417 if (types & EV_IDLE)
4418 for (j = NUMPRI; j--; )
4419 for (i = idlecnt [j]; i--; )
4420 cb (EV_A_ EV_IDLE, idles [j][i]);
4421#endif
4422
4423#if EV_FORK_ENABLE
4424 if (types & EV_FORK)
4425 for (i = forkcnt; i--; )
4426 if (ev_cb (forks [i]) != embed_fork_cb)
4427 cb (EV_A_ EV_FORK, forks [i]);
4428#endif
4429
4430#if EV_ASYNC_ENABLE
4431 if (types & EV_ASYNC)
4432 for (i = asynccnt; i--; )
4433 cb (EV_A_ EV_ASYNC, asyncs [i]);
4434#endif
4435
4436#if EV_PREPARE_ENABLE
4437 if (types & EV_PREPARE)
4438 for (i = preparecnt; i--; )
4439# if EV_EMBED_ENABLE
4440 if (ev_cb (prepares [i]) != embed_prepare_cb)
4441# endif
4442 cb (EV_A_ EV_PREPARE, prepares [i]);
4443#endif
4444
4445#if EV_CHECK_ENABLE
4446 if (types & EV_CHECK)
4447 for (i = checkcnt; i--; )
4448 cb (EV_A_ EV_CHECK, checks [i]);
4449#endif
4450
4451#if EV_SIGNAL_ENABLE
4452 if (types & EV_SIGNAL)
4453 for (i = 0; i < EV_NSIG - 1; ++i)
4454 for (wl = signals [i].head; wl; )
4455 {
4456 wn = wl->next;
4457 cb (EV_A_ EV_SIGNAL, wl);
4458 wl = wn;
4459 }
4460#endif
4461
4462#if EV_CHILD_ENABLE
4463 if (types & EV_CHILD)
4464 for (i = (EV_PID_HASHSIZE); i--; )
4465 for (wl = childs [i]; wl; )
4466 {
4467 wn = wl->next;
4468 cb (EV_A_ EV_CHILD, wl);
4469 wl = wn;
4470 }
4471#endif
4472/* EV_STAT 0x00001000 /* stat data changed */
4473/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4474}
4475#endif
4476
3017#if EV_MULTIPLICITY 4477#if EV_MULTIPLICITY
3018 #include "ev_wrap.h" 4478 #include "ev_wrap.h"
3019#endif 4479#endif
3020 4480
3021#ifdef __cplusplus
3022}
3023#endif
3024

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines