ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.413 by root, Fri Mar 23 19:06:08 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
135#endif 197#endif
136 198
137#ifndef _WIN32 199#ifndef _WIN32
138# include <sys/time.h> 200# include <sys/time.h>
139# include <sys/wait.h> 201# include <sys/wait.h>
140# include <unistd.h> 202# include <unistd.h>
141#else 203#else
204# include <io.h>
142# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 206# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
146# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
147#endif 260# endif
148 261#endif
149/**/
150 262
151#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
152# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
153#endif 269#endif
154 270
155#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 273#endif
158 274
159#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
160# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
161#endif 281#endif
162 282
163#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 285#endif
166 286
167#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
168# ifdef _WIN32 288# ifdef _WIN32
169# define EV_USE_POLL 0 289# define EV_USE_POLL 0
170# else 290# else
171# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 292# endif
173#endif 293#endif
174 294
175#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
176# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
177#endif 301#endif
178 302
179#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
181#endif 305#endif
183#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 308# define EV_USE_PORT 0
185#endif 309#endif
186 310
187#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
188# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
316# endif
189#endif 317#endif
190 318
191#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 330# else
195# define EV_PID_HASHSIZE 16 331# define EV_USE_EVENTFD 0
196# endif 332# endif
197#endif 333#endif
198 334
199#ifndef EV_INOTIFY_HASHSIZE 335#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 337# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 338# else
203# define EV_INOTIFY_HASHSIZE 16 339# define EV_USE_SIGNALFD 0
204# endif 340# endif
205#endif 341#endif
206 342
207/**/ 343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
208 382
209#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
212#endif 386#endif
220# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
222#endif 396#endif
223 397
224#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
226# include <sys/select.h> 401# include <sys/select.h>
227# endif 402# endif
228#endif 403#endif
229 404
230#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
231# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
232#endif 413#endif
233 414
234#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 416# include <winsock.h>
236#endif 417#endif
237 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
238/**/ 457/**/
239 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
240/* 465/*
241 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 468 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 471
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
254#if __GNUC__ >= 4 519 #if __GNUC__
255# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
256# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
257#else 526#else
258# define expect(expr,value) (expr) 527 #include <inttypes.h>
259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
263#endif 542 #endif
543#endif
264 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #elif __xlC__
607 #define ECB_MEMORY_FENCE __lwsync ()
608 #endif
609#endif
610
611#ifndef ECB_MEMORY_FENCE
612 #if !ECB_AVOID_PTHREADS
613 /*
614 * if you get undefined symbol references to pthread_mutex_lock,
615 * or failure to find pthread.h, then you should implement
616 * the ECB_MEMORY_FENCE operations for your cpu/compiler
617 * OR provide pthread.h and link against the posix thread library
618 * of your system.
619 */
620 #include <pthread.h>
621 #define ECB_NEEDS_PTHREADS 1
622 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
623
624 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
625 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
626 #endif
627#endif
628
629#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
631#endif
632
633#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
634 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
635#endif
636
637/*****************************************************************************/
638
639#define ECB_C99 (__STDC_VERSION__ >= 199901L)
640
641#if __cplusplus
642 #define ecb_inline static inline
643#elif ECB_GCC_VERSION(2,5)
644 #define ecb_inline static __inline__
645#elif ECB_C99
646 #define ecb_inline static inline
647#else
648 #define ecb_inline static
649#endif
650
651#if ECB_GCC_VERSION(3,3)
652 #define ecb_restrict __restrict__
653#elif ECB_C99
654 #define ecb_restrict restrict
655#else
656 #define ecb_restrict
657#endif
658
659typedef int ecb_bool;
660
661#define ECB_CONCAT_(a, b) a ## b
662#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
663#define ECB_STRINGIFY_(a) # a
664#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
665
666#define ecb_function_ ecb_inline
667
668#if ECB_GCC_VERSION(3,1)
669 #define ecb_attribute(attrlist) __attribute__(attrlist)
670 #define ecb_is_constant(expr) __builtin_constant_p (expr)
671 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
672 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
673#else
674 #define ecb_attribute(attrlist)
675 #define ecb_is_constant(expr) 0
676 #define ecb_expect(expr,value) (expr)
677 #define ecb_prefetch(addr,rw,locality)
678#endif
679
680/* no emulation for ecb_decltype */
681#if ECB_GCC_VERSION(4,5)
682 #define ecb_decltype(x) __decltype(x)
683#elif ECB_GCC_VERSION(3,0)
684 #define ecb_decltype(x) __typeof(x)
685#endif
686
687#define ecb_noinline ecb_attribute ((__noinline__))
688#define ecb_noreturn ecb_attribute ((__noreturn__))
689#define ecb_unused ecb_attribute ((__unused__))
690#define ecb_const ecb_attribute ((__const__))
691#define ecb_pure ecb_attribute ((__pure__))
692
693#if ECB_GCC_VERSION(4,3)
694 #define ecb_artificial ecb_attribute ((__artificial__))
695 #define ecb_hot ecb_attribute ((__hot__))
696 #define ecb_cold ecb_attribute ((__cold__))
697#else
698 #define ecb_artificial
699 #define ecb_hot
700 #define ecb_cold
701#endif
702
703/* put around conditional expressions if you are very sure that the */
704/* expression is mostly true or mostly false. note that these return */
705/* booleans, not the expression. */
265#define expect_false(expr) expect ((expr) != 0, 0) 706#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 707#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
708/* for compatibility to the rest of the world */
709#define ecb_likely(expr) ecb_expect_true (expr)
710#define ecb_unlikely(expr) ecb_expect_false (expr)
711
712/* count trailing zero bits and count # of one bits */
713#if ECB_GCC_VERSION(3,4)
714 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
715 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
716 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
717 #define ecb_ctz32(x) __builtin_ctz (x)
718 #define ecb_ctz64(x) __builtin_ctzll (x)
719 #define ecb_popcount32(x) __builtin_popcount (x)
720 /* no popcountll */
721#else
722 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
723 ecb_function_ int
724 ecb_ctz32 (uint32_t x)
725 {
726 int r = 0;
727
728 x &= ~x + 1; /* this isolates the lowest bit */
729
730#if ECB_branchless_on_i386
731 r += !!(x & 0xaaaaaaaa) << 0;
732 r += !!(x & 0xcccccccc) << 1;
733 r += !!(x & 0xf0f0f0f0) << 2;
734 r += !!(x & 0xff00ff00) << 3;
735 r += !!(x & 0xffff0000) << 4;
736#else
737 if (x & 0xaaaaaaaa) r += 1;
738 if (x & 0xcccccccc) r += 2;
739 if (x & 0xf0f0f0f0) r += 4;
740 if (x & 0xff00ff00) r += 8;
741 if (x & 0xffff0000) r += 16;
742#endif
743
744 return r;
745 }
746
747 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
748 ecb_function_ int
749 ecb_ctz64 (uint64_t x)
750 {
751 int shift = x & 0xffffffffU ? 0 : 32;
752 return ecb_ctz32 (x >> shift) + shift;
753 }
754
755 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
756 ecb_function_ int
757 ecb_popcount32 (uint32_t x)
758 {
759 x -= (x >> 1) & 0x55555555;
760 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
761 x = ((x >> 4) + x) & 0x0f0f0f0f;
762 x *= 0x01010101;
763
764 return x >> 24;
765 }
766
767 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
768 ecb_function_ int ecb_ld32 (uint32_t x)
769 {
770 int r = 0;
771
772 if (x >> 16) { x >>= 16; r += 16; }
773 if (x >> 8) { x >>= 8; r += 8; }
774 if (x >> 4) { x >>= 4; r += 4; }
775 if (x >> 2) { x >>= 2; r += 2; }
776 if (x >> 1) { r += 1; }
777
778 return r;
779 }
780
781 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
782 ecb_function_ int ecb_ld64 (uint64_t x)
783 {
784 int r = 0;
785
786 if (x >> 32) { x >>= 32; r += 32; }
787
788 return r + ecb_ld32 (x);
789 }
790#endif
791
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
793ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
794{
795 return ( (x * 0x0802U & 0x22110U)
796 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
797}
798
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
800ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
801{
802 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
803 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
804 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
805 x = ( x >> 8 ) | ( x << 8);
806
807 return x;
808}
809
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
811ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
812{
813 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
814 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
815 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
816 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
817 x = ( x >> 16 ) | ( x << 16);
818
819 return x;
820}
821
822/* popcount64 is only available on 64 bit cpus as gcc builtin */
823/* so for this version we are lazy */
824ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
825ecb_function_ int
826ecb_popcount64 (uint64_t x)
827{
828 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
829}
830
831ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
838ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
839
840ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
841ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
842ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
843ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
844ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
845ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
846ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
847ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
848
849#if ECB_GCC_VERSION(4,3)
850 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
851 #define ecb_bswap32(x) __builtin_bswap32 (x)
852 #define ecb_bswap64(x) __builtin_bswap64 (x)
853#else
854 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
855 ecb_function_ uint16_t
856 ecb_bswap16 (uint16_t x)
857 {
858 return ecb_rotl16 (x, 8);
859 }
860
861 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
862 ecb_function_ uint32_t
863 ecb_bswap32 (uint32_t x)
864 {
865 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
866 }
867
868 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
869 ecb_function_ uint64_t
870 ecb_bswap64 (uint64_t x)
871 {
872 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
873 }
874#endif
875
876#if ECB_GCC_VERSION(4,5)
877 #define ecb_unreachable() __builtin_unreachable ()
878#else
879 /* this seems to work fine, but gcc always emits a warning for it :/ */
880 ecb_inline void ecb_unreachable (void) ecb_noreturn;
881 ecb_inline void ecb_unreachable (void) { }
882#endif
883
884/* try to tell the compiler that some condition is definitely true */
885#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
886
887ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
888ecb_inline unsigned char
889ecb_byteorder_helper (void)
890{
891 const uint32_t u = 0x11223344;
892 return *(unsigned char *)&u;
893}
894
895ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
896ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
897ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
899
900#if ECB_GCC_VERSION(3,0) || ECB_C99
901 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
902#else
903 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
904#endif
905
906#if __cplusplus
907 template<typename T>
908 static inline T ecb_div_rd (T val, T div)
909 {
910 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
911 }
912 template<typename T>
913 static inline T ecb_div_ru (T val, T div)
914 {
915 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
916 }
917#else
918 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
919 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
920#endif
921
922#if ecb_cplusplus_does_not_suck
923 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
924 template<typename T, int N>
925 static inline int ecb_array_length (const T (&arr)[N])
926 {
927 return N;
928 }
929#else
930 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
931#endif
932
933#endif
934
935/* ECB.H END */
936
937#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
938/* if your architecture doesn't need memory fences, e.g. because it is
939 * single-cpu/core, or if you use libev in a project that doesn't use libev
940 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
941 * libev, in which cases the memory fences become nops.
942 * alternatively, you can remove this #error and link against libpthread,
943 * which will then provide the memory fences.
944 */
945# error "memory fences not defined for your architecture, please report"
946#endif
947
948#ifndef ECB_MEMORY_FENCE
949# define ECB_MEMORY_FENCE do { } while (0)
950# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
952#endif
953
954#define expect_false(cond) ecb_expect_false (cond)
955#define expect_true(cond) ecb_expect_true (cond)
956#define noinline ecb_noinline
957
267#define inline_size static inline 958#define inline_size ecb_inline
268 959
269#if EV_MINIMAL 960#if EV_FEATURE_CODE
961# define inline_speed ecb_inline
962#else
270# define inline_speed static noinline 963# define inline_speed static noinline
964#endif
965
966#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
967
968#if EV_MINPRI == EV_MAXPRI
969# define ABSPRI(w) (((W)w), 0)
271#else 970#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 971# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
972#endif
277 973
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 974#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 975#define EMPTY2(a,b) /* used to suppress some warnings */
280 976
281typedef ev_watcher *W; 977typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 978typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 979typedef ev_watcher_time *WT;
284 980
981#define ev_active(w) ((W)(w))->active
982#define ev_at(w) ((WT)(w))->at
983
984#if EV_USE_REALTIME
985/* sig_atomic_t is used to avoid per-thread variables or locking but still */
986/* giving it a reasonably high chance of working on typical architectures */
987static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
988#endif
989
990#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 991static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
992#endif
993
994#ifndef EV_FD_TO_WIN32_HANDLE
995# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
996#endif
997#ifndef EV_WIN32_HANDLE_TO_FD
998# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
999#endif
1000#ifndef EV_WIN32_CLOSE_FD
1001# define EV_WIN32_CLOSE_FD(fd) close (fd)
1002#endif
286 1003
287#ifdef _WIN32 1004#ifdef _WIN32
288# include "ev_win32.c" 1005# include "ev_win32.c"
289#endif 1006#endif
290 1007
291/*****************************************************************************/ 1008/*****************************************************************************/
292 1009
1010/* define a suitable floor function (only used by periodics atm) */
1011
1012#if EV_USE_FLOOR
1013# include <math.h>
1014# define ev_floor(v) floor (v)
1015#else
1016
1017#include <float.h>
1018
1019/* a floor() replacement function, should be independent of ev_tstamp type */
1020static ev_tstamp noinline
1021ev_floor (ev_tstamp v)
1022{
1023 /* the choice of shift factor is not terribly important */
1024#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1026#else
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1028#endif
1029
1030 /* argument too large for an unsigned long? */
1031 if (expect_false (v >= shift))
1032 {
1033 ev_tstamp f;
1034
1035 if (v == v - 1.)
1036 return v; /* very large number */
1037
1038 f = shift * ev_floor (v * (1. / shift));
1039 return f + ev_floor (v - f);
1040 }
1041
1042 /* special treatment for negative args? */
1043 if (expect_false (v < 0.))
1044 {
1045 ev_tstamp f = -ev_floor (-v);
1046
1047 return f - (f == v ? 0 : 1);
1048 }
1049
1050 /* fits into an unsigned long */
1051 return (unsigned long)v;
1052}
1053
1054#endif
1055
1056/*****************************************************************************/
1057
1058#ifdef __linux
1059# include <sys/utsname.h>
1060#endif
1061
1062static unsigned int noinline ecb_cold
1063ev_linux_version (void)
1064{
1065#ifdef __linux
1066 unsigned int v = 0;
1067 struct utsname buf;
1068 int i;
1069 char *p = buf.release;
1070
1071 if (uname (&buf))
1072 return 0;
1073
1074 for (i = 3+1; --i; )
1075 {
1076 unsigned int c = 0;
1077
1078 for (;;)
1079 {
1080 if (*p >= '0' && *p <= '9')
1081 c = c * 10 + *p++ - '0';
1082 else
1083 {
1084 p += *p == '.';
1085 break;
1086 }
1087 }
1088
1089 v = (v << 8) | c;
1090 }
1091
1092 return v;
1093#else
1094 return 0;
1095#endif
1096}
1097
1098/*****************************************************************************/
1099
1100#if EV_AVOID_STDIO
1101static void noinline ecb_cold
1102ev_printerr (const char *msg)
1103{
1104 write (STDERR_FILENO, msg, strlen (msg));
1105}
1106#endif
1107
293static void (*syserr_cb)(const char *msg); 1108static void (*syserr_cb)(const char *msg);
294 1109
295void 1110void ecb_cold
296ev_set_syserr_cb (void (*cb)(const char *msg)) 1111ev_set_syserr_cb (void (*cb)(const char *msg))
297{ 1112{
298 syserr_cb = cb; 1113 syserr_cb = cb;
299} 1114}
300 1115
301static void noinline 1116static void noinline ecb_cold
302syserr (const char *msg) 1117ev_syserr (const char *msg)
303{ 1118{
304 if (!msg) 1119 if (!msg)
305 msg = "(libev) system error"; 1120 msg = "(libev) system error";
306 1121
307 if (syserr_cb) 1122 if (syserr_cb)
308 syserr_cb (msg); 1123 syserr_cb (msg);
309 else 1124 else
310 { 1125 {
1126#if EV_AVOID_STDIO
1127 ev_printerr (msg);
1128 ev_printerr (": ");
1129 ev_printerr (strerror (errno));
1130 ev_printerr ("\n");
1131#else
311 perror (msg); 1132 perror (msg);
1133#endif
312 abort (); 1134 abort ();
313 } 1135 }
314} 1136}
315 1137
1138static void *
1139ev_realloc_emul (void *ptr, long size)
1140{
1141#if __GLIBC__
1142 return realloc (ptr, size);
1143#else
1144 /* some systems, notably openbsd and darwin, fail to properly
1145 * implement realloc (x, 0) (as required by both ansi c-89 and
1146 * the single unix specification, so work around them here.
1147 */
1148
1149 if (size)
1150 return realloc (ptr, size);
1151
1152 free (ptr);
1153 return 0;
1154#endif
1155}
1156
316static void *(*alloc)(void *ptr, long size); 1157static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 1158
318void 1159void ecb_cold
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 1160ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 1161{
321 alloc = cb; 1162 alloc = cb;
322} 1163}
323 1164
324inline_speed void * 1165inline_speed void *
325ev_realloc (void *ptr, long size) 1166ev_realloc (void *ptr, long size)
326{ 1167{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1168 ptr = alloc (ptr, size);
328 1169
329 if (!ptr && size) 1170 if (!ptr && size)
330 { 1171 {
1172#if EV_AVOID_STDIO
1173 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1174#else
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1175 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1176#endif
332 abort (); 1177 abort ();
333 } 1178 }
334 1179
335 return ptr; 1180 return ptr;
336} 1181}
338#define ev_malloc(size) ev_realloc (0, (size)) 1183#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 1184#define ev_free(ptr) ev_realloc ((ptr), 0)
340 1185
341/*****************************************************************************/ 1186/*****************************************************************************/
342 1187
1188/* set in reify when reification needed */
1189#define EV_ANFD_REIFY 1
1190
1191/* file descriptor info structure */
343typedef struct 1192typedef struct
344{ 1193{
345 WL head; 1194 WL head;
346 unsigned char events; 1195 unsigned char events; /* the events watched for */
1196 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1197 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 1198 unsigned char unused;
1199#if EV_USE_EPOLL
1200 unsigned int egen; /* generation counter to counter epoll bugs */
1201#endif
348#if EV_SELECT_IS_WINSOCKET 1202#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
349 SOCKET handle; 1203 SOCKET handle;
350#endif 1204#endif
1205#if EV_USE_IOCP
1206 OVERLAPPED or, ow;
1207#endif
351} ANFD; 1208} ANFD;
352 1209
1210/* stores the pending event set for a given watcher */
353typedef struct 1211typedef struct
354{ 1212{
355 W w; 1213 W w;
356 int events; 1214 int events; /* the pending event set for the given watcher */
357} ANPENDING; 1215} ANPENDING;
358 1216
359#if EV_USE_INOTIFY 1217#if EV_USE_INOTIFY
1218/* hash table entry per inotify-id */
360typedef struct 1219typedef struct
361{ 1220{
362 WL head; 1221 WL head;
363} ANFS; 1222} ANFS;
1223#endif
1224
1225/* Heap Entry */
1226#if EV_HEAP_CACHE_AT
1227 /* a heap element */
1228 typedef struct {
1229 ev_tstamp at;
1230 WT w;
1231 } ANHE;
1232
1233 #define ANHE_w(he) (he).w /* access watcher, read-write */
1234 #define ANHE_at(he) (he).at /* access cached at, read-only */
1235 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1236#else
1237 /* a heap element */
1238 typedef WT ANHE;
1239
1240 #define ANHE_w(he) (he)
1241 #define ANHE_at(he) (he)->at
1242 #define ANHE_at_cache(he)
364#endif 1243#endif
365 1244
366#if EV_MULTIPLICITY 1245#if EV_MULTIPLICITY
367 1246
368 struct ev_loop 1247 struct ev_loop
374 #undef VAR 1253 #undef VAR
375 }; 1254 };
376 #include "ev_wrap.h" 1255 #include "ev_wrap.h"
377 1256
378 static struct ev_loop default_loop_struct; 1257 static struct ev_loop default_loop_struct;
379 struct ev_loop *ev_default_loop_ptr; 1258 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
380 1259
381#else 1260#else
382 1261
383 ev_tstamp ev_rt_now; 1262 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
384 #define VAR(name,decl) static decl; 1263 #define VAR(name,decl) static decl;
385 #include "ev_vars.h" 1264 #include "ev_vars.h"
386 #undef VAR 1265 #undef VAR
387 1266
388 static int ev_default_loop_ptr; 1267 static int ev_default_loop_ptr;
389 1268
390#endif 1269#endif
391 1270
1271#if EV_FEATURE_API
1272# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1273# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1274# define EV_INVOKE_PENDING invoke_cb (EV_A)
1275#else
1276# define EV_RELEASE_CB (void)0
1277# define EV_ACQUIRE_CB (void)0
1278# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1279#endif
1280
1281#define EVBREAK_RECURSE 0x80
1282
392/*****************************************************************************/ 1283/*****************************************************************************/
393 1284
1285#ifndef EV_HAVE_EV_TIME
394ev_tstamp 1286ev_tstamp
395ev_time (void) 1287ev_time (void)
396{ 1288{
397#if EV_USE_REALTIME 1289#if EV_USE_REALTIME
1290 if (expect_true (have_realtime))
1291 {
398 struct timespec ts; 1292 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 1293 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 1294 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 1295 }
1296#endif
1297
402 struct timeval tv; 1298 struct timeval tv;
403 gettimeofday (&tv, 0); 1299 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 1300 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 1301}
1302#endif
407 1303
408ev_tstamp inline_size 1304inline_size ev_tstamp
409get_clock (void) 1305get_clock (void)
410{ 1306{
411#if EV_USE_MONOTONIC 1307#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 1308 if (expect_true (have_monotonic))
413 { 1309 {
434 if (delay > 0.) 1330 if (delay > 0.)
435 { 1331 {
436#if EV_USE_NANOSLEEP 1332#if EV_USE_NANOSLEEP
437 struct timespec ts; 1333 struct timespec ts;
438 1334
439 ts.tv_sec = (time_t)delay; 1335 EV_TS_SET (ts, delay);
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0); 1336 nanosleep (&ts, 0);
443#elif defined(_WIN32) 1337#elif defined(_WIN32)
444 Sleep (delay * 1e3); 1338 Sleep ((unsigned long)(delay * 1e3));
445#else 1339#else
446 struct timeval tv; 1340 struct timeval tv;
447 1341
448 tv.tv_sec = (time_t)delay; 1342 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1343 /* something not guaranteed by newer posix versions, but guaranteed */
450 1344 /* by older ones */
1345 EV_TV_SET (tv, delay);
451 select (0, 0, 0, 0, &tv); 1346 select (0, 0, 0, 0, &tv);
452#endif 1347#endif
453 } 1348 }
454} 1349}
455 1350
456/*****************************************************************************/ 1351/*****************************************************************************/
457 1352
458int inline_size 1353#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1354
1355/* find a suitable new size for the given array, */
1356/* hopefully by rounding to a nice-to-malloc size */
1357inline_size int
459array_nextsize (int elem, int cur, int cnt) 1358array_nextsize (int elem, int cur, int cnt)
460{ 1359{
461 int ncur = cur + 1; 1360 int ncur = cur + 1;
462 1361
463 do 1362 do
464 ncur <<= 1; 1363 ncur <<= 1;
465 while (cnt > ncur); 1364 while (cnt > ncur);
466 1365
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1366 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
468 if (elem * ncur > 4096) 1367 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 1368 {
470 ncur *= elem; 1369 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1370 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 1371 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 1372 ncur /= elem;
474 } 1373 }
475 1374
476 return ncur; 1375 return ncur;
477} 1376}
478 1377
479static noinline void * 1378static void * noinline ecb_cold
480array_realloc (int elem, void *base, int *cur, int cnt) 1379array_realloc (int elem, void *base, int *cur, int cnt)
481{ 1380{
482 *cur = array_nextsize (elem, *cur, cnt); 1381 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 1382 return ev_realloc (base, elem * *cur);
484} 1383}
1384
1385#define array_init_zero(base,count) \
1386 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 1387
486#define array_needsize(type,base,cur,cnt,init) \ 1388#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 1389 if (expect_false ((cnt) > (cur))) \
488 { \ 1390 { \
489 int ocur_ = (cur); \ 1391 int ecb_unused ocur_ = (cur); \
490 (base) = (type *)array_realloc \ 1392 (base) = (type *)array_realloc \
491 (sizeof (type), (base), &(cur), (cnt)); \ 1393 (sizeof (type), (base), &(cur), (cnt)); \
492 init ((base) + (ocur_), (cur) - ocur_); \ 1394 init ((base) + (ocur_), (cur) - ocur_); \
493 } 1395 }
494 1396
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1403 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 1404 }
503#endif 1405#endif
504 1406
505#define array_free(stem, idx) \ 1407#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1408 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 1409
508/*****************************************************************************/ 1410/*****************************************************************************/
1411
1412/* dummy callback for pending events */
1413static void noinline
1414pendingcb (EV_P_ ev_prepare *w, int revents)
1415{
1416}
509 1417
510void noinline 1418void noinline
511ev_feed_event (EV_P_ void *w, int revents) 1419ev_feed_event (EV_P_ void *w, int revents)
512{ 1420{
513 W w_ = (W)w; 1421 W w_ = (W)w;
522 pendings [pri][w_->pending - 1].w = w_; 1430 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 1431 pendings [pri][w_->pending - 1].events = revents;
524 } 1432 }
525} 1433}
526 1434
527void inline_speed 1435inline_speed void
1436feed_reverse (EV_P_ W w)
1437{
1438 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1439 rfeeds [rfeedcnt++] = w;
1440}
1441
1442inline_size void
1443feed_reverse_done (EV_P_ int revents)
1444{
1445 do
1446 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1447 while (rfeedcnt);
1448}
1449
1450inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 1451queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 1452{
530 int i; 1453 int i;
531 1454
532 for (i = 0; i < eventcnt; ++i) 1455 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 1456 ev_feed_event (EV_A_ events [i], type);
534} 1457}
535 1458
536/*****************************************************************************/ 1459/*****************************************************************************/
537 1460
538void inline_size 1461inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 1462fd_event_nocheck (EV_P_ int fd, int revents)
553{ 1463{
554 ANFD *anfd = anfds + fd; 1464 ANFD *anfd = anfds + fd;
555 ev_io *w; 1465 ev_io *w;
556 1466
557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1467 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
561 if (ev) 1471 if (ev)
562 ev_feed_event (EV_A_ (W)w, ev); 1472 ev_feed_event (EV_A_ (W)w, ev);
563 } 1473 }
564} 1474}
565 1475
1476/* do not submit kernel events for fds that have reify set */
1477/* because that means they changed while we were polling for new events */
1478inline_speed void
1479fd_event (EV_P_ int fd, int revents)
1480{
1481 ANFD *anfd = anfds + fd;
1482
1483 if (expect_true (!anfd->reify))
1484 fd_event_nocheck (EV_A_ fd, revents);
1485}
1486
566void 1487void
567ev_feed_fd_event (EV_P_ int fd, int revents) 1488ev_feed_fd_event (EV_P_ int fd, int revents)
568{ 1489{
569 if (fd >= 0 && fd < anfdmax) 1490 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 1491 fd_event_nocheck (EV_A_ fd, revents);
571} 1492}
572 1493
573void inline_size 1494/* make sure the external fd watch events are in-sync */
1495/* with the kernel/libev internal state */
1496inline_size void
574fd_reify (EV_P) 1497fd_reify (EV_P)
575{ 1498{
576 int i; 1499 int i;
1500
1501#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1502 for (i = 0; i < fdchangecnt; ++i)
1503 {
1504 int fd = fdchanges [i];
1505 ANFD *anfd = anfds + fd;
1506
1507 if (anfd->reify & EV__IOFDSET && anfd->head)
1508 {
1509 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1510
1511 if (handle != anfd->handle)
1512 {
1513 unsigned long arg;
1514
1515 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1516
1517 /* handle changed, but fd didn't - we need to do it in two steps */
1518 backend_modify (EV_A_ fd, anfd->events, 0);
1519 anfd->events = 0;
1520 anfd->handle = handle;
1521 }
1522 }
1523 }
1524#endif
577 1525
578 for (i = 0; i < fdchangecnt; ++i) 1526 for (i = 0; i < fdchangecnt; ++i)
579 { 1527 {
580 int fd = fdchanges [i]; 1528 int fd = fdchanges [i];
581 ANFD *anfd = anfds + fd; 1529 ANFD *anfd = anfds + fd;
582 ev_io *w; 1530 ev_io *w;
583 1531
584 unsigned char events = 0; 1532 unsigned char o_events = anfd->events;
1533 unsigned char o_reify = anfd->reify;
585 1534
586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1535 anfd->reify = 0;
587 events |= (unsigned char)w->events;
588 1536
589#if EV_SELECT_IS_WINSOCKET 1537 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
590 if (events)
591 { 1538 {
592 unsigned long argp; 1539 anfd->events = 0;
593 anfd->handle = _get_osfhandle (fd); 1540
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1542 anfd->events |= (unsigned char)w->events;
1543
1544 if (o_events != anfd->events)
1545 o_reify = EV__IOFDSET; /* actually |= */
595 } 1546 }
596#endif
597 1547
598 { 1548 if (o_reify & EV__IOFDSET)
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
602 anfd->reify = 0;
603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 1549 backend_modify (EV_A_ fd, o_events, anfd->events);
607 }
608 } 1550 }
609 1551
610 fdchangecnt = 0; 1552 fdchangecnt = 0;
611} 1553}
612 1554
613void inline_size 1555/* something about the given fd changed */
1556inline_size void
614fd_change (EV_P_ int fd, int flags) 1557fd_change (EV_P_ int fd, int flags)
615{ 1558{
616 unsigned char reify = anfds [fd].reify; 1559 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 1560 anfds [fd].reify |= flags;
618 1561
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1565 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 1566 fdchanges [fdchangecnt - 1] = fd;
624 } 1567 }
625} 1568}
626 1569
627void inline_speed 1570/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1571inline_speed void ecb_cold
628fd_kill (EV_P_ int fd) 1572fd_kill (EV_P_ int fd)
629{ 1573{
630 ev_io *w; 1574 ev_io *w;
631 1575
632 while ((w = (ev_io *)anfds [fd].head)) 1576 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 1578 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1579 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 1580 }
637} 1581}
638 1582
639int inline_size 1583/* check whether the given fd is actually valid, for error recovery */
1584inline_size int ecb_cold
640fd_valid (int fd) 1585fd_valid (int fd)
641{ 1586{
642#ifdef _WIN32 1587#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 1588 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
644#else 1589#else
645 return fcntl (fd, F_GETFD) != -1; 1590 return fcntl (fd, F_GETFD) != -1;
646#endif 1591#endif
647} 1592}
648 1593
649/* called on EBADF to verify fds */ 1594/* called on EBADF to verify fds */
650static void noinline 1595static void noinline ecb_cold
651fd_ebadf (EV_P) 1596fd_ebadf (EV_P)
652{ 1597{
653 int fd; 1598 int fd;
654 1599
655 for (fd = 0; fd < anfdmax; ++fd) 1600 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 1601 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 1602 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 1603 fd_kill (EV_A_ fd);
659} 1604}
660 1605
661/* called on ENOMEM in select/poll to kill some fds and retry */ 1606/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 1607static void noinline ecb_cold
663fd_enomem (EV_P) 1608fd_enomem (EV_P)
664{ 1609{
665 int fd; 1610 int fd;
666 1611
667 for (fd = anfdmax; fd--; ) 1612 for (fd = anfdmax; fd--; )
668 if (anfds [fd].events) 1613 if (anfds [fd].events)
669 { 1614 {
670 fd_kill (EV_A_ fd); 1615 fd_kill (EV_A_ fd);
671 return; 1616 break;
672 } 1617 }
673} 1618}
674 1619
675/* usually called after fork if backend needs to re-arm all fds from scratch */ 1620/* usually called after fork if backend needs to re-arm all fds from scratch */
676static void noinline 1621static void noinline
680 1625
681 for (fd = 0; fd < anfdmax; ++fd) 1626 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 1627 if (anfds [fd].events)
683 { 1628 {
684 anfds [fd].events = 0; 1629 anfds [fd].events = 0;
1630 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1631 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
686 } 1632 }
687} 1633}
688 1634
689/*****************************************************************************/ 1635/* used to prepare libev internal fd's */
690 1636/* this is not fork-safe */
691void inline_speed 1637inline_speed void
692upheap (WT *heap, int k)
693{
694 WT w = heap [k];
695
696 while (k)
697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
703 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1;
705 k = p;
706 }
707
708 heap [k] = w;
709 ((W)heap [k])->active = k + 1;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k)
742{
743 upheap (heap, k);
744 downheap (heap, N, k);
745}
746
747/*****************************************************************************/
748
749typedef struct
750{
751 WL head;
752 sig_atomic_t volatile gotsig;
753} ANSIG;
754
755static ANSIG *signals;
756static int signalmax;
757
758static int sigpipe [2];
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761
762void inline_size
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1638fd_intern (int fd)
827{ 1639{
828#ifdef _WIN32 1640#ifdef _WIN32
829 int arg = 1; 1641 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1642 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
831#else 1643#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1644 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1645 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1646#endif
835} 1647}
836 1648
837static void noinline
838siginit (EV_P)
839{
840 fd_intern (sigpipe [0]);
841 fd_intern (sigpipe [1]);
842
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */
846}
847
848/*****************************************************************************/ 1649/*****************************************************************************/
849 1650
1651/*
1652 * the heap functions want a real array index. array index 0 is guaranteed to not
1653 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1654 * the branching factor of the d-tree.
1655 */
1656
1657/*
1658 * at the moment we allow libev the luxury of two heaps,
1659 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1660 * which is more cache-efficient.
1661 * the difference is about 5% with 50000+ watchers.
1662 */
1663#if EV_USE_4HEAP
1664
1665#define DHEAP 4
1666#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1667#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1668#define UPHEAP_DONE(p,k) ((p) == (k))
1669
1670/* away from the root */
1671inline_speed void
1672downheap (ANHE *heap, int N, int k)
1673{
1674 ANHE he = heap [k];
1675 ANHE *E = heap + N + HEAP0;
1676
1677 for (;;)
1678 {
1679 ev_tstamp minat;
1680 ANHE *minpos;
1681 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1682
1683 /* find minimum child */
1684 if (expect_true (pos + DHEAP - 1 < E))
1685 {
1686 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1690 }
1691 else if (pos < E)
1692 {
1693 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1694 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1695 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1696 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1697 }
1698 else
1699 break;
1700
1701 if (ANHE_at (he) <= minat)
1702 break;
1703
1704 heap [k] = *minpos;
1705 ev_active (ANHE_w (*minpos)) = k;
1706
1707 k = minpos - heap;
1708 }
1709
1710 heap [k] = he;
1711 ev_active (ANHE_w (he)) = k;
1712}
1713
1714#else /* 4HEAP */
1715
1716#define HEAP0 1
1717#define HPARENT(k) ((k) >> 1)
1718#define UPHEAP_DONE(p,k) (!(p))
1719
1720/* away from the root */
1721inline_speed void
1722downheap (ANHE *heap, int N, int k)
1723{
1724 ANHE he = heap [k];
1725
1726 for (;;)
1727 {
1728 int c = k << 1;
1729
1730 if (c >= N + HEAP0)
1731 break;
1732
1733 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1734 ? 1 : 0;
1735
1736 if (ANHE_at (he) <= ANHE_at (heap [c]))
1737 break;
1738
1739 heap [k] = heap [c];
1740 ev_active (ANHE_w (heap [k])) = k;
1741
1742 k = c;
1743 }
1744
1745 heap [k] = he;
1746 ev_active (ANHE_w (he)) = k;
1747}
1748#endif
1749
1750/* towards the root */
1751inline_speed void
1752upheap (ANHE *heap, int k)
1753{
1754 ANHE he = heap [k];
1755
1756 for (;;)
1757 {
1758 int p = HPARENT (k);
1759
1760 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1761 break;
1762
1763 heap [k] = heap [p];
1764 ev_active (ANHE_w (heap [k])) = k;
1765 k = p;
1766 }
1767
1768 heap [k] = he;
1769 ev_active (ANHE_w (he)) = k;
1770}
1771
1772/* move an element suitably so it is in a correct place */
1773inline_size void
1774adjustheap (ANHE *heap, int N, int k)
1775{
1776 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1777 upheap (heap, k);
1778 else
1779 downheap (heap, N, k);
1780}
1781
1782/* rebuild the heap: this function is used only once and executed rarely */
1783inline_size void
1784reheap (ANHE *heap, int N)
1785{
1786 int i;
1787
1788 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1789 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1790 for (i = 0; i < N; ++i)
1791 upheap (heap, i + HEAP0);
1792}
1793
1794/*****************************************************************************/
1795
1796/* associate signal watchers to a signal signal */
1797typedef struct
1798{
1799 EV_ATOMIC_T pending;
1800#if EV_MULTIPLICITY
1801 EV_P;
1802#endif
1803 WL head;
1804} ANSIG;
1805
1806static ANSIG signals [EV_NSIG - 1];
1807
1808/*****************************************************************************/
1809
1810#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1811
1812static void noinline ecb_cold
1813evpipe_init (EV_P)
1814{
1815 if (!ev_is_active (&pipe_w))
1816 {
1817# if EV_USE_EVENTFD
1818 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1819 if (evfd < 0 && errno == EINVAL)
1820 evfd = eventfd (0, 0);
1821
1822 if (evfd >= 0)
1823 {
1824 evpipe [0] = -1;
1825 fd_intern (evfd); /* doing it twice doesn't hurt */
1826 ev_io_set (&pipe_w, evfd, EV_READ);
1827 }
1828 else
1829# endif
1830 {
1831 while (pipe (evpipe))
1832 ev_syserr ("(libev) error creating signal/async pipe");
1833
1834 fd_intern (evpipe [0]);
1835 fd_intern (evpipe [1]);
1836 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1837 }
1838
1839 ev_io_start (EV_A_ &pipe_w);
1840 ev_unref (EV_A); /* watcher should not keep loop alive */
1841 }
1842}
1843
1844inline_speed void
1845evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1846{
1847 if (expect_true (*flag))
1848 return;
1849
1850 *flag = 1;
1851
1852 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1853
1854 pipe_write_skipped = 1;
1855
1856 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1857
1858 if (pipe_write_wanted)
1859 {
1860 int old_errno;
1861
1862 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1863
1864 old_errno = errno; /* save errno because write will clobber it */
1865
1866#if EV_USE_EVENTFD
1867 if (evfd >= 0)
1868 {
1869 uint64_t counter = 1;
1870 write (evfd, &counter, sizeof (uint64_t));
1871 }
1872 else
1873#endif
1874 {
1875 /* win32 people keep sending patches that change this write() to send() */
1876 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1877 /* so when you think this write should be a send instead, please find out */
1878 /* where your send() is from - it's definitely not the microsoft send, and */
1879 /* tell me. thank you. */
1880 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1881 /* check the ev documentation on how to use this flag */
1882 write (evpipe [1], &(evpipe [1]), 1);
1883 }
1884
1885 errno = old_errno;
1886 }
1887}
1888
1889/* called whenever the libev signal pipe */
1890/* got some events (signal, async) */
1891static void
1892pipecb (EV_P_ ev_io *iow, int revents)
1893{
1894 int i;
1895
1896 if (revents & EV_READ)
1897 {
1898#if EV_USE_EVENTFD
1899 if (evfd >= 0)
1900 {
1901 uint64_t counter;
1902 read (evfd, &counter, sizeof (uint64_t));
1903 }
1904 else
1905#endif
1906 {
1907 char dummy;
1908 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1909 read (evpipe [0], &dummy, 1);
1910 }
1911 }
1912
1913 pipe_write_skipped = 0;
1914
1915#if EV_SIGNAL_ENABLE
1916 if (sig_pending)
1917 {
1918 sig_pending = 0;
1919
1920 for (i = EV_NSIG - 1; i--; )
1921 if (expect_false (signals [i].pending))
1922 ev_feed_signal_event (EV_A_ i + 1);
1923 }
1924#endif
1925
1926#if EV_ASYNC_ENABLE
1927 if (async_pending)
1928 {
1929 async_pending = 0;
1930
1931 for (i = asynccnt; i--; )
1932 if (asyncs [i]->sent)
1933 {
1934 asyncs [i]->sent = 0;
1935 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1936 }
1937 }
1938#endif
1939}
1940
1941/*****************************************************************************/
1942
1943void
1944ev_feed_signal (int signum)
1945{
1946#if EV_MULTIPLICITY
1947 EV_P = signals [signum - 1].loop;
1948
1949 if (!EV_A)
1950 return;
1951#endif
1952
1953 if (!ev_active (&pipe_w))
1954 return;
1955
1956 signals [signum - 1].pending = 1;
1957 evpipe_write (EV_A_ &sig_pending);
1958}
1959
1960static void
1961ev_sighandler (int signum)
1962{
1963#ifdef _WIN32
1964 signal (signum, ev_sighandler);
1965#endif
1966
1967 ev_feed_signal (signum);
1968}
1969
1970void noinline
1971ev_feed_signal_event (EV_P_ int signum)
1972{
1973 WL w;
1974
1975 if (expect_false (signum <= 0 || signum > EV_NSIG))
1976 return;
1977
1978 --signum;
1979
1980#if EV_MULTIPLICITY
1981 /* it is permissible to try to feed a signal to the wrong loop */
1982 /* or, likely more useful, feeding a signal nobody is waiting for */
1983
1984 if (expect_false (signals [signum].loop != EV_A))
1985 return;
1986#endif
1987
1988 signals [signum].pending = 0;
1989
1990 for (w = signals [signum].head; w; w = w->next)
1991 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1992}
1993
1994#if EV_USE_SIGNALFD
1995static void
1996sigfdcb (EV_P_ ev_io *iow, int revents)
1997{
1998 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1999
2000 for (;;)
2001 {
2002 ssize_t res = read (sigfd, si, sizeof (si));
2003
2004 /* not ISO-C, as res might be -1, but works with SuS */
2005 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2006 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2007
2008 if (res < (ssize_t)sizeof (si))
2009 break;
2010 }
2011}
2012#endif
2013
2014#endif
2015
2016/*****************************************************************************/
2017
2018#if EV_CHILD_ENABLE
850static WL childs [EV_PID_HASHSIZE]; 2019static WL childs [EV_PID_HASHSIZE];
851 2020
852#ifndef _WIN32
853
854static ev_signal childev; 2021static ev_signal childev;
855 2022
856void inline_speed 2023#ifndef WIFCONTINUED
2024# define WIFCONTINUED(status) 0
2025#endif
2026
2027/* handle a single child status event */
2028inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2029child_reap (EV_P_ int chain, int pid, int status)
858{ 2030{
859 ev_child *w; 2031 ev_child *w;
2032 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 2033
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2034 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2035 {
862 if (w->pid == pid || !w->pid) 2036 if ((w->pid == pid || !w->pid)
2037 && (!traced || (w->flags & 1)))
863 { 2038 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2039 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 2040 w->rpid = pid;
866 w->rstatus = status; 2041 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2042 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 2043 }
2044 }
869} 2045}
870 2046
871#ifndef WCONTINUED 2047#ifndef WCONTINUED
872# define WCONTINUED 0 2048# define WCONTINUED 0
873#endif 2049#endif
874 2050
2051/* called on sigchld etc., calls waitpid */
875static void 2052static void
876childcb (EV_P_ ev_signal *sw, int revents) 2053childcb (EV_P_ ev_signal *sw, int revents)
877{ 2054{
878 int pid, status; 2055 int pid, status;
879 2056
882 if (!WCONTINUED 2059 if (!WCONTINUED
883 || errno != EINVAL 2060 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2061 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 2062 return;
886 2063
887 /* make sure we are called again until all childs have been reaped */ 2064 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 2065 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2066 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 2067
891 child_reap (EV_A_ sw, pid, pid, status); 2068 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 2069 if ((EV_PID_HASHSIZE) > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2070 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 2071}
895 2072
896#endif 2073#endif
897 2074
898/*****************************************************************************/ 2075/*****************************************************************************/
899 2076
2077#if EV_USE_IOCP
2078# include "ev_iocp.c"
2079#endif
900#if EV_USE_PORT 2080#if EV_USE_PORT
901# include "ev_port.c" 2081# include "ev_port.c"
902#endif 2082#endif
903#if EV_USE_KQUEUE 2083#if EV_USE_KQUEUE
904# include "ev_kqueue.c" 2084# include "ev_kqueue.c"
911#endif 2091#endif
912#if EV_USE_SELECT 2092#if EV_USE_SELECT
913# include "ev_select.c" 2093# include "ev_select.c"
914#endif 2094#endif
915 2095
916int 2096int ecb_cold
917ev_version_major (void) 2097ev_version_major (void)
918{ 2098{
919 return EV_VERSION_MAJOR; 2099 return EV_VERSION_MAJOR;
920} 2100}
921 2101
922int 2102int ecb_cold
923ev_version_minor (void) 2103ev_version_minor (void)
924{ 2104{
925 return EV_VERSION_MINOR; 2105 return EV_VERSION_MINOR;
926} 2106}
927 2107
928/* return true if we are running with elevated privileges and should ignore env variables */ 2108/* return true if we are running with elevated privileges and should ignore env variables */
929int inline_size 2109int inline_size ecb_cold
930enable_secure (void) 2110enable_secure (void)
931{ 2111{
932#ifdef _WIN32 2112#ifdef _WIN32
933 return 0; 2113 return 0;
934#else 2114#else
935 return getuid () != geteuid () 2115 return getuid () != geteuid ()
936 || getgid () != getegid (); 2116 || getgid () != getegid ();
937#endif 2117#endif
938} 2118}
939 2119
940unsigned int 2120unsigned int ecb_cold
941ev_supported_backends (void) 2121ev_supported_backends (void)
942{ 2122{
943 unsigned int flags = 0; 2123 unsigned int flags = 0;
944 2124
945 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2125 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
949 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2129 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
950 2130
951 return flags; 2131 return flags;
952} 2132}
953 2133
954unsigned int 2134unsigned int ecb_cold
955ev_recommended_backends (void) 2135ev_recommended_backends (void)
956{ 2136{
957 unsigned int flags = ev_supported_backends (); 2137 unsigned int flags = ev_supported_backends ();
958 2138
959#ifndef __NetBSD__ 2139#ifndef __NetBSD__
960 /* kqueue is borked on everything but netbsd apparently */ 2140 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 2141 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 2142 flags &= ~EVBACKEND_KQUEUE;
963#endif 2143#endif
964#ifdef __APPLE__ 2144#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 2145 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 2146 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2147 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2148#endif
2149#ifdef __FreeBSD__
2150 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
967#endif 2151#endif
968 2152
969 return flags; 2153 return flags;
970} 2154}
971 2155
972unsigned int 2156unsigned int ecb_cold
973ev_embeddable_backends (void) 2157ev_embeddable_backends (void)
974{ 2158{
2159 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2160
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2161 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 2162 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
977 | EVBACKEND_PORT; 2163 flags &= ~EVBACKEND_EPOLL;
2164
2165 return flags;
978} 2166}
979 2167
980unsigned int 2168unsigned int
981ev_backend (EV_P) 2169ev_backend (EV_P)
982{ 2170{
983 return backend; 2171 return backend;
984} 2172}
985 2173
2174#if EV_FEATURE_API
986unsigned int 2175unsigned int
987ev_loop_count (EV_P) 2176ev_iteration (EV_P)
988{ 2177{
989 return loop_count; 2178 return loop_count;
2179}
2180
2181unsigned int
2182ev_depth (EV_P)
2183{
2184 return loop_depth;
990} 2185}
991 2186
992void 2187void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2188ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{ 2189{
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2194ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{ 2195{
1001 timeout_blocktime = interval; 2196 timeout_blocktime = interval;
1002} 2197}
1003 2198
2199void
2200ev_set_userdata (EV_P_ void *data)
2201{
2202 userdata = data;
2203}
2204
2205void *
2206ev_userdata (EV_P)
2207{
2208 return userdata;
2209}
2210
2211void
2212ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2213{
2214 invoke_cb = invoke_pending_cb;
2215}
2216
2217void
2218ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2219{
2220 release_cb = release;
2221 acquire_cb = acquire;
2222}
2223#endif
2224
2225/* initialise a loop structure, must be zero-initialised */
1004static void noinline 2226static void noinline ecb_cold
1005loop_init (EV_P_ unsigned int flags) 2227loop_init (EV_P_ unsigned int flags)
1006{ 2228{
1007 if (!backend) 2229 if (!backend)
1008 { 2230 {
2231 origflags = flags;
2232
2233#if EV_USE_REALTIME
2234 if (!have_realtime)
2235 {
2236 struct timespec ts;
2237
2238 if (!clock_gettime (CLOCK_REALTIME, &ts))
2239 have_realtime = 1;
2240 }
2241#endif
2242
1009#if EV_USE_MONOTONIC 2243#if EV_USE_MONOTONIC
2244 if (!have_monotonic)
1010 { 2245 {
1011 struct timespec ts; 2246 struct timespec ts;
2247
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2248 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 2249 have_monotonic = 1;
1014 } 2250 }
1015#endif 2251#endif
1016
1017 ev_rt_now = ev_time ();
1018 mn_now = get_clock ();
1019 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now;
1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024 2252
1025 /* pid check not overridable via env */ 2253 /* pid check not overridable via env */
1026#ifndef _WIN32 2254#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 2255 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 2256 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 2259 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 2260 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 2261 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 2262 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 2263
1036 if (!(flags & 0x0000ffffUL)) 2264 ev_rt_now = ev_time ();
2265 mn_now = get_clock ();
2266 now_floor = mn_now;
2267 rtmn_diff = ev_rt_now - mn_now;
2268#if EV_FEATURE_API
2269 invoke_cb = ev_invoke_pending;
2270#endif
2271
2272 io_blocktime = 0.;
2273 timeout_blocktime = 0.;
2274 backend = 0;
2275 backend_fd = -1;
2276 sig_pending = 0;
2277#if EV_ASYNC_ENABLE
2278 async_pending = 0;
2279#endif
2280 pipe_write_skipped = 0;
2281 pipe_write_wanted = 0;
2282#if EV_USE_INOTIFY
2283 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2284#endif
2285#if EV_USE_SIGNALFD
2286 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2287#endif
2288
2289 if (!(flags & EVBACKEND_MASK))
1037 flags |= ev_recommended_backends (); 2290 flags |= ev_recommended_backends ();
1038 2291
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY 2292#if EV_USE_IOCP
1042 fs_fd = -2; 2293 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1043#endif 2294#endif
1044
1045#if EV_USE_PORT 2295#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2296 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 2297#endif
1048#if EV_USE_KQUEUE 2298#if EV_USE_KQUEUE
1049 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2299 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1056#endif 2306#endif
1057#if EV_USE_SELECT 2307#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2308 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 2309#endif
1060 2310
2311 ev_prepare_init (&pending_w, pendingcb);
2312
2313#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1061 ev_init (&sigev, sigcb); 2314 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 2315 ev_set_priority (&pipe_w, EV_MAXPRI);
2316#endif
1063 } 2317 }
1064} 2318}
1065 2319
1066static void noinline 2320/* free up a loop structure */
2321void ecb_cold
1067loop_destroy (EV_P) 2322ev_loop_destroy (EV_P)
1068{ 2323{
1069 int i; 2324 int i;
2325
2326#if EV_MULTIPLICITY
2327 /* mimic free (0) */
2328 if (!EV_A)
2329 return;
2330#endif
2331
2332#if EV_CLEANUP_ENABLE
2333 /* queue cleanup watchers (and execute them) */
2334 if (expect_false (cleanupcnt))
2335 {
2336 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2337 EV_INVOKE_PENDING;
2338 }
2339#endif
2340
2341#if EV_CHILD_ENABLE
2342 if (ev_is_active (&childev))
2343 {
2344 ev_ref (EV_A); /* child watcher */
2345 ev_signal_stop (EV_A_ &childev);
2346 }
2347#endif
2348
2349 if (ev_is_active (&pipe_w))
2350 {
2351 /*ev_ref (EV_A);*/
2352 /*ev_io_stop (EV_A_ &pipe_w);*/
2353
2354#if EV_USE_EVENTFD
2355 if (evfd >= 0)
2356 close (evfd);
2357#endif
2358
2359 if (evpipe [0] >= 0)
2360 {
2361 EV_WIN32_CLOSE_FD (evpipe [0]);
2362 EV_WIN32_CLOSE_FD (evpipe [1]);
2363 }
2364 }
2365
2366#if EV_USE_SIGNALFD
2367 if (ev_is_active (&sigfd_w))
2368 close (sigfd);
2369#endif
1070 2370
1071#if EV_USE_INOTIFY 2371#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 2372 if (fs_fd >= 0)
1073 close (fs_fd); 2373 close (fs_fd);
1074#endif 2374#endif
1075 2375
1076 if (backend_fd >= 0) 2376 if (backend_fd >= 0)
1077 close (backend_fd); 2377 close (backend_fd);
1078 2378
2379#if EV_USE_IOCP
2380 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2381#endif
1079#if EV_USE_PORT 2382#if EV_USE_PORT
1080 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2383 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1081#endif 2384#endif
1082#if EV_USE_KQUEUE 2385#if EV_USE_KQUEUE
1083 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2386 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1098#if EV_IDLE_ENABLE 2401#if EV_IDLE_ENABLE
1099 array_free (idle, [i]); 2402 array_free (idle, [i]);
1100#endif 2403#endif
1101 } 2404 }
1102 2405
1103 ev_free (anfds); anfdmax = 0; 2406 ev_free (anfds); anfds = 0; anfdmax = 0;
1104 2407
1105 /* have to use the microsoft-never-gets-it-right macro */ 2408 /* have to use the microsoft-never-gets-it-right macro */
2409 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 2410 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 2411 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 2412#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 2413 array_free (periodic, EMPTY);
1110#endif 2414#endif
1111#if EV_FORK_ENABLE 2415#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 2416 array_free (fork, EMPTY);
1113#endif 2417#endif
2418#if EV_CLEANUP_ENABLE
2419 array_free (cleanup, EMPTY);
2420#endif
1114 array_free (prepare, EMPTY); 2421 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 2422 array_free (check, EMPTY);
2423#if EV_ASYNC_ENABLE
2424 array_free (async, EMPTY);
2425#endif
1116 2426
1117 backend = 0; 2427 backend = 0;
1118}
1119 2428
2429#if EV_MULTIPLICITY
2430 if (ev_is_default_loop (EV_A))
2431#endif
2432 ev_default_loop_ptr = 0;
2433#if EV_MULTIPLICITY
2434 else
2435 ev_free (EV_A);
2436#endif
2437}
2438
2439#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 2440inline_size void infy_fork (EV_P);
2441#endif
1121 2442
1122void inline_size 2443inline_size void
1123loop_fork (EV_P) 2444loop_fork (EV_P)
1124{ 2445{
1125#if EV_USE_PORT 2446#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2447 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 2448#endif
1133#endif 2454#endif
1134#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 2456 infy_fork (EV_A);
1136#endif 2457#endif
1137 2458
1138 if (ev_is_active (&sigev)) 2459 if (ev_is_active (&pipe_w))
1139 { 2460 {
1140 /* default loop */ 2461 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1141 2462
1142 ev_ref (EV_A); 2463 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 2464 ev_io_stop (EV_A_ &pipe_w);
1144 close (sigpipe [0]);
1145 close (sigpipe [1]);
1146 2465
1147 while (pipe (sigpipe)) 2466#if EV_USE_EVENTFD
1148 syserr ("(libev) error creating pipe"); 2467 if (evfd >= 0)
2468 close (evfd);
2469#endif
1149 2470
2471 if (evpipe [0] >= 0)
2472 {
2473 EV_WIN32_CLOSE_FD (evpipe [0]);
2474 EV_WIN32_CLOSE_FD (evpipe [1]);
2475 }
2476
2477#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1150 siginit (EV_A); 2478 evpipe_init (EV_A);
2479 /* now iterate over everything, in case we missed something */
2480 pipecb (EV_A_ &pipe_w, EV_READ);
2481#endif
1151 } 2482 }
1152 2483
1153 postfork = 0; 2484 postfork = 0;
1154} 2485}
1155 2486
1156#if EV_MULTIPLICITY 2487#if EV_MULTIPLICITY
2488
1157struct ev_loop * 2489struct ev_loop * ecb_cold
1158ev_loop_new (unsigned int flags) 2490ev_loop_new (unsigned int flags)
1159{ 2491{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2492 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 2493
1162 memset (loop, 0, sizeof (struct ev_loop)); 2494 memset (EV_A, 0, sizeof (struct ev_loop));
1163
1164 loop_init (EV_A_ flags); 2495 loop_init (EV_A_ flags);
1165 2496
1166 if (ev_backend (EV_A)) 2497 if (ev_backend (EV_A))
1167 return loop; 2498 return EV_A;
1168 2499
2500 ev_free (EV_A);
1169 return 0; 2501 return 0;
1170} 2502}
1171 2503
1172void 2504#endif /* multiplicity */
1173ev_loop_destroy (EV_P)
1174{
1175 loop_destroy (EV_A);
1176 ev_free (loop);
1177}
1178 2505
1179void 2506#if EV_VERIFY
1180ev_loop_fork (EV_P) 2507static void noinline ecb_cold
2508verify_watcher (EV_P_ W w)
1181{ 2509{
1182 postfork = 1; 2510 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1183}
1184 2511
2512 if (w->pending)
2513 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2514}
2515
2516static void noinline ecb_cold
2517verify_heap (EV_P_ ANHE *heap, int N)
2518{
2519 int i;
2520
2521 for (i = HEAP0; i < N + HEAP0; ++i)
2522 {
2523 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2524 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2525 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2526
2527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2528 }
2529}
2530
2531static void noinline ecb_cold
2532array_verify (EV_P_ W *ws, int cnt)
2533{
2534 while (cnt--)
2535 {
2536 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2537 verify_watcher (EV_A_ ws [cnt]);
2538 }
2539}
2540#endif
2541
2542#if EV_FEATURE_API
2543void ecb_cold
2544ev_verify (EV_P)
2545{
2546#if EV_VERIFY
2547 int i;
2548 WL w;
2549
2550 assert (activecnt >= -1);
2551
2552 assert (fdchangemax >= fdchangecnt);
2553 for (i = 0; i < fdchangecnt; ++i)
2554 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2555
2556 assert (anfdmax >= 0);
2557 for (i = 0; i < anfdmax; ++i)
2558 for (w = anfds [i].head; w; w = w->next)
2559 {
2560 verify_watcher (EV_A_ (W)w);
2561 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2562 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2563 }
2564
2565 assert (timermax >= timercnt);
2566 verify_heap (EV_A_ timers, timercnt);
2567
2568#if EV_PERIODIC_ENABLE
2569 assert (periodicmax >= periodiccnt);
2570 verify_heap (EV_A_ periodics, periodiccnt);
2571#endif
2572
2573 for (i = NUMPRI; i--; )
2574 {
2575 assert (pendingmax [i] >= pendingcnt [i]);
2576#if EV_IDLE_ENABLE
2577 assert (idleall >= 0);
2578 assert (idlemax [i] >= idlecnt [i]);
2579 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2580#endif
2581 }
2582
2583#if EV_FORK_ENABLE
2584 assert (forkmax >= forkcnt);
2585 array_verify (EV_A_ (W *)forks, forkcnt);
2586#endif
2587
2588#if EV_CLEANUP_ENABLE
2589 assert (cleanupmax >= cleanupcnt);
2590 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2591#endif
2592
2593#if EV_ASYNC_ENABLE
2594 assert (asyncmax >= asynccnt);
2595 array_verify (EV_A_ (W *)asyncs, asynccnt);
2596#endif
2597
2598#if EV_PREPARE_ENABLE
2599 assert (preparemax >= preparecnt);
2600 array_verify (EV_A_ (W *)prepares, preparecnt);
2601#endif
2602
2603#if EV_CHECK_ENABLE
2604 assert (checkmax >= checkcnt);
2605 array_verify (EV_A_ (W *)checks, checkcnt);
2606#endif
2607
2608# if 0
2609#if EV_CHILD_ENABLE
2610 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2611 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2612#endif
2613# endif
2614#endif
2615}
1185#endif 2616#endif
1186 2617
1187#if EV_MULTIPLICITY 2618#if EV_MULTIPLICITY
1188struct ev_loop * 2619struct ev_loop * ecb_cold
1189ev_default_loop_init (unsigned int flags)
1190#else 2620#else
1191int 2621int
2622#endif
1192ev_default_loop (unsigned int flags) 2623ev_default_loop (unsigned int flags)
1193#endif
1194{ 2624{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 2625 if (!ev_default_loop_ptr)
1200 { 2626 {
1201#if EV_MULTIPLICITY 2627#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2628 EV_P = ev_default_loop_ptr = &default_loop_struct;
1203#else 2629#else
1204 ev_default_loop_ptr = 1; 2630 ev_default_loop_ptr = 1;
1205#endif 2631#endif
1206 2632
1207 loop_init (EV_A_ flags); 2633 loop_init (EV_A_ flags);
1208 2634
1209 if (ev_backend (EV_A)) 2635 if (ev_backend (EV_A))
1210 { 2636 {
1211 siginit (EV_A); 2637#if EV_CHILD_ENABLE
1212
1213#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 2638 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 2639 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 2640 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2641 ev_unref (EV_A); /* child watcher should not keep loop alive */
1218#endif 2642#endif
1223 2647
1224 return ev_default_loop_ptr; 2648 return ev_default_loop_ptr;
1225} 2649}
1226 2650
1227void 2651void
1228ev_default_destroy (void) 2652ev_loop_fork (EV_P)
1229{ 2653{
1230#if EV_MULTIPLICITY 2654 postfork = 1; /* must be in line with ev_default_fork */
1231 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif
1233
1234#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev);
1237#endif
1238
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A);
1246}
1247
1248void
1249ev_default_fork (void)
1250{
1251#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif
1254
1255 if (backend)
1256 postfork = 1;
1257} 2655}
1258 2656
1259/*****************************************************************************/ 2657/*****************************************************************************/
1260 2658
1261void 2659void
1262ev_invoke (EV_P_ void *w, int revents) 2660ev_invoke (EV_P_ void *w, int revents)
1263{ 2661{
1264 EV_CB_INVOKE ((W)w, revents); 2662 EV_CB_INVOKE ((W)w, revents);
1265} 2663}
1266 2664
1267void inline_speed 2665unsigned int
1268call_pending (EV_P) 2666ev_pending_count (EV_P)
2667{
2668 int pri;
2669 unsigned int count = 0;
2670
2671 for (pri = NUMPRI; pri--; )
2672 count += pendingcnt [pri];
2673
2674 return count;
2675}
2676
2677void noinline
2678ev_invoke_pending (EV_P)
1269{ 2679{
1270 int pri; 2680 int pri;
1271 2681
1272 for (pri = NUMPRI; pri--; ) 2682 for (pri = NUMPRI; pri--; )
1273 while (pendingcnt [pri]) 2683 while (pendingcnt [pri])
1274 { 2684 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2685 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 2686
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280
1281 p->w->pending = 0; 2687 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 2688 EV_CB_INVOKE (p->w, p->events);
1283 } 2689 EV_FREQUENT_CHECK;
1284 } 2690 }
1285} 2691}
1286 2692
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 2693#if EV_IDLE_ENABLE
1368void inline_size 2694/* make idle watchers pending. this handles the "call-idle */
2695/* only when higher priorities are idle" logic */
2696inline_size void
1369idle_reify (EV_P) 2697idle_reify (EV_P)
1370{ 2698{
1371 if (expect_false (idleall)) 2699 if (expect_false (idleall))
1372 { 2700 {
1373 int pri; 2701 int pri;
1385 } 2713 }
1386 } 2714 }
1387} 2715}
1388#endif 2716#endif
1389 2717
1390void inline_speed 2718/* make timers pending */
2719inline_size void
2720timers_reify (EV_P)
2721{
2722 EV_FREQUENT_CHECK;
2723
2724 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2725 {
2726 do
2727 {
2728 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2729
2730 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2731
2732 /* first reschedule or stop timer */
2733 if (w->repeat)
2734 {
2735 ev_at (w) += w->repeat;
2736 if (ev_at (w) < mn_now)
2737 ev_at (w) = mn_now;
2738
2739 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2740
2741 ANHE_at_cache (timers [HEAP0]);
2742 downheap (timers, timercnt, HEAP0);
2743 }
2744 else
2745 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2746
2747 EV_FREQUENT_CHECK;
2748 feed_reverse (EV_A_ (W)w);
2749 }
2750 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2751
2752 feed_reverse_done (EV_A_ EV_TIMER);
2753 }
2754}
2755
2756#if EV_PERIODIC_ENABLE
2757
2758static void noinline
2759periodic_recalc (EV_P_ ev_periodic *w)
2760{
2761 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2762 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2763
2764 /* the above almost always errs on the low side */
2765 while (at <= ev_rt_now)
2766 {
2767 ev_tstamp nat = at + w->interval;
2768
2769 /* when resolution fails us, we use ev_rt_now */
2770 if (expect_false (nat == at))
2771 {
2772 at = ev_rt_now;
2773 break;
2774 }
2775
2776 at = nat;
2777 }
2778
2779 ev_at (w) = at;
2780}
2781
2782/* make periodics pending */
2783inline_size void
2784periodics_reify (EV_P)
2785{
2786 EV_FREQUENT_CHECK;
2787
2788 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2789 {
2790 int feed_count = 0;
2791
2792 do
2793 {
2794 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2795
2796 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2797
2798 /* first reschedule or stop timer */
2799 if (w->reschedule_cb)
2800 {
2801 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2802
2803 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2804
2805 ANHE_at_cache (periodics [HEAP0]);
2806 downheap (periodics, periodiccnt, HEAP0);
2807 }
2808 else if (w->interval)
2809 {
2810 periodic_recalc (EV_A_ w);
2811 ANHE_at_cache (periodics [HEAP0]);
2812 downheap (periodics, periodiccnt, HEAP0);
2813 }
2814 else
2815 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2816
2817 EV_FREQUENT_CHECK;
2818 feed_reverse (EV_A_ (W)w);
2819 }
2820 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2821
2822 feed_reverse_done (EV_A_ EV_PERIODIC);
2823 }
2824}
2825
2826/* simply recalculate all periodics */
2827/* TODO: maybe ensure that at least one event happens when jumping forward? */
2828static void noinline ecb_cold
2829periodics_reschedule (EV_P)
2830{
2831 int i;
2832
2833 /* adjust periodics after time jump */
2834 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2835 {
2836 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2837
2838 if (w->reschedule_cb)
2839 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2840 else if (w->interval)
2841 periodic_recalc (EV_A_ w);
2842
2843 ANHE_at_cache (periodics [i]);
2844 }
2845
2846 reheap (periodics, periodiccnt);
2847}
2848#endif
2849
2850/* adjust all timers by a given offset */
2851static void noinline ecb_cold
2852timers_reschedule (EV_P_ ev_tstamp adjust)
2853{
2854 int i;
2855
2856 for (i = 0; i < timercnt; ++i)
2857 {
2858 ANHE *he = timers + i + HEAP0;
2859 ANHE_w (*he)->at += adjust;
2860 ANHE_at_cache (*he);
2861 }
2862}
2863
2864/* fetch new monotonic and realtime times from the kernel */
2865/* also detect if there was a timejump, and act accordingly */
2866inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 2867time_update (EV_P_ ev_tstamp max_block)
1392{ 2868{
1393 int i;
1394
1395#if EV_USE_MONOTONIC 2869#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic)) 2870 if (expect_true (have_monotonic))
1397 { 2871 {
2872 int i;
1398 ev_tstamp odiff = rtmn_diff; 2873 ev_tstamp odiff = rtmn_diff;
1399 2874
1400 mn_now = get_clock (); 2875 mn_now = get_clock ();
1401 2876
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2877 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1418 * doesn't hurt either as we only do this on time-jumps or 2893 * doesn't hurt either as we only do this on time-jumps or
1419 * in the unlikely event of having been preempted here. 2894 * in the unlikely event of having been preempted here.
1420 */ 2895 */
1421 for (i = 4; --i; ) 2896 for (i = 4; --i; )
1422 { 2897 {
2898 ev_tstamp diff;
1423 rtmn_diff = ev_rt_now - mn_now; 2899 rtmn_diff = ev_rt_now - mn_now;
1424 2900
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2901 diff = odiff - rtmn_diff;
2902
2903 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 2904 return; /* all is well */
1427 2905
1428 ev_rt_now = ev_time (); 2906 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 2907 mn_now = get_clock ();
1430 now_floor = mn_now; 2908 now_floor = mn_now;
1431 } 2909 }
1432 2910
2911 /* no timer adjustment, as the monotonic clock doesn't jump */
2912 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 2913# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 2914 periodics_reschedule (EV_A);
1435# endif 2915# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 2916 }
1439 else 2917 else
1440#endif 2918#endif
1441 { 2919 {
1442 ev_rt_now = ev_time (); 2920 ev_rt_now = ev_time ();
1443 2921
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2922 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 2923 {
2924 /* adjust timers. this is easy, as the offset is the same for all of them */
2925 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 2926#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 2927 periodics_reschedule (EV_A);
1448#endif 2928#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 2929 }
1453 2930
1454 mn_now = ev_rt_now; 2931 mn_now = ev_rt_now;
1455 } 2932 }
1456} 2933}
1457 2934
1458void 2935void
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done;
1471
1472void
1473ev_loop (EV_P_ int flags) 2936ev_run (EV_P_ int flags)
1474{ 2937{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2938#if EV_FEATURE_API
1476 ? EVUNLOOP_ONE 2939 ++loop_depth;
1477 : EVUNLOOP_CANCEL; 2940#endif
1478 2941
2942 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2943
2944 loop_done = EVBREAK_CANCEL;
2945
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2946 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1480 2947
1481 do 2948 do
1482 { 2949 {
2950#if EV_VERIFY >= 2
2951 ev_verify (EV_A);
2952#endif
2953
1483#ifndef _WIN32 2954#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 2955 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 2956 if (expect_false (getpid () != curpid))
1486 { 2957 {
1487 curpid = getpid (); 2958 curpid = getpid ();
1493 /* we might have forked, so queue fork handlers */ 2964 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork)) 2965 if (expect_false (postfork))
1495 if (forkcnt) 2966 if (forkcnt)
1496 { 2967 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2968 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A); 2969 EV_INVOKE_PENDING;
1499 } 2970 }
1500#endif 2971#endif
1501 2972
2973#if EV_PREPARE_ENABLE
1502 /* queue prepare watchers (and execute them) */ 2974 /* queue prepare watchers (and execute them) */
1503 if (expect_false (preparecnt)) 2975 if (expect_false (preparecnt))
1504 { 2976 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2977 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2978 EV_INVOKE_PENDING;
1507 } 2979 }
2980#endif
1508 2981
1509 if (expect_false (!activecnt)) 2982 if (expect_false (loop_done))
1510 break; 2983 break;
1511 2984
1512 /* we might have forked, so reify kernel state if necessary */ 2985 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2986 if (expect_false (postfork))
1514 loop_fork (EV_A); 2987 loop_fork (EV_A);
1519 /* calculate blocking time */ 2992 /* calculate blocking time */
1520 { 2993 {
1521 ev_tstamp waittime = 0.; 2994 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.; 2995 ev_tstamp sleeptime = 0.;
1523 2996
2997 /* remember old timestamp for io_blocktime calculation */
2998 ev_tstamp prev_mn_now = mn_now;
2999
3000 /* update time to cancel out callback processing overhead */
3001 time_update (EV_A_ 1e100);
3002
3003 /* from now on, we want a pipe-wake-up */
3004 pipe_write_wanted = 1;
3005
3006 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3007
1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3008 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1525 { 3009 {
1526 /* update time to cancel out callback processing overhead */
1527 time_update (EV_A_ 1e100);
1528
1529 waittime = MAX_BLOCKTIME; 3010 waittime = MAX_BLOCKTIME;
1530 3011
1531 if (timercnt) 3012 if (timercnt)
1532 { 3013 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3014 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1534 if (waittime > to) waittime = to; 3015 if (waittime > to) waittime = to;
1535 } 3016 }
1536 3017
1537#if EV_PERIODIC_ENABLE 3018#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 3019 if (periodiccnt)
1539 { 3020 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3021 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1541 if (waittime > to) waittime = to; 3022 if (waittime > to) waittime = to;
1542 } 3023 }
1543#endif 3024#endif
1544 3025
3026 /* don't let timeouts decrease the waittime below timeout_blocktime */
1545 if (expect_false (waittime < timeout_blocktime)) 3027 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime; 3028 waittime = timeout_blocktime;
1547 3029
1548 sleeptime = waittime - backend_fudge; 3030 /* at this point, we NEED to wait, so we have to ensure */
3031 /* to pass a minimum nonzero value to the backend */
3032 if (expect_false (waittime < backend_mintime))
3033 waittime = backend_mintime;
1549 3034
3035 /* extra check because io_blocktime is commonly 0 */
1550 if (expect_true (sleeptime > io_blocktime)) 3036 if (expect_false (io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 { 3037 {
3038 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3039
3040 if (sleeptime > waittime - backend_mintime)
3041 sleeptime = waittime - backend_mintime;
3042
3043 if (expect_true (sleeptime > 0.))
3044 {
1555 ev_sleep (sleeptime); 3045 ev_sleep (sleeptime);
1556 waittime -= sleeptime; 3046 waittime -= sleeptime;
3047 }
1557 } 3048 }
1558 } 3049 }
1559 3050
3051#if EV_FEATURE_API
1560 ++loop_count; 3052 ++loop_count;
3053#endif
3054 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1561 backend_poll (EV_A_ waittime); 3055 backend_poll (EV_A_ waittime);
3056 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3057
3058 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3059
3060 if (pipe_write_skipped)
3061 {
3062 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3063 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3064 }
3065
1562 3066
1563 /* update ev_rt_now, do magic */ 3067 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime); 3068 time_update (EV_A_ waittime + sleeptime);
1565 } 3069 }
1566 3070
1573#if EV_IDLE_ENABLE 3077#if EV_IDLE_ENABLE
1574 /* queue idle watchers unless other events are pending */ 3078 /* queue idle watchers unless other events are pending */
1575 idle_reify (EV_A); 3079 idle_reify (EV_A);
1576#endif 3080#endif
1577 3081
3082#if EV_CHECK_ENABLE
1578 /* queue check watchers, to be executed first */ 3083 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 3084 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3085 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3086#endif
1581 3087
1582 call_pending (EV_A); 3088 EV_INVOKE_PENDING;
1583
1584 } 3089 }
1585 while (expect_true (activecnt && !loop_done)); 3090 while (expect_true (
3091 activecnt
3092 && !loop_done
3093 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3094 ));
1586 3095
1587 if (loop_done == EVUNLOOP_ONE) 3096 if (loop_done == EVBREAK_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 3097 loop_done = EVBREAK_CANCEL;
3098
3099#if EV_FEATURE_API
3100 --loop_depth;
3101#endif
1589} 3102}
1590 3103
1591void 3104void
1592ev_unloop (EV_P_ int how) 3105ev_break (EV_P_ int how)
1593{ 3106{
1594 loop_done = how; 3107 loop_done = how;
1595} 3108}
1596 3109
3110void
3111ev_ref (EV_P)
3112{
3113 ++activecnt;
3114}
3115
3116void
3117ev_unref (EV_P)
3118{
3119 --activecnt;
3120}
3121
3122void
3123ev_now_update (EV_P)
3124{
3125 time_update (EV_A_ 1e100);
3126}
3127
3128void
3129ev_suspend (EV_P)
3130{
3131 ev_now_update (EV_A);
3132}
3133
3134void
3135ev_resume (EV_P)
3136{
3137 ev_tstamp mn_prev = mn_now;
3138
3139 ev_now_update (EV_A);
3140 timers_reschedule (EV_A_ mn_now - mn_prev);
3141#if EV_PERIODIC_ENABLE
3142 /* TODO: really do this? */
3143 periodics_reschedule (EV_A);
3144#endif
3145}
3146
1597/*****************************************************************************/ 3147/*****************************************************************************/
3148/* singly-linked list management, used when the expected list length is short */
1598 3149
1599void inline_size 3150inline_size void
1600wlist_add (WL *head, WL elem) 3151wlist_add (WL *head, WL elem)
1601{ 3152{
1602 elem->next = *head; 3153 elem->next = *head;
1603 *head = elem; 3154 *head = elem;
1604} 3155}
1605 3156
1606void inline_size 3157inline_size void
1607wlist_del (WL *head, WL elem) 3158wlist_del (WL *head, WL elem)
1608{ 3159{
1609 while (*head) 3160 while (*head)
1610 { 3161 {
1611 if (*head == elem) 3162 if (expect_true (*head == elem))
1612 { 3163 {
1613 *head = elem->next; 3164 *head = elem->next;
1614 return; 3165 break;
1615 } 3166 }
1616 3167
1617 head = &(*head)->next; 3168 head = &(*head)->next;
1618 } 3169 }
1619} 3170}
1620 3171
1621void inline_speed 3172/* internal, faster, version of ev_clear_pending */
3173inline_speed void
1622clear_pending (EV_P_ W w) 3174clear_pending (EV_P_ W w)
1623{ 3175{
1624 if (w->pending) 3176 if (w->pending)
1625 { 3177 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3178 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 3179 w->pending = 0;
1628 } 3180 }
1629} 3181}
1630 3182
1631int 3183int
1635 int pending = w_->pending; 3187 int pending = w_->pending;
1636 3188
1637 if (expect_true (pending)) 3189 if (expect_true (pending))
1638 { 3190 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3191 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3192 p->w = (W)&pending_w;
1640 w_->pending = 0; 3193 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 3194 return p->events;
1643 } 3195 }
1644 else 3196 else
1645 return 0; 3197 return 0;
1646} 3198}
1647 3199
1648void inline_size 3200inline_size void
1649pri_adjust (EV_P_ W w) 3201pri_adjust (EV_P_ W w)
1650{ 3202{
1651 int pri = w->priority; 3203 int pri = ev_priority (w);
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3204 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3205 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 3206 ev_set_priority (w, pri);
1655} 3207}
1656 3208
1657void inline_speed 3209inline_speed void
1658ev_start (EV_P_ W w, int active) 3210ev_start (EV_P_ W w, int active)
1659{ 3211{
1660 pri_adjust (EV_A_ w); 3212 pri_adjust (EV_A_ w);
1661 w->active = active; 3213 w->active = active;
1662 ev_ref (EV_A); 3214 ev_ref (EV_A);
1663} 3215}
1664 3216
1665void inline_size 3217inline_size void
1666ev_stop (EV_P_ W w) 3218ev_stop (EV_P_ W w)
1667{ 3219{
1668 ev_unref (EV_A); 3220 ev_unref (EV_A);
1669 w->active = 0; 3221 w->active = 0;
1670} 3222}
1677 int fd = w->fd; 3229 int fd = w->fd;
1678 3230
1679 if (expect_false (ev_is_active (w))) 3231 if (expect_false (ev_is_active (w)))
1680 return; 3232 return;
1681 3233
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 3234 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3235 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3236
3237 EV_FREQUENT_CHECK;
1683 3238
1684 ev_start (EV_A_ (W)w, 1); 3239 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3240 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 3241 wlist_add (&anfds[fd].head, (WL)w);
1687 3242
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3243 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1689 w->events &= ~EV_IOFDSET; 3244 w->events &= ~EV__IOFDSET;
3245
3246 EV_FREQUENT_CHECK;
1690} 3247}
1691 3248
1692void noinline 3249void noinline
1693ev_io_stop (EV_P_ ev_io *w) 3250ev_io_stop (EV_P_ ev_io *w)
1694{ 3251{
1695 clear_pending (EV_A_ (W)w); 3252 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 3253 if (expect_false (!ev_is_active (w)))
1697 return; 3254 return;
1698 3255
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3256 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3257
3258 EV_FREQUENT_CHECK;
1700 3259
1701 wlist_del (&anfds[w->fd].head, (WL)w); 3260 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 3261 ev_stop (EV_A_ (W)w);
1703 3262
1704 fd_change (EV_A_ w->fd, 1); 3263 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3264
3265 EV_FREQUENT_CHECK;
1705} 3266}
1706 3267
1707void noinline 3268void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 3269ev_timer_start (EV_P_ ev_timer *w)
1709{ 3270{
1710 if (expect_false (ev_is_active (w))) 3271 if (expect_false (ev_is_active (w)))
1711 return; 3272 return;
1712 3273
1713 ((WT)w)->at += mn_now; 3274 ev_at (w) += mn_now;
1714 3275
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3276 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 3277
3278 EV_FREQUENT_CHECK;
3279
3280 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 3281 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3282 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 3283 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 3284 ANHE_at_cache (timers [ev_active (w)]);
3285 upheap (timers, ev_active (w));
1721 3286
3287 EV_FREQUENT_CHECK;
3288
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3289 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 3290}
1724 3291
1725void noinline 3292void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 3293ev_timer_stop (EV_P_ ev_timer *w)
1727{ 3294{
1728 clear_pending (EV_A_ (W)w); 3295 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 3296 if (expect_false (!ev_is_active (w)))
1730 return; 3297 return;
1731 3298
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3299 EV_FREQUENT_CHECK;
1733 3300
1734 { 3301 {
1735 int active = ((W)w)->active; 3302 int active = ev_active (w);
1736 3303
3304 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3305
3306 --timercnt;
3307
1737 if (expect_true (--active < --timercnt)) 3308 if (expect_true (active < timercnt + HEAP0))
1738 { 3309 {
1739 timers [active] = timers [timercnt]; 3310 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 3311 adjustheap (timers, timercnt, active);
1741 } 3312 }
1742 } 3313 }
1743 3314
1744 ((WT)w)->at -= mn_now; 3315 ev_at (w) -= mn_now;
1745 3316
1746 ev_stop (EV_A_ (W)w); 3317 ev_stop (EV_A_ (W)w);
3318
3319 EV_FREQUENT_CHECK;
1747} 3320}
1748 3321
1749void noinline 3322void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 3323ev_timer_again (EV_P_ ev_timer *w)
1751{ 3324{
3325 EV_FREQUENT_CHECK;
3326
3327 clear_pending (EV_A_ (W)w);
3328
1752 if (ev_is_active (w)) 3329 if (ev_is_active (w))
1753 { 3330 {
1754 if (w->repeat) 3331 if (w->repeat)
1755 { 3332 {
1756 ((WT)w)->at = mn_now + w->repeat; 3333 ev_at (w) = mn_now + w->repeat;
3334 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 3335 adjustheap (timers, timercnt, ev_active (w));
1758 } 3336 }
1759 else 3337 else
1760 ev_timer_stop (EV_A_ w); 3338 ev_timer_stop (EV_A_ w);
1761 } 3339 }
1762 else if (w->repeat) 3340 else if (w->repeat)
1763 { 3341 {
1764 w->at = w->repeat; 3342 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 3343 ev_timer_start (EV_A_ w);
1766 } 3344 }
3345
3346 EV_FREQUENT_CHECK;
3347}
3348
3349ev_tstamp
3350ev_timer_remaining (EV_P_ ev_timer *w)
3351{
3352 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1767} 3353}
1768 3354
1769#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
1770void noinline 3356void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 3357ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 3358{
1773 if (expect_false (ev_is_active (w))) 3359 if (expect_false (ev_is_active (w)))
1774 return; 3360 return;
1775 3361
1776 if (w->reschedule_cb) 3362 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3363 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 3364 else if (w->interval)
1779 { 3365 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3366 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 3367 periodic_recalc (EV_A_ w);
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 3368 }
1784 else 3369 else
1785 ((WT)w)->at = w->offset; 3370 ev_at (w) = w->offset;
1786 3371
3372 EV_FREQUENT_CHECK;
3373
3374 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 3375 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3376 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 3377 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 3378 ANHE_at_cache (periodics [ev_active (w)]);
3379 upheap (periodics, ev_active (w));
1791 3380
3381 EV_FREQUENT_CHECK;
3382
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3383 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 3384}
1794 3385
1795void noinline 3386void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 3387ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 3388{
1798 clear_pending (EV_A_ (W)w); 3389 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 3390 if (expect_false (!ev_is_active (w)))
1800 return; 3391 return;
1801 3392
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3393 EV_FREQUENT_CHECK;
1803 3394
1804 { 3395 {
1805 int active = ((W)w)->active; 3396 int active = ev_active (w);
1806 3397
3398 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3399
3400 --periodiccnt;
3401
1807 if (expect_true (--active < --periodiccnt)) 3402 if (expect_true (active < periodiccnt + HEAP0))
1808 { 3403 {
1809 periodics [active] = periodics [periodiccnt]; 3404 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 3405 adjustheap (periodics, periodiccnt, active);
1811 } 3406 }
1812 } 3407 }
1813 3408
1814 ev_stop (EV_A_ (W)w); 3409 ev_stop (EV_A_ (W)w);
3410
3411 EV_FREQUENT_CHECK;
1815} 3412}
1816 3413
1817void noinline 3414void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 3415ev_periodic_again (EV_P_ ev_periodic *w)
1819{ 3416{
1825 3422
1826#ifndef SA_RESTART 3423#ifndef SA_RESTART
1827# define SA_RESTART 0 3424# define SA_RESTART 0
1828#endif 3425#endif
1829 3426
3427#if EV_SIGNAL_ENABLE
3428
1830void noinline 3429void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 3430ev_signal_start (EV_P_ ev_signal *w)
1832{ 3431{
1833#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif
1836 if (expect_false (ev_is_active (w))) 3432 if (expect_false (ev_is_active (w)))
1837 return; 3433 return;
1838 3434
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3435 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1840 3436
3437#if EV_MULTIPLICITY
3438 assert (("libev: a signal must not be attached to two different loops",
3439 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3440
3441 signals [w->signum - 1].loop = EV_A;
3442#endif
3443
3444 EV_FREQUENT_CHECK;
3445
3446#if EV_USE_SIGNALFD
3447 if (sigfd == -2)
1841 { 3448 {
1842#ifndef _WIN32 3449 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1843 sigset_t full, prev; 3450 if (sigfd < 0 && errno == EINVAL)
1844 sigfillset (&full); 3451 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847 3452
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3453 if (sigfd >= 0)
3454 {
3455 fd_intern (sigfd); /* doing it twice will not hurt */
1849 3456
1850#ifndef _WIN32 3457 sigemptyset (&sigfd_set);
1851 sigprocmask (SIG_SETMASK, &prev, 0); 3458
1852#endif 3459 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3460 ev_set_priority (&sigfd_w, EV_MAXPRI);
3461 ev_io_start (EV_A_ &sigfd_w);
3462 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3463 }
1853 } 3464 }
3465
3466 if (sigfd >= 0)
3467 {
3468 /* TODO: check .head */
3469 sigaddset (&sigfd_set, w->signum);
3470 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 }
3474#endif
1854 3475
1855 ev_start (EV_A_ (W)w, 1); 3476 ev_start (EV_A_ (W)w, 1);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 3477 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 3478
1858 if (!((WL)w)->next) 3479 if (!((WL)w)->next)
3480# if EV_USE_SIGNALFD
3481 if (sigfd < 0) /*TODO*/
3482# endif
1859 { 3483 {
1860#if _WIN32 3484# ifdef _WIN32
3485 evpipe_init (EV_A);
3486
1861 signal (w->signum, sighandler); 3487 signal (w->signum, ev_sighandler);
1862#else 3488# else
1863 struct sigaction sa; 3489 struct sigaction sa;
3490
3491 evpipe_init (EV_A);
3492
1864 sa.sa_handler = sighandler; 3493 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 3494 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 3496 sigaction (w->signum, &sa, 0);
3497
3498 if (origflags & EVFLAG_NOSIGMASK)
3499 {
3500 sigemptyset (&sa.sa_mask);
3501 sigaddset (&sa.sa_mask, w->signum);
3502 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3503 }
1868#endif 3504#endif
1869 } 3505 }
3506
3507 EV_FREQUENT_CHECK;
1870} 3508}
1871 3509
1872void noinline 3510void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 3511ev_signal_stop (EV_P_ ev_signal *w)
1874{ 3512{
1875 clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
1877 return; 3515 return;
1878 3516
3517 EV_FREQUENT_CHECK;
3518
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 3519 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 3520 ev_stop (EV_A_ (W)w);
1881 3521
1882 if (!signals [w->signum - 1].head) 3522 if (!signals [w->signum - 1].head)
3523 {
3524#if EV_MULTIPLICITY
3525 signals [w->signum - 1].loop = 0; /* unattach from signal */
3526#endif
3527#if EV_USE_SIGNALFD
3528 if (sigfd >= 0)
3529 {
3530 sigset_t ss;
3531
3532 sigemptyset (&ss);
3533 sigaddset (&ss, w->signum);
3534 sigdelset (&sigfd_set, w->signum);
3535
3536 signalfd (sigfd, &sigfd_set, 0);
3537 sigprocmask (SIG_UNBLOCK, &ss, 0);
3538 }
3539 else
3540#endif
1883 signal (w->signum, SIG_DFL); 3541 signal (w->signum, SIG_DFL);
3542 }
3543
3544 EV_FREQUENT_CHECK;
1884} 3545}
3546
3547#endif
3548
3549#if EV_CHILD_ENABLE
1885 3550
1886void 3551void
1887ev_child_start (EV_P_ ev_child *w) 3552ev_child_start (EV_P_ ev_child *w)
1888{ 3553{
1889#if EV_MULTIPLICITY 3554#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 3556#endif
1892 if (expect_false (ev_is_active (w))) 3557 if (expect_false (ev_is_active (w)))
1893 return; 3558 return;
1894 3559
3560 EV_FREQUENT_CHECK;
3561
1895 ev_start (EV_A_ (W)w, 1); 3562 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3563 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3564
3565 EV_FREQUENT_CHECK;
1897} 3566}
1898 3567
1899void 3568void
1900ev_child_stop (EV_P_ ev_child *w) 3569ev_child_stop (EV_P_ ev_child *w)
1901{ 3570{
1902 clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
1904 return; 3573 return;
1905 3574
3575 EV_FREQUENT_CHECK;
3576
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3577 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 3578 ev_stop (EV_A_ (W)w);
3579
3580 EV_FREQUENT_CHECK;
1908} 3581}
3582
3583#endif
1909 3584
1910#if EV_STAT_ENABLE 3585#if EV_STAT_ENABLE
1911 3586
1912# ifdef _WIN32 3587# ifdef _WIN32
1913# undef lstat 3588# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 3589# define lstat(a,b) _stati64 (a,b)
1915# endif 3590# endif
1916 3591
1917#define DEF_STAT_INTERVAL 5.0074891 3592#define DEF_STAT_INTERVAL 5.0074891
3593#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 3594#define MIN_STAT_INTERVAL 0.1074891
1919 3595
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3596static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 3597
1922#if EV_USE_INOTIFY 3598#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 3599
3600/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3601# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1924 3602
1925static void noinline 3603static void noinline
1926infy_add (EV_P_ ev_stat *w) 3604infy_add (EV_P_ ev_stat *w)
1927{ 3605{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3606 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 3607
1930 if (w->wd < 0) 3608 if (w->wd >= 0)
3609 {
3610 struct statfs sfs;
3611
3612 /* now local changes will be tracked by inotify, but remote changes won't */
3613 /* unless the filesystem is known to be local, we therefore still poll */
3614 /* also do poll on <2.6.25, but with normal frequency */
3615
3616 if (!fs_2625)
3617 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3618 else if (!statfs (w->path, &sfs)
3619 && (sfs.f_type == 0x1373 /* devfs */
3620 || sfs.f_type == 0xEF53 /* ext2/3 */
3621 || sfs.f_type == 0x3153464a /* jfs */
3622 || sfs.f_type == 0x52654973 /* reiser3 */
3623 || sfs.f_type == 0x01021994 /* tempfs */
3624 || sfs.f_type == 0x58465342 /* xfs */))
3625 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3626 else
3627 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1931 { 3628 }
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3629 else
3630 {
3631 /* can't use inotify, continue to stat */
3632 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1933 3633
1934 /* monitor some parent directory for speedup hints */ 3634 /* if path is not there, monitor some parent directory for speedup hints */
3635 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3636 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3637 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 3638 {
1937 char path [4096]; 3639 char path [4096];
1938 strcpy (path, w->path); 3640 strcpy (path, w->path);
1939 3641
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3644 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3645 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 3646
1945 char *pend = strrchr (path, '/'); 3647 char *pend = strrchr (path, '/');
1946 3648
1947 if (!pend) 3649 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 3650 break;
1949 3651
1950 *pend = 0; 3652 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 3653 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 3654 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3655 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 3656 }
1955 } 3657 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 3658
1959 if (w->wd >= 0) 3659 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3660 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3661
3662 /* now re-arm timer, if required */
3663 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3664 ev_timer_again (EV_A_ &w->timer);
3665 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1961} 3666}
1962 3667
1963static void noinline 3668static void noinline
1964infy_del (EV_P_ ev_stat *w) 3669infy_del (EV_P_ ev_stat *w)
1965{ 3670{
1968 3673
1969 if (wd < 0) 3674 if (wd < 0)
1970 return; 3675 return;
1971 3676
1972 w->wd = -2; 3677 w->wd = -2;
1973 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3678 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1974 wlist_del (&fs_hash [slot].head, (WL)w); 3679 wlist_del (&fs_hash [slot].head, (WL)w);
1975 3680
1976 /* remove this watcher, if others are watching it, they will rearm */ 3681 /* remove this watcher, if others are watching it, they will rearm */
1977 inotify_rm_watch (fs_fd, wd); 3682 inotify_rm_watch (fs_fd, wd);
1978} 3683}
1979 3684
1980static void noinline 3685static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3686infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 3687{
1983 if (slot < 0) 3688 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 3689 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 3691 infy_wd (EV_A_ slot, wd, ev);
1987 else 3692 else
1988 { 3693 {
1989 WL w_; 3694 WL w_;
1990 3695
1991 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3696 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1992 { 3697 {
1993 ev_stat *w = (ev_stat *)w_; 3698 ev_stat *w = (ev_stat *)w_;
1994 w_ = w_->next; /* lets us remove this watcher and all before it */ 3699 w_ = w_->next; /* lets us remove this watcher and all before it */
1995 3700
1996 if (w->wd == wd || wd == -1) 3701 if (w->wd == wd || wd == -1)
1997 { 3702 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3703 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 3704 {
3705 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2000 w->wd = -1; 3706 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 3707 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 3708 }
2003 3709
2004 stat_timer_cb (EV_A_ &w->timer, 0); 3710 stat_timer_cb (EV_A_ &w->timer, 0);
2009 3715
2010static void 3716static void
2011infy_cb (EV_P_ ev_io *w, int revents) 3717infy_cb (EV_P_ ev_io *w, int revents)
2012{ 3718{
2013 char buf [EV_INOTIFY_BUFSIZE]; 3719 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs; 3720 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf)); 3721 int len = read (fs_fd, buf, sizeof (buf));
2017 3722
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3723 for (ofs = 0; ofs < len; )
3724 {
3725 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3726 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3727 ofs += sizeof (struct inotify_event) + ev->len;
3728 }
2020} 3729}
2021 3730
2022void inline_size 3731inline_size void ecb_cold
3732ev_check_2625 (EV_P)
3733{
3734 /* kernels < 2.6.25 are borked
3735 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3736 */
3737 if (ev_linux_version () < 0x020619)
3738 return;
3739
3740 fs_2625 = 1;
3741}
3742
3743inline_size int
3744infy_newfd (void)
3745{
3746#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3747 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3748 if (fd >= 0)
3749 return fd;
3750#endif
3751 return inotify_init ();
3752}
3753
3754inline_size void
2023infy_init (EV_P) 3755infy_init (EV_P)
2024{ 3756{
2025 if (fs_fd != -2) 3757 if (fs_fd != -2)
2026 return; 3758 return;
2027 3759
3760 fs_fd = -1;
3761
3762 ev_check_2625 (EV_A);
3763
2028 fs_fd = inotify_init (); 3764 fs_fd = infy_newfd ();
2029 3765
2030 if (fs_fd >= 0) 3766 if (fs_fd >= 0)
2031 { 3767 {
3768 fd_intern (fs_fd);
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3769 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI); 3770 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 3771 ev_io_start (EV_A_ &fs_w);
3772 ev_unref (EV_A);
2035 } 3773 }
2036} 3774}
2037 3775
2038void inline_size 3776inline_size void
2039infy_fork (EV_P) 3777infy_fork (EV_P)
2040{ 3778{
2041 int slot; 3779 int slot;
2042 3780
2043 if (fs_fd < 0) 3781 if (fs_fd < 0)
2044 return; 3782 return;
2045 3783
3784 ev_ref (EV_A);
3785 ev_io_stop (EV_A_ &fs_w);
2046 close (fs_fd); 3786 close (fs_fd);
2047 fs_fd = inotify_init (); 3787 fs_fd = infy_newfd ();
2048 3788
3789 if (fs_fd >= 0)
3790 {
3791 fd_intern (fs_fd);
3792 ev_io_set (&fs_w, fs_fd, EV_READ);
3793 ev_io_start (EV_A_ &fs_w);
3794 ev_unref (EV_A);
3795 }
3796
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3797 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2050 { 3798 {
2051 WL w_ = fs_hash [slot].head; 3799 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0; 3800 fs_hash [slot].head = 0;
2053 3801
2054 while (w_) 3802 while (w_)
2059 w->wd = -1; 3807 w->wd = -1;
2060 3808
2061 if (fs_fd >= 0) 3809 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 3810 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 3811 else
3812 {
3813 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3814 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2064 ev_timer_start (EV_A_ &w->timer); 3815 ev_timer_again (EV_A_ &w->timer);
3816 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3817 }
2065 } 3818 }
2066
2067 } 3819 }
2068} 3820}
2069 3821
3822#endif
3823
3824#ifdef _WIN32
3825# define EV_LSTAT(p,b) _stati64 (p, b)
3826#else
3827# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 3828#endif
2071 3829
2072void 3830void
2073ev_stat_stat (EV_P_ ev_stat *w) 3831ev_stat_stat (EV_P_ ev_stat *w)
2074{ 3832{
2081static void noinline 3839static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3840stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{ 3841{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3842 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085 3843
2086 /* we copy this here each the time so that */ 3844 ev_statdata prev = w->attr;
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w); 3845 ev_stat_stat (EV_A_ w);
2090 3846
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3847 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if ( 3848 if (
2093 w->prev.st_dev != w->attr.st_dev 3849 prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino 3850 || prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode 3851 || prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink 3852 || prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid 3853 || prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid 3854 || prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev 3855 || prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size 3856 || prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime 3857 || prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 3858 || prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 3859 || prev.st_ctime != w->attr.st_ctime
2104 ) { 3860 ) {
3861 /* we only update w->prev on actual differences */
3862 /* in case we test more often than invoke the callback, */
3863 /* to ensure that prev is always different to attr */
3864 w->prev = prev;
3865
2105 #if EV_USE_INOTIFY 3866 #if EV_USE_INOTIFY
3867 if (fs_fd >= 0)
3868 {
2106 infy_del (EV_A_ w); 3869 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 3870 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 3871 ev_stat_stat (EV_A_ w); /* avoid race... */
3872 }
2109 #endif 3873 #endif
2110 3874
2111 ev_feed_event (EV_A_ w, EV_STAT); 3875 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 3876 }
2113} 3877}
2116ev_stat_start (EV_P_ ev_stat *w) 3880ev_stat_start (EV_P_ ev_stat *w)
2117{ 3881{
2118 if (expect_false (ev_is_active (w))) 3882 if (expect_false (ev_is_active (w)))
2119 return; 3883 return;
2120 3884
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 3885 ev_stat_stat (EV_A_ w);
2126 3886
3887 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 3888 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 3889
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3890 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 3891 ev_set_priority (&w->timer, ev_priority (w));
2132 3892
2133#if EV_USE_INOTIFY 3893#if EV_USE_INOTIFY
2134 infy_init (EV_A); 3894 infy_init (EV_A);
2135 3895
2136 if (fs_fd >= 0) 3896 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 3897 infy_add (EV_A_ w);
2138 else 3898 else
2139#endif 3899#endif
3900 {
2140 ev_timer_start (EV_A_ &w->timer); 3901 ev_timer_again (EV_A_ &w->timer);
3902 ev_unref (EV_A);
3903 }
2141 3904
2142 ev_start (EV_A_ (W)w, 1); 3905 ev_start (EV_A_ (W)w, 1);
3906
3907 EV_FREQUENT_CHECK;
2143} 3908}
2144 3909
2145void 3910void
2146ev_stat_stop (EV_P_ ev_stat *w) 3911ev_stat_stop (EV_P_ ev_stat *w)
2147{ 3912{
2148 clear_pending (EV_A_ (W)w); 3913 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3914 if (expect_false (!ev_is_active (w)))
2150 return; 3915 return;
2151 3916
3917 EV_FREQUENT_CHECK;
3918
2152#if EV_USE_INOTIFY 3919#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 3920 infy_del (EV_A_ w);
2154#endif 3921#endif
3922
3923 if (ev_is_active (&w->timer))
3924 {
3925 ev_ref (EV_A);
2155 ev_timer_stop (EV_A_ &w->timer); 3926 ev_timer_stop (EV_A_ &w->timer);
3927 }
2156 3928
2157 ev_stop (EV_A_ (W)w); 3929 ev_stop (EV_A_ (W)w);
3930
3931 EV_FREQUENT_CHECK;
2158} 3932}
2159#endif 3933#endif
2160 3934
2161#if EV_IDLE_ENABLE 3935#if EV_IDLE_ENABLE
2162void 3936void
2165 if (expect_false (ev_is_active (w))) 3939 if (expect_false (ev_is_active (w)))
2166 return; 3940 return;
2167 3941
2168 pri_adjust (EV_A_ (W)w); 3942 pri_adjust (EV_A_ (W)w);
2169 3943
3944 EV_FREQUENT_CHECK;
3945
2170 { 3946 {
2171 int active = ++idlecnt [ABSPRI (w)]; 3947 int active = ++idlecnt [ABSPRI (w)];
2172 3948
2173 ++idleall; 3949 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 3950 ev_start (EV_A_ (W)w, active);
2175 3951
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3952 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 3953 idles [ABSPRI (w)][active - 1] = w;
2178 } 3954 }
3955
3956 EV_FREQUENT_CHECK;
2179} 3957}
2180 3958
2181void 3959void
2182ev_idle_stop (EV_P_ ev_idle *w) 3960ev_idle_stop (EV_P_ ev_idle *w)
2183{ 3961{
2184 clear_pending (EV_A_ (W)w); 3962 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3963 if (expect_false (!ev_is_active (w)))
2186 return; 3964 return;
2187 3965
3966 EV_FREQUENT_CHECK;
3967
2188 { 3968 {
2189 int active = ((W)w)->active; 3969 int active = ev_active (w);
2190 3970
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3971 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3972 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 3973
2194 ev_stop (EV_A_ (W)w); 3974 ev_stop (EV_A_ (W)w);
2195 --idleall; 3975 --idleall;
2196 } 3976 }
2197}
2198#endif
2199 3977
3978 EV_FREQUENT_CHECK;
3979}
3980#endif
3981
3982#if EV_PREPARE_ENABLE
2200void 3983void
2201ev_prepare_start (EV_P_ ev_prepare *w) 3984ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 3985{
2203 if (expect_false (ev_is_active (w))) 3986 if (expect_false (ev_is_active (w)))
2204 return; 3987 return;
3988
3989 EV_FREQUENT_CHECK;
2205 3990
2206 ev_start (EV_A_ (W)w, ++preparecnt); 3991 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3992 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 3993 prepares [preparecnt - 1] = w;
3994
3995 EV_FREQUENT_CHECK;
2209} 3996}
2210 3997
2211void 3998void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 3999ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 4000{
2214 clear_pending (EV_A_ (W)w); 4001 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 4002 if (expect_false (!ev_is_active (w)))
2216 return; 4003 return;
2217 4004
4005 EV_FREQUENT_CHECK;
4006
2218 { 4007 {
2219 int active = ((W)w)->active; 4008 int active = ev_active (w);
4009
2220 prepares [active - 1] = prepares [--preparecnt]; 4010 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 4011 ev_active (prepares [active - 1]) = active;
2222 } 4012 }
2223 4013
2224 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
2225}
2226 4015
4016 EV_FREQUENT_CHECK;
4017}
4018#endif
4019
4020#if EV_CHECK_ENABLE
2227void 4021void
2228ev_check_start (EV_P_ ev_check *w) 4022ev_check_start (EV_P_ ev_check *w)
2229{ 4023{
2230 if (expect_false (ev_is_active (w))) 4024 if (expect_false (ev_is_active (w)))
2231 return; 4025 return;
4026
4027 EV_FREQUENT_CHECK;
2232 4028
2233 ev_start (EV_A_ (W)w, ++checkcnt); 4029 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 4031 checks [checkcnt - 1] = w;
4032
4033 EV_FREQUENT_CHECK;
2236} 4034}
2237 4035
2238void 4036void
2239ev_check_stop (EV_P_ ev_check *w) 4037ev_check_stop (EV_P_ ev_check *w)
2240{ 4038{
2241 clear_pending (EV_A_ (W)w); 4039 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 4040 if (expect_false (!ev_is_active (w)))
2243 return; 4041 return;
2244 4042
4043 EV_FREQUENT_CHECK;
4044
2245 { 4045 {
2246 int active = ((W)w)->active; 4046 int active = ev_active (w);
4047
2247 checks [active - 1] = checks [--checkcnt]; 4048 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 4049 ev_active (checks [active - 1]) = active;
2249 } 4050 }
2250 4051
2251 ev_stop (EV_A_ (W)w); 4052 ev_stop (EV_A_ (W)w);
4053
4054 EV_FREQUENT_CHECK;
2252} 4055}
4056#endif
2253 4057
2254#if EV_EMBED_ENABLE 4058#if EV_EMBED_ENABLE
2255void noinline 4059void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 4060ev_embed_sweep (EV_P_ ev_embed *w)
2257{ 4061{
2258 ev_loop (w->other, EVLOOP_NONBLOCK); 4062 ev_run (w->other, EVRUN_NOWAIT);
2259} 4063}
2260 4064
2261static void 4065static void
2262embed_io_cb (EV_P_ ev_io *io, int revents) 4066embed_io_cb (EV_P_ ev_io *io, int revents)
2263{ 4067{
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4068 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 4069
2266 if (ev_cb (w)) 4070 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4071 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 4072 else
2269 ev_embed_sweep (loop, w); 4073 ev_run (w->other, EVRUN_NOWAIT);
2270} 4074}
2271 4075
2272static void 4076static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4077embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 4078{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4079 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 4080
2277 fd_reify (w->other); 4081 {
4082 EV_P = w->other;
4083
4084 while (fdchangecnt)
4085 {
4086 fd_reify (EV_A);
4087 ev_run (EV_A_ EVRUN_NOWAIT);
4088 }
4089 }
2278} 4090}
4091
4092static void
4093embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4094{
4095 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4096
4097 ev_embed_stop (EV_A_ w);
4098
4099 {
4100 EV_P = w->other;
4101
4102 ev_loop_fork (EV_A);
4103 ev_run (EV_A_ EVRUN_NOWAIT);
4104 }
4105
4106 ev_embed_start (EV_A_ w);
4107}
4108
4109#if 0
4110static void
4111embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4112{
4113 ev_idle_stop (EV_A_ idle);
4114}
4115#endif
2279 4116
2280void 4117void
2281ev_embed_start (EV_P_ ev_embed *w) 4118ev_embed_start (EV_P_ ev_embed *w)
2282{ 4119{
2283 if (expect_false (ev_is_active (w))) 4120 if (expect_false (ev_is_active (w)))
2284 return; 4121 return;
2285 4122
2286 { 4123 {
2287 struct ev_loop *loop = w->other; 4124 EV_P = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4125 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4126 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 4127 }
4128
4129 EV_FREQUENT_CHECK;
2291 4130
2292 ev_set_priority (&w->io, ev_priority (w)); 4131 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 4132 ev_io_start (EV_A_ &w->io);
2294 4133
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 4134 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 4135 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 4136 ev_prepare_start (EV_A_ &w->prepare);
2298 4137
4138 ev_fork_init (&w->fork, embed_fork_cb);
4139 ev_fork_start (EV_A_ &w->fork);
4140
4141 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4142
2299 ev_start (EV_A_ (W)w, 1); 4143 ev_start (EV_A_ (W)w, 1);
4144
4145 EV_FREQUENT_CHECK;
2300} 4146}
2301 4147
2302void 4148void
2303ev_embed_stop (EV_P_ ev_embed *w) 4149ev_embed_stop (EV_P_ ev_embed *w)
2304{ 4150{
2305 clear_pending (EV_A_ (W)w); 4151 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 4152 if (expect_false (!ev_is_active (w)))
2307 return; 4153 return;
2308 4154
4155 EV_FREQUENT_CHECK;
4156
2309 ev_io_stop (EV_A_ &w->io); 4157 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 4158 ev_prepare_stop (EV_A_ &w->prepare);
4159 ev_fork_stop (EV_A_ &w->fork);
2311 4160
2312 ev_stop (EV_A_ (W)w); 4161 ev_stop (EV_A_ (W)w);
4162
4163 EV_FREQUENT_CHECK;
2313} 4164}
2314#endif 4165#endif
2315 4166
2316#if EV_FORK_ENABLE 4167#if EV_FORK_ENABLE
2317void 4168void
2318ev_fork_start (EV_P_ ev_fork *w) 4169ev_fork_start (EV_P_ ev_fork *w)
2319{ 4170{
2320 if (expect_false (ev_is_active (w))) 4171 if (expect_false (ev_is_active (w)))
2321 return; 4172 return;
2322 4173
4174 EV_FREQUENT_CHECK;
4175
2323 ev_start (EV_A_ (W)w, ++forkcnt); 4176 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4177 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 4178 forks [forkcnt - 1] = w;
4179
4180 EV_FREQUENT_CHECK;
2326} 4181}
2327 4182
2328void 4183void
2329ev_fork_stop (EV_P_ ev_fork *w) 4184ev_fork_stop (EV_P_ ev_fork *w)
2330{ 4185{
2331 clear_pending (EV_A_ (W)w); 4186 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 4187 if (expect_false (!ev_is_active (w)))
2333 return; 4188 return;
2334 4189
4190 EV_FREQUENT_CHECK;
4191
2335 { 4192 {
2336 int active = ((W)w)->active; 4193 int active = ev_active (w);
4194
2337 forks [active - 1] = forks [--forkcnt]; 4195 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 4196 ev_active (forks [active - 1]) = active;
2339 } 4197 }
2340 4198
2341 ev_stop (EV_A_ (W)w); 4199 ev_stop (EV_A_ (W)w);
4200
4201 EV_FREQUENT_CHECK;
4202}
4203#endif
4204
4205#if EV_CLEANUP_ENABLE
4206void
4207ev_cleanup_start (EV_P_ ev_cleanup *w)
4208{
4209 if (expect_false (ev_is_active (w)))
4210 return;
4211
4212 EV_FREQUENT_CHECK;
4213
4214 ev_start (EV_A_ (W)w, ++cleanupcnt);
4215 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4216 cleanups [cleanupcnt - 1] = w;
4217
4218 /* cleanup watchers should never keep a refcount on the loop */
4219 ev_unref (EV_A);
4220 EV_FREQUENT_CHECK;
4221}
4222
4223void
4224ev_cleanup_stop (EV_P_ ev_cleanup *w)
4225{
4226 clear_pending (EV_A_ (W)w);
4227 if (expect_false (!ev_is_active (w)))
4228 return;
4229
4230 EV_FREQUENT_CHECK;
4231 ev_ref (EV_A);
4232
4233 {
4234 int active = ev_active (w);
4235
4236 cleanups [active - 1] = cleanups [--cleanupcnt];
4237 ev_active (cleanups [active - 1]) = active;
4238 }
4239
4240 ev_stop (EV_A_ (W)w);
4241
4242 EV_FREQUENT_CHECK;
4243}
4244#endif
4245
4246#if EV_ASYNC_ENABLE
4247void
4248ev_async_start (EV_P_ ev_async *w)
4249{
4250 if (expect_false (ev_is_active (w)))
4251 return;
4252
4253 w->sent = 0;
4254
4255 evpipe_init (EV_A);
4256
4257 EV_FREQUENT_CHECK;
4258
4259 ev_start (EV_A_ (W)w, ++asynccnt);
4260 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4261 asyncs [asynccnt - 1] = w;
4262
4263 EV_FREQUENT_CHECK;
4264}
4265
4266void
4267ev_async_stop (EV_P_ ev_async *w)
4268{
4269 clear_pending (EV_A_ (W)w);
4270 if (expect_false (!ev_is_active (w)))
4271 return;
4272
4273 EV_FREQUENT_CHECK;
4274
4275 {
4276 int active = ev_active (w);
4277
4278 asyncs [active - 1] = asyncs [--asynccnt];
4279 ev_active (asyncs [active - 1]) = active;
4280 }
4281
4282 ev_stop (EV_A_ (W)w);
4283
4284 EV_FREQUENT_CHECK;
4285}
4286
4287void
4288ev_async_send (EV_P_ ev_async *w)
4289{
4290 w->sent = 1;
4291 evpipe_write (EV_A_ &async_pending);
2342} 4292}
2343#endif 4293#endif
2344 4294
2345/*****************************************************************************/ 4295/*****************************************************************************/
2346 4296
2356once_cb (EV_P_ struct ev_once *once, int revents) 4306once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 4307{
2358 void (*cb)(int revents, void *arg) = once->cb; 4308 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 4309 void *arg = once->arg;
2360 4310
2361 ev_io_stop (EV_A_ &once->io); 4311 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 4312 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 4313 ev_free (once);
2364 4314
2365 cb (revents, arg); 4315 cb (revents, arg);
2366} 4316}
2367 4317
2368static void 4318static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 4319once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 4320{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4321 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4322
4323 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 4324}
2373 4325
2374static void 4326static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 4327once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 4328{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4329 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4330
4331 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 4332}
2379 4333
2380void 4334void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4335ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 4336{
2383 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4337 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2384 4338
2385 if (expect_false (!once)) 4339 if (expect_false (!once))
2386 { 4340 {
2387 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2388 return; 4342 return;
2389 } 4343 }
2390 4344
2391 once->cb = cb; 4345 once->cb = cb;
2392 once->arg = arg; 4346 once->arg = arg;
2404 ev_timer_set (&once->to, timeout, 0.); 4358 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 4359 ev_timer_start (EV_A_ &once->to);
2406 } 4360 }
2407} 4361}
2408 4362
4363/*****************************************************************************/
4364
4365#if EV_WALK_ENABLE
4366void ecb_cold
4367ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4368{
4369 int i, j;
4370 ev_watcher_list *wl, *wn;
4371
4372 if (types & (EV_IO | EV_EMBED))
4373 for (i = 0; i < anfdmax; ++i)
4374 for (wl = anfds [i].head; wl; )
4375 {
4376 wn = wl->next;
4377
4378#if EV_EMBED_ENABLE
4379 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4380 {
4381 if (types & EV_EMBED)
4382 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4383 }
4384 else
4385#endif
4386#if EV_USE_INOTIFY
4387 if (ev_cb ((ev_io *)wl) == infy_cb)
4388 ;
4389 else
4390#endif
4391 if ((ev_io *)wl != &pipe_w)
4392 if (types & EV_IO)
4393 cb (EV_A_ EV_IO, wl);
4394
4395 wl = wn;
4396 }
4397
4398 if (types & (EV_TIMER | EV_STAT))
4399 for (i = timercnt + HEAP0; i-- > HEAP0; )
4400#if EV_STAT_ENABLE
4401 /*TODO: timer is not always active*/
4402 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4403 {
4404 if (types & EV_STAT)
4405 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4406 }
4407 else
4408#endif
4409 if (types & EV_TIMER)
4410 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4411
4412#if EV_PERIODIC_ENABLE
4413 if (types & EV_PERIODIC)
4414 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4415 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4416#endif
4417
4418#if EV_IDLE_ENABLE
4419 if (types & EV_IDLE)
4420 for (j = NUMPRI; j--; )
4421 for (i = idlecnt [j]; i--; )
4422 cb (EV_A_ EV_IDLE, idles [j][i]);
4423#endif
4424
4425#if EV_FORK_ENABLE
4426 if (types & EV_FORK)
4427 for (i = forkcnt; i--; )
4428 if (ev_cb (forks [i]) != embed_fork_cb)
4429 cb (EV_A_ EV_FORK, forks [i]);
4430#endif
4431
4432#if EV_ASYNC_ENABLE
4433 if (types & EV_ASYNC)
4434 for (i = asynccnt; i--; )
4435 cb (EV_A_ EV_ASYNC, asyncs [i]);
4436#endif
4437
4438#if EV_PREPARE_ENABLE
4439 if (types & EV_PREPARE)
4440 for (i = preparecnt; i--; )
4441# if EV_EMBED_ENABLE
4442 if (ev_cb (prepares [i]) != embed_prepare_cb)
4443# endif
4444 cb (EV_A_ EV_PREPARE, prepares [i]);
4445#endif
4446
4447#if EV_CHECK_ENABLE
4448 if (types & EV_CHECK)
4449 for (i = checkcnt; i--; )
4450 cb (EV_A_ EV_CHECK, checks [i]);
4451#endif
4452
4453#if EV_SIGNAL_ENABLE
4454 if (types & EV_SIGNAL)
4455 for (i = 0; i < EV_NSIG - 1; ++i)
4456 for (wl = signals [i].head; wl; )
4457 {
4458 wn = wl->next;
4459 cb (EV_A_ EV_SIGNAL, wl);
4460 wl = wn;
4461 }
4462#endif
4463
4464#if EV_CHILD_ENABLE
4465 if (types & EV_CHILD)
4466 for (i = (EV_PID_HASHSIZE); i--; )
4467 for (wl = childs [i]; wl; )
4468 {
4469 wn = wl->next;
4470 cb (EV_A_ EV_CHILD, wl);
4471 wl = wn;
4472 }
4473#endif
4474/* EV_STAT 0x00001000 /* stat data changed */
4475/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4476}
4477#endif
4478
2409#if EV_MULTIPLICITY 4479#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 4480 #include "ev_wrap.h"
2411#endif 4481#endif
2412 4482
2413#ifdef __cplusplus
2414}
2415#endif
2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines