ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.207 by root, Thu Jan 31 13:10:56 2008 UTC vs.
Revision 1.416 by root, Mon Apr 2 20:12:16 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 206# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
154# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
155#endif 260# endif
156 261#endif
157/**/
158 262
159#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
160# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
161#endif 269#endif
162 270
163#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 273#endif
166 274
167#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
168# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
169#endif 281#endif
170 282
171#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 285#endif
174 286
175#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
176# ifdef _WIN32 288# ifdef _WIN32
177# define EV_USE_POLL 0 289# define EV_USE_POLL 0
178# else 290# else
179# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 292# endif
181#endif 293#endif
182 294
183#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
184# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
185#endif 301#endif
186 302
187#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
189#endif 305#endif
191#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 308# define EV_USE_PORT 0
193#endif 309#endif
194 310
195#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
196# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
316# endif
197#endif 317#endif
198 318
199#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 330# else
203# define EV_PID_HASHSIZE 16 331# define EV_USE_EVENTFD 0
204# endif 332# endif
205#endif 333#endif
206 334
207#ifndef EV_INOTIFY_HASHSIZE 335#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 337# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 338# else
211# define EV_INOTIFY_HASHSIZE 16 339# define EV_USE_SIGNALFD 0
212# endif 340# endif
213#endif 341#endif
214 342
215/**/ 343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
216 382
217#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
220#endif 386#endif
228# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
230#endif 396#endif
231 397
232#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 401# include <sys/select.h>
235# endif 402# endif
236#endif 403#endif
237 404
238#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
239# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
240#endif 413#endif
241 414
242#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 416# include <winsock.h>
244#endif 417#endif
245 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
246/**/ 457/**/
247 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
248/* 465/*
249 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 468 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 471
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 519 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
265#else 526#else
266# define expect(expr,value) (expr) 527 #include <inttypes.h>
267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 542 #endif
543#endif
272 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #elif __xlC__
607 #define ECB_MEMORY_FENCE __sync ()
608 #endif
609#endif
610
611#ifndef ECB_MEMORY_FENCE
612 #if !ECB_AVOID_PTHREADS
613 /*
614 * if you get undefined symbol references to pthread_mutex_lock,
615 * or failure to find pthread.h, then you should implement
616 * the ECB_MEMORY_FENCE operations for your cpu/compiler
617 * OR provide pthread.h and link against the posix thread library
618 * of your system.
619 */
620 #include <pthread.h>
621 #define ECB_NEEDS_PTHREADS 1
622 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
623
624 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
625 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
626 #endif
627#endif
628
629#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
631#endif
632
633#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
634 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
635#endif
636
637/*****************************************************************************/
638
639#define ECB_C99 (__STDC_VERSION__ >= 199901L)
640
641#if __cplusplus
642 #define ecb_inline static inline
643#elif ECB_GCC_VERSION(2,5)
644 #define ecb_inline static __inline__
645#elif ECB_C99
646 #define ecb_inline static inline
647#else
648 #define ecb_inline static
649#endif
650
651#if ECB_GCC_VERSION(3,3)
652 #define ecb_restrict __restrict__
653#elif ECB_C99
654 #define ecb_restrict restrict
655#else
656 #define ecb_restrict
657#endif
658
659typedef int ecb_bool;
660
661#define ECB_CONCAT_(a, b) a ## b
662#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
663#define ECB_STRINGIFY_(a) # a
664#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
665
666#define ecb_function_ ecb_inline
667
668#if ECB_GCC_VERSION(3,1)
669 #define ecb_attribute(attrlist) __attribute__(attrlist)
670 #define ecb_is_constant(expr) __builtin_constant_p (expr)
671 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
672 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
673#else
674 #define ecb_attribute(attrlist)
675 #define ecb_is_constant(expr) 0
676 #define ecb_expect(expr,value) (expr)
677 #define ecb_prefetch(addr,rw,locality)
678#endif
679
680/* no emulation for ecb_decltype */
681#if ECB_GCC_VERSION(4,5)
682 #define ecb_decltype(x) __decltype(x)
683#elif ECB_GCC_VERSION(3,0)
684 #define ecb_decltype(x) __typeof(x)
685#endif
686
687#define ecb_noinline ecb_attribute ((__noinline__))
688#define ecb_noreturn ecb_attribute ((__noreturn__))
689#define ecb_unused ecb_attribute ((__unused__))
690#define ecb_const ecb_attribute ((__const__))
691#define ecb_pure ecb_attribute ((__pure__))
692
693#if ECB_GCC_VERSION(4,3)
694 #define ecb_artificial ecb_attribute ((__artificial__))
695 #define ecb_hot ecb_attribute ((__hot__))
696 #define ecb_cold ecb_attribute ((__cold__))
697#else
698 #define ecb_artificial
699 #define ecb_hot
700 #define ecb_cold
701#endif
702
703/* put around conditional expressions if you are very sure that the */
704/* expression is mostly true or mostly false. note that these return */
705/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 706#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 707#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
708/* for compatibility to the rest of the world */
709#define ecb_likely(expr) ecb_expect_true (expr)
710#define ecb_unlikely(expr) ecb_expect_false (expr)
711
712/* count trailing zero bits and count # of one bits */
713#if ECB_GCC_VERSION(3,4)
714 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
715 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
716 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
717 #define ecb_ctz32(x) __builtin_ctz (x)
718 #define ecb_ctz64(x) __builtin_ctzll (x)
719 #define ecb_popcount32(x) __builtin_popcount (x)
720 /* no popcountll */
721#else
722 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
723 ecb_function_ int
724 ecb_ctz32 (uint32_t x)
725 {
726 int r = 0;
727
728 x &= ~x + 1; /* this isolates the lowest bit */
729
730#if ECB_branchless_on_i386
731 r += !!(x & 0xaaaaaaaa) << 0;
732 r += !!(x & 0xcccccccc) << 1;
733 r += !!(x & 0xf0f0f0f0) << 2;
734 r += !!(x & 0xff00ff00) << 3;
735 r += !!(x & 0xffff0000) << 4;
736#else
737 if (x & 0xaaaaaaaa) r += 1;
738 if (x & 0xcccccccc) r += 2;
739 if (x & 0xf0f0f0f0) r += 4;
740 if (x & 0xff00ff00) r += 8;
741 if (x & 0xffff0000) r += 16;
742#endif
743
744 return r;
745 }
746
747 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
748 ecb_function_ int
749 ecb_ctz64 (uint64_t x)
750 {
751 int shift = x & 0xffffffffU ? 0 : 32;
752 return ecb_ctz32 (x >> shift) + shift;
753 }
754
755 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
756 ecb_function_ int
757 ecb_popcount32 (uint32_t x)
758 {
759 x -= (x >> 1) & 0x55555555;
760 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
761 x = ((x >> 4) + x) & 0x0f0f0f0f;
762 x *= 0x01010101;
763
764 return x >> 24;
765 }
766
767 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
768 ecb_function_ int ecb_ld32 (uint32_t x)
769 {
770 int r = 0;
771
772 if (x >> 16) { x >>= 16; r += 16; }
773 if (x >> 8) { x >>= 8; r += 8; }
774 if (x >> 4) { x >>= 4; r += 4; }
775 if (x >> 2) { x >>= 2; r += 2; }
776 if (x >> 1) { r += 1; }
777
778 return r;
779 }
780
781 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
782 ecb_function_ int ecb_ld64 (uint64_t x)
783 {
784 int r = 0;
785
786 if (x >> 32) { x >>= 32; r += 32; }
787
788 return r + ecb_ld32 (x);
789 }
790#endif
791
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
793ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
794{
795 return ( (x * 0x0802U & 0x22110U)
796 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
797}
798
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
800ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
801{
802 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
803 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
804 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
805 x = ( x >> 8 ) | ( x << 8);
806
807 return x;
808}
809
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
811ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
812{
813 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
814 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
815 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
816 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
817 x = ( x >> 16 ) | ( x << 16);
818
819 return x;
820}
821
822/* popcount64 is only available on 64 bit cpus as gcc builtin */
823/* so for this version we are lazy */
824ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
825ecb_function_ int
826ecb_popcount64 (uint64_t x)
827{
828 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
829}
830
831ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
838ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
839
840ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
841ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
842ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
843ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
844ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
845ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
846ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
847ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
848
849#if ECB_GCC_VERSION(4,3)
850 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
851 #define ecb_bswap32(x) __builtin_bswap32 (x)
852 #define ecb_bswap64(x) __builtin_bswap64 (x)
853#else
854 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
855 ecb_function_ uint16_t
856 ecb_bswap16 (uint16_t x)
857 {
858 return ecb_rotl16 (x, 8);
859 }
860
861 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
862 ecb_function_ uint32_t
863 ecb_bswap32 (uint32_t x)
864 {
865 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
866 }
867
868 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
869 ecb_function_ uint64_t
870 ecb_bswap64 (uint64_t x)
871 {
872 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
873 }
874#endif
875
876#if ECB_GCC_VERSION(4,5)
877 #define ecb_unreachable() __builtin_unreachable ()
878#else
879 /* this seems to work fine, but gcc always emits a warning for it :/ */
880 ecb_inline void ecb_unreachable (void) ecb_noreturn;
881 ecb_inline void ecb_unreachable (void) { }
882#endif
883
884/* try to tell the compiler that some condition is definitely true */
885#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
886
887ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
888ecb_inline unsigned char
889ecb_byteorder_helper (void)
890{
891 const uint32_t u = 0x11223344;
892 return *(unsigned char *)&u;
893}
894
895ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
896ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
897ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
899
900#if ECB_GCC_VERSION(3,0) || ECB_C99
901 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
902#else
903 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
904#endif
905
906#if __cplusplus
907 template<typename T>
908 static inline T ecb_div_rd (T val, T div)
909 {
910 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
911 }
912 template<typename T>
913 static inline T ecb_div_ru (T val, T div)
914 {
915 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
916 }
917#else
918 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
919 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
920#endif
921
922#if ecb_cplusplus_does_not_suck
923 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
924 template<typename T, int N>
925 static inline int ecb_array_length (const T (&arr)[N])
926 {
927 return N;
928 }
929#else
930 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
931#endif
932
933#endif
934
935/* ECB.H END */
936
937#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
938/* if your architecture doesn't need memory fences, e.g. because it is
939 * single-cpu/core, or if you use libev in a project that doesn't use libev
940 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
941 * libev, in which cases the memory fences become nops.
942 * alternatively, you can remove this #error and link against libpthread,
943 * which will then provide the memory fences.
944 */
945# error "memory fences not defined for your architecture, please report"
946#endif
947
948#ifndef ECB_MEMORY_FENCE
949# define ECB_MEMORY_FENCE do { } while (0)
950# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
952#endif
953
954#define expect_false(cond) ecb_expect_false (cond)
955#define expect_true(cond) ecb_expect_true (cond)
956#define noinline ecb_noinline
957
275#define inline_size static inline 958#define inline_size ecb_inline
276 959
277#if EV_MINIMAL 960#if EV_FEATURE_CODE
961# define inline_speed ecb_inline
962#else
278# define inline_speed static noinline 963# define inline_speed static noinline
964#endif
965
966#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
967
968#if EV_MINPRI == EV_MAXPRI
969# define ABSPRI(w) (((W)w), 0)
279#else 970#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 971# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
972#endif
285 973
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 974#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 975#define EMPTY2(a,b) /* used to suppress some warnings */
288 976
289typedef ev_watcher *W; 977typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 978typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 979typedef ev_watcher_time *WT;
292 980
981#define ev_active(w) ((W)(w))->active
982#define ev_at(w) ((WT)(w))->at
983
984#if EV_USE_REALTIME
985/* sig_atomic_t is used to avoid per-thread variables or locking but still */
986/* giving it a reasonably high chance of working on typical architectures */
987static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
988#endif
989
293#if EV_USE_MONOTONIC 990#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 991static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
992#endif
993
994#ifndef EV_FD_TO_WIN32_HANDLE
995# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
996#endif
997#ifndef EV_WIN32_HANDLE_TO_FD
998# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
999#endif
1000#ifndef EV_WIN32_CLOSE_FD
1001# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1002#endif
298 1003
299#ifdef _WIN32 1004#ifdef _WIN32
300# include "ev_win32.c" 1005# include "ev_win32.c"
301#endif 1006#endif
302 1007
303/*****************************************************************************/ 1008/*****************************************************************************/
304 1009
1010/* define a suitable floor function (only used by periodics atm) */
1011
1012#if EV_USE_FLOOR
1013# include <math.h>
1014# define ev_floor(v) floor (v)
1015#else
1016
1017#include <float.h>
1018
1019/* a floor() replacement function, should be independent of ev_tstamp type */
1020static ev_tstamp noinline
1021ev_floor (ev_tstamp v)
1022{
1023 /* the choice of shift factor is not terribly important */
1024#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1026#else
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1028#endif
1029
1030 /* argument too large for an unsigned long? */
1031 if (expect_false (v >= shift))
1032 {
1033 ev_tstamp f;
1034
1035 if (v == v - 1.)
1036 return v; /* very large number */
1037
1038 f = shift * ev_floor (v * (1. / shift));
1039 return f + ev_floor (v - f);
1040 }
1041
1042 /* special treatment for negative args? */
1043 if (expect_false (v < 0.))
1044 {
1045 ev_tstamp f = -ev_floor (-v);
1046
1047 return f - (f == v ? 0 : 1);
1048 }
1049
1050 /* fits into an unsigned long */
1051 return (unsigned long)v;
1052}
1053
1054#endif
1055
1056/*****************************************************************************/
1057
1058#ifdef __linux
1059# include <sys/utsname.h>
1060#endif
1061
1062static unsigned int noinline ecb_cold
1063ev_linux_version (void)
1064{
1065#ifdef __linux
1066 unsigned int v = 0;
1067 struct utsname buf;
1068 int i;
1069 char *p = buf.release;
1070
1071 if (uname (&buf))
1072 return 0;
1073
1074 for (i = 3+1; --i; )
1075 {
1076 unsigned int c = 0;
1077
1078 for (;;)
1079 {
1080 if (*p >= '0' && *p <= '9')
1081 c = c * 10 + *p++ - '0';
1082 else
1083 {
1084 p += *p == '.';
1085 break;
1086 }
1087 }
1088
1089 v = (v << 8) | c;
1090 }
1091
1092 return v;
1093#else
1094 return 0;
1095#endif
1096}
1097
1098/*****************************************************************************/
1099
1100#if EV_AVOID_STDIO
1101static void noinline ecb_cold
1102ev_printerr (const char *msg)
1103{
1104 write (STDERR_FILENO, msg, strlen (msg));
1105}
1106#endif
1107
305static void (*syserr_cb)(const char *msg); 1108static void (*syserr_cb)(const char *msg);
306 1109
307void 1110void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1111ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 1112{
310 syserr_cb = cb; 1113 syserr_cb = cb;
311} 1114}
312 1115
313static void noinline 1116static void noinline ecb_cold
314syserr (const char *msg) 1117ev_syserr (const char *msg)
315{ 1118{
316 if (!msg) 1119 if (!msg)
317 msg = "(libev) system error"; 1120 msg = "(libev) system error";
318 1121
319 if (syserr_cb) 1122 if (syserr_cb)
320 syserr_cb (msg); 1123 syserr_cb (msg);
321 else 1124 else
322 { 1125 {
1126#if EV_AVOID_STDIO
1127 ev_printerr (msg);
1128 ev_printerr (": ");
1129 ev_printerr (strerror (errno));
1130 ev_printerr ("\n");
1131#else
323 perror (msg); 1132 perror (msg);
1133#endif
324 abort (); 1134 abort ();
325 } 1135 }
326} 1136}
327 1137
1138static void *
1139ev_realloc_emul (void *ptr, long size)
1140{
1141#if __GLIBC__
1142 return realloc (ptr, size);
1143#else
1144 /* some systems, notably openbsd and darwin, fail to properly
1145 * implement realloc (x, 0) (as required by both ansi c-89 and
1146 * the single unix specification, so work around them here.
1147 */
1148
1149 if (size)
1150 return realloc (ptr, size);
1151
1152 free (ptr);
1153 return 0;
1154#endif
1155}
1156
328static void *(*alloc)(void *ptr, long size); 1157static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 1158
330void 1159void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1160ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 1161{
333 alloc = cb; 1162 alloc = cb;
334} 1163}
335 1164
336inline_speed void * 1165inline_speed void *
337ev_realloc (void *ptr, long size) 1166ev_realloc (void *ptr, long size)
338{ 1167{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1168 ptr = alloc (ptr, size);
340 1169
341 if (!ptr && size) 1170 if (!ptr && size)
342 { 1171 {
1172#if EV_AVOID_STDIO
1173 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1174#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1175 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1176#endif
344 abort (); 1177 abort ();
345 } 1178 }
346 1179
347 return ptr; 1180 return ptr;
348} 1181}
350#define ev_malloc(size) ev_realloc (0, (size)) 1183#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1184#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1185
353/*****************************************************************************/ 1186/*****************************************************************************/
354 1187
1188/* set in reify when reification needed */
1189#define EV_ANFD_REIFY 1
1190
1191/* file descriptor info structure */
355typedef struct 1192typedef struct
356{ 1193{
357 WL head; 1194 WL head;
358 unsigned char events; 1195 unsigned char events; /* the events watched for */
1196 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1197 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1198 unsigned char unused;
1199#if EV_USE_EPOLL
1200 unsigned int egen; /* generation counter to counter epoll bugs */
1201#endif
360#if EV_SELECT_IS_WINSOCKET 1202#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1203 SOCKET handle;
362#endif 1204#endif
1205#if EV_USE_IOCP
1206 OVERLAPPED or, ow;
1207#endif
363} ANFD; 1208} ANFD;
364 1209
1210/* stores the pending event set for a given watcher */
365typedef struct 1211typedef struct
366{ 1212{
367 W w; 1213 W w;
368 int events; 1214 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1215} ANPENDING;
370 1216
371#if EV_USE_INOTIFY 1217#if EV_USE_INOTIFY
1218/* hash table entry per inotify-id */
372typedef struct 1219typedef struct
373{ 1220{
374 WL head; 1221 WL head;
375} ANFS; 1222} ANFS;
1223#endif
1224
1225/* Heap Entry */
1226#if EV_HEAP_CACHE_AT
1227 /* a heap element */
1228 typedef struct {
1229 ev_tstamp at;
1230 WT w;
1231 } ANHE;
1232
1233 #define ANHE_w(he) (he).w /* access watcher, read-write */
1234 #define ANHE_at(he) (he).at /* access cached at, read-only */
1235 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1236#else
1237 /* a heap element */
1238 typedef WT ANHE;
1239
1240 #define ANHE_w(he) (he)
1241 #define ANHE_at(he) (he)->at
1242 #define ANHE_at_cache(he)
376#endif 1243#endif
377 1244
378#if EV_MULTIPLICITY 1245#if EV_MULTIPLICITY
379 1246
380 struct ev_loop 1247 struct ev_loop
386 #undef VAR 1253 #undef VAR
387 }; 1254 };
388 #include "ev_wrap.h" 1255 #include "ev_wrap.h"
389 1256
390 static struct ev_loop default_loop_struct; 1257 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1258 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1259
393#else 1260#else
394 1261
395 ev_tstamp ev_rt_now; 1262 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1263 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1264 #include "ev_vars.h"
398 #undef VAR 1265 #undef VAR
399 1266
400 static int ev_default_loop_ptr; 1267 static int ev_default_loop_ptr;
401 1268
402#endif 1269#endif
403 1270
1271#if EV_FEATURE_API
1272# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1273# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1274# define EV_INVOKE_PENDING invoke_cb (EV_A)
1275#else
1276# define EV_RELEASE_CB (void)0
1277# define EV_ACQUIRE_CB (void)0
1278# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1279#endif
1280
1281#define EVBREAK_RECURSE 0x80
1282
404/*****************************************************************************/ 1283/*****************************************************************************/
405 1284
1285#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1286ev_tstamp
407ev_time (void) 1287ev_time (void)
408{ 1288{
409#if EV_USE_REALTIME 1289#if EV_USE_REALTIME
1290 if (expect_true (have_realtime))
1291 {
410 struct timespec ts; 1292 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1293 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1294 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1295 }
1296#endif
1297
414 struct timeval tv; 1298 struct timeval tv;
415 gettimeofday (&tv, 0); 1299 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1300 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1301}
1302#endif
419 1303
420ev_tstamp inline_size 1304inline_size ev_tstamp
421get_clock (void) 1305get_clock (void)
422{ 1306{
423#if EV_USE_MONOTONIC 1307#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1308 if (expect_true (have_monotonic))
425 { 1309 {
446 if (delay > 0.) 1330 if (delay > 0.)
447 { 1331 {
448#if EV_USE_NANOSLEEP 1332#if EV_USE_NANOSLEEP
449 struct timespec ts; 1333 struct timespec ts;
450 1334
451 ts.tv_sec = (time_t)delay; 1335 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1336 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1337#elif defined _WIN32
456 Sleep (delay * 1e3); 1338 Sleep ((unsigned long)(delay * 1e3));
457#else 1339#else
458 struct timeval tv; 1340 struct timeval tv;
459 1341
460 tv.tv_sec = (time_t)delay; 1342 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1343 /* something not guaranteed by newer posix versions, but guaranteed */
462 1344 /* by older ones */
1345 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1346 select (0, 0, 0, 0, &tv);
464#endif 1347#endif
465 } 1348 }
466} 1349}
467 1350
468/*****************************************************************************/ 1351/*****************************************************************************/
469 1352
470int inline_size 1353#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1354
1355/* find a suitable new size for the given array, */
1356/* hopefully by rounding to a nice-to-malloc size */
1357inline_size int
471array_nextsize (int elem, int cur, int cnt) 1358array_nextsize (int elem, int cur, int cnt)
472{ 1359{
473 int ncur = cur + 1; 1360 int ncur = cur + 1;
474 1361
475 do 1362 do
476 ncur <<= 1; 1363 ncur <<= 1;
477 while (cnt > ncur); 1364 while (cnt > ncur);
478 1365
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1366 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1367 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1368 {
482 ncur *= elem; 1369 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1370 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1371 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1372 ncur /= elem;
486 } 1373 }
487 1374
488 return ncur; 1375 return ncur;
489} 1376}
490 1377
491static noinline void * 1378static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1379array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1380{
494 *cur = array_nextsize (elem, *cur, cnt); 1381 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1382 return ev_realloc (base, elem * *cur);
496} 1383}
1384
1385#define array_init_zero(base,count) \
1386 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1387
498#define array_needsize(type,base,cur,cnt,init) \ 1388#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1389 if (expect_false ((cnt) > (cur))) \
500 { \ 1390 { \
501 int ocur_ = (cur); \ 1391 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1392 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1393 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1394 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1395 }
506 1396
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1403 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1404 }
515#endif 1405#endif
516 1406
517#define array_free(stem, idx) \ 1407#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1408 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1409
520/*****************************************************************************/ 1410/*****************************************************************************/
1411
1412/* dummy callback for pending events */
1413static void noinline
1414pendingcb (EV_P_ ev_prepare *w, int revents)
1415{
1416}
521 1417
522void noinline 1418void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1419ev_feed_event (EV_P_ void *w, int revents)
524{ 1420{
525 W w_ = (W)w; 1421 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 1430 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1431 pendings [pri][w_->pending - 1].events = revents;
536 } 1432 }
537} 1433}
538 1434
539void inline_speed 1435inline_speed void
1436feed_reverse (EV_P_ W w)
1437{
1438 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1439 rfeeds [rfeedcnt++] = w;
1440}
1441
1442inline_size void
1443feed_reverse_done (EV_P_ int revents)
1444{
1445 do
1446 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1447 while (rfeedcnt);
1448}
1449
1450inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1451queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1452{
542 int i; 1453 int i;
543 1454
544 for (i = 0; i < eventcnt; ++i) 1455 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1456 ev_feed_event (EV_A_ events [i], type);
546} 1457}
547 1458
548/*****************************************************************************/ 1459/*****************************************************************************/
549 1460
550void inline_size 1461inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1462fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1463{
566 ANFD *anfd = anfds + fd; 1464 ANFD *anfd = anfds + fd;
567 ev_io *w; 1465 ev_io *w;
568 1466
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1467 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1471 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1472 ev_feed_event (EV_A_ (W)w, ev);
575 } 1473 }
576} 1474}
577 1475
1476/* do not submit kernel events for fds that have reify set */
1477/* because that means they changed while we were polling for new events */
1478inline_speed void
1479fd_event (EV_P_ int fd, int revents)
1480{
1481 ANFD *anfd = anfds + fd;
1482
1483 if (expect_true (!anfd->reify))
1484 fd_event_nocheck (EV_A_ fd, revents);
1485}
1486
578void 1487void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1488ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 1489{
581 if (fd >= 0 && fd < anfdmax) 1490 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1491 fd_event_nocheck (EV_A_ fd, revents);
583} 1492}
584 1493
585void inline_size 1494/* make sure the external fd watch events are in-sync */
1495/* with the kernel/libev internal state */
1496inline_size void
586fd_reify (EV_P) 1497fd_reify (EV_P)
587{ 1498{
588 int i; 1499 int i;
1500
1501#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1502 for (i = 0; i < fdchangecnt; ++i)
1503 {
1504 int fd = fdchanges [i];
1505 ANFD *anfd = anfds + fd;
1506
1507 if (anfd->reify & EV__IOFDSET && anfd->head)
1508 {
1509 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1510
1511 if (handle != anfd->handle)
1512 {
1513 unsigned long arg;
1514
1515 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1516
1517 /* handle changed, but fd didn't - we need to do it in two steps */
1518 backend_modify (EV_A_ fd, anfd->events, 0);
1519 anfd->events = 0;
1520 anfd->handle = handle;
1521 }
1522 }
1523 }
1524#endif
589 1525
590 for (i = 0; i < fdchangecnt; ++i) 1526 for (i = 0; i < fdchangecnt; ++i)
591 { 1527 {
592 int fd = fdchanges [i]; 1528 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1529 ANFD *anfd = anfds + fd;
594 ev_io *w; 1530 ev_io *w;
595 1531
596 unsigned char events = 0; 1532 unsigned char o_events = anfd->events;
1533 unsigned char o_reify = anfd->reify;
597 1534
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1535 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1536
601#if EV_SELECT_IS_WINSOCKET 1537 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1538 {
604 unsigned long argp; 1539 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1540
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1542 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1543
609 #endif 1544 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1545 o_reify = EV__IOFDSET; /* actually |= */
611 } 1546 }
612#endif
613 1547
614 { 1548 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1549 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1550 }
625 1551
626 fdchangecnt = 0; 1552 fdchangecnt = 0;
627} 1553}
628 1554
629void inline_size 1555/* something about the given fd changed */
1556inline_size void
630fd_change (EV_P_ int fd, int flags) 1557fd_change (EV_P_ int fd, int flags)
631{ 1558{
632 unsigned char reify = anfds [fd].reify; 1559 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1560 anfds [fd].reify |= flags;
634 1561
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1565 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1566 fdchanges [fdchangecnt - 1] = fd;
640 } 1567 }
641} 1568}
642 1569
643void inline_speed 1570/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1571inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1572fd_kill (EV_P_ int fd)
645{ 1573{
646 ev_io *w; 1574 ev_io *w;
647 1575
648 while ((w = (ev_io *)anfds [fd].head)) 1576 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1578 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1579 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1580 }
653} 1581}
654 1582
655int inline_size 1583/* check whether the given fd is actually valid, for error recovery */
1584inline_size int ecb_cold
656fd_valid (int fd) 1585fd_valid (int fd)
657{ 1586{
658#ifdef _WIN32 1587#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1588 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1589#else
661 return fcntl (fd, F_GETFD) != -1; 1590 return fcntl (fd, F_GETFD) != -1;
662#endif 1591#endif
663} 1592}
664 1593
665/* called on EBADF to verify fds */ 1594/* called on EBADF to verify fds */
666static void noinline 1595static void noinline ecb_cold
667fd_ebadf (EV_P) 1596fd_ebadf (EV_P)
668{ 1597{
669 int fd; 1598 int fd;
670 1599
671 for (fd = 0; fd < anfdmax; ++fd) 1600 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1601 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1602 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1603 fd_kill (EV_A_ fd);
675} 1604}
676 1605
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1606/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1607static void noinline ecb_cold
679fd_enomem (EV_P) 1608fd_enomem (EV_P)
680{ 1609{
681 int fd; 1610 int fd;
682 1611
683 for (fd = anfdmax; fd--; ) 1612 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1613 if (anfds [fd].events)
685 { 1614 {
686 fd_kill (EV_A_ fd); 1615 fd_kill (EV_A_ fd);
687 return; 1616 break;
688 } 1617 }
689} 1618}
690 1619
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1620/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1621static void noinline
696 1625
697 for (fd = 0; fd < anfdmax; ++fd) 1626 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1627 if (anfds [fd].events)
699 { 1628 {
700 anfds [fd].events = 0; 1629 anfds [fd].events = 0;
1630 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1631 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1632 }
703} 1633}
704 1634
705/*****************************************************************************/ 1635/* used to prepare libev internal fd's */
706 1636/* this is not fork-safe */
707void inline_speed 1637inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1638fd_intern (int fd)
792{ 1639{
793#ifdef _WIN32 1640#ifdef _WIN32
794 int arg = 1; 1641 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1642 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1643#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1644 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1645 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1646#endif
800} 1647}
801 1648
1649/*****************************************************************************/
1650
1651/*
1652 * the heap functions want a real array index. array index 0 is guaranteed to not
1653 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1654 * the branching factor of the d-tree.
1655 */
1656
1657/*
1658 * at the moment we allow libev the luxury of two heaps,
1659 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1660 * which is more cache-efficient.
1661 * the difference is about 5% with 50000+ watchers.
1662 */
1663#if EV_USE_4HEAP
1664
1665#define DHEAP 4
1666#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1667#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1668#define UPHEAP_DONE(p,k) ((p) == (k))
1669
1670/* away from the root */
1671inline_speed void
1672downheap (ANHE *heap, int N, int k)
1673{
1674 ANHE he = heap [k];
1675 ANHE *E = heap + N + HEAP0;
1676
1677 for (;;)
1678 {
1679 ev_tstamp minat;
1680 ANHE *minpos;
1681 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1682
1683 /* find minimum child */
1684 if (expect_true (pos + DHEAP - 1 < E))
1685 {
1686 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1690 }
1691 else if (pos < E)
1692 {
1693 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1694 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1695 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1696 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1697 }
1698 else
1699 break;
1700
1701 if (ANHE_at (he) <= minat)
1702 break;
1703
1704 heap [k] = *minpos;
1705 ev_active (ANHE_w (*minpos)) = k;
1706
1707 k = minpos - heap;
1708 }
1709
1710 heap [k] = he;
1711 ev_active (ANHE_w (he)) = k;
1712}
1713
1714#else /* 4HEAP */
1715
1716#define HEAP0 1
1717#define HPARENT(k) ((k) >> 1)
1718#define UPHEAP_DONE(p,k) (!(p))
1719
1720/* away from the root */
1721inline_speed void
1722downheap (ANHE *heap, int N, int k)
1723{
1724 ANHE he = heap [k];
1725
1726 for (;;)
1727 {
1728 int c = k << 1;
1729
1730 if (c >= N + HEAP0)
1731 break;
1732
1733 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1734 ? 1 : 0;
1735
1736 if (ANHE_at (he) <= ANHE_at (heap [c]))
1737 break;
1738
1739 heap [k] = heap [c];
1740 ev_active (ANHE_w (heap [k])) = k;
1741
1742 k = c;
1743 }
1744
1745 heap [k] = he;
1746 ev_active (ANHE_w (he)) = k;
1747}
1748#endif
1749
1750/* towards the root */
1751inline_speed void
1752upheap (ANHE *heap, int k)
1753{
1754 ANHE he = heap [k];
1755
1756 for (;;)
1757 {
1758 int p = HPARENT (k);
1759
1760 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1761 break;
1762
1763 heap [k] = heap [p];
1764 ev_active (ANHE_w (heap [k])) = k;
1765 k = p;
1766 }
1767
1768 heap [k] = he;
1769 ev_active (ANHE_w (he)) = k;
1770}
1771
1772/* move an element suitably so it is in a correct place */
1773inline_size void
1774adjustheap (ANHE *heap, int N, int k)
1775{
1776 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1777 upheap (heap, k);
1778 else
1779 downheap (heap, N, k);
1780}
1781
1782/* rebuild the heap: this function is used only once and executed rarely */
1783inline_size void
1784reheap (ANHE *heap, int N)
1785{
1786 int i;
1787
1788 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1789 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1790 for (i = 0; i < N; ++i)
1791 upheap (heap, i + HEAP0);
1792}
1793
1794/*****************************************************************************/
1795
1796/* associate signal watchers to a signal signal */
1797typedef struct
1798{
1799 EV_ATOMIC_T pending;
1800#if EV_MULTIPLICITY
1801 EV_P;
1802#endif
1803 WL head;
1804} ANSIG;
1805
1806static ANSIG signals [EV_NSIG - 1];
1807
1808/*****************************************************************************/
1809
1810#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1811
802static void noinline 1812static void noinline ecb_cold
803evpipe_init (EV_P) 1813evpipe_init (EV_P)
804{ 1814{
805 if (!ev_is_active (&pipeev)) 1815 if (!ev_is_active (&pipe_w))
806 { 1816 {
1817# if EV_USE_EVENTFD
1818 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1819 if (evfd < 0 && errno == EINVAL)
1820 evfd = eventfd (0, 0);
1821
1822 if (evfd >= 0)
1823 {
1824 evpipe [0] = -1;
1825 fd_intern (evfd); /* doing it twice doesn't hurt */
1826 ev_io_set (&pipe_w, evfd, EV_READ);
1827 }
1828 else
1829# endif
1830 {
807 while (pipe (evpipe)) 1831 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1832 ev_syserr ("(libev) error creating signal/async pipe");
809 1833
810 fd_intern (evpipe [0]); 1834 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1835 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1836 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1837 }
1838
814 ev_io_start (EV_A_ &pipeev); 1839 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1840 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 { 1841 }
1842}
1843
1844inline_speed void
1845evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1846{
1847 if (expect_true (*flag))
1848 return;
1849
1850 *flag = 1;
1851
1852 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1853
1854 pipe_write_skipped = 1;
1855
1856 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1857
1858 if (pipe_write_wanted)
1859 {
824 int old_errno = errno; 1860 int old_errno;
825 1861
826 if (sig) gotsig = 1; 1862 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
827 if (async) gotasync = 1;
828 1863
829 write (evpipe [1], &old_errno, 1); 1864 old_errno = errno; /* save errno because write will clobber it */
1865
1866#if EV_USE_EVENTFD
1867 if (evfd >= 0)
1868 {
1869 uint64_t counter = 1;
1870 write (evfd, &counter, sizeof (uint64_t));
1871 }
1872 else
1873#endif
1874 {
1875 /* win32 people keep sending patches that change this write() to send() */
1876 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1877 /* so when you think this write should be a send instead, please find out */
1878 /* where your send() is from - it's definitely not the microsoft send, and */
1879 /* tell me. thank you. */
1880 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1881 /* check the ev documentation on how to use this flag */
1882 write (evpipe [1], &(evpipe [1]), 1);
1883 }
1884
830 errno = old_errno; 1885 errno = old_errno;
831 } 1886 }
832} 1887}
833 1888
1889/* called whenever the libev signal pipe */
1890/* got some events (signal, async) */
834static void 1891static void
835pipecb (EV_P_ ev_io *iow, int revents) 1892pipecb (EV_P_ ev_io *iow, int revents)
836{ 1893{
1894 int i;
1895
1896 if (revents & EV_READ)
837 { 1897 {
838 int dummy; 1898#if EV_USE_EVENTFD
1899 if (evfd >= 0)
1900 {
1901 uint64_t counter;
1902 read (evfd, &counter, sizeof (uint64_t));
1903 }
1904 else
1905#endif
1906 {
1907 char dummy;
1908 /* see discussion in evpipe_write when you think this read should be recv in win32 */
839 read (evpipe [0], &dummy, 1); 1909 read (evpipe [0], &dummy, 1);
1910 }
840 } 1911 }
841 1912
842 if (gotsig) 1913 pipe_write_skipped = 0;
843 {
844 int signum;
845 gotsig = 0;
846 1914
847 for (signum = signalmax; signum--; ) 1915#if EV_SIGNAL_ENABLE
848 if (signals [signum].gotsig) 1916 if (sig_pending)
1917 {
1918 sig_pending = 0;
1919
1920 for (i = EV_NSIG - 1; i--; )
1921 if (expect_false (signals [i].pending))
849 ev_feed_signal_event (EV_A_ signum + 1); 1922 ev_feed_signal_event (EV_A_ i + 1);
850 }
851
852 if (gotasync)
853 { 1923 }
854 int i; 1924#endif
855 gotasync = 0; 1925
1926#if EV_ASYNC_ENABLE
1927 if (async_pending)
1928 {
1929 async_pending = 0;
856 1930
857 for (i = asynccnt; i--; ) 1931 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 1932 if (asyncs [i]->sent)
859 { 1933 {
860 asyncs [i]->sent = 0; 1934 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 1935 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 1936 }
863 } 1937 }
1938#endif
864} 1939}
865 1940
866/*****************************************************************************/ 1941/*****************************************************************************/
867 1942
1943void
1944ev_feed_signal (int signum)
1945{
1946#if EV_MULTIPLICITY
1947 EV_P = signals [signum - 1].loop;
1948
1949 if (!EV_A)
1950 return;
1951#endif
1952
1953 if (!ev_active (&pipe_w))
1954 return;
1955
1956 signals [signum - 1].pending = 1;
1957 evpipe_write (EV_A_ &sig_pending);
1958}
1959
868static void 1960static void
869sighandler (int signum) 1961ev_sighandler (int signum)
870{ 1962{
871#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct;
873#endif
874
875#if _WIN32 1963#ifdef _WIN32
876 signal (signum, sighandler); 1964 signal (signum, ev_sighandler);
877#endif 1965#endif
878 1966
879 signals [signum - 1].gotsig = 1; 1967 ev_feed_signal (signum);
880 evpipe_write (EV_A_ 1, 0);
881} 1968}
882 1969
883void noinline 1970void noinline
884ev_feed_signal_event (EV_P_ int signum) 1971ev_feed_signal_event (EV_P_ int signum)
885{ 1972{
886 WL w; 1973 WL w;
887 1974
1975 if (expect_false (signum <= 0 || signum > EV_NSIG))
1976 return;
1977
1978 --signum;
1979
888#if EV_MULTIPLICITY 1980#if EV_MULTIPLICITY
889 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1981 /* it is permissible to try to feed a signal to the wrong loop */
890#endif 1982 /* or, likely more useful, feeding a signal nobody is waiting for */
891 1983
892 --signum; 1984 if (expect_false (signals [signum].loop != EV_A))
893
894 if (signum < 0 || signum >= signalmax)
895 return; 1985 return;
1986#endif
896 1987
897 signals [signum].gotsig = 0; 1988 signals [signum].pending = 0;
898 1989
899 for (w = signals [signum].head; w; w = w->next) 1990 for (w = signals [signum].head; w; w = w->next)
900 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1991 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
901} 1992}
902 1993
1994#if EV_USE_SIGNALFD
1995static void
1996sigfdcb (EV_P_ ev_io *iow, int revents)
1997{
1998 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1999
2000 for (;;)
2001 {
2002 ssize_t res = read (sigfd, si, sizeof (si));
2003
2004 /* not ISO-C, as res might be -1, but works with SuS */
2005 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2006 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2007
2008 if (res < (ssize_t)sizeof (si))
2009 break;
2010 }
2011}
2012#endif
2013
2014#endif
2015
903/*****************************************************************************/ 2016/*****************************************************************************/
904 2017
2018#if EV_CHILD_ENABLE
905static WL childs [EV_PID_HASHSIZE]; 2019static WL childs [EV_PID_HASHSIZE];
906
907#ifndef _WIN32
908 2020
909static ev_signal childev; 2021static ev_signal childev;
910 2022
911#ifndef WIFCONTINUED 2023#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0 2024# define WIFCONTINUED(status) 0
913#endif 2025#endif
914 2026
915void inline_speed 2027/* handle a single child status event */
2028inline_speed void
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2029child_reap (EV_P_ int chain, int pid, int status)
917{ 2030{
918 ev_child *w; 2031 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2032 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920 2033
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2034 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
922 { 2035 {
923 if ((w->pid == pid || !w->pid) 2036 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1))) 2037 && (!traced || (w->flags & 1)))
925 { 2038 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2039 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
927 w->rpid = pid; 2040 w->rpid = pid;
928 w->rstatus = status; 2041 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2042 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 } 2043 }
931 } 2044 }
933 2046
934#ifndef WCONTINUED 2047#ifndef WCONTINUED
935# define WCONTINUED 0 2048# define WCONTINUED 0
936#endif 2049#endif
937 2050
2051/* called on sigchld etc., calls waitpid */
938static void 2052static void
939childcb (EV_P_ ev_signal *sw, int revents) 2053childcb (EV_P_ ev_signal *sw, int revents)
940{ 2054{
941 int pid, status; 2055 int pid, status;
942 2056
945 if (!WCONTINUED 2059 if (!WCONTINUED
946 || errno != EINVAL 2060 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2061 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return; 2062 return;
949 2063
950 /* make sure we are called again until all childs have been reaped */ 2064 /* make sure we are called again until all children have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */ 2065 /* we need to do it this way so that the callback gets called before we continue */
952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2066 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
953 2067
954 child_reap (EV_A_ sw, pid, pid, status); 2068 child_reap (EV_A_ pid, pid, status);
955 if (EV_PID_HASHSIZE > 1) 2069 if ((EV_PID_HASHSIZE) > 1)
956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2070 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
957} 2071}
958 2072
959#endif 2073#endif
960 2074
961/*****************************************************************************/ 2075/*****************************************************************************/
962 2076
2077#if EV_USE_IOCP
2078# include "ev_iocp.c"
2079#endif
963#if EV_USE_PORT 2080#if EV_USE_PORT
964# include "ev_port.c" 2081# include "ev_port.c"
965#endif 2082#endif
966#if EV_USE_KQUEUE 2083#if EV_USE_KQUEUE
967# include "ev_kqueue.c" 2084# include "ev_kqueue.c"
974#endif 2091#endif
975#if EV_USE_SELECT 2092#if EV_USE_SELECT
976# include "ev_select.c" 2093# include "ev_select.c"
977#endif 2094#endif
978 2095
979int 2096int ecb_cold
980ev_version_major (void) 2097ev_version_major (void)
981{ 2098{
982 return EV_VERSION_MAJOR; 2099 return EV_VERSION_MAJOR;
983} 2100}
984 2101
985int 2102int ecb_cold
986ev_version_minor (void) 2103ev_version_minor (void)
987{ 2104{
988 return EV_VERSION_MINOR; 2105 return EV_VERSION_MINOR;
989} 2106}
990 2107
991/* return true if we are running with elevated privileges and should ignore env variables */ 2108/* return true if we are running with elevated privileges and should ignore env variables */
992int inline_size 2109int inline_size ecb_cold
993enable_secure (void) 2110enable_secure (void)
994{ 2111{
995#ifdef _WIN32 2112#ifdef _WIN32
996 return 0; 2113 return 0;
997#else 2114#else
998 return getuid () != geteuid () 2115 return getuid () != geteuid ()
999 || getgid () != getegid (); 2116 || getgid () != getegid ();
1000#endif 2117#endif
1001} 2118}
1002 2119
1003unsigned int 2120unsigned int ecb_cold
1004ev_supported_backends (void) 2121ev_supported_backends (void)
1005{ 2122{
1006 unsigned int flags = 0; 2123 unsigned int flags = 0;
1007 2124
1008 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2125 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1012 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2129 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1013 2130
1014 return flags; 2131 return flags;
1015} 2132}
1016 2133
1017unsigned int 2134unsigned int ecb_cold
1018ev_recommended_backends (void) 2135ev_recommended_backends (void)
1019{ 2136{
1020 unsigned int flags = ev_supported_backends (); 2137 unsigned int flags = ev_supported_backends ();
1021 2138
1022#ifndef __NetBSD__ 2139#ifndef __NetBSD__
1023 /* kqueue is borked on everything but netbsd apparently */ 2140 /* kqueue is borked on everything but netbsd apparently */
1024 /* it usually doesn't work correctly on anything but sockets and pipes */ 2141 /* it usually doesn't work correctly on anything but sockets and pipes */
1025 flags &= ~EVBACKEND_KQUEUE; 2142 flags &= ~EVBACKEND_KQUEUE;
1026#endif 2143#endif
1027#ifdef __APPLE__ 2144#ifdef __APPLE__
1028 // flags &= ~EVBACKEND_KQUEUE; for documentation 2145 /* only select works correctly on that "unix-certified" platform */
1029 flags &= ~EVBACKEND_POLL; 2146 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2147 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2148#endif
2149#ifdef __FreeBSD__
2150 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1030#endif 2151#endif
1031 2152
1032 return flags; 2153 return flags;
1033} 2154}
1034 2155
1035unsigned int 2156unsigned int ecb_cold
1036ev_embeddable_backends (void) 2157ev_embeddable_backends (void)
1037{ 2158{
1038 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2159 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1039 2160
1040 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2161 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1041 /* please fix it and tell me how to detect the fix */ 2162 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1042 flags &= ~EVBACKEND_EPOLL; 2163 flags &= ~EVBACKEND_EPOLL;
1043 2164
1044 return flags; 2165 return flags;
1045} 2166}
1046 2167
1047unsigned int 2168unsigned int
1048ev_backend (EV_P) 2169ev_backend (EV_P)
1049{ 2170{
1050 return backend; 2171 return backend;
1051} 2172}
1052 2173
2174#if EV_FEATURE_API
1053unsigned int 2175unsigned int
1054ev_loop_count (EV_P) 2176ev_iteration (EV_P)
1055{ 2177{
1056 return loop_count; 2178 return loop_count;
2179}
2180
2181unsigned int
2182ev_depth (EV_P)
2183{
2184 return loop_depth;
1057} 2185}
1058 2186
1059void 2187void
1060ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2188ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1061{ 2189{
1066ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2194ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1067{ 2195{
1068 timeout_blocktime = interval; 2196 timeout_blocktime = interval;
1069} 2197}
1070 2198
2199void
2200ev_set_userdata (EV_P_ void *data)
2201{
2202 userdata = data;
2203}
2204
2205void *
2206ev_userdata (EV_P)
2207{
2208 return userdata;
2209}
2210
2211void
2212ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2213{
2214 invoke_cb = invoke_pending_cb;
2215}
2216
2217void
2218ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2219{
2220 release_cb = release;
2221 acquire_cb = acquire;
2222}
2223#endif
2224
2225/* initialise a loop structure, must be zero-initialised */
1071static void noinline 2226static void noinline ecb_cold
1072loop_init (EV_P_ unsigned int flags) 2227loop_init (EV_P_ unsigned int flags)
1073{ 2228{
1074 if (!backend) 2229 if (!backend)
1075 { 2230 {
2231 origflags = flags;
2232
2233#if EV_USE_REALTIME
2234 if (!have_realtime)
2235 {
2236 struct timespec ts;
2237
2238 if (!clock_gettime (CLOCK_REALTIME, &ts))
2239 have_realtime = 1;
2240 }
2241#endif
2242
1076#if EV_USE_MONOTONIC 2243#if EV_USE_MONOTONIC
2244 if (!have_monotonic)
1077 { 2245 {
1078 struct timespec ts; 2246 struct timespec ts;
2247
1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2248 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1080 have_monotonic = 1; 2249 have_monotonic = 1;
1081 } 2250 }
1082#endif 2251#endif
1083
1084 ev_rt_now = ev_time ();
1085 mn_now = get_clock ();
1086 now_floor = mn_now;
1087 rtmn_diff = ev_rt_now - mn_now;
1088
1089 io_blocktime = 0.;
1090 timeout_blocktime = 0.;
1091 2252
1092 /* pid check not overridable via env */ 2253 /* pid check not overridable via env */
1093#ifndef _WIN32 2254#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK) 2255 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid (); 2256 curpid = getpid ();
1098 if (!(flags & EVFLAG_NOENV) 2259 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure () 2260 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS")) 2261 && getenv ("LIBEV_FLAGS"))
1101 flags = atoi (getenv ("LIBEV_FLAGS")); 2262 flags = atoi (getenv ("LIBEV_FLAGS"));
1102 2263
1103 if (!(flags & 0x0000ffffUL)) 2264 ev_rt_now = ev_time ();
2265 mn_now = get_clock ();
2266 now_floor = mn_now;
2267 rtmn_diff = ev_rt_now - mn_now;
2268#if EV_FEATURE_API
2269 invoke_cb = ev_invoke_pending;
2270#endif
2271
2272 io_blocktime = 0.;
2273 timeout_blocktime = 0.;
2274 backend = 0;
2275 backend_fd = -1;
2276 sig_pending = 0;
2277#if EV_ASYNC_ENABLE
2278 async_pending = 0;
2279#endif
2280 pipe_write_skipped = 0;
2281 pipe_write_wanted = 0;
2282#if EV_USE_INOTIFY
2283 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2284#endif
2285#if EV_USE_SIGNALFD
2286 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2287#endif
2288
2289 if (!(flags & EVBACKEND_MASK))
1104 flags |= ev_recommended_backends (); 2290 flags |= ev_recommended_backends ();
1105 2291
1106 backend = 0;
1107 backend_fd = -1;
1108#if EV_USE_INOTIFY 2292#if EV_USE_IOCP
1109 fs_fd = -2; 2293 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1110#endif 2294#endif
1111
1112#if EV_USE_PORT 2295#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2296 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1114#endif 2297#endif
1115#if EV_USE_KQUEUE 2298#if EV_USE_KQUEUE
1116 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2299 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1123#endif 2306#endif
1124#if EV_USE_SELECT 2307#if EV_USE_SELECT
1125 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2308 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1126#endif 2309#endif
1127 2310
2311 ev_prepare_init (&pending_w, pendingcb);
2312
2313#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1128 ev_init (&pipeev, pipecb); 2314 ev_init (&pipe_w, pipecb);
1129 ev_set_priority (&pipeev, EV_MAXPRI); 2315 ev_set_priority (&pipe_w, EV_MAXPRI);
2316#endif
1130 } 2317 }
1131} 2318}
1132 2319
1133static void noinline 2320/* free up a loop structure */
2321void ecb_cold
1134loop_destroy (EV_P) 2322ev_loop_destroy (EV_P)
1135{ 2323{
1136 int i; 2324 int i;
1137 2325
2326#if EV_MULTIPLICITY
2327 /* mimic free (0) */
2328 if (!EV_A)
2329 return;
2330#endif
2331
2332#if EV_CLEANUP_ENABLE
2333 /* queue cleanup watchers (and execute them) */
2334 if (expect_false (cleanupcnt))
2335 {
2336 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2337 EV_INVOKE_PENDING;
2338 }
2339#endif
2340
2341#if EV_CHILD_ENABLE
2342 if (ev_is_active (&childev))
2343 {
2344 ev_ref (EV_A); /* child watcher */
2345 ev_signal_stop (EV_A_ &childev);
2346 }
2347#endif
2348
1138 if (ev_is_active (&pipeev)) 2349 if (ev_is_active (&pipe_w))
1139 { 2350 {
1140 ev_ref (EV_A); /* signal watcher */ 2351 /*ev_ref (EV_A);*/
1141 ev_io_stop (EV_A_ &pipeev); 2352 /*ev_io_stop (EV_A_ &pipe_w);*/
1142 2353
1143 close (evpipe [0]); evpipe [0] = 0; 2354#if EV_USE_EVENTFD
1144 close (evpipe [1]); evpipe [1] = 0; 2355 if (evfd >= 0)
2356 close (evfd);
2357#endif
2358
2359 if (evpipe [0] >= 0)
2360 {
2361 EV_WIN32_CLOSE_FD (evpipe [0]);
2362 EV_WIN32_CLOSE_FD (evpipe [1]);
2363 }
1145 } 2364 }
2365
2366#if EV_USE_SIGNALFD
2367 if (ev_is_active (&sigfd_w))
2368 close (sigfd);
2369#endif
1146 2370
1147#if EV_USE_INOTIFY 2371#if EV_USE_INOTIFY
1148 if (fs_fd >= 0) 2372 if (fs_fd >= 0)
1149 close (fs_fd); 2373 close (fs_fd);
1150#endif 2374#endif
1151 2375
1152 if (backend_fd >= 0) 2376 if (backend_fd >= 0)
1153 close (backend_fd); 2377 close (backend_fd);
1154 2378
2379#if EV_USE_IOCP
2380 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2381#endif
1155#if EV_USE_PORT 2382#if EV_USE_PORT
1156 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2383 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1157#endif 2384#endif
1158#if EV_USE_KQUEUE 2385#if EV_USE_KQUEUE
1159 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2386 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1174#if EV_IDLE_ENABLE 2401#if EV_IDLE_ENABLE
1175 array_free (idle, [i]); 2402 array_free (idle, [i]);
1176#endif 2403#endif
1177 } 2404 }
1178 2405
1179 ev_free (anfds); anfdmax = 0; 2406 ev_free (anfds); anfds = 0; anfdmax = 0;
1180 2407
1181 /* have to use the microsoft-never-gets-it-right macro */ 2408 /* have to use the microsoft-never-gets-it-right macro */
2409 array_free (rfeed, EMPTY);
1182 array_free (fdchange, EMPTY); 2410 array_free (fdchange, EMPTY);
1183 array_free (timer, EMPTY); 2411 array_free (timer, EMPTY);
1184#if EV_PERIODIC_ENABLE 2412#if EV_PERIODIC_ENABLE
1185 array_free (periodic, EMPTY); 2413 array_free (periodic, EMPTY);
1186#endif 2414#endif
1187#if EV_FORK_ENABLE 2415#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY); 2416 array_free (fork, EMPTY);
1189#endif 2417#endif
2418#if EV_CLEANUP_ENABLE
2419 array_free (cleanup, EMPTY);
2420#endif
1190 array_free (prepare, EMPTY); 2421 array_free (prepare, EMPTY);
1191 array_free (check, EMPTY); 2422 array_free (check, EMPTY);
2423#if EV_ASYNC_ENABLE
2424 array_free (async, EMPTY);
2425#endif
1192 2426
1193 backend = 0; 2427 backend = 0;
1194}
1195 2428
2429#if EV_MULTIPLICITY
2430 if (ev_is_default_loop (EV_A))
2431#endif
2432 ev_default_loop_ptr = 0;
2433#if EV_MULTIPLICITY
2434 else
2435 ev_free (EV_A);
2436#endif
2437}
2438
2439#if EV_USE_INOTIFY
1196void inline_size infy_fork (EV_P); 2440inline_size void infy_fork (EV_P);
2441#endif
1197 2442
1198void inline_size 2443inline_size void
1199loop_fork (EV_P) 2444loop_fork (EV_P)
1200{ 2445{
1201#if EV_USE_PORT 2446#if EV_USE_PORT
1202 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2447 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1203#endif 2448#endif
1209#endif 2454#endif
1210#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1211 infy_fork (EV_A); 2456 infy_fork (EV_A);
1212#endif 2457#endif
1213 2458
1214 if (ev_is_active (&pipeev)) 2459 if (ev_is_active (&pipe_w))
1215 { 2460 {
1216 /* this "locks" the handlers against writing to the pipe */ 2461 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1217 gotsig = gotasync = 1;
1218 2462
1219 ev_ref (EV_A); 2463 ev_ref (EV_A);
1220 ev_io_stop (EV_A_ &pipeev); 2464 ev_io_stop (EV_A_ &pipe_w);
1221 close (evpipe [0]);
1222 close (evpipe [1]);
1223 2465
2466#if EV_USE_EVENTFD
2467 if (evfd >= 0)
2468 close (evfd);
2469#endif
2470
2471 if (evpipe [0] >= 0)
2472 {
2473 EV_WIN32_CLOSE_FD (evpipe [0]);
2474 EV_WIN32_CLOSE_FD (evpipe [1]);
2475 }
2476
2477#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1224 evpipe_init (EV_A); 2478 evpipe_init (EV_A);
1225 /* now iterate over everything */ 2479 /* now iterate over everything, in case we missed something */
1226 evcb (EV_A_ &pipeev, EV_READ); 2480 pipecb (EV_A_ &pipe_w, EV_READ);
2481#endif
1227 } 2482 }
1228 2483
1229 postfork = 0; 2484 postfork = 0;
1230} 2485}
1231 2486
1232#if EV_MULTIPLICITY 2487#if EV_MULTIPLICITY
2488
1233struct ev_loop * 2489struct ev_loop * ecb_cold
1234ev_loop_new (unsigned int flags) 2490ev_loop_new (unsigned int flags)
1235{ 2491{
1236 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2492 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1237 2493
1238 memset (loop, 0, sizeof (struct ev_loop)); 2494 memset (EV_A, 0, sizeof (struct ev_loop));
1239
1240 loop_init (EV_A_ flags); 2495 loop_init (EV_A_ flags);
1241 2496
1242 if (ev_backend (EV_A)) 2497 if (ev_backend (EV_A))
1243 return loop; 2498 return EV_A;
1244 2499
2500 ev_free (EV_A);
1245 return 0; 2501 return 0;
1246} 2502}
1247 2503
1248void 2504#endif /* multiplicity */
1249ev_loop_destroy (EV_P)
1250{
1251 loop_destroy (EV_A);
1252 ev_free (loop);
1253}
1254 2505
1255void 2506#if EV_VERIFY
1256ev_loop_fork (EV_P) 2507static void noinline ecb_cold
2508verify_watcher (EV_P_ W w)
1257{ 2509{
1258 postfork = 1; /* must be in line with ev_default_fork */ 2510 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1259}
1260 2511
2512 if (w->pending)
2513 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2514}
2515
2516static void noinline ecb_cold
2517verify_heap (EV_P_ ANHE *heap, int N)
2518{
2519 int i;
2520
2521 for (i = HEAP0; i < N + HEAP0; ++i)
2522 {
2523 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2524 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2525 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2526
2527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2528 }
2529}
2530
2531static void noinline ecb_cold
2532array_verify (EV_P_ W *ws, int cnt)
2533{
2534 while (cnt--)
2535 {
2536 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2537 verify_watcher (EV_A_ ws [cnt]);
2538 }
2539}
2540#endif
2541
2542#if EV_FEATURE_API
2543void ecb_cold
2544ev_verify (EV_P)
2545{
2546#if EV_VERIFY
2547 int i;
2548 WL w;
2549
2550 assert (activecnt >= -1);
2551
2552 assert (fdchangemax >= fdchangecnt);
2553 for (i = 0; i < fdchangecnt; ++i)
2554 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2555
2556 assert (anfdmax >= 0);
2557 for (i = 0; i < anfdmax; ++i)
2558 for (w = anfds [i].head; w; w = w->next)
2559 {
2560 verify_watcher (EV_A_ (W)w);
2561 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2562 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2563 }
2564
2565 assert (timermax >= timercnt);
2566 verify_heap (EV_A_ timers, timercnt);
2567
2568#if EV_PERIODIC_ENABLE
2569 assert (periodicmax >= periodiccnt);
2570 verify_heap (EV_A_ periodics, periodiccnt);
2571#endif
2572
2573 for (i = NUMPRI; i--; )
2574 {
2575 assert (pendingmax [i] >= pendingcnt [i]);
2576#if EV_IDLE_ENABLE
2577 assert (idleall >= 0);
2578 assert (idlemax [i] >= idlecnt [i]);
2579 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2580#endif
2581 }
2582
2583#if EV_FORK_ENABLE
2584 assert (forkmax >= forkcnt);
2585 array_verify (EV_A_ (W *)forks, forkcnt);
2586#endif
2587
2588#if EV_CLEANUP_ENABLE
2589 assert (cleanupmax >= cleanupcnt);
2590 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2591#endif
2592
2593#if EV_ASYNC_ENABLE
2594 assert (asyncmax >= asynccnt);
2595 array_verify (EV_A_ (W *)asyncs, asynccnt);
2596#endif
2597
2598#if EV_PREPARE_ENABLE
2599 assert (preparemax >= preparecnt);
2600 array_verify (EV_A_ (W *)prepares, preparecnt);
2601#endif
2602
2603#if EV_CHECK_ENABLE
2604 assert (checkmax >= checkcnt);
2605 array_verify (EV_A_ (W *)checks, checkcnt);
2606#endif
2607
2608# if 0
2609#if EV_CHILD_ENABLE
2610 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2611 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2612#endif
2613# endif
2614#endif
2615}
1261#endif 2616#endif
1262 2617
1263#if EV_MULTIPLICITY 2618#if EV_MULTIPLICITY
1264struct ev_loop * 2619struct ev_loop * ecb_cold
1265ev_default_loop_init (unsigned int flags)
1266#else 2620#else
1267int 2621int
2622#endif
1268ev_default_loop (unsigned int flags) 2623ev_default_loop (unsigned int flags)
1269#endif
1270{ 2624{
1271 if (!ev_default_loop_ptr) 2625 if (!ev_default_loop_ptr)
1272 { 2626 {
1273#if EV_MULTIPLICITY 2627#if EV_MULTIPLICITY
1274 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2628 EV_P = ev_default_loop_ptr = &default_loop_struct;
1275#else 2629#else
1276 ev_default_loop_ptr = 1; 2630 ev_default_loop_ptr = 1;
1277#endif 2631#endif
1278 2632
1279 loop_init (EV_A_ flags); 2633 loop_init (EV_A_ flags);
1280 2634
1281 if (ev_backend (EV_A)) 2635 if (ev_backend (EV_A))
1282 { 2636 {
1283#ifndef _WIN32 2637#if EV_CHILD_ENABLE
1284 ev_signal_init (&childev, childcb, SIGCHLD); 2638 ev_signal_init (&childev, childcb, SIGCHLD);
1285 ev_set_priority (&childev, EV_MAXPRI); 2639 ev_set_priority (&childev, EV_MAXPRI);
1286 ev_signal_start (EV_A_ &childev); 2640 ev_signal_start (EV_A_ &childev);
1287 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2641 ev_unref (EV_A); /* child watcher should not keep loop alive */
1288#endif 2642#endif
1293 2647
1294 return ev_default_loop_ptr; 2648 return ev_default_loop_ptr;
1295} 2649}
1296 2650
1297void 2651void
1298ev_default_destroy (void) 2652ev_loop_fork (EV_P)
1299{ 2653{
1300#if EV_MULTIPLICITY
1301 struct ev_loop *loop = ev_default_loop_ptr;
1302#endif
1303
1304#ifndef _WIN32
1305 ev_ref (EV_A); /* child watcher */
1306 ev_signal_stop (EV_A_ &childev);
1307#endif
1308
1309 loop_destroy (EV_A);
1310}
1311
1312void
1313ev_default_fork (void)
1314{
1315#if EV_MULTIPLICITY
1316 struct ev_loop *loop = ev_default_loop_ptr;
1317#endif
1318
1319 if (backend)
1320 postfork = 1; /* must be in line with ev_loop_fork */ 2654 postfork = 1; /* must be in line with ev_default_fork */
1321} 2655}
1322 2656
1323/*****************************************************************************/ 2657/*****************************************************************************/
1324 2658
1325void 2659void
1326ev_invoke (EV_P_ void *w, int revents) 2660ev_invoke (EV_P_ void *w, int revents)
1327{ 2661{
1328 EV_CB_INVOKE ((W)w, revents); 2662 EV_CB_INVOKE ((W)w, revents);
1329} 2663}
1330 2664
1331void inline_speed 2665unsigned int
1332call_pending (EV_P) 2666ev_pending_count (EV_P)
2667{
2668 int pri;
2669 unsigned int count = 0;
2670
2671 for (pri = NUMPRI; pri--; )
2672 count += pendingcnt [pri];
2673
2674 return count;
2675}
2676
2677void noinline
2678ev_invoke_pending (EV_P)
1333{ 2679{
1334 int pri; 2680 int pri;
1335 2681
1336 for (pri = NUMPRI; pri--; ) 2682 for (pri = NUMPRI; pri--; )
1337 while (pendingcnt [pri]) 2683 while (pendingcnt [pri])
1338 { 2684 {
1339 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2685 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1340 2686
1341 if (expect_true (p->w))
1342 {
1343 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1344
1345 p->w->pending = 0; 2687 p->w->pending = 0;
1346 EV_CB_INVOKE (p->w, p->events); 2688 EV_CB_INVOKE (p->w, p->events);
1347 } 2689 EV_FREQUENT_CHECK;
1348 } 2690 }
1349} 2691}
1350 2692
1351void inline_size
1352timers_reify (EV_P)
1353{
1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1355 {
1356 ev_timer *w = (ev_timer *)timers [0];
1357
1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1359
1360 /* first reschedule or stop timer */
1361 if (w->repeat)
1362 {
1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1364
1365 ((WT)w)->at += w->repeat;
1366 if (((WT)w)->at < mn_now)
1367 ((WT)w)->at = mn_now;
1368
1369 downheap (timers, timercnt, 0);
1370 }
1371 else
1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1373
1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1375 }
1376}
1377
1378#if EV_PERIODIC_ENABLE
1379void inline_size
1380periodics_reify (EV_P)
1381{
1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1383 {
1384 ev_periodic *w = (ev_periodic *)periodics [0];
1385
1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1387
1388 /* first reschedule or stop timer */
1389 if (w->reschedule_cb)
1390 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0);
1394 }
1395 else if (w->interval)
1396 {
1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1400 downheap (periodics, periodiccnt, 0);
1401 }
1402 else
1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1404
1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1406 }
1407}
1408
1409static void noinline
1410periodics_reschedule (EV_P)
1411{
1412 int i;
1413
1414 /* adjust periodics after time jump */
1415 for (i = 0; i < periodiccnt; ++i)
1416 {
1417 ev_periodic *w = (ev_periodic *)periodics [i];
1418
1419 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1421 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 }
1424
1425 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i);
1428}
1429#endif
1430
1431#if EV_IDLE_ENABLE 2693#if EV_IDLE_ENABLE
1432void inline_size 2694/* make idle watchers pending. this handles the "call-idle */
2695/* only when higher priorities are idle" logic */
2696inline_size void
1433idle_reify (EV_P) 2697idle_reify (EV_P)
1434{ 2698{
1435 if (expect_false (idleall)) 2699 if (expect_false (idleall))
1436 { 2700 {
1437 int pri; 2701 int pri;
1449 } 2713 }
1450 } 2714 }
1451} 2715}
1452#endif 2716#endif
1453 2717
1454void inline_speed 2718/* make timers pending */
2719inline_size void
2720timers_reify (EV_P)
2721{
2722 EV_FREQUENT_CHECK;
2723
2724 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2725 {
2726 do
2727 {
2728 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2729
2730 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2731
2732 /* first reschedule or stop timer */
2733 if (w->repeat)
2734 {
2735 ev_at (w) += w->repeat;
2736 if (ev_at (w) < mn_now)
2737 ev_at (w) = mn_now;
2738
2739 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2740
2741 ANHE_at_cache (timers [HEAP0]);
2742 downheap (timers, timercnt, HEAP0);
2743 }
2744 else
2745 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2746
2747 EV_FREQUENT_CHECK;
2748 feed_reverse (EV_A_ (W)w);
2749 }
2750 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2751
2752 feed_reverse_done (EV_A_ EV_TIMER);
2753 }
2754}
2755
2756#if EV_PERIODIC_ENABLE
2757
2758static void noinline
2759periodic_recalc (EV_P_ ev_periodic *w)
2760{
2761 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2762 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2763
2764 /* the above almost always errs on the low side */
2765 while (at <= ev_rt_now)
2766 {
2767 ev_tstamp nat = at + w->interval;
2768
2769 /* when resolution fails us, we use ev_rt_now */
2770 if (expect_false (nat == at))
2771 {
2772 at = ev_rt_now;
2773 break;
2774 }
2775
2776 at = nat;
2777 }
2778
2779 ev_at (w) = at;
2780}
2781
2782/* make periodics pending */
2783inline_size void
2784periodics_reify (EV_P)
2785{
2786 EV_FREQUENT_CHECK;
2787
2788 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2789 {
2790 int feed_count = 0;
2791
2792 do
2793 {
2794 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2795
2796 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2797
2798 /* first reschedule or stop timer */
2799 if (w->reschedule_cb)
2800 {
2801 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2802
2803 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2804
2805 ANHE_at_cache (periodics [HEAP0]);
2806 downheap (periodics, periodiccnt, HEAP0);
2807 }
2808 else if (w->interval)
2809 {
2810 periodic_recalc (EV_A_ w);
2811 ANHE_at_cache (periodics [HEAP0]);
2812 downheap (periodics, periodiccnt, HEAP0);
2813 }
2814 else
2815 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2816
2817 EV_FREQUENT_CHECK;
2818 feed_reverse (EV_A_ (W)w);
2819 }
2820 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2821
2822 feed_reverse_done (EV_A_ EV_PERIODIC);
2823 }
2824}
2825
2826/* simply recalculate all periodics */
2827/* TODO: maybe ensure that at least one event happens when jumping forward? */
2828static void noinline ecb_cold
2829periodics_reschedule (EV_P)
2830{
2831 int i;
2832
2833 /* adjust periodics after time jump */
2834 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2835 {
2836 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2837
2838 if (w->reschedule_cb)
2839 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2840 else if (w->interval)
2841 periodic_recalc (EV_A_ w);
2842
2843 ANHE_at_cache (periodics [i]);
2844 }
2845
2846 reheap (periodics, periodiccnt);
2847}
2848#endif
2849
2850/* adjust all timers by a given offset */
2851static void noinline ecb_cold
2852timers_reschedule (EV_P_ ev_tstamp adjust)
2853{
2854 int i;
2855
2856 for (i = 0; i < timercnt; ++i)
2857 {
2858 ANHE *he = timers + i + HEAP0;
2859 ANHE_w (*he)->at += adjust;
2860 ANHE_at_cache (*he);
2861 }
2862}
2863
2864/* fetch new monotonic and realtime times from the kernel */
2865/* also detect if there was a timejump, and act accordingly */
2866inline_speed void
1455time_update (EV_P_ ev_tstamp max_block) 2867time_update (EV_P_ ev_tstamp max_block)
1456{ 2868{
1457 int i;
1458
1459#if EV_USE_MONOTONIC 2869#if EV_USE_MONOTONIC
1460 if (expect_true (have_monotonic)) 2870 if (expect_true (have_monotonic))
1461 { 2871 {
2872 int i;
1462 ev_tstamp odiff = rtmn_diff; 2873 ev_tstamp odiff = rtmn_diff;
1463 2874
1464 mn_now = get_clock (); 2875 mn_now = get_clock ();
1465 2876
1466 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2877 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1482 * doesn't hurt either as we only do this on time-jumps or 2893 * doesn't hurt either as we only do this on time-jumps or
1483 * in the unlikely event of having been preempted here. 2894 * in the unlikely event of having been preempted here.
1484 */ 2895 */
1485 for (i = 4; --i; ) 2896 for (i = 4; --i; )
1486 { 2897 {
2898 ev_tstamp diff;
1487 rtmn_diff = ev_rt_now - mn_now; 2899 rtmn_diff = ev_rt_now - mn_now;
1488 2900
1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2901 diff = odiff - rtmn_diff;
2902
2903 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1490 return; /* all is well */ 2904 return; /* all is well */
1491 2905
1492 ev_rt_now = ev_time (); 2906 ev_rt_now = ev_time ();
1493 mn_now = get_clock (); 2907 mn_now = get_clock ();
1494 now_floor = mn_now; 2908 now_floor = mn_now;
1495 } 2909 }
1496 2910
2911 /* no timer adjustment, as the monotonic clock doesn't jump */
2912 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1497# if EV_PERIODIC_ENABLE 2913# if EV_PERIODIC_ENABLE
1498 periodics_reschedule (EV_A); 2914 periodics_reschedule (EV_A);
1499# endif 2915# endif
1500 /* no timer adjustment, as the monotonic clock doesn't jump */
1501 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502 } 2916 }
1503 else 2917 else
1504#endif 2918#endif
1505 { 2919 {
1506 ev_rt_now = ev_time (); 2920 ev_rt_now = ev_time ();
1507 2921
1508 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2922 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1509 { 2923 {
2924 /* adjust timers. this is easy, as the offset is the same for all of them */
2925 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1510#if EV_PERIODIC_ENABLE 2926#if EV_PERIODIC_ENABLE
1511 periodics_reschedule (EV_A); 2927 periodics_reschedule (EV_A);
1512#endif 2928#endif
1513 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i)
1515 ((WT)timers [i])->at += ev_rt_now - mn_now;
1516 } 2929 }
1517 2930
1518 mn_now = ev_rt_now; 2931 mn_now = ev_rt_now;
1519 } 2932 }
1520} 2933}
1521 2934
1522void 2935void
1523ev_ref (EV_P)
1524{
1525 ++activecnt;
1526}
1527
1528void
1529ev_unref (EV_P)
1530{
1531 --activecnt;
1532}
1533
1534static int loop_done;
1535
1536void
1537ev_loop (EV_P_ int flags) 2936ev_run (EV_P_ int flags)
1538{ 2937{
1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2938#if EV_FEATURE_API
1540 ? EVUNLOOP_ONE 2939 ++loop_depth;
1541 : EVUNLOOP_CANCEL; 2940#endif
1542 2941
2942 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2943
2944 loop_done = EVBREAK_CANCEL;
2945
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2946 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1544 2947
1545 do 2948 do
1546 { 2949 {
2950#if EV_VERIFY >= 2
2951 ev_verify (EV_A);
2952#endif
2953
1547#ifndef _WIN32 2954#ifndef _WIN32
1548 if (expect_false (curpid)) /* penalise the forking check even more */ 2955 if (expect_false (curpid)) /* penalise the forking check even more */
1549 if (expect_false (getpid () != curpid)) 2956 if (expect_false (getpid () != curpid))
1550 { 2957 {
1551 curpid = getpid (); 2958 curpid = getpid ();
1557 /* we might have forked, so queue fork handlers */ 2964 /* we might have forked, so queue fork handlers */
1558 if (expect_false (postfork)) 2965 if (expect_false (postfork))
1559 if (forkcnt) 2966 if (forkcnt)
1560 { 2967 {
1561 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2968 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1562 call_pending (EV_A); 2969 EV_INVOKE_PENDING;
1563 } 2970 }
1564#endif 2971#endif
1565 2972
2973#if EV_PREPARE_ENABLE
1566 /* queue prepare watchers (and execute them) */ 2974 /* queue prepare watchers (and execute them) */
1567 if (expect_false (preparecnt)) 2975 if (expect_false (preparecnt))
1568 { 2976 {
1569 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2977 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1570 call_pending (EV_A); 2978 EV_INVOKE_PENDING;
1571 } 2979 }
2980#endif
1572 2981
1573 if (expect_false (!activecnt)) 2982 if (expect_false (loop_done))
1574 break; 2983 break;
1575 2984
1576 /* we might have forked, so reify kernel state if necessary */ 2985 /* we might have forked, so reify kernel state if necessary */
1577 if (expect_false (postfork)) 2986 if (expect_false (postfork))
1578 loop_fork (EV_A); 2987 loop_fork (EV_A);
1583 /* calculate blocking time */ 2992 /* calculate blocking time */
1584 { 2993 {
1585 ev_tstamp waittime = 0.; 2994 ev_tstamp waittime = 0.;
1586 ev_tstamp sleeptime = 0.; 2995 ev_tstamp sleeptime = 0.;
1587 2996
2997 /* remember old timestamp for io_blocktime calculation */
2998 ev_tstamp prev_mn_now = mn_now;
2999
3000 /* update time to cancel out callback processing overhead */
3001 time_update (EV_A_ 1e100);
3002
3003 /* from now on, we want a pipe-wake-up */
3004 pipe_write_wanted = 1;
3005
3006 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3007
1588 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3008 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1589 { 3009 {
1590 /* update time to cancel out callback processing overhead */
1591 time_update (EV_A_ 1e100);
1592
1593 waittime = MAX_BLOCKTIME; 3010 waittime = MAX_BLOCKTIME;
1594 3011
1595 if (timercnt) 3012 if (timercnt)
1596 { 3013 {
1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3014 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1598 if (waittime > to) waittime = to; 3015 if (waittime > to) waittime = to;
1599 } 3016 }
1600 3017
1601#if EV_PERIODIC_ENABLE 3018#if EV_PERIODIC_ENABLE
1602 if (periodiccnt) 3019 if (periodiccnt)
1603 { 3020 {
1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3021 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1605 if (waittime > to) waittime = to; 3022 if (waittime > to) waittime = to;
1606 } 3023 }
1607#endif 3024#endif
1608 3025
3026 /* don't let timeouts decrease the waittime below timeout_blocktime */
1609 if (expect_false (waittime < timeout_blocktime)) 3027 if (expect_false (waittime < timeout_blocktime))
1610 waittime = timeout_blocktime; 3028 waittime = timeout_blocktime;
1611 3029
1612 sleeptime = waittime - backend_fudge; 3030 /* at this point, we NEED to wait, so we have to ensure */
3031 /* to pass a minimum nonzero value to the backend */
3032 if (expect_false (waittime < backend_mintime))
3033 waittime = backend_mintime;
1613 3034
3035 /* extra check because io_blocktime is commonly 0 */
1614 if (expect_true (sleeptime > io_blocktime)) 3036 if (expect_false (io_blocktime))
1615 sleeptime = io_blocktime;
1616
1617 if (sleeptime)
1618 { 3037 {
3038 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3039
3040 if (sleeptime > waittime - backend_mintime)
3041 sleeptime = waittime - backend_mintime;
3042
3043 if (expect_true (sleeptime > 0.))
3044 {
1619 ev_sleep (sleeptime); 3045 ev_sleep (sleeptime);
1620 waittime -= sleeptime; 3046 waittime -= sleeptime;
3047 }
1621 } 3048 }
1622 } 3049 }
1623 3050
3051#if EV_FEATURE_API
1624 ++loop_count; 3052 ++loop_count;
3053#endif
3054 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1625 backend_poll (EV_A_ waittime); 3055 backend_poll (EV_A_ waittime);
3056 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3057
3058 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3059
3060 if (pipe_write_skipped)
3061 {
3062 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3063 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3064 }
3065
1626 3066
1627 /* update ev_rt_now, do magic */ 3067 /* update ev_rt_now, do magic */
1628 time_update (EV_A_ waittime + sleeptime); 3068 time_update (EV_A_ waittime + sleeptime);
1629 } 3069 }
1630 3070
1637#if EV_IDLE_ENABLE 3077#if EV_IDLE_ENABLE
1638 /* queue idle watchers unless other events are pending */ 3078 /* queue idle watchers unless other events are pending */
1639 idle_reify (EV_A); 3079 idle_reify (EV_A);
1640#endif 3080#endif
1641 3081
3082#if EV_CHECK_ENABLE
1642 /* queue check watchers, to be executed first */ 3083 /* queue check watchers, to be executed first */
1643 if (expect_false (checkcnt)) 3084 if (expect_false (checkcnt))
1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3085 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3086#endif
1645 3087
1646 call_pending (EV_A); 3088 EV_INVOKE_PENDING;
1647
1648 } 3089 }
1649 while (expect_true (activecnt && !loop_done)); 3090 while (expect_true (
3091 activecnt
3092 && !loop_done
3093 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3094 ));
1650 3095
1651 if (loop_done == EVUNLOOP_ONE) 3096 if (loop_done == EVBREAK_ONE)
1652 loop_done = EVUNLOOP_CANCEL; 3097 loop_done = EVBREAK_CANCEL;
3098
3099#if EV_FEATURE_API
3100 --loop_depth;
3101#endif
1653} 3102}
1654 3103
1655void 3104void
1656ev_unloop (EV_P_ int how) 3105ev_break (EV_P_ int how)
1657{ 3106{
1658 loop_done = how; 3107 loop_done = how;
1659} 3108}
1660 3109
3110void
3111ev_ref (EV_P)
3112{
3113 ++activecnt;
3114}
3115
3116void
3117ev_unref (EV_P)
3118{
3119 --activecnt;
3120}
3121
3122void
3123ev_now_update (EV_P)
3124{
3125 time_update (EV_A_ 1e100);
3126}
3127
3128void
3129ev_suspend (EV_P)
3130{
3131 ev_now_update (EV_A);
3132}
3133
3134void
3135ev_resume (EV_P)
3136{
3137 ev_tstamp mn_prev = mn_now;
3138
3139 ev_now_update (EV_A);
3140 timers_reschedule (EV_A_ mn_now - mn_prev);
3141#if EV_PERIODIC_ENABLE
3142 /* TODO: really do this? */
3143 periodics_reschedule (EV_A);
3144#endif
3145}
3146
1661/*****************************************************************************/ 3147/*****************************************************************************/
3148/* singly-linked list management, used when the expected list length is short */
1662 3149
1663void inline_size 3150inline_size void
1664wlist_add (WL *head, WL elem) 3151wlist_add (WL *head, WL elem)
1665{ 3152{
1666 elem->next = *head; 3153 elem->next = *head;
1667 *head = elem; 3154 *head = elem;
1668} 3155}
1669 3156
1670void inline_size 3157inline_size void
1671wlist_del (WL *head, WL elem) 3158wlist_del (WL *head, WL elem)
1672{ 3159{
1673 while (*head) 3160 while (*head)
1674 { 3161 {
1675 if (*head == elem) 3162 if (expect_true (*head == elem))
1676 { 3163 {
1677 *head = elem->next; 3164 *head = elem->next;
1678 return; 3165 break;
1679 } 3166 }
1680 3167
1681 head = &(*head)->next; 3168 head = &(*head)->next;
1682 } 3169 }
1683} 3170}
1684 3171
1685void inline_speed 3172/* internal, faster, version of ev_clear_pending */
3173inline_speed void
1686clear_pending (EV_P_ W w) 3174clear_pending (EV_P_ W w)
1687{ 3175{
1688 if (w->pending) 3176 if (w->pending)
1689 { 3177 {
1690 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3178 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1691 w->pending = 0; 3179 w->pending = 0;
1692 } 3180 }
1693} 3181}
1694 3182
1695int 3183int
1699 int pending = w_->pending; 3187 int pending = w_->pending;
1700 3188
1701 if (expect_true (pending)) 3189 if (expect_true (pending))
1702 { 3190 {
1703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3191 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3192 p->w = (W)&pending_w;
1704 w_->pending = 0; 3193 w_->pending = 0;
1705 p->w = 0;
1706 return p->events; 3194 return p->events;
1707 } 3195 }
1708 else 3196 else
1709 return 0; 3197 return 0;
1710} 3198}
1711 3199
1712void inline_size 3200inline_size void
1713pri_adjust (EV_P_ W w) 3201pri_adjust (EV_P_ W w)
1714{ 3202{
1715 int pri = w->priority; 3203 int pri = ev_priority (w);
1716 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3204 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1717 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3205 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1718 w->priority = pri; 3206 ev_set_priority (w, pri);
1719} 3207}
1720 3208
1721void inline_speed 3209inline_speed void
1722ev_start (EV_P_ W w, int active) 3210ev_start (EV_P_ W w, int active)
1723{ 3211{
1724 pri_adjust (EV_A_ w); 3212 pri_adjust (EV_A_ w);
1725 w->active = active; 3213 w->active = active;
1726 ev_ref (EV_A); 3214 ev_ref (EV_A);
1727} 3215}
1728 3216
1729void inline_size 3217inline_size void
1730ev_stop (EV_P_ W w) 3218ev_stop (EV_P_ W w)
1731{ 3219{
1732 ev_unref (EV_A); 3220 ev_unref (EV_A);
1733 w->active = 0; 3221 w->active = 0;
1734} 3222}
1741 int fd = w->fd; 3229 int fd = w->fd;
1742 3230
1743 if (expect_false (ev_is_active (w))) 3231 if (expect_false (ev_is_active (w)))
1744 return; 3232 return;
1745 3233
1746 assert (("ev_io_start called with negative fd", fd >= 0)); 3234 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3235 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3236
3237 EV_FREQUENT_CHECK;
1747 3238
1748 ev_start (EV_A_ (W)w, 1); 3239 ev_start (EV_A_ (W)w, 1);
1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3240 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1750 wlist_add (&anfds[fd].head, (WL)w); 3241 wlist_add (&anfds[fd].head, (WL)w);
1751 3242
1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3243 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1753 w->events &= ~EV_IOFDSET; 3244 w->events &= ~EV__IOFDSET;
3245
3246 EV_FREQUENT_CHECK;
1754} 3247}
1755 3248
1756void noinline 3249void noinline
1757ev_io_stop (EV_P_ ev_io *w) 3250ev_io_stop (EV_P_ ev_io *w)
1758{ 3251{
1759 clear_pending (EV_A_ (W)w); 3252 clear_pending (EV_A_ (W)w);
1760 if (expect_false (!ev_is_active (w))) 3253 if (expect_false (!ev_is_active (w)))
1761 return; 3254 return;
1762 3255
1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3256 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3257
3258 EV_FREQUENT_CHECK;
1764 3259
1765 wlist_del (&anfds[w->fd].head, (WL)w); 3260 wlist_del (&anfds[w->fd].head, (WL)w);
1766 ev_stop (EV_A_ (W)w); 3261 ev_stop (EV_A_ (W)w);
1767 3262
1768 fd_change (EV_A_ w->fd, 1); 3263 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3264
3265 EV_FREQUENT_CHECK;
1769} 3266}
1770 3267
1771void noinline 3268void noinline
1772ev_timer_start (EV_P_ ev_timer *w) 3269ev_timer_start (EV_P_ ev_timer *w)
1773{ 3270{
1774 if (expect_false (ev_is_active (w))) 3271 if (expect_false (ev_is_active (w)))
1775 return; 3272 return;
1776 3273
1777 ((WT)w)->at += mn_now; 3274 ev_at (w) += mn_now;
1778 3275
1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3276 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1780 3277
3278 EV_FREQUENT_CHECK;
3279
3280 ++timercnt;
1781 ev_start (EV_A_ (W)w, ++timercnt); 3281 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3282 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1783 timers [timercnt - 1] = (WT)w; 3283 ANHE_w (timers [ev_active (w)]) = (WT)w;
1784 upheap (timers, timercnt - 1); 3284 ANHE_at_cache (timers [ev_active (w)]);
3285 upheap (timers, ev_active (w));
1785 3286
3287 EV_FREQUENT_CHECK;
3288
1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3289 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1787} 3290}
1788 3291
1789void noinline 3292void noinline
1790ev_timer_stop (EV_P_ ev_timer *w) 3293ev_timer_stop (EV_P_ ev_timer *w)
1791{ 3294{
1792 clear_pending (EV_A_ (W)w); 3295 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 3296 if (expect_false (!ev_is_active (w)))
1794 return; 3297 return;
1795 3298
1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3299 EV_FREQUENT_CHECK;
1797 3300
1798 { 3301 {
1799 int active = ((W)w)->active; 3302 int active = ev_active (w);
1800 3303
3304 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3305
3306 --timercnt;
3307
1801 if (expect_true (--active < --timercnt)) 3308 if (expect_true (active < timercnt + HEAP0))
1802 { 3309 {
1803 timers [active] = timers [timercnt]; 3310 timers [active] = timers [timercnt + HEAP0];
1804 adjustheap (timers, timercnt, active); 3311 adjustheap (timers, timercnt, active);
1805 } 3312 }
1806 } 3313 }
1807 3314
1808 ((WT)w)->at -= mn_now; 3315 ev_at (w) -= mn_now;
1809 3316
1810 ev_stop (EV_A_ (W)w); 3317 ev_stop (EV_A_ (W)w);
3318
3319 EV_FREQUENT_CHECK;
1811} 3320}
1812 3321
1813void noinline 3322void noinline
1814ev_timer_again (EV_P_ ev_timer *w) 3323ev_timer_again (EV_P_ ev_timer *w)
1815{ 3324{
3325 EV_FREQUENT_CHECK;
3326
3327 clear_pending (EV_A_ (W)w);
3328
1816 if (ev_is_active (w)) 3329 if (ev_is_active (w))
1817 { 3330 {
1818 if (w->repeat) 3331 if (w->repeat)
1819 { 3332 {
1820 ((WT)w)->at = mn_now + w->repeat; 3333 ev_at (w) = mn_now + w->repeat;
3334 ANHE_at_cache (timers [ev_active (w)]);
1821 adjustheap (timers, timercnt, ((W)w)->active - 1); 3335 adjustheap (timers, timercnt, ev_active (w));
1822 } 3336 }
1823 else 3337 else
1824 ev_timer_stop (EV_A_ w); 3338 ev_timer_stop (EV_A_ w);
1825 } 3339 }
1826 else if (w->repeat) 3340 else if (w->repeat)
1827 { 3341 {
1828 w->at = w->repeat; 3342 ev_at (w) = w->repeat;
1829 ev_timer_start (EV_A_ w); 3343 ev_timer_start (EV_A_ w);
1830 } 3344 }
3345
3346 EV_FREQUENT_CHECK;
3347}
3348
3349ev_tstamp
3350ev_timer_remaining (EV_P_ ev_timer *w)
3351{
3352 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1831} 3353}
1832 3354
1833#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
1834void noinline 3356void noinline
1835ev_periodic_start (EV_P_ ev_periodic *w) 3357ev_periodic_start (EV_P_ ev_periodic *w)
1836{ 3358{
1837 if (expect_false (ev_is_active (w))) 3359 if (expect_false (ev_is_active (w)))
1838 return; 3360 return;
1839 3361
1840 if (w->reschedule_cb) 3362 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3363 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 3364 else if (w->interval)
1843 { 3365 {
1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3366 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1845 /* this formula differs from the one in periodic_reify because we do not always round up */ 3367 periodic_recalc (EV_A_ w);
1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 } 3368 }
1848 else 3369 else
1849 ((WT)w)->at = w->offset; 3370 ev_at (w) = w->offset;
1850 3371
3372 EV_FREQUENT_CHECK;
3373
3374 ++periodiccnt;
1851 ev_start (EV_A_ (W)w, ++periodiccnt); 3375 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3376 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1853 periodics [periodiccnt - 1] = (WT)w; 3377 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1854 upheap (periodics, periodiccnt - 1); 3378 ANHE_at_cache (periodics [ev_active (w)]);
3379 upheap (periodics, ev_active (w));
1855 3380
3381 EV_FREQUENT_CHECK;
3382
1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3383 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1857} 3384}
1858 3385
1859void noinline 3386void noinline
1860ev_periodic_stop (EV_P_ ev_periodic *w) 3387ev_periodic_stop (EV_P_ ev_periodic *w)
1861{ 3388{
1862 clear_pending (EV_A_ (W)w); 3389 clear_pending (EV_A_ (W)w);
1863 if (expect_false (!ev_is_active (w))) 3390 if (expect_false (!ev_is_active (w)))
1864 return; 3391 return;
1865 3392
1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3393 EV_FREQUENT_CHECK;
1867 3394
1868 { 3395 {
1869 int active = ((W)w)->active; 3396 int active = ev_active (w);
1870 3397
3398 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3399
3400 --periodiccnt;
3401
1871 if (expect_true (--active < --periodiccnt)) 3402 if (expect_true (active < periodiccnt + HEAP0))
1872 { 3403 {
1873 periodics [active] = periodics [periodiccnt]; 3404 periodics [active] = periodics [periodiccnt + HEAP0];
1874 adjustheap (periodics, periodiccnt, active); 3405 adjustheap (periodics, periodiccnt, active);
1875 } 3406 }
1876 } 3407 }
1877 3408
1878 ev_stop (EV_A_ (W)w); 3409 ev_stop (EV_A_ (W)w);
3410
3411 EV_FREQUENT_CHECK;
1879} 3412}
1880 3413
1881void noinline 3414void noinline
1882ev_periodic_again (EV_P_ ev_periodic *w) 3415ev_periodic_again (EV_P_ ev_periodic *w)
1883{ 3416{
1889 3422
1890#ifndef SA_RESTART 3423#ifndef SA_RESTART
1891# define SA_RESTART 0 3424# define SA_RESTART 0
1892#endif 3425#endif
1893 3426
3427#if EV_SIGNAL_ENABLE
3428
1894void noinline 3429void noinline
1895ev_signal_start (EV_P_ ev_signal *w) 3430ev_signal_start (EV_P_ ev_signal *w)
1896{ 3431{
1897#if EV_MULTIPLICITY
1898 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif
1900 if (expect_false (ev_is_active (w))) 3432 if (expect_false (ev_is_active (w)))
1901 return; 3433 return;
1902 3434
1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3435 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1904 3436
1905 evpipe_init (EV_A); 3437#if EV_MULTIPLICITY
3438 assert (("libev: a signal must not be attached to two different loops",
3439 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1906 3440
3441 signals [w->signum - 1].loop = EV_A;
3442#endif
3443
3444 EV_FREQUENT_CHECK;
3445
3446#if EV_USE_SIGNALFD
3447 if (sigfd == -2)
1907 { 3448 {
1908#ifndef _WIN32 3449 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1909 sigset_t full, prev; 3450 if (sigfd < 0 && errno == EINVAL)
1910 sigfillset (&full); 3451 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1911 sigprocmask (SIG_SETMASK, &full, &prev);
1912#endif
1913 3452
1914 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3453 if (sigfd >= 0)
3454 {
3455 fd_intern (sigfd); /* doing it twice will not hurt */
1915 3456
1916#ifndef _WIN32 3457 sigemptyset (&sigfd_set);
1917 sigprocmask (SIG_SETMASK, &prev, 0); 3458
1918#endif 3459 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3460 ev_set_priority (&sigfd_w, EV_MAXPRI);
3461 ev_io_start (EV_A_ &sigfd_w);
3462 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3463 }
1919 } 3464 }
3465
3466 if (sigfd >= 0)
3467 {
3468 /* TODO: check .head */
3469 sigaddset (&sigfd_set, w->signum);
3470 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 }
3474#endif
1920 3475
1921 ev_start (EV_A_ (W)w, 1); 3476 ev_start (EV_A_ (W)w, 1);
1922 wlist_add (&signals [w->signum - 1].head, (WL)w); 3477 wlist_add (&signals [w->signum - 1].head, (WL)w);
1923 3478
1924 if (!((WL)w)->next) 3479 if (!((WL)w)->next)
3480# if EV_USE_SIGNALFD
3481 if (sigfd < 0) /*TODO*/
3482# endif
1925 { 3483 {
1926#if _WIN32 3484# ifdef _WIN32
3485 evpipe_init (EV_A);
3486
1927 signal (w->signum, sighandler); 3487 signal (w->signum, ev_sighandler);
1928#else 3488# else
1929 struct sigaction sa; 3489 struct sigaction sa;
3490
3491 evpipe_init (EV_A);
3492
1930 sa.sa_handler = sighandler; 3493 sa.sa_handler = ev_sighandler;
1931 sigfillset (&sa.sa_mask); 3494 sigfillset (&sa.sa_mask);
1932 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1933 sigaction (w->signum, &sa, 0); 3496 sigaction (w->signum, &sa, 0);
3497
3498 if (origflags & EVFLAG_NOSIGMASK)
3499 {
3500 sigemptyset (&sa.sa_mask);
3501 sigaddset (&sa.sa_mask, w->signum);
3502 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3503 }
1934#endif 3504#endif
1935 } 3505 }
3506
3507 EV_FREQUENT_CHECK;
1936} 3508}
1937 3509
1938void noinline 3510void noinline
1939ev_signal_stop (EV_P_ ev_signal *w) 3511ev_signal_stop (EV_P_ ev_signal *w)
1940{ 3512{
1941 clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
1942 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
1943 return; 3515 return;
1944 3516
3517 EV_FREQUENT_CHECK;
3518
1945 wlist_del (&signals [w->signum - 1].head, (WL)w); 3519 wlist_del (&signals [w->signum - 1].head, (WL)w);
1946 ev_stop (EV_A_ (W)w); 3520 ev_stop (EV_A_ (W)w);
1947 3521
1948 if (!signals [w->signum - 1].head) 3522 if (!signals [w->signum - 1].head)
3523 {
3524#if EV_MULTIPLICITY
3525 signals [w->signum - 1].loop = 0; /* unattach from signal */
3526#endif
3527#if EV_USE_SIGNALFD
3528 if (sigfd >= 0)
3529 {
3530 sigset_t ss;
3531
3532 sigemptyset (&ss);
3533 sigaddset (&ss, w->signum);
3534 sigdelset (&sigfd_set, w->signum);
3535
3536 signalfd (sigfd, &sigfd_set, 0);
3537 sigprocmask (SIG_UNBLOCK, &ss, 0);
3538 }
3539 else
3540#endif
1949 signal (w->signum, SIG_DFL); 3541 signal (w->signum, SIG_DFL);
3542 }
3543
3544 EV_FREQUENT_CHECK;
1950} 3545}
3546
3547#endif
3548
3549#if EV_CHILD_ENABLE
1951 3550
1952void 3551void
1953ev_child_start (EV_P_ ev_child *w) 3552ev_child_start (EV_P_ ev_child *w)
1954{ 3553{
1955#if EV_MULTIPLICITY 3554#if EV_MULTIPLICITY
1956 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1957#endif 3556#endif
1958 if (expect_false (ev_is_active (w))) 3557 if (expect_false (ev_is_active (w)))
1959 return; 3558 return;
1960 3559
3560 EV_FREQUENT_CHECK;
3561
1961 ev_start (EV_A_ (W)w, 1); 3562 ev_start (EV_A_ (W)w, 1);
1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3563 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3564
3565 EV_FREQUENT_CHECK;
1963} 3566}
1964 3567
1965void 3568void
1966ev_child_stop (EV_P_ ev_child *w) 3569ev_child_stop (EV_P_ ev_child *w)
1967{ 3570{
1968 clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
1970 return; 3573 return;
1971 3574
3575 EV_FREQUENT_CHECK;
3576
1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3577 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1973 ev_stop (EV_A_ (W)w); 3578 ev_stop (EV_A_ (W)w);
3579
3580 EV_FREQUENT_CHECK;
1974} 3581}
3582
3583#endif
1975 3584
1976#if EV_STAT_ENABLE 3585#if EV_STAT_ENABLE
1977 3586
1978# ifdef _WIN32 3587# ifdef _WIN32
1979# undef lstat 3588# undef lstat
1980# define lstat(a,b) _stati64 (a,b) 3589# define lstat(a,b) _stati64 (a,b)
1981# endif 3590# endif
1982 3591
1983#define DEF_STAT_INTERVAL 5.0074891 3592#define DEF_STAT_INTERVAL 5.0074891
3593#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1984#define MIN_STAT_INTERVAL 0.1074891 3594#define MIN_STAT_INTERVAL 0.1074891
1985 3595
1986static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3596static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1987 3597
1988#if EV_USE_INOTIFY 3598#if EV_USE_INOTIFY
1989# define EV_INOTIFY_BUFSIZE 8192 3599
3600/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3601# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1990 3602
1991static void noinline 3603static void noinline
1992infy_add (EV_P_ ev_stat *w) 3604infy_add (EV_P_ ev_stat *w)
1993{ 3605{
1994 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3606 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1995 3607
1996 if (w->wd < 0) 3608 if (w->wd >= 0)
3609 {
3610 struct statfs sfs;
3611
3612 /* now local changes will be tracked by inotify, but remote changes won't */
3613 /* unless the filesystem is known to be local, we therefore still poll */
3614 /* also do poll on <2.6.25, but with normal frequency */
3615
3616 if (!fs_2625)
3617 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3618 else if (!statfs (w->path, &sfs)
3619 && (sfs.f_type == 0x1373 /* devfs */
3620 || sfs.f_type == 0xEF53 /* ext2/3 */
3621 || sfs.f_type == 0x3153464a /* jfs */
3622 || sfs.f_type == 0x52654973 /* reiser3 */
3623 || sfs.f_type == 0x01021994 /* tempfs */
3624 || sfs.f_type == 0x58465342 /* xfs */))
3625 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3626 else
3627 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1997 { 3628 }
1998 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3629 else
3630 {
3631 /* can't use inotify, continue to stat */
3632 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1999 3633
2000 /* monitor some parent directory for speedup hints */ 3634 /* if path is not there, monitor some parent directory for speedup hints */
3635 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3636 /* but an efficiency issue only */
2001 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3637 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2002 { 3638 {
2003 char path [4096]; 3639 char path [4096];
2004 strcpy (path, w->path); 3640 strcpy (path, w->path);
2005 3641
2008 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3644 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2009 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3645 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2010 3646
2011 char *pend = strrchr (path, '/'); 3647 char *pend = strrchr (path, '/');
2012 3648
2013 if (!pend) 3649 if (!pend || pend == path)
2014 break; /* whoops, no '/', complain to your admin */ 3650 break;
2015 3651
2016 *pend = 0; 3652 *pend = 0;
2017 w->wd = inotify_add_watch (fs_fd, path, mask); 3653 w->wd = inotify_add_watch (fs_fd, path, mask);
2018 } 3654 }
2019 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3655 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2020 } 3656 }
2021 } 3657 }
2022 else
2023 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2024 3658
2025 if (w->wd >= 0) 3659 if (w->wd >= 0)
2026 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3660 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3661
3662 /* now re-arm timer, if required */
3663 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3664 ev_timer_again (EV_A_ &w->timer);
3665 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2027} 3666}
2028 3667
2029static void noinline 3668static void noinline
2030infy_del (EV_P_ ev_stat *w) 3669infy_del (EV_P_ ev_stat *w)
2031{ 3670{
2034 3673
2035 if (wd < 0) 3674 if (wd < 0)
2036 return; 3675 return;
2037 3676
2038 w->wd = -2; 3677 w->wd = -2;
2039 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3678 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2040 wlist_del (&fs_hash [slot].head, (WL)w); 3679 wlist_del (&fs_hash [slot].head, (WL)w);
2041 3680
2042 /* remove this watcher, if others are watching it, they will rearm */ 3681 /* remove this watcher, if others are watching it, they will rearm */
2043 inotify_rm_watch (fs_fd, wd); 3682 inotify_rm_watch (fs_fd, wd);
2044} 3683}
2045 3684
2046static void noinline 3685static void noinline
2047infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3686infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2048{ 3687{
2049 if (slot < 0) 3688 if (slot < 0)
2050 /* overflow, need to check for all hahs slots */ 3689 /* overflow, need to check for all hash slots */
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2052 infy_wd (EV_A_ slot, wd, ev); 3691 infy_wd (EV_A_ slot, wd, ev);
2053 else 3692 else
2054 { 3693 {
2055 WL w_; 3694 WL w_;
2056 3695
2057 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3696 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2058 { 3697 {
2059 ev_stat *w = (ev_stat *)w_; 3698 ev_stat *w = (ev_stat *)w_;
2060 w_ = w_->next; /* lets us remove this watcher and all before it */ 3699 w_ = w_->next; /* lets us remove this watcher and all before it */
2061 3700
2062 if (w->wd == wd || wd == -1) 3701 if (w->wd == wd || wd == -1)
2063 { 3702 {
2064 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3703 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2065 { 3704 {
3705 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2066 w->wd = -1; 3706 w->wd = -1;
2067 infy_add (EV_A_ w); /* re-add, no matter what */ 3707 infy_add (EV_A_ w); /* re-add, no matter what */
2068 } 3708 }
2069 3709
2070 stat_timer_cb (EV_A_ &w->timer, 0); 3710 stat_timer_cb (EV_A_ &w->timer, 0);
2075 3715
2076static void 3716static void
2077infy_cb (EV_P_ ev_io *w, int revents) 3717infy_cb (EV_P_ ev_io *w, int revents)
2078{ 3718{
2079 char buf [EV_INOTIFY_BUFSIZE]; 3719 char buf [EV_INOTIFY_BUFSIZE];
2080 struct inotify_event *ev = (struct inotify_event *)buf;
2081 int ofs; 3720 int ofs;
2082 int len = read (fs_fd, buf, sizeof (buf)); 3721 int len = read (fs_fd, buf, sizeof (buf));
2083 3722
2084 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3723 for (ofs = 0; ofs < len; )
3724 {
3725 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2085 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3726 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3727 ofs += sizeof (struct inotify_event) + ev->len;
3728 }
2086} 3729}
2087 3730
2088void inline_size 3731inline_size void ecb_cold
3732ev_check_2625 (EV_P)
3733{
3734 /* kernels < 2.6.25 are borked
3735 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3736 */
3737 if (ev_linux_version () < 0x020619)
3738 return;
3739
3740 fs_2625 = 1;
3741}
3742
3743inline_size int
3744infy_newfd (void)
3745{
3746#if defined IN_CLOEXEC && defined IN_NONBLOCK
3747 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3748 if (fd >= 0)
3749 return fd;
3750#endif
3751 return inotify_init ();
3752}
3753
3754inline_size void
2089infy_init (EV_P) 3755infy_init (EV_P)
2090{ 3756{
2091 if (fs_fd != -2) 3757 if (fs_fd != -2)
2092 return; 3758 return;
2093 3759
3760 fs_fd = -1;
3761
3762 ev_check_2625 (EV_A);
3763
2094 fs_fd = inotify_init (); 3764 fs_fd = infy_newfd ();
2095 3765
2096 if (fs_fd >= 0) 3766 if (fs_fd >= 0)
2097 { 3767 {
3768 fd_intern (fs_fd);
2098 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3769 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2099 ev_set_priority (&fs_w, EV_MAXPRI); 3770 ev_set_priority (&fs_w, EV_MAXPRI);
2100 ev_io_start (EV_A_ &fs_w); 3771 ev_io_start (EV_A_ &fs_w);
3772 ev_unref (EV_A);
2101 } 3773 }
2102} 3774}
2103 3775
2104void inline_size 3776inline_size void
2105infy_fork (EV_P) 3777infy_fork (EV_P)
2106{ 3778{
2107 int slot; 3779 int slot;
2108 3780
2109 if (fs_fd < 0) 3781 if (fs_fd < 0)
2110 return; 3782 return;
2111 3783
3784 ev_ref (EV_A);
3785 ev_io_stop (EV_A_ &fs_w);
2112 close (fs_fd); 3786 close (fs_fd);
2113 fs_fd = inotify_init (); 3787 fs_fd = infy_newfd ();
2114 3788
3789 if (fs_fd >= 0)
3790 {
3791 fd_intern (fs_fd);
3792 ev_io_set (&fs_w, fs_fd, EV_READ);
3793 ev_io_start (EV_A_ &fs_w);
3794 ev_unref (EV_A);
3795 }
3796
2115 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3797 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2116 { 3798 {
2117 WL w_ = fs_hash [slot].head; 3799 WL w_ = fs_hash [slot].head;
2118 fs_hash [slot].head = 0; 3800 fs_hash [slot].head = 0;
2119 3801
2120 while (w_) 3802 while (w_)
2125 w->wd = -1; 3807 w->wd = -1;
2126 3808
2127 if (fs_fd >= 0) 3809 if (fs_fd >= 0)
2128 infy_add (EV_A_ w); /* re-add, no matter what */ 3810 infy_add (EV_A_ w); /* re-add, no matter what */
2129 else 3811 else
3812 {
3813 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3814 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2130 ev_timer_start (EV_A_ &w->timer); 3815 ev_timer_again (EV_A_ &w->timer);
3816 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3817 }
2131 } 3818 }
2132
2133 } 3819 }
2134} 3820}
2135 3821
3822#endif
3823
3824#ifdef _WIN32
3825# define EV_LSTAT(p,b) _stati64 (p, b)
3826#else
3827# define EV_LSTAT(p,b) lstat (p, b)
2136#endif 3828#endif
2137 3829
2138void 3830void
2139ev_stat_stat (EV_P_ ev_stat *w) 3831ev_stat_stat (EV_P_ ev_stat *w)
2140{ 3832{
2147static void noinline 3839static void noinline
2148stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3840stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2149{ 3841{
2150 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3842 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2151 3843
2152 /* we copy this here each the time so that */ 3844 ev_statdata prev = w->attr;
2153 /* prev has the old value when the callback gets invoked */
2154 w->prev = w->attr;
2155 ev_stat_stat (EV_A_ w); 3845 ev_stat_stat (EV_A_ w);
2156 3846
2157 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3847 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2158 if ( 3848 if (
2159 w->prev.st_dev != w->attr.st_dev 3849 prev.st_dev != w->attr.st_dev
2160 || w->prev.st_ino != w->attr.st_ino 3850 || prev.st_ino != w->attr.st_ino
2161 || w->prev.st_mode != w->attr.st_mode 3851 || prev.st_mode != w->attr.st_mode
2162 || w->prev.st_nlink != w->attr.st_nlink 3852 || prev.st_nlink != w->attr.st_nlink
2163 || w->prev.st_uid != w->attr.st_uid 3853 || prev.st_uid != w->attr.st_uid
2164 || w->prev.st_gid != w->attr.st_gid 3854 || prev.st_gid != w->attr.st_gid
2165 || w->prev.st_rdev != w->attr.st_rdev 3855 || prev.st_rdev != w->attr.st_rdev
2166 || w->prev.st_size != w->attr.st_size 3856 || prev.st_size != w->attr.st_size
2167 || w->prev.st_atime != w->attr.st_atime 3857 || prev.st_atime != w->attr.st_atime
2168 || w->prev.st_mtime != w->attr.st_mtime 3858 || prev.st_mtime != w->attr.st_mtime
2169 || w->prev.st_ctime != w->attr.st_ctime 3859 || prev.st_ctime != w->attr.st_ctime
2170 ) { 3860 ) {
3861 /* we only update w->prev on actual differences */
3862 /* in case we test more often than invoke the callback, */
3863 /* to ensure that prev is always different to attr */
3864 w->prev = prev;
3865
2171 #if EV_USE_INOTIFY 3866 #if EV_USE_INOTIFY
3867 if (fs_fd >= 0)
3868 {
2172 infy_del (EV_A_ w); 3869 infy_del (EV_A_ w);
2173 infy_add (EV_A_ w); 3870 infy_add (EV_A_ w);
2174 ev_stat_stat (EV_A_ w); /* avoid race... */ 3871 ev_stat_stat (EV_A_ w); /* avoid race... */
3872 }
2175 #endif 3873 #endif
2176 3874
2177 ev_feed_event (EV_A_ w, EV_STAT); 3875 ev_feed_event (EV_A_ w, EV_STAT);
2178 } 3876 }
2179} 3877}
2182ev_stat_start (EV_P_ ev_stat *w) 3880ev_stat_start (EV_P_ ev_stat *w)
2183{ 3881{
2184 if (expect_false (ev_is_active (w))) 3882 if (expect_false (ev_is_active (w)))
2185 return; 3883 return;
2186 3884
2187 /* since we use memcmp, we need to clear any padding data etc. */
2188 memset (&w->prev, 0, sizeof (ev_statdata));
2189 memset (&w->attr, 0, sizeof (ev_statdata));
2190
2191 ev_stat_stat (EV_A_ w); 3885 ev_stat_stat (EV_A_ w);
2192 3886
3887 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2193 if (w->interval < MIN_STAT_INTERVAL) 3888 w->interval = MIN_STAT_INTERVAL;
2194 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2195 3889
2196 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3890 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2197 ev_set_priority (&w->timer, ev_priority (w)); 3891 ev_set_priority (&w->timer, ev_priority (w));
2198 3892
2199#if EV_USE_INOTIFY 3893#if EV_USE_INOTIFY
2200 infy_init (EV_A); 3894 infy_init (EV_A);
2201 3895
2202 if (fs_fd >= 0) 3896 if (fs_fd >= 0)
2203 infy_add (EV_A_ w); 3897 infy_add (EV_A_ w);
2204 else 3898 else
2205#endif 3899#endif
3900 {
2206 ev_timer_start (EV_A_ &w->timer); 3901 ev_timer_again (EV_A_ &w->timer);
3902 ev_unref (EV_A);
3903 }
2207 3904
2208 ev_start (EV_A_ (W)w, 1); 3905 ev_start (EV_A_ (W)w, 1);
3906
3907 EV_FREQUENT_CHECK;
2209} 3908}
2210 3909
2211void 3910void
2212ev_stat_stop (EV_P_ ev_stat *w) 3911ev_stat_stop (EV_P_ ev_stat *w)
2213{ 3912{
2214 clear_pending (EV_A_ (W)w); 3913 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3914 if (expect_false (!ev_is_active (w)))
2216 return; 3915 return;
2217 3916
3917 EV_FREQUENT_CHECK;
3918
2218#if EV_USE_INOTIFY 3919#if EV_USE_INOTIFY
2219 infy_del (EV_A_ w); 3920 infy_del (EV_A_ w);
2220#endif 3921#endif
3922
3923 if (ev_is_active (&w->timer))
3924 {
3925 ev_ref (EV_A);
2221 ev_timer_stop (EV_A_ &w->timer); 3926 ev_timer_stop (EV_A_ &w->timer);
3927 }
2222 3928
2223 ev_stop (EV_A_ (W)w); 3929 ev_stop (EV_A_ (W)w);
3930
3931 EV_FREQUENT_CHECK;
2224} 3932}
2225#endif 3933#endif
2226 3934
2227#if EV_IDLE_ENABLE 3935#if EV_IDLE_ENABLE
2228void 3936void
2231 if (expect_false (ev_is_active (w))) 3939 if (expect_false (ev_is_active (w)))
2232 return; 3940 return;
2233 3941
2234 pri_adjust (EV_A_ (W)w); 3942 pri_adjust (EV_A_ (W)w);
2235 3943
3944 EV_FREQUENT_CHECK;
3945
2236 { 3946 {
2237 int active = ++idlecnt [ABSPRI (w)]; 3947 int active = ++idlecnt [ABSPRI (w)];
2238 3948
2239 ++idleall; 3949 ++idleall;
2240 ev_start (EV_A_ (W)w, active); 3950 ev_start (EV_A_ (W)w, active);
2241 3951
2242 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3952 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2243 idles [ABSPRI (w)][active - 1] = w; 3953 idles [ABSPRI (w)][active - 1] = w;
2244 } 3954 }
3955
3956 EV_FREQUENT_CHECK;
2245} 3957}
2246 3958
2247void 3959void
2248ev_idle_stop (EV_P_ ev_idle *w) 3960ev_idle_stop (EV_P_ ev_idle *w)
2249{ 3961{
2250 clear_pending (EV_A_ (W)w); 3962 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w))) 3963 if (expect_false (!ev_is_active (w)))
2252 return; 3964 return;
2253 3965
3966 EV_FREQUENT_CHECK;
3967
2254 { 3968 {
2255 int active = ((W)w)->active; 3969 int active = ev_active (w);
2256 3970
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3971 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3972 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2259 3973
2260 ev_stop (EV_A_ (W)w); 3974 ev_stop (EV_A_ (W)w);
2261 --idleall; 3975 --idleall;
2262 } 3976 }
2263}
2264#endif
2265 3977
3978 EV_FREQUENT_CHECK;
3979}
3980#endif
3981
3982#if EV_PREPARE_ENABLE
2266void 3983void
2267ev_prepare_start (EV_P_ ev_prepare *w) 3984ev_prepare_start (EV_P_ ev_prepare *w)
2268{ 3985{
2269 if (expect_false (ev_is_active (w))) 3986 if (expect_false (ev_is_active (w)))
2270 return; 3987 return;
3988
3989 EV_FREQUENT_CHECK;
2271 3990
2272 ev_start (EV_A_ (W)w, ++preparecnt); 3991 ev_start (EV_A_ (W)w, ++preparecnt);
2273 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3992 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2274 prepares [preparecnt - 1] = w; 3993 prepares [preparecnt - 1] = w;
3994
3995 EV_FREQUENT_CHECK;
2275} 3996}
2276 3997
2277void 3998void
2278ev_prepare_stop (EV_P_ ev_prepare *w) 3999ev_prepare_stop (EV_P_ ev_prepare *w)
2279{ 4000{
2280 clear_pending (EV_A_ (W)w); 4001 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w))) 4002 if (expect_false (!ev_is_active (w)))
2282 return; 4003 return;
2283 4004
4005 EV_FREQUENT_CHECK;
4006
2284 { 4007 {
2285 int active = ((W)w)->active; 4008 int active = ev_active (w);
4009
2286 prepares [active - 1] = prepares [--preparecnt]; 4010 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active; 4011 ev_active (prepares [active - 1]) = active;
2288 } 4012 }
2289 4013
2290 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
2291}
2292 4015
4016 EV_FREQUENT_CHECK;
4017}
4018#endif
4019
4020#if EV_CHECK_ENABLE
2293void 4021void
2294ev_check_start (EV_P_ ev_check *w) 4022ev_check_start (EV_P_ ev_check *w)
2295{ 4023{
2296 if (expect_false (ev_is_active (w))) 4024 if (expect_false (ev_is_active (w)))
2297 return; 4025 return;
4026
4027 EV_FREQUENT_CHECK;
2298 4028
2299 ev_start (EV_A_ (W)w, ++checkcnt); 4029 ev_start (EV_A_ (W)w, ++checkcnt);
2300 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2301 checks [checkcnt - 1] = w; 4031 checks [checkcnt - 1] = w;
4032
4033 EV_FREQUENT_CHECK;
2302} 4034}
2303 4035
2304void 4036void
2305ev_check_stop (EV_P_ ev_check *w) 4037ev_check_stop (EV_P_ ev_check *w)
2306{ 4038{
2307 clear_pending (EV_A_ (W)w); 4039 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 4040 if (expect_false (!ev_is_active (w)))
2309 return; 4041 return;
2310 4042
4043 EV_FREQUENT_CHECK;
4044
2311 { 4045 {
2312 int active = ((W)w)->active; 4046 int active = ev_active (w);
4047
2313 checks [active - 1] = checks [--checkcnt]; 4048 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active; 4049 ev_active (checks [active - 1]) = active;
2315 } 4050 }
2316 4051
2317 ev_stop (EV_A_ (W)w); 4052 ev_stop (EV_A_ (W)w);
4053
4054 EV_FREQUENT_CHECK;
2318} 4055}
4056#endif
2319 4057
2320#if EV_EMBED_ENABLE 4058#if EV_EMBED_ENABLE
2321void noinline 4059void noinline
2322ev_embed_sweep (EV_P_ ev_embed *w) 4060ev_embed_sweep (EV_P_ ev_embed *w)
2323{ 4061{
2324 ev_loop (w->other, EVLOOP_NONBLOCK); 4062 ev_run (w->other, EVRUN_NOWAIT);
2325} 4063}
2326 4064
2327static void 4065static void
2328embed_io_cb (EV_P_ ev_io *io, int revents) 4066embed_io_cb (EV_P_ ev_io *io, int revents)
2329{ 4067{
2330 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4068 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2331 4069
2332 if (ev_cb (w)) 4070 if (ev_cb (w))
2333 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4071 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2334 else 4072 else
2335 ev_loop (w->other, EVLOOP_NONBLOCK); 4073 ev_run (w->other, EVRUN_NOWAIT);
2336} 4074}
2337 4075
2338static void 4076static void
2339embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4077embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2340{ 4078{
2341 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4079 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2342 4080
2343 { 4081 {
2344 struct ev_loop *loop = w->other; 4082 EV_P = w->other;
2345 4083
2346 while (fdchangecnt) 4084 while (fdchangecnt)
2347 { 4085 {
2348 fd_reify (EV_A); 4086 fd_reify (EV_A);
2349 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4087 ev_run (EV_A_ EVRUN_NOWAIT);
2350 } 4088 }
2351 } 4089 }
4090}
4091
4092static void
4093embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4094{
4095 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4096
4097 ev_embed_stop (EV_A_ w);
4098
4099 {
4100 EV_P = w->other;
4101
4102 ev_loop_fork (EV_A);
4103 ev_run (EV_A_ EVRUN_NOWAIT);
4104 }
4105
4106 ev_embed_start (EV_A_ w);
2352} 4107}
2353 4108
2354#if 0 4109#if 0
2355static void 4110static void
2356embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4111embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2364{ 4119{
2365 if (expect_false (ev_is_active (w))) 4120 if (expect_false (ev_is_active (w)))
2366 return; 4121 return;
2367 4122
2368 { 4123 {
2369 struct ev_loop *loop = w->other; 4124 EV_P = w->other;
2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4125 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4126 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2372 } 4127 }
4128
4129 EV_FREQUENT_CHECK;
2373 4130
2374 ev_set_priority (&w->io, ev_priority (w)); 4131 ev_set_priority (&w->io, ev_priority (w));
2375 ev_io_start (EV_A_ &w->io); 4132 ev_io_start (EV_A_ &w->io);
2376 4133
2377 ev_prepare_init (&w->prepare, embed_prepare_cb); 4134 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI); 4135 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare); 4136 ev_prepare_start (EV_A_ &w->prepare);
2380 4137
4138 ev_fork_init (&w->fork, embed_fork_cb);
4139 ev_fork_start (EV_A_ &w->fork);
4140
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4141 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382 4142
2383 ev_start (EV_A_ (W)w, 1); 4143 ev_start (EV_A_ (W)w, 1);
4144
4145 EV_FREQUENT_CHECK;
2384} 4146}
2385 4147
2386void 4148void
2387ev_embed_stop (EV_P_ ev_embed *w) 4149ev_embed_stop (EV_P_ ev_embed *w)
2388{ 4150{
2389 clear_pending (EV_A_ (W)w); 4151 clear_pending (EV_A_ (W)w);
2390 if (expect_false (!ev_is_active (w))) 4152 if (expect_false (!ev_is_active (w)))
2391 return; 4153 return;
2392 4154
4155 EV_FREQUENT_CHECK;
4156
2393 ev_io_stop (EV_A_ &w->io); 4157 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare); 4158 ev_prepare_stop (EV_A_ &w->prepare);
4159 ev_fork_stop (EV_A_ &w->fork);
2395 4160
2396 ev_stop (EV_A_ (W)w); 4161 ev_stop (EV_A_ (W)w);
4162
4163 EV_FREQUENT_CHECK;
2397} 4164}
2398#endif 4165#endif
2399 4166
2400#if EV_FORK_ENABLE 4167#if EV_FORK_ENABLE
2401void 4168void
2402ev_fork_start (EV_P_ ev_fork *w) 4169ev_fork_start (EV_P_ ev_fork *w)
2403{ 4170{
2404 if (expect_false (ev_is_active (w))) 4171 if (expect_false (ev_is_active (w)))
2405 return; 4172 return;
2406 4173
4174 EV_FREQUENT_CHECK;
4175
2407 ev_start (EV_A_ (W)w, ++forkcnt); 4176 ev_start (EV_A_ (W)w, ++forkcnt);
2408 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4177 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2409 forks [forkcnt - 1] = w; 4178 forks [forkcnt - 1] = w;
4179
4180 EV_FREQUENT_CHECK;
2410} 4181}
2411 4182
2412void 4183void
2413ev_fork_stop (EV_P_ ev_fork *w) 4184ev_fork_stop (EV_P_ ev_fork *w)
2414{ 4185{
2415 clear_pending (EV_A_ (W)w); 4186 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 4187 if (expect_false (!ev_is_active (w)))
2417 return; 4188 return;
2418 4189
4190 EV_FREQUENT_CHECK;
4191
2419 { 4192 {
2420 int active = ((W)w)->active; 4193 int active = ev_active (w);
4194
2421 forks [active - 1] = forks [--forkcnt]; 4195 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active; 4196 ev_active (forks [active - 1]) = active;
2423 } 4197 }
2424 4198
2425 ev_stop (EV_A_ (W)w); 4199 ev_stop (EV_A_ (W)w);
4200
4201 EV_FREQUENT_CHECK;
4202}
4203#endif
4204
4205#if EV_CLEANUP_ENABLE
4206void
4207ev_cleanup_start (EV_P_ ev_cleanup *w)
4208{
4209 if (expect_false (ev_is_active (w)))
4210 return;
4211
4212 EV_FREQUENT_CHECK;
4213
4214 ev_start (EV_A_ (W)w, ++cleanupcnt);
4215 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4216 cleanups [cleanupcnt - 1] = w;
4217
4218 /* cleanup watchers should never keep a refcount on the loop */
4219 ev_unref (EV_A);
4220 EV_FREQUENT_CHECK;
4221}
4222
4223void
4224ev_cleanup_stop (EV_P_ ev_cleanup *w)
4225{
4226 clear_pending (EV_A_ (W)w);
4227 if (expect_false (!ev_is_active (w)))
4228 return;
4229
4230 EV_FREQUENT_CHECK;
4231 ev_ref (EV_A);
4232
4233 {
4234 int active = ev_active (w);
4235
4236 cleanups [active - 1] = cleanups [--cleanupcnt];
4237 ev_active (cleanups [active - 1]) = active;
4238 }
4239
4240 ev_stop (EV_A_ (W)w);
4241
4242 EV_FREQUENT_CHECK;
2426} 4243}
2427#endif 4244#endif
2428 4245
2429#if EV_ASYNC_ENABLE 4246#if EV_ASYNC_ENABLE
2430void 4247void
2431ev_async_start (EV_P_ ev_async *w) 4248ev_async_start (EV_P_ ev_async *w)
2432{ 4249{
2433 if (expect_false (ev_is_active (w))) 4250 if (expect_false (ev_is_active (w)))
2434 return; 4251 return;
2435 4252
4253 w->sent = 0;
4254
2436 evpipe_init (EV_A); 4255 evpipe_init (EV_A);
4256
4257 EV_FREQUENT_CHECK;
2437 4258
2438 ev_start (EV_A_ (W)w, ++asynccnt); 4259 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4260 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w; 4261 asyncs [asynccnt - 1] = w;
4262
4263 EV_FREQUENT_CHECK;
2441} 4264}
2442 4265
2443void 4266void
2444ev_async_stop (EV_P_ ev_async *w) 4267ev_async_stop (EV_P_ ev_async *w)
2445{ 4268{
2446 clear_pending (EV_A_ (W)w); 4269 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w))) 4270 if (expect_false (!ev_is_active (w)))
2448 return; 4271 return;
2449 4272
4273 EV_FREQUENT_CHECK;
4274
2450 { 4275 {
2451 int active = ((W)w)->active; 4276 int active = ev_active (w);
4277
2452 asyncs [active - 1] = asyncs [--asynccnt]; 4278 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active; 4279 ev_active (asyncs [active - 1]) = active;
2454 } 4280 }
2455 4281
2456 ev_stop (EV_A_ (W)w); 4282 ev_stop (EV_A_ (W)w);
4283
4284 EV_FREQUENT_CHECK;
2457} 4285}
2458 4286
2459void 4287void
2460ev_async_send (EV_P_ ev_async *w) 4288ev_async_send (EV_P_ ev_async *w)
2461{ 4289{
2462 w->sent = 1; 4290 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1); 4291 evpipe_write (EV_A_ &async_pending);
2464} 4292}
2465#endif 4293#endif
2466 4294
2467/*****************************************************************************/ 4295/*****************************************************************************/
2468 4296
2478once_cb (EV_P_ struct ev_once *once, int revents) 4306once_cb (EV_P_ struct ev_once *once, int revents)
2479{ 4307{
2480 void (*cb)(int revents, void *arg) = once->cb; 4308 void (*cb)(int revents, void *arg) = once->cb;
2481 void *arg = once->arg; 4309 void *arg = once->arg;
2482 4310
2483 ev_io_stop (EV_A_ &once->io); 4311 ev_io_stop (EV_A_ &once->io);
2484 ev_timer_stop (EV_A_ &once->to); 4312 ev_timer_stop (EV_A_ &once->to);
2485 ev_free (once); 4313 ev_free (once);
2486 4314
2487 cb (revents, arg); 4315 cb (revents, arg);
2488} 4316}
2489 4317
2490static void 4318static void
2491once_cb_io (EV_P_ ev_io *w, int revents) 4319once_cb_io (EV_P_ ev_io *w, int revents)
2492{ 4320{
2493 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4321 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4322
4323 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2494} 4324}
2495 4325
2496static void 4326static void
2497once_cb_to (EV_P_ ev_timer *w, int revents) 4327once_cb_to (EV_P_ ev_timer *w, int revents)
2498{ 4328{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4329 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4330
4331 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2500} 4332}
2501 4333
2502void 4334void
2503ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4335ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2504{ 4336{
2505 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4337 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2506 4338
2507 if (expect_false (!once)) 4339 if (expect_false (!once))
2508 { 4340 {
2509 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2510 return; 4342 return;
2511 } 4343 }
2512 4344
2513 once->cb = cb; 4345 once->cb = cb;
2514 once->arg = arg; 4346 once->arg = arg;
2526 ev_timer_set (&once->to, timeout, 0.); 4358 ev_timer_set (&once->to, timeout, 0.);
2527 ev_timer_start (EV_A_ &once->to); 4359 ev_timer_start (EV_A_ &once->to);
2528 } 4360 }
2529} 4361}
2530 4362
4363/*****************************************************************************/
4364
4365#if EV_WALK_ENABLE
4366void ecb_cold
4367ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4368{
4369 int i, j;
4370 ev_watcher_list *wl, *wn;
4371
4372 if (types & (EV_IO | EV_EMBED))
4373 for (i = 0; i < anfdmax; ++i)
4374 for (wl = anfds [i].head; wl; )
4375 {
4376 wn = wl->next;
4377
4378#if EV_EMBED_ENABLE
4379 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4380 {
4381 if (types & EV_EMBED)
4382 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4383 }
4384 else
4385#endif
4386#if EV_USE_INOTIFY
4387 if (ev_cb ((ev_io *)wl) == infy_cb)
4388 ;
4389 else
4390#endif
4391 if ((ev_io *)wl != &pipe_w)
4392 if (types & EV_IO)
4393 cb (EV_A_ EV_IO, wl);
4394
4395 wl = wn;
4396 }
4397
4398 if (types & (EV_TIMER | EV_STAT))
4399 for (i = timercnt + HEAP0; i-- > HEAP0; )
4400#if EV_STAT_ENABLE
4401 /*TODO: timer is not always active*/
4402 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4403 {
4404 if (types & EV_STAT)
4405 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4406 }
4407 else
4408#endif
4409 if (types & EV_TIMER)
4410 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4411
4412#if EV_PERIODIC_ENABLE
4413 if (types & EV_PERIODIC)
4414 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4415 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4416#endif
4417
4418#if EV_IDLE_ENABLE
4419 if (types & EV_IDLE)
4420 for (j = NUMPRI; j--; )
4421 for (i = idlecnt [j]; i--; )
4422 cb (EV_A_ EV_IDLE, idles [j][i]);
4423#endif
4424
4425#if EV_FORK_ENABLE
4426 if (types & EV_FORK)
4427 for (i = forkcnt; i--; )
4428 if (ev_cb (forks [i]) != embed_fork_cb)
4429 cb (EV_A_ EV_FORK, forks [i]);
4430#endif
4431
4432#if EV_ASYNC_ENABLE
4433 if (types & EV_ASYNC)
4434 for (i = asynccnt; i--; )
4435 cb (EV_A_ EV_ASYNC, asyncs [i]);
4436#endif
4437
4438#if EV_PREPARE_ENABLE
4439 if (types & EV_PREPARE)
4440 for (i = preparecnt; i--; )
4441# if EV_EMBED_ENABLE
4442 if (ev_cb (prepares [i]) != embed_prepare_cb)
4443# endif
4444 cb (EV_A_ EV_PREPARE, prepares [i]);
4445#endif
4446
4447#if EV_CHECK_ENABLE
4448 if (types & EV_CHECK)
4449 for (i = checkcnt; i--; )
4450 cb (EV_A_ EV_CHECK, checks [i]);
4451#endif
4452
4453#if EV_SIGNAL_ENABLE
4454 if (types & EV_SIGNAL)
4455 for (i = 0; i < EV_NSIG - 1; ++i)
4456 for (wl = signals [i].head; wl; )
4457 {
4458 wn = wl->next;
4459 cb (EV_A_ EV_SIGNAL, wl);
4460 wl = wn;
4461 }
4462#endif
4463
4464#if EV_CHILD_ENABLE
4465 if (types & EV_CHILD)
4466 for (i = (EV_PID_HASHSIZE); i--; )
4467 for (wl = childs [i]; wl; )
4468 {
4469 wn = wl->next;
4470 cb (EV_A_ EV_CHILD, wl);
4471 wl = wn;
4472 }
4473#endif
4474/* EV_STAT 0x00001000 /* stat data changed */
4475/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4476}
4477#endif
4478
2531#if EV_MULTIPLICITY 4479#if EV_MULTIPLICITY
2532 #include "ev_wrap.h" 4480 #include "ev_wrap.h"
2533#endif 4481#endif
2534 4482
2535#ifdef __cplusplus
2536}
2537#endif
2538

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines