ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.42 by root, Fri Nov 2 20:05:05 2007 UTC vs.
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
107 143
108typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
109typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
110typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
111 147
112static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
113ev_tstamp ev_now;
114int ev_method;
115
116static int have_monotonic; /* runtime */
117
118static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
119static void (*method_modify)(int fd, int oev, int nev);
120static void (*method_poll)(ev_tstamp timeout);
121 149
122/*****************************************************************************/ 150/*****************************************************************************/
123 151
124ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
125ev_time (void) 186ev_time (void)
126{ 187{
127#if EV_USE_REALTIME 188#if EV_USE_REALTIME
128 struct timespec ts; 189 struct timespec ts;
129 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
133 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
134 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
135#endif 196#endif
136} 197}
137 198
138static ev_tstamp 199inline ev_tstamp
139get_clock (void) 200get_clock (void)
140{ 201{
141#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
142 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
143 { 204 {
146 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
147 } 208 }
148#endif 209#endif
149 210
150 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
151} 218}
152 219
153#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
154 221
155#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
167 cur = newcnt; \ 234 cur = newcnt; \
168 } 235 }
169 236
170/*****************************************************************************/ 237/*****************************************************************************/
171 238
172typedef struct
173{
174 struct ev_io *head;
175 unsigned char events;
176 unsigned char reify;
177} ANFD;
178
179static ANFD *anfds;
180static int anfdmax;
181
182static void 239static void
183anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
184{ 241{
185 while (count--) 242 while (count--)
186 { 243 {
190 247
191 ++base; 248 ++base;
192 } 249 }
193} 250}
194 251
195typedef struct
196{
197 W w;
198 int events;
199} ANPENDING;
200
201static ANPENDING *pendings [NUMPRI];
202static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
203
204static void 252static void
205event (W w, int events) 253event (EV_P_ W w, int events)
206{ 254{
207 if (w->pending) 255 if (w->pending)
208 { 256 {
209 pendings [ABSPRI (w)][w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
210 return; 258 return;
215 pendings [ABSPRI (w)][w->pending - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
216 pendings [ABSPRI (w)][w->pending - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
217} 265}
218 266
219static void 267static void
220queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
221{ 269{
222 int i; 270 int i;
223 271
224 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
225 event (events [i], type); 273 event (EV_A_ events [i], type);
226} 274}
227 275
228static void 276static void
229fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
230{ 278{
231 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
232 struct ev_io *w; 280 struct ev_io *w;
233 281
234 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
235 { 283 {
236 int ev = w->events & events; 284 int ev = w->events & events;
237 285
238 if (ev) 286 if (ev)
239 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
240 } 288 }
241} 289}
242 290
243/*****************************************************************************/ 291/*****************************************************************************/
244 292
245static int *fdchanges;
246static int fdchangemax, fdchangecnt;
247
248static void 293static void
249fd_reify (void) 294fd_reify (EV_P)
250{ 295{
251 int i; 296 int i;
252 297
253 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
254 { 299 {
256 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
257 struct ev_io *w; 302 struct ev_io *w;
258 303
259 int events = 0; 304 int events = 0;
260 305
261 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
262 events |= w->events; 307 events |= w->events;
263 308
264 anfd->reify = 0; 309 anfd->reify = 0;
265 310
266 if (anfd->events != events)
267 {
268 method_modify (fd, anfd->events, events); 311 method_modify (EV_A_ fd, anfd->events, events);
269 anfd->events = events; 312 anfd->events = events;
270 }
271 } 313 }
272 314
273 fdchangecnt = 0; 315 fdchangecnt = 0;
274} 316}
275 317
276static void 318static void
277fd_change (int fd) 319fd_change (EV_P_ int fd)
278{ 320{
279 if (anfds [fd].reify || fdchangecnt < 0) 321 if (anfds [fd].reify || fdchangecnt < 0)
280 return; 322 return;
281 323
282 anfds [fd].reify = 1; 324 anfds [fd].reify = 1;
285 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
286 fdchanges [fdchangecnt - 1] = fd; 328 fdchanges [fdchangecnt - 1] = fd;
287} 329}
288 330
289static void 331static void
290fd_kill (int fd) 332fd_kill (EV_P_ int fd)
291{ 333{
292 struct ev_io *w; 334 struct ev_io *w;
293 335
294 printf ("killing fd %d\n", fd);//D
295 while ((w = anfds [fd].head)) 336 while ((w = (struct ev_io *)anfds [fd].head))
296 { 337 {
297 ev_io_stop (w); 338 ev_io_stop (EV_A_ w);
298 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
299 } 340 }
300} 341}
301 342
302/* called on EBADF to verify fds */ 343/* called on EBADF to verify fds */
303static void 344static void
304fd_ebadf (void) 345fd_ebadf (EV_P)
305{ 346{
306 int fd; 347 int fd;
307 348
308 for (fd = 0; fd < anfdmax; ++fd) 349 for (fd = 0; fd < anfdmax; ++fd)
309 if (anfds [fd].events) 350 if (anfds [fd].events)
310 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
311 fd_kill (fd); 352 fd_kill (EV_A_ fd);
312} 353}
313 354
314/* called on ENOMEM in select/poll to kill some fds and retry */ 355/* called on ENOMEM in select/poll to kill some fds and retry */
315static void 356static void
316fd_enomem (void) 357fd_enomem (EV_P)
317{ 358{
318 int fd = anfdmax; 359 int fd;
319 360
320 while (fd--) 361 for (fd = anfdmax; fd--; )
321 if (anfds [fd].events) 362 if (anfds [fd].events)
322 { 363 {
323 close (fd); 364 close (fd);
324 fd_kill (fd); 365 fd_kill (EV_A_ fd);
325 return; 366 return;
326 } 367 }
327} 368}
328 369
370/* susually called after fork if method needs to re-arm all fds from scratch */
371static void
372fd_rearm_all (EV_P)
373{
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
383}
384
329/*****************************************************************************/ 385/*****************************************************************************/
330 386
331static struct ev_timer **timers;
332static int timermax, timercnt;
333
334static struct ev_periodic **periodics;
335static int periodicmax, periodiccnt;
336
337static void 387static void
338upheap (WT *timers, int k) 388upheap (WT *heap, int k)
339{ 389{
340 WT w = timers [k]; 390 WT w = heap [k];
341 391
342 while (k && timers [k >> 1]->at > w->at) 392 while (k && heap [k >> 1]->at > w->at)
343 { 393 {
344 timers [k] = timers [k >> 1]; 394 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 395 ((W)heap [k])->active = k + 1;
346 k >>= 1; 396 k >>= 1;
347 } 397 }
348 398
349 timers [k] = w; 399 heap [k] = w;
350 timers [k]->active = k + 1; 400 ((W)heap [k])->active = k + 1;
351 401
352} 402}
353 403
354static void 404static void
355downheap (WT *timers, int N, int k) 405downheap (WT *heap, int N, int k)
356{ 406{
357 WT w = timers [k]; 407 WT w = heap [k];
358 408
359 while (k < (N >> 1)) 409 while (k < (N >> 1))
360 { 410 {
361 int j = k << 1; 411 int j = k << 1;
362 412
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 414 ++j;
365 415
366 if (w->at <= timers [j]->at) 416 if (w->at <= heap [j]->at)
367 break; 417 break;
368 418
369 timers [k] = timers [j]; 419 heap [k] = heap [j];
370 timers [k]->active = k + 1; 420 ((W)heap [k])->active = k + 1;
371 k = j; 421 k = j;
372 } 422 }
373 423
374 timers [k] = w; 424 heap [k] = w;
375 timers [k]->active = k + 1; 425 ((W)heap [k])->active = k + 1;
376} 426}
377 427
378/*****************************************************************************/ 428/*****************************************************************************/
379 429
380typedef struct 430typedef struct
381{ 431{
382 struct ev_signal *head; 432 struct ev_watcher_list *head;
383 sig_atomic_t volatile gotsig; 433 sig_atomic_t volatile gotsig;
384} ANSIG; 434} ANSIG;
385 435
386static ANSIG *signals; 436static ANSIG *signals;
387static int signalmax; 437static int signalmax;
407{ 457{
408 signals [signum - 1].gotsig = 1; 458 signals [signum - 1].gotsig = 1;
409 459
410 if (!gotsig) 460 if (!gotsig)
411 { 461 {
462 int old_errno = errno;
412 gotsig = 1; 463 gotsig = 1;
413 write (sigpipe [1], &signum, 1); 464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
414 } 466 }
415} 467}
416 468
417static void 469static void
418sigcb (struct ev_io *iow, int revents) 470sigcb (EV_P_ struct ev_io *iow, int revents)
419{ 471{
420 struct ev_signal *w; 472 struct ev_watcher_list *w;
421 int signum; 473 int signum;
422 474
423 read (sigpipe [0], &revents, 1); 475 read (sigpipe [0], &revents, 1);
424 gotsig = 0; 476 gotsig = 0;
425 477
427 if (signals [signum].gotsig) 479 if (signals [signum].gotsig)
428 { 480 {
429 signals [signum].gotsig = 0; 481 signals [signum].gotsig = 0;
430 482
431 for (w = signals [signum].head; w; w = w->next) 483 for (w = signals [signum].head; w; w = w->next)
432 event ((W)w, EV_SIGNAL); 484 event (EV_A_ (W)w, EV_SIGNAL);
433 } 485 }
434} 486}
435 487
436static void 488static void
437siginit (void) 489siginit (EV_P)
438{ 490{
491#ifndef WIN32
439 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
440 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
441 494
442 /* rather than sort out wether we really need nb, set it */ 495 /* rather than sort out wether we really need nb, set it */
443 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
444 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
445 499
446 ev_io_set (&sigev, sigpipe [0], EV_READ); 500 ev_io_set (&sigev, sigpipe [0], EV_READ);
447 ev_io_start (&sigev); 501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
448} 503}
449 504
450/*****************************************************************************/ 505/*****************************************************************************/
451 506
452static struct ev_idle **idles; 507#ifndef WIN32
453static int idlemax, idlecnt;
454
455static struct ev_prepare **prepares;
456static int preparemax, preparecnt;
457
458static struct ev_check **checks;
459static int checkmax, checkcnt;
460
461/*****************************************************************************/
462 508
463static struct ev_child *childs [PID_HASHSIZE]; 509static struct ev_child *childs [PID_HASHSIZE];
464static struct ev_signal childev; 510static struct ev_signal childev;
465 511
466#ifndef WCONTINUED 512#ifndef WCONTINUED
467# define WCONTINUED 0 513# define WCONTINUED 0
468#endif 514#endif
469 515
470static void 516static void
471childcb (struct ev_signal *sw, int revents) 517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{ 518{
473 struct ev_child *w; 519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents)
533{
474 int pid, status; 534 int pid, status;
475 535
476 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
477 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 537 {
478 if (w->pid == pid || !w->pid) 538 /* make sure we are called again until all childs have been reaped */
479 { 539 event (EV_A_ (W)sw, EV_SIGNAL);
480 w->status = status; 540
481 event ((W)w, EV_CHILD); 541 child_reap (EV_A_ sw, pid, pid, status);
482 } 542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 }
483} 544}
545
546#endif
484 547
485/*****************************************************************************/ 548/*****************************************************************************/
486 549
550#if EV_USE_KQUEUE
551# include "ev_kqueue.c"
552#endif
487#if EV_USE_EPOLL 553#if EV_USE_EPOLL
488# include "ev_epoll.c" 554# include "ev_epoll.c"
489#endif 555#endif
490#if EV_USE_POLL 556#if EV_USE_POLL
491# include "ev_poll.c" 557# include "ev_poll.c"
504ev_version_minor (void) 570ev_version_minor (void)
505{ 571{
506 return EV_VERSION_MINOR; 572 return EV_VERSION_MINOR;
507} 573}
508 574
509/* return true if we are running with elevated privileges and ignore env variables */ 575/* return true if we are running with elevated privileges and should ignore env variables */
510static int 576static int
511enable_secure () 577enable_secure (void)
512{ 578{
579#ifdef WIN32
580 return 0;
581#else
513 return getuid () != geteuid () 582 return getuid () != geteuid ()
514 || getgid () != getegid (); 583 || getgid () != getegid ();
584#endif
515} 585}
516 586
517int ev_init (int methods) 587int
588ev_method (EV_P)
518{ 589{
590 return method;
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
519 if (!ev_method) 596 if (!method)
520 { 597 {
521#if EV_USE_MONOTONIC 598#if EV_USE_MONOTONIC
522 { 599 {
523 struct timespec ts; 600 struct timespec ts;
524 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
525 have_monotonic = 1; 602 have_monotonic = 1;
526 } 603 }
527#endif 604#endif
528 605
529 ev_now = ev_time (); 606 rt_now = ev_time ();
530 now = get_clock (); 607 mn_now = get_clock ();
531 now_floor = now; 608 now_floor = mn_now;
532 diff = ev_now - now; 609 rtmn_diff = rt_now - mn_now;
533
534 if (pipe (sigpipe))
535 return 0;
536 610
537 if (methods == EVMETHOD_AUTO) 611 if (methods == EVMETHOD_AUTO)
538 if (!enable_secure () && getenv ("LIBEV_METHODS")) 612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
539 methods = atoi (getenv ("LIBEV_METHODS")); 613 methods = atoi (getenv ("LIBEV_METHODS"));
540 else 614 else
541 methods = EVMETHOD_ANY; 615 methods = EVMETHOD_ANY;
542 616
543 ev_method = 0; 617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
544#if EV_USE_EPOLL 624#if EV_USE_EPOLL
545 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
546#endif 626#endif
547#if EV_USE_POLL 627#if EV_USE_POLL
548 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
549#endif 629#endif
550#if EV_USE_SELECT 630#if EV_USE_SELECT
551 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
552#endif 632#endif
633 }
634}
553 635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop)
717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1;
722#endif
723
724 loop_init (EV_A_ methods);
725
554 if (ev_method) 726 if (ev_method (EV_A))
555 { 727 {
556 ev_watcher_init (&sigev, sigcb); 728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
557 siginit (); 730 siginit (EV_A);
558 731
732#ifndef WIN32
559 ev_signal_init (&childev, childcb, SIGCHLD); 733 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI);
560 ev_signal_start (&childev); 735 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif
561 } 738 }
739 else
740 default_loop = 0;
562 } 741 }
563 742
564 return ev_method; 743 return default_loop;
565} 744}
566 745
567/*****************************************************************************/
568
569void 746void
570ev_fork_prepare (void) 747ev_default_destroy (void)
571{ 748{
572 /* nop */ 749#if EV_MULTIPLICITY
573} 750 struct ev_loop *loop = default_loop;
574
575void
576ev_fork_parent (void)
577{
578 /* nop */
579}
580
581void
582ev_fork_child (void)
583{
584#if EV_USE_EPOLL
585 if (ev_method == EVMETHOD_EPOLL)
586 epoll_postfork_child ();
587#endif 751#endif
588 752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
589 ev_io_stop (&sigev); 757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763}
764
765void
766ev_default_fork (void)
767{
768#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
590 close (sigpipe [0]); 775 close (sigpipe [0]);
591 close (sigpipe [1]); 776 close (sigpipe [1]);
592 pipe (sigpipe); 777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
593 siginit (); 780 siginit (EV_A);
594} 781}
595 782
596/*****************************************************************************/ 783/*****************************************************************************/
597 784
598static void 785static void
599call_pending (void) 786call_pending (EV_P)
600{ 787{
601 int pri; 788 int pri;
602 789
603 for (pri = NUMPRI; pri--; ) 790 for (pri = NUMPRI; pri--; )
604 while (pendingcnt [pri]) 791 while (pendingcnt [pri])
606 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
607 794
608 if (p->w) 795 if (p->w)
609 { 796 {
610 p->w->pending = 0; 797 p->w->pending = 0;
611 p->w->cb (p->w, p->events); 798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
612 } 800 }
613 } 801 }
614} 802}
615 803
616static void 804static void
617timers_reify (void) 805timers_reify (EV_P)
618{ 806{
619 while (timercnt && timers [0]->at <= now) 807 while (timercnt && ((WT)timers [0])->at <= mn_now)
620 { 808 {
621 struct ev_timer *w = timers [0]; 809 struct ev_timer *w = timers [0];
810
811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
622 812
623 /* first reschedule or stop timer */ 813 /* first reschedule or stop timer */
624 if (w->repeat) 814 if (w->repeat)
625 { 815 {
626 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
627 w->at = now + w->repeat; 817 ((WT)w)->at = mn_now + w->repeat;
628 downheap ((WT *)timers, timercnt, 0); 818 downheap ((WT *)timers, timercnt, 0);
629 } 819 }
630 else 820 else
631 ev_timer_stop (w); /* nonrepeating: stop timer */ 821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
632 822
633 event ((W)w, EV_TIMEOUT); 823 event (EV_A_ (W)w, EV_TIMEOUT);
634 } 824 }
635} 825}
636 826
637static void 827static void
638periodics_reify (void) 828periodics_reify (EV_P)
639{ 829{
640 while (periodiccnt && periodics [0]->at <= ev_now) 830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
641 { 831 {
642 struct ev_periodic *w = periodics [0]; 832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
643 835
644 /* first reschedule or stop timer */ 836 /* first reschedule or stop timer */
645 if (w->interval) 837 if (w->interval)
646 { 838 {
647 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
648 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
649 downheap ((WT *)periodics, periodiccnt, 0); 841 downheap ((WT *)periodics, periodiccnt, 0);
650 } 842 }
651 else 843 else
652 ev_periodic_stop (w); /* nonrepeating: stop timer */ 844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
653 845
654 event ((W)w, EV_PERIODIC); 846 event (EV_A_ (W)w, EV_PERIODIC);
655 } 847 }
656} 848}
657 849
658static void 850static void
659periodics_reschedule (ev_tstamp diff) 851periodics_reschedule (EV_P)
660{ 852{
661 int i; 853 int i;
662 854
663 /* adjust periodics after time jump */ 855 /* adjust periodics after time jump */
664 for (i = 0; i < periodiccnt; ++i) 856 for (i = 0; i < periodiccnt; ++i)
665 { 857 {
666 struct ev_periodic *w = periodics [i]; 858 struct ev_periodic *w = periodics [i];
667 859
668 if (w->interval) 860 if (w->interval)
669 { 861 {
670 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
671 863
672 if (fabs (diff) >= 1e-4) 864 if (fabs (diff) >= 1e-4)
673 { 865 {
674 ev_periodic_stop (w); 866 ev_periodic_stop (EV_A_ w);
675 ev_periodic_start (w); 867 ev_periodic_start (EV_A_ w);
676 868
677 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
678 } 870 }
679 } 871 }
680 } 872 }
681} 873}
682 874
683static int 875inline int
684time_update_monotonic (void) 876time_update_monotonic (EV_P)
685{ 877{
686 now = get_clock (); 878 mn_now = get_clock ();
687 879
688 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
689 { 881 {
690 ev_now = now + diff; 882 rt_now = rtmn_diff + mn_now;
691 return 0; 883 return 0;
692 } 884 }
693 else 885 else
694 { 886 {
695 now_floor = now; 887 now_floor = mn_now;
696 ev_now = ev_time (); 888 rt_now = ev_time ();
697 return 1; 889 return 1;
698 } 890 }
699} 891}
700 892
701static void 893static void
702time_update (void) 894time_update (EV_P)
703{ 895{
704 int i; 896 int i;
705 897
706#if EV_USE_MONOTONIC 898#if EV_USE_MONOTONIC
707 if (expect_true (have_monotonic)) 899 if (expect_true (have_monotonic))
708 { 900 {
709 if (time_update_monotonic ()) 901 if (time_update_monotonic (EV_A))
710 { 902 {
711 ev_tstamp odiff = diff; 903 ev_tstamp odiff = rtmn_diff;
712 904
713 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
714 { 906 {
715 diff = ev_now - now; 907 rtmn_diff = rt_now - mn_now;
716 908
717 if (fabs (odiff - diff) < MIN_TIMEJUMP) 909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
718 return; /* all is well */ 910 return; /* all is well */
719 911
720 ev_now = ev_time (); 912 rt_now = ev_time ();
721 now = get_clock (); 913 mn_now = get_clock ();
722 now_floor = now; 914 now_floor = mn_now;
723 } 915 }
724 916
725 periodics_reschedule (diff - odiff); 917 periodics_reschedule (EV_A);
726 /* no timer adjustment, as the monotonic clock doesn't jump */ 918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
727 } 920 }
728 } 921 }
729 else 922 else
730#endif 923#endif
731 { 924 {
732 ev_now = ev_time (); 925 rt_now = ev_time ();
733 926
734 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
735 { 928 {
736 periodics_reschedule (ev_now - now); 929 periodics_reschedule (EV_A);
737 930
738 /* adjust timers. this is easy, as the offset is the same for all */ 931 /* adjust timers. this is easy, as the offset is the same for all */
739 for (i = 0; i < timercnt; ++i) 932 for (i = 0; i < timercnt; ++i)
740 timers [i]->at += diff; 933 ((WT)timers [i])->at += rt_now - mn_now;
741 } 934 }
742 935
743 now = ev_now; 936 mn_now = rt_now;
744 } 937 }
745} 938}
746 939
747int ev_loop_done; 940void
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
748 945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
749void ev_loop (int flags) 955ev_loop (EV_P_ int flags)
750{ 956{
751 double block; 957 double block;
752 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
753 959
754 do 960 do
755 { 961 {
756 /* queue check watchers (and execute them) */ 962 /* queue check watchers (and execute them) */
757 if (expect_false (preparecnt)) 963 if (expect_false (preparecnt))
758 { 964 {
759 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
760 call_pending (); 966 call_pending (EV_A);
761 } 967 }
762 968
763 /* update fd-related kernel structures */ 969 /* update fd-related kernel structures */
764 fd_reify (); 970 fd_reify (EV_A);
765 971
766 /* calculate blocking time */ 972 /* calculate blocking time */
767 973
768 /* we only need this for !monotonic clockor timers, but as we basically 974 /* we only need this for !monotonic clockor timers, but as we basically
769 always have timers, we just calculate it always */ 975 always have timers, we just calculate it always */
770#if EV_USE_MONOTONIC 976#if EV_USE_MONOTONIC
771 if (expect_true (have_monotonic)) 977 if (expect_true (have_monotonic))
772 time_update_monotonic (); 978 time_update_monotonic (EV_A);
773 else 979 else
774#endif 980#endif
775 { 981 {
776 ev_now = ev_time (); 982 rt_now = ev_time ();
777 now = ev_now; 983 mn_now = rt_now;
778 } 984 }
779 985
780 if (flags & EVLOOP_NONBLOCK || idlecnt) 986 if (flags & EVLOOP_NONBLOCK || idlecnt)
781 block = 0.; 987 block = 0.;
782 else 988 else
783 { 989 {
784 block = MAX_BLOCKTIME; 990 block = MAX_BLOCKTIME;
785 991
786 if (timercnt) 992 if (timercnt)
787 { 993 {
788 ev_tstamp to = timers [0]->at - now + method_fudge; 994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
789 if (block > to) block = to; 995 if (block > to) block = to;
790 } 996 }
791 997
792 if (periodiccnt) 998 if (periodiccnt)
793 { 999 {
794 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
795 if (block > to) block = to; 1001 if (block > to) block = to;
796 } 1002 }
797 1003
798 if (block < 0.) block = 0.; 1004 if (block < 0.) block = 0.;
799 } 1005 }
800 1006
801 method_poll (block); 1007 method_poll (EV_A_ block);
802 1008
803 /* update ev_now, do magic */ 1009 /* update rt_now, do magic */
804 time_update (); 1010 time_update (EV_A);
805 1011
806 /* queue pending timers and reschedule them */ 1012 /* queue pending timers and reschedule them */
807 timers_reify (); /* relative timers called last */ 1013 timers_reify (EV_A); /* relative timers called last */
808 periodics_reify (); /* absolute timers called first */ 1014 periodics_reify (EV_A); /* absolute timers called first */
809 1015
810 /* queue idle watchers unless io or timers are pending */ 1016 /* queue idle watchers unless io or timers are pending */
811 if (!pendingcnt) 1017 if (!pendingcnt)
812 queue_events ((W *)idles, idlecnt, EV_IDLE); 1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
813 1019
814 /* queue check watchers, to be executed first */ 1020 /* queue check watchers, to be executed first */
815 if (checkcnt) 1021 if (checkcnt)
816 queue_events ((W *)checks, checkcnt, EV_CHECK); 1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
817 1023
818 call_pending (); 1024 call_pending (EV_A);
819 } 1025 }
820 while (!ev_loop_done); 1026 while (activecnt && !loop_done);
821 1027
822 if (ev_loop_done != 2) 1028 if (loop_done != 2)
823 ev_loop_done = 0; 1029 loop_done = 0;
1030}
1031
1032void
1033ev_unloop (EV_P_ int how)
1034{
1035 loop_done = how;
824} 1036}
825 1037
826/*****************************************************************************/ 1038/*****************************************************************************/
827 1039
828static void 1040inline void
829wlist_add (WL *head, WL elem) 1041wlist_add (WL *head, WL elem)
830{ 1042{
831 elem->next = *head; 1043 elem->next = *head;
832 *head = elem; 1044 *head = elem;
833} 1045}
834 1046
835static void 1047inline void
836wlist_del (WL *head, WL elem) 1048wlist_del (WL *head, WL elem)
837{ 1049{
838 while (*head) 1050 while (*head)
839 { 1051 {
840 if (*head == elem) 1052 if (*head == elem)
845 1057
846 head = &(*head)->next; 1058 head = &(*head)->next;
847 } 1059 }
848} 1060}
849 1061
850static void 1062inline void
851ev_clear_pending (W w) 1063ev_clear_pending (EV_P_ W w)
852{ 1064{
853 if (w->pending) 1065 if (w->pending)
854 { 1066 {
855 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
856 w->pending = 0; 1068 w->pending = 0;
857 } 1069 }
858} 1070}
859 1071
860static void 1072inline void
861ev_start (W w, int active) 1073ev_start (EV_P_ W w, int active)
862{ 1074{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
863 w->active = active; 1078 w->active = active;
1079 ev_ref (EV_A);
864} 1080}
865 1081
866static void 1082inline void
867ev_stop (W w) 1083ev_stop (EV_P_ W w)
868{ 1084{
1085 ev_unref (EV_A);
869 w->active = 0; 1086 w->active = 0;
870} 1087}
871 1088
872/*****************************************************************************/ 1089/*****************************************************************************/
873 1090
874void 1091void
875ev_io_start (struct ev_io *w) 1092ev_io_start (EV_P_ struct ev_io *w)
876{ 1093{
877 int fd = w->fd; 1094 int fd = w->fd;
878 1095
879 if (ev_is_active (w)) 1096 if (ev_is_active (w))
880 return; 1097 return;
881 1098
882 assert (("ev_io_start called with negative fd", fd >= 0)); 1099 assert (("ev_io_start called with negative fd", fd >= 0));
883 1100
884 ev_start ((W)w, 1); 1101 ev_start (EV_A_ (W)w, 1);
885 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
886 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
887 1104
888 fd_change (fd); 1105 fd_change (EV_A_ fd);
889} 1106}
890 1107
891void 1108void
892ev_io_stop (struct ev_io *w) 1109ev_io_stop (EV_P_ struct ev_io *w)
893{ 1110{
894 ev_clear_pending ((W)w); 1111 ev_clear_pending (EV_A_ (W)w);
895 if (!ev_is_active (w)) 1112 if (!ev_is_active (w))
896 return; 1113 return;
897 1114
898 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
899 ev_stop ((W)w); 1116 ev_stop (EV_A_ (W)w);
900 1117
901 fd_change (w->fd); 1118 fd_change (EV_A_ w->fd);
902} 1119}
903 1120
904void 1121void
905ev_timer_start (struct ev_timer *w) 1122ev_timer_start (EV_P_ struct ev_timer *w)
906{ 1123{
907 if (ev_is_active (w)) 1124 if (ev_is_active (w))
908 return; 1125 return;
909 1126
910 w->at += now; 1127 ((WT)w)->at += mn_now;
911 1128
912 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
913 1130
914 ev_start ((W)w, ++timercnt); 1131 ev_start (EV_A_ (W)w, ++timercnt);
915 array_needsize (timers, timermax, timercnt, ); 1132 array_needsize (timers, timermax, timercnt, );
916 timers [timercnt - 1] = w; 1133 timers [timercnt - 1] = w;
917 upheap ((WT *)timers, timercnt - 1); 1134 upheap ((WT *)timers, timercnt - 1);
918}
919 1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138
920void 1139void
921ev_timer_stop (struct ev_timer *w) 1140ev_timer_stop (EV_P_ struct ev_timer *w)
922{ 1141{
923 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
924 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
925 return; 1144 return;
926 1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
927 if (w->active < timercnt--) 1148 if (((W)w)->active < timercnt--)
928 { 1149 {
929 timers [w->active - 1] = timers [timercnt]; 1150 timers [((W)w)->active - 1] = timers [timercnt];
930 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
931 } 1152 }
932 1153
933 w->at = w->repeat; 1154 ((WT)w)->at = w->repeat;
934 1155
935 ev_stop ((W)w); 1156 ev_stop (EV_A_ (W)w);
936} 1157}
937 1158
938void 1159void
939ev_timer_again (struct ev_timer *w) 1160ev_timer_again (EV_P_ struct ev_timer *w)
940{ 1161{
941 if (ev_is_active (w)) 1162 if (ev_is_active (w))
942 { 1163 {
943 if (w->repeat) 1164 if (w->repeat)
944 { 1165 {
945 w->at = now + w->repeat; 1166 ((WT)w)->at = mn_now + w->repeat;
946 downheap ((WT *)timers, timercnt, w->active - 1); 1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
947 } 1168 }
948 else 1169 else
949 ev_timer_stop (w); 1170 ev_timer_stop (EV_A_ w);
950 } 1171 }
951 else if (w->repeat) 1172 else if (w->repeat)
952 ev_timer_start (w); 1173 ev_timer_start (EV_A_ w);
953} 1174}
954 1175
955void 1176void
956ev_periodic_start (struct ev_periodic *w) 1177ev_periodic_start (EV_P_ struct ev_periodic *w)
957{ 1178{
958 if (ev_is_active (w)) 1179 if (ev_is_active (w))
959 return; 1180 return;
960 1181
961 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
962 1183
963 /* this formula differs from the one in periodic_reify because we do not always round up */ 1184 /* this formula differs from the one in periodic_reify because we do not always round up */
964 if (w->interval) 1185 if (w->interval)
965 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
966 1187
967 ev_start ((W)w, ++periodiccnt); 1188 ev_start (EV_A_ (W)w, ++periodiccnt);
968 array_needsize (periodics, periodicmax, periodiccnt, ); 1189 array_needsize (periodics, periodicmax, periodiccnt, );
969 periodics [periodiccnt - 1] = w; 1190 periodics [periodiccnt - 1] = w;
970 upheap ((WT *)periodics, periodiccnt - 1); 1191 upheap ((WT *)periodics, periodiccnt - 1);
971}
972 1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195
973void 1196void
974ev_periodic_stop (struct ev_periodic *w) 1197ev_periodic_stop (EV_P_ struct ev_periodic *w)
975{ 1198{
976 ev_clear_pending ((W)w); 1199 ev_clear_pending (EV_A_ (W)w);
977 if (!ev_is_active (w)) 1200 if (!ev_is_active (w))
978 return; 1201 return;
979 1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
980 if (w->active < periodiccnt--) 1205 if (((W)w)->active < periodiccnt--)
981 { 1206 {
982 periodics [w->active - 1] = periodics [periodiccnt]; 1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
983 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
984 } 1209 }
985 1210
986 ev_stop ((W)w); 1211 ev_stop (EV_A_ (W)w);
987} 1212}
988 1213
989void 1214void
990ev_signal_start (struct ev_signal *w) 1215ev_idle_start (EV_P_ struct ev_idle *w)
991{ 1216{
992 if (ev_is_active (w)) 1217 if (ev_is_active (w))
993 return; 1218 return;
994 1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234}
1235
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279
1280#ifndef SA_RESTART
1281# define SA_RESTART 0
1282#endif
1283
1284void
1285ev_signal_start (EV_P_ struct ev_signal *w)
1286{
1287#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289#endif
1290 if (ev_is_active (w))
1291 return;
1292
995 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
996 1294
997 ev_start ((W)w, 1); 1295 ev_start (EV_A_ (W)w, 1);
998 array_needsize (signals, signalmax, w->signum, signals_init); 1296 array_needsize (signals, signalmax, w->signum, signals_init);
999 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1000 1298
1001 if (!w->next) 1299 if (!((WL)w)->next)
1002 { 1300 {
1003 struct sigaction sa; 1301 struct sigaction sa;
1004 sa.sa_handler = sighandler; 1302 sa.sa_handler = sighandler;
1005 sigfillset (&sa.sa_mask); 1303 sigfillset (&sa.sa_mask);
1006 sa.sa_flags = 0; 1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1007 sigaction (w->signum, &sa, 0); 1305 sigaction (w->signum, &sa, 0);
1008 } 1306 }
1009} 1307}
1010 1308
1011void 1309void
1012ev_signal_stop (struct ev_signal *w) 1310ev_signal_stop (EV_P_ struct ev_signal *w)
1013{ 1311{
1014 ev_clear_pending ((W)w); 1312 ev_clear_pending (EV_A_ (W)w);
1015 if (!ev_is_active (w)) 1313 if (!ev_is_active (w))
1016 return; 1314 return;
1017 1315
1018 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1019 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
1020 1318
1021 if (!signals [w->signum - 1].head) 1319 if (!signals [w->signum - 1].head)
1022 signal (w->signum, SIG_DFL); 1320 signal (w->signum, SIG_DFL);
1023} 1321}
1024 1322
1025void 1323void
1026ev_idle_start (struct ev_idle *w) 1324ev_child_start (EV_P_ struct ev_child *w)
1027{ 1325{
1326#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328#endif
1028 if (ev_is_active (w)) 1329 if (ev_is_active (w))
1029 return; 1330 return;
1030 1331
1031 ev_start ((W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, 1);
1032 array_needsize (idles, idlemax, idlecnt, ); 1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1033 idles [idlecnt - 1] = w;
1034} 1334}
1035 1335
1036void 1336void
1037ev_idle_stop (struct ev_idle *w) 1337ev_child_stop (EV_P_ struct ev_child *w)
1038{ 1338{
1039 ev_clear_pending ((W)w); 1339 ev_clear_pending (EV_A_ (W)w);
1040 if (ev_is_active (w)) 1340 if (ev_is_active (w))
1041 return; 1341 return;
1042 1342
1043 idles [w->active - 1] = idles [--idlecnt];
1044 ev_stop ((W)w);
1045}
1046
1047void
1048ev_prepare_start (struct ev_prepare *w)
1049{
1050 if (ev_is_active (w))
1051 return;
1052
1053 ev_start ((W)w, ++preparecnt);
1054 array_needsize (prepares, preparemax, preparecnt, );
1055 prepares [preparecnt - 1] = w;
1056}
1057
1058void
1059ev_prepare_stop (struct ev_prepare *w)
1060{
1061 ev_clear_pending ((W)w);
1062 if (ev_is_active (w))
1063 return;
1064
1065 prepares [w->active - 1] = prepares [--preparecnt];
1066 ev_stop ((W)w);
1067}
1068
1069void
1070ev_check_start (struct ev_check *w)
1071{
1072 if (ev_is_active (w))
1073 return;
1074
1075 ev_start ((W)w, ++checkcnt);
1076 array_needsize (checks, checkmax, checkcnt, );
1077 checks [checkcnt - 1] = w;
1078}
1079
1080void
1081ev_check_stop (struct ev_check *w)
1082{
1083 ev_clear_pending ((W)w);
1084 if (ev_is_active (w))
1085 return;
1086
1087 checks [w->active - 1] = checks [--checkcnt];
1088 ev_stop ((W)w);
1089}
1090
1091void
1092ev_child_start (struct ev_child *w)
1093{
1094 if (ev_is_active (w))
1095 return;
1096
1097 ev_start ((W)w, 1);
1098 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1099}
1100
1101void
1102ev_child_stop (struct ev_child *w)
1103{
1104 ev_clear_pending ((W)w);
1105 if (ev_is_active (w))
1106 return;
1107
1108 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1109 ev_stop ((W)w); 1344 ev_stop (EV_A_ (W)w);
1110} 1345}
1111 1346
1112/*****************************************************************************/ 1347/*****************************************************************************/
1113 1348
1114struct ev_once 1349struct ev_once
1118 void (*cb)(int revents, void *arg); 1353 void (*cb)(int revents, void *arg);
1119 void *arg; 1354 void *arg;
1120}; 1355};
1121 1356
1122static void 1357static void
1123once_cb (struct ev_once *once, int revents) 1358once_cb (EV_P_ struct ev_once *once, int revents)
1124{ 1359{
1125 void (*cb)(int revents, void *arg) = once->cb; 1360 void (*cb)(int revents, void *arg) = once->cb;
1126 void *arg = once->arg; 1361 void *arg = once->arg;
1127 1362
1128 ev_io_stop (&once->io); 1363 ev_io_stop (EV_A_ &once->io);
1129 ev_timer_stop (&once->to); 1364 ev_timer_stop (EV_A_ &once->to);
1130 free (once); 1365 free (once);
1131 1366
1132 cb (revents, arg); 1367 cb (revents, arg);
1133} 1368}
1134 1369
1135static void 1370static void
1136once_cb_io (struct ev_io *w, int revents) 1371once_cb_io (EV_P_ struct ev_io *w, int revents)
1137{ 1372{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1139} 1374}
1140 1375
1141static void 1376static void
1142once_cb_to (struct ev_timer *w, int revents) 1377once_cb_to (EV_P_ struct ev_timer *w, int revents)
1143{ 1378{
1144 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1145} 1380}
1146 1381
1147void 1382void
1148ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1149{ 1384{
1150 struct ev_once *once = malloc (sizeof (struct ev_once)); 1385 struct ev_once *once = malloc (sizeof (struct ev_once));
1151 1386
1152 if (!once) 1387 if (!once)
1153 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1158 1393
1159 ev_watcher_init (&once->io, once_cb_io); 1394 ev_watcher_init (&once->io, once_cb_io);
1160 if (fd >= 0) 1395 if (fd >= 0)
1161 { 1396 {
1162 ev_io_set (&once->io, fd, events); 1397 ev_io_set (&once->io, fd, events);
1163 ev_io_start (&once->io); 1398 ev_io_start (EV_A_ &once->io);
1164 } 1399 }
1165 1400
1166 ev_watcher_init (&once->to, once_cb_to); 1401 ev_watcher_init (&once->to, once_cb_to);
1167 if (timeout >= 0.) 1402 if (timeout >= 0.)
1168 { 1403 {
1169 ev_timer_set (&once->to, timeout, 0.); 1404 ev_timer_set (&once->to, timeout, 0.);
1170 ev_timer_start (&once->to); 1405 ev_timer_start (EV_A_ &once->to);
1171 } 1406 }
1172 } 1407 }
1173} 1408}
1174 1409
1175/*****************************************************************************/
1176
1177#if 0
1178
1179struct ev_io wio;
1180
1181static void
1182sin_cb (struct ev_io *w, int revents)
1183{
1184 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1185}
1186
1187static void
1188ocb (struct ev_timer *w, int revents)
1189{
1190 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1191 ev_timer_stop (w);
1192 ev_timer_start (w);
1193}
1194
1195static void
1196scb (struct ev_signal *w, int revents)
1197{
1198 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1199 ev_io_stop (&wio);
1200 ev_io_start (&wio);
1201}
1202
1203static void
1204gcb (struct ev_signal *w, int revents)
1205{
1206 fprintf (stderr, "generic %x\n", revents);
1207
1208}
1209
1210int main (void)
1211{
1212 ev_init (0);
1213
1214 ev_io_init (&wio, sin_cb, 0, EV_READ);
1215 ev_io_start (&wio);
1216
1217 struct ev_timer t[10000];
1218
1219#if 0
1220 int i;
1221 for (i = 0; i < 10000; ++i)
1222 {
1223 struct ev_timer *w = t + i;
1224 ev_watcher_init (w, ocb, i);
1225 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1226 ev_timer_start (w);
1227 if (drand48 () < 0.5)
1228 ev_timer_stop (w);
1229 }
1230#endif
1231
1232 struct ev_timer t1;
1233 ev_timer_init (&t1, ocb, 5, 10);
1234 ev_timer_start (&t1);
1235
1236 struct ev_signal sig;
1237 ev_signal_init (&sig, scb, SIGQUIT);
1238 ev_signal_start (&sig);
1239
1240 struct ev_check cw;
1241 ev_check_init (&cw, gcb);
1242 ev_check_start (&cw);
1243
1244 struct ev_idle iw;
1245 ev_idle_init (&iw, gcb);
1246 ev_idle_start (&iw);
1247
1248 ev_loop (0);
1249
1250 return 0;
1251}
1252
1253#endif
1254
1255
1256
1257

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines