ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.42 by root, Fri Nov 2 20:05:05 2007 UTC vs.
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
107 143
108typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
109typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
110typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
111 147
112static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
113ev_tstamp ev_now;
114int ev_method;
115 149
116static int have_monotonic; /* runtime */ 150#if WIN32
117 151/* note: the comment below could not be substantiated, but what would I care */
118static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
119static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
120static void (*method_poll)(ev_tstamp timeout); 154#endif
121 155
122/*****************************************************************************/ 156/*****************************************************************************/
123 157
124ev_tstamp 158typedef struct
159{
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
125ev_time (void) 192ev_time (void)
126{ 193{
127#if EV_USE_REALTIME 194#if EV_USE_REALTIME
128 struct timespec ts; 195 struct timespec ts;
129 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
133 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
134 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
135#endif 202#endif
136} 203}
137 204
138static ev_tstamp 205inline ev_tstamp
139get_clock (void) 206get_clock (void)
140{ 207{
141#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
142 if (expect_true (have_monotonic)) 209 if (expect_true (have_monotonic))
143 { 210 {
146 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
147 } 214 }
148#endif 215#endif
149 216
150 return ev_time (); 217 return ev_time ();
218}
219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
151} 224}
152 225
153#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
154 227
155#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
165 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
166 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
167 cur = newcnt; \ 240 cur = newcnt; \
168 } 241 }
169 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
170/*****************************************************************************/ 254/*****************************************************************************/
171
172typedef struct
173{
174 struct ev_io *head;
175 unsigned char events;
176 unsigned char reify;
177} ANFD;
178
179static ANFD *anfds;
180static int anfdmax;
181 255
182static void 256static void
183anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
184{ 258{
185 while (count--) 259 while (count--)
190 264
191 ++base; 265 ++base;
192 } 266 }
193} 267}
194 268
195typedef struct
196{
197 W w;
198 int events;
199} ANPENDING;
200
201static ANPENDING *pendings [NUMPRI];
202static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
203
204static void 269static void
205event (W w, int events) 270event (EV_P_ W w, int events)
206{ 271{
207 if (w->pending) 272 if (w->pending)
208 { 273 {
209 pendings [ABSPRI (w)][w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
210 return; 275 return;
215 pendings [ABSPRI (w)][w->pending - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
216 pendings [ABSPRI (w)][w->pending - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
217} 282}
218 283
219static void 284static void
220queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
221{ 286{
222 int i; 287 int i;
223 288
224 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
225 event (events [i], type); 290 event (EV_A_ events [i], type);
226} 291}
227 292
228static void 293static void
229fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
230{ 295{
231 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
232 struct ev_io *w; 297 struct ev_io *w;
233 298
234 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
235 { 300 {
236 int ev = w->events & events; 301 int ev = w->events & events;
237 302
238 if (ev) 303 if (ev)
239 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
240 } 305 }
241} 306}
242 307
243/*****************************************************************************/ 308/*****************************************************************************/
244 309
245static int *fdchanges;
246static int fdchangemax, fdchangecnt;
247
248static void 310static void
249fd_reify (void) 311fd_reify (EV_P)
250{ 312{
251 int i; 313 int i;
252 314
253 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
254 { 316 {
256 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
257 struct ev_io *w; 319 struct ev_io *w;
258 320
259 int events = 0; 321 int events = 0;
260 322
261 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
262 events |= w->events; 324 events |= w->events;
263 325
264 anfd->reify = 0; 326 anfd->reify = 0;
265 327
266 if (anfd->events != events)
267 {
268 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
269 anfd->events = events; 329 anfd->events = events;
270 }
271 } 330 }
272 331
273 fdchangecnt = 0; 332 fdchangecnt = 0;
274} 333}
275 334
276static void 335static void
277fd_change (int fd) 336fd_change (EV_P_ int fd)
278{ 337{
279 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
280 return; 339 return;
281 340
282 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
285 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
286 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
287} 346}
288 347
289static void 348static void
290fd_kill (int fd) 349fd_kill (EV_P_ int fd)
291{ 350{
292 struct ev_io *w; 351 struct ev_io *w;
293 352
294 printf ("killing fd %d\n", fd);//D
295 while ((w = anfds [fd].head)) 353 while ((w = (struct ev_io *)anfds [fd].head))
296 { 354 {
297 ev_io_stop (w); 355 ev_io_stop (EV_A_ w);
298 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
299 } 357 }
300} 358}
301 359
302/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
303static void 361static void
304fd_ebadf (void) 362fd_ebadf (EV_P)
305{ 363{
306 int fd; 364 int fd;
307 365
308 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
309 if (anfds [fd].events) 367 if (anfds [fd].events)
310 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
311 fd_kill (fd); 369 fd_kill (EV_A_ fd);
312} 370}
313 371
314/* called on ENOMEM in select/poll to kill some fds and retry */ 372/* called on ENOMEM in select/poll to kill some fds and retry */
315static void 373static void
316fd_enomem (void) 374fd_enomem (EV_P)
317{ 375{
318 int fd = anfdmax; 376 int fd;
319 377
320 while (fd--) 378 for (fd = anfdmax; fd--; )
321 if (anfds [fd].events) 379 if (anfds [fd].events)
322 { 380 {
323 close (fd);
324 fd_kill (fd); 381 fd_kill (EV_A_ fd);
325 return; 382 return;
326 } 383 }
327} 384}
328 385
386/* susually called after fork if method needs to re-arm all fds from scratch */
387static void
388fd_rearm_all (EV_P)
389{
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
399}
400
329/*****************************************************************************/ 401/*****************************************************************************/
330 402
331static struct ev_timer **timers;
332static int timermax, timercnt;
333
334static struct ev_periodic **periodics;
335static int periodicmax, periodiccnt;
336
337static void 403static void
338upheap (WT *timers, int k) 404upheap (WT *heap, int k)
339{ 405{
340 WT w = timers [k]; 406 WT w = heap [k];
341 407
342 while (k && timers [k >> 1]->at > w->at) 408 while (k && heap [k >> 1]->at > w->at)
343 { 409 {
344 timers [k] = timers [k >> 1]; 410 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 411 ((W)heap [k])->active = k + 1;
346 k >>= 1; 412 k >>= 1;
347 } 413 }
348 414
349 timers [k] = w; 415 heap [k] = w;
350 timers [k]->active = k + 1; 416 ((W)heap [k])->active = k + 1;
351 417
352} 418}
353 419
354static void 420static void
355downheap (WT *timers, int N, int k) 421downheap (WT *heap, int N, int k)
356{ 422{
357 WT w = timers [k]; 423 WT w = heap [k];
358 424
359 while (k < (N >> 1)) 425 while (k < (N >> 1))
360 { 426 {
361 int j = k << 1; 427 int j = k << 1;
362 428
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 430 ++j;
365 431
366 if (w->at <= timers [j]->at) 432 if (w->at <= heap [j]->at)
367 break; 433 break;
368 434
369 timers [k] = timers [j]; 435 heap [k] = heap [j];
370 timers [k]->active = k + 1; 436 ((W)heap [k])->active = k + 1;
371 k = j; 437 k = j;
372 } 438 }
373 439
374 timers [k] = w; 440 heap [k] = w;
375 timers [k]->active = k + 1; 441 ((W)heap [k])->active = k + 1;
376} 442}
377 443
378/*****************************************************************************/ 444/*****************************************************************************/
379 445
380typedef struct 446typedef struct
381{ 447{
382 struct ev_signal *head; 448 WL head;
383 sig_atomic_t volatile gotsig; 449 sig_atomic_t volatile gotsig;
384} ANSIG; 450} ANSIG;
385 451
386static ANSIG *signals; 452static ANSIG *signals;
387static int signalmax; 453static int signalmax;
403} 469}
404 470
405static void 471static void
406sighandler (int signum) 472sighandler (int signum)
407{ 473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
408 signals [signum - 1].gotsig = 1; 478 signals [signum - 1].gotsig = 1;
409 479
410 if (!gotsig) 480 if (!gotsig)
411 { 481 {
482 int old_errno = errno;
412 gotsig = 1; 483 gotsig = 1;
413 write (sigpipe [1], &signum, 1); 484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
414 } 486 }
415} 487}
416 488
417static void 489static void
418sigcb (struct ev_io *iow, int revents) 490sigcb (EV_P_ struct ev_io *iow, int revents)
419{ 491{
420 struct ev_signal *w; 492 WL w;
421 int signum; 493 int signum;
422 494
423 read (sigpipe [0], &revents, 1); 495 read (sigpipe [0], &revents, 1);
424 gotsig = 0; 496 gotsig = 0;
425 497
427 if (signals [signum].gotsig) 499 if (signals [signum].gotsig)
428 { 500 {
429 signals [signum].gotsig = 0; 501 signals [signum].gotsig = 0;
430 502
431 for (w = signals [signum].head; w; w = w->next) 503 for (w = signals [signum].head; w; w = w->next)
432 event ((W)w, EV_SIGNAL); 504 event (EV_A_ (W)w, EV_SIGNAL);
433 } 505 }
434} 506}
435 507
436static void 508static void
437siginit (void) 509siginit (EV_P)
438{ 510{
511#ifndef WIN32
439 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
440 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
441 514
442 /* rather than sort out wether we really need nb, set it */ 515 /* rather than sort out wether we really need nb, set it */
443 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
444 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
445 519
446 ev_io_set (&sigev, sigpipe [0], EV_READ); 520 ev_io_set (&sigev, sigpipe [0], EV_READ);
447 ev_io_start (&sigev); 521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
448} 523}
449 524
450/*****************************************************************************/ 525/*****************************************************************************/
451 526
452static struct ev_idle **idles; 527#ifndef WIN32
453static int idlemax, idlecnt;
454
455static struct ev_prepare **prepares;
456static int preparemax, preparecnt;
457
458static struct ev_check **checks;
459static int checkmax, checkcnt;
460
461/*****************************************************************************/
462 528
463static struct ev_child *childs [PID_HASHSIZE]; 529static struct ev_child *childs [PID_HASHSIZE];
464static struct ev_signal childev; 530static struct ev_signal childev;
465 531
466#ifndef WCONTINUED 532#ifndef WCONTINUED
467# define WCONTINUED 0 533# define WCONTINUED 0
468#endif 534#endif
469 535
470static void 536static void
471childcb (struct ev_signal *sw, int revents) 537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{ 538{
473 struct ev_child *w; 539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents)
553{
474 int pid, status; 554 int pid, status;
475 555
476 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
477 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 557 {
478 if (w->pid == pid || !w->pid) 558 /* make sure we are called again until all childs have been reaped */
479 { 559 event (EV_A_ (W)sw, EV_SIGNAL);
480 w->status = status; 560
481 event ((W)w, EV_CHILD); 561 child_reap (EV_A_ sw, pid, pid, status);
482 } 562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 }
483} 564}
565
566#endif
484 567
485/*****************************************************************************/ 568/*****************************************************************************/
486 569
570#if EV_USE_KQUEUE
571# include "ev_kqueue.c"
572#endif
487#if EV_USE_EPOLL 573#if EV_USE_EPOLL
488# include "ev_epoll.c" 574# include "ev_epoll.c"
489#endif 575#endif
490#if EV_USE_POLL 576#if EV_USE_POLL
491# include "ev_poll.c" 577# include "ev_poll.c"
504ev_version_minor (void) 590ev_version_minor (void)
505{ 591{
506 return EV_VERSION_MINOR; 592 return EV_VERSION_MINOR;
507} 593}
508 594
509/* return true if we are running with elevated privileges and ignore env variables */ 595/* return true if we are running with elevated privileges and should ignore env variables */
510static int 596static int
511enable_secure () 597enable_secure (void)
512{ 598{
599#ifdef WIN32
600 return 0;
601#else
513 return getuid () != geteuid () 602 return getuid () != geteuid ()
514 || getgid () != getegid (); 603 || getgid () != getegid ();
604#endif
515} 605}
516 606
517int ev_init (int methods) 607int
608ev_method (EV_P)
518{ 609{
610 return method;
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
519 if (!ev_method) 616 if (!method)
520 { 617 {
521#if EV_USE_MONOTONIC 618#if EV_USE_MONOTONIC
522 { 619 {
523 struct timespec ts; 620 struct timespec ts;
524 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
525 have_monotonic = 1; 622 have_monotonic = 1;
526 } 623 }
527#endif 624#endif
528 625
529 ev_now = ev_time (); 626 rt_now = ev_time ();
530 now = get_clock (); 627 mn_now = get_clock ();
531 now_floor = now; 628 now_floor = mn_now;
532 diff = ev_now - now; 629 rtmn_diff = rt_now - mn_now;
533
534 if (pipe (sigpipe))
535 return 0;
536 630
537 if (methods == EVMETHOD_AUTO) 631 if (methods == EVMETHOD_AUTO)
538 if (!enable_secure () && getenv ("LIBEV_METHODS")) 632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
539 methods = atoi (getenv ("LIBEV_METHODS")); 633 methods = atoi (getenv ("LIBEV_METHODS"));
540 else 634 else
541 methods = EVMETHOD_ANY; 635 methods = EVMETHOD_ANY;
542 636
543 ev_method = 0; 637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
544#if EV_USE_EPOLL 644#if EV_USE_EPOLL
545 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
546#endif 646#endif
547#if EV_USE_POLL 647#if EV_USE_POLL
548 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
549#endif 649#endif
550#if EV_USE_SELECT 650#if EV_USE_SELECT
551 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
552#endif 652#endif
653 }
654}
553 655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY
704struct ev_loop *
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1;
754#endif
755
756 loop_init (EV_A_ methods);
757
554 if (ev_method) 758 if (ev_method (EV_A))
555 { 759 {
556 ev_watcher_init (&sigev, sigcb); 760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
557 siginit (); 762 siginit (EV_A);
558 763
764#ifndef WIN32
559 ev_signal_init (&childev, childcb, SIGCHLD); 765 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI);
560 ev_signal_start (&childev); 767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif
561 } 770 }
771 else
772 default_loop = 0;
562 } 773 }
563 774
564 return ev_method; 775 return default_loop;
565} 776}
566 777
567/*****************************************************************************/
568
569void 778void
570ev_fork_prepare (void) 779ev_default_destroy (void)
571{ 780{
572 /* nop */ 781#if EV_MULTIPLICITY
573} 782 struct ev_loop *loop = default_loop;
574
575void
576ev_fork_parent (void)
577{
578 /* nop */
579}
580
581void
582ev_fork_child (void)
583{
584#if EV_USE_EPOLL
585 if (ev_method == EVMETHOD_EPOLL)
586 epoll_postfork_child ();
587#endif 783#endif
588 784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
589 ev_io_stop (&sigev); 789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795}
796
797void
798ev_default_fork (void)
799{
800#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
590 close (sigpipe [0]); 807 close (sigpipe [0]);
591 close (sigpipe [1]); 808 close (sigpipe [1]);
592 pipe (sigpipe); 809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
593 siginit (); 812 siginit (EV_A);
594} 813}
595 814
596/*****************************************************************************/ 815/*****************************************************************************/
597 816
598static void 817static void
599call_pending (void) 818call_pending (EV_P)
600{ 819{
601 int pri; 820 int pri;
602 821
603 for (pri = NUMPRI; pri--; ) 822 for (pri = NUMPRI; pri--; )
604 while (pendingcnt [pri]) 823 while (pendingcnt [pri])
606 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
607 826
608 if (p->w) 827 if (p->w)
609 { 828 {
610 p->w->pending = 0; 829 p->w->pending = 0;
611 p->w->cb (p->w, p->events); 830 p->w->cb (EV_A_ p->w, p->events);
612 } 831 }
613 } 832 }
614} 833}
615 834
616static void 835static void
617timers_reify (void) 836timers_reify (EV_P)
618{ 837{
619 while (timercnt && timers [0]->at <= now) 838 while (timercnt && ((WT)timers [0])->at <= mn_now)
620 { 839 {
621 struct ev_timer *w = timers [0]; 840 struct ev_timer *w = timers [0];
841
842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
622 843
623 /* first reschedule or stop timer */ 844 /* first reschedule or stop timer */
624 if (w->repeat) 845 if (w->repeat)
625 { 846 {
626 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
627 w->at = now + w->repeat; 848 ((WT)w)->at = mn_now + w->repeat;
628 downheap ((WT *)timers, timercnt, 0); 849 downheap ((WT *)timers, timercnt, 0);
629 } 850 }
630 else 851 else
631 ev_timer_stop (w); /* nonrepeating: stop timer */ 852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
632 853
633 event ((W)w, EV_TIMEOUT); 854 event (EV_A_ (W)w, EV_TIMEOUT);
634 } 855 }
635} 856}
636 857
637static void 858static void
638periodics_reify (void) 859periodics_reify (EV_P)
639{ 860{
640 while (periodiccnt && periodics [0]->at <= ev_now) 861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
641 { 862 {
642 struct ev_periodic *w = periodics [0]; 863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
643 866
644 /* first reschedule or stop timer */ 867 /* first reschedule or stop timer */
645 if (w->interval) 868 if (w->interval)
646 { 869 {
647 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
648 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
649 downheap ((WT *)periodics, periodiccnt, 0); 872 downheap ((WT *)periodics, periodiccnt, 0);
650 } 873 }
651 else 874 else
652 ev_periodic_stop (w); /* nonrepeating: stop timer */ 875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
653 876
654 event ((W)w, EV_PERIODIC); 877 event (EV_A_ (W)w, EV_PERIODIC);
655 } 878 }
656} 879}
657 880
658static void 881static void
659periodics_reschedule (ev_tstamp diff) 882periodics_reschedule (EV_P)
660{ 883{
661 int i; 884 int i;
662 885
663 /* adjust periodics after time jump */ 886 /* adjust periodics after time jump */
664 for (i = 0; i < periodiccnt; ++i) 887 for (i = 0; i < periodiccnt; ++i)
665 { 888 {
666 struct ev_periodic *w = periodics [i]; 889 struct ev_periodic *w = periodics [i];
667 890
668 if (w->interval) 891 if (w->interval)
669 { 892 {
670 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
671 894
672 if (fabs (diff) >= 1e-4) 895 if (fabs (diff) >= 1e-4)
673 { 896 {
674 ev_periodic_stop (w); 897 ev_periodic_stop (EV_A_ w);
675 ev_periodic_start (w); 898 ev_periodic_start (EV_A_ w);
676 899
677 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
678 } 901 }
679 } 902 }
680 } 903 }
681} 904}
682 905
683static int 906inline int
684time_update_monotonic (void) 907time_update_monotonic (EV_P)
685{ 908{
686 now = get_clock (); 909 mn_now = get_clock ();
687 910
688 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
689 { 912 {
690 ev_now = now + diff; 913 rt_now = rtmn_diff + mn_now;
691 return 0; 914 return 0;
692 } 915 }
693 else 916 else
694 { 917 {
695 now_floor = now; 918 now_floor = mn_now;
696 ev_now = ev_time (); 919 rt_now = ev_time ();
697 return 1; 920 return 1;
698 } 921 }
699} 922}
700 923
701static void 924static void
702time_update (void) 925time_update (EV_P)
703{ 926{
704 int i; 927 int i;
705 928
706#if EV_USE_MONOTONIC 929#if EV_USE_MONOTONIC
707 if (expect_true (have_monotonic)) 930 if (expect_true (have_monotonic))
708 { 931 {
709 if (time_update_monotonic ()) 932 if (time_update_monotonic (EV_A))
710 { 933 {
711 ev_tstamp odiff = diff; 934 ev_tstamp odiff = rtmn_diff;
712 935
713 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
714 { 937 {
715 diff = ev_now - now; 938 rtmn_diff = rt_now - mn_now;
716 939
717 if (fabs (odiff - diff) < MIN_TIMEJUMP) 940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
718 return; /* all is well */ 941 return; /* all is well */
719 942
720 ev_now = ev_time (); 943 rt_now = ev_time ();
721 now = get_clock (); 944 mn_now = get_clock ();
722 now_floor = now; 945 now_floor = mn_now;
723 } 946 }
724 947
725 periodics_reschedule (diff - odiff); 948 periodics_reschedule (EV_A);
726 /* no timer adjustment, as the monotonic clock doesn't jump */ 949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
727 } 951 }
728 } 952 }
729 else 953 else
730#endif 954#endif
731 { 955 {
732 ev_now = ev_time (); 956 rt_now = ev_time ();
733 957
734 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
735 { 959 {
736 periodics_reschedule (ev_now - now); 960 periodics_reschedule (EV_A);
737 961
738 /* adjust timers. this is easy, as the offset is the same for all */ 962 /* adjust timers. this is easy, as the offset is the same for all */
739 for (i = 0; i < timercnt; ++i) 963 for (i = 0; i < timercnt; ++i)
740 timers [i]->at += diff; 964 ((WT)timers [i])->at += rt_now - mn_now;
741 } 965 }
742 966
743 now = ev_now; 967 mn_now = rt_now;
744 } 968 }
745} 969}
746 970
747int ev_loop_done; 971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
748 976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
749void ev_loop (int flags) 986ev_loop (EV_P_ int flags)
750{ 987{
751 double block; 988 double block;
752 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
753 990
754 do 991 do
755 { 992 {
756 /* queue check watchers (and execute them) */ 993 /* queue check watchers (and execute them) */
757 if (expect_false (preparecnt)) 994 if (expect_false (preparecnt))
758 { 995 {
759 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
760 call_pending (); 997 call_pending (EV_A);
761 } 998 }
762 999
763 /* update fd-related kernel structures */ 1000 /* update fd-related kernel structures */
764 fd_reify (); 1001 fd_reify (EV_A);
765 1002
766 /* calculate blocking time */ 1003 /* calculate blocking time */
767 1004
768 /* we only need this for !monotonic clockor timers, but as we basically 1005 /* we only need this for !monotonic clockor timers, but as we basically
769 always have timers, we just calculate it always */ 1006 always have timers, we just calculate it always */
770#if EV_USE_MONOTONIC 1007#if EV_USE_MONOTONIC
771 if (expect_true (have_monotonic)) 1008 if (expect_true (have_monotonic))
772 time_update_monotonic (); 1009 time_update_monotonic (EV_A);
773 else 1010 else
774#endif 1011#endif
775 { 1012 {
776 ev_now = ev_time (); 1013 rt_now = ev_time ();
777 now = ev_now; 1014 mn_now = rt_now;
778 } 1015 }
779 1016
780 if (flags & EVLOOP_NONBLOCK || idlecnt) 1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
781 block = 0.; 1018 block = 0.;
782 else 1019 else
783 { 1020 {
784 block = MAX_BLOCKTIME; 1021 block = MAX_BLOCKTIME;
785 1022
786 if (timercnt) 1023 if (timercnt)
787 { 1024 {
788 ev_tstamp to = timers [0]->at - now + method_fudge; 1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
789 if (block > to) block = to; 1026 if (block > to) block = to;
790 } 1027 }
791 1028
792 if (periodiccnt) 1029 if (periodiccnt)
793 { 1030 {
794 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
795 if (block > to) block = to; 1032 if (block > to) block = to;
796 } 1033 }
797 1034
798 if (block < 0.) block = 0.; 1035 if (block < 0.) block = 0.;
799 } 1036 }
800 1037
801 method_poll (block); 1038 method_poll (EV_A_ block);
802 1039
803 /* update ev_now, do magic */ 1040 /* update rt_now, do magic */
804 time_update (); 1041 time_update (EV_A);
805 1042
806 /* queue pending timers and reschedule them */ 1043 /* queue pending timers and reschedule them */
807 timers_reify (); /* relative timers called last */ 1044 timers_reify (EV_A); /* relative timers called last */
808 periodics_reify (); /* absolute timers called first */ 1045 periodics_reify (EV_A); /* absolute timers called first */
809 1046
810 /* queue idle watchers unless io or timers are pending */ 1047 /* queue idle watchers unless io or timers are pending */
811 if (!pendingcnt) 1048 if (!pendingcnt)
812 queue_events ((W *)idles, idlecnt, EV_IDLE); 1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
813 1050
814 /* queue check watchers, to be executed first */ 1051 /* queue check watchers, to be executed first */
815 if (checkcnt) 1052 if (checkcnt)
816 queue_events ((W *)checks, checkcnt, EV_CHECK); 1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
817 1054
818 call_pending (); 1055 call_pending (EV_A);
819 } 1056 }
820 while (!ev_loop_done); 1057 while (activecnt && !loop_done);
821 1058
822 if (ev_loop_done != 2) 1059 if (loop_done != 2)
823 ev_loop_done = 0; 1060 loop_done = 0;
1061}
1062
1063void
1064ev_unloop (EV_P_ int how)
1065{
1066 loop_done = how;
824} 1067}
825 1068
826/*****************************************************************************/ 1069/*****************************************************************************/
827 1070
828static void 1071inline void
829wlist_add (WL *head, WL elem) 1072wlist_add (WL *head, WL elem)
830{ 1073{
831 elem->next = *head; 1074 elem->next = *head;
832 *head = elem; 1075 *head = elem;
833} 1076}
834 1077
835static void 1078inline void
836wlist_del (WL *head, WL elem) 1079wlist_del (WL *head, WL elem)
837{ 1080{
838 while (*head) 1081 while (*head)
839 { 1082 {
840 if (*head == elem) 1083 if (*head == elem)
845 1088
846 head = &(*head)->next; 1089 head = &(*head)->next;
847 } 1090 }
848} 1091}
849 1092
850static void 1093inline void
851ev_clear_pending (W w) 1094ev_clear_pending (EV_P_ W w)
852{ 1095{
853 if (w->pending) 1096 if (w->pending)
854 { 1097 {
855 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
856 w->pending = 0; 1099 w->pending = 0;
857 } 1100 }
858} 1101}
859 1102
860static void 1103inline void
861ev_start (W w, int active) 1104ev_start (EV_P_ W w, int active)
862{ 1105{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
863 w->active = active; 1109 w->active = active;
1110 ev_ref (EV_A);
864} 1111}
865 1112
866static void 1113inline void
867ev_stop (W w) 1114ev_stop (EV_P_ W w)
868{ 1115{
1116 ev_unref (EV_A);
869 w->active = 0; 1117 w->active = 0;
870} 1118}
871 1119
872/*****************************************************************************/ 1120/*****************************************************************************/
873 1121
874void 1122void
875ev_io_start (struct ev_io *w) 1123ev_io_start (EV_P_ struct ev_io *w)
876{ 1124{
877 int fd = w->fd; 1125 int fd = w->fd;
878 1126
879 if (ev_is_active (w)) 1127 if (ev_is_active (w))
880 return; 1128 return;
881 1129
882 assert (("ev_io_start called with negative fd", fd >= 0)); 1130 assert (("ev_io_start called with negative fd", fd >= 0));
883 1131
884 ev_start ((W)w, 1); 1132 ev_start (EV_A_ (W)w, 1);
885 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
886 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
887 1135
888 fd_change (fd); 1136 fd_change (EV_A_ fd);
889} 1137}
890 1138
891void 1139void
892ev_io_stop (struct ev_io *w) 1140ev_io_stop (EV_P_ struct ev_io *w)
893{ 1141{
894 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
895 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
896 return; 1144 return;
897 1145
898 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
899 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
900 1148
901 fd_change (w->fd); 1149 fd_change (EV_A_ w->fd);
902} 1150}
903 1151
904void 1152void
905ev_timer_start (struct ev_timer *w) 1153ev_timer_start (EV_P_ struct ev_timer *w)
906{ 1154{
907 if (ev_is_active (w)) 1155 if (ev_is_active (w))
908 return; 1156 return;
909 1157
910 w->at += now; 1158 ((WT)w)->at += mn_now;
911 1159
912 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
913 1161
914 ev_start ((W)w, ++timercnt); 1162 ev_start (EV_A_ (W)w, ++timercnt);
915 array_needsize (timers, timermax, timercnt, ); 1163 array_needsize (timers, timermax, timercnt, );
916 timers [timercnt - 1] = w; 1164 timers [timercnt - 1] = w;
917 upheap ((WT *)timers, timercnt - 1); 1165 upheap ((WT *)timers, timercnt - 1);
918}
919 1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168}
1169
920void 1170void
921ev_timer_stop (struct ev_timer *w) 1171ev_timer_stop (EV_P_ struct ev_timer *w)
922{ 1172{
923 ev_clear_pending ((W)w); 1173 ev_clear_pending (EV_A_ (W)w);
924 if (!ev_is_active (w)) 1174 if (!ev_is_active (w))
925 return; 1175 return;
926 1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
927 if (w->active < timercnt--) 1179 if (((W)w)->active < timercnt--)
928 { 1180 {
929 timers [w->active - 1] = timers [timercnt]; 1181 timers [((W)w)->active - 1] = timers [timercnt];
930 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
931 } 1183 }
932 1184
933 w->at = w->repeat; 1185 ((WT)w)->at = w->repeat;
934 1186
935 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
936} 1188}
937 1189
938void 1190void
939ev_timer_again (struct ev_timer *w) 1191ev_timer_again (EV_P_ struct ev_timer *w)
940{ 1192{
941 if (ev_is_active (w)) 1193 if (ev_is_active (w))
942 { 1194 {
943 if (w->repeat) 1195 if (w->repeat)
944 { 1196 {
945 w->at = now + w->repeat; 1197 ((WT)w)->at = mn_now + w->repeat;
946 downheap ((WT *)timers, timercnt, w->active - 1); 1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
947 } 1199 }
948 else 1200 else
949 ev_timer_stop (w); 1201 ev_timer_stop (EV_A_ w);
950 } 1202 }
951 else if (w->repeat) 1203 else if (w->repeat)
952 ev_timer_start (w); 1204 ev_timer_start (EV_A_ w);
953} 1205}
954 1206
955void 1207void
956ev_periodic_start (struct ev_periodic *w) 1208ev_periodic_start (EV_P_ struct ev_periodic *w)
957{ 1209{
958 if (ev_is_active (w)) 1210 if (ev_is_active (w))
959 return; 1211 return;
960 1212
961 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
962 1214
963 /* this formula differs from the one in periodic_reify because we do not always round up */ 1215 /* this formula differs from the one in periodic_reify because we do not always round up */
964 if (w->interval) 1216 if (w->interval)
965 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
966 1218
967 ev_start ((W)w, ++periodiccnt); 1219 ev_start (EV_A_ (W)w, ++periodiccnt);
968 array_needsize (periodics, periodicmax, periodiccnt, ); 1220 array_needsize (periodics, periodicmax, periodiccnt, );
969 periodics [periodiccnt - 1] = w; 1221 periodics [periodiccnt - 1] = w;
970 upheap ((WT *)periodics, periodiccnt - 1); 1222 upheap ((WT *)periodics, periodiccnt - 1);
971}
972 1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225}
1226
973void 1227void
974ev_periodic_stop (struct ev_periodic *w) 1228ev_periodic_stop (EV_P_ struct ev_periodic *w)
975{ 1229{
976 ev_clear_pending ((W)w); 1230 ev_clear_pending (EV_A_ (W)w);
977 if (!ev_is_active (w)) 1231 if (!ev_is_active (w))
978 return; 1232 return;
979 1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
980 if (w->active < periodiccnt--) 1236 if (((W)w)->active < periodiccnt--)
981 { 1237 {
982 periodics [w->active - 1] = periodics [periodiccnt]; 1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
983 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
984 } 1240 }
985 1241
986 ev_stop ((W)w); 1242 ev_stop (EV_A_ (W)w);
987} 1243}
988 1244
989void 1245void
990ev_signal_start (struct ev_signal *w) 1246ev_idle_start (EV_P_ struct ev_idle *w)
991{ 1247{
992 if (ev_is_active (w)) 1248 if (ev_is_active (w))
993 return; 1249 return;
994 1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265}
1266
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310
1311#ifndef SA_RESTART
1312# define SA_RESTART 0
1313#endif
1314
1315void
1316ev_signal_start (EV_P_ struct ev_signal *w)
1317{
1318#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320#endif
1321 if (ev_is_active (w))
1322 return;
1323
995 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
996 1325
997 ev_start ((W)w, 1); 1326 ev_start (EV_A_ (W)w, 1);
998 array_needsize (signals, signalmax, w->signum, signals_init); 1327 array_needsize (signals, signalmax, w->signum, signals_init);
999 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1000 1329
1001 if (!w->next) 1330 if (!((WL)w)->next)
1002 { 1331 {
1332#if WIN32
1333 signal (w->signum, sighandler);
1334#else
1003 struct sigaction sa; 1335 struct sigaction sa;
1004 sa.sa_handler = sighandler; 1336 sa.sa_handler = sighandler;
1005 sigfillset (&sa.sa_mask); 1337 sigfillset (&sa.sa_mask);
1006 sa.sa_flags = 0; 1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1007 sigaction (w->signum, &sa, 0); 1339 sigaction (w->signum, &sa, 0);
1340#endif
1008 } 1341 }
1009} 1342}
1010 1343
1011void 1344void
1012ev_signal_stop (struct ev_signal *w) 1345ev_signal_stop (EV_P_ struct ev_signal *w)
1013{ 1346{
1014 ev_clear_pending ((W)w); 1347 ev_clear_pending (EV_A_ (W)w);
1015 if (!ev_is_active (w)) 1348 if (!ev_is_active (w))
1016 return; 1349 return;
1017 1350
1018 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1019 ev_stop ((W)w); 1352 ev_stop (EV_A_ (W)w);
1020 1353
1021 if (!signals [w->signum - 1].head) 1354 if (!signals [w->signum - 1].head)
1022 signal (w->signum, SIG_DFL); 1355 signal (w->signum, SIG_DFL);
1023} 1356}
1024 1357
1025void 1358void
1026ev_idle_start (struct ev_idle *w) 1359ev_child_start (EV_P_ struct ev_child *w)
1027{ 1360{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
1028 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1029 return; 1365 return;
1030 1366
1031 ev_start ((W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, 1);
1032 array_needsize (idles, idlemax, idlecnt, ); 1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1033 idles [idlecnt - 1] = w;
1034} 1369}
1035 1370
1036void 1371void
1037ev_idle_stop (struct ev_idle *w) 1372ev_child_stop (EV_P_ struct ev_child *w)
1038{ 1373{
1039 ev_clear_pending ((W)w); 1374 ev_clear_pending (EV_A_ (W)w);
1040 if (ev_is_active (w)) 1375 if (ev_is_active (w))
1041 return; 1376 return;
1042 1377
1043 idles [w->active - 1] = idles [--idlecnt];
1044 ev_stop ((W)w);
1045}
1046
1047void
1048ev_prepare_start (struct ev_prepare *w)
1049{
1050 if (ev_is_active (w))
1051 return;
1052
1053 ev_start ((W)w, ++preparecnt);
1054 array_needsize (prepares, preparemax, preparecnt, );
1055 prepares [preparecnt - 1] = w;
1056}
1057
1058void
1059ev_prepare_stop (struct ev_prepare *w)
1060{
1061 ev_clear_pending ((W)w);
1062 if (ev_is_active (w))
1063 return;
1064
1065 prepares [w->active - 1] = prepares [--preparecnt];
1066 ev_stop ((W)w);
1067}
1068
1069void
1070ev_check_start (struct ev_check *w)
1071{
1072 if (ev_is_active (w))
1073 return;
1074
1075 ev_start ((W)w, ++checkcnt);
1076 array_needsize (checks, checkmax, checkcnt, );
1077 checks [checkcnt - 1] = w;
1078}
1079
1080void
1081ev_check_stop (struct ev_check *w)
1082{
1083 ev_clear_pending ((W)w);
1084 if (ev_is_active (w))
1085 return;
1086
1087 checks [w->active - 1] = checks [--checkcnt];
1088 ev_stop ((W)w);
1089}
1090
1091void
1092ev_child_start (struct ev_child *w)
1093{
1094 if (ev_is_active (w))
1095 return;
1096
1097 ev_start ((W)w, 1);
1098 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1099}
1100
1101void
1102ev_child_stop (struct ev_child *w)
1103{
1104 ev_clear_pending ((W)w);
1105 if (ev_is_active (w))
1106 return;
1107
1108 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1109 ev_stop ((W)w); 1379 ev_stop (EV_A_ (W)w);
1110} 1380}
1111 1381
1112/*****************************************************************************/ 1382/*****************************************************************************/
1113 1383
1114struct ev_once 1384struct ev_once
1118 void (*cb)(int revents, void *arg); 1388 void (*cb)(int revents, void *arg);
1119 void *arg; 1389 void *arg;
1120}; 1390};
1121 1391
1122static void 1392static void
1123once_cb (struct ev_once *once, int revents) 1393once_cb (EV_P_ struct ev_once *once, int revents)
1124{ 1394{
1125 void (*cb)(int revents, void *arg) = once->cb; 1395 void (*cb)(int revents, void *arg) = once->cb;
1126 void *arg = once->arg; 1396 void *arg = once->arg;
1127 1397
1128 ev_io_stop (&once->io); 1398 ev_io_stop (EV_A_ &once->io);
1129 ev_timer_stop (&once->to); 1399 ev_timer_stop (EV_A_ &once->to);
1130 free (once); 1400 free (once);
1131 1401
1132 cb (revents, arg); 1402 cb (revents, arg);
1133} 1403}
1134 1404
1135static void 1405static void
1136once_cb_io (struct ev_io *w, int revents) 1406once_cb_io (EV_P_ struct ev_io *w, int revents)
1137{ 1407{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1139} 1409}
1140 1410
1141static void 1411static void
1142once_cb_to (struct ev_timer *w, int revents) 1412once_cb_to (EV_P_ struct ev_timer *w, int revents)
1143{ 1413{
1144 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1145} 1415}
1146 1416
1147void 1417void
1148ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1149{ 1419{
1150 struct ev_once *once = malloc (sizeof (struct ev_once)); 1420 struct ev_once *once = malloc (sizeof (struct ev_once));
1151 1421
1152 if (!once) 1422 if (!once)
1153 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1158 1428
1159 ev_watcher_init (&once->io, once_cb_io); 1429 ev_watcher_init (&once->io, once_cb_io);
1160 if (fd >= 0) 1430 if (fd >= 0)
1161 { 1431 {
1162 ev_io_set (&once->io, fd, events); 1432 ev_io_set (&once->io, fd, events);
1163 ev_io_start (&once->io); 1433 ev_io_start (EV_A_ &once->io);
1164 } 1434 }
1165 1435
1166 ev_watcher_init (&once->to, once_cb_to); 1436 ev_watcher_init (&once->to, once_cb_to);
1167 if (timeout >= 0.) 1437 if (timeout >= 0.)
1168 { 1438 {
1169 ev_timer_set (&once->to, timeout, 0.); 1439 ev_timer_set (&once->to, timeout, 0.);
1170 ev_timer_start (&once->to); 1440 ev_timer_start (EV_A_ &once->to);
1171 } 1441 }
1172 } 1442 }
1173} 1443}
1174 1444
1175/*****************************************************************************/
1176
1177#if 0
1178
1179struct ev_io wio;
1180
1181static void
1182sin_cb (struct ev_io *w, int revents)
1183{
1184 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1185}
1186
1187static void
1188ocb (struct ev_timer *w, int revents)
1189{
1190 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1191 ev_timer_stop (w);
1192 ev_timer_start (w);
1193}
1194
1195static void
1196scb (struct ev_signal *w, int revents)
1197{
1198 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1199 ev_io_stop (&wio);
1200 ev_io_start (&wio);
1201}
1202
1203static void
1204gcb (struct ev_signal *w, int revents)
1205{
1206 fprintf (stderr, "generic %x\n", revents);
1207
1208}
1209
1210int main (void)
1211{
1212 ev_init (0);
1213
1214 ev_io_init (&wio, sin_cb, 0, EV_READ);
1215 ev_io_start (&wio);
1216
1217 struct ev_timer t[10000];
1218
1219#if 0
1220 int i;
1221 for (i = 0; i < 10000; ++i)
1222 {
1223 struct ev_timer *w = t + i;
1224 ev_watcher_init (w, ocb, i);
1225 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1226 ev_timer_start (w);
1227 if (drand48 () < 0.5)
1228 ev_timer_stop (w);
1229 }
1230#endif
1231
1232 struct ev_timer t1;
1233 ev_timer_init (&t1, ocb, 5, 10);
1234 ev_timer_start (&t1);
1235
1236 struct ev_signal sig;
1237 ev_signal_init (&sig, scb, SIGQUIT);
1238 ev_signal_start (&sig);
1239
1240 struct ev_check cw;
1241 ev_check_init (&cw, gcb);
1242 ev_check_start (&cw);
1243
1244 struct ev_idle iw;
1245 ev_idle_init (&iw, gcb);
1246 ev_idle_start (&iw);
1247
1248 ev_loop (0);
1249
1250 return 0;
1251}
1252
1253#endif
1254
1255
1256
1257

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines