ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.420 by root, Wed Apr 18 05:44:42 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
111#ifndef _WIN32 199#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 200# include <sys/time.h>
114# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
115#else 203#else
204# include <io.h>
116# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 206# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
120# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
121#endif 260# endif
122 261#endif
123/**/
124 262
125#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
126# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
127#endif 269#endif
128 270
129#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
131#endif 281#endif
132 282
133#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 285#endif
136 286
137#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
138# ifdef _WIN32 288# ifdef _WIN32
139# define EV_USE_POLL 0 289# define EV_USE_POLL 0
140# else 290# else
141# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 292# endif
143#endif 293#endif
144 294
145#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
146# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
147#endif 301#endif
148 302
149#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
151#endif 305#endif
152 306
153#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 308# define EV_USE_PORT 0
155#endif 309#endif
156 310
157/**/ 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
158 318
159/* darwin simply cannot be helped */ 319#ifndef EV_PID_HASHSIZE
160#ifdef __APPLE__ 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
161# undef EV_USE_POLL 379# undef EV_USE_POLL
162# undef EV_USE_KQUEUE 380# define EV_USE_POLL 0
163#endif 381#endif
164 382
165#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
170#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
173#endif 391#endif
174 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
175#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 416# include <winsock.h>
177#endif 417#endif
178 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
179/**/ 457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
180 471
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
185 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
186#ifdef EV_H 509#ifndef ECB_H
187# include EV_H 510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
188#else 526#else
189# include "ev.h" 527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
190#endif 542 #endif
543#endif
191 544
192#if __GNUC__ >= 3 545/*****************************************************************************/
193# define expect(expr,value) __builtin_expect ((expr),(value)) 546
194# define inline static inline 547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
195#else 649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
196# define expect(expr,value) (expr) 678 #define ecb_expect(expr,value) (expr)
197# define inline static 679 #define ecb_prefetch(addr,rw,locality)
198#endif 680#endif
199 681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
200#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
202 713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
960#define inline_size ecb_inline
961
962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
965# define inline_speed static noinline
966#endif
967
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
972#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
205 975
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
208 978
209typedef struct ev_watcher *W; 979typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 980typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
212 982
983#define ev_active(w) ((W)(w))->active
984#define ev_at(w) ((WT)(w))->at
985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
992#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
1004#endif
214 1005
215#ifdef _WIN32 1006#ifdef _WIN32
216# include "ev_win32.c" 1007# include "ev_win32.c"
217#endif 1008#endif
218 1009
219/*****************************************************************************/ 1010/*****************************************************************************/
220 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
221static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
222 1111
1112void ecb_cold
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
224{ 1114{
225 syserr_cb = cb; 1115 syserr_cb = cb;
226} 1116}
227 1117
228static void 1118static void noinline ecb_cold
229syserr (const char *msg) 1119ev_syserr (const char *msg)
230{ 1120{
231 if (!msg) 1121 if (!msg)
232 msg = "(libev) system error"; 1122 msg = "(libev) system error";
233 1123
234 if (syserr_cb) 1124 if (syserr_cb)
235 syserr_cb (msg); 1125 syserr_cb (msg);
236 else 1126 else
237 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
238 perror (msg); 1134 perror (msg);
1135#endif
239 abort (); 1136 abort ();
240 } 1137 }
241} 1138}
242 1139
1140static void *
1141ev_realloc_emul (void *ptr, long size)
1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
1146 /* some systems, notably openbsd and darwin, fail to properly
1147 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 * the single unix specification, so work around them here.
1149 */
1150
1151 if (size)
1152 return realloc (ptr, size);
1153
1154 free (ptr);
1155 return 0;
1156#endif
1157}
1158
243static void *(*alloc)(void *ptr, long size); 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
244 1160
1161void ecb_cold
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
246{ 1163{
247 alloc = cb; 1164 alloc = cb;
248} 1165}
249 1166
250static void * 1167inline_speed void *
251ev_realloc (void *ptr, long size) 1168ev_realloc (void *ptr, long size)
252{ 1169{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1170 ptr = alloc (ptr, size);
254 1171
255 if (!ptr && size) 1172 if (!ptr && size)
256 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
258 abort (); 1179 abort ();
259 } 1180 }
260 1181
261 return ptr; 1182 return ptr;
262} 1183}
264#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
266 1187
267/*****************************************************************************/ 1188/*****************************************************************************/
268 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
269typedef struct 1194typedef struct
270{ 1195{
271 WL head; 1196 WL head;
272 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
274#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
275 SOCKET handle; 1205 SOCKET handle;
276#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
277} ANFD; 1210} ANFD;
278 1211
1212/* stores the pending event set for a given watcher */
279typedef struct 1213typedef struct
280{ 1214{
281 W w; 1215 W w;
282 int events; 1216 int events; /* the pending event set for the given watcher */
283} ANPENDING; 1217} ANPENDING;
1218
1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
1221typedef struct
1222{
1223 WL head;
1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
1245#endif
284 1246
285#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
286 1248
287 struct ev_loop 1249 struct ev_loop
288 { 1250 {
293 #undef VAR 1255 #undef VAR
294 }; 1256 };
295 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
296 1258
297 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
298 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
299 1261
300#else 1262#else
301 1263
302 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
303 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
304 #include "ev_vars.h" 1266 #include "ev_vars.h"
305 #undef VAR 1267 #undef VAR
306 1268
307 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
308 1270
309#endif 1271#endif
310 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
311/*****************************************************************************/ 1285/*****************************************************************************/
312 1286
1287#ifndef EV_HAVE_EV_TIME
313ev_tstamp 1288ev_tstamp
314ev_time (void) 1289ev_time (void) EV_THROW
315{ 1290{
316#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
317 struct timespec ts; 1294 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 1297 }
1298#endif
1299
321 struct timeval tv; 1300 struct timeval tv;
322 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 1303}
1304#endif
326 1305
327inline ev_tstamp 1306inline_size ev_tstamp
328get_clock (void) 1307get_clock (void)
329{ 1308{
330#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
332 { 1311 {
339 return ev_time (); 1318 return ev_time ();
340} 1319}
341 1320
342#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
343ev_tstamp 1322ev_tstamp
344ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
345{ 1324{
346 return ev_rt_now; 1325 return ev_rt_now;
347} 1326}
348#endif 1327#endif
349 1328
350#define array_roundsize(type,n) (((n) | 4) & ~3) 1329void
1330ev_sleep (ev_tstamp delay) EV_THROW
1331{
1332 if (delay > 0.)
1333 {
1334#if EV_USE_NANOSLEEP
1335 struct timespec ts;
1336
1337 EV_TS_SET (ts, delay);
1338 nanosleep (&ts, 0);
1339#elif defined _WIN32
1340 Sleep ((unsigned long)(delay * 1e3));
1341#else
1342 struct timeval tv;
1343
1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1345 /* something not guaranteed by newer posix versions, but guaranteed */
1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
1348 select (0, 0, 0, 0, &tv);
1349#endif
1350 }
1351}
1352
1353/*****************************************************************************/
1354
1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356
1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
1360array_nextsize (int elem, int cur, int cnt)
1361{
1362 int ncur = cur + 1;
1363
1364 do
1365 ncur <<= 1;
1366 while (cnt > ncur);
1367
1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1370 {
1371 ncur *= elem;
1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1373 ncur = ncur - sizeof (void *) * 4;
1374 ncur /= elem;
1375 }
1376
1377 return ncur;
1378}
1379
1380static void * noinline ecb_cold
1381array_realloc (int elem, void *base, int *cur, int cnt)
1382{
1383 *cur = array_nextsize (elem, *cur, cnt);
1384 return ev_realloc (base, elem * *cur);
1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 1389
352#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 1391 if (expect_false ((cnt) > (cur))) \
354 { \ 1392 { \
355 int newcnt = cur; \ 1393 int ecb_unused ocur_ = (cur); \
356 do \ 1394 (base) = (type *)array_realloc \
357 { \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 1397 }
366 1398
1399#if 0
367#define array_slim(type,stem) \ 1400#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1401 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 1402 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1403 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1404 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 1406 }
1407#endif
374 1408
375#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 1411
378/*****************************************************************************/ 1412/*****************************************************************************/
379 1413
380static void 1414/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 1417{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 1418}
392 1419
393void 1420void noinline
394ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
395{ 1422{
396 W w_ = (W)w; 1423 W w_ = (W)w;
1424 int pri = ABSPRI (w_);
397 1425
398 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
1427 pendings [pri][w_->pending - 1].events |= revents;
1428 else
399 { 1429 {
1430 w_->pending = ++pendingcnt [pri];
1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1432 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1433 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 1434 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 1435}
409 1436
410static void 1437inline_speed void
1438feed_reverse (EV_P_ W w)
1439{
1440 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1441 rfeeds [rfeedcnt++] = w;
1442}
1443
1444inline_size void
1445feed_reverse_done (EV_P_ int revents)
1446{
1447 do
1448 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1449 while (rfeedcnt);
1450}
1451
1452inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 1453queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 1454{
413 int i; 1455 int i;
414 1456
415 for (i = 0; i < eventcnt; ++i) 1457 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 1458 ev_feed_event (EV_A_ events [i], type);
417} 1459}
418 1460
1461/*****************************************************************************/
1462
419inline void 1463inline_speed void
420fd_event (EV_P_ int fd, int revents) 1464fd_event_nocheck (EV_P_ int fd, int revents)
421{ 1465{
422 ANFD *anfd = anfds + fd; 1466 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 1467 ev_io *w;
424 1468
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1469 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 1470 {
427 int ev = w->events & revents; 1471 int ev = w->events & revents;
428 1472
429 if (ev) 1473 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 1474 ev_feed_event (EV_A_ (W)w, ev);
431 } 1475 }
432} 1476}
433 1477
1478/* do not submit kernel events for fds that have reify set */
1479/* because that means they changed while we were polling for new events */
1480inline_speed void
1481fd_event (EV_P_ int fd, int revents)
1482{
1483 ANFD *anfd = anfds + fd;
1484
1485 if (expect_true (!anfd->reify))
1486 fd_event_nocheck (EV_A_ fd, revents);
1487}
1488
434void 1489void
435ev_feed_fd_event (EV_P_ int fd, int revents) 1490ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
436{ 1491{
1492 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 1493 fd_event_nocheck (EV_A_ fd, revents);
438} 1494}
439 1495
440/*****************************************************************************/ 1496/* make sure the external fd watch events are in-sync */
441 1497/* with the kernel/libev internal state */
442inline void 1498inline_size void
443fd_reify (EV_P) 1499fd_reify (EV_P)
444{ 1500{
445 int i; 1501 int i;
446 1502
1503#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
447 for (i = 0; i < fdchangecnt; ++i) 1504 for (i = 0; i < fdchangecnt; ++i)
448 { 1505 {
449 int fd = fdchanges [i]; 1506 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 1507 ANFD *anfd = anfds + fd;
451 struct ev_io *w;
452 1508
453 int events = 0; 1509 if (anfd->reify & EV__IOFDSET && anfd->head)
454
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
456 events |= w->events;
457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 { 1510 {
1511 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1512
1513 if (handle != anfd->handle)
1514 {
461 unsigned long argp; 1515 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 1516
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1517 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1518
1519 /* handle changed, but fd didn't - we need to do it in two steps */
1520 backend_modify (EV_A_ fd, anfd->events, 0);
1521 anfd->events = 0;
1522 anfd->handle = handle;
1523 }
464 } 1524 }
1525 }
465#endif 1526#endif
466 1527
1528 for (i = 0; i < fdchangecnt; ++i)
1529 {
1530 int fd = fdchanges [i];
1531 ANFD *anfd = anfds + fd;
1532 ev_io *w;
1533
1534 unsigned char o_events = anfd->events;
1535 unsigned char o_reify = anfd->reify;
1536
467 anfd->reify = 0; 1537 anfd->reify = 0;
468 1538
469 method_modify (EV_A_ fd, anfd->events, events); 1539 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1540 {
470 anfd->events = events; 1541 anfd->events = 0;
1542
1543 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1544 anfd->events |= (unsigned char)w->events;
1545
1546 if (o_events != anfd->events)
1547 o_reify = EV__IOFDSET; /* actually |= */
1548 }
1549
1550 if (o_reify & EV__IOFDSET)
1551 backend_modify (EV_A_ fd, o_events, anfd->events);
471 } 1552 }
472 1553
473 fdchangecnt = 0; 1554 fdchangecnt = 0;
474} 1555}
475 1556
476static void 1557/* something about the given fd changed */
1558inline_size void
477fd_change (EV_P_ int fd) 1559fd_change (EV_P_ int fd, int flags)
478{ 1560{
479 if (expect_false (anfds [fd].reify)) 1561 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 1562 anfds [fd].reify |= flags;
483 1563
1564 if (expect_true (!reify))
1565 {
484 ++fdchangecnt; 1566 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1567 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 1568 fdchanges [fdchangecnt - 1] = fd;
1569 }
487} 1570}
488 1571
489static void 1572/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1573inline_speed void ecb_cold
490fd_kill (EV_P_ int fd) 1574fd_kill (EV_P_ int fd)
491{ 1575{
492 struct ev_io *w; 1576 ev_io *w;
493 1577
494 while ((w = (struct ev_io *)anfds [fd].head)) 1578 while ((w = (ev_io *)anfds [fd].head))
495 { 1579 {
496 ev_io_stop (EV_A_ w); 1580 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1581 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 1582 }
499} 1583}
500 1584
501inline int 1585/* check whether the given fd is actually valid, for error recovery */
1586inline_size int ecb_cold
502fd_valid (int fd) 1587fd_valid (int fd)
503{ 1588{
504#ifdef _WIN32 1589#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 1590 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
506#else 1591#else
507 return fcntl (fd, F_GETFD) != -1; 1592 return fcntl (fd, F_GETFD) != -1;
508#endif 1593#endif
509} 1594}
510 1595
511/* called on EBADF to verify fds */ 1596/* called on EBADF to verify fds */
512static void 1597static void noinline ecb_cold
513fd_ebadf (EV_P) 1598fd_ebadf (EV_P)
514{ 1599{
515 int fd; 1600 int fd;
516 1601
517 for (fd = 0; fd < anfdmax; ++fd) 1602 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1603 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 1604 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 1605 fd_kill (EV_A_ fd);
521} 1606}
522 1607
523/* called on ENOMEM in select/poll to kill some fds and retry */ 1608/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 1609static void noinline ecb_cold
525fd_enomem (EV_P) 1610fd_enomem (EV_P)
526{ 1611{
527 int fd; 1612 int fd;
528 1613
529 for (fd = anfdmax; fd--; ) 1614 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 1615 if (anfds [fd].events)
531 { 1616 {
532 fd_kill (EV_A_ fd); 1617 fd_kill (EV_A_ fd);
533 return; 1618 break;
534 } 1619 }
535} 1620}
536 1621
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1622/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1623static void noinline
539fd_rearm_all (EV_P) 1624fd_rearm_all (EV_P)
540{ 1625{
541 int fd; 1626 int fd;
542 1627
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1628 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1629 if (anfds [fd].events)
546 { 1630 {
547 anfds [fd].events = 0; 1631 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1632 anfds [fd].emask = 0;
1633 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1634 }
550} 1635}
551 1636
552/*****************************************************************************/ 1637/* used to prepare libev internal fd's */
553 1638/* this is not fork-safe */
554static void
555upheap (WT *heap, int k)
556{
557 WT w = heap [k];
558
559 while (k && heap [k >> 1]->at > w->at)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 }
565
566 heap [k] = w;
567 ((W)heap [k])->active = k + 1;
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 {
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593}
594
595inline void 1639inline_speed void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
602/*****************************************************************************/
603
604typedef struct
605{
606 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG;
609
610static ANSIG *signals;
611static int signalmax;
612
613static int sigpipe [2];
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616
617static void
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1640fd_intern (int fd)
682{ 1641{
683#ifdef _WIN32 1642#ifdef _WIN32
684 int arg = 1; 1643 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1644 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
686#else 1645#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1646 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1647 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1648#endif
690} 1649}
691 1650
1651/*****************************************************************************/
1652
1653/*
1654 * the heap functions want a real array index. array index 0 is guaranteed to not
1655 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1656 * the branching factor of the d-tree.
1657 */
1658
1659/*
1660 * at the moment we allow libev the luxury of two heaps,
1661 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1662 * which is more cache-efficient.
1663 * the difference is about 5% with 50000+ watchers.
1664 */
1665#if EV_USE_4HEAP
1666
1667#define DHEAP 4
1668#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1669#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1670#define UPHEAP_DONE(p,k) ((p) == (k))
1671
1672/* away from the root */
1673inline_speed void
1674downheap (ANHE *heap, int N, int k)
1675{
1676 ANHE he = heap [k];
1677 ANHE *E = heap + N + HEAP0;
1678
1679 for (;;)
1680 {
1681 ev_tstamp minat;
1682 ANHE *minpos;
1683 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1684
1685 /* find minimum child */
1686 if (expect_true (pos + DHEAP - 1 < E))
1687 {
1688 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1691 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1692 }
1693 else if (pos < E)
1694 {
1695 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1696 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1697 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1698 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1699 }
1700 else
1701 break;
1702
1703 if (ANHE_at (he) <= minat)
1704 break;
1705
1706 heap [k] = *minpos;
1707 ev_active (ANHE_w (*minpos)) = k;
1708
1709 k = minpos - heap;
1710 }
1711
1712 heap [k] = he;
1713 ev_active (ANHE_w (he)) = k;
1714}
1715
1716#else /* 4HEAP */
1717
1718#define HEAP0 1
1719#define HPARENT(k) ((k) >> 1)
1720#define UPHEAP_DONE(p,k) (!(p))
1721
1722/* away from the root */
1723inline_speed void
1724downheap (ANHE *heap, int N, int k)
1725{
1726 ANHE he = heap [k];
1727
1728 for (;;)
1729 {
1730 int c = k << 1;
1731
1732 if (c >= N + HEAP0)
1733 break;
1734
1735 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1736 ? 1 : 0;
1737
1738 if (ANHE_at (he) <= ANHE_at (heap [c]))
1739 break;
1740
1741 heap [k] = heap [c];
1742 ev_active (ANHE_w (heap [k])) = k;
1743
1744 k = c;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750#endif
1751
1752/* towards the root */
1753inline_speed void
1754upheap (ANHE *heap, int k)
1755{
1756 ANHE he = heap [k];
1757
1758 for (;;)
1759 {
1760 int p = HPARENT (k);
1761
1762 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1763 break;
1764
1765 heap [k] = heap [p];
1766 ev_active (ANHE_w (heap [k])) = k;
1767 k = p;
1768 }
1769
1770 heap [k] = he;
1771 ev_active (ANHE_w (he)) = k;
1772}
1773
1774/* move an element suitably so it is in a correct place */
1775inline_size void
1776adjustheap (ANHE *heap, int N, int k)
1777{
1778 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1779 upheap (heap, k);
1780 else
1781 downheap (heap, N, k);
1782}
1783
1784/* rebuild the heap: this function is used only once and executed rarely */
1785inline_size void
1786reheap (ANHE *heap, int N)
1787{
1788 int i;
1789
1790 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1791 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1792 for (i = 0; i < N; ++i)
1793 upheap (heap, i + HEAP0);
1794}
1795
1796/*****************************************************************************/
1797
1798/* associate signal watchers to a signal signal */
1799typedef struct
1800{
1801 EV_ATOMIC_T pending;
1802#if EV_MULTIPLICITY
1803 EV_P;
1804#endif
1805 WL head;
1806} ANSIG;
1807
1808static ANSIG signals [EV_NSIG - 1];
1809
1810/*****************************************************************************/
1811
1812#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1813
1814static void noinline ecb_cold
1815evpipe_init (EV_P)
1816{
1817 if (!ev_is_active (&pipe_w))
1818 {
1819# if EV_USE_EVENTFD
1820 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1821 if (evfd < 0 && errno == EINVAL)
1822 evfd = eventfd (0, 0);
1823
1824 if (evfd >= 0)
1825 {
1826 evpipe [0] = -1;
1827 fd_intern (evfd); /* doing it twice doesn't hurt */
1828 ev_io_set (&pipe_w, evfd, EV_READ);
1829 }
1830 else
1831# endif
1832 {
1833 while (pipe (evpipe))
1834 ev_syserr ("(libev) error creating signal/async pipe");
1835
1836 fd_intern (evpipe [0]);
1837 fd_intern (evpipe [1]);
1838 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1839 }
1840
1841 ev_io_start (EV_A_ &pipe_w);
1842 ev_unref (EV_A); /* watcher should not keep loop alive */
1843 }
1844}
1845
1846inline_speed void
1847evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1848{
1849 if (expect_true (*flag))
1850 return;
1851
1852 *flag = 1;
1853
1854 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1855
1856 pipe_write_skipped = 1;
1857
1858 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1859
1860 if (pipe_write_wanted)
1861 {
1862 int old_errno;
1863
1864 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1865
1866 old_errno = errno; /* save errno because write will clobber it */
1867
1868#if EV_USE_EVENTFD
1869 if (evfd >= 0)
1870 {
1871 uint64_t counter = 1;
1872 write (evfd, &counter, sizeof (uint64_t));
1873 }
1874 else
1875#endif
1876 {
1877 /* win32 people keep sending patches that change this write() to send() */
1878 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1879 /* so when you think this write should be a send instead, please find out */
1880 /* where your send() is from - it's definitely not the microsoft send, and */
1881 /* tell me. thank you. */
1882 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1883 /* check the ev documentation on how to use this flag */
1884 write (evpipe [1], &(evpipe [1]), 1);
1885 }
1886
1887 errno = old_errno;
1888 }
1889}
1890
1891/* called whenever the libev signal pipe */
1892/* got some events (signal, async) */
692static void 1893static void
693siginit (EV_P) 1894pipecb (EV_P_ ev_io *iow, int revents)
694{ 1895{
695 fd_intern (sigpipe [0]); 1896 int i;
696 fd_intern (sigpipe [1]);
697 1897
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1898 if (revents & EV_READ)
699 ev_io_start (EV_A_ &sigev); 1899 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1900#if EV_USE_EVENTFD
1901 if (evfd >= 0)
1902 {
1903 uint64_t counter;
1904 read (evfd, &counter, sizeof (uint64_t));
1905 }
1906 else
1907#endif
1908 {
1909 char dummy;
1910 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1911 read (evpipe [0], &dummy, 1);
1912 }
1913 }
1914
1915 pipe_write_skipped = 0;
1916
1917#if EV_SIGNAL_ENABLE
1918 if (sig_pending)
1919 {
1920 sig_pending = 0;
1921
1922 for (i = EV_NSIG - 1; i--; )
1923 if (expect_false (signals [i].pending))
1924 ev_feed_signal_event (EV_A_ i + 1);
1925 }
1926#endif
1927
1928#if EV_ASYNC_ENABLE
1929 if (async_pending)
1930 {
1931 async_pending = 0;
1932
1933 for (i = asynccnt; i--; )
1934 if (asyncs [i]->sent)
1935 {
1936 asyncs [i]->sent = 0;
1937 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1938 }
1939 }
1940#endif
701} 1941}
702 1942
703/*****************************************************************************/ 1943/*****************************************************************************/
704 1944
705static struct ev_child *childs [PID_HASHSIZE]; 1945void
1946ev_feed_signal (int signum) EV_THROW
1947{
1948#if EV_MULTIPLICITY
1949 EV_P = signals [signum - 1].loop;
706 1950
1951 if (!EV_A)
1952 return;
1953#endif
1954
1955 if (!ev_active (&pipe_w))
1956 return;
1957
1958 signals [signum - 1].pending = 1;
1959 evpipe_write (EV_A_ &sig_pending);
1960}
1961
1962static void
1963ev_sighandler (int signum)
1964{
707#ifndef _WIN32 1965#ifdef _WIN32
1966 signal (signum, ev_sighandler);
1967#endif
708 1968
1969 ev_feed_signal (signum);
1970}
1971
1972void noinline
1973ev_feed_signal_event (EV_P_ int signum) EV_THROW
1974{
1975 WL w;
1976
1977 if (expect_false (signum <= 0 || signum > EV_NSIG))
1978 return;
1979
1980 --signum;
1981
1982#if EV_MULTIPLICITY
1983 /* it is permissible to try to feed a signal to the wrong loop */
1984 /* or, likely more useful, feeding a signal nobody is waiting for */
1985
1986 if (expect_false (signals [signum].loop != EV_A))
1987 return;
1988#endif
1989
1990 signals [signum].pending = 0;
1991
1992 for (w = signals [signum].head; w; w = w->next)
1993 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1994}
1995
1996#if EV_USE_SIGNALFD
1997static void
1998sigfdcb (EV_P_ ev_io *iow, int revents)
1999{
2000 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2001
2002 for (;;)
2003 {
2004 ssize_t res = read (sigfd, si, sizeof (si));
2005
2006 /* not ISO-C, as res might be -1, but works with SuS */
2007 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2008 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2009
2010 if (res < (ssize_t)sizeof (si))
2011 break;
2012 }
2013}
2014#endif
2015
2016#endif
2017
2018/*****************************************************************************/
2019
2020#if EV_CHILD_ENABLE
2021static WL childs [EV_PID_HASHSIZE];
2022
709static struct ev_signal childev; 2023static ev_signal childev;
2024
2025#ifndef WIFCONTINUED
2026# define WIFCONTINUED(status) 0
2027#endif
2028
2029/* handle a single child status event */
2030inline_speed void
2031child_reap (EV_P_ int chain, int pid, int status)
2032{
2033 ev_child *w;
2034 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2035
2036 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2037 {
2038 if ((w->pid == pid || !w->pid)
2039 && (!traced || (w->flags & 1)))
2040 {
2041 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2042 w->rpid = pid;
2043 w->rstatus = status;
2044 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2045 }
2046 }
2047}
710 2048
711#ifndef WCONTINUED 2049#ifndef WCONTINUED
712# define WCONTINUED 0 2050# define WCONTINUED 0
713#endif 2051#endif
714 2052
2053/* called on sigchld etc., calls waitpid */
715static void 2054static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 2055childcb (EV_P_ ev_signal *sw, int revents)
732{ 2056{
733 int pid, status; 2057 int pid, status;
734 2058
2059 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2060 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 2061 if (!WCONTINUED
2062 || errno != EINVAL
2063 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2064 return;
2065
737 /* make sure we are called again until all childs have been reaped */ 2066 /* make sure we are called again until all children have been reaped */
2067 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2068 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 2069
740 child_reap (EV_A_ sw, pid, pid, status); 2070 child_reap (EV_A_ pid, pid, status);
2071 if ((EV_PID_HASHSIZE) > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2072 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 2073}
744 2074
745#endif 2075#endif
746 2076
747/*****************************************************************************/ 2077/*****************************************************************************/
748 2078
2079#if EV_USE_IOCP
2080# include "ev_iocp.c"
2081#endif
749#if EV_USE_PORT 2082#if EV_USE_PORT
750# include "ev_port.c" 2083# include "ev_port.c"
751#endif 2084#endif
752#if EV_USE_KQUEUE 2085#if EV_USE_KQUEUE
753# include "ev_kqueue.c" 2086# include "ev_kqueue.c"
760#endif 2093#endif
761#if EV_USE_SELECT 2094#if EV_USE_SELECT
762# include "ev_select.c" 2095# include "ev_select.c"
763#endif 2096#endif
764 2097
765int 2098int ecb_cold
766ev_version_major (void) 2099ev_version_major (void) EV_THROW
767{ 2100{
768 return EV_VERSION_MAJOR; 2101 return EV_VERSION_MAJOR;
769} 2102}
770 2103
771int 2104int ecb_cold
772ev_version_minor (void) 2105ev_version_minor (void) EV_THROW
773{ 2106{
774 return EV_VERSION_MINOR; 2107 return EV_VERSION_MINOR;
775} 2108}
776 2109
777/* return true if we are running with elevated privileges and should ignore env variables */ 2110/* return true if we are running with elevated privileges and should ignore env variables */
778static int 2111int inline_size ecb_cold
779enable_secure (void) 2112enable_secure (void)
780{ 2113{
781#ifdef _WIN32 2114#ifdef _WIN32
782 return 0; 2115 return 0;
783#else 2116#else
784 return getuid () != geteuid () 2117 return getuid () != geteuid ()
785 || getgid () != getegid (); 2118 || getgid () != getegid ();
786#endif 2119#endif
787} 2120}
788 2121
2122unsigned int ecb_cold
2123ev_supported_backends (void) EV_THROW
2124{
2125 unsigned int flags = 0;
2126
2127 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2128 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2129 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2130 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2131 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2132
2133 return flags;
2134}
2135
2136unsigned int ecb_cold
2137ev_recommended_backends (void) EV_THROW
2138{
2139 unsigned int flags = ev_supported_backends ();
2140
2141#ifndef __NetBSD__
2142 /* kqueue is borked on everything but netbsd apparently */
2143 /* it usually doesn't work correctly on anything but sockets and pipes */
2144 flags &= ~EVBACKEND_KQUEUE;
2145#endif
2146#ifdef __APPLE__
2147 /* only select works correctly on that "unix-certified" platform */
2148 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2149 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2150#endif
2151#ifdef __FreeBSD__
2152 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2153#endif
2154
2155 return flags;
2156}
2157
2158unsigned int ecb_cold
2159ev_embeddable_backends (void) EV_THROW
2160{
2161 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2162
2163 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2164 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2165 flags &= ~EVBACKEND_EPOLL;
2166
2167 return flags;
2168}
2169
789unsigned int 2170unsigned int
790ev_method (EV_P) 2171ev_backend (EV_P) EV_THROW
791{ 2172{
792 return method; 2173 return backend;
793} 2174}
794 2175
795static void 2176#if EV_FEATURE_API
2177unsigned int
2178ev_iteration (EV_P) EV_THROW
2179{
2180 return loop_count;
2181}
2182
2183unsigned int
2184ev_depth (EV_P) EV_THROW
2185{
2186 return loop_depth;
2187}
2188
2189void
2190ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2191{
2192 io_blocktime = interval;
2193}
2194
2195void
2196ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2197{
2198 timeout_blocktime = interval;
2199}
2200
2201void
2202ev_set_userdata (EV_P_ void *data) EV_THROW
2203{
2204 userdata = data;
2205}
2206
2207void *
2208ev_userdata (EV_P) EV_THROW
2209{
2210 return userdata;
2211}
2212
2213void
2214ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2215{
2216 invoke_cb = invoke_pending_cb;
2217}
2218
2219void
2220ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P)) EV_THROW
2221{
2222 release_cb = release;
2223 acquire_cb = acquire;
2224}
2225#endif
2226
2227/* initialise a loop structure, must be zero-initialised */
2228static void noinline ecb_cold
796loop_init (EV_P_ unsigned int flags) 2229loop_init (EV_P_ unsigned int flags) EV_THROW
797{ 2230{
798 if (!method) 2231 if (!backend)
799 { 2232 {
2233 origflags = flags;
2234
2235#if EV_USE_REALTIME
2236 if (!have_realtime)
2237 {
2238 struct timespec ts;
2239
2240 if (!clock_gettime (CLOCK_REALTIME, &ts))
2241 have_realtime = 1;
2242 }
2243#endif
2244
800#if EV_USE_MONOTONIC 2245#if EV_USE_MONOTONIC
2246 if (!have_monotonic)
2247 {
2248 struct timespec ts;
2249
2250 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2251 have_monotonic = 1;
2252 }
2253#endif
2254
2255 /* pid check not overridable via env */
2256#ifndef _WIN32
2257 if (flags & EVFLAG_FORKCHECK)
2258 curpid = getpid ();
2259#endif
2260
2261 if (!(flags & EVFLAG_NOENV)
2262 && !enable_secure ()
2263 && getenv ("LIBEV_FLAGS"))
2264 flags = atoi (getenv ("LIBEV_FLAGS"));
2265
2266 ev_rt_now = ev_time ();
2267 mn_now = get_clock ();
2268 now_floor = mn_now;
2269 rtmn_diff = ev_rt_now - mn_now;
2270#if EV_FEATURE_API
2271 invoke_cb = ev_invoke_pending;
2272#endif
2273
2274 io_blocktime = 0.;
2275 timeout_blocktime = 0.;
2276 backend = 0;
2277 backend_fd = -1;
2278 sig_pending = 0;
2279#if EV_ASYNC_ENABLE
2280 async_pending = 0;
2281#endif
2282 pipe_write_skipped = 0;
2283 pipe_write_wanted = 0;
2284#if EV_USE_INOTIFY
2285 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2286#endif
2287#if EV_USE_SIGNALFD
2288 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2289#endif
2290
2291 if (!(flags & EVBACKEND_MASK))
2292 flags |= ev_recommended_backends ();
2293
2294#if EV_USE_IOCP
2295 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2296#endif
2297#if EV_USE_PORT
2298 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2299#endif
2300#if EV_USE_KQUEUE
2301 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2302#endif
2303#if EV_USE_EPOLL
2304 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2305#endif
2306#if EV_USE_POLL
2307 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2308#endif
2309#if EV_USE_SELECT
2310 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2311#endif
2312
2313 ev_prepare_init (&pending_w, pendingcb);
2314
2315#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2316 ev_init (&pipe_w, pipecb);
2317 ev_set_priority (&pipe_w, EV_MAXPRI);
2318#endif
2319 }
2320}
2321
2322/* free up a loop structure */
2323void ecb_cold
2324ev_loop_destroy (EV_P) EV_THROW
2325{
2326 int i;
2327
2328#if EV_MULTIPLICITY
2329 /* mimic free (0) */
2330 if (!EV_A)
2331 return;
2332#endif
2333
2334#if EV_CLEANUP_ENABLE
2335 /* queue cleanup watchers (and execute them) */
2336 if (expect_false (cleanupcnt))
2337 {
2338 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2339 EV_INVOKE_PENDING;
2340 }
2341#endif
2342
2343#if EV_CHILD_ENABLE
2344 if (ev_is_active (&childev))
2345 {
2346 ev_ref (EV_A); /* child watcher */
2347 ev_signal_stop (EV_A_ &childev);
2348 }
2349#endif
2350
2351 if (ev_is_active (&pipe_w))
2352 {
2353 /*ev_ref (EV_A);*/
2354 /*ev_io_stop (EV_A_ &pipe_w);*/
2355
2356#if EV_USE_EVENTFD
2357 if (evfd >= 0)
2358 close (evfd);
2359#endif
2360
2361 if (evpipe [0] >= 0)
2362 {
2363 EV_WIN32_CLOSE_FD (evpipe [0]);
2364 EV_WIN32_CLOSE_FD (evpipe [1]);
2365 }
2366 }
2367
2368#if EV_USE_SIGNALFD
2369 if (ev_is_active (&sigfd_w))
2370 close (sigfd);
2371#endif
2372
2373#if EV_USE_INOTIFY
2374 if (fs_fd >= 0)
2375 close (fs_fd);
2376#endif
2377
2378 if (backend_fd >= 0)
2379 close (backend_fd);
2380
2381#if EV_USE_IOCP
2382 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2383#endif
2384#if EV_USE_PORT
2385 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2386#endif
2387#if EV_USE_KQUEUE
2388 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2389#endif
2390#if EV_USE_EPOLL
2391 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2392#endif
2393#if EV_USE_POLL
2394 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2395#endif
2396#if EV_USE_SELECT
2397 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2398#endif
2399
2400 for (i = NUMPRI; i--; )
2401 {
2402 array_free (pending, [i]);
2403#if EV_IDLE_ENABLE
2404 array_free (idle, [i]);
2405#endif
2406 }
2407
2408 ev_free (anfds); anfds = 0; anfdmax = 0;
2409
2410 /* have to use the microsoft-never-gets-it-right macro */
2411 array_free (rfeed, EMPTY);
2412 array_free (fdchange, EMPTY);
2413 array_free (timer, EMPTY);
2414#if EV_PERIODIC_ENABLE
2415 array_free (periodic, EMPTY);
2416#endif
2417#if EV_FORK_ENABLE
2418 array_free (fork, EMPTY);
2419#endif
2420#if EV_CLEANUP_ENABLE
2421 array_free (cleanup, EMPTY);
2422#endif
2423 array_free (prepare, EMPTY);
2424 array_free (check, EMPTY);
2425#if EV_ASYNC_ENABLE
2426 array_free (async, EMPTY);
2427#endif
2428
2429 backend = 0;
2430
2431#if EV_MULTIPLICITY
2432 if (ev_is_default_loop (EV_A))
2433#endif
2434 ev_default_loop_ptr = 0;
2435#if EV_MULTIPLICITY
2436 else
2437 ev_free (EV_A);
2438#endif
2439}
2440
2441#if EV_USE_INOTIFY
2442inline_size void infy_fork (EV_P);
2443#endif
2444
2445inline_size void
2446loop_fork (EV_P)
2447{
2448#if EV_USE_PORT
2449 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2450#endif
2451#if EV_USE_KQUEUE
2452 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2453#endif
2454#if EV_USE_EPOLL
2455 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2456#endif
2457#if EV_USE_INOTIFY
2458 infy_fork (EV_A);
2459#endif
2460
2461 if (ev_is_active (&pipe_w))
2462 {
2463 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2464
2465 ev_ref (EV_A);
2466 ev_io_stop (EV_A_ &pipe_w);
2467
2468#if EV_USE_EVENTFD
2469 if (evfd >= 0)
2470 close (evfd);
2471#endif
2472
2473 if (evpipe [0] >= 0)
2474 {
2475 EV_WIN32_CLOSE_FD (evpipe [0]);
2476 EV_WIN32_CLOSE_FD (evpipe [1]);
2477 }
2478
2479#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2480 evpipe_init (EV_A);
2481 /* now iterate over everything, in case we missed something */
2482 pipecb (EV_A_ &pipe_w, EV_READ);
2483#endif
2484 }
2485
2486 postfork = 0;
2487}
2488
2489#if EV_MULTIPLICITY
2490
2491struct ev_loop * ecb_cold
2492ev_loop_new (unsigned int flags) EV_THROW
2493{
2494 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2495
2496 memset (EV_A, 0, sizeof (struct ev_loop));
2497 loop_init (EV_A_ flags);
2498
2499 if (ev_backend (EV_A))
2500 return EV_A;
2501
2502 ev_free (EV_A);
2503 return 0;
2504}
2505
2506#endif /* multiplicity */
2507
2508#if EV_VERIFY
2509static void noinline ecb_cold
2510verify_watcher (EV_P_ W w)
2511{
2512 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2513
2514 if (w->pending)
2515 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2516}
2517
2518static void noinline ecb_cold
2519verify_heap (EV_P_ ANHE *heap, int N)
2520{
2521 int i;
2522
2523 for (i = HEAP0; i < N + HEAP0; ++i)
2524 {
2525 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2526 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2527 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2528
2529 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2530 }
2531}
2532
2533static void noinline ecb_cold
2534array_verify (EV_P_ W *ws, int cnt)
2535{
2536 while (cnt--)
2537 {
2538 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2539 verify_watcher (EV_A_ ws [cnt]);
2540 }
2541}
2542#endif
2543
2544#if EV_FEATURE_API
2545void ecb_cold
2546ev_verify (EV_P) EV_THROW
2547{
2548#if EV_VERIFY
2549 int i;
2550 WL w;
2551
2552 assert (activecnt >= -1);
2553
2554 assert (fdchangemax >= fdchangecnt);
2555 for (i = 0; i < fdchangecnt; ++i)
2556 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2557
2558 assert (anfdmax >= 0);
2559 for (i = 0; i < anfdmax; ++i)
2560 for (w = anfds [i].head; w; w = w->next)
801 { 2561 {
802 struct timespec ts; 2562 verify_watcher (EV_A_ (W)w);
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2563 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
804 have_monotonic = 1; 2564 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
805 } 2565 }
806#endif
807 2566
808 ev_rt_now = ev_time (); 2567 assert (timermax >= timercnt);
809 mn_now = get_clock (); 2568 verify_heap (EV_A_ timers, timercnt);
810 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now;
812 2569
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2570#if EV_PERIODIC_ENABLE
814 flags = atoi (getenv ("LIBEV_FLAGS")); 2571 assert (periodicmax >= periodiccnt);
815 2572 verify_heap (EV_A_ periodics, periodiccnt);
816 if (!(flags & 0x0000ffff))
817 flags |= 0x0000ffff;
818
819 method = 0;
820#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
822#endif
823#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
825#endif
826#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
828#endif
829#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
831#endif
832#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
834#endif
835
836 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI);
838 }
839}
840
841static void
842loop_destroy (EV_P)
843{
844 int i;
845
846#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
848#endif
849#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
851#endif
852#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
854#endif
855#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
857#endif
858#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
860#endif 2573#endif
861 2574
862 for (i = NUMPRI; i--; ) 2575 for (i = NUMPRI; i--; )
863 array_free (pending, [i]); 2576 {
2577 assert (pendingmax [i] >= pendingcnt [i]);
2578#if EV_IDLE_ENABLE
2579 assert (idleall >= 0);
2580 assert (idlemax [i] >= idlecnt [i]);
2581 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2582#endif
2583 }
864 2584
865 /* have to use the microsoft-never-gets-it-right macro */ 2585#if EV_FORK_ENABLE
866 array_free (fdchange, EMPTY0); 2586 assert (forkmax >= forkcnt);
867 array_free (timer, EMPTY0); 2587 array_verify (EV_A_ (W *)forks, forkcnt);
868#if EV_PERIODICS 2588#endif
869 array_free (periodic, EMPTY0); 2589
2590#if EV_CLEANUP_ENABLE
2591 assert (cleanupmax >= cleanupcnt);
2592 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2593#endif
2594
2595#if EV_ASYNC_ENABLE
2596 assert (asyncmax >= asynccnt);
2597 array_verify (EV_A_ (W *)asyncs, asynccnt);
2598#endif
2599
2600#if EV_PREPARE_ENABLE
2601 assert (preparemax >= preparecnt);
2602 array_verify (EV_A_ (W *)prepares, preparecnt);
2603#endif
2604
2605#if EV_CHECK_ENABLE
2606 assert (checkmax >= checkcnt);
2607 array_verify (EV_A_ (W *)checks, checkcnt);
2608#endif
2609
2610# if 0
2611#if EV_CHILD_ENABLE
2612 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2613 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2614#endif
870#endif 2615# endif
871 array_free (idle, EMPTY0);
872 array_free (prepare, EMPTY0);
873 array_free (check, EMPTY0);
874
875 method = 0;
876}
877
878static void
879loop_fork (EV_P)
880{
881#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A);
883#endif 2616#endif
884#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
886#endif
887#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
889#endif
890
891 if (ev_is_active (&sigev))
892 {
893 /* default loop */
894
895 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A);
904 }
905
906 postfork = 0;
907} 2617}
2618#endif
908 2619
909#if EV_MULTIPLICITY 2620#if EV_MULTIPLICITY
910struct ev_loop * 2621struct ev_loop * ecb_cold
911ev_loop_new (unsigned int flags)
912{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914
915 memset (loop, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags);
918
919 if (ev_method (EV_A))
920 return loop;
921
922 return 0;
923}
924
925void
926ev_loop_destroy (EV_P)
927{
928 loop_destroy (EV_A);
929 ev_free (loop);
930}
931
932void
933ev_loop_fork (EV_P)
934{
935 postfork = 1;
936}
937
938#endif
939
940#if EV_MULTIPLICITY
941struct ev_loop *
942ev_default_loop_init (unsigned int flags)
943#else 2622#else
944int 2623int
2624#endif
945ev_default_loop (unsigned int flags) 2625ev_default_loop (unsigned int flags) EV_THROW
946#endif
947{ 2626{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 2627 if (!ev_default_loop_ptr)
953 { 2628 {
954#if EV_MULTIPLICITY 2629#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2630 EV_P = ev_default_loop_ptr = &default_loop_struct;
956#else 2631#else
957 ev_default_loop_ptr = 1; 2632 ev_default_loop_ptr = 1;
958#endif 2633#endif
959 2634
960 loop_init (EV_A_ flags); 2635 loop_init (EV_A_ flags);
961 2636
962 if (ev_method (EV_A)) 2637 if (ev_backend (EV_A))
963 { 2638 {
964 siginit (EV_A); 2639#if EV_CHILD_ENABLE
965
966#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 2640 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 2641 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 2642 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2643 ev_unref (EV_A); /* child watcher should not keep loop alive */
971#endif 2644#endif
976 2649
977 return ev_default_loop_ptr; 2650 return ev_default_loop_ptr;
978} 2651}
979 2652
980void 2653void
981ev_default_destroy (void) 2654ev_loop_fork (EV_P) EV_THROW
982{ 2655{
983#if EV_MULTIPLICITY 2656 postfork = 1; /* must be in line with ev_default_fork */
984 struct ev_loop *loop = ev_default_loop_ptr;
985#endif
986
987#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev);
990#endif
991
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A);
999} 2657}
2658
2659/*****************************************************************************/
1000 2660
1001void 2661void
1002ev_default_fork (void) 2662ev_invoke (EV_P_ void *w, int revents)
1003{ 2663{
1004#if EV_MULTIPLICITY 2664 EV_CB_INVOKE ((W)w, revents);
1005 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif
1007
1008 if (method)
1009 postfork = 1;
1010} 2665}
1011 2666
1012/*****************************************************************************/ 2667unsigned int
1013 2668ev_pending_count (EV_P) EV_THROW
1014static int
1015any_pending (EV_P)
1016{ 2669{
1017 int pri; 2670 int pri;
2671 unsigned int count = 0;
1018 2672
1019 for (pri = NUMPRI; pri--; ) 2673 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 2674 count += pendingcnt [pri];
1021 return 1;
1022 2675
1023 return 0; 2676 return count;
1024} 2677}
1025 2678
1026inline void 2679void noinline
1027call_pending (EV_P) 2680ev_invoke_pending (EV_P)
1028{ 2681{
1029 int pri; 2682 int pri;
1030 2683
1031 for (pri = NUMPRI; pri--; ) 2684 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 2685 while (pendingcnt [pri])
1033 { 2686 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2687 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 2688
1036 if (expect_true (p->w))
1037 {
1038 p->w->pending = 0; 2689 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 2690 EV_CB_INVOKE (p->w, p->events);
1040 } 2691 EV_FREQUENT_CHECK;
1041 } 2692 }
1042} 2693}
1043 2694
2695#if EV_IDLE_ENABLE
2696/* make idle watchers pending. this handles the "call-idle */
2697/* only when higher priorities are idle" logic */
1044inline void 2698inline_size void
2699idle_reify (EV_P)
2700{
2701 if (expect_false (idleall))
2702 {
2703 int pri;
2704
2705 for (pri = NUMPRI; pri--; )
2706 {
2707 if (pendingcnt [pri])
2708 break;
2709
2710 if (idlecnt [pri])
2711 {
2712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2713 break;
2714 }
2715 }
2716 }
2717}
2718#endif
2719
2720/* make timers pending */
2721inline_size void
1045timers_reify (EV_P) 2722timers_reify (EV_P)
1046{ 2723{
2724 EV_FREQUENT_CHECK;
2725
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 2726 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 2727 {
1049 struct ev_timer *w = timers [0]; 2728 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 2729 {
2730 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2731
2732 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2733
2734 /* first reschedule or stop timer */
2735 if (w->repeat)
2736 {
2737 ev_at (w) += w->repeat;
2738 if (ev_at (w) < mn_now)
2739 ev_at (w) = mn_now;
2740
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2741 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 2742
1058 ((WT)w)->at += w->repeat; 2743 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 2744 downheap (timers, timercnt, HEAP0);
2745 }
2746 else
2747 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2748
2749 EV_FREQUENT_CHECK;
2750 feed_reverse (EV_A_ (W)w);
1063 } 2751 }
1064 else 2752 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 2753
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2754 feed_reverse_done (EV_A_ EV_TIMER);
2755 }
2756}
2757
2758#if EV_PERIODIC_ENABLE
2759
2760static void noinline
2761periodic_recalc (EV_P_ ev_periodic *w)
2762{
2763 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2764 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2765
2766 /* the above almost always errs on the low side */
2767 while (at <= ev_rt_now)
1068 } 2768 {
1069} 2769 ev_tstamp nat = at + w->interval;
1070 2770
1071#if EV_PERIODICS 2771 /* when resolution fails us, we use ev_rt_now */
2772 if (expect_false (nat == at))
2773 {
2774 at = ev_rt_now;
2775 break;
2776 }
2777
2778 at = nat;
2779 }
2780
2781 ev_at (w) = at;
2782}
2783
2784/* make periodics pending */
1072inline void 2785inline_size void
1073periodics_reify (EV_P) 2786periodics_reify (EV_P)
1074{ 2787{
2788 EV_FREQUENT_CHECK;
2789
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2790 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 2791 {
1077 struct ev_periodic *w = periodics [0]; 2792 int feed_count = 0;
1078 2793
2794 do
2795 {
2796 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2797
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2798 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 2799
1081 /* first reschedule or stop timer */ 2800 /* first reschedule or stop timer */
2801 if (w->reschedule_cb)
2802 {
2803 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2804
2805 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2806
2807 ANHE_at_cache (periodics [HEAP0]);
2808 downheap (periodics, periodiccnt, HEAP0);
2809 }
2810 else if (w->interval)
2811 {
2812 periodic_recalc (EV_A_ w);
2813 ANHE_at_cache (periodics [HEAP0]);
2814 downheap (periodics, periodiccnt, HEAP0);
2815 }
2816 else
2817 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2818
2819 EV_FREQUENT_CHECK;
2820 feed_reverse (EV_A_ (W)w);
2821 }
2822 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2823
2824 feed_reverse_done (EV_A_ EV_PERIODIC);
2825 }
2826}
2827
2828/* simply recalculate all periodics */
2829/* TODO: maybe ensure that at least one event happens when jumping forward? */
2830static void noinline ecb_cold
2831periodics_reschedule (EV_P)
2832{
2833 int i;
2834
2835 /* adjust periodics after time jump */
2836 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2837 {
2838 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2839
1082 if (w->reschedule_cb) 2840 if (w->reschedule_cb)
2841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2842 else if (w->interval)
2843 periodic_recalc (EV_A_ w);
2844
2845 ANHE_at_cache (periodics [i]);
2846 }
2847
2848 reheap (periodics, periodiccnt);
2849}
2850#endif
2851
2852/* adjust all timers by a given offset */
2853static void noinline ecb_cold
2854timers_reschedule (EV_P_ ev_tstamp adjust)
2855{
2856 int i;
2857
2858 for (i = 0; i < timercnt; ++i)
2859 {
2860 ANHE *he = timers + i + HEAP0;
2861 ANHE_w (*he)->at += adjust;
2862 ANHE_at_cache (*he);
2863 }
2864}
2865
2866/* fetch new monotonic and realtime times from the kernel */
2867/* also detect if there was a timejump, and act accordingly */
2868inline_speed void
2869time_update (EV_P_ ev_tstamp max_block)
2870{
2871#if EV_USE_MONOTONIC
2872 if (expect_true (have_monotonic))
2873 {
2874 int i;
2875 ev_tstamp odiff = rtmn_diff;
2876
2877 mn_now = get_clock ();
2878
2879 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2880 /* interpolate in the meantime */
2881 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2882 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2883 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2884 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2885 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2886
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2887 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2888 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2889
1141inline void 2890 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2891 * on the choice of "4": one iteration isn't enough,
1143{ 2892 * in case we get preempted during the calls to
1144 int i; 2893 * ev_time and get_clock. a second call is almost guaranteed
1145 2894 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2895 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2896 * in the unlikely event of having been preempted here.
1148 { 2897 */
1149 if (time_update_monotonic (EV_A)) 2898 for (i = 4; --i; )
1150 { 2899 {
1151 ev_tstamp odiff = rtmn_diff; 2900 ev_tstamp diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2901 rtmn_diff = ev_rt_now - mn_now;
1156 2902
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2903 diff = odiff - rtmn_diff;
2904
2905 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2906 return; /* all is well */
1159 2907
1160 ev_rt_now = ev_time (); 2908 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2909 mn_now = get_clock ();
1162 now_floor = mn_now; 2910 now_floor = mn_now;
1163 } 2911 }
1164 2912
2913 /* no timer adjustment, as the monotonic clock doesn't jump */
2914 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2915# if EV_PERIODIC_ENABLE
2916 periodics_reschedule (EV_A);
2917# endif
2918 }
2919 else
2920#endif
2921 {
2922 ev_rt_now = ev_time ();
2923
2924 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2925 {
2926 /* adjust timers. this is easy, as the offset is the same for all of them */
2927 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2928#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2929 periodics_reschedule (EV_A);
1167# endif 2930#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2931 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2932
1188 mn_now = ev_rt_now; 2933 mn_now = ev_rt_now;
1189 } 2934 }
1190} 2935}
1191 2936
1192void 2937int
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2938ev_run (EV_P_ int flags)
1208{ 2939{
1209 double block; 2940#if EV_FEATURE_API
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2941 ++loop_depth;
2942#endif
1211 2943
1212 while (activecnt) 2944 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2945
2946 loop_done = EVBREAK_CANCEL;
2947
2948 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2949
2950 do
1213 { 2951 {
2952#if EV_VERIFY >= 2
2953 ev_verify (EV_A);
2954#endif
2955
2956#ifndef _WIN32
2957 if (expect_false (curpid)) /* penalise the forking check even more */
2958 if (expect_false (getpid () != curpid))
2959 {
2960 curpid = getpid ();
2961 postfork = 1;
2962 }
2963#endif
2964
2965#if EV_FORK_ENABLE
2966 /* we might have forked, so queue fork handlers */
2967 if (expect_false (postfork))
2968 if (forkcnt)
2969 {
2970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2971 EV_INVOKE_PENDING;
2972 }
2973#endif
2974
2975#if EV_PREPARE_ENABLE
1214 /* queue check watchers (and execute them) */ 2976 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2977 if (expect_false (preparecnt))
1216 { 2978 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2980 EV_INVOKE_PENDING;
1219 } 2981 }
2982#endif
2983
2984 if (expect_false (loop_done))
2985 break;
1220 2986
1221 /* we might have forked, so reify kernel state if necessary */ 2987 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2988 if (expect_false (postfork))
1223 loop_fork (EV_A); 2989 loop_fork (EV_A);
1224 2990
1225 /* update fd-related kernel structures */ 2991 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2992 fd_reify (EV_A);
1227 2993
1228 /* calculate blocking time */ 2994 /* calculate blocking time */
2995 {
2996 ev_tstamp waittime = 0.;
2997 ev_tstamp sleeptime = 0.;
1229 2998
1230 /* we only need this for !monotonic clock or timers, but as we basically 2999 /* remember old timestamp for io_blocktime calculation */
1231 always have timers, we just calculate it always */ 3000 ev_tstamp prev_mn_now = mn_now;
1232#if EV_USE_MONOTONIC 3001
1233 if (expect_true (have_monotonic)) 3002 /* update time to cancel out callback processing overhead */
1234 time_update_monotonic (EV_A); 3003 time_update (EV_A_ 1e100);
1235 else 3004
1236#endif 3005 /* from now on, we want a pipe-wake-up */
3006 pipe_write_wanted = 1;
3007
3008 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3009
3010 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1237 { 3011 {
1238 ev_rt_now = ev_time ();
1239 mn_now = ev_rt_now;
1240 }
1241
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 3012 waittime = MAX_BLOCKTIME;
1247 3013
1248 if (timercnt) 3014 if (timercnt)
1249 { 3015 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3016 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1251 if (block > to) block = to; 3017 if (waittime > to) waittime = to;
1252 } 3018 }
1253 3019
1254#if EV_PERIODICS 3020#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 3021 if (periodiccnt)
1256 { 3022 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3023 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1258 if (block > to) block = to; 3024 if (waittime > to) waittime = to;
1259 } 3025 }
1260#endif 3026#endif
1261 3027
1262 if (expect_false (block < 0.)) block = 0.; 3028 /* don't let timeouts decrease the waittime below timeout_blocktime */
3029 if (expect_false (waittime < timeout_blocktime))
3030 waittime = timeout_blocktime;
3031
3032 /* at this point, we NEED to wait, so we have to ensure */
3033 /* to pass a minimum nonzero value to the backend */
3034 if (expect_false (waittime < backend_mintime))
3035 waittime = backend_mintime;
3036
3037 /* extra check because io_blocktime is commonly 0 */
3038 if (expect_false (io_blocktime))
3039 {
3040 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3041
3042 if (sleeptime > waittime - backend_mintime)
3043 sleeptime = waittime - backend_mintime;
3044
3045 if (expect_true (sleeptime > 0.))
3046 {
3047 ev_sleep (sleeptime);
3048 waittime -= sleeptime;
3049 }
3050 }
1263 } 3051 }
1264 3052
1265 method_poll (EV_A_ block); 3053#if EV_FEATURE_API
3054 ++loop_count;
3055#endif
3056 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3057 backend_poll (EV_A_ waittime);
3058 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1266 3059
3060 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3061
3062 if (pipe_write_skipped)
3063 {
3064 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3065 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3066 }
3067
3068
1267 /* update ev_rt_now, do magic */ 3069 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 3070 time_update (EV_A_ waittime + sleeptime);
3071 }
1269 3072
1270 /* queue pending timers and reschedule them */ 3073 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 3074 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 3075#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 3076 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 3077#endif
1275 3078
3079#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 3080 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 3081 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3082#endif
1279 3083
3084#if EV_CHECK_ENABLE
1280 /* queue check watchers, to be executed first */ 3085 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 3086 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3087 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3088#endif
1283 3089
1284 call_pending (EV_A); 3090 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 3091 }
3092 while (expect_true (
3093 activecnt
3094 && !loop_done
3095 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3096 ));
1289 3097
1290 if (loop_done != 2) 3098 if (loop_done == EVBREAK_ONE)
1291 loop_done = 0; 3099 loop_done = EVBREAK_CANCEL;
3100
3101#if EV_FEATURE_API
3102 --loop_depth;
3103#endif
3104
3105 return activecnt;
1292} 3106}
1293 3107
1294void 3108void
1295ev_unloop (EV_P_ int how) 3109ev_break (EV_P_ int how) EV_THROW
1296{ 3110{
1297 loop_done = how; 3111 loop_done = how;
1298} 3112}
1299 3113
3114void
3115ev_ref (EV_P) EV_THROW
3116{
3117 ++activecnt;
3118}
3119
3120void
3121ev_unref (EV_P) EV_THROW
3122{
3123 --activecnt;
3124}
3125
3126void
3127ev_now_update (EV_P) EV_THROW
3128{
3129 time_update (EV_A_ 1e100);
3130}
3131
3132void
3133ev_suspend (EV_P) EV_THROW
3134{
3135 ev_now_update (EV_A);
3136}
3137
3138void
3139ev_resume (EV_P) EV_THROW
3140{
3141 ev_tstamp mn_prev = mn_now;
3142
3143 ev_now_update (EV_A);
3144 timers_reschedule (EV_A_ mn_now - mn_prev);
3145#if EV_PERIODIC_ENABLE
3146 /* TODO: really do this? */
3147 periodics_reschedule (EV_A);
3148#endif
3149}
3150
1300/*****************************************************************************/ 3151/*****************************************************************************/
3152/* singly-linked list management, used when the expected list length is short */
1301 3153
1302inline void 3154inline_size void
1303wlist_add (WL *head, WL elem) 3155wlist_add (WL *head, WL elem)
1304{ 3156{
1305 elem->next = *head; 3157 elem->next = *head;
1306 *head = elem; 3158 *head = elem;
1307} 3159}
1308 3160
1309inline void 3161inline_size void
1310wlist_del (WL *head, WL elem) 3162wlist_del (WL *head, WL elem)
1311{ 3163{
1312 while (*head) 3164 while (*head)
1313 { 3165 {
1314 if (*head == elem) 3166 if (expect_true (*head == elem))
1315 { 3167 {
1316 *head = elem->next; 3168 *head = elem->next;
1317 return; 3169 break;
1318 } 3170 }
1319 3171
1320 head = &(*head)->next; 3172 head = &(*head)->next;
1321 } 3173 }
1322} 3174}
1323 3175
3176/* internal, faster, version of ev_clear_pending */
1324inline void 3177inline_speed void
1325ev_clear_pending (EV_P_ W w) 3178clear_pending (EV_P_ W w)
1326{ 3179{
1327 if (w->pending) 3180 if (w->pending)
1328 { 3181 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3182 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 3183 w->pending = 0;
1331 } 3184 }
1332} 3185}
1333 3186
3187int
3188ev_clear_pending (EV_P_ void *w) EV_THROW
3189{
3190 W w_ = (W)w;
3191 int pending = w_->pending;
3192
3193 if (expect_true (pending))
3194 {
3195 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3196 p->w = (W)&pending_w;
3197 w_->pending = 0;
3198 return p->events;
3199 }
3200 else
3201 return 0;
3202}
3203
1334inline void 3204inline_size void
3205pri_adjust (EV_P_ W w)
3206{
3207 int pri = ev_priority (w);
3208 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3209 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3210 ev_set_priority (w, pri);
3211}
3212
3213inline_speed void
1335ev_start (EV_P_ W w, int active) 3214ev_start (EV_P_ W w, int active)
1336{ 3215{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3216 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 3217 w->active = active;
1341 ev_ref (EV_A); 3218 ev_ref (EV_A);
1342} 3219}
1343 3220
1344inline void 3221inline_size void
1345ev_stop (EV_P_ W w) 3222ev_stop (EV_P_ W w)
1346{ 3223{
1347 ev_unref (EV_A); 3224 ev_unref (EV_A);
1348 w->active = 0; 3225 w->active = 0;
1349} 3226}
1350 3227
1351/*****************************************************************************/ 3228/*****************************************************************************/
1352 3229
1353void 3230void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 3231ev_io_start (EV_P_ ev_io *w) EV_THROW
1355{ 3232{
1356 int fd = w->fd; 3233 int fd = w->fd;
1357 3234
1358 if (expect_false (ev_is_active (w))) 3235 if (expect_false (ev_is_active (w)))
1359 return; 3236 return;
1360 3237
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 3238 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3239 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3240
3241 EV_FREQUENT_CHECK;
1362 3242
1363 ev_start (EV_A_ (W)w, 1); 3243 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3244 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3245 wlist_add (&anfds[fd].head, (WL)w);
1366 3246
1367 fd_change (EV_A_ fd); 3247 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1368} 3248 w->events &= ~EV__IOFDSET;
1369 3249
1370void 3250 EV_FREQUENT_CHECK;
3251}
3252
3253void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 3254ev_io_stop (EV_P_ ev_io *w) EV_THROW
1372{ 3255{
1373 ev_clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
1375 return; 3258 return;
1376 3259
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3260 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 3261
3262 EV_FREQUENT_CHECK;
3263
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3264 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 3265 ev_stop (EV_A_ (W)w);
1381 3266
1382 fd_change (EV_A_ w->fd); 3267 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1383}
1384 3268
1385void 3269 EV_FREQUENT_CHECK;
3270}
3271
3272void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 3273ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1387{ 3274{
1388 if (expect_false (ev_is_active (w))) 3275 if (expect_false (ev_is_active (w)))
1389 return; 3276 return;
1390 3277
1391 ((WT)w)->at += mn_now; 3278 ev_at (w) += mn_now;
1392 3279
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3280 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 3281
3282 EV_FREQUENT_CHECK;
3283
3284 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 3285 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3286 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 3287 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 3288 ANHE_at_cache (timers [ev_active (w)]);
3289 upheap (timers, ev_active (w));
1399 3290
3291 EV_FREQUENT_CHECK;
3292
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3293 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 3294}
1402 3295
1403void 3296void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 3297ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1405{ 3298{
1406 ev_clear_pending (EV_A_ (W)w); 3299 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 3300 if (expect_false (!ev_is_active (w)))
1408 return; 3301 return;
1409 3302
3303 EV_FREQUENT_CHECK;
3304
3305 {
3306 int active = ev_active (w);
3307
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3308 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 3309
3310 --timercnt;
3311
1412 if (expect_true (((W)w)->active < timercnt--)) 3312 if (expect_true (active < timercnt + HEAP0))
1413 { 3313 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 3314 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3315 adjustheap (timers, timercnt, active);
1416 } 3316 }
3317 }
1417 3318
1418 ((WT)w)->at -= mn_now; 3319 ev_at (w) -= mn_now;
1419 3320
1420 ev_stop (EV_A_ (W)w); 3321 ev_stop (EV_A_ (W)w);
1421}
1422 3322
1423void 3323 EV_FREQUENT_CHECK;
3324}
3325
3326void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 3327ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1425{ 3328{
3329 EV_FREQUENT_CHECK;
3330
3331 clear_pending (EV_A_ (W)w);
3332
1426 if (ev_is_active (w)) 3333 if (ev_is_active (w))
1427 { 3334 {
1428 if (w->repeat) 3335 if (w->repeat)
1429 { 3336 {
1430 ((WT)w)->at = mn_now + w->repeat; 3337 ev_at (w) = mn_now + w->repeat;
3338 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3339 adjustheap (timers, timercnt, ev_active (w));
1432 } 3340 }
1433 else 3341 else
1434 ev_timer_stop (EV_A_ w); 3342 ev_timer_stop (EV_A_ w);
1435 } 3343 }
1436 else if (w->repeat) 3344 else if (w->repeat)
1437 { 3345 {
1438 w->at = w->repeat; 3346 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 3347 ev_timer_start (EV_A_ w);
1440 } 3348 }
1441}
1442 3349
3350 EV_FREQUENT_CHECK;
3351}
3352
3353ev_tstamp
3354ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3355{
3356 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3357}
3358
1443#if EV_PERIODICS 3359#if EV_PERIODIC_ENABLE
1444void 3360void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 3361ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1446{ 3362{
1447 if (expect_false (ev_is_active (w))) 3363 if (expect_false (ev_is_active (w)))
1448 return; 3364 return;
1449 3365
1450 if (w->reschedule_cb) 3366 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3367 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 3368 else if (w->interval)
1453 { 3369 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3370 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 3371 periodic_recalc (EV_A_ w);
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1457 } 3372 }
3373 else
3374 ev_at (w) = w->offset;
1458 3375
3376 EV_FREQUENT_CHECK;
3377
3378 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 3379 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3380 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 3381 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 3382 ANHE_at_cache (periodics [ev_active (w)]);
3383 upheap (periodics, ev_active (w));
1463 3384
3385 EV_FREQUENT_CHECK;
3386
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3387 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 3388}
1466 3389
1467void 3390void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 3391ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1469{ 3392{
1470 ev_clear_pending (EV_A_ (W)w); 3393 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 3394 if (expect_false (!ev_is_active (w)))
1472 return; 3395 return;
1473 3396
3397 EV_FREQUENT_CHECK;
3398
3399 {
3400 int active = ev_active (w);
3401
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3402 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 3403
3404 --periodiccnt;
3405
1476 if (expect_true (((W)w)->active < periodiccnt--)) 3406 if (expect_true (active < periodiccnt + HEAP0))
1477 { 3407 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3408 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3409 adjustheap (periodics, periodiccnt, active);
1480 } 3410 }
3411 }
1481 3412
1482 ev_stop (EV_A_ (W)w); 3413 ev_stop (EV_A_ (W)w);
1483}
1484 3414
1485void 3415 EV_FREQUENT_CHECK;
3416}
3417
3418void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 3419ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1487{ 3420{
1488 /* TODO: use adjustheap and recalculation */ 3421 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 3422 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 3423 ev_periodic_start (EV_A_ w);
1491} 3424}
1492#endif 3425#endif
1493 3426
1494void 3427#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 3428# define SA_RESTART 0
3429#endif
3430
3431#if EV_SIGNAL_ENABLE
3432
3433void noinline
3434ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1496{ 3435{
1497 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
1498 return; 3437 return;
1499 3438
3439 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3440
3441#if EV_MULTIPLICITY
3442 assert (("libev: a signal must not be attached to two different loops",
3443 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3444
3445 signals [w->signum - 1].loop = EV_A;
3446#endif
3447
3448 EV_FREQUENT_CHECK;
3449
3450#if EV_USE_SIGNALFD
3451 if (sigfd == -2)
3452 {
3453 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3454 if (sigfd < 0 && errno == EINVAL)
3455 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3456
3457 if (sigfd >= 0)
3458 {
3459 fd_intern (sigfd); /* doing it twice will not hurt */
3460
3461 sigemptyset (&sigfd_set);
3462
3463 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3464 ev_set_priority (&sigfd_w, EV_MAXPRI);
3465 ev_io_start (EV_A_ &sigfd_w);
3466 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3467 }
3468 }
3469
3470 if (sigfd >= 0)
3471 {
3472 /* TODO: check .head */
3473 sigaddset (&sigfd_set, w->signum);
3474 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3475
3476 signalfd (sigfd, &sigfd_set, 0);
3477 }
3478#endif
3479
1500 ev_start (EV_A_ (W)w, ++idlecnt); 3480 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3481 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 3482
1505void 3483 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 3484# if EV_USE_SIGNALFD
3485 if (sigfd < 0) /*TODO*/
3486# endif
3487 {
3488# ifdef _WIN32
3489 evpipe_init (EV_A);
3490
3491 signal (w->signum, ev_sighandler);
3492# else
3493 struct sigaction sa;
3494
3495 evpipe_init (EV_A);
3496
3497 sa.sa_handler = ev_sighandler;
3498 sigfillset (&sa.sa_mask);
3499 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3500 sigaction (w->signum, &sa, 0);
3501
3502 if (origflags & EVFLAG_NOSIGMASK)
3503 {
3504 sigemptyset (&sa.sa_mask);
3505 sigaddset (&sa.sa_mask, w->signum);
3506 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3507 }
3508#endif
3509 }
3510
3511 EV_FREQUENT_CHECK;
3512}
3513
3514void noinline
3515ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1507{ 3516{
1508 ev_clear_pending (EV_A_ (W)w); 3517 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 3518 if (expect_false (!ev_is_active (w)))
1510 return; 3519 return;
1511 3520
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 3521 EV_FREQUENT_CHECK;
3522
3523 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
3525
3526 if (!signals [w->signum - 1].head)
3527 {
3528#if EV_MULTIPLICITY
3529 signals [w->signum - 1].loop = 0; /* unattach from signal */
3530#endif
3531#if EV_USE_SIGNALFD
3532 if (sigfd >= 0)
3533 {
3534 sigset_t ss;
3535
3536 sigemptyset (&ss);
3537 sigaddset (&ss, w->signum);
3538 sigdelset (&sigfd_set, w->signum);
3539
3540 signalfd (sigfd, &sigfd_set, 0);
3541 sigprocmask (SIG_UNBLOCK, &ss, 0);
3542 }
3543 else
3544#endif
3545 signal (w->signum, SIG_DFL);
3546 }
3547
3548 EV_FREQUENT_CHECK;
1514} 3549}
3550
3551#endif
3552
3553#if EV_CHILD_ENABLE
1515 3554
1516void 3555void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 3556ev_child_start (EV_P_ ev_child *w) EV_THROW
1518{ 3557{
3558#if EV_MULTIPLICITY
3559 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3560#endif
1519 if (expect_false (ev_is_active (w))) 3561 if (expect_false (ev_is_active (w)))
1520 return; 3562 return;
1521 3563
3564 EV_FREQUENT_CHECK;
3565
1522 ev_start (EV_A_ (W)w, ++preparecnt); 3566 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3567 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w; 3568
3569 EV_FREQUENT_CHECK;
1525} 3570}
1526 3571
1527void 3572void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 3573ev_child_stop (EV_P_ ev_child *w) EV_THROW
1529{ 3574{
1530 ev_clear_pending (EV_A_ (W)w); 3575 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 3576 if (expect_false (!ev_is_active (w)))
1532 return; 3577 return;
1533 3578
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3579 EV_FREQUENT_CHECK;
3580
3581 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
1536} 3585}
3586
3587#endif
3588
3589#if EV_STAT_ENABLE
3590
3591# ifdef _WIN32
3592# undef lstat
3593# define lstat(a,b) _stati64 (a,b)
3594# endif
3595
3596#define DEF_STAT_INTERVAL 5.0074891
3597#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3598#define MIN_STAT_INTERVAL 0.1074891
3599
3600static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3601
3602#if EV_USE_INOTIFY
3603
3604/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3605# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3606
3607static void noinline
3608infy_add (EV_P_ ev_stat *w)
3609{
3610 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3611
3612 if (w->wd >= 0)
3613 {
3614 struct statfs sfs;
3615
3616 /* now local changes will be tracked by inotify, but remote changes won't */
3617 /* unless the filesystem is known to be local, we therefore still poll */
3618 /* also do poll on <2.6.25, but with normal frequency */
3619
3620 if (!fs_2625)
3621 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3622 else if (!statfs (w->path, &sfs)
3623 && (sfs.f_type == 0x1373 /* devfs */
3624 || sfs.f_type == 0xEF53 /* ext2/3 */
3625 || sfs.f_type == 0x3153464a /* jfs */
3626 || sfs.f_type == 0x52654973 /* reiser3 */
3627 || sfs.f_type == 0x01021994 /* tempfs */
3628 || sfs.f_type == 0x58465342 /* xfs */))
3629 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3630 else
3631 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3632 }
3633 else
3634 {
3635 /* can't use inotify, continue to stat */
3636 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3637
3638 /* if path is not there, monitor some parent directory for speedup hints */
3639 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3640 /* but an efficiency issue only */
3641 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3642 {
3643 char path [4096];
3644 strcpy (path, w->path);
3645
3646 do
3647 {
3648 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3649 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3650
3651 char *pend = strrchr (path, '/');
3652
3653 if (!pend || pend == path)
3654 break;
3655
3656 *pend = 0;
3657 w->wd = inotify_add_watch (fs_fd, path, mask);
3658 }
3659 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3660 }
3661 }
3662
3663 if (w->wd >= 0)
3664 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3665
3666 /* now re-arm timer, if required */
3667 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3668 ev_timer_again (EV_A_ &w->timer);
3669 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3670}
3671
3672static void noinline
3673infy_del (EV_P_ ev_stat *w)
3674{
3675 int slot;
3676 int wd = w->wd;
3677
3678 if (wd < 0)
3679 return;
3680
3681 w->wd = -2;
3682 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3683 wlist_del (&fs_hash [slot].head, (WL)w);
3684
3685 /* remove this watcher, if others are watching it, they will rearm */
3686 inotify_rm_watch (fs_fd, wd);
3687}
3688
3689static void noinline
3690infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3691{
3692 if (slot < 0)
3693 /* overflow, need to check for all hash slots */
3694 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3695 infy_wd (EV_A_ slot, wd, ev);
3696 else
3697 {
3698 WL w_;
3699
3700 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3701 {
3702 ev_stat *w = (ev_stat *)w_;
3703 w_ = w_->next; /* lets us remove this watcher and all before it */
3704
3705 if (w->wd == wd || wd == -1)
3706 {
3707 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3708 {
3709 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3710 w->wd = -1;
3711 infy_add (EV_A_ w); /* re-add, no matter what */
3712 }
3713
3714 stat_timer_cb (EV_A_ &w->timer, 0);
3715 }
3716 }
3717 }
3718}
3719
3720static void
3721infy_cb (EV_P_ ev_io *w, int revents)
3722{
3723 char buf [EV_INOTIFY_BUFSIZE];
3724 int ofs;
3725 int len = read (fs_fd, buf, sizeof (buf));
3726
3727 for (ofs = 0; ofs < len; )
3728 {
3729 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3730 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3731 ofs += sizeof (struct inotify_event) + ev->len;
3732 }
3733}
3734
3735inline_size void ecb_cold
3736ev_check_2625 (EV_P)
3737{
3738 /* kernels < 2.6.25 are borked
3739 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3740 */
3741 if (ev_linux_version () < 0x020619)
3742 return;
3743
3744 fs_2625 = 1;
3745}
3746
3747inline_size int
3748infy_newfd (void)
3749{
3750#if defined IN_CLOEXEC && defined IN_NONBLOCK
3751 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3752 if (fd >= 0)
3753 return fd;
3754#endif
3755 return inotify_init ();
3756}
3757
3758inline_size void
3759infy_init (EV_P)
3760{
3761 if (fs_fd != -2)
3762 return;
3763
3764 fs_fd = -1;
3765
3766 ev_check_2625 (EV_A);
3767
3768 fs_fd = infy_newfd ();
3769
3770 if (fs_fd >= 0)
3771 {
3772 fd_intern (fs_fd);
3773 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3774 ev_set_priority (&fs_w, EV_MAXPRI);
3775 ev_io_start (EV_A_ &fs_w);
3776 ev_unref (EV_A);
3777 }
3778}
3779
3780inline_size void
3781infy_fork (EV_P)
3782{
3783 int slot;
3784
3785 if (fs_fd < 0)
3786 return;
3787
3788 ev_ref (EV_A);
3789 ev_io_stop (EV_A_ &fs_w);
3790 close (fs_fd);
3791 fs_fd = infy_newfd ();
3792
3793 if (fs_fd >= 0)
3794 {
3795 fd_intern (fs_fd);
3796 ev_io_set (&fs_w, fs_fd, EV_READ);
3797 ev_io_start (EV_A_ &fs_w);
3798 ev_unref (EV_A);
3799 }
3800
3801 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3802 {
3803 WL w_ = fs_hash [slot].head;
3804 fs_hash [slot].head = 0;
3805
3806 while (w_)
3807 {
3808 ev_stat *w = (ev_stat *)w_;
3809 w_ = w_->next; /* lets us add this watcher */
3810
3811 w->wd = -1;
3812
3813 if (fs_fd >= 0)
3814 infy_add (EV_A_ w); /* re-add, no matter what */
3815 else
3816 {
3817 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3818 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3819 ev_timer_again (EV_A_ &w->timer);
3820 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3821 }
3822 }
3823 }
3824}
3825
3826#endif
3827
3828#ifdef _WIN32
3829# define EV_LSTAT(p,b) _stati64 (p, b)
3830#else
3831# define EV_LSTAT(p,b) lstat (p, b)
3832#endif
1537 3833
1538void 3834void
1539ev_check_start (EV_P_ struct ev_check *w) 3835ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3836{
3837 if (lstat (w->path, &w->attr) < 0)
3838 w->attr.st_nlink = 0;
3839 else if (!w->attr.st_nlink)
3840 w->attr.st_nlink = 1;
3841}
3842
3843static void noinline
3844stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3845{
3846 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3847
3848 ev_statdata prev = w->attr;
3849 ev_stat_stat (EV_A_ w);
3850
3851 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3852 if (
3853 prev.st_dev != w->attr.st_dev
3854 || prev.st_ino != w->attr.st_ino
3855 || prev.st_mode != w->attr.st_mode
3856 || prev.st_nlink != w->attr.st_nlink
3857 || prev.st_uid != w->attr.st_uid
3858 || prev.st_gid != w->attr.st_gid
3859 || prev.st_rdev != w->attr.st_rdev
3860 || prev.st_size != w->attr.st_size
3861 || prev.st_atime != w->attr.st_atime
3862 || prev.st_mtime != w->attr.st_mtime
3863 || prev.st_ctime != w->attr.st_ctime
3864 ) {
3865 /* we only update w->prev on actual differences */
3866 /* in case we test more often than invoke the callback, */
3867 /* to ensure that prev is always different to attr */
3868 w->prev = prev;
3869
3870 #if EV_USE_INOTIFY
3871 if (fs_fd >= 0)
3872 {
3873 infy_del (EV_A_ w);
3874 infy_add (EV_A_ w);
3875 ev_stat_stat (EV_A_ w); /* avoid race... */
3876 }
3877 #endif
3878
3879 ev_feed_event (EV_A_ w, EV_STAT);
3880 }
3881}
3882
3883void
3884ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1540{ 3885{
1541 if (expect_false (ev_is_active (w))) 3886 if (expect_false (ev_is_active (w)))
1542 return; 3887 return;
1543 3888
3889 ev_stat_stat (EV_A_ w);
3890
3891 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3892 w->interval = MIN_STAT_INTERVAL;
3893
3894 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3895 ev_set_priority (&w->timer, ev_priority (w));
3896
3897#if EV_USE_INOTIFY
3898 infy_init (EV_A);
3899
3900 if (fs_fd >= 0)
3901 infy_add (EV_A_ w);
3902 else
3903#endif
3904 {
3905 ev_timer_again (EV_A_ &w->timer);
3906 ev_unref (EV_A);
3907 }
3908
1544 ev_start (EV_A_ (W)w, ++checkcnt); 3909 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3910
1546 checks [checkcnt - 1] = w; 3911 EV_FREQUENT_CHECK;
1547} 3912}
1548 3913
1549void 3914void
1550ev_check_stop (EV_P_ struct ev_check *w) 3915ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1551{ 3916{
1552 ev_clear_pending (EV_A_ (W)w); 3917 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3918 if (expect_false (!ev_is_active (w)))
1554 return; 3919 return;
1555 3920
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 3921 EV_FREQUENT_CHECK;
3922
3923#if EV_USE_INOTIFY
3924 infy_del (EV_A_ w);
3925#endif
3926
3927 if (ev_is_active (&w->timer))
3928 {
3929 ev_ref (EV_A);
3930 ev_timer_stop (EV_A_ &w->timer);
3931 }
3932
1557 ev_stop (EV_A_ (W)w); 3933 ev_stop (EV_A_ (W)w);
1558}
1559 3934
1560#ifndef SA_RESTART 3935 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 3936}
1562#endif 3937#endif
1563 3938
3939#if EV_IDLE_ENABLE
1564void 3940void
1565ev_signal_start (EV_P_ struct ev_signal *w) 3941ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1566{ 3942{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 3943 if (expect_false (ev_is_active (w)))
1571 return; 3944 return;
1572 3945
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3946 pri_adjust (EV_A_ (W)w);
1574 3947
3948 EV_FREQUENT_CHECK;
3949
3950 {
3951 int active = ++idlecnt [ABSPRI (w)];
3952
3953 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 3954 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 3955
1579 if (!((WL)w)->next) 3956 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 3957 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 3958 }
3959
3960 EV_FREQUENT_CHECK;
1591} 3961}
1592 3962
1593void 3963void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 3964ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1595{ 3965{
1596 ev_clear_pending (EV_A_ (W)w); 3966 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3967 if (expect_false (!ev_is_active (w)))
1598 return; 3968 return;
1599 3969
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3970 EV_FREQUENT_CHECK;
3971
3972 {
3973 int active = ev_active (w);
3974
3975 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3976 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3977
1601 ev_stop (EV_A_ (W)w); 3978 ev_stop (EV_A_ (W)w);
3979 --idleall;
3980 }
1602 3981
1603 if (!signals [w->signum - 1].head) 3982 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 3983}
3984#endif
1606 3985
3986#if EV_PREPARE_ENABLE
1607void 3987void
1608ev_child_start (EV_P_ struct ev_child *w) 3988ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1609{ 3989{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif
1613 if (expect_false (ev_is_active (w))) 3990 if (expect_false (ev_is_active (w)))
1614 return; 3991 return;
1615 3992
3993 EV_FREQUENT_CHECK;
3994
1616 ev_start (EV_A_ (W)w, 1); 3995 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3996 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3997 prepares [preparecnt - 1] = w;
3998
3999 EV_FREQUENT_CHECK;
1618} 4000}
1619 4001
1620void 4002void
1621ev_child_stop (EV_P_ struct ev_child *w) 4003ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1622{ 4004{
1623 ev_clear_pending (EV_A_ (W)w); 4005 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 4006 if (expect_false (!ev_is_active (w)))
1625 return; 4007 return;
1626 4008
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4009 EV_FREQUENT_CHECK;
4010
4011 {
4012 int active = ev_active (w);
4013
4014 prepares [active - 1] = prepares [--preparecnt];
4015 ev_active (prepares [active - 1]) = active;
4016 }
4017
1628 ev_stop (EV_A_ (W)w); 4018 ev_stop (EV_A_ (W)w);
4019
4020 EV_FREQUENT_CHECK;
1629} 4021}
4022#endif
4023
4024#if EV_CHECK_ENABLE
4025void
4026ev_check_start (EV_P_ ev_check *w) EV_THROW
4027{
4028 if (expect_false (ev_is_active (w)))
4029 return;
4030
4031 EV_FREQUENT_CHECK;
4032
4033 ev_start (EV_A_ (W)w, ++checkcnt);
4034 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4035 checks [checkcnt - 1] = w;
4036
4037 EV_FREQUENT_CHECK;
4038}
4039
4040void
4041ev_check_stop (EV_P_ ev_check *w) EV_THROW
4042{
4043 clear_pending (EV_A_ (W)w);
4044 if (expect_false (!ev_is_active (w)))
4045 return;
4046
4047 EV_FREQUENT_CHECK;
4048
4049 {
4050 int active = ev_active (w);
4051
4052 checks [active - 1] = checks [--checkcnt];
4053 ev_active (checks [active - 1]) = active;
4054 }
4055
4056 ev_stop (EV_A_ (W)w);
4057
4058 EV_FREQUENT_CHECK;
4059}
4060#endif
4061
4062#if EV_EMBED_ENABLE
4063void noinline
4064ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4065{
4066 ev_run (w->other, EVRUN_NOWAIT);
4067}
4068
4069static void
4070embed_io_cb (EV_P_ ev_io *io, int revents)
4071{
4072 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4073
4074 if (ev_cb (w))
4075 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4076 else
4077 ev_run (w->other, EVRUN_NOWAIT);
4078}
4079
4080static void
4081embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4082{
4083 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4084
4085 {
4086 EV_P = w->other;
4087
4088 while (fdchangecnt)
4089 {
4090 fd_reify (EV_A);
4091 ev_run (EV_A_ EVRUN_NOWAIT);
4092 }
4093 }
4094}
4095
4096static void
4097embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4098{
4099 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4100
4101 ev_embed_stop (EV_A_ w);
4102
4103 {
4104 EV_P = w->other;
4105
4106 ev_loop_fork (EV_A);
4107 ev_run (EV_A_ EVRUN_NOWAIT);
4108 }
4109
4110 ev_embed_start (EV_A_ w);
4111}
4112
4113#if 0
4114static void
4115embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4116{
4117 ev_idle_stop (EV_A_ idle);
4118}
4119#endif
4120
4121void
4122ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4123{
4124 if (expect_false (ev_is_active (w)))
4125 return;
4126
4127 {
4128 EV_P = w->other;
4129 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4130 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4131 }
4132
4133 EV_FREQUENT_CHECK;
4134
4135 ev_set_priority (&w->io, ev_priority (w));
4136 ev_io_start (EV_A_ &w->io);
4137
4138 ev_prepare_init (&w->prepare, embed_prepare_cb);
4139 ev_set_priority (&w->prepare, EV_MINPRI);
4140 ev_prepare_start (EV_A_ &w->prepare);
4141
4142 ev_fork_init (&w->fork, embed_fork_cb);
4143 ev_fork_start (EV_A_ &w->fork);
4144
4145 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4146
4147 ev_start (EV_A_ (W)w, 1);
4148
4149 EV_FREQUENT_CHECK;
4150}
4151
4152void
4153ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4154{
4155 clear_pending (EV_A_ (W)w);
4156 if (expect_false (!ev_is_active (w)))
4157 return;
4158
4159 EV_FREQUENT_CHECK;
4160
4161 ev_io_stop (EV_A_ &w->io);
4162 ev_prepare_stop (EV_A_ &w->prepare);
4163 ev_fork_stop (EV_A_ &w->fork);
4164
4165 ev_stop (EV_A_ (W)w);
4166
4167 EV_FREQUENT_CHECK;
4168}
4169#endif
4170
4171#if EV_FORK_ENABLE
4172void
4173ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4174{
4175 if (expect_false (ev_is_active (w)))
4176 return;
4177
4178 EV_FREQUENT_CHECK;
4179
4180 ev_start (EV_A_ (W)w, ++forkcnt);
4181 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4182 forks [forkcnt - 1] = w;
4183
4184 EV_FREQUENT_CHECK;
4185}
4186
4187void
4188ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4189{
4190 clear_pending (EV_A_ (W)w);
4191 if (expect_false (!ev_is_active (w)))
4192 return;
4193
4194 EV_FREQUENT_CHECK;
4195
4196 {
4197 int active = ev_active (w);
4198
4199 forks [active - 1] = forks [--forkcnt];
4200 ev_active (forks [active - 1]) = active;
4201 }
4202
4203 ev_stop (EV_A_ (W)w);
4204
4205 EV_FREQUENT_CHECK;
4206}
4207#endif
4208
4209#if EV_CLEANUP_ENABLE
4210void
4211ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4212{
4213 if (expect_false (ev_is_active (w)))
4214 return;
4215
4216 EV_FREQUENT_CHECK;
4217
4218 ev_start (EV_A_ (W)w, ++cleanupcnt);
4219 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4220 cleanups [cleanupcnt - 1] = w;
4221
4222 /* cleanup watchers should never keep a refcount on the loop */
4223 ev_unref (EV_A);
4224 EV_FREQUENT_CHECK;
4225}
4226
4227void
4228ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4229{
4230 clear_pending (EV_A_ (W)w);
4231 if (expect_false (!ev_is_active (w)))
4232 return;
4233
4234 EV_FREQUENT_CHECK;
4235 ev_ref (EV_A);
4236
4237 {
4238 int active = ev_active (w);
4239
4240 cleanups [active - 1] = cleanups [--cleanupcnt];
4241 ev_active (cleanups [active - 1]) = active;
4242 }
4243
4244 ev_stop (EV_A_ (W)w);
4245
4246 EV_FREQUENT_CHECK;
4247}
4248#endif
4249
4250#if EV_ASYNC_ENABLE
4251void
4252ev_async_start (EV_P_ ev_async *w) EV_THROW
4253{
4254 if (expect_false (ev_is_active (w)))
4255 return;
4256
4257 w->sent = 0;
4258
4259 evpipe_init (EV_A);
4260
4261 EV_FREQUENT_CHECK;
4262
4263 ev_start (EV_A_ (W)w, ++asynccnt);
4264 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4265 asyncs [asynccnt - 1] = w;
4266
4267 EV_FREQUENT_CHECK;
4268}
4269
4270void
4271ev_async_stop (EV_P_ ev_async *w) EV_THROW
4272{
4273 clear_pending (EV_A_ (W)w);
4274 if (expect_false (!ev_is_active (w)))
4275 return;
4276
4277 EV_FREQUENT_CHECK;
4278
4279 {
4280 int active = ev_active (w);
4281
4282 asyncs [active - 1] = asyncs [--asynccnt];
4283 ev_active (asyncs [active - 1]) = active;
4284 }
4285
4286 ev_stop (EV_A_ (W)w);
4287
4288 EV_FREQUENT_CHECK;
4289}
4290
4291void
4292ev_async_send (EV_P_ ev_async *w) EV_THROW
4293{
4294 w->sent = 1;
4295 evpipe_write (EV_A_ &async_pending);
4296}
4297#endif
1630 4298
1631/*****************************************************************************/ 4299/*****************************************************************************/
1632 4300
1633struct ev_once 4301struct ev_once
1634{ 4302{
1635 struct ev_io io; 4303 ev_io io;
1636 struct ev_timer to; 4304 ev_timer to;
1637 void (*cb)(int revents, void *arg); 4305 void (*cb)(int revents, void *arg);
1638 void *arg; 4306 void *arg;
1639}; 4307};
1640 4308
1641static void 4309static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 4310once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 4311{
1644 void (*cb)(int revents, void *arg) = once->cb; 4312 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 4313 void *arg = once->arg;
1646 4314
1647 ev_io_stop (EV_A_ &once->io); 4315 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 4316 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 4317 ev_free (once);
1650 4318
1651 cb (revents, arg); 4319 cb (revents, arg);
1652} 4320}
1653 4321
1654static void 4322static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 4323once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 4324{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4325 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4326
4327 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 4328}
1659 4329
1660static void 4330static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 4331once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 4332{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4333 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4334
4335 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 4336}
1665 4337
1666void 4338void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4339ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1668{ 4340{
1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4341 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1670 4342
1671 if (expect_false (!once)) 4343 if (expect_false (!once))
1672 { 4344 {
1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4345 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1674 return; 4346 return;
1675 } 4347 }
1676 4348
1677 once->cb = cb; 4349 once->cb = cb;
1678 once->arg = arg; 4350 once->arg = arg;
1690 ev_timer_set (&once->to, timeout, 0.); 4362 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 4363 ev_timer_start (EV_A_ &once->to);
1692 } 4364 }
1693} 4365}
1694 4366
1695#ifdef __cplusplus 4367/*****************************************************************************/
1696} 4368
4369#if EV_WALK_ENABLE
4370void ecb_cold
4371ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4372{
4373 int i, j;
4374 ev_watcher_list *wl, *wn;
4375
4376 if (types & (EV_IO | EV_EMBED))
4377 for (i = 0; i < anfdmax; ++i)
4378 for (wl = anfds [i].head; wl; )
4379 {
4380 wn = wl->next;
4381
4382#if EV_EMBED_ENABLE
4383 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4384 {
4385 if (types & EV_EMBED)
4386 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4387 }
4388 else
4389#endif
4390#if EV_USE_INOTIFY
4391 if (ev_cb ((ev_io *)wl) == infy_cb)
4392 ;
4393 else
4394#endif
4395 if ((ev_io *)wl != &pipe_w)
4396 if (types & EV_IO)
4397 cb (EV_A_ EV_IO, wl);
4398
4399 wl = wn;
4400 }
4401
4402 if (types & (EV_TIMER | EV_STAT))
4403 for (i = timercnt + HEAP0; i-- > HEAP0; )
4404#if EV_STAT_ENABLE
4405 /*TODO: timer is not always active*/
4406 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4407 {
4408 if (types & EV_STAT)
4409 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4410 }
4411 else
4412#endif
4413 if (types & EV_TIMER)
4414 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4415
4416#if EV_PERIODIC_ENABLE
4417 if (types & EV_PERIODIC)
4418 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4419 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4420#endif
4421
4422#if EV_IDLE_ENABLE
4423 if (types & EV_IDLE)
4424 for (j = NUMPRI; j--; )
4425 for (i = idlecnt [j]; i--; )
4426 cb (EV_A_ EV_IDLE, idles [j][i]);
4427#endif
4428
4429#if EV_FORK_ENABLE
4430 if (types & EV_FORK)
4431 for (i = forkcnt; i--; )
4432 if (ev_cb (forks [i]) != embed_fork_cb)
4433 cb (EV_A_ EV_FORK, forks [i]);
4434#endif
4435
4436#if EV_ASYNC_ENABLE
4437 if (types & EV_ASYNC)
4438 for (i = asynccnt; i--; )
4439 cb (EV_A_ EV_ASYNC, asyncs [i]);
4440#endif
4441
4442#if EV_PREPARE_ENABLE
4443 if (types & EV_PREPARE)
4444 for (i = preparecnt; i--; )
4445# if EV_EMBED_ENABLE
4446 if (ev_cb (prepares [i]) != embed_prepare_cb)
1697#endif 4447# endif
4448 cb (EV_A_ EV_PREPARE, prepares [i]);
4449#endif
1698 4450
4451#if EV_CHECK_ENABLE
4452 if (types & EV_CHECK)
4453 for (i = checkcnt; i--; )
4454 cb (EV_A_ EV_CHECK, checks [i]);
4455#endif
4456
4457#if EV_SIGNAL_ENABLE
4458 if (types & EV_SIGNAL)
4459 for (i = 0; i < EV_NSIG - 1; ++i)
4460 for (wl = signals [i].head; wl; )
4461 {
4462 wn = wl->next;
4463 cb (EV_A_ EV_SIGNAL, wl);
4464 wl = wn;
4465 }
4466#endif
4467
4468#if EV_CHILD_ENABLE
4469 if (types & EV_CHILD)
4470 for (i = (EV_PID_HASHSIZE); i--; )
4471 for (wl = childs [i]; wl; )
4472 {
4473 wn = wl->next;
4474 cb (EV_A_ EV_CHILD, wl);
4475 wl = wn;
4476 }
4477#endif
4478/* EV_STAT 0x00001000 /* stat data changed */
4479/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4480}
4481#endif
4482
4483#if EV_MULTIPLICITY
4484 #include "ev_wrap.h"
4485#endif
4486

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines