ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.422 by root, Wed Apr 18 06:09:29 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
135#endif 197#endif
136 198
137#ifndef _WIN32 199#ifndef _WIN32
138# include <sys/time.h> 200# include <sys/time.h>
139# include <sys/wait.h> 201# include <sys/wait.h>
140# include <unistd.h> 202# include <unistd.h>
141#else 203#else
204# include <io.h>
142# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 206# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
146# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
147#endif 260# endif
148 261#endif
149/**/
150 262
151#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
152# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
153#endif 269#endif
154 270
155#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 273#endif
158 274
159#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
160# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
161#endif 281#endif
162 282
163#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 285#endif
166 286
167#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
168# ifdef _WIN32 288# ifdef _WIN32
169# define EV_USE_POLL 0 289# define EV_USE_POLL 0
170# else 290# else
171# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 292# endif
173#endif 293#endif
174 294
175#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
176# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
177#endif 301#endif
178 302
179#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
181#endif 305#endif
183#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 308# define EV_USE_PORT 0
185#endif 309#endif
186 310
187#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
188# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
316# endif
189#endif 317#endif
190 318
191#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 330# else
195# define EV_PID_HASHSIZE 16 331# define EV_USE_EVENTFD 0
196# endif 332# endif
197#endif 333#endif
198 334
199#ifndef EV_INOTIFY_HASHSIZE 335#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 337# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 338# else
203# define EV_INOTIFY_HASHSIZE 16 339# define EV_USE_SIGNALFD 0
204# endif 340# endif
205#endif 341#endif
206 342
207/**/ 343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
208 382
209#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
212#endif 386#endif
220# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
222#endif 396#endif
223 397
224#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
226# include <sys/select.h> 401# include <sys/select.h>
227# endif 402# endif
228#endif 403#endif
229 404
230#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
231# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
232#endif 413#endif
233 414
234#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 416# include <winsock.h>
236#endif 417#endif
237 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
238/**/ 457/**/
239 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
240/* 465/*
241 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 468 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 471
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
254#if __GNUC__ >= 4 519 #if __GNUC__
255# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
256# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
257#else 526#else
258# define expect(expr,value) (expr) 527 #include <inttypes.h>
259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
263#endif 542 #endif
543#endif
264 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680#endif
681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
265#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
267#define inline_size static inline 960#define inline_size ecb_inline
268 961
269#if EV_MINIMAL 962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
270# define inline_speed static noinline 965# define inline_speed static noinline
966#endif
967
968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
271#else 972#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
277 975
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
280 978
281typedef ev_watcher *W; 979typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 980typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
284 982
983#define ev_active(w) ((W)(w))->active
984#define ev_at(w) ((WT)(w))->at
985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
992#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
1004#endif
286 1005
287#ifdef _WIN32 1006#ifdef _WIN32
288# include "ev_win32.c" 1007# include "ev_win32.c"
289#endif 1008#endif
290 1009
291/*****************************************************************************/ 1010/*****************************************************************************/
292 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
293static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
294 1111
295void 1112void ecb_cold
296ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
297{ 1114{
298 syserr_cb = cb; 1115 syserr_cb = cb;
299} 1116}
300 1117
301static void noinline 1118static void noinline ecb_cold
302syserr (const char *msg) 1119ev_syserr (const char *msg)
303{ 1120{
304 if (!msg) 1121 if (!msg)
305 msg = "(libev) system error"; 1122 msg = "(libev) system error";
306 1123
307 if (syserr_cb) 1124 if (syserr_cb)
308 syserr_cb (msg); 1125 syserr_cb (msg);
309 else 1126 else
310 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
311 perror (msg); 1134 perror (msg);
1135#endif
312 abort (); 1136 abort ();
313 } 1137 }
314} 1138}
315 1139
1140static void *
1141ev_realloc_emul (void *ptr, long size)
1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
1146 /* some systems, notably openbsd and darwin, fail to properly
1147 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 * the single unix specification, so work around them here.
1149 */
1150
1151 if (size)
1152 return realloc (ptr, size);
1153
1154 free (ptr);
1155 return 0;
1156#endif
1157}
1158
316static void *(*alloc)(void *ptr, long size); 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
317 1160
318void 1161void ecb_cold
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
320{ 1163{
321 alloc = cb; 1164 alloc = cb;
322} 1165}
323 1166
324inline_speed void * 1167inline_speed void *
325ev_realloc (void *ptr, long size) 1168ev_realloc (void *ptr, long size)
326{ 1169{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1170 ptr = alloc (ptr, size);
328 1171
329 if (!ptr && size) 1172 if (!ptr && size)
330 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
332 abort (); 1179 abort ();
333 } 1180 }
334 1181
335 return ptr; 1182 return ptr;
336} 1183}
338#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
340 1187
341/*****************************************************************************/ 1188/*****************************************************************************/
342 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
343typedef struct 1194typedef struct
344{ 1195{
345 WL head; 1196 WL head;
346 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
348#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
349 SOCKET handle; 1205 SOCKET handle;
350#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
351} ANFD; 1210} ANFD;
352 1211
1212/* stores the pending event set for a given watcher */
353typedef struct 1213typedef struct
354{ 1214{
355 W w; 1215 W w;
356 int events; 1216 int events; /* the pending event set for the given watcher */
357} ANPENDING; 1217} ANPENDING;
358 1218
359#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
360typedef struct 1221typedef struct
361{ 1222{
362 WL head; 1223 WL head;
363} ANFS; 1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
364#endif 1245#endif
365 1246
366#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
367 1248
368 struct ev_loop 1249 struct ev_loop
374 #undef VAR 1255 #undef VAR
375 }; 1256 };
376 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
377 1258
378 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
379 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
380 1261
381#else 1262#else
382 1263
383 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
384 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
385 #include "ev_vars.h" 1266 #include "ev_vars.h"
386 #undef VAR 1267 #undef VAR
387 1268
388 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
389 1270
390#endif 1271#endif
391 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
392/*****************************************************************************/ 1285/*****************************************************************************/
393 1286
1287#ifndef EV_HAVE_EV_TIME
394ev_tstamp 1288ev_tstamp
395ev_time (void) 1289ev_time (void) EV_THROW
396{ 1290{
397#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
398 struct timespec ts; 1294 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 1297 }
1298#endif
1299
402 struct timeval tv; 1300 struct timeval tv;
403 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 1303}
1304#endif
407 1305
408ev_tstamp inline_size 1306inline_size ev_tstamp
409get_clock (void) 1307get_clock (void)
410{ 1308{
411#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
413 { 1311 {
420 return ev_time (); 1318 return ev_time ();
421} 1319}
422 1320
423#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
424ev_tstamp 1322ev_tstamp
425ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
426{ 1324{
427 return ev_rt_now; 1325 return ev_rt_now;
428} 1326}
429#endif 1327#endif
430 1328
431void 1329void
432ev_sleep (ev_tstamp delay) 1330ev_sleep (ev_tstamp delay) EV_THROW
433{ 1331{
434 if (delay > 0.) 1332 if (delay > 0.)
435 { 1333 {
436#if EV_USE_NANOSLEEP 1334#if EV_USE_NANOSLEEP
437 struct timespec ts; 1335 struct timespec ts;
438 1336
439 ts.tv_sec = (time_t)delay; 1337 EV_TS_SET (ts, delay);
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0); 1338 nanosleep (&ts, 0);
443#elif defined(_WIN32) 1339#elif defined _WIN32
444 Sleep (delay * 1e3); 1340 Sleep ((unsigned long)(delay * 1e3));
445#else 1341#else
446 struct timeval tv; 1342 struct timeval tv;
447 1343
448 tv.tv_sec = (time_t)delay; 1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1345 /* something not guaranteed by newer posix versions, but guaranteed */
450 1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
451 select (0, 0, 0, 0, &tv); 1348 select (0, 0, 0, 0, &tv);
452#endif 1349#endif
453 } 1350 }
454} 1351}
455 1352
456/*****************************************************************************/ 1353/*****************************************************************************/
457 1354
458int inline_size 1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356
1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
459array_nextsize (int elem, int cur, int cnt) 1360array_nextsize (int elem, int cur, int cnt)
460{ 1361{
461 int ncur = cur + 1; 1362 int ncur = cur + 1;
462 1363
463 do 1364 do
464 ncur <<= 1; 1365 ncur <<= 1;
465 while (cnt > ncur); 1366 while (cnt > ncur);
466 1367
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
468 if (elem * ncur > 4096) 1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 1370 {
470 ncur *= elem; 1371 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 1373 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 1374 ncur /= elem;
474 } 1375 }
475 1376
476 return ncur; 1377 return ncur;
477} 1378}
478 1379
479static noinline void * 1380static void * noinline ecb_cold
480array_realloc (int elem, void *base, int *cur, int cnt) 1381array_realloc (int elem, void *base, int *cur, int cnt)
481{ 1382{
482 *cur = array_nextsize (elem, *cur, cnt); 1383 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 1384 return ev_realloc (base, elem * *cur);
484} 1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 1389
486#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 1391 if (expect_false ((cnt) > (cur))) \
488 { \ 1392 { \
489 int ocur_ = (cur); \ 1393 int ecb_unused ocur_ = (cur); \
490 (base) = (type *)array_realloc \ 1394 (base) = (type *)array_realloc \
491 (sizeof (type), (base), &(cur), (cnt)); \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
492 init ((base) + (ocur_), (cur) - ocur_); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
493 } 1397 }
494 1398
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 1406 }
503#endif 1407#endif
504 1408
505#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 1411
508/*****************************************************************************/ 1412/*****************************************************************************/
509 1413
1414/* dummy callback for pending events */
1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
1417{
1418}
1419
510void noinline 1420void noinline
511ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
512{ 1422{
513 W w_ = (W)w; 1423 W w_ = (W)w;
514 int pri = ABSPRI (w_); 1424 int pri = ABSPRI (w_);
515 1425
516 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
522 pendings [pri][w_->pending - 1].w = w_; 1432 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 1433 pendings [pri][w_->pending - 1].events = revents;
524 } 1434 }
525} 1435}
526 1436
527void inline_speed 1437inline_speed void
1438feed_reverse (EV_P_ W w)
1439{
1440 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1441 rfeeds [rfeedcnt++] = w;
1442}
1443
1444inline_size void
1445feed_reverse_done (EV_P_ int revents)
1446{
1447 do
1448 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1449 while (rfeedcnt);
1450}
1451
1452inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 1453queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 1454{
530 int i; 1455 int i;
531 1456
532 for (i = 0; i < eventcnt; ++i) 1457 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 1458 ev_feed_event (EV_A_ events [i], type);
534} 1459}
535 1460
536/*****************************************************************************/ 1461/*****************************************************************************/
537 1462
538void inline_size 1463inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 1464fd_event_nocheck (EV_P_ int fd, int revents)
553{ 1465{
554 ANFD *anfd = anfds + fd; 1466 ANFD *anfd = anfds + fd;
555 ev_io *w; 1467 ev_io *w;
556 1468
557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1469 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
561 if (ev) 1473 if (ev)
562 ev_feed_event (EV_A_ (W)w, ev); 1474 ev_feed_event (EV_A_ (W)w, ev);
563 } 1475 }
564} 1476}
565 1477
1478/* do not submit kernel events for fds that have reify set */
1479/* because that means they changed while we were polling for new events */
1480inline_speed void
1481fd_event (EV_P_ int fd, int revents)
1482{
1483 ANFD *anfd = anfds + fd;
1484
1485 if (expect_true (!anfd->reify))
1486 fd_event_nocheck (EV_A_ fd, revents);
1487}
1488
566void 1489void
567ev_feed_fd_event (EV_P_ int fd, int revents) 1490ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
568{ 1491{
569 if (fd >= 0 && fd < anfdmax) 1492 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 1493 fd_event_nocheck (EV_A_ fd, revents);
571} 1494}
572 1495
573void inline_size 1496/* make sure the external fd watch events are in-sync */
1497/* with the kernel/libev internal state */
1498inline_size void
574fd_reify (EV_P) 1499fd_reify (EV_P)
575{ 1500{
576 int i; 1501 int i;
1502
1503#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1504 for (i = 0; i < fdchangecnt; ++i)
1505 {
1506 int fd = fdchanges [i];
1507 ANFD *anfd = anfds + fd;
1508
1509 if (anfd->reify & EV__IOFDSET && anfd->head)
1510 {
1511 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1512
1513 if (handle != anfd->handle)
1514 {
1515 unsigned long arg;
1516
1517 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1518
1519 /* handle changed, but fd didn't - we need to do it in two steps */
1520 backend_modify (EV_A_ fd, anfd->events, 0);
1521 anfd->events = 0;
1522 anfd->handle = handle;
1523 }
1524 }
1525 }
1526#endif
577 1527
578 for (i = 0; i < fdchangecnt; ++i) 1528 for (i = 0; i < fdchangecnt; ++i)
579 { 1529 {
580 int fd = fdchanges [i]; 1530 int fd = fdchanges [i];
581 ANFD *anfd = anfds + fd; 1531 ANFD *anfd = anfds + fd;
582 ev_io *w; 1532 ev_io *w;
583 1533
584 unsigned char events = 0; 1534 unsigned char o_events = anfd->events;
1535 unsigned char o_reify = anfd->reify;
585 1536
586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1537 anfd->reify = 0;
587 events |= (unsigned char)w->events;
588 1538
589#if EV_SELECT_IS_WINSOCKET 1539 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
590 if (events)
591 { 1540 {
592 unsigned long argp; 1541 anfd->events = 0;
593 anfd->handle = _get_osfhandle (fd); 1542
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1543 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1544 anfd->events |= (unsigned char)w->events;
1545
1546 if (o_events != anfd->events)
1547 o_reify = EV__IOFDSET; /* actually |= */
595 } 1548 }
596#endif
597 1549
598 { 1550 if (o_reify & EV__IOFDSET)
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
602 anfd->reify = 0;
603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 1551 backend_modify (EV_A_ fd, o_events, anfd->events);
607 }
608 } 1552 }
609 1553
610 fdchangecnt = 0; 1554 fdchangecnt = 0;
611} 1555}
612 1556
613void inline_size 1557/* something about the given fd changed */
1558inline_size void
614fd_change (EV_P_ int fd, int flags) 1559fd_change (EV_P_ int fd, int flags)
615{ 1560{
616 unsigned char reify = anfds [fd].reify; 1561 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 1562 anfds [fd].reify |= flags;
618 1563
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1567 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 1568 fdchanges [fdchangecnt - 1] = fd;
624 } 1569 }
625} 1570}
626 1571
627void inline_speed 1572/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1573inline_speed void ecb_cold
628fd_kill (EV_P_ int fd) 1574fd_kill (EV_P_ int fd)
629{ 1575{
630 ev_io *w; 1576 ev_io *w;
631 1577
632 while ((w = (ev_io *)anfds [fd].head)) 1578 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 1580 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1581 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 1582 }
637} 1583}
638 1584
639int inline_size 1585/* check whether the given fd is actually valid, for error recovery */
1586inline_size int ecb_cold
640fd_valid (int fd) 1587fd_valid (int fd)
641{ 1588{
642#ifdef _WIN32 1589#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 1590 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
644#else 1591#else
645 return fcntl (fd, F_GETFD) != -1; 1592 return fcntl (fd, F_GETFD) != -1;
646#endif 1593#endif
647} 1594}
648 1595
649/* called on EBADF to verify fds */ 1596/* called on EBADF to verify fds */
650static void noinline 1597static void noinline ecb_cold
651fd_ebadf (EV_P) 1598fd_ebadf (EV_P)
652{ 1599{
653 int fd; 1600 int fd;
654 1601
655 for (fd = 0; fd < anfdmax; ++fd) 1602 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 1603 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 1604 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 1605 fd_kill (EV_A_ fd);
659} 1606}
660 1607
661/* called on ENOMEM in select/poll to kill some fds and retry */ 1608/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 1609static void noinline ecb_cold
663fd_enomem (EV_P) 1610fd_enomem (EV_P)
664{ 1611{
665 int fd; 1612 int fd;
666 1613
667 for (fd = anfdmax; fd--; ) 1614 for (fd = anfdmax; fd--; )
668 if (anfds [fd].events) 1615 if (anfds [fd].events)
669 { 1616 {
670 fd_kill (EV_A_ fd); 1617 fd_kill (EV_A_ fd);
671 return; 1618 break;
672 } 1619 }
673} 1620}
674 1621
675/* usually called after fork if backend needs to re-arm all fds from scratch */ 1622/* usually called after fork if backend needs to re-arm all fds from scratch */
676static void noinline 1623static void noinline
680 1627
681 for (fd = 0; fd < anfdmax; ++fd) 1628 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 1629 if (anfds [fd].events)
683 { 1630 {
684 anfds [fd].events = 0; 1631 anfds [fd].events = 0;
1632 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1633 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
686 } 1634 }
687} 1635}
688 1636
689/*****************************************************************************/ 1637/* used to prepare libev internal fd's */
690 1638/* this is not fork-safe */
691void inline_speed 1639inline_speed void
692upheap (WT *heap, int k)
693{
694 WT w = heap [k];
695
696 while (k)
697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
703 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1;
705 k = p;
706 }
707
708 heap [k] = w;
709 ((W)heap [k])->active = k + 1;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k)
742{
743 upheap (heap, k);
744 downheap (heap, N, k);
745}
746
747/*****************************************************************************/
748
749typedef struct
750{
751 WL head;
752 sig_atomic_t volatile gotsig;
753} ANSIG;
754
755static ANSIG *signals;
756static int signalmax;
757
758static int sigpipe [2];
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761
762void inline_size
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1640fd_intern (int fd)
827{ 1641{
828#ifdef _WIN32 1642#ifdef _WIN32
829 int arg = 1; 1643 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1644 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
831#else 1645#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1646 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1647 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1648#endif
835} 1649}
836 1650
837static void noinline
838siginit (EV_P)
839{
840 fd_intern (sigpipe [0]);
841 fd_intern (sigpipe [1]);
842
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */
846}
847
848/*****************************************************************************/ 1651/*****************************************************************************/
849 1652
1653/*
1654 * the heap functions want a real array index. array index 0 is guaranteed to not
1655 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1656 * the branching factor of the d-tree.
1657 */
1658
1659/*
1660 * at the moment we allow libev the luxury of two heaps,
1661 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1662 * which is more cache-efficient.
1663 * the difference is about 5% with 50000+ watchers.
1664 */
1665#if EV_USE_4HEAP
1666
1667#define DHEAP 4
1668#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1669#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1670#define UPHEAP_DONE(p,k) ((p) == (k))
1671
1672/* away from the root */
1673inline_speed void
1674downheap (ANHE *heap, int N, int k)
1675{
1676 ANHE he = heap [k];
1677 ANHE *E = heap + N + HEAP0;
1678
1679 for (;;)
1680 {
1681 ev_tstamp minat;
1682 ANHE *minpos;
1683 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1684
1685 /* find minimum child */
1686 if (expect_true (pos + DHEAP - 1 < E))
1687 {
1688 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1691 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1692 }
1693 else if (pos < E)
1694 {
1695 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1696 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1697 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1698 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1699 }
1700 else
1701 break;
1702
1703 if (ANHE_at (he) <= minat)
1704 break;
1705
1706 heap [k] = *minpos;
1707 ev_active (ANHE_w (*minpos)) = k;
1708
1709 k = minpos - heap;
1710 }
1711
1712 heap [k] = he;
1713 ev_active (ANHE_w (he)) = k;
1714}
1715
1716#else /* 4HEAP */
1717
1718#define HEAP0 1
1719#define HPARENT(k) ((k) >> 1)
1720#define UPHEAP_DONE(p,k) (!(p))
1721
1722/* away from the root */
1723inline_speed void
1724downheap (ANHE *heap, int N, int k)
1725{
1726 ANHE he = heap [k];
1727
1728 for (;;)
1729 {
1730 int c = k << 1;
1731
1732 if (c >= N + HEAP0)
1733 break;
1734
1735 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1736 ? 1 : 0;
1737
1738 if (ANHE_at (he) <= ANHE_at (heap [c]))
1739 break;
1740
1741 heap [k] = heap [c];
1742 ev_active (ANHE_w (heap [k])) = k;
1743
1744 k = c;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750#endif
1751
1752/* towards the root */
1753inline_speed void
1754upheap (ANHE *heap, int k)
1755{
1756 ANHE he = heap [k];
1757
1758 for (;;)
1759 {
1760 int p = HPARENT (k);
1761
1762 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1763 break;
1764
1765 heap [k] = heap [p];
1766 ev_active (ANHE_w (heap [k])) = k;
1767 k = p;
1768 }
1769
1770 heap [k] = he;
1771 ev_active (ANHE_w (he)) = k;
1772}
1773
1774/* move an element suitably so it is in a correct place */
1775inline_size void
1776adjustheap (ANHE *heap, int N, int k)
1777{
1778 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1779 upheap (heap, k);
1780 else
1781 downheap (heap, N, k);
1782}
1783
1784/* rebuild the heap: this function is used only once and executed rarely */
1785inline_size void
1786reheap (ANHE *heap, int N)
1787{
1788 int i;
1789
1790 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1791 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1792 for (i = 0; i < N; ++i)
1793 upheap (heap, i + HEAP0);
1794}
1795
1796/*****************************************************************************/
1797
1798/* associate signal watchers to a signal signal */
1799typedef struct
1800{
1801 EV_ATOMIC_T pending;
1802#if EV_MULTIPLICITY
1803 EV_P;
1804#endif
1805 WL head;
1806} ANSIG;
1807
1808static ANSIG signals [EV_NSIG - 1];
1809
1810/*****************************************************************************/
1811
1812#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1813
1814static void noinline ecb_cold
1815evpipe_init (EV_P)
1816{
1817 if (!ev_is_active (&pipe_w))
1818 {
1819# if EV_USE_EVENTFD
1820 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1821 if (evfd < 0 && errno == EINVAL)
1822 evfd = eventfd (0, 0);
1823
1824 if (evfd >= 0)
1825 {
1826 evpipe [0] = -1;
1827 fd_intern (evfd); /* doing it twice doesn't hurt */
1828 ev_io_set (&pipe_w, evfd, EV_READ);
1829 }
1830 else
1831# endif
1832 {
1833 while (pipe (evpipe))
1834 ev_syserr ("(libev) error creating signal/async pipe");
1835
1836 fd_intern (evpipe [0]);
1837 fd_intern (evpipe [1]);
1838 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1839 }
1840
1841 ev_io_start (EV_A_ &pipe_w);
1842 ev_unref (EV_A); /* watcher should not keep loop alive */
1843 }
1844}
1845
1846inline_speed void
1847evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1848{
1849 if (expect_true (*flag))
1850 return;
1851
1852 *flag = 1;
1853
1854 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1855
1856 pipe_write_skipped = 1;
1857
1858 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1859
1860 if (pipe_write_wanted)
1861 {
1862 int old_errno;
1863
1864 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1865
1866 old_errno = errno; /* save errno because write will clobber it */
1867
1868#if EV_USE_EVENTFD
1869 if (evfd >= 0)
1870 {
1871 uint64_t counter = 1;
1872 write (evfd, &counter, sizeof (uint64_t));
1873 }
1874 else
1875#endif
1876 {
1877 /* win32 people keep sending patches that change this write() to send() */
1878 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1879 /* so when you think this write should be a send instead, please find out */
1880 /* where your send() is from - it's definitely not the microsoft send, and */
1881 /* tell me. thank you. */
1882 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1883 /* check the ev documentation on how to use this flag */
1884 write (evpipe [1], &(evpipe [1]), 1);
1885 }
1886
1887 errno = old_errno;
1888 }
1889}
1890
1891/* called whenever the libev signal pipe */
1892/* got some events (signal, async) */
1893static void
1894pipecb (EV_P_ ev_io *iow, int revents)
1895{
1896 int i;
1897
1898 if (revents & EV_READ)
1899 {
1900#if EV_USE_EVENTFD
1901 if (evfd >= 0)
1902 {
1903 uint64_t counter;
1904 read (evfd, &counter, sizeof (uint64_t));
1905 }
1906 else
1907#endif
1908 {
1909 char dummy;
1910 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1911 read (evpipe [0], &dummy, 1);
1912 }
1913 }
1914
1915 pipe_write_skipped = 0;
1916
1917#if EV_SIGNAL_ENABLE
1918 if (sig_pending)
1919 {
1920 sig_pending = 0;
1921
1922 for (i = EV_NSIG - 1; i--; )
1923 if (expect_false (signals [i].pending))
1924 ev_feed_signal_event (EV_A_ i + 1);
1925 }
1926#endif
1927
1928#if EV_ASYNC_ENABLE
1929 if (async_pending)
1930 {
1931 async_pending = 0;
1932
1933 for (i = asynccnt; i--; )
1934 if (asyncs [i]->sent)
1935 {
1936 asyncs [i]->sent = 0;
1937 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1938 }
1939 }
1940#endif
1941}
1942
1943/*****************************************************************************/
1944
1945void
1946ev_feed_signal (int signum) EV_THROW
1947{
1948#if EV_MULTIPLICITY
1949 EV_P = signals [signum - 1].loop;
1950
1951 if (!EV_A)
1952 return;
1953#endif
1954
1955 if (!ev_active (&pipe_w))
1956 return;
1957
1958 signals [signum - 1].pending = 1;
1959 evpipe_write (EV_A_ &sig_pending);
1960}
1961
1962static void
1963ev_sighandler (int signum)
1964{
1965#ifdef _WIN32
1966 signal (signum, ev_sighandler);
1967#endif
1968
1969 ev_feed_signal (signum);
1970}
1971
1972void noinline
1973ev_feed_signal_event (EV_P_ int signum) EV_THROW
1974{
1975 WL w;
1976
1977 if (expect_false (signum <= 0 || signum > EV_NSIG))
1978 return;
1979
1980 --signum;
1981
1982#if EV_MULTIPLICITY
1983 /* it is permissible to try to feed a signal to the wrong loop */
1984 /* or, likely more useful, feeding a signal nobody is waiting for */
1985
1986 if (expect_false (signals [signum].loop != EV_A))
1987 return;
1988#endif
1989
1990 signals [signum].pending = 0;
1991
1992 for (w = signals [signum].head; w; w = w->next)
1993 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1994}
1995
1996#if EV_USE_SIGNALFD
1997static void
1998sigfdcb (EV_P_ ev_io *iow, int revents)
1999{
2000 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2001
2002 for (;;)
2003 {
2004 ssize_t res = read (sigfd, si, sizeof (si));
2005
2006 /* not ISO-C, as res might be -1, but works with SuS */
2007 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2008 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2009
2010 if (res < (ssize_t)sizeof (si))
2011 break;
2012 }
2013}
2014#endif
2015
2016#endif
2017
2018/*****************************************************************************/
2019
2020#if EV_CHILD_ENABLE
850static WL childs [EV_PID_HASHSIZE]; 2021static WL childs [EV_PID_HASHSIZE];
851 2022
852#ifndef _WIN32
853
854static ev_signal childev; 2023static ev_signal childev;
855 2024
856void inline_speed 2025#ifndef WIFCONTINUED
2026# define WIFCONTINUED(status) 0
2027#endif
2028
2029/* handle a single child status event */
2030inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2031child_reap (EV_P_ int chain, int pid, int status)
858{ 2032{
859 ev_child *w; 2033 ev_child *w;
2034 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 2035
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2036 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2037 {
862 if (w->pid == pid || !w->pid) 2038 if ((w->pid == pid || !w->pid)
2039 && (!traced || (w->flags & 1)))
863 { 2040 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2041 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 2042 w->rpid = pid;
866 w->rstatus = status; 2043 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2044 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 2045 }
2046 }
869} 2047}
870 2048
871#ifndef WCONTINUED 2049#ifndef WCONTINUED
872# define WCONTINUED 0 2050# define WCONTINUED 0
873#endif 2051#endif
874 2052
2053/* called on sigchld etc., calls waitpid */
875static void 2054static void
876childcb (EV_P_ ev_signal *sw, int revents) 2055childcb (EV_P_ ev_signal *sw, int revents)
877{ 2056{
878 int pid, status; 2057 int pid, status;
879 2058
882 if (!WCONTINUED 2061 if (!WCONTINUED
883 || errno != EINVAL 2062 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2063 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 2064 return;
886 2065
887 /* make sure we are called again until all childs have been reaped */ 2066 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 2067 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2068 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 2069
891 child_reap (EV_A_ sw, pid, pid, status); 2070 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 2071 if ((EV_PID_HASHSIZE) > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2072 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 2073}
895 2074
896#endif 2075#endif
897 2076
898/*****************************************************************************/ 2077/*****************************************************************************/
899 2078
2079#if EV_USE_IOCP
2080# include "ev_iocp.c"
2081#endif
900#if EV_USE_PORT 2082#if EV_USE_PORT
901# include "ev_port.c" 2083# include "ev_port.c"
902#endif 2084#endif
903#if EV_USE_KQUEUE 2085#if EV_USE_KQUEUE
904# include "ev_kqueue.c" 2086# include "ev_kqueue.c"
911#endif 2093#endif
912#if EV_USE_SELECT 2094#if EV_USE_SELECT
913# include "ev_select.c" 2095# include "ev_select.c"
914#endif 2096#endif
915 2097
916int 2098int ecb_cold
917ev_version_major (void) 2099ev_version_major (void) EV_THROW
918{ 2100{
919 return EV_VERSION_MAJOR; 2101 return EV_VERSION_MAJOR;
920} 2102}
921 2103
922int 2104int ecb_cold
923ev_version_minor (void) 2105ev_version_minor (void) EV_THROW
924{ 2106{
925 return EV_VERSION_MINOR; 2107 return EV_VERSION_MINOR;
926} 2108}
927 2109
928/* return true if we are running with elevated privileges and should ignore env variables */ 2110/* return true if we are running with elevated privileges and should ignore env variables */
929int inline_size 2111int inline_size ecb_cold
930enable_secure (void) 2112enable_secure (void)
931{ 2113{
932#ifdef _WIN32 2114#ifdef _WIN32
933 return 0; 2115 return 0;
934#else 2116#else
935 return getuid () != geteuid () 2117 return getuid () != geteuid ()
936 || getgid () != getegid (); 2118 || getgid () != getegid ();
937#endif 2119#endif
938} 2120}
939 2121
940unsigned int 2122unsigned int ecb_cold
941ev_supported_backends (void) 2123ev_supported_backends (void) EV_THROW
942{ 2124{
943 unsigned int flags = 0; 2125 unsigned int flags = 0;
944 2126
945 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2127 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
946 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2128 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
949 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2131 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
950 2132
951 return flags; 2133 return flags;
952} 2134}
953 2135
954unsigned int 2136unsigned int ecb_cold
955ev_recommended_backends (void) 2137ev_recommended_backends (void) EV_THROW
956{ 2138{
957 unsigned int flags = ev_supported_backends (); 2139 unsigned int flags = ev_supported_backends ();
958 2140
959#ifndef __NetBSD__ 2141#ifndef __NetBSD__
960 /* kqueue is borked on everything but netbsd apparently */ 2142 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 2143 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 2144 flags &= ~EVBACKEND_KQUEUE;
963#endif 2145#endif
964#ifdef __APPLE__ 2146#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 2147 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 2148 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2149 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2150#endif
2151#ifdef __FreeBSD__
2152 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
967#endif 2153#endif
968 2154
969 return flags; 2155 return flags;
970} 2156}
971 2157
2158unsigned int ecb_cold
2159ev_embeddable_backends (void) EV_THROW
2160{
2161 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2162
2163 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2164 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2165 flags &= ~EVBACKEND_EPOLL;
2166
2167 return flags;
2168}
2169
972unsigned int 2170unsigned int
973ev_embeddable_backends (void) 2171ev_backend (EV_P) EV_THROW
974{ 2172{
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2173 return backend;
976 return EVBACKEND_KQUEUE
977 | EVBACKEND_PORT;
978} 2174}
979 2175
2176#if EV_FEATURE_API
980unsigned int 2177unsigned int
981ev_backend (EV_P) 2178ev_iteration (EV_P) EV_THROW
982{ 2179{
983 return backend; 2180 return loop_count;
984} 2181}
985 2182
986unsigned int 2183unsigned int
987ev_loop_count (EV_P) 2184ev_depth (EV_P) EV_THROW
988{ 2185{
989 return loop_count; 2186 return loop_depth;
990} 2187}
991 2188
992void 2189void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2190ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
994{ 2191{
995 io_blocktime = interval; 2192 io_blocktime = interval;
996} 2193}
997 2194
998void 2195void
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2196ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1000{ 2197{
1001 timeout_blocktime = interval; 2198 timeout_blocktime = interval;
1002} 2199}
1003 2200
2201void
2202ev_set_userdata (EV_P_ void *data) EV_THROW
2203{
2204 userdata = data;
2205}
2206
2207void *
2208ev_userdata (EV_P) EV_THROW
2209{
2210 return userdata;
2211}
2212
2213void
2214ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2215{
2216 invoke_cb = invoke_pending_cb;
2217}
2218
2219void
2220ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2221{
2222 release_cb = release;
2223 acquire_cb = acquire;
2224}
2225#endif
2226
2227/* initialise a loop structure, must be zero-initialised */
1004static void noinline 2228static void noinline ecb_cold
1005loop_init (EV_P_ unsigned int flags) 2229loop_init (EV_P_ unsigned int flags) EV_THROW
1006{ 2230{
1007 if (!backend) 2231 if (!backend)
1008 { 2232 {
2233 origflags = flags;
2234
2235#if EV_USE_REALTIME
2236 if (!have_realtime)
2237 {
2238 struct timespec ts;
2239
2240 if (!clock_gettime (CLOCK_REALTIME, &ts))
2241 have_realtime = 1;
2242 }
2243#endif
2244
1009#if EV_USE_MONOTONIC 2245#if EV_USE_MONOTONIC
2246 if (!have_monotonic)
1010 { 2247 {
1011 struct timespec ts; 2248 struct timespec ts;
2249
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2250 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 2251 have_monotonic = 1;
1014 } 2252 }
1015#endif 2253#endif
1016
1017 ev_rt_now = ev_time ();
1018 mn_now = get_clock ();
1019 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now;
1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024 2254
1025 /* pid check not overridable via env */ 2255 /* pid check not overridable via env */
1026#ifndef _WIN32 2256#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 2257 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 2258 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 2261 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 2262 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 2263 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 2264 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 2265
1036 if (!(flags & 0x0000ffffUL)) 2266 ev_rt_now = ev_time ();
2267 mn_now = get_clock ();
2268 now_floor = mn_now;
2269 rtmn_diff = ev_rt_now - mn_now;
2270#if EV_FEATURE_API
2271 invoke_cb = ev_invoke_pending;
2272#endif
2273
2274 io_blocktime = 0.;
2275 timeout_blocktime = 0.;
2276 backend = 0;
2277 backend_fd = -1;
2278 sig_pending = 0;
2279#if EV_ASYNC_ENABLE
2280 async_pending = 0;
2281#endif
2282 pipe_write_skipped = 0;
2283 pipe_write_wanted = 0;
2284#if EV_USE_INOTIFY
2285 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2286#endif
2287#if EV_USE_SIGNALFD
2288 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2289#endif
2290
2291 if (!(flags & EVBACKEND_MASK))
1037 flags |= ev_recommended_backends (); 2292 flags |= ev_recommended_backends ();
1038 2293
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY 2294#if EV_USE_IOCP
1042 fs_fd = -2; 2295 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1043#endif 2296#endif
1044
1045#if EV_USE_PORT 2297#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2298 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 2299#endif
1048#if EV_USE_KQUEUE 2300#if EV_USE_KQUEUE
1049 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2301 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1056#endif 2308#endif
1057#if EV_USE_SELECT 2309#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2310 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 2311#endif
1060 2312
2313 ev_prepare_init (&pending_w, pendingcb);
2314
2315#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1061 ev_init (&sigev, sigcb); 2316 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 2317 ev_set_priority (&pipe_w, EV_MAXPRI);
2318#endif
1063 } 2319 }
1064} 2320}
1065 2321
1066static void noinline 2322/* free up a loop structure */
2323void ecb_cold
1067loop_destroy (EV_P) 2324ev_loop_destroy (EV_P)
1068{ 2325{
1069 int i; 2326 int i;
2327
2328#if EV_MULTIPLICITY
2329 /* mimic free (0) */
2330 if (!EV_A)
2331 return;
2332#endif
2333
2334#if EV_CLEANUP_ENABLE
2335 /* queue cleanup watchers (and execute them) */
2336 if (expect_false (cleanupcnt))
2337 {
2338 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2339 EV_INVOKE_PENDING;
2340 }
2341#endif
2342
2343#if EV_CHILD_ENABLE
2344 if (ev_is_active (&childev))
2345 {
2346 ev_ref (EV_A); /* child watcher */
2347 ev_signal_stop (EV_A_ &childev);
2348 }
2349#endif
2350
2351 if (ev_is_active (&pipe_w))
2352 {
2353 /*ev_ref (EV_A);*/
2354 /*ev_io_stop (EV_A_ &pipe_w);*/
2355
2356#if EV_USE_EVENTFD
2357 if (evfd >= 0)
2358 close (evfd);
2359#endif
2360
2361 if (evpipe [0] >= 0)
2362 {
2363 EV_WIN32_CLOSE_FD (evpipe [0]);
2364 EV_WIN32_CLOSE_FD (evpipe [1]);
2365 }
2366 }
2367
2368#if EV_USE_SIGNALFD
2369 if (ev_is_active (&sigfd_w))
2370 close (sigfd);
2371#endif
1070 2372
1071#if EV_USE_INOTIFY 2373#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 2374 if (fs_fd >= 0)
1073 close (fs_fd); 2375 close (fs_fd);
1074#endif 2376#endif
1075 2377
1076 if (backend_fd >= 0) 2378 if (backend_fd >= 0)
1077 close (backend_fd); 2379 close (backend_fd);
1078 2380
2381#if EV_USE_IOCP
2382 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2383#endif
1079#if EV_USE_PORT 2384#if EV_USE_PORT
1080 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2385 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1081#endif 2386#endif
1082#if EV_USE_KQUEUE 2387#if EV_USE_KQUEUE
1083 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2388 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1098#if EV_IDLE_ENABLE 2403#if EV_IDLE_ENABLE
1099 array_free (idle, [i]); 2404 array_free (idle, [i]);
1100#endif 2405#endif
1101 } 2406 }
1102 2407
1103 ev_free (anfds); anfdmax = 0; 2408 ev_free (anfds); anfds = 0; anfdmax = 0;
1104 2409
1105 /* have to use the microsoft-never-gets-it-right macro */ 2410 /* have to use the microsoft-never-gets-it-right macro */
2411 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 2412 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 2413 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 2414#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 2415 array_free (periodic, EMPTY);
1110#endif 2416#endif
1111#if EV_FORK_ENABLE 2417#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 2418 array_free (fork, EMPTY);
1113#endif 2419#endif
2420#if EV_CLEANUP_ENABLE
2421 array_free (cleanup, EMPTY);
2422#endif
1114 array_free (prepare, EMPTY); 2423 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 2424 array_free (check, EMPTY);
2425#if EV_ASYNC_ENABLE
2426 array_free (async, EMPTY);
2427#endif
1116 2428
1117 backend = 0; 2429 backend = 0;
1118}
1119 2430
2431#if EV_MULTIPLICITY
2432 if (ev_is_default_loop (EV_A))
2433#endif
2434 ev_default_loop_ptr = 0;
2435#if EV_MULTIPLICITY
2436 else
2437 ev_free (EV_A);
2438#endif
2439}
2440
2441#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 2442inline_size void infy_fork (EV_P);
2443#endif
1121 2444
1122void inline_size 2445inline_size void
1123loop_fork (EV_P) 2446loop_fork (EV_P)
1124{ 2447{
1125#if EV_USE_PORT 2448#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2449 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 2450#endif
1133#endif 2456#endif
1134#if EV_USE_INOTIFY 2457#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 2458 infy_fork (EV_A);
1136#endif 2459#endif
1137 2460
1138 if (ev_is_active (&sigev)) 2461 if (ev_is_active (&pipe_w))
1139 { 2462 {
1140 /* default loop */ 2463 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1141 2464
1142 ev_ref (EV_A); 2465 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 2466 ev_io_stop (EV_A_ &pipe_w);
1144 close (sigpipe [0]);
1145 close (sigpipe [1]);
1146 2467
1147 while (pipe (sigpipe)) 2468#if EV_USE_EVENTFD
1148 syserr ("(libev) error creating pipe"); 2469 if (evfd >= 0)
2470 close (evfd);
2471#endif
1149 2472
2473 if (evpipe [0] >= 0)
2474 {
2475 EV_WIN32_CLOSE_FD (evpipe [0]);
2476 EV_WIN32_CLOSE_FD (evpipe [1]);
2477 }
2478
2479#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1150 siginit (EV_A); 2480 evpipe_init (EV_A);
2481 /* now iterate over everything, in case we missed something */
2482 pipecb (EV_A_ &pipe_w, EV_READ);
2483#endif
1151 } 2484 }
1152 2485
1153 postfork = 0; 2486 postfork = 0;
1154} 2487}
1155 2488
1156#if EV_MULTIPLICITY 2489#if EV_MULTIPLICITY
2490
1157struct ev_loop * 2491struct ev_loop * ecb_cold
1158ev_loop_new (unsigned int flags) 2492ev_loop_new (unsigned int flags) EV_THROW
1159{ 2493{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2494 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 2495
1162 memset (loop, 0, sizeof (struct ev_loop)); 2496 memset (EV_A, 0, sizeof (struct ev_loop));
1163
1164 loop_init (EV_A_ flags); 2497 loop_init (EV_A_ flags);
1165 2498
1166 if (ev_backend (EV_A)) 2499 if (ev_backend (EV_A))
1167 return loop; 2500 return EV_A;
1168 2501
2502 ev_free (EV_A);
1169 return 0; 2503 return 0;
1170} 2504}
1171 2505
1172void 2506#endif /* multiplicity */
1173ev_loop_destroy (EV_P)
1174{
1175 loop_destroy (EV_A);
1176 ev_free (loop);
1177}
1178 2507
1179void 2508#if EV_VERIFY
1180ev_loop_fork (EV_P) 2509static void noinline ecb_cold
2510verify_watcher (EV_P_ W w)
1181{ 2511{
1182 postfork = 1; 2512 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1183}
1184 2513
2514 if (w->pending)
2515 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2516}
2517
2518static void noinline ecb_cold
2519verify_heap (EV_P_ ANHE *heap, int N)
2520{
2521 int i;
2522
2523 for (i = HEAP0; i < N + HEAP0; ++i)
2524 {
2525 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2526 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2527 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2528
2529 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2530 }
2531}
2532
2533static void noinline ecb_cold
2534array_verify (EV_P_ W *ws, int cnt)
2535{
2536 while (cnt--)
2537 {
2538 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2539 verify_watcher (EV_A_ ws [cnt]);
2540 }
2541}
2542#endif
2543
2544#if EV_FEATURE_API
2545void ecb_cold
2546ev_verify (EV_P) EV_THROW
2547{
2548#if EV_VERIFY
2549 int i;
2550 WL w;
2551
2552 assert (activecnt >= -1);
2553
2554 assert (fdchangemax >= fdchangecnt);
2555 for (i = 0; i < fdchangecnt; ++i)
2556 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2557
2558 assert (anfdmax >= 0);
2559 for (i = 0; i < anfdmax; ++i)
2560 for (w = anfds [i].head; w; w = w->next)
2561 {
2562 verify_watcher (EV_A_ (W)w);
2563 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2564 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2565 }
2566
2567 assert (timermax >= timercnt);
2568 verify_heap (EV_A_ timers, timercnt);
2569
2570#if EV_PERIODIC_ENABLE
2571 assert (periodicmax >= periodiccnt);
2572 verify_heap (EV_A_ periodics, periodiccnt);
2573#endif
2574
2575 for (i = NUMPRI; i--; )
2576 {
2577 assert (pendingmax [i] >= pendingcnt [i]);
2578#if EV_IDLE_ENABLE
2579 assert (idleall >= 0);
2580 assert (idlemax [i] >= idlecnt [i]);
2581 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2582#endif
2583 }
2584
2585#if EV_FORK_ENABLE
2586 assert (forkmax >= forkcnt);
2587 array_verify (EV_A_ (W *)forks, forkcnt);
2588#endif
2589
2590#if EV_CLEANUP_ENABLE
2591 assert (cleanupmax >= cleanupcnt);
2592 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2593#endif
2594
2595#if EV_ASYNC_ENABLE
2596 assert (asyncmax >= asynccnt);
2597 array_verify (EV_A_ (W *)asyncs, asynccnt);
2598#endif
2599
2600#if EV_PREPARE_ENABLE
2601 assert (preparemax >= preparecnt);
2602 array_verify (EV_A_ (W *)prepares, preparecnt);
2603#endif
2604
2605#if EV_CHECK_ENABLE
2606 assert (checkmax >= checkcnt);
2607 array_verify (EV_A_ (W *)checks, checkcnt);
2608#endif
2609
2610# if 0
2611#if EV_CHILD_ENABLE
2612 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2613 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2614#endif
2615# endif
2616#endif
2617}
1185#endif 2618#endif
1186 2619
1187#if EV_MULTIPLICITY 2620#if EV_MULTIPLICITY
1188struct ev_loop * 2621struct ev_loop * ecb_cold
1189ev_default_loop_init (unsigned int flags)
1190#else 2622#else
1191int 2623int
2624#endif
1192ev_default_loop (unsigned int flags) 2625ev_default_loop (unsigned int flags) EV_THROW
1193#endif
1194{ 2626{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 2627 if (!ev_default_loop_ptr)
1200 { 2628 {
1201#if EV_MULTIPLICITY 2629#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2630 EV_P = ev_default_loop_ptr = &default_loop_struct;
1203#else 2631#else
1204 ev_default_loop_ptr = 1; 2632 ev_default_loop_ptr = 1;
1205#endif 2633#endif
1206 2634
1207 loop_init (EV_A_ flags); 2635 loop_init (EV_A_ flags);
1208 2636
1209 if (ev_backend (EV_A)) 2637 if (ev_backend (EV_A))
1210 { 2638 {
1211 siginit (EV_A); 2639#if EV_CHILD_ENABLE
1212
1213#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 2640 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 2641 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 2642 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2643 ev_unref (EV_A); /* child watcher should not keep loop alive */
1218#endif 2644#endif
1223 2649
1224 return ev_default_loop_ptr; 2650 return ev_default_loop_ptr;
1225} 2651}
1226 2652
1227void 2653void
1228ev_default_destroy (void) 2654ev_loop_fork (EV_P) EV_THROW
1229{ 2655{
1230#if EV_MULTIPLICITY 2656 postfork = 1; /* must be in line with ev_default_fork */
1231 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif
1233
1234#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev);
1237#endif
1238
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A);
1246}
1247
1248void
1249ev_default_fork (void)
1250{
1251#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif
1254
1255 if (backend)
1256 postfork = 1;
1257} 2657}
1258 2658
1259/*****************************************************************************/ 2659/*****************************************************************************/
1260 2660
1261void 2661void
1262ev_invoke (EV_P_ void *w, int revents) 2662ev_invoke (EV_P_ void *w, int revents)
1263{ 2663{
1264 EV_CB_INVOKE ((W)w, revents); 2664 EV_CB_INVOKE ((W)w, revents);
1265} 2665}
1266 2666
1267void inline_speed 2667unsigned int
1268call_pending (EV_P) 2668ev_pending_count (EV_P) EV_THROW
2669{
2670 int pri;
2671 unsigned int count = 0;
2672
2673 for (pri = NUMPRI; pri--; )
2674 count += pendingcnt [pri];
2675
2676 return count;
2677}
2678
2679void noinline
2680ev_invoke_pending (EV_P)
1269{ 2681{
1270 int pri; 2682 int pri;
1271 2683
1272 for (pri = NUMPRI; pri--; ) 2684 for (pri = NUMPRI; pri--; )
1273 while (pendingcnt [pri]) 2685 while (pendingcnt [pri])
1274 { 2686 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2687 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 2688
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280
1281 p->w->pending = 0; 2689 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 2690 EV_CB_INVOKE (p->w, p->events);
1283 } 2691 EV_FREQUENT_CHECK;
1284 } 2692 }
1285} 2693}
1286 2694
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 2695#if EV_IDLE_ENABLE
1368void inline_size 2696/* make idle watchers pending. this handles the "call-idle */
2697/* only when higher priorities are idle" logic */
2698inline_size void
1369idle_reify (EV_P) 2699idle_reify (EV_P)
1370{ 2700{
1371 if (expect_false (idleall)) 2701 if (expect_false (idleall))
1372 { 2702 {
1373 int pri; 2703 int pri;
1385 } 2715 }
1386 } 2716 }
1387} 2717}
1388#endif 2718#endif
1389 2719
1390void inline_speed 2720/* make timers pending */
2721inline_size void
2722timers_reify (EV_P)
2723{
2724 EV_FREQUENT_CHECK;
2725
2726 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2727 {
2728 do
2729 {
2730 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2731
2732 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2733
2734 /* first reschedule or stop timer */
2735 if (w->repeat)
2736 {
2737 ev_at (w) += w->repeat;
2738 if (ev_at (w) < mn_now)
2739 ev_at (w) = mn_now;
2740
2741 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2742
2743 ANHE_at_cache (timers [HEAP0]);
2744 downheap (timers, timercnt, HEAP0);
2745 }
2746 else
2747 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2748
2749 EV_FREQUENT_CHECK;
2750 feed_reverse (EV_A_ (W)w);
2751 }
2752 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2753
2754 feed_reverse_done (EV_A_ EV_TIMER);
2755 }
2756}
2757
2758#if EV_PERIODIC_ENABLE
2759
2760static void noinline
2761periodic_recalc (EV_P_ ev_periodic *w)
2762{
2763 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2764 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2765
2766 /* the above almost always errs on the low side */
2767 while (at <= ev_rt_now)
2768 {
2769 ev_tstamp nat = at + w->interval;
2770
2771 /* when resolution fails us, we use ev_rt_now */
2772 if (expect_false (nat == at))
2773 {
2774 at = ev_rt_now;
2775 break;
2776 }
2777
2778 at = nat;
2779 }
2780
2781 ev_at (w) = at;
2782}
2783
2784/* make periodics pending */
2785inline_size void
2786periodics_reify (EV_P)
2787{
2788 EV_FREQUENT_CHECK;
2789
2790 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2791 {
2792 int feed_count = 0;
2793
2794 do
2795 {
2796 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2797
2798 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2799
2800 /* first reschedule or stop timer */
2801 if (w->reschedule_cb)
2802 {
2803 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2804
2805 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2806
2807 ANHE_at_cache (periodics [HEAP0]);
2808 downheap (periodics, periodiccnt, HEAP0);
2809 }
2810 else if (w->interval)
2811 {
2812 periodic_recalc (EV_A_ w);
2813 ANHE_at_cache (periodics [HEAP0]);
2814 downheap (periodics, periodiccnt, HEAP0);
2815 }
2816 else
2817 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2818
2819 EV_FREQUENT_CHECK;
2820 feed_reverse (EV_A_ (W)w);
2821 }
2822 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2823
2824 feed_reverse_done (EV_A_ EV_PERIODIC);
2825 }
2826}
2827
2828/* simply recalculate all periodics */
2829/* TODO: maybe ensure that at least one event happens when jumping forward? */
2830static void noinline ecb_cold
2831periodics_reschedule (EV_P)
2832{
2833 int i;
2834
2835 /* adjust periodics after time jump */
2836 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2837 {
2838 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2839
2840 if (w->reschedule_cb)
2841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2842 else if (w->interval)
2843 periodic_recalc (EV_A_ w);
2844
2845 ANHE_at_cache (periodics [i]);
2846 }
2847
2848 reheap (periodics, periodiccnt);
2849}
2850#endif
2851
2852/* adjust all timers by a given offset */
2853static void noinline ecb_cold
2854timers_reschedule (EV_P_ ev_tstamp adjust)
2855{
2856 int i;
2857
2858 for (i = 0; i < timercnt; ++i)
2859 {
2860 ANHE *he = timers + i + HEAP0;
2861 ANHE_w (*he)->at += adjust;
2862 ANHE_at_cache (*he);
2863 }
2864}
2865
2866/* fetch new monotonic and realtime times from the kernel */
2867/* also detect if there was a timejump, and act accordingly */
2868inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 2869time_update (EV_P_ ev_tstamp max_block)
1392{ 2870{
1393 int i;
1394
1395#if EV_USE_MONOTONIC 2871#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic)) 2872 if (expect_true (have_monotonic))
1397 { 2873 {
2874 int i;
1398 ev_tstamp odiff = rtmn_diff; 2875 ev_tstamp odiff = rtmn_diff;
1399 2876
1400 mn_now = get_clock (); 2877 mn_now = get_clock ();
1401 2878
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2879 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1418 * doesn't hurt either as we only do this on time-jumps or 2895 * doesn't hurt either as we only do this on time-jumps or
1419 * in the unlikely event of having been preempted here. 2896 * in the unlikely event of having been preempted here.
1420 */ 2897 */
1421 for (i = 4; --i; ) 2898 for (i = 4; --i; )
1422 { 2899 {
2900 ev_tstamp diff;
1423 rtmn_diff = ev_rt_now - mn_now; 2901 rtmn_diff = ev_rt_now - mn_now;
1424 2902
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2903 diff = odiff - rtmn_diff;
2904
2905 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 2906 return; /* all is well */
1427 2907
1428 ev_rt_now = ev_time (); 2908 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 2909 mn_now = get_clock ();
1430 now_floor = mn_now; 2910 now_floor = mn_now;
1431 } 2911 }
1432 2912
2913 /* no timer adjustment, as the monotonic clock doesn't jump */
2914 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 2915# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 2916 periodics_reschedule (EV_A);
1435# endif 2917# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 2918 }
1439 else 2919 else
1440#endif 2920#endif
1441 { 2921 {
1442 ev_rt_now = ev_time (); 2922 ev_rt_now = ev_time ();
1443 2923
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2924 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 2925 {
2926 /* adjust timers. this is easy, as the offset is the same for all of them */
2927 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 2928#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 2929 periodics_reschedule (EV_A);
1448#endif 2930#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 2931 }
1453 2932
1454 mn_now = ev_rt_now; 2933 mn_now = ev_rt_now;
1455 } 2934 }
1456} 2935}
1457 2936
1458void 2937int
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done;
1471
1472void
1473ev_loop (EV_P_ int flags) 2938ev_run (EV_P_ int flags)
1474{ 2939{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2940#if EV_FEATURE_API
1476 ? EVUNLOOP_ONE 2941 ++loop_depth;
1477 : EVUNLOOP_CANCEL; 2942#endif
1478 2943
2944 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2945
2946 loop_done = EVBREAK_CANCEL;
2947
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2948 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1480 2949
1481 do 2950 do
1482 { 2951 {
2952#if EV_VERIFY >= 2
2953 ev_verify (EV_A);
2954#endif
2955
1483#ifndef _WIN32 2956#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 2957 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 2958 if (expect_false (getpid () != curpid))
1486 { 2959 {
1487 curpid = getpid (); 2960 curpid = getpid ();
1493 /* we might have forked, so queue fork handlers */ 2966 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork)) 2967 if (expect_false (postfork))
1495 if (forkcnt) 2968 if (forkcnt)
1496 { 2969 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A); 2971 EV_INVOKE_PENDING;
1499 } 2972 }
1500#endif 2973#endif
1501 2974
2975#if EV_PREPARE_ENABLE
1502 /* queue prepare watchers (and execute them) */ 2976 /* queue prepare watchers (and execute them) */
1503 if (expect_false (preparecnt)) 2977 if (expect_false (preparecnt))
1504 { 2978 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2980 EV_INVOKE_PENDING;
1507 } 2981 }
2982#endif
1508 2983
1509 if (expect_false (!activecnt)) 2984 if (expect_false (loop_done))
1510 break; 2985 break;
1511 2986
1512 /* we might have forked, so reify kernel state if necessary */ 2987 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2988 if (expect_false (postfork))
1514 loop_fork (EV_A); 2989 loop_fork (EV_A);
1519 /* calculate blocking time */ 2994 /* calculate blocking time */
1520 { 2995 {
1521 ev_tstamp waittime = 0.; 2996 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.; 2997 ev_tstamp sleeptime = 0.;
1523 2998
2999 /* remember old timestamp for io_blocktime calculation */
3000 ev_tstamp prev_mn_now = mn_now;
3001
3002 /* update time to cancel out callback processing overhead */
3003 time_update (EV_A_ 1e100);
3004
3005 /* from now on, we want a pipe-wake-up */
3006 pipe_write_wanted = 1;
3007
3008 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3009
1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3010 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1525 { 3011 {
1526 /* update time to cancel out callback processing overhead */
1527 time_update (EV_A_ 1e100);
1528
1529 waittime = MAX_BLOCKTIME; 3012 waittime = MAX_BLOCKTIME;
1530 3013
1531 if (timercnt) 3014 if (timercnt)
1532 { 3015 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3016 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1534 if (waittime > to) waittime = to; 3017 if (waittime > to) waittime = to;
1535 } 3018 }
1536 3019
1537#if EV_PERIODIC_ENABLE 3020#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 3021 if (periodiccnt)
1539 { 3022 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3023 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1541 if (waittime > to) waittime = to; 3024 if (waittime > to) waittime = to;
1542 } 3025 }
1543#endif 3026#endif
1544 3027
3028 /* don't let timeouts decrease the waittime below timeout_blocktime */
1545 if (expect_false (waittime < timeout_blocktime)) 3029 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime; 3030 waittime = timeout_blocktime;
1547 3031
1548 sleeptime = waittime - backend_fudge; 3032 /* at this point, we NEED to wait, so we have to ensure */
3033 /* to pass a minimum nonzero value to the backend */
3034 if (expect_false (waittime < backend_mintime))
3035 waittime = backend_mintime;
1549 3036
3037 /* extra check because io_blocktime is commonly 0 */
1550 if (expect_true (sleeptime > io_blocktime)) 3038 if (expect_false (io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 { 3039 {
3040 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3041
3042 if (sleeptime > waittime - backend_mintime)
3043 sleeptime = waittime - backend_mintime;
3044
3045 if (expect_true (sleeptime > 0.))
3046 {
1555 ev_sleep (sleeptime); 3047 ev_sleep (sleeptime);
1556 waittime -= sleeptime; 3048 waittime -= sleeptime;
3049 }
1557 } 3050 }
1558 } 3051 }
1559 3052
3053#if EV_FEATURE_API
1560 ++loop_count; 3054 ++loop_count;
3055#endif
3056 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1561 backend_poll (EV_A_ waittime); 3057 backend_poll (EV_A_ waittime);
3058 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3059
3060 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3061
3062 if (pipe_write_skipped)
3063 {
3064 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3065 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3066 }
3067
1562 3068
1563 /* update ev_rt_now, do magic */ 3069 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime); 3070 time_update (EV_A_ waittime + sleeptime);
1565 } 3071 }
1566 3072
1573#if EV_IDLE_ENABLE 3079#if EV_IDLE_ENABLE
1574 /* queue idle watchers unless other events are pending */ 3080 /* queue idle watchers unless other events are pending */
1575 idle_reify (EV_A); 3081 idle_reify (EV_A);
1576#endif 3082#endif
1577 3083
3084#if EV_CHECK_ENABLE
1578 /* queue check watchers, to be executed first */ 3085 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 3086 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3087 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3088#endif
1581 3089
1582 call_pending (EV_A); 3090 EV_INVOKE_PENDING;
1583
1584 } 3091 }
1585 while (expect_true (activecnt && !loop_done)); 3092 while (expect_true (
3093 activecnt
3094 && !loop_done
3095 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3096 ));
1586 3097
1587 if (loop_done == EVUNLOOP_ONE) 3098 if (loop_done == EVBREAK_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 3099 loop_done = EVBREAK_CANCEL;
3100
3101#if EV_FEATURE_API
3102 --loop_depth;
3103#endif
3104
3105 return activecnt;
1589} 3106}
1590 3107
1591void 3108void
1592ev_unloop (EV_P_ int how) 3109ev_break (EV_P_ int how) EV_THROW
1593{ 3110{
1594 loop_done = how; 3111 loop_done = how;
1595} 3112}
1596 3113
3114void
3115ev_ref (EV_P) EV_THROW
3116{
3117 ++activecnt;
3118}
3119
3120void
3121ev_unref (EV_P) EV_THROW
3122{
3123 --activecnt;
3124}
3125
3126void
3127ev_now_update (EV_P) EV_THROW
3128{
3129 time_update (EV_A_ 1e100);
3130}
3131
3132void
3133ev_suspend (EV_P) EV_THROW
3134{
3135 ev_now_update (EV_A);
3136}
3137
3138void
3139ev_resume (EV_P) EV_THROW
3140{
3141 ev_tstamp mn_prev = mn_now;
3142
3143 ev_now_update (EV_A);
3144 timers_reschedule (EV_A_ mn_now - mn_prev);
3145#if EV_PERIODIC_ENABLE
3146 /* TODO: really do this? */
3147 periodics_reschedule (EV_A);
3148#endif
3149}
3150
1597/*****************************************************************************/ 3151/*****************************************************************************/
3152/* singly-linked list management, used when the expected list length is short */
1598 3153
1599void inline_size 3154inline_size void
1600wlist_add (WL *head, WL elem) 3155wlist_add (WL *head, WL elem)
1601{ 3156{
1602 elem->next = *head; 3157 elem->next = *head;
1603 *head = elem; 3158 *head = elem;
1604} 3159}
1605 3160
1606void inline_size 3161inline_size void
1607wlist_del (WL *head, WL elem) 3162wlist_del (WL *head, WL elem)
1608{ 3163{
1609 while (*head) 3164 while (*head)
1610 { 3165 {
1611 if (*head == elem) 3166 if (expect_true (*head == elem))
1612 { 3167 {
1613 *head = elem->next; 3168 *head = elem->next;
1614 return; 3169 break;
1615 } 3170 }
1616 3171
1617 head = &(*head)->next; 3172 head = &(*head)->next;
1618 } 3173 }
1619} 3174}
1620 3175
1621void inline_speed 3176/* internal, faster, version of ev_clear_pending */
3177inline_speed void
1622clear_pending (EV_P_ W w) 3178clear_pending (EV_P_ W w)
1623{ 3179{
1624 if (w->pending) 3180 if (w->pending)
1625 { 3181 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3182 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 3183 w->pending = 0;
1628 } 3184 }
1629} 3185}
1630 3186
1631int 3187int
1632ev_clear_pending (EV_P_ void *w) 3188ev_clear_pending (EV_P_ void *w) EV_THROW
1633{ 3189{
1634 W w_ = (W)w; 3190 W w_ = (W)w;
1635 int pending = w_->pending; 3191 int pending = w_->pending;
1636 3192
1637 if (expect_true (pending)) 3193 if (expect_true (pending))
1638 { 3194 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3195 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3196 p->w = (W)&pending_w;
1640 w_->pending = 0; 3197 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 3198 return p->events;
1643 } 3199 }
1644 else 3200 else
1645 return 0; 3201 return 0;
1646} 3202}
1647 3203
1648void inline_size 3204inline_size void
1649pri_adjust (EV_P_ W w) 3205pri_adjust (EV_P_ W w)
1650{ 3206{
1651 int pri = w->priority; 3207 int pri = ev_priority (w);
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3208 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3209 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 3210 ev_set_priority (w, pri);
1655} 3211}
1656 3212
1657void inline_speed 3213inline_speed void
1658ev_start (EV_P_ W w, int active) 3214ev_start (EV_P_ W w, int active)
1659{ 3215{
1660 pri_adjust (EV_A_ w); 3216 pri_adjust (EV_A_ w);
1661 w->active = active; 3217 w->active = active;
1662 ev_ref (EV_A); 3218 ev_ref (EV_A);
1663} 3219}
1664 3220
1665void inline_size 3221inline_size void
1666ev_stop (EV_P_ W w) 3222ev_stop (EV_P_ W w)
1667{ 3223{
1668 ev_unref (EV_A); 3224 ev_unref (EV_A);
1669 w->active = 0; 3225 w->active = 0;
1670} 3226}
1671 3227
1672/*****************************************************************************/ 3228/*****************************************************************************/
1673 3229
1674void noinline 3230void noinline
1675ev_io_start (EV_P_ ev_io *w) 3231ev_io_start (EV_P_ ev_io *w) EV_THROW
1676{ 3232{
1677 int fd = w->fd; 3233 int fd = w->fd;
1678 3234
1679 if (expect_false (ev_is_active (w))) 3235 if (expect_false (ev_is_active (w)))
1680 return; 3236 return;
1681 3237
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 3238 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3239 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3240
3241 EV_FREQUENT_CHECK;
1683 3242
1684 ev_start (EV_A_ (W)w, 1); 3243 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3244 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 3245 wlist_add (&anfds[fd].head, (WL)w);
1687 3246
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3247 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1689 w->events &= ~EV_IOFDSET; 3248 w->events &= ~EV__IOFDSET;
3249
3250 EV_FREQUENT_CHECK;
1690} 3251}
1691 3252
1692void noinline 3253void noinline
1693ev_io_stop (EV_P_ ev_io *w) 3254ev_io_stop (EV_P_ ev_io *w) EV_THROW
1694{ 3255{
1695 clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
1697 return; 3258 return;
1698 3259
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3260 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3261
3262 EV_FREQUENT_CHECK;
1700 3263
1701 wlist_del (&anfds[w->fd].head, (WL)w); 3264 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 3265 ev_stop (EV_A_ (W)w);
1703 3266
1704 fd_change (EV_A_ w->fd, 1); 3267 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3268
3269 EV_FREQUENT_CHECK;
1705} 3270}
1706 3271
1707void noinline 3272void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 3273ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1709{ 3274{
1710 if (expect_false (ev_is_active (w))) 3275 if (expect_false (ev_is_active (w)))
1711 return; 3276 return;
1712 3277
1713 ((WT)w)->at += mn_now; 3278 ev_at (w) += mn_now;
1714 3279
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3280 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 3281
3282 EV_FREQUENT_CHECK;
3283
3284 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 3285 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3286 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 3287 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 3288 ANHE_at_cache (timers [ev_active (w)]);
3289 upheap (timers, ev_active (w));
1721 3290
3291 EV_FREQUENT_CHECK;
3292
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3293 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 3294}
1724 3295
1725void noinline 3296void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 3297ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1727{ 3298{
1728 clear_pending (EV_A_ (W)w); 3299 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 3300 if (expect_false (!ev_is_active (w)))
1730 return; 3301 return;
1731 3302
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3303 EV_FREQUENT_CHECK;
1733 3304
1734 { 3305 {
1735 int active = ((W)w)->active; 3306 int active = ev_active (w);
1736 3307
3308 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3309
3310 --timercnt;
3311
1737 if (expect_true (--active < --timercnt)) 3312 if (expect_true (active < timercnt + HEAP0))
1738 { 3313 {
1739 timers [active] = timers [timercnt]; 3314 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 3315 adjustheap (timers, timercnt, active);
1741 } 3316 }
1742 } 3317 }
1743 3318
1744 ((WT)w)->at -= mn_now; 3319 ev_at (w) -= mn_now;
1745 3320
1746 ev_stop (EV_A_ (W)w); 3321 ev_stop (EV_A_ (W)w);
3322
3323 EV_FREQUENT_CHECK;
1747} 3324}
1748 3325
1749void noinline 3326void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 3327ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1751{ 3328{
3329 EV_FREQUENT_CHECK;
3330
3331 clear_pending (EV_A_ (W)w);
3332
1752 if (ev_is_active (w)) 3333 if (ev_is_active (w))
1753 { 3334 {
1754 if (w->repeat) 3335 if (w->repeat)
1755 { 3336 {
1756 ((WT)w)->at = mn_now + w->repeat; 3337 ev_at (w) = mn_now + w->repeat;
3338 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 3339 adjustheap (timers, timercnt, ev_active (w));
1758 } 3340 }
1759 else 3341 else
1760 ev_timer_stop (EV_A_ w); 3342 ev_timer_stop (EV_A_ w);
1761 } 3343 }
1762 else if (w->repeat) 3344 else if (w->repeat)
1763 { 3345 {
1764 w->at = w->repeat; 3346 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 3347 ev_timer_start (EV_A_ w);
1766 } 3348 }
3349
3350 EV_FREQUENT_CHECK;
3351}
3352
3353ev_tstamp
3354ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3355{
3356 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1767} 3357}
1768 3358
1769#if EV_PERIODIC_ENABLE 3359#if EV_PERIODIC_ENABLE
1770void noinline 3360void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 3361ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1772{ 3362{
1773 if (expect_false (ev_is_active (w))) 3363 if (expect_false (ev_is_active (w)))
1774 return; 3364 return;
1775 3365
1776 if (w->reschedule_cb) 3366 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3367 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 3368 else if (w->interval)
1779 { 3369 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3370 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 3371 periodic_recalc (EV_A_ w);
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 3372 }
1784 else 3373 else
1785 ((WT)w)->at = w->offset; 3374 ev_at (w) = w->offset;
1786 3375
3376 EV_FREQUENT_CHECK;
3377
3378 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 3379 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3380 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 3381 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 3382 ANHE_at_cache (periodics [ev_active (w)]);
3383 upheap (periodics, ev_active (w));
1791 3384
3385 EV_FREQUENT_CHECK;
3386
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3387 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 3388}
1794 3389
1795void noinline 3390void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 3391ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1797{ 3392{
1798 clear_pending (EV_A_ (W)w); 3393 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 3394 if (expect_false (!ev_is_active (w)))
1800 return; 3395 return;
1801 3396
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3397 EV_FREQUENT_CHECK;
1803 3398
1804 { 3399 {
1805 int active = ((W)w)->active; 3400 int active = ev_active (w);
1806 3401
3402 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3403
3404 --periodiccnt;
3405
1807 if (expect_true (--active < --periodiccnt)) 3406 if (expect_true (active < periodiccnt + HEAP0))
1808 { 3407 {
1809 periodics [active] = periodics [periodiccnt]; 3408 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 3409 adjustheap (periodics, periodiccnt, active);
1811 } 3410 }
1812 } 3411 }
1813 3412
1814 ev_stop (EV_A_ (W)w); 3413 ev_stop (EV_A_ (W)w);
3414
3415 EV_FREQUENT_CHECK;
1815} 3416}
1816 3417
1817void noinline 3418void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 3419ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1819{ 3420{
1820 /* TODO: use adjustheap and recalculation */ 3421 /* TODO: use adjustheap and recalculation */
1821 ev_periodic_stop (EV_A_ w); 3422 ev_periodic_stop (EV_A_ w);
1822 ev_periodic_start (EV_A_ w); 3423 ev_periodic_start (EV_A_ w);
1823} 3424}
1825 3426
1826#ifndef SA_RESTART 3427#ifndef SA_RESTART
1827# define SA_RESTART 0 3428# define SA_RESTART 0
1828#endif 3429#endif
1829 3430
3431#if EV_SIGNAL_ENABLE
3432
1830void noinline 3433void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 3434ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1832{ 3435{
1833#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif
1836 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
1837 return; 3437 return;
1838 3438
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3439 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1840 3440
3441#if EV_MULTIPLICITY
3442 assert (("libev: a signal must not be attached to two different loops",
3443 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3444
3445 signals [w->signum - 1].loop = EV_A;
3446#endif
3447
3448 EV_FREQUENT_CHECK;
3449
3450#if EV_USE_SIGNALFD
3451 if (sigfd == -2)
1841 { 3452 {
1842#ifndef _WIN32 3453 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1843 sigset_t full, prev; 3454 if (sigfd < 0 && errno == EINVAL)
1844 sigfillset (&full); 3455 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847 3456
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3457 if (sigfd >= 0)
3458 {
3459 fd_intern (sigfd); /* doing it twice will not hurt */
1849 3460
1850#ifndef _WIN32 3461 sigemptyset (&sigfd_set);
1851 sigprocmask (SIG_SETMASK, &prev, 0); 3462
1852#endif 3463 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3464 ev_set_priority (&sigfd_w, EV_MAXPRI);
3465 ev_io_start (EV_A_ &sigfd_w);
3466 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3467 }
1853 } 3468 }
3469
3470 if (sigfd >= 0)
3471 {
3472 /* TODO: check .head */
3473 sigaddset (&sigfd_set, w->signum);
3474 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3475
3476 signalfd (sigfd, &sigfd_set, 0);
3477 }
3478#endif
1854 3479
1855 ev_start (EV_A_ (W)w, 1); 3480 ev_start (EV_A_ (W)w, 1);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 3481 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 3482
1858 if (!((WL)w)->next) 3483 if (!((WL)w)->next)
3484# if EV_USE_SIGNALFD
3485 if (sigfd < 0) /*TODO*/
3486# endif
1859 { 3487 {
1860#if _WIN32 3488# ifdef _WIN32
3489 evpipe_init (EV_A);
3490
1861 signal (w->signum, sighandler); 3491 signal (w->signum, ev_sighandler);
1862#else 3492# else
1863 struct sigaction sa; 3493 struct sigaction sa;
3494
3495 evpipe_init (EV_A);
3496
1864 sa.sa_handler = sighandler; 3497 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 3498 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3499 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 3500 sigaction (w->signum, &sa, 0);
3501
3502 if (origflags & EVFLAG_NOSIGMASK)
3503 {
3504 sigemptyset (&sa.sa_mask);
3505 sigaddset (&sa.sa_mask, w->signum);
3506 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3507 }
1868#endif 3508#endif
1869 } 3509 }
3510
3511 EV_FREQUENT_CHECK;
1870} 3512}
1871 3513
1872void noinline 3514void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 3515ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1874{ 3516{
1875 clear_pending (EV_A_ (W)w); 3517 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 3518 if (expect_false (!ev_is_active (w)))
1877 return; 3519 return;
1878 3520
3521 EV_FREQUENT_CHECK;
3522
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 3523 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
1881 3525
1882 if (!signals [w->signum - 1].head) 3526 if (!signals [w->signum - 1].head)
3527 {
3528#if EV_MULTIPLICITY
3529 signals [w->signum - 1].loop = 0; /* unattach from signal */
3530#endif
3531#if EV_USE_SIGNALFD
3532 if (sigfd >= 0)
3533 {
3534 sigset_t ss;
3535
3536 sigemptyset (&ss);
3537 sigaddset (&ss, w->signum);
3538 sigdelset (&sigfd_set, w->signum);
3539
3540 signalfd (sigfd, &sigfd_set, 0);
3541 sigprocmask (SIG_UNBLOCK, &ss, 0);
3542 }
3543 else
3544#endif
1883 signal (w->signum, SIG_DFL); 3545 signal (w->signum, SIG_DFL);
3546 }
3547
3548 EV_FREQUENT_CHECK;
1884} 3549}
3550
3551#endif
3552
3553#if EV_CHILD_ENABLE
1885 3554
1886void 3555void
1887ev_child_start (EV_P_ ev_child *w) 3556ev_child_start (EV_P_ ev_child *w) EV_THROW
1888{ 3557{
1889#if EV_MULTIPLICITY 3558#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3559 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 3560#endif
1892 if (expect_false (ev_is_active (w))) 3561 if (expect_false (ev_is_active (w)))
1893 return; 3562 return;
1894 3563
3564 EV_FREQUENT_CHECK;
3565
1895 ev_start (EV_A_ (W)w, 1); 3566 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3567 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3568
3569 EV_FREQUENT_CHECK;
1897} 3570}
1898 3571
1899void 3572void
1900ev_child_stop (EV_P_ ev_child *w) 3573ev_child_stop (EV_P_ ev_child *w) EV_THROW
1901{ 3574{
1902 clear_pending (EV_A_ (W)w); 3575 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 3576 if (expect_false (!ev_is_active (w)))
1904 return; 3577 return;
1905 3578
3579 EV_FREQUENT_CHECK;
3580
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3581 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
1908} 3585}
3586
3587#endif
1909 3588
1910#if EV_STAT_ENABLE 3589#if EV_STAT_ENABLE
1911 3590
1912# ifdef _WIN32 3591# ifdef _WIN32
1913# undef lstat 3592# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 3593# define lstat(a,b) _stati64 (a,b)
1915# endif 3594# endif
1916 3595
1917#define DEF_STAT_INTERVAL 5.0074891 3596#define DEF_STAT_INTERVAL 5.0074891
3597#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 3598#define MIN_STAT_INTERVAL 0.1074891
1919 3599
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3600static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 3601
1922#if EV_USE_INOTIFY 3602#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 3603
3604/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3605# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1924 3606
1925static void noinline 3607static void noinline
1926infy_add (EV_P_ ev_stat *w) 3608infy_add (EV_P_ ev_stat *w)
1927{ 3609{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3610 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 3611
1930 if (w->wd < 0) 3612 if (w->wd >= 0)
3613 {
3614 struct statfs sfs;
3615
3616 /* now local changes will be tracked by inotify, but remote changes won't */
3617 /* unless the filesystem is known to be local, we therefore still poll */
3618 /* also do poll on <2.6.25, but with normal frequency */
3619
3620 if (!fs_2625)
3621 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3622 else if (!statfs (w->path, &sfs)
3623 && (sfs.f_type == 0x1373 /* devfs */
3624 || sfs.f_type == 0xEF53 /* ext2/3 */
3625 || sfs.f_type == 0x3153464a /* jfs */
3626 || sfs.f_type == 0x52654973 /* reiser3 */
3627 || sfs.f_type == 0x01021994 /* tempfs */
3628 || sfs.f_type == 0x58465342 /* xfs */))
3629 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3630 else
3631 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1931 { 3632 }
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3633 else
3634 {
3635 /* can't use inotify, continue to stat */
3636 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1933 3637
1934 /* monitor some parent directory for speedup hints */ 3638 /* if path is not there, monitor some parent directory for speedup hints */
3639 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3640 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3641 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 3642 {
1937 char path [4096]; 3643 char path [4096];
1938 strcpy (path, w->path); 3644 strcpy (path, w->path);
1939 3645
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3648 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3649 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 3650
1945 char *pend = strrchr (path, '/'); 3651 char *pend = strrchr (path, '/');
1946 3652
1947 if (!pend) 3653 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 3654 break;
1949 3655
1950 *pend = 0; 3656 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 3657 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 3658 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3659 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 3660 }
1955 } 3661 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 3662
1959 if (w->wd >= 0) 3663 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3664 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3665
3666 /* now re-arm timer, if required */
3667 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3668 ev_timer_again (EV_A_ &w->timer);
3669 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1961} 3670}
1962 3671
1963static void noinline 3672static void noinline
1964infy_del (EV_P_ ev_stat *w) 3673infy_del (EV_P_ ev_stat *w)
1965{ 3674{
1968 3677
1969 if (wd < 0) 3678 if (wd < 0)
1970 return; 3679 return;
1971 3680
1972 w->wd = -2; 3681 w->wd = -2;
1973 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3682 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1974 wlist_del (&fs_hash [slot].head, (WL)w); 3683 wlist_del (&fs_hash [slot].head, (WL)w);
1975 3684
1976 /* remove this watcher, if others are watching it, they will rearm */ 3685 /* remove this watcher, if others are watching it, they will rearm */
1977 inotify_rm_watch (fs_fd, wd); 3686 inotify_rm_watch (fs_fd, wd);
1978} 3687}
1979 3688
1980static void noinline 3689static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3690infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 3691{
1983 if (slot < 0) 3692 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 3693 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3694 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 3695 infy_wd (EV_A_ slot, wd, ev);
1987 else 3696 else
1988 { 3697 {
1989 WL w_; 3698 WL w_;
1990 3699
1991 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3700 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1992 { 3701 {
1993 ev_stat *w = (ev_stat *)w_; 3702 ev_stat *w = (ev_stat *)w_;
1994 w_ = w_->next; /* lets us remove this watcher and all before it */ 3703 w_ = w_->next; /* lets us remove this watcher and all before it */
1995 3704
1996 if (w->wd == wd || wd == -1) 3705 if (w->wd == wd || wd == -1)
1997 { 3706 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3707 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 3708 {
3709 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2000 w->wd = -1; 3710 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 3711 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 3712 }
2003 3713
2004 stat_timer_cb (EV_A_ &w->timer, 0); 3714 stat_timer_cb (EV_A_ &w->timer, 0);
2009 3719
2010static void 3720static void
2011infy_cb (EV_P_ ev_io *w, int revents) 3721infy_cb (EV_P_ ev_io *w, int revents)
2012{ 3722{
2013 char buf [EV_INOTIFY_BUFSIZE]; 3723 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs; 3724 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf)); 3725 int len = read (fs_fd, buf, sizeof (buf));
2017 3726
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3727 for (ofs = 0; ofs < len; )
3728 {
3729 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3730 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3731 ofs += sizeof (struct inotify_event) + ev->len;
3732 }
2020} 3733}
2021 3734
2022void inline_size 3735inline_size void ecb_cold
3736ev_check_2625 (EV_P)
3737{
3738 /* kernels < 2.6.25 are borked
3739 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3740 */
3741 if (ev_linux_version () < 0x020619)
3742 return;
3743
3744 fs_2625 = 1;
3745}
3746
3747inline_size int
3748infy_newfd (void)
3749{
3750#if defined IN_CLOEXEC && defined IN_NONBLOCK
3751 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3752 if (fd >= 0)
3753 return fd;
3754#endif
3755 return inotify_init ();
3756}
3757
3758inline_size void
2023infy_init (EV_P) 3759infy_init (EV_P)
2024{ 3760{
2025 if (fs_fd != -2) 3761 if (fs_fd != -2)
2026 return; 3762 return;
2027 3763
3764 fs_fd = -1;
3765
3766 ev_check_2625 (EV_A);
3767
2028 fs_fd = inotify_init (); 3768 fs_fd = infy_newfd ();
2029 3769
2030 if (fs_fd >= 0) 3770 if (fs_fd >= 0)
2031 { 3771 {
3772 fd_intern (fs_fd);
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3773 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI); 3774 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 3775 ev_io_start (EV_A_ &fs_w);
3776 ev_unref (EV_A);
2035 } 3777 }
2036} 3778}
2037 3779
2038void inline_size 3780inline_size void
2039infy_fork (EV_P) 3781infy_fork (EV_P)
2040{ 3782{
2041 int slot; 3783 int slot;
2042 3784
2043 if (fs_fd < 0) 3785 if (fs_fd < 0)
2044 return; 3786 return;
2045 3787
3788 ev_ref (EV_A);
3789 ev_io_stop (EV_A_ &fs_w);
2046 close (fs_fd); 3790 close (fs_fd);
2047 fs_fd = inotify_init (); 3791 fs_fd = infy_newfd ();
2048 3792
3793 if (fs_fd >= 0)
3794 {
3795 fd_intern (fs_fd);
3796 ev_io_set (&fs_w, fs_fd, EV_READ);
3797 ev_io_start (EV_A_ &fs_w);
3798 ev_unref (EV_A);
3799 }
3800
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3801 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2050 { 3802 {
2051 WL w_ = fs_hash [slot].head; 3803 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0; 3804 fs_hash [slot].head = 0;
2053 3805
2054 while (w_) 3806 while (w_)
2059 w->wd = -1; 3811 w->wd = -1;
2060 3812
2061 if (fs_fd >= 0) 3813 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 3814 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 3815 else
3816 {
3817 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3818 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2064 ev_timer_start (EV_A_ &w->timer); 3819 ev_timer_again (EV_A_ &w->timer);
3820 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3821 }
2065 } 3822 }
2066
2067 } 3823 }
2068} 3824}
2069 3825
3826#endif
3827
3828#ifdef _WIN32
3829# define EV_LSTAT(p,b) _stati64 (p, b)
3830#else
3831# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 3832#endif
2071 3833
2072void 3834void
2073ev_stat_stat (EV_P_ ev_stat *w) 3835ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2074{ 3836{
2075 if (lstat (w->path, &w->attr) < 0) 3837 if (lstat (w->path, &w->attr) < 0)
2076 w->attr.st_nlink = 0; 3838 w->attr.st_nlink = 0;
2077 else if (!w->attr.st_nlink) 3839 else if (!w->attr.st_nlink)
2078 w->attr.st_nlink = 1; 3840 w->attr.st_nlink = 1;
2081static void noinline 3843static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3844stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{ 3845{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3846 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085 3847
2086 /* we copy this here each the time so that */ 3848 ev_statdata prev = w->attr;
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w); 3849 ev_stat_stat (EV_A_ w);
2090 3850
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3851 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if ( 3852 if (
2093 w->prev.st_dev != w->attr.st_dev 3853 prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino 3854 || prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode 3855 || prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink 3856 || prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid 3857 || prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid 3858 || prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev 3859 || prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size 3860 || prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime 3861 || prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 3862 || prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 3863 || prev.st_ctime != w->attr.st_ctime
2104 ) { 3864 ) {
3865 /* we only update w->prev on actual differences */
3866 /* in case we test more often than invoke the callback, */
3867 /* to ensure that prev is always different to attr */
3868 w->prev = prev;
3869
2105 #if EV_USE_INOTIFY 3870 #if EV_USE_INOTIFY
3871 if (fs_fd >= 0)
3872 {
2106 infy_del (EV_A_ w); 3873 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 3874 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 3875 ev_stat_stat (EV_A_ w); /* avoid race... */
3876 }
2109 #endif 3877 #endif
2110 3878
2111 ev_feed_event (EV_A_ w, EV_STAT); 3879 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 3880 }
2113} 3881}
2114 3882
2115void 3883void
2116ev_stat_start (EV_P_ ev_stat *w) 3884ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2117{ 3885{
2118 if (expect_false (ev_is_active (w))) 3886 if (expect_false (ev_is_active (w)))
2119 return; 3887 return;
2120 3888
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 3889 ev_stat_stat (EV_A_ w);
2126 3890
3891 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 3892 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 3893
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3894 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 3895 ev_set_priority (&w->timer, ev_priority (w));
2132 3896
2133#if EV_USE_INOTIFY 3897#if EV_USE_INOTIFY
2134 infy_init (EV_A); 3898 infy_init (EV_A);
2135 3899
2136 if (fs_fd >= 0) 3900 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 3901 infy_add (EV_A_ w);
2138 else 3902 else
2139#endif 3903#endif
3904 {
2140 ev_timer_start (EV_A_ &w->timer); 3905 ev_timer_again (EV_A_ &w->timer);
3906 ev_unref (EV_A);
3907 }
2141 3908
2142 ev_start (EV_A_ (W)w, 1); 3909 ev_start (EV_A_ (W)w, 1);
3910
3911 EV_FREQUENT_CHECK;
2143} 3912}
2144 3913
2145void 3914void
2146ev_stat_stop (EV_P_ ev_stat *w) 3915ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2147{ 3916{
2148 clear_pending (EV_A_ (W)w); 3917 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3918 if (expect_false (!ev_is_active (w)))
2150 return; 3919 return;
2151 3920
3921 EV_FREQUENT_CHECK;
3922
2152#if EV_USE_INOTIFY 3923#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 3924 infy_del (EV_A_ w);
2154#endif 3925#endif
3926
3927 if (ev_is_active (&w->timer))
3928 {
3929 ev_ref (EV_A);
2155 ev_timer_stop (EV_A_ &w->timer); 3930 ev_timer_stop (EV_A_ &w->timer);
3931 }
2156 3932
2157 ev_stop (EV_A_ (W)w); 3933 ev_stop (EV_A_ (W)w);
3934
3935 EV_FREQUENT_CHECK;
2158} 3936}
2159#endif 3937#endif
2160 3938
2161#if EV_IDLE_ENABLE 3939#if EV_IDLE_ENABLE
2162void 3940void
2163ev_idle_start (EV_P_ ev_idle *w) 3941ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2164{ 3942{
2165 if (expect_false (ev_is_active (w))) 3943 if (expect_false (ev_is_active (w)))
2166 return; 3944 return;
2167 3945
2168 pri_adjust (EV_A_ (W)w); 3946 pri_adjust (EV_A_ (W)w);
3947
3948 EV_FREQUENT_CHECK;
2169 3949
2170 { 3950 {
2171 int active = ++idlecnt [ABSPRI (w)]; 3951 int active = ++idlecnt [ABSPRI (w)];
2172 3952
2173 ++idleall; 3953 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 3954 ev_start (EV_A_ (W)w, active);
2175 3955
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3956 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 3957 idles [ABSPRI (w)][active - 1] = w;
2178 } 3958 }
3959
3960 EV_FREQUENT_CHECK;
2179} 3961}
2180 3962
2181void 3963void
2182ev_idle_stop (EV_P_ ev_idle *w) 3964ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2183{ 3965{
2184 clear_pending (EV_A_ (W)w); 3966 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3967 if (expect_false (!ev_is_active (w)))
2186 return; 3968 return;
2187 3969
3970 EV_FREQUENT_CHECK;
3971
2188 { 3972 {
2189 int active = ((W)w)->active; 3973 int active = ev_active (w);
2190 3974
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3975 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3976 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 3977
2194 ev_stop (EV_A_ (W)w); 3978 ev_stop (EV_A_ (W)w);
2195 --idleall; 3979 --idleall;
2196 } 3980 }
2197}
2198#endif
2199 3981
3982 EV_FREQUENT_CHECK;
3983}
3984#endif
3985
3986#if EV_PREPARE_ENABLE
2200void 3987void
2201ev_prepare_start (EV_P_ ev_prepare *w) 3988ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2202{ 3989{
2203 if (expect_false (ev_is_active (w))) 3990 if (expect_false (ev_is_active (w)))
2204 return; 3991 return;
3992
3993 EV_FREQUENT_CHECK;
2205 3994
2206 ev_start (EV_A_ (W)w, ++preparecnt); 3995 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3996 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 3997 prepares [preparecnt - 1] = w;
3998
3999 EV_FREQUENT_CHECK;
2209} 4000}
2210 4001
2211void 4002void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 4003ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2213{ 4004{
2214 clear_pending (EV_A_ (W)w); 4005 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 4006 if (expect_false (!ev_is_active (w)))
2216 return; 4007 return;
2217 4008
4009 EV_FREQUENT_CHECK;
4010
2218 { 4011 {
2219 int active = ((W)w)->active; 4012 int active = ev_active (w);
4013
2220 prepares [active - 1] = prepares [--preparecnt]; 4014 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 4015 ev_active (prepares [active - 1]) = active;
2222 } 4016 }
2223 4017
2224 ev_stop (EV_A_ (W)w); 4018 ev_stop (EV_A_ (W)w);
2225}
2226 4019
4020 EV_FREQUENT_CHECK;
4021}
4022#endif
4023
4024#if EV_CHECK_ENABLE
2227void 4025void
2228ev_check_start (EV_P_ ev_check *w) 4026ev_check_start (EV_P_ ev_check *w) EV_THROW
2229{ 4027{
2230 if (expect_false (ev_is_active (w))) 4028 if (expect_false (ev_is_active (w)))
2231 return; 4029 return;
4030
4031 EV_FREQUENT_CHECK;
2232 4032
2233 ev_start (EV_A_ (W)w, ++checkcnt); 4033 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4034 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 4035 checks [checkcnt - 1] = w;
4036
4037 EV_FREQUENT_CHECK;
2236} 4038}
2237 4039
2238void 4040void
2239ev_check_stop (EV_P_ ev_check *w) 4041ev_check_stop (EV_P_ ev_check *w) EV_THROW
2240{ 4042{
2241 clear_pending (EV_A_ (W)w); 4043 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 4044 if (expect_false (!ev_is_active (w)))
2243 return; 4045 return;
2244 4046
4047 EV_FREQUENT_CHECK;
4048
2245 { 4049 {
2246 int active = ((W)w)->active; 4050 int active = ev_active (w);
4051
2247 checks [active - 1] = checks [--checkcnt]; 4052 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 4053 ev_active (checks [active - 1]) = active;
2249 } 4054 }
2250 4055
2251 ev_stop (EV_A_ (W)w); 4056 ev_stop (EV_A_ (W)w);
4057
4058 EV_FREQUENT_CHECK;
2252} 4059}
4060#endif
2253 4061
2254#if EV_EMBED_ENABLE 4062#if EV_EMBED_ENABLE
2255void noinline 4063void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 4064ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2257{ 4065{
2258 ev_loop (w->other, EVLOOP_NONBLOCK); 4066 ev_run (w->other, EVRUN_NOWAIT);
2259} 4067}
2260 4068
2261static void 4069static void
2262embed_io_cb (EV_P_ ev_io *io, int revents) 4070embed_io_cb (EV_P_ ev_io *io, int revents)
2263{ 4071{
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4072 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 4073
2266 if (ev_cb (w)) 4074 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4075 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 4076 else
2269 ev_embed_sweep (loop, w); 4077 ev_run (w->other, EVRUN_NOWAIT);
2270} 4078}
2271 4079
2272static void 4080static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4081embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 4082{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4083 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 4084
2277 fd_reify (w->other); 4085 {
4086 EV_P = w->other;
4087
4088 while (fdchangecnt)
4089 {
4090 fd_reify (EV_A);
4091 ev_run (EV_A_ EVRUN_NOWAIT);
4092 }
4093 }
2278} 4094}
4095
4096static void
4097embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4098{
4099 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4100
4101 ev_embed_stop (EV_A_ w);
4102
4103 {
4104 EV_P = w->other;
4105
4106 ev_loop_fork (EV_A);
4107 ev_run (EV_A_ EVRUN_NOWAIT);
4108 }
4109
4110 ev_embed_start (EV_A_ w);
4111}
4112
4113#if 0
4114static void
4115embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4116{
4117 ev_idle_stop (EV_A_ idle);
4118}
4119#endif
2279 4120
2280void 4121void
2281ev_embed_start (EV_P_ ev_embed *w) 4122ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2282{ 4123{
2283 if (expect_false (ev_is_active (w))) 4124 if (expect_false (ev_is_active (w)))
2284 return; 4125 return;
2285 4126
2286 { 4127 {
2287 struct ev_loop *loop = w->other; 4128 EV_P = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4129 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4130 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 4131 }
4132
4133 EV_FREQUENT_CHECK;
2291 4134
2292 ev_set_priority (&w->io, ev_priority (w)); 4135 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 4136 ev_io_start (EV_A_ &w->io);
2294 4137
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 4138 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 4139 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 4140 ev_prepare_start (EV_A_ &w->prepare);
2298 4141
4142 ev_fork_init (&w->fork, embed_fork_cb);
4143 ev_fork_start (EV_A_ &w->fork);
4144
4145 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4146
2299 ev_start (EV_A_ (W)w, 1); 4147 ev_start (EV_A_ (W)w, 1);
4148
4149 EV_FREQUENT_CHECK;
2300} 4150}
2301 4151
2302void 4152void
2303ev_embed_stop (EV_P_ ev_embed *w) 4153ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2304{ 4154{
2305 clear_pending (EV_A_ (W)w); 4155 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 4156 if (expect_false (!ev_is_active (w)))
2307 return; 4157 return;
2308 4158
4159 EV_FREQUENT_CHECK;
4160
2309 ev_io_stop (EV_A_ &w->io); 4161 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 4162 ev_prepare_stop (EV_A_ &w->prepare);
4163 ev_fork_stop (EV_A_ &w->fork);
2311 4164
2312 ev_stop (EV_A_ (W)w); 4165 ev_stop (EV_A_ (W)w);
4166
4167 EV_FREQUENT_CHECK;
2313} 4168}
2314#endif 4169#endif
2315 4170
2316#if EV_FORK_ENABLE 4171#if EV_FORK_ENABLE
2317void 4172void
2318ev_fork_start (EV_P_ ev_fork *w) 4173ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2319{ 4174{
2320 if (expect_false (ev_is_active (w))) 4175 if (expect_false (ev_is_active (w)))
2321 return; 4176 return;
4177
4178 EV_FREQUENT_CHECK;
2322 4179
2323 ev_start (EV_A_ (W)w, ++forkcnt); 4180 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4181 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 4182 forks [forkcnt - 1] = w;
4183
4184 EV_FREQUENT_CHECK;
2326} 4185}
2327 4186
2328void 4187void
2329ev_fork_stop (EV_P_ ev_fork *w) 4188ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2330{ 4189{
2331 clear_pending (EV_A_ (W)w); 4190 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 4191 if (expect_false (!ev_is_active (w)))
2333 return; 4192 return;
2334 4193
4194 EV_FREQUENT_CHECK;
4195
2335 { 4196 {
2336 int active = ((W)w)->active; 4197 int active = ev_active (w);
4198
2337 forks [active - 1] = forks [--forkcnt]; 4199 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 4200 ev_active (forks [active - 1]) = active;
2339 } 4201 }
2340 4202
2341 ev_stop (EV_A_ (W)w); 4203 ev_stop (EV_A_ (W)w);
4204
4205 EV_FREQUENT_CHECK;
4206}
4207#endif
4208
4209#if EV_CLEANUP_ENABLE
4210void
4211ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4212{
4213 if (expect_false (ev_is_active (w)))
4214 return;
4215
4216 EV_FREQUENT_CHECK;
4217
4218 ev_start (EV_A_ (W)w, ++cleanupcnt);
4219 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4220 cleanups [cleanupcnt - 1] = w;
4221
4222 /* cleanup watchers should never keep a refcount on the loop */
4223 ev_unref (EV_A);
4224 EV_FREQUENT_CHECK;
4225}
4226
4227void
4228ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4229{
4230 clear_pending (EV_A_ (W)w);
4231 if (expect_false (!ev_is_active (w)))
4232 return;
4233
4234 EV_FREQUENT_CHECK;
4235 ev_ref (EV_A);
4236
4237 {
4238 int active = ev_active (w);
4239
4240 cleanups [active - 1] = cleanups [--cleanupcnt];
4241 ev_active (cleanups [active - 1]) = active;
4242 }
4243
4244 ev_stop (EV_A_ (W)w);
4245
4246 EV_FREQUENT_CHECK;
4247}
4248#endif
4249
4250#if EV_ASYNC_ENABLE
4251void
4252ev_async_start (EV_P_ ev_async *w) EV_THROW
4253{
4254 if (expect_false (ev_is_active (w)))
4255 return;
4256
4257 w->sent = 0;
4258
4259 evpipe_init (EV_A);
4260
4261 EV_FREQUENT_CHECK;
4262
4263 ev_start (EV_A_ (W)w, ++asynccnt);
4264 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4265 asyncs [asynccnt - 1] = w;
4266
4267 EV_FREQUENT_CHECK;
4268}
4269
4270void
4271ev_async_stop (EV_P_ ev_async *w) EV_THROW
4272{
4273 clear_pending (EV_A_ (W)w);
4274 if (expect_false (!ev_is_active (w)))
4275 return;
4276
4277 EV_FREQUENT_CHECK;
4278
4279 {
4280 int active = ev_active (w);
4281
4282 asyncs [active - 1] = asyncs [--asynccnt];
4283 ev_active (asyncs [active - 1]) = active;
4284 }
4285
4286 ev_stop (EV_A_ (W)w);
4287
4288 EV_FREQUENT_CHECK;
4289}
4290
4291void
4292ev_async_send (EV_P_ ev_async *w) EV_THROW
4293{
4294 w->sent = 1;
4295 evpipe_write (EV_A_ &async_pending);
2342} 4296}
2343#endif 4297#endif
2344 4298
2345/*****************************************************************************/ 4299/*****************************************************************************/
2346 4300
2356once_cb (EV_P_ struct ev_once *once, int revents) 4310once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 4311{
2358 void (*cb)(int revents, void *arg) = once->cb; 4312 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 4313 void *arg = once->arg;
2360 4314
2361 ev_io_stop (EV_A_ &once->io); 4315 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 4316 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 4317 ev_free (once);
2364 4318
2365 cb (revents, arg); 4319 cb (revents, arg);
2366} 4320}
2367 4321
2368static void 4322static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 4323once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 4324{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4325 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4326
4327 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 4328}
2373 4329
2374static void 4330static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 4331once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 4332{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4333 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4334
4335 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 4336}
2379 4337
2380void 4338void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4339ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2382{ 4340{
2383 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4341 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2384 4342
2385 if (expect_false (!once)) 4343 if (expect_false (!once))
2386 { 4344 {
2387 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4345 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2388 return; 4346 return;
2389 } 4347 }
2390 4348
2391 once->cb = cb; 4349 once->cb = cb;
2392 once->arg = arg; 4350 once->arg = arg;
2404 ev_timer_set (&once->to, timeout, 0.); 4362 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 4363 ev_timer_start (EV_A_ &once->to);
2406 } 4364 }
2407} 4365}
2408 4366
4367/*****************************************************************************/
4368
4369#if EV_WALK_ENABLE
4370void ecb_cold
4371ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4372{
4373 int i, j;
4374 ev_watcher_list *wl, *wn;
4375
4376 if (types & (EV_IO | EV_EMBED))
4377 for (i = 0; i < anfdmax; ++i)
4378 for (wl = anfds [i].head; wl; )
4379 {
4380 wn = wl->next;
4381
4382#if EV_EMBED_ENABLE
4383 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4384 {
4385 if (types & EV_EMBED)
4386 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4387 }
4388 else
4389#endif
4390#if EV_USE_INOTIFY
4391 if (ev_cb ((ev_io *)wl) == infy_cb)
4392 ;
4393 else
4394#endif
4395 if ((ev_io *)wl != &pipe_w)
4396 if (types & EV_IO)
4397 cb (EV_A_ EV_IO, wl);
4398
4399 wl = wn;
4400 }
4401
4402 if (types & (EV_TIMER | EV_STAT))
4403 for (i = timercnt + HEAP0; i-- > HEAP0; )
4404#if EV_STAT_ENABLE
4405 /*TODO: timer is not always active*/
4406 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4407 {
4408 if (types & EV_STAT)
4409 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4410 }
4411 else
4412#endif
4413 if (types & EV_TIMER)
4414 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4415
4416#if EV_PERIODIC_ENABLE
4417 if (types & EV_PERIODIC)
4418 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4419 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4420#endif
4421
4422#if EV_IDLE_ENABLE
4423 if (types & EV_IDLE)
4424 for (j = NUMPRI; j--; )
4425 for (i = idlecnt [j]; i--; )
4426 cb (EV_A_ EV_IDLE, idles [j][i]);
4427#endif
4428
4429#if EV_FORK_ENABLE
4430 if (types & EV_FORK)
4431 for (i = forkcnt; i--; )
4432 if (ev_cb (forks [i]) != embed_fork_cb)
4433 cb (EV_A_ EV_FORK, forks [i]);
4434#endif
4435
4436#if EV_ASYNC_ENABLE
4437 if (types & EV_ASYNC)
4438 for (i = asynccnt; i--; )
4439 cb (EV_A_ EV_ASYNC, asyncs [i]);
4440#endif
4441
4442#if EV_PREPARE_ENABLE
4443 if (types & EV_PREPARE)
4444 for (i = preparecnt; i--; )
4445# if EV_EMBED_ENABLE
4446 if (ev_cb (prepares [i]) != embed_prepare_cb)
4447# endif
4448 cb (EV_A_ EV_PREPARE, prepares [i]);
4449#endif
4450
4451#if EV_CHECK_ENABLE
4452 if (types & EV_CHECK)
4453 for (i = checkcnt; i--; )
4454 cb (EV_A_ EV_CHECK, checks [i]);
4455#endif
4456
4457#if EV_SIGNAL_ENABLE
4458 if (types & EV_SIGNAL)
4459 for (i = 0; i < EV_NSIG - 1; ++i)
4460 for (wl = signals [i].head; wl; )
4461 {
4462 wn = wl->next;
4463 cb (EV_A_ EV_SIGNAL, wl);
4464 wl = wn;
4465 }
4466#endif
4467
4468#if EV_CHILD_ENABLE
4469 if (types & EV_CHILD)
4470 for (i = (EV_PID_HASHSIZE); i--; )
4471 for (wl = childs [i]; wl; )
4472 {
4473 wn = wl->next;
4474 cb (EV_A_ EV_CHILD, wl);
4475 wl = wn;
4476 }
4477#endif
4478/* EV_STAT 0x00001000 /* stat data changed */
4479/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4480}
4481#endif
4482
2409#if EV_MULTIPLICITY 4483#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 4484 #include "ev_wrap.h"
2411#endif 4485#endif
2412 4486
2413#ifdef __cplusplus
2414}
2415#endif
2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines