ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.272 by root, Mon Nov 3 12:17:40 2008 UTC vs.
Revision 1.423 by root, Sun Apr 22 10:14:20 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 206# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
164# endif 209# endif
210# undef EV_AVOID_STDIO
165#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
166 220
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
168 222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
169#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 265# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 266# else
173# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
174# endif 268# endif
175#endif 269#endif
176 270
177#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 273#endif
180 274
181#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 276# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 277# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 278# else
185# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
186# endif 280# endif
187#endif 281#endif
188 282
189#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 285#endif
192 286
193#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
194# ifdef _WIN32 288# ifdef _WIN32
195# define EV_USE_POLL 0 289# define EV_USE_POLL 0
196# else 290# else
197# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 292# endif
199#endif 293#endif
200 294
201#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 298# else
205# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
206# endif 300# endif
207#endif 301#endif
208 302
214# define EV_USE_PORT 0 308# define EV_USE_PORT 0
215#endif 309#endif
216 310
217#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 314# else
221# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
222# endif 316# endif
223#endif 317#endif
224 318
225#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 321#endif
232 322
233#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 325#endif
240 326
241#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 330# else
245# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
246# endif 340# endif
247#endif 341#endif
248 342
249#if 0 /* debugging */ 343#if 0 /* debugging */
250# define EV_VERIFY 3 344# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 345# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 346# define EV_HEAP_CACHE_AT 1
253#endif 347#endif
254 348
255#ifndef EV_VERIFY 349#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 351#endif
258 352
259#ifndef EV_USE_4HEAP 353#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 354# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 355#endif
262 356
263#ifndef EV_HEAP_CACHE_AT 357#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
265#endif 373#endif
266 374
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
268 382
269#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
272#endif 386#endif
280# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
282#endif 396#endif
283 397
284#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 401# include <sys/select.h>
287# endif 402# endif
288#endif 403#endif
289 404
290#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
291# include <sys/utsname.h> 406# include <sys/statfs.h>
292# include <sys/inotify.h> 407# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 409# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 410# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 411# define EV_USE_INOTIFY 0
302#endif 417#endif
303 418
304#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 421# include <stdint.h>
307# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
308extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
309# endif 424# endif
310int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 426# ifdef O_CLOEXEC
312} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
313# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
314#endif 455#endif
315 456
316/**/ 457/**/
317 458
318#if EV_VERIFY >= 3 459#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 460# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 461#else
321# define EV_FREQUENT_CHECK do { } while (0) 462# define EV_FREQUENT_CHECK do { } while (0)
322#endif 463#endif
323 464
324/* 465/*
325 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 468 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 471
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 519 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
341#else 526#else
342# define expect(expr,value) (expr) 527 #include <inttypes.h>
343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
347#endif 542 #endif
543#endif
348 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680#endif
681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
351#define inline_size static inline 960#define inline_size ecb_inline
352 961
353#if EV_MINIMAL 962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
354# define inline_speed static noinline 965# define inline_speed static noinline
966#endif
967
968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
355#else 972#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
361 975
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
364 978
365typedef ev_watcher *W; 979typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
368 982
369#define ev_active(w) ((W)(w))->active 983#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 984#define ev_at(w) ((WT)(w))->at
371 985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
372#if EV_USE_MONOTONIC 992#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1004#endif
377 1005
378#ifdef _WIN32 1006#ifdef _WIN32
379# include "ev_win32.c" 1007# include "ev_win32.c"
380#endif 1008#endif
381 1009
382/*****************************************************************************/ 1010/*****************************************************************************/
383 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
384static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
385 1111
386void 1112void ecb_cold
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
388{ 1114{
389 syserr_cb = cb; 1115 syserr_cb = cb;
390} 1116}
391 1117
392static void noinline 1118static void noinline ecb_cold
393ev_syserr (const char *msg) 1119ev_syserr (const char *msg)
394{ 1120{
395 if (!msg) 1121 if (!msg)
396 msg = "(libev) system error"; 1122 msg = "(libev) system error";
397 1123
398 if (syserr_cb) 1124 if (syserr_cb)
399 syserr_cb (msg); 1125 syserr_cb (msg);
400 else 1126 else
401 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
402 perror (msg); 1134 perror (msg);
1135#endif
403 abort (); 1136 abort ();
404 } 1137 }
405} 1138}
406 1139
407static void * 1140static void *
408ev_realloc_emul (void *ptr, long size) 1141ev_realloc_emul (void *ptr, long size)
409{ 1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
410 /* some systems, notably openbsd and darwin, fail to properly 1146 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1147 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1148 * the single unix specification, so work around them here.
413 */ 1149 */
414 1150
415 if (size) 1151 if (size)
416 return realloc (ptr, size); 1152 return realloc (ptr, size);
417 1153
418 free (ptr); 1154 free (ptr);
419 return 0; 1155 return 0;
1156#endif
420} 1157}
421 1158
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
423 1160
424void 1161void ecb_cold
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
426{ 1163{
427 alloc = cb; 1164 alloc = cb;
428} 1165}
429 1166
430inline_speed void * 1167inline_speed void *
432{ 1169{
433 ptr = alloc (ptr, size); 1170 ptr = alloc (ptr, size);
434 1171
435 if (!ptr && size) 1172 if (!ptr && size)
436 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
438 abort (); 1179 abort ();
439 } 1180 }
440 1181
441 return ptr; 1182 return ptr;
442} 1183}
444#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1187
447/*****************************************************************************/ 1188/*****************************************************************************/
448 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
449typedef struct 1194typedef struct
450{ 1195{
451 WL head; 1196 WL head;
452 unsigned char events; 1197 unsigned char events; /* the events watched for */
453 unsigned char reify; 1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused; 1200 unsigned char unused;
456#if EV_USE_EPOLL 1201#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */ 1202 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif 1203#endif
459#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
460 SOCKET handle; 1205 SOCKET handle;
461#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
462} ANFD; 1210} ANFD;
463 1211
1212/* stores the pending event set for a given watcher */
464typedef struct 1213typedef struct
465{ 1214{
466 W w; 1215 W w;
467 int events; 1216 int events; /* the pending event set for the given watcher */
468} ANPENDING; 1217} ANPENDING;
469 1218
470#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */ 1220/* hash table entry per inotify-id */
472typedef struct 1221typedef struct
475} ANFS; 1224} ANFS;
476#endif 1225#endif
477 1226
478/* Heap Entry */ 1227/* Heap Entry */
479#if EV_HEAP_CACHE_AT 1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
480 typedef struct { 1230 typedef struct {
481 ev_tstamp at; 1231 ev_tstamp at;
482 WT w; 1232 WT w;
483 } ANHE; 1233 } ANHE;
484 1234
485 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else 1238#else
1239 /* a heap element */
489 typedef WT ANHE; 1240 typedef WT ANHE;
490 1241
491 #define ANHE_w(he) (he) 1242 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at 1243 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he) 1244 #define ANHE_at_cache(he)
504 #undef VAR 1255 #undef VAR
505 }; 1256 };
506 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
507 1258
508 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
509 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
510 1261
511#else 1262#else
512 1263
513 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
514 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
515 #include "ev_vars.h" 1266 #include "ev_vars.h"
516 #undef VAR 1267 #undef VAR
517 1268
518 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
519 1270
520#endif 1271#endif
521 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
522/*****************************************************************************/ 1285/*****************************************************************************/
523 1286
1287#ifndef EV_HAVE_EV_TIME
524ev_tstamp 1288ev_tstamp
525ev_time (void) 1289ev_time (void) EV_THROW
526{ 1290{
527#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
528 struct timespec ts; 1294 struct timespec ts;
529 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
530 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
531#else 1297 }
1298#endif
1299
532 struct timeval tv; 1300 struct timeval tv;
533 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
534 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
535#endif
536} 1303}
1304#endif
537 1305
538ev_tstamp inline_size 1306inline_size ev_tstamp
539get_clock (void) 1307get_clock (void)
540{ 1308{
541#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
542 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
543 { 1311 {
550 return ev_time (); 1318 return ev_time ();
551} 1319}
552 1320
553#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
554ev_tstamp 1322ev_tstamp
555ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
556{ 1324{
557 return ev_rt_now; 1325 return ev_rt_now;
558} 1326}
559#endif 1327#endif
560 1328
561void 1329void
562ev_sleep (ev_tstamp delay) 1330ev_sleep (ev_tstamp delay) EV_THROW
563{ 1331{
564 if (delay > 0.) 1332 if (delay > 0.)
565 { 1333 {
566#if EV_USE_NANOSLEEP 1334#if EV_USE_NANOSLEEP
567 struct timespec ts; 1335 struct timespec ts;
568 1336
569 ts.tv_sec = (time_t)delay; 1337 EV_TS_SET (ts, delay);
570 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
571
572 nanosleep (&ts, 0); 1338 nanosleep (&ts, 0);
573#elif defined(_WIN32) 1339#elif defined _WIN32
574 Sleep ((unsigned long)(delay * 1e3)); 1340 Sleep ((unsigned long)(delay * 1e3));
575#else 1341#else
576 struct timeval tv; 1342 struct timeval tv;
577 1343
578 tv.tv_sec = (time_t)delay;
579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1345 /* something not guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */ 1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
584 select (0, 0, 0, 0, &tv); 1348 select (0, 0, 0, 0, &tv);
585#endif 1349#endif
586 } 1350 }
587} 1351}
588 1352
589/*****************************************************************************/ 1353/*****************************************************************************/
590 1354
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
592 1356
593int inline_size 1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
594array_nextsize (int elem, int cur, int cnt) 1360array_nextsize (int elem, int cur, int cnt)
595{ 1361{
596 int ncur = cur + 1; 1362 int ncur = cur + 1;
597 1363
598 do 1364 do
599 ncur <<= 1; 1365 ncur <<= 1;
600 while (cnt > ncur); 1366 while (cnt > ncur);
601 1367
602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
604 { 1370 {
605 ncur *= elem; 1371 ncur *= elem;
606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
607 ncur = ncur - sizeof (void *) * 4; 1373 ncur = ncur - sizeof (void *) * 4;
609 } 1375 }
610 1376
611 return ncur; 1377 return ncur;
612} 1378}
613 1379
614static noinline void * 1380static void * noinline ecb_cold
615array_realloc (int elem, void *base, int *cur, int cnt) 1381array_realloc (int elem, void *base, int *cur, int cnt)
616{ 1382{
617 *cur = array_nextsize (elem, *cur, cnt); 1383 *cur = array_nextsize (elem, *cur, cnt);
618 return ev_realloc (base, elem * *cur); 1384 return ev_realloc (base, elem * *cur);
619} 1385}
622 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
623 1389
624#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
625 if (expect_false ((cnt) > (cur))) \ 1391 if (expect_false ((cnt) > (cur))) \
626 { \ 1392 { \
627 int ocur_ = (cur); \ 1393 int ecb_unused ocur_ = (cur); \
628 (base) = (type *)array_realloc \ 1394 (base) = (type *)array_realloc \
629 (sizeof (type), (base), &(cur), (cnt)); \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
630 init ((base) + (ocur_), (cur) - ocur_); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
631 } 1397 }
632 1398
639 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
640 } 1406 }
641#endif 1407#endif
642 1408
643#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
644 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
645 1411
646/*****************************************************************************/ 1412/*****************************************************************************/
647 1413
1414/* dummy callback for pending events */
1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
1417{
1418}
1419
648void noinline 1420void noinline
649ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
650{ 1422{
651 W w_ = (W)w; 1423 W w_ = (W)w;
652 int pri = ABSPRI (w_); 1424 int pri = ABSPRI (w_);
653 1425
654 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
660 pendings [pri][w_->pending - 1].w = w_; 1432 pendings [pri][w_->pending - 1].w = w_;
661 pendings [pri][w_->pending - 1].events = revents; 1433 pendings [pri][w_->pending - 1].events = revents;
662 } 1434 }
663} 1435}
664 1436
665void inline_speed 1437inline_speed void
1438feed_reverse (EV_P_ W w)
1439{
1440 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1441 rfeeds [rfeedcnt++] = w;
1442}
1443
1444inline_size void
1445feed_reverse_done (EV_P_ int revents)
1446{
1447 do
1448 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1449 while (rfeedcnt);
1450}
1451
1452inline_speed void
666queue_events (EV_P_ W *events, int eventcnt, int type) 1453queue_events (EV_P_ W *events, int eventcnt, int type)
667{ 1454{
668 int i; 1455 int i;
669 1456
670 for (i = 0; i < eventcnt; ++i) 1457 for (i = 0; i < eventcnt; ++i)
671 ev_feed_event (EV_A_ events [i], type); 1458 ev_feed_event (EV_A_ events [i], type);
672} 1459}
673 1460
674/*****************************************************************************/ 1461/*****************************************************************************/
675 1462
676void inline_speed 1463inline_speed void
677fd_event (EV_P_ int fd, int revents) 1464fd_event_nocheck (EV_P_ int fd, int revents)
678{ 1465{
679 ANFD *anfd = anfds + fd; 1466 ANFD *anfd = anfds + fd;
680 ev_io *w; 1467 ev_io *w;
681 1468
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1469 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
686 if (ev) 1473 if (ev)
687 ev_feed_event (EV_A_ (W)w, ev); 1474 ev_feed_event (EV_A_ (W)w, ev);
688 } 1475 }
689} 1476}
690 1477
1478/* do not submit kernel events for fds that have reify set */
1479/* because that means they changed while we were polling for new events */
1480inline_speed void
1481fd_event (EV_P_ int fd, int revents)
1482{
1483 ANFD *anfd = anfds + fd;
1484
1485 if (expect_true (!anfd->reify))
1486 fd_event_nocheck (EV_A_ fd, revents);
1487}
1488
691void 1489void
692ev_feed_fd_event (EV_P_ int fd, int revents) 1490ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
693{ 1491{
694 if (fd >= 0 && fd < anfdmax) 1492 if (fd >= 0 && fd < anfdmax)
695 fd_event (EV_A_ fd, revents); 1493 fd_event_nocheck (EV_A_ fd, revents);
696} 1494}
697 1495
698void inline_size 1496/* make sure the external fd watch events are in-sync */
1497/* with the kernel/libev internal state */
1498inline_size void
699fd_reify (EV_P) 1499fd_reify (EV_P)
700{ 1500{
701 int i; 1501 int i;
1502
1503#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1504 for (i = 0; i < fdchangecnt; ++i)
1505 {
1506 int fd = fdchanges [i];
1507 ANFD *anfd = anfds + fd;
1508
1509 if (anfd->reify & EV__IOFDSET && anfd->head)
1510 {
1511 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1512
1513 if (handle != anfd->handle)
1514 {
1515 unsigned long arg;
1516
1517 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1518
1519 /* handle changed, but fd didn't - we need to do it in two steps */
1520 backend_modify (EV_A_ fd, anfd->events, 0);
1521 anfd->events = 0;
1522 anfd->handle = handle;
1523 }
1524 }
1525 }
1526#endif
702 1527
703 for (i = 0; i < fdchangecnt; ++i) 1528 for (i = 0; i < fdchangecnt; ++i)
704 { 1529 {
705 int fd = fdchanges [i]; 1530 int fd = fdchanges [i];
706 ANFD *anfd = anfds + fd; 1531 ANFD *anfd = anfds + fd;
707 ev_io *w; 1532 ev_io *w;
708 1533
709 unsigned char events = 0; 1534 unsigned char o_events = anfd->events;
1535 unsigned char o_reify = anfd->reify;
710 1536
711 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1537 anfd->reify = 0;
712 events |= (unsigned char)w->events;
713 1538
714#if EV_SELECT_IS_WINSOCKET 1539 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
715 if (events)
716 { 1540 {
717 unsigned long arg; 1541 anfd->events = 0;
718 #ifdef EV_FD_TO_WIN32_HANDLE 1542
719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1543 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
720 #else 1544 anfd->events |= (unsigned char)w->events;
721 anfd->handle = _get_osfhandle (fd); 1545
722 #endif 1546 if (o_events != anfd->events)
723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1547 o_reify = EV__IOFDSET; /* actually |= */
724 } 1548 }
725#endif
726 1549
727 { 1550 if (o_reify & EV__IOFDSET)
728 unsigned char o_events = anfd->events;
729 unsigned char o_reify = anfd->reify;
730
731 anfd->reify = 0;
732 anfd->events = events;
733
734 if (o_events != events || o_reify & EV_IOFDSET)
735 backend_modify (EV_A_ fd, o_events, events); 1551 backend_modify (EV_A_ fd, o_events, anfd->events);
736 }
737 } 1552 }
738 1553
739 fdchangecnt = 0; 1554 fdchangecnt = 0;
740} 1555}
741 1556
742void inline_size 1557/* something about the given fd changed */
1558inline_size void
743fd_change (EV_P_ int fd, int flags) 1559fd_change (EV_P_ int fd, int flags)
744{ 1560{
745 unsigned char reify = anfds [fd].reify; 1561 unsigned char reify = anfds [fd].reify;
746 anfds [fd].reify |= flags; 1562 anfds [fd].reify |= flags;
747 1563
751 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1567 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
752 fdchanges [fdchangecnt - 1] = fd; 1568 fdchanges [fdchangecnt - 1] = fd;
753 } 1569 }
754} 1570}
755 1571
756void inline_speed 1572/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1573inline_speed void ecb_cold
757fd_kill (EV_P_ int fd) 1574fd_kill (EV_P_ int fd)
758{ 1575{
759 ev_io *w; 1576 ev_io *w;
760 1577
761 while ((w = (ev_io *)anfds [fd].head)) 1578 while ((w = (ev_io *)anfds [fd].head))
763 ev_io_stop (EV_A_ w); 1580 ev_io_stop (EV_A_ w);
764 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1581 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
765 } 1582 }
766} 1583}
767 1584
768int inline_size 1585/* check whether the given fd is actually valid, for error recovery */
1586inline_size int ecb_cold
769fd_valid (int fd) 1587fd_valid (int fd)
770{ 1588{
771#ifdef _WIN32 1589#ifdef _WIN32
772 return _get_osfhandle (fd) != -1; 1590 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
773#else 1591#else
774 return fcntl (fd, F_GETFD) != -1; 1592 return fcntl (fd, F_GETFD) != -1;
775#endif 1593#endif
776} 1594}
777 1595
778/* called on EBADF to verify fds */ 1596/* called on EBADF to verify fds */
779static void noinline 1597static void noinline ecb_cold
780fd_ebadf (EV_P) 1598fd_ebadf (EV_P)
781{ 1599{
782 int fd; 1600 int fd;
783 1601
784 for (fd = 0; fd < anfdmax; ++fd) 1602 for (fd = 0; fd < anfdmax; ++fd)
786 if (!fd_valid (fd) && errno == EBADF) 1604 if (!fd_valid (fd) && errno == EBADF)
787 fd_kill (EV_A_ fd); 1605 fd_kill (EV_A_ fd);
788} 1606}
789 1607
790/* called on ENOMEM in select/poll to kill some fds and retry */ 1608/* called on ENOMEM in select/poll to kill some fds and retry */
791static void noinline 1609static void noinline ecb_cold
792fd_enomem (EV_P) 1610fd_enomem (EV_P)
793{ 1611{
794 int fd; 1612 int fd;
795 1613
796 for (fd = anfdmax; fd--; ) 1614 for (fd = anfdmax; fd--; )
797 if (anfds [fd].events) 1615 if (anfds [fd].events)
798 { 1616 {
799 fd_kill (EV_A_ fd); 1617 fd_kill (EV_A_ fd);
800 return; 1618 break;
801 } 1619 }
802} 1620}
803 1621
804/* usually called after fork if backend needs to re-arm all fds from scratch */ 1622/* usually called after fork if backend needs to re-arm all fds from scratch */
805static void noinline 1623static void noinline
810 for (fd = 0; fd < anfdmax; ++fd) 1628 for (fd = 0; fd < anfdmax; ++fd)
811 if (anfds [fd].events) 1629 if (anfds [fd].events)
812 { 1630 {
813 anfds [fd].events = 0; 1631 anfds [fd].events = 0;
814 anfds [fd].emask = 0; 1632 anfds [fd].emask = 0;
815 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1633 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
816 } 1634 }
817} 1635}
818 1636
1637/* used to prepare libev internal fd's */
1638/* this is not fork-safe */
1639inline_speed void
1640fd_intern (int fd)
1641{
1642#ifdef _WIN32
1643 unsigned long arg = 1;
1644 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1645#else
1646 fcntl (fd, F_SETFD, FD_CLOEXEC);
1647 fcntl (fd, F_SETFL, O_NONBLOCK);
1648#endif
1649}
1650
819/*****************************************************************************/ 1651/*****************************************************************************/
820 1652
821/* 1653/*
822 * the heap functions want a real array index. array index 0 uis guaranteed to not 1654 * the heap functions want a real array index. array index 0 is guaranteed to not
823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1655 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
824 * the branching factor of the d-tree. 1656 * the branching factor of the d-tree.
825 */ 1657 */
826 1658
827/* 1659/*
836#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1668#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1669#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k)) 1670#define UPHEAP_DONE(p,k) ((p) == (k))
839 1671
840/* away from the root */ 1672/* away from the root */
841void inline_speed 1673inline_speed void
842downheap (ANHE *heap, int N, int k) 1674downheap (ANHE *heap, int N, int k)
843{ 1675{
844 ANHE he = heap [k]; 1676 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0; 1677 ANHE *E = heap + N + HEAP0;
846 1678
886#define HEAP0 1 1718#define HEAP0 1
887#define HPARENT(k) ((k) >> 1) 1719#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p)) 1720#define UPHEAP_DONE(p,k) (!(p))
889 1721
890/* away from the root */ 1722/* away from the root */
891void inline_speed 1723inline_speed void
892downheap (ANHE *heap, int N, int k) 1724downheap (ANHE *heap, int N, int k)
893{ 1725{
894 ANHE he = heap [k]; 1726 ANHE he = heap [k];
895 1727
896 for (;;) 1728 for (;;)
897 { 1729 {
898 int c = k << 1; 1730 int c = k << 1;
899 1731
900 if (c > N + HEAP0 - 1) 1732 if (c >= N + HEAP0)
901 break; 1733 break;
902 1734
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1735 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0; 1736 ? 1 : 0;
905 1737
916 ev_active (ANHE_w (he)) = k; 1748 ev_active (ANHE_w (he)) = k;
917} 1749}
918#endif 1750#endif
919 1751
920/* towards the root */ 1752/* towards the root */
921void inline_speed 1753inline_speed void
922upheap (ANHE *heap, int k) 1754upheap (ANHE *heap, int k)
923{ 1755{
924 ANHE he = heap [k]; 1756 ANHE he = heap [k];
925 1757
926 for (;;) 1758 for (;;)
937 1769
938 heap [k] = he; 1770 heap [k] = he;
939 ev_active (ANHE_w (he)) = k; 1771 ev_active (ANHE_w (he)) = k;
940} 1772}
941 1773
942void inline_size 1774/* move an element suitably so it is in a correct place */
1775inline_size void
943adjustheap (ANHE *heap, int N, int k) 1776adjustheap (ANHE *heap, int N, int k)
944{ 1777{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1778 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
946 upheap (heap, k); 1779 upheap (heap, k);
947 else 1780 else
948 downheap (heap, N, k); 1781 downheap (heap, N, k);
949} 1782}
950 1783
951/* rebuild the heap: this function is used only once and executed rarely */ 1784/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size 1785inline_size void
953reheap (ANHE *heap, int N) 1786reheap (ANHE *heap, int N)
954{ 1787{
955 int i; 1788 int i;
956 1789
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1790 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
960 upheap (heap, i + HEAP0); 1793 upheap (heap, i + HEAP0);
961} 1794}
962 1795
963/*****************************************************************************/ 1796/*****************************************************************************/
964 1797
1798/* associate signal watchers to a signal signal */
965typedef struct 1799typedef struct
966{ 1800{
1801 EV_ATOMIC_T pending;
1802#if EV_MULTIPLICITY
1803 EV_P;
1804#endif
967 WL head; 1805 WL head;
968 EV_ATOMIC_T gotsig;
969} ANSIG; 1806} ANSIG;
970 1807
971static ANSIG *signals; 1808static ANSIG signals [EV_NSIG - 1];
972static int signalmax;
973
974static EV_ATOMIC_T gotsig;
975 1809
976/*****************************************************************************/ 1810/*****************************************************************************/
977 1811
978void inline_speed 1812#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
979fd_intern (int fd)
980{
981#ifdef _WIN32
982 unsigned long arg = 1;
983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
984#else
985 fcntl (fd, F_SETFD, FD_CLOEXEC);
986 fcntl (fd, F_SETFL, O_NONBLOCK);
987#endif
988}
989 1813
990static void noinline 1814static void noinline ecb_cold
991evpipe_init (EV_P) 1815evpipe_init (EV_P)
992{ 1816{
993 if (!ev_is_active (&pipeev)) 1817 if (!ev_is_active (&pipe_w))
994 { 1818 {
995#if EV_USE_EVENTFD 1819# if EV_USE_EVENTFD
1820 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1821 if (evfd < 0 && errno == EINVAL)
996 if ((evfd = eventfd (0, 0)) >= 0) 1822 evfd = eventfd (0, 0);
1823
1824 if (evfd >= 0)
997 { 1825 {
998 evpipe [0] = -1; 1826 evpipe [0] = -1;
999 fd_intern (evfd); 1827 fd_intern (evfd); /* doing it twice doesn't hurt */
1000 ev_io_set (&pipeev, evfd, EV_READ); 1828 ev_io_set (&pipe_w, evfd, EV_READ);
1001 } 1829 }
1002 else 1830 else
1003#endif 1831# endif
1004 { 1832 {
1005 while (pipe (evpipe)) 1833 while (pipe (evpipe))
1006 ev_syserr ("(libev) error creating signal/async pipe"); 1834 ev_syserr ("(libev) error creating signal/async pipe");
1007 1835
1008 fd_intern (evpipe [0]); 1836 fd_intern (evpipe [0]);
1009 fd_intern (evpipe [1]); 1837 fd_intern (evpipe [1]);
1010 ev_io_set (&pipeev, evpipe [0], EV_READ); 1838 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1011 } 1839 }
1012 1840
1013 ev_io_start (EV_A_ &pipeev); 1841 ev_io_start (EV_A_ &pipe_w);
1014 ev_unref (EV_A); /* watcher should not keep loop alive */ 1842 ev_unref (EV_A); /* watcher should not keep loop alive */
1015 } 1843 }
1016} 1844}
1017 1845
1018void inline_size 1846inline_speed void
1019evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1847evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1020{ 1848{
1021 if (!*flag) 1849 if (expect_true (*flag))
1850 return;
1851
1852 *flag = 1;
1853
1854 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1855
1856 pipe_write_skipped = 1;
1857
1858 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1859
1860 if (pipe_write_wanted)
1022 { 1861 {
1862 int old_errno;
1863
1864 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1865
1023 int old_errno = errno; /* save errno because write might clobber it */ 1866 old_errno = errno; /* save errno because write will clobber it */
1024
1025 *flag = 1;
1026 1867
1027#if EV_USE_EVENTFD 1868#if EV_USE_EVENTFD
1028 if (evfd >= 0) 1869 if (evfd >= 0)
1029 { 1870 {
1030 uint64_t counter = 1; 1871 uint64_t counter = 1;
1031 write (evfd, &counter, sizeof (uint64_t)); 1872 write (evfd, &counter, sizeof (uint64_t));
1032 } 1873 }
1033 else 1874 else
1034#endif 1875#endif
1876 {
1877 /* win32 people keep sending patches that change this write() to send() */
1878 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1879 /* so when you think this write should be a send instead, please find out */
1880 /* where your send() is from - it's definitely not the microsoft send, and */
1881 /* tell me. thank you. */
1882 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1883 /* check the ev documentation on how to use this flag */
1035 write (evpipe [1], &old_errno, 1); 1884 write (evpipe [1], &(evpipe [1]), 1);
1885 }
1036 1886
1037 errno = old_errno; 1887 errno = old_errno;
1038 } 1888 }
1039} 1889}
1040 1890
1891/* called whenever the libev signal pipe */
1892/* got some events (signal, async) */
1041static void 1893static void
1042pipecb (EV_P_ ev_io *iow, int revents) 1894pipecb (EV_P_ ev_io *iow, int revents)
1043{ 1895{
1896 int i;
1897
1898 if (revents & EV_READ)
1899 {
1044#if EV_USE_EVENTFD 1900#if EV_USE_EVENTFD
1045 if (evfd >= 0) 1901 if (evfd >= 0)
1046 { 1902 {
1047 uint64_t counter; 1903 uint64_t counter;
1048 read (evfd, &counter, sizeof (uint64_t)); 1904 read (evfd, &counter, sizeof (uint64_t));
1049 } 1905 }
1050 else 1906 else
1051#endif 1907#endif
1052 { 1908 {
1053 char dummy; 1909 char dummy;
1910 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1054 read (evpipe [0], &dummy, 1); 1911 read (evpipe [0], &dummy, 1);
1912 }
1913 }
1914
1915 pipe_write_skipped = 0;
1916
1917#if EV_SIGNAL_ENABLE
1918 if (sig_pending)
1055 } 1919 {
1920 sig_pending = 0;
1056 1921
1057 if (gotsig && ev_is_default_loop (EV_A)) 1922 for (i = EV_NSIG - 1; i--; )
1058 { 1923 if (expect_false (signals [i].pending))
1059 int signum;
1060 gotsig = 0;
1061
1062 for (signum = signalmax; signum--; )
1063 if (signals [signum].gotsig)
1064 ev_feed_signal_event (EV_A_ signum + 1); 1924 ev_feed_signal_event (EV_A_ i + 1);
1065 } 1925 }
1926#endif
1066 1927
1067#if EV_ASYNC_ENABLE 1928#if EV_ASYNC_ENABLE
1068 if (gotasync) 1929 if (async_pending)
1069 { 1930 {
1070 int i; 1931 async_pending = 0;
1071 gotasync = 0;
1072 1932
1073 for (i = asynccnt; i--; ) 1933 for (i = asynccnt; i--; )
1074 if (asyncs [i]->sent) 1934 if (asyncs [i]->sent)
1075 { 1935 {
1076 asyncs [i]->sent = 0; 1936 asyncs [i]->sent = 0;
1080#endif 1940#endif
1081} 1941}
1082 1942
1083/*****************************************************************************/ 1943/*****************************************************************************/
1084 1944
1945void
1946ev_feed_signal (int signum) EV_THROW
1947{
1948#if EV_MULTIPLICITY
1949 EV_P = signals [signum - 1].loop;
1950
1951 if (!EV_A)
1952 return;
1953#endif
1954
1955 if (!ev_active (&pipe_w))
1956 return;
1957
1958 signals [signum - 1].pending = 1;
1959 evpipe_write (EV_A_ &sig_pending);
1960}
1961
1085static void 1962static void
1086ev_sighandler (int signum) 1963ev_sighandler (int signum)
1087{ 1964{
1965#ifdef _WIN32
1966 signal (signum, ev_sighandler);
1967#endif
1968
1969 ev_feed_signal (signum);
1970}
1971
1972void noinline
1973ev_feed_signal_event (EV_P_ int signum) EV_THROW
1974{
1975 WL w;
1976
1977 if (expect_false (signum <= 0 || signum > EV_NSIG))
1978 return;
1979
1980 --signum;
1981
1088#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1089 struct ev_loop *loop = &default_loop_struct; 1983 /* it is permissible to try to feed a signal to the wrong loop */
1090#endif 1984 /* or, likely more useful, feeding a signal nobody is waiting for */
1091 1985
1092#if _WIN32 1986 if (expect_false (signals [signum].loop != EV_A))
1093 signal (signum, ev_sighandler);
1094#endif
1095
1096 signals [signum - 1].gotsig = 1;
1097 evpipe_write (EV_A_ &gotsig);
1098}
1099
1100void noinline
1101ev_feed_signal_event (EV_P_ int signum)
1102{
1103 WL w;
1104
1105#if EV_MULTIPLICITY
1106 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1107#endif
1108
1109 --signum;
1110
1111 if (signum < 0 || signum >= signalmax)
1112 return; 1987 return;
1988#endif
1113 1989
1114 signals [signum].gotsig = 0; 1990 signals [signum].pending = 0;
1115 1991
1116 for (w = signals [signum].head; w; w = w->next) 1992 for (w = signals [signum].head; w; w = w->next)
1117 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1993 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1118} 1994}
1119 1995
1996#if EV_USE_SIGNALFD
1997static void
1998sigfdcb (EV_P_ ev_io *iow, int revents)
1999{
2000 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2001
2002 for (;;)
2003 {
2004 ssize_t res = read (sigfd, si, sizeof (si));
2005
2006 /* not ISO-C, as res might be -1, but works with SuS */
2007 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2008 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2009
2010 if (res < (ssize_t)sizeof (si))
2011 break;
2012 }
2013}
2014#endif
2015
2016#endif
2017
1120/*****************************************************************************/ 2018/*****************************************************************************/
1121 2019
2020#if EV_CHILD_ENABLE
1122static WL childs [EV_PID_HASHSIZE]; 2021static WL childs [EV_PID_HASHSIZE];
1123
1124#ifndef _WIN32
1125 2022
1126static ev_signal childev; 2023static ev_signal childev;
1127 2024
1128#ifndef WIFCONTINUED 2025#ifndef WIFCONTINUED
1129# define WIFCONTINUED(status) 0 2026# define WIFCONTINUED(status) 0
1130#endif 2027#endif
1131 2028
1132void inline_speed 2029/* handle a single child status event */
2030inline_speed void
1133child_reap (EV_P_ int chain, int pid, int status) 2031child_reap (EV_P_ int chain, int pid, int status)
1134{ 2032{
1135 ev_child *w; 2033 ev_child *w;
1136 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2034 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1137 2035
1138 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2036 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1139 { 2037 {
1140 if ((w->pid == pid || !w->pid) 2038 if ((w->pid == pid || !w->pid)
1141 && (!traced || (w->flags & 1))) 2039 && (!traced || (w->flags & 1)))
1142 { 2040 {
1143 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2041 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1150 2048
1151#ifndef WCONTINUED 2049#ifndef WCONTINUED
1152# define WCONTINUED 0 2050# define WCONTINUED 0
1153#endif 2051#endif
1154 2052
2053/* called on sigchld etc., calls waitpid */
1155static void 2054static void
1156childcb (EV_P_ ev_signal *sw, int revents) 2055childcb (EV_P_ ev_signal *sw, int revents)
1157{ 2056{
1158 int pid, status; 2057 int pid, status;
1159 2058
1167 /* make sure we are called again until all children have been reaped */ 2066 /* make sure we are called again until all children have been reaped */
1168 /* we need to do it this way so that the callback gets called before we continue */ 2067 /* we need to do it this way so that the callback gets called before we continue */
1169 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2068 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1170 2069
1171 child_reap (EV_A_ pid, pid, status); 2070 child_reap (EV_A_ pid, pid, status);
1172 if (EV_PID_HASHSIZE > 1) 2071 if ((EV_PID_HASHSIZE) > 1)
1173 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2072 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1174} 2073}
1175 2074
1176#endif 2075#endif
1177 2076
1178/*****************************************************************************/ 2077/*****************************************************************************/
1179 2078
2079#if EV_USE_IOCP
2080# include "ev_iocp.c"
2081#endif
1180#if EV_USE_PORT 2082#if EV_USE_PORT
1181# include "ev_port.c" 2083# include "ev_port.c"
1182#endif 2084#endif
1183#if EV_USE_KQUEUE 2085#if EV_USE_KQUEUE
1184# include "ev_kqueue.c" 2086# include "ev_kqueue.c"
1191#endif 2093#endif
1192#if EV_USE_SELECT 2094#if EV_USE_SELECT
1193# include "ev_select.c" 2095# include "ev_select.c"
1194#endif 2096#endif
1195 2097
1196int 2098int ecb_cold
1197ev_version_major (void) 2099ev_version_major (void) EV_THROW
1198{ 2100{
1199 return EV_VERSION_MAJOR; 2101 return EV_VERSION_MAJOR;
1200} 2102}
1201 2103
1202int 2104int ecb_cold
1203ev_version_minor (void) 2105ev_version_minor (void) EV_THROW
1204{ 2106{
1205 return EV_VERSION_MINOR; 2107 return EV_VERSION_MINOR;
1206} 2108}
1207 2109
1208/* return true if we are running with elevated privileges and should ignore env variables */ 2110/* return true if we are running with elevated privileges and should ignore env variables */
1209int inline_size 2111int inline_size ecb_cold
1210enable_secure (void) 2112enable_secure (void)
1211{ 2113{
1212#ifdef _WIN32 2114#ifdef _WIN32
1213 return 0; 2115 return 0;
1214#else 2116#else
1215 return getuid () != geteuid () 2117 return getuid () != geteuid ()
1216 || getgid () != getegid (); 2118 || getgid () != getegid ();
1217#endif 2119#endif
1218} 2120}
1219 2121
1220unsigned int 2122unsigned int ecb_cold
1221ev_supported_backends (void) 2123ev_supported_backends (void) EV_THROW
1222{ 2124{
1223 unsigned int flags = 0; 2125 unsigned int flags = 0;
1224 2126
1225 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2127 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1226 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2128 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1229 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2131 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1230 2132
1231 return flags; 2133 return flags;
1232} 2134}
1233 2135
1234unsigned int 2136unsigned int ecb_cold
1235ev_recommended_backends (void) 2137ev_recommended_backends (void) EV_THROW
1236{ 2138{
1237 unsigned int flags = ev_supported_backends (); 2139 unsigned int flags = ev_supported_backends ();
1238 2140
1239#ifndef __NetBSD__ 2141#ifndef __NetBSD__
1240 /* kqueue is borked on everything but netbsd apparently */ 2142 /* kqueue is borked on everything but netbsd apparently */
1241 /* it usually doesn't work correctly on anything but sockets and pipes */ 2143 /* it usually doesn't work correctly on anything but sockets and pipes */
1242 flags &= ~EVBACKEND_KQUEUE; 2144 flags &= ~EVBACKEND_KQUEUE;
1243#endif 2145#endif
1244#ifdef __APPLE__ 2146#ifdef __APPLE__
1245 // flags &= ~EVBACKEND_KQUEUE; for documentation 2147 /* only select works correctly on that "unix-certified" platform */
1246 flags &= ~EVBACKEND_POLL; 2148 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2149 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2150#endif
2151#ifdef __FreeBSD__
2152 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1247#endif 2153#endif
1248 2154
1249 return flags; 2155 return flags;
1250} 2156}
1251 2157
2158unsigned int ecb_cold
2159ev_embeddable_backends (void) EV_THROW
2160{
2161 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2162
2163 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2164 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2165 flags &= ~EVBACKEND_EPOLL;
2166
2167 return flags;
2168}
2169
1252unsigned int 2170unsigned int
1253ev_embeddable_backends (void) 2171ev_backend (EV_P) EV_THROW
1254{ 2172{
1255 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2173 return backend;
1256
1257 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1258 /* please fix it and tell me how to detect the fix */
1259 flags &= ~EVBACKEND_EPOLL;
1260
1261 return flags;
1262} 2174}
1263 2175
2176#if EV_FEATURE_API
1264unsigned int 2177unsigned int
1265ev_backend (EV_P) 2178ev_iteration (EV_P) EV_THROW
1266{ 2179{
1267 return backend; 2180 return loop_count;
1268} 2181}
1269 2182
1270unsigned int 2183unsigned int
1271ev_loop_count (EV_P) 2184ev_depth (EV_P) EV_THROW
1272{ 2185{
1273 return loop_count; 2186 return loop_depth;
1274} 2187}
1275 2188
1276void 2189void
1277ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2190ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1278{ 2191{
1279 io_blocktime = interval; 2192 io_blocktime = interval;
1280} 2193}
1281 2194
1282void 2195void
1283ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2196ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1284{ 2197{
1285 timeout_blocktime = interval; 2198 timeout_blocktime = interval;
1286} 2199}
1287 2200
2201void
2202ev_set_userdata (EV_P_ void *data) EV_THROW
2203{
2204 userdata = data;
2205}
2206
2207void *
2208ev_userdata (EV_P) EV_THROW
2209{
2210 return userdata;
2211}
2212
2213void
2214ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2215{
2216 invoke_cb = invoke_pending_cb;
2217}
2218
2219void
2220ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2221{
2222 release_cb = release;
2223 acquire_cb = acquire;
2224}
2225#endif
2226
2227/* initialise a loop structure, must be zero-initialised */
1288static void noinline 2228static void noinline ecb_cold
1289loop_init (EV_P_ unsigned int flags) 2229loop_init (EV_P_ unsigned int flags) EV_THROW
1290{ 2230{
1291 if (!backend) 2231 if (!backend)
1292 { 2232 {
2233 origflags = flags;
2234
2235#if EV_USE_REALTIME
2236 if (!have_realtime)
2237 {
2238 struct timespec ts;
2239
2240 if (!clock_gettime (CLOCK_REALTIME, &ts))
2241 have_realtime = 1;
2242 }
2243#endif
2244
1293#if EV_USE_MONOTONIC 2245#if EV_USE_MONOTONIC
2246 if (!have_monotonic)
1294 { 2247 {
1295 struct timespec ts; 2248 struct timespec ts;
2249
1296 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2250 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1297 have_monotonic = 1; 2251 have_monotonic = 1;
1298 } 2252 }
1299#endif
1300
1301 ev_rt_now = ev_time ();
1302 mn_now = get_clock ();
1303 now_floor = mn_now;
1304 rtmn_diff = ev_rt_now - mn_now;
1305
1306 io_blocktime = 0.;
1307 timeout_blocktime = 0.;
1308 backend = 0;
1309 backend_fd = -1;
1310 gotasync = 0;
1311#if EV_USE_INOTIFY
1312 fs_fd = -2;
1313#endif 2253#endif
1314 2254
1315 /* pid check not overridable via env */ 2255 /* pid check not overridable via env */
1316#ifndef _WIN32 2256#ifndef _WIN32
1317 if (flags & EVFLAG_FORKCHECK) 2257 if (flags & EVFLAG_FORKCHECK)
1321 if (!(flags & EVFLAG_NOENV) 2261 if (!(flags & EVFLAG_NOENV)
1322 && !enable_secure () 2262 && !enable_secure ()
1323 && getenv ("LIBEV_FLAGS")) 2263 && getenv ("LIBEV_FLAGS"))
1324 flags = atoi (getenv ("LIBEV_FLAGS")); 2264 flags = atoi (getenv ("LIBEV_FLAGS"));
1325 2265
1326 if (!(flags & 0x0000ffffU)) 2266 ev_rt_now = ev_time ();
2267 mn_now = get_clock ();
2268 now_floor = mn_now;
2269 rtmn_diff = ev_rt_now - mn_now;
2270#if EV_FEATURE_API
2271 invoke_cb = ev_invoke_pending;
2272#endif
2273
2274 io_blocktime = 0.;
2275 timeout_blocktime = 0.;
2276 backend = 0;
2277 backend_fd = -1;
2278 sig_pending = 0;
2279#if EV_ASYNC_ENABLE
2280 async_pending = 0;
2281#endif
2282 pipe_write_skipped = 0;
2283 pipe_write_wanted = 0;
2284#if EV_USE_INOTIFY
2285 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2286#endif
2287#if EV_USE_SIGNALFD
2288 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2289#endif
2290
2291 if (!(flags & EVBACKEND_MASK))
1327 flags |= ev_recommended_backends (); 2292 flags |= ev_recommended_backends ();
1328 2293
2294#if EV_USE_IOCP
2295 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2296#endif
1329#if EV_USE_PORT 2297#if EV_USE_PORT
1330 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2298 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1331#endif 2299#endif
1332#if EV_USE_KQUEUE 2300#if EV_USE_KQUEUE
1333 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2301 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1340#endif 2308#endif
1341#if EV_USE_SELECT 2309#if EV_USE_SELECT
1342 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2310 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1343#endif 2311#endif
1344 2312
2313 ev_prepare_init (&pending_w, pendingcb);
2314
2315#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1345 ev_init (&pipeev, pipecb); 2316 ev_init (&pipe_w, pipecb);
1346 ev_set_priority (&pipeev, EV_MAXPRI); 2317 ev_set_priority (&pipe_w, EV_MAXPRI);
2318#endif
1347 } 2319 }
1348} 2320}
1349 2321
1350static void noinline 2322/* free up a loop structure */
2323void ecb_cold
1351loop_destroy (EV_P) 2324ev_loop_destroy (EV_P)
1352{ 2325{
1353 int i; 2326 int i;
1354 2327
2328#if EV_MULTIPLICITY
2329 /* mimic free (0) */
2330 if (!EV_A)
2331 return;
2332#endif
2333
2334#if EV_CLEANUP_ENABLE
2335 /* queue cleanup watchers (and execute them) */
2336 if (expect_false (cleanupcnt))
2337 {
2338 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2339 EV_INVOKE_PENDING;
2340 }
2341#endif
2342
2343#if EV_CHILD_ENABLE
2344 if (ev_is_active (&childev))
2345 {
2346 ev_ref (EV_A); /* child watcher */
2347 ev_signal_stop (EV_A_ &childev);
2348 }
2349#endif
2350
1355 if (ev_is_active (&pipeev)) 2351 if (ev_is_active (&pipe_w))
1356 { 2352 {
1357 ev_ref (EV_A); /* signal watcher */ 2353 /*ev_ref (EV_A);*/
1358 ev_io_stop (EV_A_ &pipeev); 2354 /*ev_io_stop (EV_A_ &pipe_w);*/
1359 2355
1360#if EV_USE_EVENTFD 2356#if EV_USE_EVENTFD
1361 if (evfd >= 0) 2357 if (evfd >= 0)
1362 close (evfd); 2358 close (evfd);
1363#endif 2359#endif
1364 2360
1365 if (evpipe [0] >= 0) 2361 if (evpipe [0] >= 0)
1366 { 2362 {
1367 close (evpipe [0]); 2363 EV_WIN32_CLOSE_FD (evpipe [0]);
1368 close (evpipe [1]); 2364 EV_WIN32_CLOSE_FD (evpipe [1]);
1369 } 2365 }
1370 } 2366 }
2367
2368#if EV_USE_SIGNALFD
2369 if (ev_is_active (&sigfd_w))
2370 close (sigfd);
2371#endif
1371 2372
1372#if EV_USE_INOTIFY 2373#if EV_USE_INOTIFY
1373 if (fs_fd >= 0) 2374 if (fs_fd >= 0)
1374 close (fs_fd); 2375 close (fs_fd);
1375#endif 2376#endif
1376 2377
1377 if (backend_fd >= 0) 2378 if (backend_fd >= 0)
1378 close (backend_fd); 2379 close (backend_fd);
1379 2380
2381#if EV_USE_IOCP
2382 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2383#endif
1380#if EV_USE_PORT 2384#if EV_USE_PORT
1381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2385 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1382#endif 2386#endif
1383#if EV_USE_KQUEUE 2387#if EV_USE_KQUEUE
1384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2388 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1399#if EV_IDLE_ENABLE 2403#if EV_IDLE_ENABLE
1400 array_free (idle, [i]); 2404 array_free (idle, [i]);
1401#endif 2405#endif
1402 } 2406 }
1403 2407
1404 ev_free (anfds); anfdmax = 0; 2408 ev_free (anfds); anfds = 0; anfdmax = 0;
1405 2409
1406 /* have to use the microsoft-never-gets-it-right macro */ 2410 /* have to use the microsoft-never-gets-it-right macro */
2411 array_free (rfeed, EMPTY);
1407 array_free (fdchange, EMPTY); 2412 array_free (fdchange, EMPTY);
1408 array_free (timer, EMPTY); 2413 array_free (timer, EMPTY);
1409#if EV_PERIODIC_ENABLE 2414#if EV_PERIODIC_ENABLE
1410 array_free (periodic, EMPTY); 2415 array_free (periodic, EMPTY);
1411#endif 2416#endif
1412#if EV_FORK_ENABLE 2417#if EV_FORK_ENABLE
1413 array_free (fork, EMPTY); 2418 array_free (fork, EMPTY);
1414#endif 2419#endif
2420#if EV_CLEANUP_ENABLE
2421 array_free (cleanup, EMPTY);
2422#endif
1415 array_free (prepare, EMPTY); 2423 array_free (prepare, EMPTY);
1416 array_free (check, EMPTY); 2424 array_free (check, EMPTY);
1417#if EV_ASYNC_ENABLE 2425#if EV_ASYNC_ENABLE
1418 array_free (async, EMPTY); 2426 array_free (async, EMPTY);
1419#endif 2427#endif
1420 2428
1421 backend = 0; 2429 backend = 0;
2430
2431#if EV_MULTIPLICITY
2432 if (ev_is_default_loop (EV_A))
2433#endif
2434 ev_default_loop_ptr = 0;
2435#if EV_MULTIPLICITY
2436 else
2437 ev_free (EV_A);
2438#endif
1422} 2439}
1423 2440
1424#if EV_USE_INOTIFY 2441#if EV_USE_INOTIFY
1425void inline_size infy_fork (EV_P); 2442inline_size void infy_fork (EV_P);
1426#endif 2443#endif
1427 2444
1428void inline_size 2445inline_size void
1429loop_fork (EV_P) 2446loop_fork (EV_P)
1430{ 2447{
1431#if EV_USE_PORT 2448#if EV_USE_PORT
1432 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2449 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1433#endif 2450#endif
1439#endif 2456#endif
1440#if EV_USE_INOTIFY 2457#if EV_USE_INOTIFY
1441 infy_fork (EV_A); 2458 infy_fork (EV_A);
1442#endif 2459#endif
1443 2460
1444 if (ev_is_active (&pipeev)) 2461 if (ev_is_active (&pipe_w))
1445 { 2462 {
1446 /* this "locks" the handlers against writing to the pipe */ 2463 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1447 /* while we modify the fd vars */
1448 gotsig = 1;
1449#if EV_ASYNC_ENABLE
1450 gotasync = 1;
1451#endif
1452 2464
1453 ev_ref (EV_A); 2465 ev_ref (EV_A);
1454 ev_io_stop (EV_A_ &pipeev); 2466 ev_io_stop (EV_A_ &pipe_w);
1455 2467
1456#if EV_USE_EVENTFD 2468#if EV_USE_EVENTFD
1457 if (evfd >= 0) 2469 if (evfd >= 0)
1458 close (evfd); 2470 close (evfd);
1459#endif 2471#endif
1460 2472
1461 if (evpipe [0] >= 0) 2473 if (evpipe [0] >= 0)
1462 { 2474 {
1463 close (evpipe [0]); 2475 EV_WIN32_CLOSE_FD (evpipe [0]);
1464 close (evpipe [1]); 2476 EV_WIN32_CLOSE_FD (evpipe [1]);
1465 } 2477 }
1466 2478
2479#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1467 evpipe_init (EV_A); 2480 evpipe_init (EV_A);
1468 /* now iterate over everything, in case we missed something */ 2481 /* now iterate over everything, in case we missed something */
1469 pipecb (EV_A_ &pipeev, EV_READ); 2482 pipecb (EV_A_ &pipe_w, EV_READ);
2483#endif
1470 } 2484 }
1471 2485
1472 postfork = 0; 2486 postfork = 0;
1473} 2487}
1474 2488
1475#if EV_MULTIPLICITY 2489#if EV_MULTIPLICITY
1476 2490
1477struct ev_loop * 2491struct ev_loop * ecb_cold
1478ev_loop_new (unsigned int flags) 2492ev_loop_new (unsigned int flags) EV_THROW
1479{ 2493{
1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2494 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1481 2495
1482 memset (loop, 0, sizeof (struct ev_loop)); 2496 memset (EV_A, 0, sizeof (struct ev_loop));
1483
1484 loop_init (EV_A_ flags); 2497 loop_init (EV_A_ flags);
1485 2498
1486 if (ev_backend (EV_A)) 2499 if (ev_backend (EV_A))
1487 return loop; 2500 return EV_A;
1488 2501
2502 ev_free (EV_A);
1489 return 0; 2503 return 0;
1490} 2504}
1491 2505
1492void 2506#endif /* multiplicity */
1493ev_loop_destroy (EV_P)
1494{
1495 loop_destroy (EV_A);
1496 ev_free (loop);
1497}
1498
1499void
1500ev_loop_fork (EV_P)
1501{
1502 postfork = 1; /* must be in line with ev_default_fork */
1503}
1504 2507
1505#if EV_VERIFY 2508#if EV_VERIFY
1506static void noinline 2509static void noinline ecb_cold
1507verify_watcher (EV_P_ W w) 2510verify_watcher (EV_P_ W w)
1508{ 2511{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2512 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510 2513
1511 if (w->pending) 2514 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2515 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513} 2516}
1514 2517
1515static void noinline 2518static void noinline ecb_cold
1516verify_heap (EV_P_ ANHE *heap, int N) 2519verify_heap (EV_P_ ANHE *heap, int N)
1517{ 2520{
1518 int i; 2521 int i;
1519 2522
1520 for (i = HEAP0; i < N + HEAP0; ++i) 2523 for (i = HEAP0; i < N + HEAP0; ++i)
1521 { 2524 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2525 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2526 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2527 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525 2528
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2529 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 } 2530 }
1528} 2531}
1529 2532
1530static void noinline 2533static void noinline ecb_cold
1531array_verify (EV_P_ W *ws, int cnt) 2534array_verify (EV_P_ W *ws, int cnt)
1532{ 2535{
1533 while (cnt--) 2536 while (cnt--)
1534 { 2537 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2538 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]); 2539 verify_watcher (EV_A_ ws [cnt]);
1537 } 2540 }
1538} 2541}
1539#endif 2542#endif
1540 2543
1541void 2544#if EV_FEATURE_API
1542ev_loop_verify (EV_P) 2545void ecb_cold
2546ev_verify (EV_P) EV_THROW
1543{ 2547{
1544#if EV_VERIFY 2548#if EV_VERIFY
1545 int i; 2549 int i;
1546 WL w; 2550 WL w;
1547 2551
1548 assert (activecnt >= -1); 2552 assert (activecnt >= -1);
1549 2553
1550 assert (fdchangemax >= fdchangecnt); 2554 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i) 2555 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2556 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1553 2557
1554 assert (anfdmax >= 0); 2558 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i) 2559 for (i = 0; i < anfdmax; ++i)
1556 for (w = anfds [i].head; w; w = w->next) 2560 for (w = anfds [i].head; w; w = w->next)
1557 { 2561 {
1558 verify_watcher (EV_A_ (W)w); 2562 verify_watcher (EV_A_ (W)w);
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2563 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2564 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 } 2565 }
1562 2566
1563 assert (timermax >= timercnt); 2567 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt); 2568 verify_heap (EV_A_ timers, timercnt);
1565 2569
1581#if EV_FORK_ENABLE 2585#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt); 2586 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt); 2587 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif 2588#endif
1585 2589
2590#if EV_CLEANUP_ENABLE
2591 assert (cleanupmax >= cleanupcnt);
2592 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2593#endif
2594
1586#if EV_ASYNC_ENABLE 2595#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt); 2596 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt); 2597 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif 2598#endif
1590 2599
2600#if EV_PREPARE_ENABLE
1591 assert (preparemax >= preparecnt); 2601 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt); 2602 array_verify (EV_A_ (W *)prepares, preparecnt);
2603#endif
1593 2604
2605#if EV_CHECK_ENABLE
1594 assert (checkmax >= checkcnt); 2606 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt); 2607 array_verify (EV_A_ (W *)checks, checkcnt);
2608#endif
1596 2609
1597# if 0 2610# if 0
2611#if EV_CHILD_ENABLE
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2612 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2613 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2614#endif
1600# endif 2615# endif
1601#endif 2616#endif
1602} 2617}
1603 2618#endif
1604#endif /* multiplicity */
1605 2619
1606#if EV_MULTIPLICITY 2620#if EV_MULTIPLICITY
1607struct ev_loop * 2621struct ev_loop * ecb_cold
1608ev_default_loop_init (unsigned int flags)
1609#else 2622#else
1610int 2623int
2624#endif
1611ev_default_loop (unsigned int flags) 2625ev_default_loop (unsigned int flags) EV_THROW
1612#endif
1613{ 2626{
1614 if (!ev_default_loop_ptr) 2627 if (!ev_default_loop_ptr)
1615 { 2628 {
1616#if EV_MULTIPLICITY 2629#if EV_MULTIPLICITY
1617 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2630 EV_P = ev_default_loop_ptr = &default_loop_struct;
1618#else 2631#else
1619 ev_default_loop_ptr = 1; 2632 ev_default_loop_ptr = 1;
1620#endif 2633#endif
1621 2634
1622 loop_init (EV_A_ flags); 2635 loop_init (EV_A_ flags);
1623 2636
1624 if (ev_backend (EV_A)) 2637 if (ev_backend (EV_A))
1625 { 2638 {
1626#ifndef _WIN32 2639#if EV_CHILD_ENABLE
1627 ev_signal_init (&childev, childcb, SIGCHLD); 2640 ev_signal_init (&childev, childcb, SIGCHLD);
1628 ev_set_priority (&childev, EV_MAXPRI); 2641 ev_set_priority (&childev, EV_MAXPRI);
1629 ev_signal_start (EV_A_ &childev); 2642 ev_signal_start (EV_A_ &childev);
1630 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2643 ev_unref (EV_A); /* child watcher should not keep loop alive */
1631#endif 2644#endif
1636 2649
1637 return ev_default_loop_ptr; 2650 return ev_default_loop_ptr;
1638} 2651}
1639 2652
1640void 2653void
1641ev_default_destroy (void) 2654ev_loop_fork (EV_P) EV_THROW
1642{ 2655{
1643#if EV_MULTIPLICITY
1644 struct ev_loop *loop = ev_default_loop_ptr;
1645#endif
1646
1647 ev_default_loop_ptr = 0;
1648
1649#ifndef _WIN32
1650 ev_ref (EV_A); /* child watcher */
1651 ev_signal_stop (EV_A_ &childev);
1652#endif
1653
1654 loop_destroy (EV_A);
1655}
1656
1657void
1658ev_default_fork (void)
1659{
1660#if EV_MULTIPLICITY
1661 struct ev_loop *loop = ev_default_loop_ptr;
1662#endif
1663
1664 postfork = 1; /* must be in line with ev_loop_fork */ 2656 postfork = 1; /* must be in line with ev_default_fork */
1665} 2657}
1666 2658
1667/*****************************************************************************/ 2659/*****************************************************************************/
1668 2660
1669void 2661void
1670ev_invoke (EV_P_ void *w, int revents) 2662ev_invoke (EV_P_ void *w, int revents)
1671{ 2663{
1672 EV_CB_INVOKE ((W)w, revents); 2664 EV_CB_INVOKE ((W)w, revents);
1673} 2665}
1674 2666
1675void inline_speed 2667unsigned int
1676call_pending (EV_P) 2668ev_pending_count (EV_P) EV_THROW
2669{
2670 int pri;
2671 unsigned int count = 0;
2672
2673 for (pri = NUMPRI; pri--; )
2674 count += pendingcnt [pri];
2675
2676 return count;
2677}
2678
2679void noinline
2680ev_invoke_pending (EV_P)
1677{ 2681{
1678 int pri; 2682 int pri;
1679 2683
1680 for (pri = NUMPRI; pri--; ) 2684 for (pri = NUMPRI; pri--; )
1681 while (pendingcnt [pri]) 2685 while (pendingcnt [pri])
1682 { 2686 {
1683 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2687 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1684 2688
1685 if (expect_true (p->w))
1686 {
1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1688
1689 p->w->pending = 0; 2689 p->w->pending = 0;
1690 EV_CB_INVOKE (p->w, p->events); 2690 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK; 2691 EV_FREQUENT_CHECK;
1692 }
1693 } 2692 }
1694} 2693}
1695 2694
1696#if EV_IDLE_ENABLE 2695#if EV_IDLE_ENABLE
1697void inline_size 2696/* make idle watchers pending. this handles the "call-idle */
2697/* only when higher priorities are idle" logic */
2698inline_size void
1698idle_reify (EV_P) 2699idle_reify (EV_P)
1699{ 2700{
1700 if (expect_false (idleall)) 2701 if (expect_false (idleall))
1701 { 2702 {
1702 int pri; 2703 int pri;
1714 } 2715 }
1715 } 2716 }
1716} 2717}
1717#endif 2718#endif
1718 2719
1719void inline_size 2720/* make timers pending */
2721inline_size void
1720timers_reify (EV_P) 2722timers_reify (EV_P)
1721{ 2723{
1722 EV_FREQUENT_CHECK; 2724 EV_FREQUENT_CHECK;
1723 2725
1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2726 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1725 { 2727 {
1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2728 do
1727
1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1729
1730 /* first reschedule or stop timer */
1731 if (w->repeat)
1732 { 2729 {
2730 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2731
2732 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2733
2734 /* first reschedule or stop timer */
2735 if (w->repeat)
2736 {
1733 ev_at (w) += w->repeat; 2737 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now) 2738 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now; 2739 ev_at (w) = mn_now;
1736 2740
1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2741 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1738 2742
1739 ANHE_at_cache (timers [HEAP0]); 2743 ANHE_at_cache (timers [HEAP0]);
1740 downheap (timers, timercnt, HEAP0); 2744 downheap (timers, timercnt, HEAP0);
2745 }
2746 else
2747 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2748
2749 EV_FREQUENT_CHECK;
2750 feed_reverse (EV_A_ (W)w);
1741 } 2751 }
1742 else 2752 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1744 2753
1745 EV_FREQUENT_CHECK; 2754 feed_reverse_done (EV_A_ EV_TIMER);
1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1747 } 2755 }
1748} 2756}
1749 2757
1750#if EV_PERIODIC_ENABLE 2758#if EV_PERIODIC_ENABLE
1751void inline_size 2759
2760static void noinline
2761periodic_recalc (EV_P_ ev_periodic *w)
2762{
2763 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2764 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2765
2766 /* the above almost always errs on the low side */
2767 while (at <= ev_rt_now)
2768 {
2769 ev_tstamp nat = at + w->interval;
2770
2771 /* when resolution fails us, we use ev_rt_now */
2772 if (expect_false (nat == at))
2773 {
2774 at = ev_rt_now;
2775 break;
2776 }
2777
2778 at = nat;
2779 }
2780
2781 ev_at (w) = at;
2782}
2783
2784/* make periodics pending */
2785inline_size void
1752periodics_reify (EV_P) 2786periodics_reify (EV_P)
1753{ 2787{
1754 EV_FREQUENT_CHECK; 2788 EV_FREQUENT_CHECK;
1755 2789
1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2790 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1757 { 2791 {
1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2792 int feed_count = 0;
1759 2793
1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2794 do
1761
1762 /* first reschedule or stop timer */
1763 if (w->reschedule_cb)
1764 { 2795 {
2796 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2797
2798 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2799
2800 /* first reschedule or stop timer */
2801 if (w->reschedule_cb)
2802 {
1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2803 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1766 2804
1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2805 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768 2806
1769 ANHE_at_cache (periodics [HEAP0]); 2807 ANHE_at_cache (periodics [HEAP0]);
1770 downheap (periodics, periodiccnt, HEAP0); 2808 downheap (periodics, periodiccnt, HEAP0);
2809 }
2810 else if (w->interval)
2811 {
2812 periodic_recalc (EV_A_ w);
2813 ANHE_at_cache (periodics [HEAP0]);
2814 downheap (periodics, periodiccnt, HEAP0);
2815 }
2816 else
2817 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2818
2819 EV_FREQUENT_CHECK;
2820 feed_reverse (EV_A_ (W)w);
1771 } 2821 }
1772 else if (w->interval) 2822 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1773 {
1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780 2823
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1789 downheap (periodics, periodiccnt, HEAP0);
1790 }
1791 else
1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1793
1794 EV_FREQUENT_CHECK;
1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2824 feed_reverse_done (EV_A_ EV_PERIODIC);
1796 } 2825 }
1797} 2826}
1798 2827
2828/* simply recalculate all periodics */
2829/* TODO: maybe ensure that at least one event happens when jumping forward? */
1799static void noinline 2830static void noinline ecb_cold
1800periodics_reschedule (EV_P) 2831periodics_reschedule (EV_P)
1801{ 2832{
1802 int i; 2833 int i;
1803 2834
1804 /* adjust periodics after time jump */ 2835 /* adjust periodics after time jump */
1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2838 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1808 2839
1809 if (w->reschedule_cb) 2840 if (w->reschedule_cb)
1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1811 else if (w->interval) 2842 else if (w->interval)
1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2843 periodic_recalc (EV_A_ w);
1813 2844
1814 ANHE_at_cache (periodics [i]); 2845 ANHE_at_cache (periodics [i]);
1815 } 2846 }
1816 2847
1817 reheap (periodics, periodiccnt); 2848 reheap (periodics, periodiccnt);
1818} 2849}
1819#endif 2850#endif
1820 2851
1821void inline_speed 2852/* adjust all timers by a given offset */
2853static void noinline ecb_cold
2854timers_reschedule (EV_P_ ev_tstamp adjust)
2855{
2856 int i;
2857
2858 for (i = 0; i < timercnt; ++i)
2859 {
2860 ANHE *he = timers + i + HEAP0;
2861 ANHE_w (*he)->at += adjust;
2862 ANHE_at_cache (*he);
2863 }
2864}
2865
2866/* fetch new monotonic and realtime times from the kernel */
2867/* also detect if there was a timejump, and act accordingly */
2868inline_speed void
1822time_update (EV_P_ ev_tstamp max_block) 2869time_update (EV_P_ ev_tstamp max_block)
1823{ 2870{
1824 int i;
1825
1826#if EV_USE_MONOTONIC 2871#if EV_USE_MONOTONIC
1827 if (expect_true (have_monotonic)) 2872 if (expect_true (have_monotonic))
1828 { 2873 {
2874 int i;
1829 ev_tstamp odiff = rtmn_diff; 2875 ev_tstamp odiff = rtmn_diff;
1830 2876
1831 mn_now = get_clock (); 2877 mn_now = get_clock ();
1832 2878
1833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2879 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 * doesn't hurt either as we only do this on time-jumps or 2895 * doesn't hurt either as we only do this on time-jumps or
1850 * in the unlikely event of having been preempted here. 2896 * in the unlikely event of having been preempted here.
1851 */ 2897 */
1852 for (i = 4; --i; ) 2898 for (i = 4; --i; )
1853 { 2899 {
2900 ev_tstamp diff;
1854 rtmn_diff = ev_rt_now - mn_now; 2901 rtmn_diff = ev_rt_now - mn_now;
1855 2902
2903 diff = odiff - rtmn_diff;
2904
1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2905 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1857 return; /* all is well */ 2906 return; /* all is well */
1858 2907
1859 ev_rt_now = ev_time (); 2908 ev_rt_now = ev_time ();
1860 mn_now = get_clock (); 2909 mn_now = get_clock ();
1861 now_floor = mn_now; 2910 now_floor = mn_now;
1862 } 2911 }
1863 2912
2913 /* no timer adjustment, as the monotonic clock doesn't jump */
2914 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1864# if EV_PERIODIC_ENABLE 2915# if EV_PERIODIC_ENABLE
1865 periodics_reschedule (EV_A); 2916 periodics_reschedule (EV_A);
1866# endif 2917# endif
1867 /* no timer adjustment, as the monotonic clock doesn't jump */
1868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869 } 2918 }
1870 else 2919 else
1871#endif 2920#endif
1872 { 2921 {
1873 ev_rt_now = ev_time (); 2922 ev_rt_now = ev_time ();
1874 2923
1875 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2924 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1876 { 2925 {
2926 /* adjust timers. this is easy, as the offset is the same for all of them */
2927 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1877#if EV_PERIODIC_ENABLE 2928#if EV_PERIODIC_ENABLE
1878 periodics_reschedule (EV_A); 2929 periodics_reschedule (EV_A);
1879#endif 2930#endif
1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1881 for (i = 0; i < timercnt; ++i)
1882 {
1883 ANHE *he = timers + i + HEAP0;
1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
1885 ANHE_at_cache (*he);
1886 }
1887 } 2931 }
1888 2932
1889 mn_now = ev_rt_now; 2933 mn_now = ev_rt_now;
1890 } 2934 }
1891} 2935}
1892 2936
1893void 2937int
1894ev_ref (EV_P)
1895{
1896 ++activecnt;
1897}
1898
1899void
1900ev_unref (EV_P)
1901{
1902 --activecnt;
1903}
1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1911static int loop_done;
1912
1913void
1914ev_loop (EV_P_ int flags) 2938ev_run (EV_P_ int flags)
1915{ 2939{
2940#if EV_FEATURE_API
2941 ++loop_depth;
2942#endif
2943
2944 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2945
1916 loop_done = EVUNLOOP_CANCEL; 2946 loop_done = EVBREAK_CANCEL;
1917 2947
1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2948 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1919 2949
1920 do 2950 do
1921 { 2951 {
1922#if EV_VERIFY >= 2 2952#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A); 2953 ev_verify (EV_A);
1924#endif 2954#endif
1925 2955
1926#ifndef _WIN32 2956#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */ 2957 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid)) 2958 if (expect_false (getpid () != curpid))
1936 /* we might have forked, so queue fork handlers */ 2966 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork)) 2967 if (expect_false (postfork))
1938 if (forkcnt) 2968 if (forkcnt)
1939 { 2969 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A); 2971 EV_INVOKE_PENDING;
1942 } 2972 }
1943#endif 2973#endif
1944 2974
2975#if EV_PREPARE_ENABLE
1945 /* queue prepare watchers (and execute them) */ 2976 /* queue prepare watchers (and execute them) */
1946 if (expect_false (preparecnt)) 2977 if (expect_false (preparecnt))
1947 { 2978 {
1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1949 call_pending (EV_A); 2980 EV_INVOKE_PENDING;
1950 } 2981 }
2982#endif
1951 2983
1952 if (expect_false (!activecnt)) 2984 if (expect_false (loop_done))
1953 break; 2985 break;
1954 2986
1955 /* we might have forked, so reify kernel state if necessary */ 2987 /* we might have forked, so reify kernel state if necessary */
1956 if (expect_false (postfork)) 2988 if (expect_false (postfork))
1957 loop_fork (EV_A); 2989 loop_fork (EV_A);
1962 /* calculate blocking time */ 2994 /* calculate blocking time */
1963 { 2995 {
1964 ev_tstamp waittime = 0.; 2996 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.; 2997 ev_tstamp sleeptime = 0.;
1966 2998
2999 /* remember old timestamp for io_blocktime calculation */
3000 ev_tstamp prev_mn_now = mn_now;
3001
3002 /* update time to cancel out callback processing overhead */
3003 time_update (EV_A_ 1e100);
3004
3005 /* from now on, we want a pipe-wake-up */
3006 pipe_write_wanted = 1;
3007
3008 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3009
1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3010 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1968 { 3011 {
1969 /* update time to cancel out callback processing overhead */
1970 time_update (EV_A_ 1e100);
1971
1972 waittime = MAX_BLOCKTIME; 3012 waittime = MAX_BLOCKTIME;
1973 3013
1974 if (timercnt) 3014 if (timercnt)
1975 { 3015 {
1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3016 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1977 if (waittime > to) waittime = to; 3017 if (waittime > to) waittime = to;
1978 } 3018 }
1979 3019
1980#if EV_PERIODIC_ENABLE 3020#if EV_PERIODIC_ENABLE
1981 if (periodiccnt) 3021 if (periodiccnt)
1982 { 3022 {
1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3023 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1984 if (waittime > to) waittime = to; 3024 if (waittime > to) waittime = to;
1985 } 3025 }
1986#endif 3026#endif
1987 3027
3028 /* don't let timeouts decrease the waittime below timeout_blocktime */
1988 if (expect_false (waittime < timeout_blocktime)) 3029 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime; 3030 waittime = timeout_blocktime;
1990 3031
1991 sleeptime = waittime - backend_fudge; 3032 /* at this point, we NEED to wait, so we have to ensure */
3033 /* to pass a minimum nonzero value to the backend */
3034 if (expect_false (waittime < backend_mintime))
3035 waittime = backend_mintime;
1992 3036
3037 /* extra check because io_blocktime is commonly 0 */
1993 if (expect_true (sleeptime > io_blocktime)) 3038 if (expect_false (io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 { 3039 {
3040 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3041
3042 if (sleeptime > waittime - backend_mintime)
3043 sleeptime = waittime - backend_mintime;
3044
3045 if (expect_true (sleeptime > 0.))
3046 {
1998 ev_sleep (sleeptime); 3047 ev_sleep (sleeptime);
1999 waittime -= sleeptime; 3048 waittime -= sleeptime;
3049 }
2000 } 3050 }
2001 } 3051 }
2002 3052
3053#if EV_FEATURE_API
2003 ++loop_count; 3054 ++loop_count;
3055#endif
3056 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2004 backend_poll (EV_A_ waittime); 3057 backend_poll (EV_A_ waittime);
3058 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3059
3060 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3061
3062 if (pipe_write_skipped)
3063 {
3064 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3065 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3066 }
3067
2005 3068
2006 /* update ev_rt_now, do magic */ 3069 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime); 3070 time_update (EV_A_ waittime + sleeptime);
2008 } 3071 }
2009 3072
2016#if EV_IDLE_ENABLE 3079#if EV_IDLE_ENABLE
2017 /* queue idle watchers unless other events are pending */ 3080 /* queue idle watchers unless other events are pending */
2018 idle_reify (EV_A); 3081 idle_reify (EV_A);
2019#endif 3082#endif
2020 3083
3084#if EV_CHECK_ENABLE
2021 /* queue check watchers, to be executed first */ 3085 /* queue check watchers, to be executed first */
2022 if (expect_false (checkcnt)) 3086 if (expect_false (checkcnt))
2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3087 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3088#endif
2024 3089
2025 call_pending (EV_A); 3090 EV_INVOKE_PENDING;
2026 } 3091 }
2027 while (expect_true ( 3092 while (expect_true (
2028 activecnt 3093 activecnt
2029 && !loop_done 3094 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3095 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2031 )); 3096 ));
2032 3097
2033 if (loop_done == EVUNLOOP_ONE) 3098 if (loop_done == EVBREAK_ONE)
2034 loop_done = EVUNLOOP_CANCEL; 3099 loop_done = EVBREAK_CANCEL;
3100
3101#if EV_FEATURE_API
3102 --loop_depth;
3103#endif
3104
3105 return activecnt;
2035} 3106}
2036 3107
2037void 3108void
2038ev_unloop (EV_P_ int how) 3109ev_break (EV_P_ int how) EV_THROW
2039{ 3110{
2040 loop_done = how; 3111 loop_done = how;
2041} 3112}
2042 3113
3114void
3115ev_ref (EV_P) EV_THROW
3116{
3117 ++activecnt;
3118}
3119
3120void
3121ev_unref (EV_P) EV_THROW
3122{
3123 --activecnt;
3124}
3125
3126void
3127ev_now_update (EV_P) EV_THROW
3128{
3129 time_update (EV_A_ 1e100);
3130}
3131
3132void
3133ev_suspend (EV_P) EV_THROW
3134{
3135 ev_now_update (EV_A);
3136}
3137
3138void
3139ev_resume (EV_P) EV_THROW
3140{
3141 ev_tstamp mn_prev = mn_now;
3142
3143 ev_now_update (EV_A);
3144 timers_reschedule (EV_A_ mn_now - mn_prev);
3145#if EV_PERIODIC_ENABLE
3146 /* TODO: really do this? */
3147 periodics_reschedule (EV_A);
3148#endif
3149}
3150
2043/*****************************************************************************/ 3151/*****************************************************************************/
3152/* singly-linked list management, used when the expected list length is short */
2044 3153
2045void inline_size 3154inline_size void
2046wlist_add (WL *head, WL elem) 3155wlist_add (WL *head, WL elem)
2047{ 3156{
2048 elem->next = *head; 3157 elem->next = *head;
2049 *head = elem; 3158 *head = elem;
2050} 3159}
2051 3160
2052void inline_size 3161inline_size void
2053wlist_del (WL *head, WL elem) 3162wlist_del (WL *head, WL elem)
2054{ 3163{
2055 while (*head) 3164 while (*head)
2056 { 3165 {
2057 if (*head == elem) 3166 if (expect_true (*head == elem))
2058 { 3167 {
2059 *head = elem->next; 3168 *head = elem->next;
2060 return; 3169 break;
2061 } 3170 }
2062 3171
2063 head = &(*head)->next; 3172 head = &(*head)->next;
2064 } 3173 }
2065} 3174}
2066 3175
2067void inline_speed 3176/* internal, faster, version of ev_clear_pending */
3177inline_speed void
2068clear_pending (EV_P_ W w) 3178clear_pending (EV_P_ W w)
2069{ 3179{
2070 if (w->pending) 3180 if (w->pending)
2071 { 3181 {
2072 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3182 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2073 w->pending = 0; 3183 w->pending = 0;
2074 } 3184 }
2075} 3185}
2076 3186
2077int 3187int
2078ev_clear_pending (EV_P_ void *w) 3188ev_clear_pending (EV_P_ void *w) EV_THROW
2079{ 3189{
2080 W w_ = (W)w; 3190 W w_ = (W)w;
2081 int pending = w_->pending; 3191 int pending = w_->pending;
2082 3192
2083 if (expect_true (pending)) 3193 if (expect_true (pending))
2084 { 3194 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3195 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3196 p->w = (W)&pending_w;
2086 w_->pending = 0; 3197 w_->pending = 0;
2087 p->w = 0;
2088 return p->events; 3198 return p->events;
2089 } 3199 }
2090 else 3200 else
2091 return 0; 3201 return 0;
2092} 3202}
2093 3203
2094void inline_size 3204inline_size void
2095pri_adjust (EV_P_ W w) 3205pri_adjust (EV_P_ W w)
2096{ 3206{
2097 int pri = w->priority; 3207 int pri = ev_priority (w);
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3208 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3209 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri; 3210 ev_set_priority (w, pri);
2101} 3211}
2102 3212
2103void inline_speed 3213inline_speed void
2104ev_start (EV_P_ W w, int active) 3214ev_start (EV_P_ W w, int active)
2105{ 3215{
2106 pri_adjust (EV_A_ w); 3216 pri_adjust (EV_A_ w);
2107 w->active = active; 3217 w->active = active;
2108 ev_ref (EV_A); 3218 ev_ref (EV_A);
2109} 3219}
2110 3220
2111void inline_size 3221inline_size void
2112ev_stop (EV_P_ W w) 3222ev_stop (EV_P_ W w)
2113{ 3223{
2114 ev_unref (EV_A); 3224 ev_unref (EV_A);
2115 w->active = 0; 3225 w->active = 0;
2116} 3226}
2117 3227
2118/*****************************************************************************/ 3228/*****************************************************************************/
2119 3229
2120void noinline 3230void noinline
2121ev_io_start (EV_P_ ev_io *w) 3231ev_io_start (EV_P_ ev_io *w) EV_THROW
2122{ 3232{
2123 int fd = w->fd; 3233 int fd = w->fd;
2124 3234
2125 if (expect_false (ev_is_active (w))) 3235 if (expect_false (ev_is_active (w)))
2126 return; 3236 return;
2127 3237
2128 assert (("ev_io_start called with negative fd", fd >= 0)); 3238 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3239 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2130 3240
2131 EV_FREQUENT_CHECK; 3241 EV_FREQUENT_CHECK;
2132 3242
2133 ev_start (EV_A_ (W)w, 1); 3243 ev_start (EV_A_ (W)w, 1);
2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3244 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2135 wlist_add (&anfds[fd].head, (WL)w); 3245 wlist_add (&anfds[fd].head, (WL)w);
2136 3246
2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3247 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2138 w->events &= ~EV_IOFDSET; 3248 w->events &= ~EV__IOFDSET;
2139 3249
2140 EV_FREQUENT_CHECK; 3250 EV_FREQUENT_CHECK;
2141} 3251}
2142 3252
2143void noinline 3253void noinline
2144ev_io_stop (EV_P_ ev_io *w) 3254ev_io_stop (EV_P_ ev_io *w) EV_THROW
2145{ 3255{
2146 clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
2147 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
2148 return; 3258 return;
2149 3259
2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3260 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2151 3261
2152 EV_FREQUENT_CHECK; 3262 EV_FREQUENT_CHECK;
2153 3263
2154 wlist_del (&anfds[w->fd].head, (WL)w); 3264 wlist_del (&anfds[w->fd].head, (WL)w);
2155 ev_stop (EV_A_ (W)w); 3265 ev_stop (EV_A_ (W)w);
2156 3266
2157 fd_change (EV_A_ w->fd, 1); 3267 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2158 3268
2159 EV_FREQUENT_CHECK; 3269 EV_FREQUENT_CHECK;
2160} 3270}
2161 3271
2162void noinline 3272void noinline
2163ev_timer_start (EV_P_ ev_timer *w) 3273ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2164{ 3274{
2165 if (expect_false (ev_is_active (w))) 3275 if (expect_false (ev_is_active (w)))
2166 return; 3276 return;
2167 3277
2168 ev_at (w) += mn_now; 3278 ev_at (w) += mn_now;
2169 3279
2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3280 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2171 3281
2172 EV_FREQUENT_CHECK; 3282 EV_FREQUENT_CHECK;
2173 3283
2174 ++timercnt; 3284 ++timercnt;
2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3285 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2178 ANHE_at_cache (timers [ev_active (w)]); 3288 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w)); 3289 upheap (timers, ev_active (w));
2180 3290
2181 EV_FREQUENT_CHECK; 3291 EV_FREQUENT_CHECK;
2182 3292
2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3293 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2184} 3294}
2185 3295
2186void noinline 3296void noinline
2187ev_timer_stop (EV_P_ ev_timer *w) 3297ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2188{ 3298{
2189 clear_pending (EV_A_ (W)w); 3299 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 3300 if (expect_false (!ev_is_active (w)))
2191 return; 3301 return;
2192 3302
2193 EV_FREQUENT_CHECK; 3303 EV_FREQUENT_CHECK;
2194 3304
2195 { 3305 {
2196 int active = ev_active (w); 3306 int active = ev_active (w);
2197 3307
2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3308 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2199 3309
2200 --timercnt; 3310 --timercnt;
2201 3311
2202 if (expect_true (active < timercnt + HEAP0)) 3312 if (expect_true (active < timercnt + HEAP0))
2203 { 3313 {
2204 timers [active] = timers [timercnt + HEAP0]; 3314 timers [active] = timers [timercnt + HEAP0];
2205 adjustheap (timers, timercnt, active); 3315 adjustheap (timers, timercnt, active);
2206 } 3316 }
2207 } 3317 }
2208 3318
2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now; 3319 ev_at (w) -= mn_now;
2212 3320
2213 ev_stop (EV_A_ (W)w); 3321 ev_stop (EV_A_ (W)w);
3322
3323 EV_FREQUENT_CHECK;
2214} 3324}
2215 3325
2216void noinline 3326void noinline
2217ev_timer_again (EV_P_ ev_timer *w) 3327ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2218{ 3328{
2219 EV_FREQUENT_CHECK; 3329 EV_FREQUENT_CHECK;
3330
3331 clear_pending (EV_A_ (W)w);
2220 3332
2221 if (ev_is_active (w)) 3333 if (ev_is_active (w))
2222 { 3334 {
2223 if (w->repeat) 3335 if (w->repeat)
2224 { 3336 {
2236 } 3348 }
2237 3349
2238 EV_FREQUENT_CHECK; 3350 EV_FREQUENT_CHECK;
2239} 3351}
2240 3352
3353ev_tstamp
3354ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3355{
3356 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3357}
3358
2241#if EV_PERIODIC_ENABLE 3359#if EV_PERIODIC_ENABLE
2242void noinline 3360void noinline
2243ev_periodic_start (EV_P_ ev_periodic *w) 3361ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2244{ 3362{
2245 if (expect_false (ev_is_active (w))) 3363 if (expect_false (ev_is_active (w)))
2246 return; 3364 return;
2247 3365
2248 if (w->reschedule_cb) 3366 if (w->reschedule_cb)
2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3367 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2250 else if (w->interval) 3368 else if (w->interval)
2251 { 3369 {
2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3370 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2253 /* this formula differs from the one in periodic_reify because we do not always round up */ 3371 periodic_recalc (EV_A_ w);
2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2255 } 3372 }
2256 else 3373 else
2257 ev_at (w) = w->offset; 3374 ev_at (w) = w->offset;
2258 3375
2259 EV_FREQUENT_CHECK; 3376 EV_FREQUENT_CHECK;
2265 ANHE_at_cache (periodics [ev_active (w)]); 3382 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w)); 3383 upheap (periodics, ev_active (w));
2267 3384
2268 EV_FREQUENT_CHECK; 3385 EV_FREQUENT_CHECK;
2269 3386
2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3387 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2271} 3388}
2272 3389
2273void noinline 3390void noinline
2274ev_periodic_stop (EV_P_ ev_periodic *w) 3391ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2275{ 3392{
2276 clear_pending (EV_A_ (W)w); 3393 clear_pending (EV_A_ (W)w);
2277 if (expect_false (!ev_is_active (w))) 3394 if (expect_false (!ev_is_active (w)))
2278 return; 3395 return;
2279 3396
2280 EV_FREQUENT_CHECK; 3397 EV_FREQUENT_CHECK;
2281 3398
2282 { 3399 {
2283 int active = ev_active (w); 3400 int active = ev_active (w);
2284 3401
2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3402 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2286 3403
2287 --periodiccnt; 3404 --periodiccnt;
2288 3405
2289 if (expect_true (active < periodiccnt + HEAP0)) 3406 if (expect_true (active < periodiccnt + HEAP0))
2290 { 3407 {
2291 periodics [active] = periodics [periodiccnt + HEAP0]; 3408 periodics [active] = periodics [periodiccnt + HEAP0];
2292 adjustheap (periodics, periodiccnt, active); 3409 adjustheap (periodics, periodiccnt, active);
2293 } 3410 }
2294 } 3411 }
2295 3412
2296 EV_FREQUENT_CHECK;
2297
2298 ev_stop (EV_A_ (W)w); 3413 ev_stop (EV_A_ (W)w);
3414
3415 EV_FREQUENT_CHECK;
2299} 3416}
2300 3417
2301void noinline 3418void noinline
2302ev_periodic_again (EV_P_ ev_periodic *w) 3419ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2303{ 3420{
2304 /* TODO: use adjustheap and recalculation */ 3421 /* TODO: use adjustheap and recalculation */
2305 ev_periodic_stop (EV_A_ w); 3422 ev_periodic_stop (EV_A_ w);
2306 ev_periodic_start (EV_A_ w); 3423 ev_periodic_start (EV_A_ w);
2307} 3424}
2309 3426
2310#ifndef SA_RESTART 3427#ifndef SA_RESTART
2311# define SA_RESTART 0 3428# define SA_RESTART 0
2312#endif 3429#endif
2313 3430
3431#if EV_SIGNAL_ENABLE
3432
2314void noinline 3433void noinline
2315ev_signal_start (EV_P_ ev_signal *w) 3434ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2316{ 3435{
2317#if EV_MULTIPLICITY
2318 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2319#endif
2320 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2321 return; 3437 return;
2322 3438
2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3439 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2324 3440
2325 evpipe_init (EV_A); 3441#if EV_MULTIPLICITY
3442 assert (("libev: a signal must not be attached to two different loops",
3443 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2326 3444
2327 EV_FREQUENT_CHECK; 3445 signals [w->signum - 1].loop = EV_A;
3446#endif
2328 3447
3448 EV_FREQUENT_CHECK;
3449
3450#if EV_USE_SIGNALFD
3451 if (sigfd == -2)
2329 { 3452 {
2330#ifndef _WIN32 3453 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2331 sigset_t full, prev; 3454 if (sigfd < 0 && errno == EINVAL)
2332 sigfillset (&full); 3455 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2333 sigprocmask (SIG_SETMASK, &full, &prev);
2334#endif
2335 3456
2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3457 if (sigfd >= 0)
3458 {
3459 fd_intern (sigfd); /* doing it twice will not hurt */
2337 3460
2338#ifndef _WIN32 3461 sigemptyset (&sigfd_set);
2339 sigprocmask (SIG_SETMASK, &prev, 0); 3462
2340#endif 3463 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3464 ev_set_priority (&sigfd_w, EV_MAXPRI);
3465 ev_io_start (EV_A_ &sigfd_w);
3466 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3467 }
2341 } 3468 }
3469
3470 if (sigfd >= 0)
3471 {
3472 /* TODO: check .head */
3473 sigaddset (&sigfd_set, w->signum);
3474 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3475
3476 signalfd (sigfd, &sigfd_set, 0);
3477 }
3478#endif
2342 3479
2343 ev_start (EV_A_ (W)w, 1); 3480 ev_start (EV_A_ (W)w, 1);
2344 wlist_add (&signals [w->signum - 1].head, (WL)w); 3481 wlist_add (&signals [w->signum - 1].head, (WL)w);
2345 3482
2346 if (!((WL)w)->next) 3483 if (!((WL)w)->next)
3484# if EV_USE_SIGNALFD
3485 if (sigfd < 0) /*TODO*/
3486# endif
2347 { 3487 {
2348#if _WIN32 3488# ifdef _WIN32
3489 evpipe_init (EV_A);
3490
2349 signal (w->signum, ev_sighandler); 3491 signal (w->signum, ev_sighandler);
2350#else 3492# else
2351 struct sigaction sa; 3493 struct sigaction sa;
3494
3495 evpipe_init (EV_A);
3496
2352 sa.sa_handler = ev_sighandler; 3497 sa.sa_handler = ev_sighandler;
2353 sigfillset (&sa.sa_mask); 3498 sigfillset (&sa.sa_mask);
2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3499 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2355 sigaction (w->signum, &sa, 0); 3500 sigaction (w->signum, &sa, 0);
3501
3502 if (origflags & EVFLAG_NOSIGMASK)
3503 {
3504 sigemptyset (&sa.sa_mask);
3505 sigaddset (&sa.sa_mask, w->signum);
3506 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3507 }
2356#endif 3508#endif
2357 } 3509 }
2358 3510
2359 EV_FREQUENT_CHECK; 3511 EV_FREQUENT_CHECK;
2360} 3512}
2361 3513
2362void noinline 3514void noinline
2363ev_signal_stop (EV_P_ ev_signal *w) 3515ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2364{ 3516{
2365 clear_pending (EV_A_ (W)w); 3517 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3518 if (expect_false (!ev_is_active (w)))
2367 return; 3519 return;
2368 3520
2370 3522
2371 wlist_del (&signals [w->signum - 1].head, (WL)w); 3523 wlist_del (&signals [w->signum - 1].head, (WL)w);
2372 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
2373 3525
2374 if (!signals [w->signum - 1].head) 3526 if (!signals [w->signum - 1].head)
3527 {
3528#if EV_MULTIPLICITY
3529 signals [w->signum - 1].loop = 0; /* unattach from signal */
3530#endif
3531#if EV_USE_SIGNALFD
3532 if (sigfd >= 0)
3533 {
3534 sigset_t ss;
3535
3536 sigemptyset (&ss);
3537 sigaddset (&ss, w->signum);
3538 sigdelset (&sigfd_set, w->signum);
3539
3540 signalfd (sigfd, &sigfd_set, 0);
3541 sigprocmask (SIG_UNBLOCK, &ss, 0);
3542 }
3543 else
3544#endif
2375 signal (w->signum, SIG_DFL); 3545 signal (w->signum, SIG_DFL);
3546 }
2376 3547
2377 EV_FREQUENT_CHECK; 3548 EV_FREQUENT_CHECK;
2378} 3549}
3550
3551#endif
3552
3553#if EV_CHILD_ENABLE
2379 3554
2380void 3555void
2381ev_child_start (EV_P_ ev_child *w) 3556ev_child_start (EV_P_ ev_child *w) EV_THROW
2382{ 3557{
2383#if EV_MULTIPLICITY 3558#if EV_MULTIPLICITY
2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3559 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2385#endif 3560#endif
2386 if (expect_false (ev_is_active (w))) 3561 if (expect_false (ev_is_active (w)))
2387 return; 3562 return;
2388 3563
2389 EV_FREQUENT_CHECK; 3564 EV_FREQUENT_CHECK;
2390 3565
2391 ev_start (EV_A_ (W)w, 1); 3566 ev_start (EV_A_ (W)w, 1);
2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3567 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2393 3568
2394 EV_FREQUENT_CHECK; 3569 EV_FREQUENT_CHECK;
2395} 3570}
2396 3571
2397void 3572void
2398ev_child_stop (EV_P_ ev_child *w) 3573ev_child_stop (EV_P_ ev_child *w) EV_THROW
2399{ 3574{
2400 clear_pending (EV_A_ (W)w); 3575 clear_pending (EV_A_ (W)w);
2401 if (expect_false (!ev_is_active (w))) 3576 if (expect_false (!ev_is_active (w)))
2402 return; 3577 return;
2403 3578
2404 EV_FREQUENT_CHECK; 3579 EV_FREQUENT_CHECK;
2405 3580
2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3581 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 ev_stop (EV_A_ (W)w); 3582 ev_stop (EV_A_ (W)w);
2408 3583
2409 EV_FREQUENT_CHECK; 3584 EV_FREQUENT_CHECK;
2410} 3585}
3586
3587#endif
2411 3588
2412#if EV_STAT_ENABLE 3589#if EV_STAT_ENABLE
2413 3590
2414# ifdef _WIN32 3591# ifdef _WIN32
2415# undef lstat 3592# undef lstat
2416# define lstat(a,b) _stati64 (a,b) 3593# define lstat(a,b) _stati64 (a,b)
2417# endif 3594# endif
2418 3595
2419#define DEF_STAT_INTERVAL 5.0074891 3596#define DEF_STAT_INTERVAL 5.0074891
3597#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2420#define MIN_STAT_INTERVAL 0.1074891 3598#define MIN_STAT_INTERVAL 0.1074891
2421 3599
2422static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3600static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2423 3601
2424#if EV_USE_INOTIFY 3602#if EV_USE_INOTIFY
2425# define EV_INOTIFY_BUFSIZE 8192 3603
3604/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3605# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2426 3606
2427static void noinline 3607static void noinline
2428infy_add (EV_P_ ev_stat *w) 3608infy_add (EV_P_ ev_stat *w)
2429{ 3609{
2430 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3610 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2431 3611
2432 if (w->wd < 0) 3612 if (w->wd >= 0)
3613 {
3614 struct statfs sfs;
3615
3616 /* now local changes will be tracked by inotify, but remote changes won't */
3617 /* unless the filesystem is known to be local, we therefore still poll */
3618 /* also do poll on <2.6.25, but with normal frequency */
3619
3620 if (!fs_2625)
3621 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3622 else if (!statfs (w->path, &sfs)
3623 && (sfs.f_type == 0x1373 /* devfs */
3624 || sfs.f_type == 0xEF53 /* ext2/3 */
3625 || sfs.f_type == 0x3153464a /* jfs */
3626 || sfs.f_type == 0x52654973 /* reiser3 */
3627 || sfs.f_type == 0x01021994 /* tempfs */
3628 || sfs.f_type == 0x58465342 /* xfs */))
3629 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3630 else
3631 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2433 { 3632 }
2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3633 else
3634 {
3635 /* can't use inotify, continue to stat */
3636 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2435 3637
2436 /* monitor some parent directory for speedup hints */ 3638 /* if path is not there, monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3639 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2438 /* but an efficiency issue only */ 3640 /* but an efficiency issue only */
2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3641 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2440 { 3642 {
2441 char path [4096]; 3643 char path [4096];
2446 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3648 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2447 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3649 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2448 3650
2449 char *pend = strrchr (path, '/'); 3651 char *pend = strrchr (path, '/');
2450 3652
2451 if (!pend) 3653 if (!pend || pend == path)
2452 break; /* whoops, no '/', complain to your admin */ 3654 break;
2453 3655
2454 *pend = 0; 3656 *pend = 0;
2455 w->wd = inotify_add_watch (fs_fd, path, mask); 3657 w->wd = inotify_add_watch (fs_fd, path, mask);
2456 } 3658 }
2457 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3659 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2458 } 3660 }
2459 } 3661 }
2460 else
2461 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2462 3662
2463 if (w->wd >= 0) 3663 if (w->wd >= 0)
2464 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3664 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3665
3666 /* now re-arm timer, if required */
3667 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3668 ev_timer_again (EV_A_ &w->timer);
3669 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2465} 3670}
2466 3671
2467static void noinline 3672static void noinline
2468infy_del (EV_P_ ev_stat *w) 3673infy_del (EV_P_ ev_stat *w)
2469{ 3674{
2472 3677
2473 if (wd < 0) 3678 if (wd < 0)
2474 return; 3679 return;
2475 3680
2476 w->wd = -2; 3681 w->wd = -2;
2477 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3682 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2478 wlist_del (&fs_hash [slot].head, (WL)w); 3683 wlist_del (&fs_hash [slot].head, (WL)w);
2479 3684
2480 /* remove this watcher, if others are watching it, they will rearm */ 3685 /* remove this watcher, if others are watching it, they will rearm */
2481 inotify_rm_watch (fs_fd, wd); 3686 inotify_rm_watch (fs_fd, wd);
2482} 3687}
2484static void noinline 3689static void noinline
2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3690infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2486{ 3691{
2487 if (slot < 0) 3692 if (slot < 0)
2488 /* overflow, need to check for all hash slots */ 3693 /* overflow, need to check for all hash slots */
2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3694 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2490 infy_wd (EV_A_ slot, wd, ev); 3695 infy_wd (EV_A_ slot, wd, ev);
2491 else 3696 else
2492 { 3697 {
2493 WL w_; 3698 WL w_;
2494 3699
2495 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3700 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2496 { 3701 {
2497 ev_stat *w = (ev_stat *)w_; 3702 ev_stat *w = (ev_stat *)w_;
2498 w_ = w_->next; /* lets us remove this watcher and all before it */ 3703 w_ = w_->next; /* lets us remove this watcher and all before it */
2499 3704
2500 if (w->wd == wd || wd == -1) 3705 if (w->wd == wd || wd == -1)
2501 { 3706 {
2502 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3707 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2503 { 3708 {
3709 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2504 w->wd = -1; 3710 w->wd = -1;
2505 infy_add (EV_A_ w); /* re-add, no matter what */ 3711 infy_add (EV_A_ w); /* re-add, no matter what */
2506 } 3712 }
2507 3713
2508 stat_timer_cb (EV_A_ &w->timer, 0); 3714 stat_timer_cb (EV_A_ &w->timer, 0);
2513 3719
2514static void 3720static void
2515infy_cb (EV_P_ ev_io *w, int revents) 3721infy_cb (EV_P_ ev_io *w, int revents)
2516{ 3722{
2517 char buf [EV_INOTIFY_BUFSIZE]; 3723 char buf [EV_INOTIFY_BUFSIZE];
2518 struct inotify_event *ev = (struct inotify_event *)buf;
2519 int ofs; 3724 int ofs;
2520 int len = read (fs_fd, buf, sizeof (buf)); 3725 int len = read (fs_fd, buf, sizeof (buf));
2521 3726
2522 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3727 for (ofs = 0; ofs < len; )
3728 {
3729 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2523 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3730 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3731 ofs += sizeof (struct inotify_event) + ev->len;
3732 }
2524} 3733}
2525 3734
2526void inline_size 3735inline_size void ecb_cold
2527infy_init (EV_P) 3736ev_check_2625 (EV_P)
2528{ 3737{
2529 if (fs_fd != -2)
2530 return;
2531
2532 /* kernels < 2.6.25 are borked 3738 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3739 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */ 3740 */
2535 { 3741 if (ev_linux_version () < 0x020619)
2536 struct utsname buf; 3742 return;
2537 int major, minor, micro;
2538 3743
3744 fs_2625 = 1;
3745}
3746
3747inline_size int
3748infy_newfd (void)
3749{
3750#if defined IN_CLOEXEC && defined IN_NONBLOCK
3751 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3752 if (fd >= 0)
3753 return fd;
3754#endif
3755 return inotify_init ();
3756}
3757
3758inline_size void
3759infy_init (EV_P)
3760{
3761 if (fs_fd != -2)
3762 return;
3763
2539 fs_fd = -1; 3764 fs_fd = -1;
2540 3765
2541 if (uname (&buf)) 3766 ev_check_2625 (EV_A);
2542 return;
2543 3767
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
2553 fs_fd = inotify_init (); 3768 fs_fd = infy_newfd ();
2554 3769
2555 if (fs_fd >= 0) 3770 if (fs_fd >= 0)
2556 { 3771 {
3772 fd_intern (fs_fd);
2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3773 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2558 ev_set_priority (&fs_w, EV_MAXPRI); 3774 ev_set_priority (&fs_w, EV_MAXPRI);
2559 ev_io_start (EV_A_ &fs_w); 3775 ev_io_start (EV_A_ &fs_w);
3776 ev_unref (EV_A);
2560 } 3777 }
2561} 3778}
2562 3779
2563void inline_size 3780inline_size void
2564infy_fork (EV_P) 3781infy_fork (EV_P)
2565{ 3782{
2566 int slot; 3783 int slot;
2567 3784
2568 if (fs_fd < 0) 3785 if (fs_fd < 0)
2569 return; 3786 return;
2570 3787
3788 ev_ref (EV_A);
3789 ev_io_stop (EV_A_ &fs_w);
2571 close (fs_fd); 3790 close (fs_fd);
2572 fs_fd = inotify_init (); 3791 fs_fd = infy_newfd ();
2573 3792
3793 if (fs_fd >= 0)
3794 {
3795 fd_intern (fs_fd);
3796 ev_io_set (&fs_w, fs_fd, EV_READ);
3797 ev_io_start (EV_A_ &fs_w);
3798 ev_unref (EV_A);
3799 }
3800
2574 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3801 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2575 { 3802 {
2576 WL w_ = fs_hash [slot].head; 3803 WL w_ = fs_hash [slot].head;
2577 fs_hash [slot].head = 0; 3804 fs_hash [slot].head = 0;
2578 3805
2579 while (w_) 3806 while (w_)
2584 w->wd = -1; 3811 w->wd = -1;
2585 3812
2586 if (fs_fd >= 0) 3813 if (fs_fd >= 0)
2587 infy_add (EV_A_ w); /* re-add, no matter what */ 3814 infy_add (EV_A_ w); /* re-add, no matter what */
2588 else 3815 else
3816 {
3817 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3818 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2589 ev_timer_start (EV_A_ &w->timer); 3819 ev_timer_again (EV_A_ &w->timer);
3820 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3821 }
2590 } 3822 }
2591 } 3823 }
2592} 3824}
2593 3825
2594#endif 3826#endif
2598#else 3830#else
2599# define EV_LSTAT(p,b) lstat (p, b) 3831# define EV_LSTAT(p,b) lstat (p, b)
2600#endif 3832#endif
2601 3833
2602void 3834void
2603ev_stat_stat (EV_P_ ev_stat *w) 3835ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2604{ 3836{
2605 if (lstat (w->path, &w->attr) < 0) 3837 if (lstat (w->path, &w->attr) < 0)
2606 w->attr.st_nlink = 0; 3838 w->attr.st_nlink = 0;
2607 else if (!w->attr.st_nlink) 3839 else if (!w->attr.st_nlink)
2608 w->attr.st_nlink = 1; 3840 w->attr.st_nlink = 1;
2611static void noinline 3843static void noinline
2612stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3844stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2613{ 3845{
2614 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3846 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2615 3847
2616 /* we copy this here each the time so that */ 3848 ev_statdata prev = w->attr;
2617 /* prev has the old value when the callback gets invoked */
2618 w->prev = w->attr;
2619 ev_stat_stat (EV_A_ w); 3849 ev_stat_stat (EV_A_ w);
2620 3850
2621 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3851 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2622 if ( 3852 if (
2623 w->prev.st_dev != w->attr.st_dev 3853 prev.st_dev != w->attr.st_dev
2624 || w->prev.st_ino != w->attr.st_ino 3854 || prev.st_ino != w->attr.st_ino
2625 || w->prev.st_mode != w->attr.st_mode 3855 || prev.st_mode != w->attr.st_mode
2626 || w->prev.st_nlink != w->attr.st_nlink 3856 || prev.st_nlink != w->attr.st_nlink
2627 || w->prev.st_uid != w->attr.st_uid 3857 || prev.st_uid != w->attr.st_uid
2628 || w->prev.st_gid != w->attr.st_gid 3858 || prev.st_gid != w->attr.st_gid
2629 || w->prev.st_rdev != w->attr.st_rdev 3859 || prev.st_rdev != w->attr.st_rdev
2630 || w->prev.st_size != w->attr.st_size 3860 || prev.st_size != w->attr.st_size
2631 || w->prev.st_atime != w->attr.st_atime 3861 || prev.st_atime != w->attr.st_atime
2632 || w->prev.st_mtime != w->attr.st_mtime 3862 || prev.st_mtime != w->attr.st_mtime
2633 || w->prev.st_ctime != w->attr.st_ctime 3863 || prev.st_ctime != w->attr.st_ctime
2634 ) { 3864 ) {
3865 /* we only update w->prev on actual differences */
3866 /* in case we test more often than invoke the callback, */
3867 /* to ensure that prev is always different to attr */
3868 w->prev = prev;
3869
2635 #if EV_USE_INOTIFY 3870 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0) 3871 if (fs_fd >= 0)
2637 { 3872 {
2638 infy_del (EV_A_ w); 3873 infy_del (EV_A_ w);
2639 infy_add (EV_A_ w); 3874 infy_add (EV_A_ w);
2644 ev_feed_event (EV_A_ w, EV_STAT); 3879 ev_feed_event (EV_A_ w, EV_STAT);
2645 } 3880 }
2646} 3881}
2647 3882
2648void 3883void
2649ev_stat_start (EV_P_ ev_stat *w) 3884ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2650{ 3885{
2651 if (expect_false (ev_is_active (w))) 3886 if (expect_false (ev_is_active (w)))
2652 return; 3887 return;
2653 3888
2654 /* since we use memcmp, we need to clear any padding data etc. */
2655 memset (&w->prev, 0, sizeof (ev_statdata));
2656 memset (&w->attr, 0, sizeof (ev_statdata));
2657
2658 ev_stat_stat (EV_A_ w); 3889 ev_stat_stat (EV_A_ w);
2659 3890
3891 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2660 if (w->interval < MIN_STAT_INTERVAL) 3892 w->interval = MIN_STAT_INTERVAL;
2661 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2662 3893
2663 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3894 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2664 ev_set_priority (&w->timer, ev_priority (w)); 3895 ev_set_priority (&w->timer, ev_priority (w));
2665 3896
2666#if EV_USE_INOTIFY 3897#if EV_USE_INOTIFY
2667 infy_init (EV_A); 3898 infy_init (EV_A);
2668 3899
2669 if (fs_fd >= 0) 3900 if (fs_fd >= 0)
2670 infy_add (EV_A_ w); 3901 infy_add (EV_A_ w);
2671 else 3902 else
2672#endif 3903#endif
3904 {
2673 ev_timer_start (EV_A_ &w->timer); 3905 ev_timer_again (EV_A_ &w->timer);
3906 ev_unref (EV_A);
3907 }
2674 3908
2675 ev_start (EV_A_ (W)w, 1); 3909 ev_start (EV_A_ (W)w, 1);
2676 3910
2677 EV_FREQUENT_CHECK; 3911 EV_FREQUENT_CHECK;
2678} 3912}
2679 3913
2680void 3914void
2681ev_stat_stop (EV_P_ ev_stat *w) 3915ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2682{ 3916{
2683 clear_pending (EV_A_ (W)w); 3917 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3918 if (expect_false (!ev_is_active (w)))
2685 return; 3919 return;
2686 3920
2687 EV_FREQUENT_CHECK; 3921 EV_FREQUENT_CHECK;
2688 3922
2689#if EV_USE_INOTIFY 3923#if EV_USE_INOTIFY
2690 infy_del (EV_A_ w); 3924 infy_del (EV_A_ w);
2691#endif 3925#endif
3926
3927 if (ev_is_active (&w->timer))
3928 {
3929 ev_ref (EV_A);
2692 ev_timer_stop (EV_A_ &w->timer); 3930 ev_timer_stop (EV_A_ &w->timer);
3931 }
2693 3932
2694 ev_stop (EV_A_ (W)w); 3933 ev_stop (EV_A_ (W)w);
2695 3934
2696 EV_FREQUENT_CHECK; 3935 EV_FREQUENT_CHECK;
2697} 3936}
2698#endif 3937#endif
2699 3938
2700#if EV_IDLE_ENABLE 3939#if EV_IDLE_ENABLE
2701void 3940void
2702ev_idle_start (EV_P_ ev_idle *w) 3941ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2703{ 3942{
2704 if (expect_false (ev_is_active (w))) 3943 if (expect_false (ev_is_active (w)))
2705 return; 3944 return;
2706 3945
2707 pri_adjust (EV_A_ (W)w); 3946 pri_adjust (EV_A_ (W)w);
2720 3959
2721 EV_FREQUENT_CHECK; 3960 EV_FREQUENT_CHECK;
2722} 3961}
2723 3962
2724void 3963void
2725ev_idle_stop (EV_P_ ev_idle *w) 3964ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2726{ 3965{
2727 clear_pending (EV_A_ (W)w); 3966 clear_pending (EV_A_ (W)w);
2728 if (expect_false (!ev_is_active (w))) 3967 if (expect_false (!ev_is_active (w)))
2729 return; 3968 return;
2730 3969
2742 3981
2743 EV_FREQUENT_CHECK; 3982 EV_FREQUENT_CHECK;
2744} 3983}
2745#endif 3984#endif
2746 3985
3986#if EV_PREPARE_ENABLE
2747void 3987void
2748ev_prepare_start (EV_P_ ev_prepare *w) 3988ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2749{ 3989{
2750 if (expect_false (ev_is_active (w))) 3990 if (expect_false (ev_is_active (w)))
2751 return; 3991 return;
2752 3992
2753 EV_FREQUENT_CHECK; 3993 EV_FREQUENT_CHECK;
2758 3998
2759 EV_FREQUENT_CHECK; 3999 EV_FREQUENT_CHECK;
2760} 4000}
2761 4001
2762void 4002void
2763ev_prepare_stop (EV_P_ ev_prepare *w) 4003ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2764{ 4004{
2765 clear_pending (EV_A_ (W)w); 4005 clear_pending (EV_A_ (W)w);
2766 if (expect_false (!ev_is_active (w))) 4006 if (expect_false (!ev_is_active (w)))
2767 return; 4007 return;
2768 4008
2777 4017
2778 ev_stop (EV_A_ (W)w); 4018 ev_stop (EV_A_ (W)w);
2779 4019
2780 EV_FREQUENT_CHECK; 4020 EV_FREQUENT_CHECK;
2781} 4021}
4022#endif
2782 4023
4024#if EV_CHECK_ENABLE
2783void 4025void
2784ev_check_start (EV_P_ ev_check *w) 4026ev_check_start (EV_P_ ev_check *w) EV_THROW
2785{ 4027{
2786 if (expect_false (ev_is_active (w))) 4028 if (expect_false (ev_is_active (w)))
2787 return; 4029 return;
2788 4030
2789 EV_FREQUENT_CHECK; 4031 EV_FREQUENT_CHECK;
2794 4036
2795 EV_FREQUENT_CHECK; 4037 EV_FREQUENT_CHECK;
2796} 4038}
2797 4039
2798void 4040void
2799ev_check_stop (EV_P_ ev_check *w) 4041ev_check_stop (EV_P_ ev_check *w) EV_THROW
2800{ 4042{
2801 clear_pending (EV_A_ (W)w); 4043 clear_pending (EV_A_ (W)w);
2802 if (expect_false (!ev_is_active (w))) 4044 if (expect_false (!ev_is_active (w)))
2803 return; 4045 return;
2804 4046
2813 4055
2814 ev_stop (EV_A_ (W)w); 4056 ev_stop (EV_A_ (W)w);
2815 4057
2816 EV_FREQUENT_CHECK; 4058 EV_FREQUENT_CHECK;
2817} 4059}
4060#endif
2818 4061
2819#if EV_EMBED_ENABLE 4062#if EV_EMBED_ENABLE
2820void noinline 4063void noinline
2821ev_embed_sweep (EV_P_ ev_embed *w) 4064ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2822{ 4065{
2823 ev_loop (w->other, EVLOOP_NONBLOCK); 4066 ev_run (w->other, EVRUN_NOWAIT);
2824} 4067}
2825 4068
2826static void 4069static void
2827embed_io_cb (EV_P_ ev_io *io, int revents) 4070embed_io_cb (EV_P_ ev_io *io, int revents)
2828{ 4071{
2829 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4072 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2830 4073
2831 if (ev_cb (w)) 4074 if (ev_cb (w))
2832 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4075 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2833 else 4076 else
2834 ev_loop (w->other, EVLOOP_NONBLOCK); 4077 ev_run (w->other, EVRUN_NOWAIT);
2835} 4078}
2836 4079
2837static void 4080static void
2838embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4081embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2839{ 4082{
2840 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4083 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2841 4084
2842 { 4085 {
2843 struct ev_loop *loop = w->other; 4086 EV_P = w->other;
2844 4087
2845 while (fdchangecnt) 4088 while (fdchangecnt)
2846 { 4089 {
2847 fd_reify (EV_A); 4090 fd_reify (EV_A);
2848 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4091 ev_run (EV_A_ EVRUN_NOWAIT);
2849 } 4092 }
2850 } 4093 }
2851} 4094}
2852 4095
2853static void 4096static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4097embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{ 4098{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4099 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857 4100
4101 ev_embed_stop (EV_A_ w);
4102
2858 { 4103 {
2859 struct ev_loop *loop = w->other; 4104 EV_P = w->other;
2860 4105
2861 ev_loop_fork (EV_A); 4106 ev_loop_fork (EV_A);
4107 ev_run (EV_A_ EVRUN_NOWAIT);
2862 } 4108 }
4109
4110 ev_embed_start (EV_A_ w);
2863} 4111}
2864 4112
2865#if 0 4113#if 0
2866static void 4114static void
2867embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4115embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2869 ev_idle_stop (EV_A_ idle); 4117 ev_idle_stop (EV_A_ idle);
2870} 4118}
2871#endif 4119#endif
2872 4120
2873void 4121void
2874ev_embed_start (EV_P_ ev_embed *w) 4122ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2875{ 4123{
2876 if (expect_false (ev_is_active (w))) 4124 if (expect_false (ev_is_active (w)))
2877 return; 4125 return;
2878 4126
2879 { 4127 {
2880 struct ev_loop *loop = w->other; 4128 EV_P = w->other;
2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4129 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4130 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2883 } 4131 }
2884 4132
2885 EV_FREQUENT_CHECK; 4133 EV_FREQUENT_CHECK;
2886 4134
2900 4148
2901 EV_FREQUENT_CHECK; 4149 EV_FREQUENT_CHECK;
2902} 4150}
2903 4151
2904void 4152void
2905ev_embed_stop (EV_P_ ev_embed *w) 4153ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2906{ 4154{
2907 clear_pending (EV_A_ (W)w); 4155 clear_pending (EV_A_ (W)w);
2908 if (expect_false (!ev_is_active (w))) 4156 if (expect_false (!ev_is_active (w)))
2909 return; 4157 return;
2910 4158
2912 4160
2913 ev_io_stop (EV_A_ &w->io); 4161 ev_io_stop (EV_A_ &w->io);
2914 ev_prepare_stop (EV_A_ &w->prepare); 4162 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork); 4163 ev_fork_stop (EV_A_ &w->fork);
2916 4164
4165 ev_stop (EV_A_ (W)w);
4166
2917 EV_FREQUENT_CHECK; 4167 EV_FREQUENT_CHECK;
2918} 4168}
2919#endif 4169#endif
2920 4170
2921#if EV_FORK_ENABLE 4171#if EV_FORK_ENABLE
2922void 4172void
2923ev_fork_start (EV_P_ ev_fork *w) 4173ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2924{ 4174{
2925 if (expect_false (ev_is_active (w))) 4175 if (expect_false (ev_is_active (w)))
2926 return; 4176 return;
2927 4177
2928 EV_FREQUENT_CHECK; 4178 EV_FREQUENT_CHECK;
2933 4183
2934 EV_FREQUENT_CHECK; 4184 EV_FREQUENT_CHECK;
2935} 4185}
2936 4186
2937void 4187void
2938ev_fork_stop (EV_P_ ev_fork *w) 4188ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2939{ 4189{
2940 clear_pending (EV_A_ (W)w); 4190 clear_pending (EV_A_ (W)w);
2941 if (expect_false (!ev_is_active (w))) 4191 if (expect_false (!ev_is_active (w)))
2942 return; 4192 return;
2943 4193
2954 4204
2955 EV_FREQUENT_CHECK; 4205 EV_FREQUENT_CHECK;
2956} 4206}
2957#endif 4207#endif
2958 4208
4209#if EV_CLEANUP_ENABLE
4210void
4211ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4212{
4213 if (expect_false (ev_is_active (w)))
4214 return;
4215
4216 EV_FREQUENT_CHECK;
4217
4218 ev_start (EV_A_ (W)w, ++cleanupcnt);
4219 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4220 cleanups [cleanupcnt - 1] = w;
4221
4222 /* cleanup watchers should never keep a refcount on the loop */
4223 ev_unref (EV_A);
4224 EV_FREQUENT_CHECK;
4225}
4226
4227void
4228ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4229{
4230 clear_pending (EV_A_ (W)w);
4231 if (expect_false (!ev_is_active (w)))
4232 return;
4233
4234 EV_FREQUENT_CHECK;
4235 ev_ref (EV_A);
4236
4237 {
4238 int active = ev_active (w);
4239
4240 cleanups [active - 1] = cleanups [--cleanupcnt];
4241 ev_active (cleanups [active - 1]) = active;
4242 }
4243
4244 ev_stop (EV_A_ (W)w);
4245
4246 EV_FREQUENT_CHECK;
4247}
4248#endif
4249
2959#if EV_ASYNC_ENABLE 4250#if EV_ASYNC_ENABLE
2960void 4251void
2961ev_async_start (EV_P_ ev_async *w) 4252ev_async_start (EV_P_ ev_async *w) EV_THROW
2962{ 4253{
2963 if (expect_false (ev_is_active (w))) 4254 if (expect_false (ev_is_active (w)))
2964 return; 4255 return;
4256
4257 w->sent = 0;
2965 4258
2966 evpipe_init (EV_A); 4259 evpipe_init (EV_A);
2967 4260
2968 EV_FREQUENT_CHECK; 4261 EV_FREQUENT_CHECK;
2969 4262
2973 4266
2974 EV_FREQUENT_CHECK; 4267 EV_FREQUENT_CHECK;
2975} 4268}
2976 4269
2977void 4270void
2978ev_async_stop (EV_P_ ev_async *w) 4271ev_async_stop (EV_P_ ev_async *w) EV_THROW
2979{ 4272{
2980 clear_pending (EV_A_ (W)w); 4273 clear_pending (EV_A_ (W)w);
2981 if (expect_false (!ev_is_active (w))) 4274 if (expect_false (!ev_is_active (w)))
2982 return; 4275 return;
2983 4276
2994 4287
2995 EV_FREQUENT_CHECK; 4288 EV_FREQUENT_CHECK;
2996} 4289}
2997 4290
2998void 4291void
2999ev_async_send (EV_P_ ev_async *w) 4292ev_async_send (EV_P_ ev_async *w) EV_THROW
3000{ 4293{
3001 w->sent = 1; 4294 w->sent = 1;
3002 evpipe_write (EV_A_ &gotasync); 4295 evpipe_write (EV_A_ &async_pending);
3003} 4296}
3004#endif 4297#endif
3005 4298
3006/*****************************************************************************/ 4299/*****************************************************************************/
3007 4300
3041 4334
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4335 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3043} 4336}
3044 4337
3045void 4338void
3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4339ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3047{ 4340{
3048 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4341 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3049 4342
3050 if (expect_false (!once)) 4343 if (expect_false (!once))
3051 { 4344 {
3052 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4345 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3053 return; 4346 return;
3054 } 4347 }
3055 4348
3056 once->cb = cb; 4349 once->cb = cb;
3057 once->arg = arg; 4350 once->arg = arg;
3069 ev_timer_set (&once->to, timeout, 0.); 4362 ev_timer_set (&once->to, timeout, 0.);
3070 ev_timer_start (EV_A_ &once->to); 4363 ev_timer_start (EV_A_ &once->to);
3071 } 4364 }
3072} 4365}
3073 4366
4367/*****************************************************************************/
4368
4369#if EV_WALK_ENABLE
4370void ecb_cold
4371ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4372{
4373 int i, j;
4374 ev_watcher_list *wl, *wn;
4375
4376 if (types & (EV_IO | EV_EMBED))
4377 for (i = 0; i < anfdmax; ++i)
4378 for (wl = anfds [i].head; wl; )
4379 {
4380 wn = wl->next;
4381
4382#if EV_EMBED_ENABLE
4383 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4384 {
4385 if (types & EV_EMBED)
4386 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4387 }
4388 else
4389#endif
4390#if EV_USE_INOTIFY
4391 if (ev_cb ((ev_io *)wl) == infy_cb)
4392 ;
4393 else
4394#endif
4395 if ((ev_io *)wl != &pipe_w)
4396 if (types & EV_IO)
4397 cb (EV_A_ EV_IO, wl);
4398
4399 wl = wn;
4400 }
4401
4402 if (types & (EV_TIMER | EV_STAT))
4403 for (i = timercnt + HEAP0; i-- > HEAP0; )
4404#if EV_STAT_ENABLE
4405 /*TODO: timer is not always active*/
4406 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4407 {
4408 if (types & EV_STAT)
4409 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4410 }
4411 else
4412#endif
4413 if (types & EV_TIMER)
4414 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4415
4416#if EV_PERIODIC_ENABLE
4417 if (types & EV_PERIODIC)
4418 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4419 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4420#endif
4421
4422#if EV_IDLE_ENABLE
4423 if (types & EV_IDLE)
4424 for (j = NUMPRI; j--; )
4425 for (i = idlecnt [j]; i--; )
4426 cb (EV_A_ EV_IDLE, idles [j][i]);
4427#endif
4428
4429#if EV_FORK_ENABLE
4430 if (types & EV_FORK)
4431 for (i = forkcnt; i--; )
4432 if (ev_cb (forks [i]) != embed_fork_cb)
4433 cb (EV_A_ EV_FORK, forks [i]);
4434#endif
4435
4436#if EV_ASYNC_ENABLE
4437 if (types & EV_ASYNC)
4438 for (i = asynccnt; i--; )
4439 cb (EV_A_ EV_ASYNC, asyncs [i]);
4440#endif
4441
4442#if EV_PREPARE_ENABLE
4443 if (types & EV_PREPARE)
4444 for (i = preparecnt; i--; )
4445# if EV_EMBED_ENABLE
4446 if (ev_cb (prepares [i]) != embed_prepare_cb)
4447# endif
4448 cb (EV_A_ EV_PREPARE, prepares [i]);
4449#endif
4450
4451#if EV_CHECK_ENABLE
4452 if (types & EV_CHECK)
4453 for (i = checkcnt; i--; )
4454 cb (EV_A_ EV_CHECK, checks [i]);
4455#endif
4456
4457#if EV_SIGNAL_ENABLE
4458 if (types & EV_SIGNAL)
4459 for (i = 0; i < EV_NSIG - 1; ++i)
4460 for (wl = signals [i].head; wl; )
4461 {
4462 wn = wl->next;
4463 cb (EV_A_ EV_SIGNAL, wl);
4464 wl = wn;
4465 }
4466#endif
4467
4468#if EV_CHILD_ENABLE
4469 if (types & EV_CHILD)
4470 for (i = (EV_PID_HASHSIZE); i--; )
4471 for (wl = childs [i]; wl; )
4472 {
4473 wn = wl->next;
4474 cb (EV_A_ EV_CHILD, wl);
4475 wl = wn;
4476 }
4477#endif
4478/* EV_STAT 0x00001000 /* stat data changed */
4479/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4480}
4481#endif
4482
3074#if EV_MULTIPLICITY 4483#if EV_MULTIPLICITY
3075 #include "ev_wrap.h" 4484 #include "ev_wrap.h"
3076#endif 4485#endif
3077 4486
3078#ifdef __cplusplus
3079}
3080#endif
3081

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines