ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.424 by root, Tue May 1 22:01:40 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 206# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
163# endif 209# endif
210# undef EV_AVOID_STDIO
164#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
165 220
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
167 222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
168#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
169# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
170#endif 269#endif
171 270
172#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 273#endif
175 274
176#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
177# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
178#endif 281#endif
179 282
180#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 285#endif
183 286
184#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
185# ifdef _WIN32 288# ifdef _WIN32
186# define EV_USE_POLL 0 289# define EV_USE_POLL 0
187# else 290# else
188# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 292# endif
190#endif 293#endif
191 294
192#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 298# else
196# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
197# endif 300# endif
198#endif 301#endif
199 302
205# define EV_USE_PORT 0 308# define EV_USE_PORT 0
206#endif 309#endif
207 310
208#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 314# else
212# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
213# endif 316# endif
214#endif 317#endif
215 318
216#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 321#endif
223 322
224#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 325#endif
231 326
232#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 330# else
236# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
237# endif 332# endif
238#endif 333#endif
239 334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
241 382
242#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
245#endif 386#endif
253# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
255#endif 396#endif
256 397
257#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 401# include <sys/select.h>
260# endif 402# endif
261#endif 403#endif
262 404
263#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
264# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
265#endif 413#endif
266 414
267#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 416# include <winsock.h>
269#endif 417#endif
270 418
271#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 421# include <stdint.h>
274# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
275extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
276# endif 424# endif
277int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 426# ifdef O_CLOEXEC
279} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
280# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
281#endif 455#endif
282 456
283/**/ 457/**/
284 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
285/* 465/*
286 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 468 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 471
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 519 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
302#else 526#else
303# define expect(expr,value) (expr) 527 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 542 #endif
543#endif
309 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680#endif
681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
312#define inline_size static inline 960#define inline_size ecb_inline
313 961
314#if EV_MINIMAL 962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
315# define inline_speed static noinline 965# define inline_speed static noinline
966#endif
967
968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
316#else 972#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
322 975
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
325 978
326typedef ev_watcher *W; 979typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
329 982
330#define ev_active(w) ((W)(w))->active 983#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 984#define ev_at(w) ((WT)(w))->at
332 985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
333#if EV_USE_MONOTONIC 992#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1004#endif
338 1005
339#ifdef _WIN32 1006#ifdef _WIN32
340# include "ev_win32.c" 1007# include "ev_win32.c"
341#endif 1008#endif
342 1009
343/*****************************************************************************/ 1010/*****************************************************************************/
344 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
345static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
346 1111
347void 1112void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
349{ 1114{
350 syserr_cb = cb; 1115 syserr_cb = cb;
351} 1116}
352 1117
353static void noinline 1118static void noinline ecb_cold
354syserr (const char *msg) 1119ev_syserr (const char *msg)
355{ 1120{
356 if (!msg) 1121 if (!msg)
357 msg = "(libev) system error"; 1122 msg = "(libev) system error";
358 1123
359 if (syserr_cb) 1124 if (syserr_cb)
360 syserr_cb (msg); 1125 syserr_cb (msg);
361 else 1126 else
362 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
363 perror (msg); 1134 perror (msg);
1135#endif
364 abort (); 1136 abort ();
365 } 1137 }
366} 1138}
367 1139
368static void * 1140static void *
369ev_realloc_emul (void *ptr, long size) 1141ev_realloc_emul (void *ptr, long size)
370{ 1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
371 /* some systems, notably openbsd and darwin, fail to properly 1146 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1147 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1148 * the single unix specification, so work around them here.
374 */ 1149 */
375 1150
376 if (size) 1151 if (size)
377 return realloc (ptr, size); 1152 return realloc (ptr, size);
378 1153
379 free (ptr); 1154 free (ptr);
380 return 0; 1155 return 0;
1156#endif
381} 1157}
382 1158
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
384 1160
385void 1161void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
387{ 1163{
388 alloc = cb; 1164 alloc = cb;
389} 1165}
390 1166
391inline_speed void * 1167inline_speed void *
393{ 1169{
394 ptr = alloc (ptr, size); 1170 ptr = alloc (ptr, size);
395 1171
396 if (!ptr && size) 1172 if (!ptr && size)
397 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
399 abort (); 1179 abort ();
400 } 1180 }
401 1181
402 return ptr; 1182 return ptr;
403} 1183}
405#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1187
408/*****************************************************************************/ 1188/*****************************************************************************/
409 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
410typedef struct 1194typedef struct
411{ 1195{
412 WL head; 1196 WL head;
413 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
415#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1205 SOCKET handle;
417#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
418} ANFD; 1210} ANFD;
419 1211
1212/* stores the pending event set for a given watcher */
420typedef struct 1213typedef struct
421{ 1214{
422 W w; 1215 W w;
423 int events; 1216 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1217} ANPENDING;
425 1218
426#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
427typedef struct 1221typedef struct
428{ 1222{
429 WL head; 1223 WL head;
430} ANFS; 1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
431#endif 1245#endif
432 1246
433#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
434 1248
435 struct ev_loop 1249 struct ev_loop
441 #undef VAR 1255 #undef VAR
442 }; 1256 };
443 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
444 1258
445 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
447 1261
448#else 1262#else
449 1263
450 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
451 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
452 #include "ev_vars.h" 1266 #include "ev_vars.h"
453 #undef VAR 1267 #undef VAR
454 1268
455 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
456 1270
457#endif 1271#endif
458 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
459/*****************************************************************************/ 1285/*****************************************************************************/
460 1286
1287#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1288ev_tstamp
462ev_time (void) 1289ev_time (void) EV_THROW
463{ 1290{
464#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
465 struct timespec ts; 1294 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1297 }
1298#endif
1299
469 struct timeval tv; 1300 struct timeval tv;
470 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1303}
1304#endif
474 1305
475ev_tstamp inline_size 1306inline_size ev_tstamp
476get_clock (void) 1307get_clock (void)
477{ 1308{
478#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
480 { 1311 {
487 return ev_time (); 1318 return ev_time ();
488} 1319}
489 1320
490#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
491ev_tstamp 1322ev_tstamp
492ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
493{ 1324{
494 return ev_rt_now; 1325 return ev_rt_now;
495} 1326}
496#endif 1327#endif
497 1328
498void 1329void
499ev_sleep (ev_tstamp delay) 1330ev_sleep (ev_tstamp delay) EV_THROW
500{ 1331{
501 if (delay > 0.) 1332 if (delay > 0.)
502 { 1333 {
503#if EV_USE_NANOSLEEP 1334#if EV_USE_NANOSLEEP
504 struct timespec ts; 1335 struct timespec ts;
505 1336
506 ts.tv_sec = (time_t)delay; 1337 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1338 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1339#elif defined _WIN32
511 Sleep ((unsigned long)(delay * 1e3)); 1340 Sleep ((unsigned long)(delay * 1e3));
512#else 1341#else
513 struct timeval tv; 1342 struct timeval tv;
514 1343
515 tv.tv_sec = (time_t)delay; 1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1345 /* something not guaranteed by newer posix versions, but guaranteed */
517 1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1348 select (0, 0, 0, 0, &tv);
519#endif 1349#endif
520 } 1350 }
521} 1351}
522 1352
523/*****************************************************************************/ 1353/*****************************************************************************/
524 1354
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 1356
527int inline_size 1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
528array_nextsize (int elem, int cur, int cnt) 1360array_nextsize (int elem, int cur, int cnt)
529{ 1361{
530 int ncur = cur + 1; 1362 int ncur = cur + 1;
531 1363
532 do 1364 do
533 ncur <<= 1; 1365 ncur <<= 1;
534 while (cnt > ncur); 1366 while (cnt > ncur);
535 1367
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 { 1370 {
539 ncur *= elem; 1371 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4; 1373 ncur = ncur - sizeof (void *) * 4;
543 } 1375 }
544 1376
545 return ncur; 1377 return ncur;
546} 1378}
547 1379
548static noinline void * 1380static void * noinline ecb_cold
549array_realloc (int elem, void *base, int *cur, int cnt) 1381array_realloc (int elem, void *base, int *cur, int cnt)
550{ 1382{
551 *cur = array_nextsize (elem, *cur, cnt); 1383 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 1384 return ev_realloc (base, elem * *cur);
553} 1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 1389
555#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 1391 if (expect_false ((cnt) > (cur))) \
557 { \ 1392 { \
558 int ocur_ = (cur); \ 1393 int ecb_unused ocur_ = (cur); \
559 (base) = (type *)array_realloc \ 1394 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
562 } 1397 }
563 1398
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 1406 }
572#endif 1407#endif
573 1408
574#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 1411
577/*****************************************************************************/ 1412/*****************************************************************************/
578 1413
1414/* dummy callback for pending events */
1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
1417{
1418}
1419
579void noinline 1420void noinline
580ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
581{ 1422{
582 W w_ = (W)w; 1423 W w_ = (W)w;
583 int pri = ABSPRI (w_); 1424 int pri = ABSPRI (w_);
584 1425
585 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
591 pendings [pri][w_->pending - 1].w = w_; 1432 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 1433 pendings [pri][w_->pending - 1].events = revents;
593 } 1434 }
594} 1435}
595 1436
596void inline_speed 1437inline_speed void
1438feed_reverse (EV_P_ W w)
1439{
1440 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1441 rfeeds [rfeedcnt++] = w;
1442}
1443
1444inline_size void
1445feed_reverse_done (EV_P_ int revents)
1446{
1447 do
1448 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1449 while (rfeedcnt);
1450}
1451
1452inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 1453queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 1454{
599 int i; 1455 int i;
600 1456
601 for (i = 0; i < eventcnt; ++i) 1457 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 1458 ev_feed_event (EV_A_ events [i], type);
603} 1459}
604 1460
605/*****************************************************************************/ 1461/*****************************************************************************/
606 1462
607void inline_size 1463inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 1464fd_event_nocheck (EV_P_ int fd, int revents)
622{ 1465{
623 ANFD *anfd = anfds + fd; 1466 ANFD *anfd = anfds + fd;
624 ev_io *w; 1467 ev_io *w;
625 1468
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1469 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 1473 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 1474 ev_feed_event (EV_A_ (W)w, ev);
632 } 1475 }
633} 1476}
634 1477
1478/* do not submit kernel events for fds that have reify set */
1479/* because that means they changed while we were polling for new events */
1480inline_speed void
1481fd_event (EV_P_ int fd, int revents)
1482{
1483 ANFD *anfd = anfds + fd;
1484
1485 if (expect_true (!anfd->reify))
1486 fd_event_nocheck (EV_A_ fd, revents);
1487}
1488
635void 1489void
636ev_feed_fd_event (EV_P_ int fd, int revents) 1490ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
637{ 1491{
638 if (fd >= 0 && fd < anfdmax) 1492 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 1493 fd_event_nocheck (EV_A_ fd, revents);
640} 1494}
641 1495
642void inline_size 1496/* make sure the external fd watch events are in-sync */
1497/* with the kernel/libev internal state */
1498inline_size void
643fd_reify (EV_P) 1499fd_reify (EV_P)
644{ 1500{
645 int i; 1501 int i;
1502
1503#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1504 for (i = 0; i < fdchangecnt; ++i)
1505 {
1506 int fd = fdchanges [i];
1507 ANFD *anfd = anfds + fd;
1508
1509 if (anfd->reify & EV__IOFDSET && anfd->head)
1510 {
1511 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1512
1513 if (handle != anfd->handle)
1514 {
1515 unsigned long arg;
1516
1517 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1518
1519 /* handle changed, but fd didn't - we need to do it in two steps */
1520 backend_modify (EV_A_ fd, anfd->events, 0);
1521 anfd->events = 0;
1522 anfd->handle = handle;
1523 }
1524 }
1525 }
1526#endif
646 1527
647 for (i = 0; i < fdchangecnt; ++i) 1528 for (i = 0; i < fdchangecnt; ++i)
648 { 1529 {
649 int fd = fdchanges [i]; 1530 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd; 1531 ANFD *anfd = anfds + fd;
651 ev_io *w; 1532 ev_io *w;
652 1533
653 unsigned char events = 0; 1534 unsigned char o_events = anfd->events;
1535 unsigned char o_reify = anfd->reify;
654 1536
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1537 anfd->reify = 0;
656 events |= (unsigned char)w->events;
657 1538
658#if EV_SELECT_IS_WINSOCKET 1539 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
659 if (events)
660 { 1540 {
661 unsigned long argp; 1541 anfd->events = 0;
662 #ifdef EV_FD_TO_WIN32_HANDLE 1542
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1543 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
664 #else 1544 anfd->events |= (unsigned char)w->events;
665 anfd->handle = _get_osfhandle (fd); 1545
666 #endif 1546 if (o_events != anfd->events)
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1547 o_reify = EV__IOFDSET; /* actually |= */
668 } 1548 }
669#endif
670 1549
671 { 1550 if (o_reify & EV__IOFDSET)
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 1551 backend_modify (EV_A_ fd, o_events, anfd->events);
680 }
681 } 1552 }
682 1553
683 fdchangecnt = 0; 1554 fdchangecnt = 0;
684} 1555}
685 1556
686void inline_size 1557/* something about the given fd changed */
1558inline_size void
687fd_change (EV_P_ int fd, int flags) 1559fd_change (EV_P_ int fd, int flags)
688{ 1560{
689 unsigned char reify = anfds [fd].reify; 1561 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 1562 anfds [fd].reify |= flags;
691 1563
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1567 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 1568 fdchanges [fdchangecnt - 1] = fd;
697 } 1569 }
698} 1570}
699 1571
700void inline_speed 1572/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1573inline_speed void ecb_cold
701fd_kill (EV_P_ int fd) 1574fd_kill (EV_P_ int fd)
702{ 1575{
703 ev_io *w; 1576 ev_io *w;
704 1577
705 while ((w = (ev_io *)anfds [fd].head)) 1578 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 1580 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1581 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 1582 }
710} 1583}
711 1584
712int inline_size 1585/* check whether the given fd is actually valid, for error recovery */
1586inline_size int ecb_cold
713fd_valid (int fd) 1587fd_valid (int fd)
714{ 1588{
715#ifdef _WIN32 1589#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1590 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1591#else
718 return fcntl (fd, F_GETFD) != -1; 1592 return fcntl (fd, F_GETFD) != -1;
719#endif 1593#endif
720} 1594}
721 1595
722/* called on EBADF to verify fds */ 1596/* called on EBADF to verify fds */
723static void noinline 1597static void noinline ecb_cold
724fd_ebadf (EV_P) 1598fd_ebadf (EV_P)
725{ 1599{
726 int fd; 1600 int fd;
727 1601
728 for (fd = 0; fd < anfdmax; ++fd) 1602 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1603 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1604 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1605 fd_kill (EV_A_ fd);
732} 1606}
733 1607
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1608/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1609static void noinline ecb_cold
736fd_enomem (EV_P) 1610fd_enomem (EV_P)
737{ 1611{
738 int fd; 1612 int fd;
739 1613
740 for (fd = anfdmax; fd--; ) 1614 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1615 if (anfds [fd].events)
742 { 1616 {
743 fd_kill (EV_A_ fd); 1617 fd_kill (EV_A_ fd);
744 return; 1618 break;
745 } 1619 }
746} 1620}
747 1621
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1622/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1623static void noinline
753 1627
754 for (fd = 0; fd < anfdmax; ++fd) 1628 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1629 if (anfds [fd].events)
756 { 1630 {
757 anfds [fd].events = 0; 1631 anfds [fd].events = 0;
1632 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1633 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1634 }
760} 1635}
761 1636
1637/* used to prepare libev internal fd's */
1638/* this is not fork-safe */
1639inline_speed void
1640fd_intern (int fd)
1641{
1642#ifdef _WIN32
1643 unsigned long arg = 1;
1644 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1645#else
1646 fcntl (fd, F_SETFD, FD_CLOEXEC);
1647 fcntl (fd, F_SETFL, O_NONBLOCK);
1648#endif
1649}
1650
762/*****************************************************************************/ 1651/*****************************************************************************/
1652
1653/*
1654 * the heap functions want a real array index. array index 0 is guaranteed to not
1655 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1656 * the branching factor of the d-tree.
1657 */
763 1658
764/* 1659/*
765 * at the moment we allow libev the luxury of two heaps, 1660 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1661 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1662 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1663 * the difference is about 5% with 50000+ watchers.
769 */ 1664 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1665#if EV_USE_4HEAP
772 1666
1667#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 1668#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1669#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1670#define UPHEAP_DONE(p,k) ((p) == (k))
774 1671
775/* towards the root */ 1672/* away from the root */
776void inline_speed 1673inline_speed void
777upheap (WT *heap, int k) 1674downheap (ANHE *heap, int N, int k)
778{ 1675{
779 WT w = heap [k]; 1676 ANHE he = heap [k];
1677 ANHE *E = heap + N + HEAP0;
780 1678
781 for (;;) 1679 for (;;)
782 { 1680 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 1681 ev_tstamp minat;
807 WT *minpos; 1682 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 1683 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 1684
810 // find minimum child 1685 /* find minimum child */
811 if (expect_true (pos +3 < E)) 1686 if (expect_true (pos + DHEAP - 1 < E))
812 { 1687 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 1688 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1689 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1690 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1691 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1692 }
1693 else if (pos < E)
1694 {
1695 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1696 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1697 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1698 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 1699 }
818 else 1700 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 1701 break;
831 1702
832 ev_active (*minpos) = k; 1703 if (ANHE_at (he) <= minat)
1704 break;
1705
833 heap [k] = *minpos; 1706 heap [k] = *minpos;
1707 ev_active (ANHE_w (*minpos)) = k;
834 1708
835 k = minpos - heap; 1709 k = minpos - heap;
836 } 1710 }
837 1711
838 heap [k] = w; 1712 heap [k] = he;
839 ev_active (heap [k]) = k; 1713 ev_active (ANHE_w (he)) = k;
840} 1714}
841 1715
842#else // 4HEAP 1716#else /* 4HEAP */
843 1717
844#define HEAP0 1 1718#define HEAP0 1
1719#define HPARENT(k) ((k) >> 1)
1720#define UPHEAP_DONE(p,k) (!(p))
845 1721
846/* towards the root */ 1722/* away from the root */
847void inline_speed 1723inline_speed void
848upheap (WT *heap, int k) 1724downheap (ANHE *heap, int N, int k)
849{ 1725{
850 WT w = heap [k]; 1726 ANHE he = heap [k];
851 1727
852 for (;;) 1728 for (;;)
853 { 1729 {
854 int p = k >> 1; 1730 int c = k << 1;
855 1731
856 /* maybe we could use a dummy element at heap [0]? */ 1732 if (c >= N + HEAP0)
857 if (!p || heap [p]->at <= w->at)
858 break; 1733 break;
859 1734
860 heap [k] = heap [p]; 1735 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 1736 ? 1 : 0;
862 k = p;
863 }
864 1737
865 heap [k] = w; 1738 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 1739 break;
881 1740
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 1741 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 1742 ev_active (ANHE_w (heap [k])) = k;
890 1743
891 k = c; 1744 k = c;
892 } 1745 }
893 1746
894 heap [k] = w; 1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750#endif
1751
1752/* towards the root */
1753inline_speed void
1754upheap (ANHE *heap, int k)
1755{
1756 ANHE he = heap [k];
1757
1758 for (;;)
1759 {
1760 int p = HPARENT (k);
1761
1762 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1763 break;
1764
1765 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1766 ev_active (ANHE_w (heap [k])) = k;
896} 1767 k = p;
897#endif 1768 }
898 1769
899void inline_size 1770 heap [k] = he;
1771 ev_active (ANHE_w (he)) = k;
1772}
1773
1774/* move an element suitably so it is in a correct place */
1775inline_size void
900adjustheap (WT *heap, int N, int k) 1776adjustheap (ANHE *heap, int N, int k)
901{ 1777{
1778 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
902 upheap (heap, k); 1779 upheap (heap, k);
1780 else
903 downheap (heap, N, k); 1781 downheap (heap, N, k);
1782}
1783
1784/* rebuild the heap: this function is used only once and executed rarely */
1785inline_size void
1786reheap (ANHE *heap, int N)
1787{
1788 int i;
1789
1790 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1791 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1792 for (i = 0; i < N; ++i)
1793 upheap (heap, i + HEAP0);
904} 1794}
905 1795
906/*****************************************************************************/ 1796/*****************************************************************************/
907 1797
1798/* associate signal watchers to a signal signal */
908typedef struct 1799typedef struct
909{ 1800{
1801 EV_ATOMIC_T pending;
1802#if EV_MULTIPLICITY
1803 EV_P;
1804#endif
910 WL head; 1805 WL head;
911 EV_ATOMIC_T gotsig;
912} ANSIG; 1806} ANSIG;
913 1807
914static ANSIG *signals; 1808static ANSIG signals [EV_NSIG - 1];
915static int signalmax;
916
917static EV_ATOMIC_T gotsig;
918
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930 1809
931/*****************************************************************************/ 1810/*****************************************************************************/
932 1811
933void inline_speed 1812#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
934fd_intern (int fd)
935{
936#ifdef _WIN32
937 int arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif
943}
944 1813
945static void noinline 1814static void noinline ecb_cold
946evpipe_init (EV_P) 1815evpipe_init (EV_P)
947{ 1816{
948 if (!ev_is_active (&pipeev)) 1817 if (!ev_is_active (&pipe_w))
949 { 1818 {
950#if EV_USE_EVENTFD 1819# if EV_USE_EVENTFD
1820 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1821 if (evfd < 0 && errno == EINVAL)
951 if ((evfd = eventfd (0, 0)) >= 0) 1822 evfd = eventfd (0, 0);
1823
1824 if (evfd >= 0)
952 { 1825 {
953 evpipe [0] = -1; 1826 evpipe [0] = -1;
954 fd_intern (evfd); 1827 fd_intern (evfd); /* doing it twice doesn't hurt */
955 ev_io_set (&pipeev, evfd, EV_READ); 1828 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1829 }
957 else 1830 else
958#endif 1831# endif
959 { 1832 {
960 while (pipe (evpipe)) 1833 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1834 ev_syserr ("(libev) error creating signal/async pipe");
962 1835
963 fd_intern (evpipe [0]); 1836 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1837 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1838 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1839 }
967 1840
968 ev_io_start (EV_A_ &pipeev); 1841 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1842 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1843 }
971} 1844}
972 1845
973void inline_size 1846inline_speed void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1847evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1848{
976 if (!*flag) 1849 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1850
1851 if (expect_true (*flag))
1852 return;
1853
1854 *flag = 1;
1855
1856 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1857
1858 pipe_write_skipped = 1;
1859
1860 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1861
1862 if (pipe_write_wanted)
977 { 1863 {
1864 int old_errno;
1865
1866 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1867
978 int old_errno = errno; /* save errno because write might clobber it */ 1868 old_errno = errno; /* save errno because write will clobber it */
979
980 *flag = 1;
981 1869
982#if EV_USE_EVENTFD 1870#if EV_USE_EVENTFD
983 if (evfd >= 0) 1871 if (evfd >= 0)
984 { 1872 {
985 uint64_t counter = 1; 1873 uint64_t counter = 1;
986 write (evfd, &counter, sizeof (uint64_t)); 1874 write (evfd, &counter, sizeof (uint64_t));
987 } 1875 }
988 else 1876 else
989#endif 1877#endif
1878 {
1879 /* win32 people keep sending patches that change this write() to send() */
1880 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1881 /* so when you think this write should be a send instead, please find out */
1882 /* where your send() is from - it's definitely not the microsoft send, and */
1883 /* tell me. thank you. */
1884 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1885 /* check the ev documentation on how to use this flag */
990 write (evpipe [1], &old_errno, 1); 1886 write (evpipe [1], &(evpipe [1]), 1);
1887 }
991 1888
992 errno = old_errno; 1889 errno = old_errno;
993 } 1890 }
994} 1891}
995 1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
996static void 1895static void
997pipecb (EV_P_ ev_io *iow, int revents) 1896pipecb (EV_P_ ev_io *iow, int revents)
998{ 1897{
1898 int i;
1899
1900 if (revents & EV_READ)
1901 {
999#if EV_USE_EVENTFD 1902#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1903 if (evfd >= 0)
1001 { 1904 {
1002 uint64_t counter; 1905 uint64_t counter;
1003 read (evfd, &counter, sizeof (uint64_t)); 1906 read (evfd, &counter, sizeof (uint64_t));
1004 } 1907 }
1005 else 1908 else
1006#endif 1909#endif
1007 { 1910 {
1008 char dummy; 1911 char dummy;
1912 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1009 read (evpipe [0], &dummy, 1); 1913 read (evpipe [0], &dummy, 1);
1914 }
1915 }
1916
1917 pipe_write_skipped = 0;
1918
1919 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1920
1921#if EV_SIGNAL_ENABLE
1922 if (sig_pending)
1010 } 1923 {
1924 sig_pending = 0;
1011 1925
1012 if (gotsig && ev_is_default_loop (EV_A)) 1926 ECB_MEMORY_FENCE_RELEASE;
1013 {
1014 int signum;
1015 gotsig = 0;
1016 1927
1017 for (signum = signalmax; signum--; ) 1928 for (i = EV_NSIG - 1; i--; )
1018 if (signals [signum].gotsig) 1929 if (expect_false (signals [i].pending))
1019 ev_feed_signal_event (EV_A_ signum + 1); 1930 ev_feed_signal_event (EV_A_ i + 1);
1020 } 1931 }
1932#endif
1021 1933
1022#if EV_ASYNC_ENABLE 1934#if EV_ASYNC_ENABLE
1023 if (gotasync) 1935 if (async_pending)
1024 { 1936 {
1025 int i; 1937 async_pending = 0;
1026 gotasync = 0; 1938
1939 ECB_MEMORY_FENCE_RELEASE;
1027 1940
1028 for (i = asynccnt; i--; ) 1941 for (i = asynccnt; i--; )
1029 if (asyncs [i]->sent) 1942 if (asyncs [i]->sent)
1030 { 1943 {
1031 asyncs [i]->sent = 0; 1944 asyncs [i]->sent = 0;
1035#endif 1948#endif
1036} 1949}
1037 1950
1038/*****************************************************************************/ 1951/*****************************************************************************/
1039 1952
1953void
1954ev_feed_signal (int signum) EV_THROW
1955{
1956#if EV_MULTIPLICITY
1957 EV_P = signals [signum - 1].loop;
1958
1959 if (!EV_A)
1960 return;
1961#endif
1962
1963 if (!ev_active (&pipe_w))
1964 return;
1965
1966 signals [signum - 1].pending = 1;
1967 evpipe_write (EV_A_ &sig_pending);
1968}
1969
1040static void 1970static void
1041ev_sighandler (int signum) 1971ev_sighandler (int signum)
1042{ 1972{
1973#ifdef _WIN32
1974 signal (signum, ev_sighandler);
1975#endif
1976
1977 ev_feed_signal (signum);
1978}
1979
1980void noinline
1981ev_feed_signal_event (EV_P_ int signum) EV_THROW
1982{
1983 WL w;
1984
1985 if (expect_false (signum <= 0 || signum > EV_NSIG))
1986 return;
1987
1988 --signum;
1989
1043#if EV_MULTIPLICITY 1990#if EV_MULTIPLICITY
1044 struct ev_loop *loop = &default_loop_struct; 1991 /* it is permissible to try to feed a signal to the wrong loop */
1045#endif 1992 /* or, likely more useful, feeding a signal nobody is waiting for */
1046 1993
1047#if _WIN32 1994 if (expect_false (signals [signum].loop != EV_A))
1048 signal (signum, ev_sighandler);
1049#endif
1050
1051 signals [signum - 1].gotsig = 1;
1052 evpipe_write (EV_A_ &gotsig);
1053}
1054
1055void noinline
1056ev_feed_signal_event (EV_P_ int signum)
1057{
1058 WL w;
1059
1060#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1062#endif
1063
1064 --signum;
1065
1066 if (signum < 0 || signum >= signalmax)
1067 return; 1995 return;
1996#endif
1068 1997
1069 signals [signum].gotsig = 0; 1998 signals [signum].pending = 0;
1070 1999
1071 for (w = signals [signum].head; w; w = w->next) 2000 for (w = signals [signum].head; w; w = w->next)
1072 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2001 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1073} 2002}
1074 2003
2004#if EV_USE_SIGNALFD
2005static void
2006sigfdcb (EV_P_ ev_io *iow, int revents)
2007{
2008 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2009
2010 for (;;)
2011 {
2012 ssize_t res = read (sigfd, si, sizeof (si));
2013
2014 /* not ISO-C, as res might be -1, but works with SuS */
2015 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2016 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2017
2018 if (res < (ssize_t)sizeof (si))
2019 break;
2020 }
2021}
2022#endif
2023
2024#endif
2025
1075/*****************************************************************************/ 2026/*****************************************************************************/
1076 2027
2028#if EV_CHILD_ENABLE
1077static WL childs [EV_PID_HASHSIZE]; 2029static WL childs [EV_PID_HASHSIZE];
1078
1079#ifndef _WIN32
1080 2030
1081static ev_signal childev; 2031static ev_signal childev;
1082 2032
1083#ifndef WIFCONTINUED 2033#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 2034# define WIFCONTINUED(status) 0
1085#endif 2035#endif
1086 2036
1087void inline_speed 2037/* handle a single child status event */
2038inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 2039child_reap (EV_P_ int chain, int pid, int status)
1089{ 2040{
1090 ev_child *w; 2041 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2042 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 2043
1093 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2044 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1094 { 2045 {
1095 if ((w->pid == pid || !w->pid) 2046 if ((w->pid == pid || !w->pid)
1096 && (!traced || (w->flags & 1))) 2047 && (!traced || (w->flags & 1)))
1097 { 2048 {
1098 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2049 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1105 2056
1106#ifndef WCONTINUED 2057#ifndef WCONTINUED
1107# define WCONTINUED 0 2058# define WCONTINUED 0
1108#endif 2059#endif
1109 2060
2061/* called on sigchld etc., calls waitpid */
1110static void 2062static void
1111childcb (EV_P_ ev_signal *sw, int revents) 2063childcb (EV_P_ ev_signal *sw, int revents)
1112{ 2064{
1113 int pid, status; 2065 int pid, status;
1114 2066
1122 /* make sure we are called again until all children have been reaped */ 2074 /* make sure we are called again until all children have been reaped */
1123 /* we need to do it this way so that the callback gets called before we continue */ 2075 /* we need to do it this way so that the callback gets called before we continue */
1124 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2076 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1125 2077
1126 child_reap (EV_A_ pid, pid, status); 2078 child_reap (EV_A_ pid, pid, status);
1127 if (EV_PID_HASHSIZE > 1) 2079 if ((EV_PID_HASHSIZE) > 1)
1128 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2080 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1129} 2081}
1130 2082
1131#endif 2083#endif
1132 2084
1133/*****************************************************************************/ 2085/*****************************************************************************/
1134 2086
2087#if EV_USE_IOCP
2088# include "ev_iocp.c"
2089#endif
1135#if EV_USE_PORT 2090#if EV_USE_PORT
1136# include "ev_port.c" 2091# include "ev_port.c"
1137#endif 2092#endif
1138#if EV_USE_KQUEUE 2093#if EV_USE_KQUEUE
1139# include "ev_kqueue.c" 2094# include "ev_kqueue.c"
1146#endif 2101#endif
1147#if EV_USE_SELECT 2102#if EV_USE_SELECT
1148# include "ev_select.c" 2103# include "ev_select.c"
1149#endif 2104#endif
1150 2105
1151int 2106int ecb_cold
1152ev_version_major (void) 2107ev_version_major (void) EV_THROW
1153{ 2108{
1154 return EV_VERSION_MAJOR; 2109 return EV_VERSION_MAJOR;
1155} 2110}
1156 2111
1157int 2112int ecb_cold
1158ev_version_minor (void) 2113ev_version_minor (void) EV_THROW
1159{ 2114{
1160 return EV_VERSION_MINOR; 2115 return EV_VERSION_MINOR;
1161} 2116}
1162 2117
1163/* return true if we are running with elevated privileges and should ignore env variables */ 2118/* return true if we are running with elevated privileges and should ignore env variables */
1164int inline_size 2119int inline_size ecb_cold
1165enable_secure (void) 2120enable_secure (void)
1166{ 2121{
1167#ifdef _WIN32 2122#ifdef _WIN32
1168 return 0; 2123 return 0;
1169#else 2124#else
1170 return getuid () != geteuid () 2125 return getuid () != geteuid ()
1171 || getgid () != getegid (); 2126 || getgid () != getegid ();
1172#endif 2127#endif
1173} 2128}
1174 2129
1175unsigned int 2130unsigned int ecb_cold
1176ev_supported_backends (void) 2131ev_supported_backends (void) EV_THROW
1177{ 2132{
1178 unsigned int flags = 0; 2133 unsigned int flags = 0;
1179 2134
1180 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1181 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2136 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1184 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2139 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1185 2140
1186 return flags; 2141 return flags;
1187} 2142}
1188 2143
1189unsigned int 2144unsigned int ecb_cold
1190ev_recommended_backends (void) 2145ev_recommended_backends (void) EV_THROW
1191{ 2146{
1192 unsigned int flags = ev_supported_backends (); 2147 unsigned int flags = ev_supported_backends ();
1193 2148
1194#ifndef __NetBSD__ 2149#ifndef __NetBSD__
1195 /* kqueue is borked on everything but netbsd apparently */ 2150 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 2151 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 2152 flags &= ~EVBACKEND_KQUEUE;
1198#endif 2153#endif
1199#ifdef __APPLE__ 2154#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 2155 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 2156 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2157 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2158#endif
2159#ifdef __FreeBSD__
2160 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1202#endif 2161#endif
1203 2162
1204 return flags; 2163 return flags;
1205} 2164}
1206 2165
2166unsigned int ecb_cold
2167ev_embeddable_backends (void) EV_THROW
2168{
2169 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2170
2171 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2172 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2173 flags &= ~EVBACKEND_EPOLL;
2174
2175 return flags;
2176}
2177
1207unsigned int 2178unsigned int
1208ev_embeddable_backends (void) 2179ev_backend (EV_P) EV_THROW
1209{ 2180{
1210 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2181 return backend;
1211
1212 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1213 /* please fix it and tell me how to detect the fix */
1214 flags &= ~EVBACKEND_EPOLL;
1215
1216 return flags;
1217} 2182}
1218 2183
2184#if EV_FEATURE_API
1219unsigned int 2185unsigned int
1220ev_backend (EV_P) 2186ev_iteration (EV_P) EV_THROW
1221{ 2187{
1222 return backend; 2188 return loop_count;
1223} 2189}
1224 2190
1225unsigned int 2191unsigned int
1226ev_loop_count (EV_P) 2192ev_depth (EV_P) EV_THROW
1227{ 2193{
1228 return loop_count; 2194 return loop_depth;
1229} 2195}
1230 2196
1231void 2197void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2198ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1233{ 2199{
1234 io_blocktime = interval; 2200 io_blocktime = interval;
1235} 2201}
1236 2202
1237void 2203void
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2204ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1239{ 2205{
1240 timeout_blocktime = interval; 2206 timeout_blocktime = interval;
1241} 2207}
1242 2208
2209void
2210ev_set_userdata (EV_P_ void *data) EV_THROW
2211{
2212 userdata = data;
2213}
2214
2215void *
2216ev_userdata (EV_P) EV_THROW
2217{
2218 return userdata;
2219}
2220
2221void
2222ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2223{
2224 invoke_cb = invoke_pending_cb;
2225}
2226
2227void
2228ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2229{
2230 release_cb = release;
2231 acquire_cb = acquire;
2232}
2233#endif
2234
2235/* initialise a loop structure, must be zero-initialised */
1243static void noinline 2236static void noinline ecb_cold
1244loop_init (EV_P_ unsigned int flags) 2237loop_init (EV_P_ unsigned int flags) EV_THROW
1245{ 2238{
1246 if (!backend) 2239 if (!backend)
1247 { 2240 {
2241 origflags = flags;
2242
2243#if EV_USE_REALTIME
2244 if (!have_realtime)
2245 {
2246 struct timespec ts;
2247
2248 if (!clock_gettime (CLOCK_REALTIME, &ts))
2249 have_realtime = 1;
2250 }
2251#endif
2252
1248#if EV_USE_MONOTONIC 2253#if EV_USE_MONOTONIC
2254 if (!have_monotonic)
1249 { 2255 {
1250 struct timespec ts; 2256 struct timespec ts;
2257
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2258 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 2259 have_monotonic = 1;
1253 } 2260 }
1254#endif
1255
1256 ev_rt_now = ev_time ();
1257 mn_now = get_clock ();
1258 now_floor = mn_now;
1259 rtmn_diff = ev_rt_now - mn_now;
1260
1261 io_blocktime = 0.;
1262 timeout_blocktime = 0.;
1263 backend = 0;
1264 backend_fd = -1;
1265 gotasync = 0;
1266#if EV_USE_INOTIFY
1267 fs_fd = -2;
1268#endif 2261#endif
1269 2262
1270 /* pid check not overridable via env */ 2263 /* pid check not overridable via env */
1271#ifndef _WIN32 2264#ifndef _WIN32
1272 if (flags & EVFLAG_FORKCHECK) 2265 if (flags & EVFLAG_FORKCHECK)
1276 if (!(flags & EVFLAG_NOENV) 2269 if (!(flags & EVFLAG_NOENV)
1277 && !enable_secure () 2270 && !enable_secure ()
1278 && getenv ("LIBEV_FLAGS")) 2271 && getenv ("LIBEV_FLAGS"))
1279 flags = atoi (getenv ("LIBEV_FLAGS")); 2272 flags = atoi (getenv ("LIBEV_FLAGS"));
1280 2273
1281 if (!(flags & 0x0000ffffU)) 2274 ev_rt_now = ev_time ();
2275 mn_now = get_clock ();
2276 now_floor = mn_now;
2277 rtmn_diff = ev_rt_now - mn_now;
2278#if EV_FEATURE_API
2279 invoke_cb = ev_invoke_pending;
2280#endif
2281
2282 io_blocktime = 0.;
2283 timeout_blocktime = 0.;
2284 backend = 0;
2285 backend_fd = -1;
2286 sig_pending = 0;
2287#if EV_ASYNC_ENABLE
2288 async_pending = 0;
2289#endif
2290 pipe_write_skipped = 0;
2291 pipe_write_wanted = 0;
2292#if EV_USE_INOTIFY
2293 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2294#endif
2295#if EV_USE_SIGNALFD
2296 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2297#endif
2298
2299 if (!(flags & EVBACKEND_MASK))
1282 flags |= ev_recommended_backends (); 2300 flags |= ev_recommended_backends ();
1283 2301
2302#if EV_USE_IOCP
2303 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2304#endif
1284#if EV_USE_PORT 2305#if EV_USE_PORT
1285 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2306 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1286#endif 2307#endif
1287#if EV_USE_KQUEUE 2308#if EV_USE_KQUEUE
1288 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2309 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1295#endif 2316#endif
1296#if EV_USE_SELECT 2317#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2318 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 2319#endif
1299 2320
2321 ev_prepare_init (&pending_w, pendingcb);
2322
2323#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1300 ev_init (&pipeev, pipecb); 2324 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 2325 ev_set_priority (&pipe_w, EV_MAXPRI);
2326#endif
1302 } 2327 }
1303} 2328}
1304 2329
1305static void noinline 2330/* free up a loop structure */
2331void ecb_cold
1306loop_destroy (EV_P) 2332ev_loop_destroy (EV_P)
1307{ 2333{
1308 int i; 2334 int i;
1309 2335
2336#if EV_MULTIPLICITY
2337 /* mimic free (0) */
2338 if (!EV_A)
2339 return;
2340#endif
2341
2342#if EV_CLEANUP_ENABLE
2343 /* queue cleanup watchers (and execute them) */
2344 if (expect_false (cleanupcnt))
2345 {
2346 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2347 EV_INVOKE_PENDING;
2348 }
2349#endif
2350
2351#if EV_CHILD_ENABLE
2352 if (ev_is_active (&childev))
2353 {
2354 ev_ref (EV_A); /* child watcher */
2355 ev_signal_stop (EV_A_ &childev);
2356 }
2357#endif
2358
1310 if (ev_is_active (&pipeev)) 2359 if (ev_is_active (&pipe_w))
1311 { 2360 {
1312 ev_ref (EV_A); /* signal watcher */ 2361 /*ev_ref (EV_A);*/
1313 ev_io_stop (EV_A_ &pipeev); 2362 /*ev_io_stop (EV_A_ &pipe_w);*/
1314 2363
1315#if EV_USE_EVENTFD 2364#if EV_USE_EVENTFD
1316 if (evfd >= 0) 2365 if (evfd >= 0)
1317 close (evfd); 2366 close (evfd);
1318#endif 2367#endif
1319 2368
1320 if (evpipe [0] >= 0) 2369 if (evpipe [0] >= 0)
1321 { 2370 {
1322 close (evpipe [0]); 2371 EV_WIN32_CLOSE_FD (evpipe [0]);
1323 close (evpipe [1]); 2372 EV_WIN32_CLOSE_FD (evpipe [1]);
1324 } 2373 }
1325 } 2374 }
2375
2376#if EV_USE_SIGNALFD
2377 if (ev_is_active (&sigfd_w))
2378 close (sigfd);
2379#endif
1326 2380
1327#if EV_USE_INOTIFY 2381#if EV_USE_INOTIFY
1328 if (fs_fd >= 0) 2382 if (fs_fd >= 0)
1329 close (fs_fd); 2383 close (fs_fd);
1330#endif 2384#endif
1331 2385
1332 if (backend_fd >= 0) 2386 if (backend_fd >= 0)
1333 close (backend_fd); 2387 close (backend_fd);
1334 2388
2389#if EV_USE_IOCP
2390 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2391#endif
1335#if EV_USE_PORT 2392#if EV_USE_PORT
1336 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1337#endif 2394#endif
1338#if EV_USE_KQUEUE 2395#if EV_USE_KQUEUE
1339 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1354#if EV_IDLE_ENABLE 2411#if EV_IDLE_ENABLE
1355 array_free (idle, [i]); 2412 array_free (idle, [i]);
1356#endif 2413#endif
1357 } 2414 }
1358 2415
1359 ev_free (anfds); anfdmax = 0; 2416 ev_free (anfds); anfds = 0; anfdmax = 0;
1360 2417
1361 /* have to use the microsoft-never-gets-it-right macro */ 2418 /* have to use the microsoft-never-gets-it-right macro */
2419 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 2420 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 2421 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 2422#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 2423 array_free (periodic, EMPTY);
1366#endif 2424#endif
1367#if EV_FORK_ENABLE 2425#if EV_FORK_ENABLE
1368 array_free (fork, EMPTY); 2426 array_free (fork, EMPTY);
1369#endif 2427#endif
2428#if EV_CLEANUP_ENABLE
2429 array_free (cleanup, EMPTY);
2430#endif
1370 array_free (prepare, EMPTY); 2431 array_free (prepare, EMPTY);
1371 array_free (check, EMPTY); 2432 array_free (check, EMPTY);
1372#if EV_ASYNC_ENABLE 2433#if EV_ASYNC_ENABLE
1373 array_free (async, EMPTY); 2434 array_free (async, EMPTY);
1374#endif 2435#endif
1375 2436
1376 backend = 0; 2437 backend = 0;
2438
2439#if EV_MULTIPLICITY
2440 if (ev_is_default_loop (EV_A))
2441#endif
2442 ev_default_loop_ptr = 0;
2443#if EV_MULTIPLICITY
2444 else
2445 ev_free (EV_A);
2446#endif
1377} 2447}
1378 2448
1379#if EV_USE_INOTIFY 2449#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 2450inline_size void infy_fork (EV_P);
1381#endif 2451#endif
1382 2452
1383void inline_size 2453inline_size void
1384loop_fork (EV_P) 2454loop_fork (EV_P)
1385{ 2455{
1386#if EV_USE_PORT 2456#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2457 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 2458#endif
1394#endif 2464#endif
1395#if EV_USE_INOTIFY 2465#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 2466 infy_fork (EV_A);
1397#endif 2467#endif
1398 2468
1399 if (ev_is_active (&pipeev)) 2469 if (ev_is_active (&pipe_w))
1400 { 2470 {
1401 /* this "locks" the handlers against writing to the pipe */ 2471 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1402 /* while we modify the fd vars */
1403 gotsig = 1;
1404#if EV_ASYNC_ENABLE
1405 gotasync = 1;
1406#endif
1407 2472
1408 ev_ref (EV_A); 2473 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 2474 ev_io_stop (EV_A_ &pipe_w);
1410 2475
1411#if EV_USE_EVENTFD 2476#if EV_USE_EVENTFD
1412 if (evfd >= 0) 2477 if (evfd >= 0)
1413 close (evfd); 2478 close (evfd);
1414#endif 2479#endif
1415 2480
1416 if (evpipe [0] >= 0) 2481 if (evpipe [0] >= 0)
1417 { 2482 {
1418 close (evpipe [0]); 2483 EV_WIN32_CLOSE_FD (evpipe [0]);
1419 close (evpipe [1]); 2484 EV_WIN32_CLOSE_FD (evpipe [1]);
1420 } 2485 }
1421 2486
2487#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1422 evpipe_init (EV_A); 2488 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 2489 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 2490 pipecb (EV_A_ &pipe_w, EV_READ);
2491#endif
1425 } 2492 }
1426 2493
1427 postfork = 0; 2494 postfork = 0;
1428} 2495}
1429 2496
1430#if EV_MULTIPLICITY 2497#if EV_MULTIPLICITY
2498
1431struct ev_loop * 2499struct ev_loop * ecb_cold
1432ev_loop_new (unsigned int flags) 2500ev_loop_new (unsigned int flags) EV_THROW
1433{ 2501{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2502 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 2503
1436 memset (loop, 0, sizeof (struct ev_loop)); 2504 memset (EV_A, 0, sizeof (struct ev_loop));
1437
1438 loop_init (EV_A_ flags); 2505 loop_init (EV_A_ flags);
1439 2506
1440 if (ev_backend (EV_A)) 2507 if (ev_backend (EV_A))
1441 return loop; 2508 return EV_A;
1442 2509
2510 ev_free (EV_A);
1443 return 0; 2511 return 0;
1444} 2512}
1445 2513
1446void 2514#endif /* multiplicity */
1447ev_loop_destroy (EV_P)
1448{
1449 loop_destroy (EV_A);
1450 ev_free (loop);
1451}
1452 2515
1453void 2516#if EV_VERIFY
1454ev_loop_fork (EV_P) 2517static void noinline ecb_cold
2518verify_watcher (EV_P_ W w)
1455{ 2519{
1456 postfork = 1; /* must be in line with ev_default_fork */ 2520 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2521
2522 if (w->pending)
2523 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2524}
2525
2526static void noinline ecb_cold
2527verify_heap (EV_P_ ANHE *heap, int N)
2528{
2529 int i;
2530
2531 for (i = HEAP0; i < N + HEAP0; ++i)
2532 {
2533 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2534 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2535 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2536
2537 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2538 }
2539}
2540
2541static void noinline ecb_cold
2542array_verify (EV_P_ W *ws, int cnt)
2543{
2544 while (cnt--)
2545 {
2546 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2547 verify_watcher (EV_A_ ws [cnt]);
2548 }
2549}
2550#endif
2551
2552#if EV_FEATURE_API
2553void ecb_cold
2554ev_verify (EV_P) EV_THROW
2555{
2556#if EV_VERIFY
2557 int i;
2558 WL w;
2559
2560 assert (activecnt >= -1);
2561
2562 assert (fdchangemax >= fdchangecnt);
2563 for (i = 0; i < fdchangecnt; ++i)
2564 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2565
2566 assert (anfdmax >= 0);
2567 for (i = 0; i < anfdmax; ++i)
2568 for (w = anfds [i].head; w; w = w->next)
2569 {
2570 verify_watcher (EV_A_ (W)w);
2571 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2572 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2573 }
2574
2575 assert (timermax >= timercnt);
2576 verify_heap (EV_A_ timers, timercnt);
2577
2578#if EV_PERIODIC_ENABLE
2579 assert (periodicmax >= periodiccnt);
2580 verify_heap (EV_A_ periodics, periodiccnt);
2581#endif
2582
2583 for (i = NUMPRI; i--; )
2584 {
2585 assert (pendingmax [i] >= pendingcnt [i]);
2586#if EV_IDLE_ENABLE
2587 assert (idleall >= 0);
2588 assert (idlemax [i] >= idlecnt [i]);
2589 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2590#endif
2591 }
2592
2593#if EV_FORK_ENABLE
2594 assert (forkmax >= forkcnt);
2595 array_verify (EV_A_ (W *)forks, forkcnt);
2596#endif
2597
2598#if EV_CLEANUP_ENABLE
2599 assert (cleanupmax >= cleanupcnt);
2600 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2601#endif
2602
2603#if EV_ASYNC_ENABLE
2604 assert (asyncmax >= asynccnt);
2605 array_verify (EV_A_ (W *)asyncs, asynccnt);
2606#endif
2607
2608#if EV_PREPARE_ENABLE
2609 assert (preparemax >= preparecnt);
2610 array_verify (EV_A_ (W *)prepares, preparecnt);
2611#endif
2612
2613#if EV_CHECK_ENABLE
2614 assert (checkmax >= checkcnt);
2615 array_verify (EV_A_ (W *)checks, checkcnt);
2616#endif
2617
2618# if 0
2619#if EV_CHILD_ENABLE
2620 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2621 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2622#endif
2623# endif
2624#endif
1457} 2625}
1458#endif 2626#endif
1459 2627
1460#if EV_MULTIPLICITY 2628#if EV_MULTIPLICITY
1461struct ev_loop * 2629struct ev_loop * ecb_cold
1462ev_default_loop_init (unsigned int flags)
1463#else 2630#else
1464int 2631int
2632#endif
1465ev_default_loop (unsigned int flags) 2633ev_default_loop (unsigned int flags) EV_THROW
1466#endif
1467{ 2634{
1468 if (!ev_default_loop_ptr) 2635 if (!ev_default_loop_ptr)
1469 { 2636 {
1470#if EV_MULTIPLICITY 2637#if EV_MULTIPLICITY
1471 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2638 EV_P = ev_default_loop_ptr = &default_loop_struct;
1472#else 2639#else
1473 ev_default_loop_ptr = 1; 2640 ev_default_loop_ptr = 1;
1474#endif 2641#endif
1475 2642
1476 loop_init (EV_A_ flags); 2643 loop_init (EV_A_ flags);
1477 2644
1478 if (ev_backend (EV_A)) 2645 if (ev_backend (EV_A))
1479 { 2646 {
1480#ifndef _WIN32 2647#if EV_CHILD_ENABLE
1481 ev_signal_init (&childev, childcb, SIGCHLD); 2648 ev_signal_init (&childev, childcb, SIGCHLD);
1482 ev_set_priority (&childev, EV_MAXPRI); 2649 ev_set_priority (&childev, EV_MAXPRI);
1483 ev_signal_start (EV_A_ &childev); 2650 ev_signal_start (EV_A_ &childev);
1484 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2651 ev_unref (EV_A); /* child watcher should not keep loop alive */
1485#endif 2652#endif
1490 2657
1491 return ev_default_loop_ptr; 2658 return ev_default_loop_ptr;
1492} 2659}
1493 2660
1494void 2661void
1495ev_default_destroy (void) 2662ev_loop_fork (EV_P) EV_THROW
1496{ 2663{
1497#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr;
1499#endif
1500
1501#ifndef _WIN32
1502 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev);
1504#endif
1505
1506 loop_destroy (EV_A);
1507}
1508
1509void
1510ev_default_fork (void)
1511{
1512#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr;
1514#endif
1515
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 2664 postfork = 1; /* must be in line with ev_default_fork */
1518} 2665}
1519 2666
1520/*****************************************************************************/ 2667/*****************************************************************************/
1521 2668
1522void 2669void
1523ev_invoke (EV_P_ void *w, int revents) 2670ev_invoke (EV_P_ void *w, int revents)
1524{ 2671{
1525 EV_CB_INVOKE ((W)w, revents); 2672 EV_CB_INVOKE ((W)w, revents);
1526} 2673}
1527 2674
1528void inline_speed 2675unsigned int
1529call_pending (EV_P) 2676ev_pending_count (EV_P) EV_THROW
2677{
2678 int pri;
2679 unsigned int count = 0;
2680
2681 for (pri = NUMPRI; pri--; )
2682 count += pendingcnt [pri];
2683
2684 return count;
2685}
2686
2687void noinline
2688ev_invoke_pending (EV_P)
1530{ 2689{
1531 int pri; 2690 int pri;
1532 2691
1533 for (pri = NUMPRI; pri--; ) 2692 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 2693 while (pendingcnt [pri])
1535 { 2694 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2695 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 2696
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541
1542 p->w->pending = 0; 2697 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 2698 EV_CB_INVOKE (p->w, p->events);
1544 } 2699 EV_FREQUENT_CHECK;
1545 } 2700 }
1546} 2701}
1547 2702
1548#if EV_IDLE_ENABLE 2703#if EV_IDLE_ENABLE
1549void inline_size 2704/* make idle watchers pending. this handles the "call-idle */
2705/* only when higher priorities are idle" logic */
2706inline_size void
1550idle_reify (EV_P) 2707idle_reify (EV_P)
1551{ 2708{
1552 if (expect_false (idleall)) 2709 if (expect_false (idleall))
1553 { 2710 {
1554 int pri; 2711 int pri;
1566 } 2723 }
1567 } 2724 }
1568} 2725}
1569#endif 2726#endif
1570 2727
1571void inline_size 2728/* make timers pending */
2729inline_size void
1572timers_reify (EV_P) 2730timers_reify (EV_P)
1573{ 2731{
2732 EV_FREQUENT_CHECK;
2733
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2734 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 2735 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 2736 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 2737 {
2738 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2739
2740 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2741
2742 /* first reschedule or stop timer */
2743 if (w->repeat)
2744 {
2745 ev_at (w) += w->repeat;
2746 if (ev_at (w) < mn_now)
2747 ev_at (w) = mn_now;
2748
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2749 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 2750
1585 ev_at (w) += w->repeat; 2751 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 2752 downheap (timers, timercnt, HEAP0);
2753 }
2754 else
2755 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2756
2757 EV_FREQUENT_CHECK;
2758 feed_reverse (EV_A_ (W)w);
1590 } 2759 }
1591 else 2760 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 2761
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2762 feed_reverse_done (EV_A_ EV_TIMER);
1595 } 2763 }
1596} 2764}
1597 2765
1598#if EV_PERIODIC_ENABLE 2766#if EV_PERIODIC_ENABLE
1599void inline_size 2767
2768static void noinline
2769periodic_recalc (EV_P_ ev_periodic *w)
2770{
2771 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2772 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2773
2774 /* the above almost always errs on the low side */
2775 while (at <= ev_rt_now)
2776 {
2777 ev_tstamp nat = at + w->interval;
2778
2779 /* when resolution fails us, we use ev_rt_now */
2780 if (expect_false (nat == at))
2781 {
2782 at = ev_rt_now;
2783 break;
2784 }
2785
2786 at = nat;
2787 }
2788
2789 ev_at (w) = at;
2790}
2791
2792/* make periodics pending */
2793inline_size void
1600periodics_reify (EV_P) 2794periodics_reify (EV_P)
1601{ 2795{
2796 EV_FREQUENT_CHECK;
2797
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2798 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 2799 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2800 int feed_count = 0;
1605 2801
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2802 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 2803 {
2804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2805
2806 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2807
2808 /* first reschedule or stop timer */
2809 if (w->reschedule_cb)
2810 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2812
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2813 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2814
2815 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 2816 downheap (periodics, periodiccnt, HEAP0);
2817 }
2818 else if (w->interval)
2819 {
2820 periodic_recalc (EV_A_ w);
2821 ANHE_at_cache (periodics [HEAP0]);
2822 downheap (periodics, periodiccnt, HEAP0);
2823 }
2824 else
2825 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2826
2827 EV_FREQUENT_CHECK;
2828 feed_reverse (EV_A_ (W)w);
1614 } 2829 }
1615 else if (w->interval) 2830 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 2831
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2832 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 2833 }
1627} 2834}
1628 2835
2836/* simply recalculate all periodics */
2837/* TODO: maybe ensure that at least one event happens when jumping forward? */
1629static void noinline 2838static void noinline ecb_cold
1630periodics_reschedule (EV_P) 2839periodics_reschedule (EV_P)
1631{ 2840{
1632 int i; 2841 int i;
1633 2842
1634 /* adjust periodics after time jump */ 2843 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 2844 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 2845 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 2846 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 2847
1639 if (w->reschedule_cb) 2848 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2849 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 2850 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2851 periodic_recalc (EV_A_ w);
2852
2853 ANHE_at_cache (periodics [i]);
2854 }
2855
2856 reheap (periodics, periodiccnt);
2857}
2858#endif
2859
2860/* adjust all timers by a given offset */
2861static void noinline ecb_cold
2862timers_reschedule (EV_P_ ev_tstamp adjust)
2863{
2864 int i;
2865
2866 for (i = 0; i < timercnt; ++i)
1643 } 2867 {
1644 2868 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 2869 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 2870 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 2871 }
1648} 2872}
1649#endif
1650 2873
1651void inline_speed 2874/* fetch new monotonic and realtime times from the kernel */
2875/* also detect if there was a timejump, and act accordingly */
2876inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 2877time_update (EV_P_ ev_tstamp max_block)
1653{ 2878{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 2879#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 2880 if (expect_true (have_monotonic))
1658 { 2881 {
2882 int i;
1659 ev_tstamp odiff = rtmn_diff; 2883 ev_tstamp odiff = rtmn_diff;
1660 2884
1661 mn_now = get_clock (); 2885 mn_now = get_clock ();
1662 2886
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2887 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1679 * doesn't hurt either as we only do this on time-jumps or 2903 * doesn't hurt either as we only do this on time-jumps or
1680 * in the unlikely event of having been preempted here. 2904 * in the unlikely event of having been preempted here.
1681 */ 2905 */
1682 for (i = 4; --i; ) 2906 for (i = 4; --i; )
1683 { 2907 {
2908 ev_tstamp diff;
1684 rtmn_diff = ev_rt_now - mn_now; 2909 rtmn_diff = ev_rt_now - mn_now;
1685 2910
2911 diff = odiff - rtmn_diff;
2912
1686 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2913 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1687 return; /* all is well */ 2914 return; /* all is well */
1688 2915
1689 ev_rt_now = ev_time (); 2916 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2917 mn_now = get_clock ();
1691 now_floor = mn_now; 2918 now_floor = mn_now;
1692 } 2919 }
1693 2920
2921 /* no timer adjustment, as the monotonic clock doesn't jump */
2922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2923# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2924 periodics_reschedule (EV_A);
1696# endif 2925# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2926 }
1700 else 2927 else
1701#endif 2928#endif
1702 { 2929 {
1703 ev_rt_now = ev_time (); 2930 ev_rt_now = ev_time ();
1704 2931
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2932 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2933 {
2934 /* adjust timers. this is easy, as the offset is the same for all of them */
2935 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2936#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2937 periodics_reschedule (EV_A);
1709#endif 2938#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2939 }
1714 2940
1715 mn_now = ev_rt_now; 2941 mn_now = ev_rt_now;
1716 } 2942 }
1717} 2943}
1718 2944
1719void 2945int
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2946ev_run (EV_P_ int flags)
1735{ 2947{
2948#if EV_FEATURE_API
2949 ++loop_depth;
2950#endif
2951
2952 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2953
1736 loop_done = EVUNLOOP_CANCEL; 2954 loop_done = EVBREAK_CANCEL;
1737 2955
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2956 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1739 2957
1740 do 2958 do
1741 { 2959 {
2960#if EV_VERIFY >= 2
2961 ev_verify (EV_A);
2962#endif
2963
1742#ifndef _WIN32 2964#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2965 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2966 if (expect_false (getpid () != curpid))
1745 { 2967 {
1746 curpid = getpid (); 2968 curpid = getpid ();
1752 /* we might have forked, so queue fork handlers */ 2974 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork)) 2975 if (expect_false (postfork))
1754 if (forkcnt) 2976 if (forkcnt)
1755 { 2977 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2978 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A); 2979 EV_INVOKE_PENDING;
1758 } 2980 }
1759#endif 2981#endif
1760 2982
2983#if EV_PREPARE_ENABLE
1761 /* queue prepare watchers (and execute them) */ 2984 /* queue prepare watchers (and execute them) */
1762 if (expect_false (preparecnt)) 2985 if (expect_false (preparecnt))
1763 { 2986 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2987 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2988 EV_INVOKE_PENDING;
1766 } 2989 }
2990#endif
1767 2991
1768 if (expect_false (!activecnt)) 2992 if (expect_false (loop_done))
1769 break; 2993 break;
1770 2994
1771 /* we might have forked, so reify kernel state if necessary */ 2995 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2996 if (expect_false (postfork))
1773 loop_fork (EV_A); 2997 loop_fork (EV_A);
1778 /* calculate blocking time */ 3002 /* calculate blocking time */
1779 { 3003 {
1780 ev_tstamp waittime = 0.; 3004 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 3005 ev_tstamp sleeptime = 0.;
1782 3006
3007 /* remember old timestamp for io_blocktime calculation */
3008 ev_tstamp prev_mn_now = mn_now;
3009
3010 /* update time to cancel out callback processing overhead */
3011 time_update (EV_A_ 1e100);
3012
3013 /* from now on, we want a pipe-wake-up */
3014 pipe_write_wanted = 1;
3015
3016 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3017
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3018 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1784 { 3019 {
1785 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100);
1787
1788 waittime = MAX_BLOCKTIME; 3020 waittime = MAX_BLOCKTIME;
1789 3021
1790 if (timercnt) 3022 if (timercnt)
1791 { 3023 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 3024 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1793 if (waittime > to) waittime = to; 3025 if (waittime > to) waittime = to;
1794 } 3026 }
1795 3027
1796#if EV_PERIODIC_ENABLE 3028#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 3029 if (periodiccnt)
1798 { 3030 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3031 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1800 if (waittime > to) waittime = to; 3032 if (waittime > to) waittime = to;
1801 } 3033 }
1802#endif 3034#endif
1803 3035
3036 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 3037 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 3038 waittime = timeout_blocktime;
1806 3039
1807 sleeptime = waittime - backend_fudge; 3040 /* at this point, we NEED to wait, so we have to ensure */
3041 /* to pass a minimum nonzero value to the backend */
3042 if (expect_false (waittime < backend_mintime))
3043 waittime = backend_mintime;
1808 3044
3045 /* extra check because io_blocktime is commonly 0 */
1809 if (expect_true (sleeptime > io_blocktime)) 3046 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 3047 {
3048 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3049
3050 if (sleeptime > waittime - backend_mintime)
3051 sleeptime = waittime - backend_mintime;
3052
3053 if (expect_true (sleeptime > 0.))
3054 {
1814 ev_sleep (sleeptime); 3055 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 3056 waittime -= sleeptime;
3057 }
1816 } 3058 }
1817 } 3059 }
1818 3060
3061#if EV_FEATURE_API
1819 ++loop_count; 3062 ++loop_count;
3063#endif
3064 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1820 backend_poll (EV_A_ waittime); 3065 backend_poll (EV_A_ waittime);
3066 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3067
3068 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3069
3070 if (pipe_write_skipped)
3071 {
3072 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3073 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3074 }
3075
1821 3076
1822 /* update ev_rt_now, do magic */ 3077 /* update ev_rt_now, do magic */
1823 time_update (EV_A_ waittime + sleeptime); 3078 time_update (EV_A_ waittime + sleeptime);
1824 } 3079 }
1825 3080
1832#if EV_IDLE_ENABLE 3087#if EV_IDLE_ENABLE
1833 /* queue idle watchers unless other events are pending */ 3088 /* queue idle watchers unless other events are pending */
1834 idle_reify (EV_A); 3089 idle_reify (EV_A);
1835#endif 3090#endif
1836 3091
3092#if EV_CHECK_ENABLE
1837 /* queue check watchers, to be executed first */ 3093 /* queue check watchers, to be executed first */
1838 if (expect_false (checkcnt)) 3094 if (expect_false (checkcnt))
1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3095 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3096#endif
1840 3097
1841 call_pending (EV_A); 3098 EV_INVOKE_PENDING;
1842 } 3099 }
1843 while (expect_true ( 3100 while (expect_true (
1844 activecnt 3101 activecnt
1845 && !loop_done 3102 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3103 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1847 )); 3104 ));
1848 3105
1849 if (loop_done == EVUNLOOP_ONE) 3106 if (loop_done == EVBREAK_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 3107 loop_done = EVBREAK_CANCEL;
3108
3109#if EV_FEATURE_API
3110 --loop_depth;
3111#endif
3112
3113 return activecnt;
1851} 3114}
1852 3115
1853void 3116void
1854ev_unloop (EV_P_ int how) 3117ev_break (EV_P_ int how) EV_THROW
1855{ 3118{
1856 loop_done = how; 3119 loop_done = how;
1857} 3120}
1858 3121
3122void
3123ev_ref (EV_P) EV_THROW
3124{
3125 ++activecnt;
3126}
3127
3128void
3129ev_unref (EV_P) EV_THROW
3130{
3131 --activecnt;
3132}
3133
3134void
3135ev_now_update (EV_P) EV_THROW
3136{
3137 time_update (EV_A_ 1e100);
3138}
3139
3140void
3141ev_suspend (EV_P) EV_THROW
3142{
3143 ev_now_update (EV_A);
3144}
3145
3146void
3147ev_resume (EV_P) EV_THROW
3148{
3149 ev_tstamp mn_prev = mn_now;
3150
3151 ev_now_update (EV_A);
3152 timers_reschedule (EV_A_ mn_now - mn_prev);
3153#if EV_PERIODIC_ENABLE
3154 /* TODO: really do this? */
3155 periodics_reschedule (EV_A);
3156#endif
3157}
3158
1859/*****************************************************************************/ 3159/*****************************************************************************/
3160/* singly-linked list management, used when the expected list length is short */
1860 3161
1861void inline_size 3162inline_size void
1862wlist_add (WL *head, WL elem) 3163wlist_add (WL *head, WL elem)
1863{ 3164{
1864 elem->next = *head; 3165 elem->next = *head;
1865 *head = elem; 3166 *head = elem;
1866} 3167}
1867 3168
1868void inline_size 3169inline_size void
1869wlist_del (WL *head, WL elem) 3170wlist_del (WL *head, WL elem)
1870{ 3171{
1871 while (*head) 3172 while (*head)
1872 { 3173 {
1873 if (*head == elem) 3174 if (expect_true (*head == elem))
1874 { 3175 {
1875 *head = elem->next; 3176 *head = elem->next;
1876 return; 3177 break;
1877 } 3178 }
1878 3179
1879 head = &(*head)->next; 3180 head = &(*head)->next;
1880 } 3181 }
1881} 3182}
1882 3183
1883void inline_speed 3184/* internal, faster, version of ev_clear_pending */
3185inline_speed void
1884clear_pending (EV_P_ W w) 3186clear_pending (EV_P_ W w)
1885{ 3187{
1886 if (w->pending) 3188 if (w->pending)
1887 { 3189 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3190 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 3191 w->pending = 0;
1890 } 3192 }
1891} 3193}
1892 3194
1893int 3195int
1894ev_clear_pending (EV_P_ void *w) 3196ev_clear_pending (EV_P_ void *w) EV_THROW
1895{ 3197{
1896 W w_ = (W)w; 3198 W w_ = (W)w;
1897 int pending = w_->pending; 3199 int pending = w_->pending;
1898 3200
1899 if (expect_true (pending)) 3201 if (expect_true (pending))
1900 { 3202 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3203 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3204 p->w = (W)&pending_w;
1902 w_->pending = 0; 3205 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 3206 return p->events;
1905 } 3207 }
1906 else 3208 else
1907 return 0; 3209 return 0;
1908} 3210}
1909 3211
1910void inline_size 3212inline_size void
1911pri_adjust (EV_P_ W w) 3213pri_adjust (EV_P_ W w)
1912{ 3214{
1913 int pri = w->priority; 3215 int pri = ev_priority (w);
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3216 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3217 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 3218 ev_set_priority (w, pri);
1917} 3219}
1918 3220
1919void inline_speed 3221inline_speed void
1920ev_start (EV_P_ W w, int active) 3222ev_start (EV_P_ W w, int active)
1921{ 3223{
1922 pri_adjust (EV_A_ w); 3224 pri_adjust (EV_A_ w);
1923 w->active = active; 3225 w->active = active;
1924 ev_ref (EV_A); 3226 ev_ref (EV_A);
1925} 3227}
1926 3228
1927void inline_size 3229inline_size void
1928ev_stop (EV_P_ W w) 3230ev_stop (EV_P_ W w)
1929{ 3231{
1930 ev_unref (EV_A); 3232 ev_unref (EV_A);
1931 w->active = 0; 3233 w->active = 0;
1932} 3234}
1933 3235
1934/*****************************************************************************/ 3236/*****************************************************************************/
1935 3237
1936void noinline 3238void noinline
1937ev_io_start (EV_P_ ev_io *w) 3239ev_io_start (EV_P_ ev_io *w) EV_THROW
1938{ 3240{
1939 int fd = w->fd; 3241 int fd = w->fd;
1940 3242
1941 if (expect_false (ev_is_active (w))) 3243 if (expect_false (ev_is_active (w)))
1942 return; 3244 return;
1943 3245
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 3246 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3247 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3248
3249 EV_FREQUENT_CHECK;
1945 3250
1946 ev_start (EV_A_ (W)w, 1); 3251 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3252 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 3253 wlist_add (&anfds[fd].head, (WL)w);
1949 3254
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3255 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1951 w->events &= ~EV_IOFDSET; 3256 w->events &= ~EV__IOFDSET;
3257
3258 EV_FREQUENT_CHECK;
1952} 3259}
1953 3260
1954void noinline 3261void noinline
1955ev_io_stop (EV_P_ ev_io *w) 3262ev_io_stop (EV_P_ ev_io *w) EV_THROW
1956{ 3263{
1957 clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 3265 if (expect_false (!ev_is_active (w)))
1959 return; 3266 return;
1960 3267
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3268 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3269
3270 EV_FREQUENT_CHECK;
1962 3271
1963 wlist_del (&anfds[w->fd].head, (WL)w); 3272 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 3273 ev_stop (EV_A_ (W)w);
1965 3274
1966 fd_change (EV_A_ w->fd, 1); 3275 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3276
3277 EV_FREQUENT_CHECK;
1967} 3278}
1968 3279
1969void noinline 3280void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 3281ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1971{ 3282{
1972 if (expect_false (ev_is_active (w))) 3283 if (expect_false (ev_is_active (w)))
1973 return; 3284 return;
1974 3285
1975 ev_at (w) += mn_now; 3286 ev_at (w) += mn_now;
1976 3287
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3288 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 3289
3290 EV_FREQUENT_CHECK;
3291
3292 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3293 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 3294 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 3295 ANHE_w (timers [ev_active (w)]) = (WT)w;
3296 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 3297 upheap (timers, ev_active (w));
1983 3298
3299 EV_FREQUENT_CHECK;
3300
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 3301 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 3302}
1986 3303
1987void noinline 3304void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 3305ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1989{ 3306{
1990 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
1992 return; 3309 return;
1993 3310
3311 EV_FREQUENT_CHECK;
3312
1994 { 3313 {
1995 int active = ev_active (w); 3314 int active = ev_active (w);
1996 3315
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 3316 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 3317
3318 --timercnt;
3319
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 3320 if (expect_true (active < timercnt + HEAP0))
2000 { 3321 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 3322 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 3323 adjustheap (timers, timercnt, active);
2003 } 3324 }
2004
2005 --timercnt;
2006 } 3325 }
2007 3326
2008 ev_at (w) -= mn_now; 3327 ev_at (w) -= mn_now;
2009 3328
2010 ev_stop (EV_A_ (W)w); 3329 ev_stop (EV_A_ (W)w);
3330
3331 EV_FREQUENT_CHECK;
2011} 3332}
2012 3333
2013void noinline 3334void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 3335ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2015{ 3336{
3337 EV_FREQUENT_CHECK;
3338
3339 clear_pending (EV_A_ (W)w);
3340
2016 if (ev_is_active (w)) 3341 if (ev_is_active (w))
2017 { 3342 {
2018 if (w->repeat) 3343 if (w->repeat)
2019 { 3344 {
2020 ev_at (w) = mn_now + w->repeat; 3345 ev_at (w) = mn_now + w->repeat;
3346 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 3347 adjustheap (timers, timercnt, ev_active (w));
2022 } 3348 }
2023 else 3349 else
2024 ev_timer_stop (EV_A_ w); 3350 ev_timer_stop (EV_A_ w);
2025 } 3351 }
2026 else if (w->repeat) 3352 else if (w->repeat)
2027 { 3353 {
2028 ev_at (w) = w->repeat; 3354 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 3355 ev_timer_start (EV_A_ w);
2030 } 3356 }
3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361ev_tstamp
3362ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3363{
3364 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2031} 3365}
2032 3366
2033#if EV_PERIODIC_ENABLE 3367#if EV_PERIODIC_ENABLE
2034void noinline 3368void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 3369ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2036{ 3370{
2037 if (expect_false (ev_is_active (w))) 3371 if (expect_false (ev_is_active (w)))
2038 return; 3372 return;
2039 3373
2040 if (w->reschedule_cb) 3374 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3375 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 3376 else if (w->interval)
2043 { 3377 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3378 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 3379 periodic_recalc (EV_A_ w);
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 3380 }
2048 else 3381 else
2049 ev_at (w) = w->offset; 3382 ev_at (w) = w->offset;
2050 3383
3384 EV_FREQUENT_CHECK;
3385
3386 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3387 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 3388 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 3389 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3390 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 3391 upheap (periodics, ev_active (w));
2055 3392
3393 EV_FREQUENT_CHECK;
3394
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 3395 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 3396}
2058 3397
2059void noinline 3398void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 3399ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2061{ 3400{
2062 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2064 return; 3403 return;
2065 3404
3405 EV_FREQUENT_CHECK;
3406
2066 { 3407 {
2067 int active = ev_active (w); 3408 int active = ev_active (w);
2068 3409
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 3410 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 3411
3412 --periodiccnt;
3413
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3414 if (expect_true (active < periodiccnt + HEAP0))
2072 { 3415 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3416 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 3417 adjustheap (periodics, periodiccnt, active);
2075 } 3418 }
2076
2077 --periodiccnt;
2078 } 3419 }
2079 3420
2080 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
2081} 3424}
2082 3425
2083void noinline 3426void noinline
2084ev_periodic_again (EV_P_ ev_periodic *w) 3427ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2085{ 3428{
2086 /* TODO: use adjustheap and recalculation */ 3429 /* TODO: use adjustheap and recalculation */
2087 ev_periodic_stop (EV_A_ w); 3430 ev_periodic_stop (EV_A_ w);
2088 ev_periodic_start (EV_A_ w); 3431 ev_periodic_start (EV_A_ w);
2089} 3432}
2091 3434
2092#ifndef SA_RESTART 3435#ifndef SA_RESTART
2093# define SA_RESTART 0 3436# define SA_RESTART 0
2094#endif 3437#endif
2095 3438
3439#if EV_SIGNAL_ENABLE
3440
2096void noinline 3441void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 3442ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2098{ 3443{
2099#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif
2102 if (expect_false (ev_is_active (w))) 3444 if (expect_false (ev_is_active (w)))
2103 return; 3445 return;
2104 3446
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3447 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2106 3448
2107 evpipe_init (EV_A); 3449#if EV_MULTIPLICITY
3450 assert (("libev: a signal must not be attached to two different loops",
3451 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2108 3452
3453 signals [w->signum - 1].loop = EV_A;
3454#endif
3455
3456 EV_FREQUENT_CHECK;
3457
3458#if EV_USE_SIGNALFD
3459 if (sigfd == -2)
2109 { 3460 {
2110#ifndef _WIN32 3461 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2111 sigset_t full, prev; 3462 if (sigfd < 0 && errno == EINVAL)
2112 sigfillset (&full); 3463 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2113 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif
2115 3464
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3465 if (sigfd >= 0)
3466 {
3467 fd_intern (sigfd); /* doing it twice will not hurt */
2117 3468
2118#ifndef _WIN32 3469 sigemptyset (&sigfd_set);
2119 sigprocmask (SIG_SETMASK, &prev, 0); 3470
2120#endif 3471 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3472 ev_set_priority (&sigfd_w, EV_MAXPRI);
3473 ev_io_start (EV_A_ &sigfd_w);
3474 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3475 }
2121 } 3476 }
3477
3478 if (sigfd >= 0)
3479 {
3480 /* TODO: check .head */
3481 sigaddset (&sigfd_set, w->signum);
3482 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3483
3484 signalfd (sigfd, &sigfd_set, 0);
3485 }
3486#endif
2122 3487
2123 ev_start (EV_A_ (W)w, 1); 3488 ev_start (EV_A_ (W)w, 1);
2124 wlist_add (&signals [w->signum - 1].head, (WL)w); 3489 wlist_add (&signals [w->signum - 1].head, (WL)w);
2125 3490
2126 if (!((WL)w)->next) 3491 if (!((WL)w)->next)
3492# if EV_USE_SIGNALFD
3493 if (sigfd < 0) /*TODO*/
3494# endif
2127 { 3495 {
2128#if _WIN32 3496# ifdef _WIN32
3497 evpipe_init (EV_A);
3498
2129 signal (w->signum, ev_sighandler); 3499 signal (w->signum, ev_sighandler);
2130#else 3500# else
2131 struct sigaction sa; 3501 struct sigaction sa;
3502
3503 evpipe_init (EV_A);
3504
2132 sa.sa_handler = ev_sighandler; 3505 sa.sa_handler = ev_sighandler;
2133 sigfillset (&sa.sa_mask); 3506 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3507 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 3508 sigaction (w->signum, &sa, 0);
3509
3510 if (origflags & EVFLAG_NOSIGMASK)
3511 {
3512 sigemptyset (&sa.sa_mask);
3513 sigaddset (&sa.sa_mask, w->signum);
3514 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3515 }
2136#endif 3516#endif
2137 } 3517 }
3518
3519 EV_FREQUENT_CHECK;
2138} 3520}
2139 3521
2140void noinline 3522void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 3523ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2142{ 3524{
2143 clear_pending (EV_A_ (W)w); 3525 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 3526 if (expect_false (!ev_is_active (w)))
2145 return; 3527 return;
2146 3528
3529 EV_FREQUENT_CHECK;
3530
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 3531 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 3532 ev_stop (EV_A_ (W)w);
2149 3533
2150 if (!signals [w->signum - 1].head) 3534 if (!signals [w->signum - 1].head)
3535 {
3536#if EV_MULTIPLICITY
3537 signals [w->signum - 1].loop = 0; /* unattach from signal */
3538#endif
3539#if EV_USE_SIGNALFD
3540 if (sigfd >= 0)
3541 {
3542 sigset_t ss;
3543
3544 sigemptyset (&ss);
3545 sigaddset (&ss, w->signum);
3546 sigdelset (&sigfd_set, w->signum);
3547
3548 signalfd (sigfd, &sigfd_set, 0);
3549 sigprocmask (SIG_UNBLOCK, &ss, 0);
3550 }
3551 else
3552#endif
2151 signal (w->signum, SIG_DFL); 3553 signal (w->signum, SIG_DFL);
3554 }
3555
3556 EV_FREQUENT_CHECK;
2152} 3557}
3558
3559#endif
3560
3561#if EV_CHILD_ENABLE
2153 3562
2154void 3563void
2155ev_child_start (EV_P_ ev_child *w) 3564ev_child_start (EV_P_ ev_child *w) EV_THROW
2156{ 3565{
2157#if EV_MULTIPLICITY 3566#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3567 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 3568#endif
2160 if (expect_false (ev_is_active (w))) 3569 if (expect_false (ev_is_active (w)))
2161 return; 3570 return;
2162 3571
3572 EV_FREQUENT_CHECK;
3573
2163 ev_start (EV_A_ (W)w, 1); 3574 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3575 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3576
3577 EV_FREQUENT_CHECK;
2165} 3578}
2166 3579
2167void 3580void
2168ev_child_stop (EV_P_ ev_child *w) 3581ev_child_stop (EV_P_ ev_child *w) EV_THROW
2169{ 3582{
2170 clear_pending (EV_A_ (W)w); 3583 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 3584 if (expect_false (!ev_is_active (w)))
2172 return; 3585 return;
2173 3586
3587 EV_FREQUENT_CHECK;
3588
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3589 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
2176} 3593}
3594
3595#endif
2177 3596
2178#if EV_STAT_ENABLE 3597#if EV_STAT_ENABLE
2179 3598
2180# ifdef _WIN32 3599# ifdef _WIN32
2181# undef lstat 3600# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 3601# define lstat(a,b) _stati64 (a,b)
2183# endif 3602# endif
2184 3603
2185#define DEF_STAT_INTERVAL 5.0074891 3604#define DEF_STAT_INTERVAL 5.0074891
3605#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 3606#define MIN_STAT_INTERVAL 0.1074891
2187 3607
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3608static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 3609
2190#if EV_USE_INOTIFY 3610#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 3611
3612/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3613# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2192 3614
2193static void noinline 3615static void noinline
2194infy_add (EV_P_ ev_stat *w) 3616infy_add (EV_P_ ev_stat *w)
2195{ 3617{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3618 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 3619
2198 if (w->wd < 0) 3620 if (w->wd >= 0)
3621 {
3622 struct statfs sfs;
3623
3624 /* now local changes will be tracked by inotify, but remote changes won't */
3625 /* unless the filesystem is known to be local, we therefore still poll */
3626 /* also do poll on <2.6.25, but with normal frequency */
3627
3628 if (!fs_2625)
3629 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3630 else if (!statfs (w->path, &sfs)
3631 && (sfs.f_type == 0x1373 /* devfs */
3632 || sfs.f_type == 0xEF53 /* ext2/3 */
3633 || sfs.f_type == 0x3153464a /* jfs */
3634 || sfs.f_type == 0x52654973 /* reiser3 */
3635 || sfs.f_type == 0x01021994 /* tempfs */
3636 || sfs.f_type == 0x58465342 /* xfs */))
3637 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3638 else
3639 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2199 { 3640 }
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3641 else
3642 {
3643 /* can't use inotify, continue to stat */
3644 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2201 3645
2202 /* monitor some parent directory for speedup hints */ 3646 /* if path is not there, monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3647 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 3648 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3649 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 3650 {
2207 char path [4096]; 3651 char path [4096];
2208 strcpy (path, w->path); 3652 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3656 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3657 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 3658
2215 char *pend = strrchr (path, '/'); 3659 char *pend = strrchr (path, '/');
2216 3660
2217 if (!pend) 3661 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 3662 break;
2219 3663
2220 *pend = 0; 3664 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 3665 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 3666 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3667 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 3668 }
2225 } 3669 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 3670
2229 if (w->wd >= 0) 3671 if (w->wd >= 0)
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3672 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3673
3674 /* now re-arm timer, if required */
3675 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3676 ev_timer_again (EV_A_ &w->timer);
3677 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2231} 3678}
2232 3679
2233static void noinline 3680static void noinline
2234infy_del (EV_P_ ev_stat *w) 3681infy_del (EV_P_ ev_stat *w)
2235{ 3682{
2238 3685
2239 if (wd < 0) 3686 if (wd < 0)
2240 return; 3687 return;
2241 3688
2242 w->wd = -2; 3689 w->wd = -2;
2243 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3690 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2244 wlist_del (&fs_hash [slot].head, (WL)w); 3691 wlist_del (&fs_hash [slot].head, (WL)w);
2245 3692
2246 /* remove this watcher, if others are watching it, they will rearm */ 3693 /* remove this watcher, if others are watching it, they will rearm */
2247 inotify_rm_watch (fs_fd, wd); 3694 inotify_rm_watch (fs_fd, wd);
2248} 3695}
2249 3696
2250static void noinline 3697static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3698infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 3699{
2253 if (slot < 0) 3700 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 3701 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3702 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 3703 infy_wd (EV_A_ slot, wd, ev);
2257 else 3704 else
2258 { 3705 {
2259 WL w_; 3706 WL w_;
2260 3707
2261 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3708 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2262 { 3709 {
2263 ev_stat *w = (ev_stat *)w_; 3710 ev_stat *w = (ev_stat *)w_;
2264 w_ = w_->next; /* lets us remove this watcher and all before it */ 3711 w_ = w_->next; /* lets us remove this watcher and all before it */
2265 3712
2266 if (w->wd == wd || wd == -1) 3713 if (w->wd == wd || wd == -1)
2267 { 3714 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3715 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 3716 {
3717 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2270 w->wd = -1; 3718 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 3719 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 3720 }
2273 3721
2274 stat_timer_cb (EV_A_ &w->timer, 0); 3722 stat_timer_cb (EV_A_ &w->timer, 0);
2279 3727
2280static void 3728static void
2281infy_cb (EV_P_ ev_io *w, int revents) 3729infy_cb (EV_P_ ev_io *w, int revents)
2282{ 3730{
2283 char buf [EV_INOTIFY_BUFSIZE]; 3731 char buf [EV_INOTIFY_BUFSIZE];
2284 struct inotify_event *ev = (struct inotify_event *)buf;
2285 int ofs; 3732 int ofs;
2286 int len = read (fs_fd, buf, sizeof (buf)); 3733 int len = read (fs_fd, buf, sizeof (buf));
2287 3734
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3735 for (ofs = 0; ofs < len; )
3736 {
3737 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3738 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3739 ofs += sizeof (struct inotify_event) + ev->len;
3740 }
2290} 3741}
2291 3742
2292void inline_size 3743inline_size void ecb_cold
3744ev_check_2625 (EV_P)
3745{
3746 /* kernels < 2.6.25 are borked
3747 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3748 */
3749 if (ev_linux_version () < 0x020619)
3750 return;
3751
3752 fs_2625 = 1;
3753}
3754
3755inline_size int
3756infy_newfd (void)
3757{
3758#if defined IN_CLOEXEC && defined IN_NONBLOCK
3759 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3760 if (fd >= 0)
3761 return fd;
3762#endif
3763 return inotify_init ();
3764}
3765
3766inline_size void
2293infy_init (EV_P) 3767infy_init (EV_P)
2294{ 3768{
2295 if (fs_fd != -2) 3769 if (fs_fd != -2)
2296 return; 3770 return;
2297 3771
3772 fs_fd = -1;
3773
3774 ev_check_2625 (EV_A);
3775
2298 fs_fd = inotify_init (); 3776 fs_fd = infy_newfd ();
2299 3777
2300 if (fs_fd >= 0) 3778 if (fs_fd >= 0)
2301 { 3779 {
3780 fd_intern (fs_fd);
2302 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3781 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2303 ev_set_priority (&fs_w, EV_MAXPRI); 3782 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 3783 ev_io_start (EV_A_ &fs_w);
3784 ev_unref (EV_A);
2305 } 3785 }
2306} 3786}
2307 3787
2308void inline_size 3788inline_size void
2309infy_fork (EV_P) 3789infy_fork (EV_P)
2310{ 3790{
2311 int slot; 3791 int slot;
2312 3792
2313 if (fs_fd < 0) 3793 if (fs_fd < 0)
2314 return; 3794 return;
2315 3795
3796 ev_ref (EV_A);
3797 ev_io_stop (EV_A_ &fs_w);
2316 close (fs_fd); 3798 close (fs_fd);
2317 fs_fd = inotify_init (); 3799 fs_fd = infy_newfd ();
2318 3800
3801 if (fs_fd >= 0)
3802 {
3803 fd_intern (fs_fd);
3804 ev_io_set (&fs_w, fs_fd, EV_READ);
3805 ev_io_start (EV_A_ &fs_w);
3806 ev_unref (EV_A);
3807 }
3808
2319 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3809 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2320 { 3810 {
2321 WL w_ = fs_hash [slot].head; 3811 WL w_ = fs_hash [slot].head;
2322 fs_hash [slot].head = 0; 3812 fs_hash [slot].head = 0;
2323 3813
2324 while (w_) 3814 while (w_)
2329 w->wd = -1; 3819 w->wd = -1;
2330 3820
2331 if (fs_fd >= 0) 3821 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 3822 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 3823 else
3824 {
3825 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3826 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2334 ev_timer_start (EV_A_ &w->timer); 3827 ev_timer_again (EV_A_ &w->timer);
3828 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3829 }
2335 } 3830 }
2336
2337 } 3831 }
2338} 3832}
2339 3833
3834#endif
3835
3836#ifdef _WIN32
3837# define EV_LSTAT(p,b) _stati64 (p, b)
3838#else
3839# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 3840#endif
2341 3841
2342void 3842void
2343ev_stat_stat (EV_P_ ev_stat *w) 3843ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2344{ 3844{
2345 if (lstat (w->path, &w->attr) < 0) 3845 if (lstat (w->path, &w->attr) < 0)
2346 w->attr.st_nlink = 0; 3846 w->attr.st_nlink = 0;
2347 else if (!w->attr.st_nlink) 3847 else if (!w->attr.st_nlink)
2348 w->attr.st_nlink = 1; 3848 w->attr.st_nlink = 1;
2351static void noinline 3851static void noinline
2352stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3852stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2353{ 3853{
2354 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3854 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2355 3855
2356 /* we copy this here each the time so that */ 3856 ev_statdata prev = w->attr;
2357 /* prev has the old value when the callback gets invoked */
2358 w->prev = w->attr;
2359 ev_stat_stat (EV_A_ w); 3857 ev_stat_stat (EV_A_ w);
2360 3858
2361 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3859 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2362 if ( 3860 if (
2363 w->prev.st_dev != w->attr.st_dev 3861 prev.st_dev != w->attr.st_dev
2364 || w->prev.st_ino != w->attr.st_ino 3862 || prev.st_ino != w->attr.st_ino
2365 || w->prev.st_mode != w->attr.st_mode 3863 || prev.st_mode != w->attr.st_mode
2366 || w->prev.st_nlink != w->attr.st_nlink 3864 || prev.st_nlink != w->attr.st_nlink
2367 || w->prev.st_uid != w->attr.st_uid 3865 || prev.st_uid != w->attr.st_uid
2368 || w->prev.st_gid != w->attr.st_gid 3866 || prev.st_gid != w->attr.st_gid
2369 || w->prev.st_rdev != w->attr.st_rdev 3867 || prev.st_rdev != w->attr.st_rdev
2370 || w->prev.st_size != w->attr.st_size 3868 || prev.st_size != w->attr.st_size
2371 || w->prev.st_atime != w->attr.st_atime 3869 || prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 3870 || prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 3871 || prev.st_ctime != w->attr.st_ctime
2374 ) { 3872 ) {
3873 /* we only update w->prev on actual differences */
3874 /* in case we test more often than invoke the callback, */
3875 /* to ensure that prev is always different to attr */
3876 w->prev = prev;
3877
2375 #if EV_USE_INOTIFY 3878 #if EV_USE_INOTIFY
3879 if (fs_fd >= 0)
3880 {
2376 infy_del (EV_A_ w); 3881 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 3882 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 3883 ev_stat_stat (EV_A_ w); /* avoid race... */
3884 }
2379 #endif 3885 #endif
2380 3886
2381 ev_feed_event (EV_A_ w, EV_STAT); 3887 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 3888 }
2383} 3889}
2384 3890
2385void 3891void
2386ev_stat_start (EV_P_ ev_stat *w) 3892ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2387{ 3893{
2388 if (expect_false (ev_is_active (w))) 3894 if (expect_false (ev_is_active (w)))
2389 return; 3895 return;
2390 3896
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 3897 ev_stat_stat (EV_A_ w);
2396 3898
3899 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 3900 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 3901
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3902 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 3903 ev_set_priority (&w->timer, ev_priority (w));
2402 3904
2403#if EV_USE_INOTIFY 3905#if EV_USE_INOTIFY
2404 infy_init (EV_A); 3906 infy_init (EV_A);
2405 3907
2406 if (fs_fd >= 0) 3908 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 3909 infy_add (EV_A_ w);
2408 else 3910 else
2409#endif 3911#endif
3912 {
2410 ev_timer_start (EV_A_ &w->timer); 3913 ev_timer_again (EV_A_ &w->timer);
3914 ev_unref (EV_A);
3915 }
2411 3916
2412 ev_start (EV_A_ (W)w, 1); 3917 ev_start (EV_A_ (W)w, 1);
3918
3919 EV_FREQUENT_CHECK;
2413} 3920}
2414 3921
2415void 3922void
2416ev_stat_stop (EV_P_ ev_stat *w) 3923ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2417{ 3924{
2418 clear_pending (EV_A_ (W)w); 3925 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 3926 if (expect_false (!ev_is_active (w)))
2420 return; 3927 return;
2421 3928
3929 EV_FREQUENT_CHECK;
3930
2422#if EV_USE_INOTIFY 3931#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 3932 infy_del (EV_A_ w);
2424#endif 3933#endif
3934
3935 if (ev_is_active (&w->timer))
3936 {
3937 ev_ref (EV_A);
2425 ev_timer_stop (EV_A_ &w->timer); 3938 ev_timer_stop (EV_A_ &w->timer);
3939 }
2426 3940
2427 ev_stop (EV_A_ (W)w); 3941 ev_stop (EV_A_ (W)w);
3942
3943 EV_FREQUENT_CHECK;
2428} 3944}
2429#endif 3945#endif
2430 3946
2431#if EV_IDLE_ENABLE 3947#if EV_IDLE_ENABLE
2432void 3948void
2433ev_idle_start (EV_P_ ev_idle *w) 3949ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2434{ 3950{
2435 if (expect_false (ev_is_active (w))) 3951 if (expect_false (ev_is_active (w)))
2436 return; 3952 return;
2437 3953
2438 pri_adjust (EV_A_ (W)w); 3954 pri_adjust (EV_A_ (W)w);
3955
3956 EV_FREQUENT_CHECK;
2439 3957
2440 { 3958 {
2441 int active = ++idlecnt [ABSPRI (w)]; 3959 int active = ++idlecnt [ABSPRI (w)];
2442 3960
2443 ++idleall; 3961 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 3962 ev_start (EV_A_ (W)w, active);
2445 3963
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3964 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 3965 idles [ABSPRI (w)][active - 1] = w;
2448 } 3966 }
3967
3968 EV_FREQUENT_CHECK;
2449} 3969}
2450 3970
2451void 3971void
2452ev_idle_stop (EV_P_ ev_idle *w) 3972ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2453{ 3973{
2454 clear_pending (EV_A_ (W)w); 3974 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3975 if (expect_false (!ev_is_active (w)))
2456 return; 3976 return;
2457 3977
3978 EV_FREQUENT_CHECK;
3979
2458 { 3980 {
2459 int active = ev_active (w); 3981 int active = ev_active (w);
2460 3982
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3983 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3984 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 3985
2464 ev_stop (EV_A_ (W)w); 3986 ev_stop (EV_A_ (W)w);
2465 --idleall; 3987 --idleall;
2466 } 3988 }
2467}
2468#endif
2469 3989
3990 EV_FREQUENT_CHECK;
3991}
3992#endif
3993
3994#if EV_PREPARE_ENABLE
2470void 3995void
2471ev_prepare_start (EV_P_ ev_prepare *w) 3996ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2472{ 3997{
2473 if (expect_false (ev_is_active (w))) 3998 if (expect_false (ev_is_active (w)))
2474 return; 3999 return;
4000
4001 EV_FREQUENT_CHECK;
2475 4002
2476 ev_start (EV_A_ (W)w, ++preparecnt); 4003 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4004 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 4005 prepares [preparecnt - 1] = w;
4006
4007 EV_FREQUENT_CHECK;
2479} 4008}
2480 4009
2481void 4010void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 4011ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2483{ 4012{
2484 clear_pending (EV_A_ (W)w); 4013 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 4014 if (expect_false (!ev_is_active (w)))
2486 return; 4015 return;
2487 4016
4017 EV_FREQUENT_CHECK;
4018
2488 { 4019 {
2489 int active = ev_active (w); 4020 int active = ev_active (w);
2490 4021
2491 prepares [active - 1] = prepares [--preparecnt]; 4022 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 4023 ev_active (prepares [active - 1]) = active;
2493 } 4024 }
2494 4025
2495 ev_stop (EV_A_ (W)w); 4026 ev_stop (EV_A_ (W)w);
2496}
2497 4027
4028 EV_FREQUENT_CHECK;
4029}
4030#endif
4031
4032#if EV_CHECK_ENABLE
2498void 4033void
2499ev_check_start (EV_P_ ev_check *w) 4034ev_check_start (EV_P_ ev_check *w) EV_THROW
2500{ 4035{
2501 if (expect_false (ev_is_active (w))) 4036 if (expect_false (ev_is_active (w)))
2502 return; 4037 return;
4038
4039 EV_FREQUENT_CHECK;
2503 4040
2504 ev_start (EV_A_ (W)w, ++checkcnt); 4041 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4042 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 4043 checks [checkcnt - 1] = w;
4044
4045 EV_FREQUENT_CHECK;
2507} 4046}
2508 4047
2509void 4048void
2510ev_check_stop (EV_P_ ev_check *w) 4049ev_check_stop (EV_P_ ev_check *w) EV_THROW
2511{ 4050{
2512 clear_pending (EV_A_ (W)w); 4051 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 4052 if (expect_false (!ev_is_active (w)))
2514 return; 4053 return;
2515 4054
4055 EV_FREQUENT_CHECK;
4056
2516 { 4057 {
2517 int active = ev_active (w); 4058 int active = ev_active (w);
2518 4059
2519 checks [active - 1] = checks [--checkcnt]; 4060 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 4061 ev_active (checks [active - 1]) = active;
2521 } 4062 }
2522 4063
2523 ev_stop (EV_A_ (W)w); 4064 ev_stop (EV_A_ (W)w);
4065
4066 EV_FREQUENT_CHECK;
2524} 4067}
4068#endif
2525 4069
2526#if EV_EMBED_ENABLE 4070#if EV_EMBED_ENABLE
2527void noinline 4071void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 4072ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2529{ 4073{
2530 ev_loop (w->other, EVLOOP_NONBLOCK); 4074 ev_run (w->other, EVRUN_NOWAIT);
2531} 4075}
2532 4076
2533static void 4077static void
2534embed_io_cb (EV_P_ ev_io *io, int revents) 4078embed_io_cb (EV_P_ ev_io *io, int revents)
2535{ 4079{
2536 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2537 4081
2538 if (ev_cb (w)) 4082 if (ev_cb (w))
2539 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4083 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2540 else 4084 else
2541 ev_loop (w->other, EVLOOP_NONBLOCK); 4085 ev_run (w->other, EVRUN_NOWAIT);
2542} 4086}
2543 4087
2544static void 4088static void
2545embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4089embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2546{ 4090{
2547 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4091 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2548 4092
2549 { 4093 {
2550 struct ev_loop *loop = w->other; 4094 EV_P = w->other;
2551 4095
2552 while (fdchangecnt) 4096 while (fdchangecnt)
2553 { 4097 {
2554 fd_reify (EV_A); 4098 fd_reify (EV_A);
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4099 ev_run (EV_A_ EVRUN_NOWAIT);
2556 } 4100 }
2557 } 4101 }
4102}
4103
4104static void
4105embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4106{
4107 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4108
4109 ev_embed_stop (EV_A_ w);
4110
4111 {
4112 EV_P = w->other;
4113
4114 ev_loop_fork (EV_A);
4115 ev_run (EV_A_ EVRUN_NOWAIT);
4116 }
4117
4118 ev_embed_start (EV_A_ w);
2558} 4119}
2559 4120
2560#if 0 4121#if 0
2561static void 4122static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4123embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564 ev_idle_stop (EV_A_ idle); 4125 ev_idle_stop (EV_A_ idle);
2565} 4126}
2566#endif 4127#endif
2567 4128
2568void 4129void
2569ev_embed_start (EV_P_ ev_embed *w) 4130ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2570{ 4131{
2571 if (expect_false (ev_is_active (w))) 4132 if (expect_false (ev_is_active (w)))
2572 return; 4133 return;
2573 4134
2574 { 4135 {
2575 struct ev_loop *loop = w->other; 4136 EV_P = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4137 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4138 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 4139 }
4140
4141 EV_FREQUENT_CHECK;
2579 4142
2580 ev_set_priority (&w->io, ev_priority (w)); 4143 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 4144 ev_io_start (EV_A_ &w->io);
2582 4145
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 4146 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 4147 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 4148 ev_prepare_start (EV_A_ &w->prepare);
2586 4149
4150 ev_fork_init (&w->fork, embed_fork_cb);
4151 ev_fork_start (EV_A_ &w->fork);
4152
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4153 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 4154
2589 ev_start (EV_A_ (W)w, 1); 4155 ev_start (EV_A_ (W)w, 1);
4156
4157 EV_FREQUENT_CHECK;
2590} 4158}
2591 4159
2592void 4160void
2593ev_embed_stop (EV_P_ ev_embed *w) 4161ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2594{ 4162{
2595 clear_pending (EV_A_ (W)w); 4163 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 4164 if (expect_false (!ev_is_active (w)))
2597 return; 4165 return;
2598 4166
4167 EV_FREQUENT_CHECK;
4168
2599 ev_io_stop (EV_A_ &w->io); 4169 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 4170 ev_prepare_stop (EV_A_ &w->prepare);
4171 ev_fork_stop (EV_A_ &w->fork);
2601 4172
2602 ev_stop (EV_A_ (W)w); 4173 ev_stop (EV_A_ (W)w);
4174
4175 EV_FREQUENT_CHECK;
2603} 4176}
2604#endif 4177#endif
2605 4178
2606#if EV_FORK_ENABLE 4179#if EV_FORK_ENABLE
2607void 4180void
2608ev_fork_start (EV_P_ ev_fork *w) 4181ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2609{ 4182{
2610 if (expect_false (ev_is_active (w))) 4183 if (expect_false (ev_is_active (w)))
2611 return; 4184 return;
4185
4186 EV_FREQUENT_CHECK;
2612 4187
2613 ev_start (EV_A_ (W)w, ++forkcnt); 4188 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4189 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 4190 forks [forkcnt - 1] = w;
4191
4192 EV_FREQUENT_CHECK;
2616} 4193}
2617 4194
2618void 4195void
2619ev_fork_stop (EV_P_ ev_fork *w) 4196ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2620{ 4197{
2621 clear_pending (EV_A_ (W)w); 4198 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 4199 if (expect_false (!ev_is_active (w)))
2623 return; 4200 return;
2624 4201
4202 EV_FREQUENT_CHECK;
4203
2625 { 4204 {
2626 int active = ev_active (w); 4205 int active = ev_active (w);
2627 4206
2628 forks [active - 1] = forks [--forkcnt]; 4207 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 4208 ev_active (forks [active - 1]) = active;
2630 } 4209 }
2631 4210
2632 ev_stop (EV_A_ (W)w); 4211 ev_stop (EV_A_ (W)w);
4212
4213 EV_FREQUENT_CHECK;
4214}
4215#endif
4216
4217#if EV_CLEANUP_ENABLE
4218void
4219ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4220{
4221 if (expect_false (ev_is_active (w)))
4222 return;
4223
4224 EV_FREQUENT_CHECK;
4225
4226 ev_start (EV_A_ (W)w, ++cleanupcnt);
4227 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4228 cleanups [cleanupcnt - 1] = w;
4229
4230 /* cleanup watchers should never keep a refcount on the loop */
4231 ev_unref (EV_A);
4232 EV_FREQUENT_CHECK;
4233}
4234
4235void
4236ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4237{
4238 clear_pending (EV_A_ (W)w);
4239 if (expect_false (!ev_is_active (w)))
4240 return;
4241
4242 EV_FREQUENT_CHECK;
4243 ev_ref (EV_A);
4244
4245 {
4246 int active = ev_active (w);
4247
4248 cleanups [active - 1] = cleanups [--cleanupcnt];
4249 ev_active (cleanups [active - 1]) = active;
4250 }
4251
4252 ev_stop (EV_A_ (W)w);
4253
4254 EV_FREQUENT_CHECK;
2633} 4255}
2634#endif 4256#endif
2635 4257
2636#if EV_ASYNC_ENABLE 4258#if EV_ASYNC_ENABLE
2637void 4259void
2638ev_async_start (EV_P_ ev_async *w) 4260ev_async_start (EV_P_ ev_async *w) EV_THROW
2639{ 4261{
2640 if (expect_false (ev_is_active (w))) 4262 if (expect_false (ev_is_active (w)))
2641 return; 4263 return;
2642 4264
4265 w->sent = 0;
4266
2643 evpipe_init (EV_A); 4267 evpipe_init (EV_A);
4268
4269 EV_FREQUENT_CHECK;
2644 4270
2645 ev_start (EV_A_ (W)w, ++asynccnt); 4271 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4272 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 4273 asyncs [asynccnt - 1] = w;
4274
4275 EV_FREQUENT_CHECK;
2648} 4276}
2649 4277
2650void 4278void
2651ev_async_stop (EV_P_ ev_async *w) 4279ev_async_stop (EV_P_ ev_async *w) EV_THROW
2652{ 4280{
2653 clear_pending (EV_A_ (W)w); 4281 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 4282 if (expect_false (!ev_is_active (w)))
2655 return; 4283 return;
2656 4284
4285 EV_FREQUENT_CHECK;
4286
2657 { 4287 {
2658 int active = ev_active (w); 4288 int active = ev_active (w);
2659 4289
2660 asyncs [active - 1] = asyncs [--asynccnt]; 4290 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 4291 ev_active (asyncs [active - 1]) = active;
2662 } 4292 }
2663 4293
2664 ev_stop (EV_A_ (W)w); 4294 ev_stop (EV_A_ (W)w);
4295
4296 EV_FREQUENT_CHECK;
2665} 4297}
2666 4298
2667void 4299void
2668ev_async_send (EV_P_ ev_async *w) 4300ev_async_send (EV_P_ ev_async *w) EV_THROW
2669{ 4301{
2670 w->sent = 1; 4302 w->sent = 1;
2671 evpipe_write (EV_A_ &gotasync); 4303 evpipe_write (EV_A_ &async_pending);
2672} 4304}
2673#endif 4305#endif
2674 4306
2675/*****************************************************************************/ 4307/*****************************************************************************/
2676 4308
2686once_cb (EV_P_ struct ev_once *once, int revents) 4318once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 4319{
2688 void (*cb)(int revents, void *arg) = once->cb; 4320 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 4321 void *arg = once->arg;
2690 4322
2691 ev_io_stop (EV_A_ &once->io); 4323 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 4324 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 4325 ev_free (once);
2694 4326
2695 cb (revents, arg); 4327 cb (revents, arg);
2696} 4328}
2697 4329
2698static void 4330static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 4331once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 4332{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4333 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4334
4335 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 4336}
2703 4337
2704static void 4338static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 4339once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 4340{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4341 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4342
4343 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 4344}
2709 4345
2710void 4346void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4347ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2712{ 4348{
2713 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4349 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2714 4350
2715 if (expect_false (!once)) 4351 if (expect_false (!once))
2716 { 4352 {
2717 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4353 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2718 return; 4354 return;
2719 } 4355 }
2720 4356
2721 once->cb = cb; 4357 once->cb = cb;
2722 once->arg = arg; 4358 once->arg = arg;
2734 ev_timer_set (&once->to, timeout, 0.); 4370 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 4371 ev_timer_start (EV_A_ &once->to);
2736 } 4372 }
2737} 4373}
2738 4374
4375/*****************************************************************************/
4376
4377#if EV_WALK_ENABLE
4378void ecb_cold
4379ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4380{
4381 int i, j;
4382 ev_watcher_list *wl, *wn;
4383
4384 if (types & (EV_IO | EV_EMBED))
4385 for (i = 0; i < anfdmax; ++i)
4386 for (wl = anfds [i].head; wl; )
4387 {
4388 wn = wl->next;
4389
4390#if EV_EMBED_ENABLE
4391 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4392 {
4393 if (types & EV_EMBED)
4394 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4395 }
4396 else
4397#endif
4398#if EV_USE_INOTIFY
4399 if (ev_cb ((ev_io *)wl) == infy_cb)
4400 ;
4401 else
4402#endif
4403 if ((ev_io *)wl != &pipe_w)
4404 if (types & EV_IO)
4405 cb (EV_A_ EV_IO, wl);
4406
4407 wl = wn;
4408 }
4409
4410 if (types & (EV_TIMER | EV_STAT))
4411 for (i = timercnt + HEAP0; i-- > HEAP0; )
4412#if EV_STAT_ENABLE
4413 /*TODO: timer is not always active*/
4414 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4415 {
4416 if (types & EV_STAT)
4417 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4418 }
4419 else
4420#endif
4421 if (types & EV_TIMER)
4422 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4423
4424#if EV_PERIODIC_ENABLE
4425 if (types & EV_PERIODIC)
4426 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4427 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4428#endif
4429
4430#if EV_IDLE_ENABLE
4431 if (types & EV_IDLE)
4432 for (j = NUMPRI; j--; )
4433 for (i = idlecnt [j]; i--; )
4434 cb (EV_A_ EV_IDLE, idles [j][i]);
4435#endif
4436
4437#if EV_FORK_ENABLE
4438 if (types & EV_FORK)
4439 for (i = forkcnt; i--; )
4440 if (ev_cb (forks [i]) != embed_fork_cb)
4441 cb (EV_A_ EV_FORK, forks [i]);
4442#endif
4443
4444#if EV_ASYNC_ENABLE
4445 if (types & EV_ASYNC)
4446 for (i = asynccnt; i--; )
4447 cb (EV_A_ EV_ASYNC, asyncs [i]);
4448#endif
4449
4450#if EV_PREPARE_ENABLE
4451 if (types & EV_PREPARE)
4452 for (i = preparecnt; i--; )
4453# if EV_EMBED_ENABLE
4454 if (ev_cb (prepares [i]) != embed_prepare_cb)
4455# endif
4456 cb (EV_A_ EV_PREPARE, prepares [i]);
4457#endif
4458
4459#if EV_CHECK_ENABLE
4460 if (types & EV_CHECK)
4461 for (i = checkcnt; i--; )
4462 cb (EV_A_ EV_CHECK, checks [i]);
4463#endif
4464
4465#if EV_SIGNAL_ENABLE
4466 if (types & EV_SIGNAL)
4467 for (i = 0; i < EV_NSIG - 1; ++i)
4468 for (wl = signals [i].head; wl; )
4469 {
4470 wn = wl->next;
4471 cb (EV_A_ EV_SIGNAL, wl);
4472 wl = wn;
4473 }
4474#endif
4475
4476#if EV_CHILD_ENABLE
4477 if (types & EV_CHILD)
4478 for (i = (EV_PID_HASHSIZE); i--; )
4479 for (wl = childs [i]; wl; )
4480 {
4481 wn = wl->next;
4482 cb (EV_A_ EV_CHILD, wl);
4483 wl = wn;
4484 }
4485#endif
4486/* EV_STAT 0x00001000 /* stat data changed */
4487/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4488}
4489#endif
4490
2739#if EV_MULTIPLICITY 4491#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 4492 #include "ev_wrap.h"
2741#endif 4493#endif
2742 4494
2743#ifdef __cplusplus
2744}
2745#endif
2746

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines