ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.426 by root, Sun May 6 13:42:10 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
64#endif 127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
65 137
66#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
67#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
68#include <fcntl.h> 169#include <fcntl.h>
69#include <stddef.h> 170#include <stddef.h>
70 171
71#include <stdio.h> 172#include <stdio.h>
72 173
73#include <assert.h> 174#include <assert.h>
74#include <errno.h> 175#include <errno.h>
75#include <sys/types.h> 176#include <sys/types.h>
76#include <time.h> 177#include <time.h>
178#include <limits.h>
77 179
78#include <signal.h> 180#include <signal.h>
79 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
80#ifndef _WIN32 199#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 200# include <sys/time.h>
83# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
84#else 203#else
204# include <io.h>
85# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 206# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
89# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
90#endif 260# endif
91 261#endif
92/**/
93 262
94#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
95# define EV_USE_MONOTONIC 1 267# define EV_USE_MONOTONIC 0
268# endif
269#endif
270
271#ifndef EV_USE_REALTIME
272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
96#endif 281#endif
97 282
98#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
100# define EV_SELECT_USE_FD_SET 1
101#endif 285#endif
102 286
103#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
104# ifdef _WIN32 288# ifdef _WIN32
105# define EV_USE_POLL 0 289# define EV_USE_POLL 0
106# else 290# else
107# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
108# endif 292# endif
109#endif 293#endif
110 294
111#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
112# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
113#endif 301#endif
114 302
115#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
117#endif 305#endif
118 306
119#ifndef EV_USE_REALTIME 307#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 308# define EV_USE_PORT 0
309#endif
310
311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
121#endif 316# endif
317#endif
122 318
123/**/ 319#ifndef EV_PID_HASHSIZE
320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
124 382
125#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
128#endif 386#endif
130#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
133#endif 391#endif
134 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
135#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 416# include <winsock.h>
137#endif 417#endif
138 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
139/**/ 457/**/
140 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
145 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
146#ifdef EV_H 509#ifndef ECB_H
147# include EV_H 510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
148#else 526#else
149# include "ev.h" 527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
150#endif 542 #endif
543#endif
151 544
152#if __GNUC__ >= 3 545/*****************************************************************************/
153# define expect(expr,value) __builtin_expect ((expr),(value)) 546
154# define inline inline 547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
155#else 649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
156# define expect(expr,value) (expr) 678 #define ecb_expect(expr,value) (expr)
157# define inline static 679 #define ecb_prefetch(addr,rw,locality)
158#endif 680#endif
159 681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
160#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
162 713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
960#define inline_size ecb_inline
961
962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
965# define inline_speed static noinline
966#endif
967
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
972#else
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
165 975
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
977#define EMPTY2(a,b) /* used to suppress some warnings */
167 978
168typedef struct ev_watcher *W; 979typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 980typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
171 982
983#define ev_active(w) ((W)(w))->active
984#define ev_at(w) ((WT)(w))->at
985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
992#if EV_USE_MONOTONIC
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
1004#endif
173 1005
174#ifdef _WIN32 1006#ifdef _WIN32
175# include "ev_win32.c" 1007# include "ev_win32.c"
176#endif 1008#endif
177 1009
178/*****************************************************************************/ 1010/*****************************************************************************/
179 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
180static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
181 1111
1112void ecb_cold
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
183{ 1114{
184 syserr_cb = cb; 1115 syserr_cb = cb;
185} 1116}
186 1117
187static void 1118static void noinline ecb_cold
188syserr (const char *msg) 1119ev_syserr (const char *msg)
189{ 1120{
190 if (!msg) 1121 if (!msg)
191 msg = "(libev) system error"; 1122 msg = "(libev) system error";
192 1123
193 if (syserr_cb) 1124 if (syserr_cb)
194 syserr_cb (msg); 1125 syserr_cb (msg);
195 else 1126 else
196 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
197 perror (msg); 1134 perror (msg);
1135#endif
198 abort (); 1136 abort ();
199 } 1137 }
200} 1138}
201 1139
1140static void *
1141ev_realloc_emul (void *ptr, long size)
1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
1146 /* some systems, notably openbsd and darwin, fail to properly
1147 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 * the single unix specification, so work around them here.
1149 */
1150
1151 if (size)
1152 return realloc (ptr, size);
1153
1154 free (ptr);
1155 return 0;
1156#endif
1157}
1158
202static void *(*alloc)(void *ptr, long size); 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
203 1160
1161void ecb_cold
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
205{ 1163{
206 alloc = cb; 1164 alloc = cb;
207} 1165}
208 1166
209static void * 1167inline_speed void *
210ev_realloc (void *ptr, long size) 1168ev_realloc (void *ptr, long size)
211{ 1169{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1170 ptr = alloc (ptr, size);
213 1171
214 if (!ptr && size) 1172 if (!ptr && size)
215 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
217 abort (); 1179 abort ();
218 } 1180 }
219 1181
220 return ptr; 1182 return ptr;
221} 1183}
223#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
224#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
225 1187
226/*****************************************************************************/ 1188/*****************************************************************************/
227 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
228typedef struct 1194typedef struct
229{ 1195{
230 WL head; 1196 WL head;
231 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
232 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
233#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
234 SOCKET handle; 1205 SOCKET handle;
235#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
236} ANFD; 1210} ANFD;
237 1211
1212/* stores the pending event set for a given watcher */
238typedef struct 1213typedef struct
239{ 1214{
240 W w; 1215 W w;
241 int events; 1216 int events; /* the pending event set for the given watcher */
242} ANPENDING; 1217} ANPENDING;
1218
1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
1221typedef struct
1222{
1223 WL head;
1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
1245#endif
243 1246
244#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
245 1248
246 struct ev_loop 1249 struct ev_loop
247 { 1250 {
251 #include "ev_vars.h" 1254 #include "ev_vars.h"
252 #undef VAR 1255 #undef VAR
253 }; 1256 };
254 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
255 1258
256 struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
258 1261
259#else 1262#else
260 1263
261 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
262 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 1266 #include "ev_vars.h"
264 #undef VAR 1267 #undef VAR
265 1268
266 static int default_loop; 1269 static int ev_default_loop_ptr;
267 1270
268#endif 1271#endif
1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
269 1284
270/*****************************************************************************/ 1285/*****************************************************************************/
271 1286
1287#ifndef EV_HAVE_EV_TIME
272ev_tstamp 1288ev_tstamp
273ev_time (void) 1289ev_time (void) EV_THROW
274{ 1290{
275#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
276 struct timespec ts; 1294 struct timespec ts;
277 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
278 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
279#else 1297 }
1298#endif
1299
280 struct timeval tv; 1300 struct timeval tv;
281 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif
284} 1303}
1304#endif
285 1305
286inline ev_tstamp 1306inline_size ev_tstamp
287get_clock (void) 1307get_clock (void)
288{ 1308{
289#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
291 { 1311 {
298 return ev_time (); 1318 return ev_time ();
299} 1319}
300 1320
301#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
302ev_tstamp 1322ev_tstamp
303ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
304{ 1324{
305 return ev_rt_now; 1325 return ev_rt_now;
306} 1326}
307#endif 1327#endif
308 1328
309#define array_roundsize(type,n) ((n) | 4 & ~3) 1329void
1330ev_sleep (ev_tstamp delay) EV_THROW
1331{
1332 if (delay > 0.)
1333 {
1334#if EV_USE_NANOSLEEP
1335 struct timespec ts;
1336
1337 EV_TS_SET (ts, delay);
1338 nanosleep (&ts, 0);
1339#elif defined _WIN32
1340 Sleep ((unsigned long)(delay * 1e3));
1341#else
1342 struct timeval tv;
1343
1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1345 /* something not guaranteed by newer posix versions, but guaranteed */
1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
1348 select (0, 0, 0, 0, &tv);
1349#endif
1350 }
1351}
1352
1353/*****************************************************************************/
1354
1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356
1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
1360array_nextsize (int elem, int cur, int cnt)
1361{
1362 int ncur = cur + 1;
1363
1364 do
1365 ncur <<= 1;
1366 while (cnt > ncur);
1367
1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1370 {
1371 ncur *= elem;
1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1373 ncur = ncur - sizeof (void *) * 4;
1374 ncur /= elem;
1375 }
1376
1377 return ncur;
1378}
1379
1380static void * noinline ecb_cold
1381array_realloc (int elem, void *base, int *cur, int cnt)
1382{
1383 *cur = array_nextsize (elem, *cur, cnt);
1384 return ev_realloc (base, elem * *cur);
1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
310 1389
311#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 1391 if (expect_false ((cnt) > (cur))) \
313 { \ 1392 { \
314 int newcnt = cur; \ 1393 int ecb_unused ocur_ = (cur); \
315 do \ 1394 (base) = (type *)array_realloc \
316 { \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 1397 }
325 1398
1399#if 0
326#define array_slim(type,stem) \ 1400#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1401 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 1402 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1403 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1404 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 1406 }
1407#endif
333 1408
334#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
336 1411
337/*****************************************************************************/ 1412/*****************************************************************************/
338 1413
339static void 1414/* dummy callback for pending events */
340anfds_init (ANFD *base, int count) 1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
341{ 1417{
342 while (count--)
343 {
344 base->head = 0;
345 base->events = EV_NONE;
346 base->reify = 0;
347
348 ++base;
349 }
350} 1418}
351 1419
352void 1420void noinline
353ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
354{ 1422{
355 W w_ = (W)w; 1423 W w_ = (W)w;
1424 int pri = ABSPRI (w_);
356 1425
357 if (w_->pending) 1426 if (expect_false (w_->pending))
1427 pendings [pri][w_->pending - 1].events |= revents;
1428 else
358 { 1429 {
1430 w_->pending = ++pendingcnt [pri];
1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1432 pendings [pri][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1433 pendings [pri][w_->pending - 1].events = revents;
360 return;
361 } 1434 }
362 1435
363 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1436 pendingpri = NUMPRI - 1;
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367} 1437}
368 1438
369static void 1439inline_speed void
1440feed_reverse (EV_P_ W w)
1441{
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444}
1445
1446inline_size void
1447feed_reverse_done (EV_P_ int revents)
1448{
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452}
1453
1454inline_speed void
370queue_events (EV_P_ W *events, int eventcnt, int type) 1455queue_events (EV_P_ W *events, int eventcnt, int type)
371{ 1456{
372 int i; 1457 int i;
373 1458
374 for (i = 0; i < eventcnt; ++i) 1459 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type); 1460 ev_feed_event (EV_A_ events [i], type);
376} 1461}
377 1462
1463/*****************************************************************************/
1464
378inline void 1465inline_speed void
379fd_event (EV_P_ int fd, int revents) 1466fd_event_nocheck (EV_P_ int fd, int revents)
380{ 1467{
381 ANFD *anfd = anfds + fd; 1468 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 1469 ev_io *w;
383 1470
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 1472 {
386 int ev = w->events & revents; 1473 int ev = w->events & revents;
387 1474
388 if (ev) 1475 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 1476 ev_feed_event (EV_A_ (W)w, ev);
390 } 1477 }
391} 1478}
392 1479
1480/* do not submit kernel events for fds that have reify set */
1481/* because that means they changed while we were polling for new events */
1482inline_speed void
1483fd_event (EV_P_ int fd, int revents)
1484{
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489}
1490
393void 1491void
394ev_feed_fd_event (EV_P_ int fd, int revents) 1492ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
395{ 1493{
1494 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 1495 fd_event_nocheck (EV_A_ fd, revents);
397} 1496}
398 1497
399/*****************************************************************************/ 1498/* make sure the external fd watch events are in-sync */
400 1499/* with the kernel/libev internal state */
401static void 1500inline_size void
402fd_reify (EV_P) 1501fd_reify (EV_P)
403{ 1502{
404 int i; 1503 int i;
405 1504
1505#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
406 for (i = 0; i < fdchangecnt; ++i) 1506 for (i = 0; i < fdchangecnt; ++i)
407 { 1507 {
408 int fd = fdchanges [i]; 1508 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 1509 ANFD *anfd = anfds + fd;
410 struct ev_io *w;
411 1510
412 int events = 0; 1511 if (anfd->reify & EV__IOFDSET && anfd->head)
413
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
415 events |= w->events;
416
417#if EV_SELECT_IS_WINSOCKET
418 if (events)
419 { 1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
420 unsigned long argp; 1517 unsigned long arg;
421 anfd->handle = _get_osfhandle (fd); 1518
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
423 } 1526 }
1527 }
424#endif 1528#endif
425 1529
1530 for (i = 0; i < fdchangecnt; ++i)
1531 {
1532 int fd = fdchanges [i];
1533 ANFD *anfd = anfds + fd;
1534 ev_io *w;
1535
1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
1538
426 anfd->reify = 0; 1539 anfd->reify = 0;
427 1540
428 method_modify (EV_A_ fd, anfd->events, events); 1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1542 {
429 anfd->events = events; 1543 anfd->events = 0;
1544
1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1546 anfd->events |= (unsigned char)w->events;
1547
1548 if (o_events != anfd->events)
1549 o_reify = EV__IOFDSET; /* actually |= */
1550 }
1551
1552 if (o_reify & EV__IOFDSET)
1553 backend_modify (EV_A_ fd, o_events, anfd->events);
430 } 1554 }
431 1555
432 fdchangecnt = 0; 1556 fdchangecnt = 0;
433} 1557}
434 1558
435static void 1559/* something about the given fd changed */
1560inline_size void
436fd_change (EV_P_ int fd) 1561fd_change (EV_P_ int fd, int flags)
437{ 1562{
438 if (anfds [fd].reify) 1563 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 1564 anfds [fd].reify |= flags;
442 1565
1566 if (expect_true (!reify))
1567 {
443 ++fdchangecnt; 1568 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 1570 fdchanges [fdchangecnt - 1] = fd;
1571 }
446} 1572}
447 1573
448static void 1574/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575inline_speed void ecb_cold
449fd_kill (EV_P_ int fd) 1576fd_kill (EV_P_ int fd)
450{ 1577{
451 struct ev_io *w; 1578 ev_io *w;
452 1579
453 while ((w = (struct ev_io *)anfds [fd].head)) 1580 while ((w = (ev_io *)anfds [fd].head))
454 { 1581 {
455 ev_io_stop (EV_A_ w); 1582 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 1584 }
458} 1585}
459 1586
460static int 1587/* check whether the given fd is actually valid, for error recovery */
1588inline_size int ecb_cold
461fd_valid (int fd) 1589fd_valid (int fd)
462{ 1590{
463#ifdef _WIN32 1591#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
465#else 1593#else
466 return fcntl (fd, F_GETFD) != -1; 1594 return fcntl (fd, F_GETFD) != -1;
467#endif 1595#endif
468} 1596}
469 1597
470/* called on EBADF to verify fds */ 1598/* called on EBADF to verify fds */
471static void 1599static void noinline ecb_cold
472fd_ebadf (EV_P) 1600fd_ebadf (EV_P)
473{ 1601{
474 int fd; 1602 int fd;
475 1603
476 for (fd = 0; fd < anfdmax; ++fd) 1604 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events) 1605 if (anfds [fd].events)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 1606 if (!fd_valid (fd) && errno == EBADF)
479 fd_kill (EV_A_ fd); 1607 fd_kill (EV_A_ fd);
480} 1608}
481 1609
482/* called on ENOMEM in select/poll to kill some fds and retry */ 1610/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 1611static void noinline ecb_cold
484fd_enomem (EV_P) 1612fd_enomem (EV_P)
485{ 1613{
486 int fd; 1614 int fd;
487 1615
488 for (fd = anfdmax; fd--; ) 1616 for (fd = anfdmax; fd--; )
489 if (anfds [fd].events) 1617 if (anfds [fd].events)
490 { 1618 {
491 fd_kill (EV_A_ fd); 1619 fd_kill (EV_A_ fd);
492 return; 1620 break;
493 } 1621 }
494} 1622}
495 1623
496/* usually called after fork if method needs to re-arm all fds from scratch */ 1624/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 1625static void noinline
498fd_rearm_all (EV_P) 1626fd_rearm_all (EV_P)
499{ 1627{
500 int fd; 1628 int fd;
501 1629
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 1630 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 1631 if (anfds [fd].events)
505 { 1632 {
506 anfds [fd].events = 0; 1633 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 1634 anfds [fd].emask = 0;
1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
508 } 1636 }
509} 1637}
510 1638
511/*****************************************************************************/ 1639/* used to prepare libev internal fd's */
512 1640/* this is not fork-safe */
513static void
514upheap (WT *heap, int k)
515{
516 WT w = heap [k];
517
518 while (k && heap [k >> 1]->at > w->at)
519 {
520 heap [k] = heap [k >> 1];
521 ((W)heap [k])->active = k + 1;
522 k >>= 1;
523 }
524
525 heap [k] = w;
526 ((W)heap [k])->active = k + 1;
527
528}
529
530static void
531downheap (WT *heap, int N, int k)
532{
533 WT w = heap [k];
534
535 while (k < (N >> 1))
536 {
537 int j = k << 1;
538
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
540 ++j;
541
542 if (w->at <= heap [j]->at)
543 break;
544
545 heap [k] = heap [j];
546 ((W)heap [k])->active = k + 1;
547 k = j;
548 }
549
550 heap [k] = w;
551 ((W)heap [k])->active = k + 1;
552}
553
554inline void 1641inline_speed void
555adjustheap (WT *heap, int N, int k)
556{
557 upheap (heap, k);
558 downheap (heap, N, k);
559}
560
561/*****************************************************************************/
562
563typedef struct
564{
565 WL head;
566 sig_atomic_t volatile gotsig;
567} ANSIG;
568
569static ANSIG *signals;
570static int signalmax;
571
572static int sigpipe [2];
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575
576static void
577signals_init (ANSIG *base, int count)
578{
579 while (count--)
580 {
581 base->head = 0;
582 base->gotsig = 0;
583
584 ++base;
585 }
586}
587
588static void
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594
595 signals [signum - 1].gotsig = 1;
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void
640fd_intern (int fd) 1642fd_intern (int fd)
641{ 1643{
642#ifdef _WIN32 1644#ifdef _WIN32
643 int arg = 1; 1645 unsigned long arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
645#else 1647#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 1649 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 1650#endif
649} 1651}
650 1652
1653/*****************************************************************************/
1654
1655/*
1656 * the heap functions want a real array index. array index 0 is guaranteed to not
1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1658 * the branching factor of the d-tree.
1659 */
1660
1661/*
1662 * at the moment we allow libev the luxury of two heaps,
1663 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1664 * which is more cache-efficient.
1665 * the difference is about 5% with 50000+ watchers.
1666 */
1667#if EV_USE_4HEAP
1668
1669#define DHEAP 4
1670#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1671#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1672#define UPHEAP_DONE(p,k) ((p) == (k))
1673
1674/* away from the root */
1675inline_speed void
1676downheap (ANHE *heap, int N, int k)
1677{
1678 ANHE he = heap [k];
1679 ANHE *E = heap + N + HEAP0;
1680
1681 for (;;)
1682 {
1683 ev_tstamp minat;
1684 ANHE *minpos;
1685 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1686
1687 /* find minimum child */
1688 if (expect_true (pos + DHEAP - 1 < E))
1689 {
1690 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1691 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1694 }
1695 else if (pos < E)
1696 {
1697 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1698 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1699 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1700 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1701 }
1702 else
1703 break;
1704
1705 if (ANHE_at (he) <= minat)
1706 break;
1707
1708 heap [k] = *minpos;
1709 ev_active (ANHE_w (*minpos)) = k;
1710
1711 k = minpos - heap;
1712 }
1713
1714 heap [k] = he;
1715 ev_active (ANHE_w (he)) = k;
1716}
1717
1718#else /* 4HEAP */
1719
1720#define HEAP0 1
1721#define HPARENT(k) ((k) >> 1)
1722#define UPHEAP_DONE(p,k) (!(p))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729
1730 for (;;)
1731 {
1732 int c = k << 1;
1733
1734 if (c >= N + HEAP0)
1735 break;
1736
1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1738 ? 1 : 0;
1739
1740 if (ANHE_at (he) <= ANHE_at (heap [c]))
1741 break;
1742
1743 heap [k] = heap [c];
1744 ev_active (ANHE_w (heap [k])) = k;
1745
1746 k = c;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752#endif
1753
1754/* towards the root */
1755inline_speed void
1756upheap (ANHE *heap, int k)
1757{
1758 ANHE he = heap [k];
1759
1760 for (;;)
1761 {
1762 int p = HPARENT (k);
1763
1764 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1765 break;
1766
1767 heap [k] = heap [p];
1768 ev_active (ANHE_w (heap [k])) = k;
1769 k = p;
1770 }
1771
1772 heap [k] = he;
1773 ev_active (ANHE_w (he)) = k;
1774}
1775
1776/* move an element suitably so it is in a correct place */
1777inline_size void
1778adjustheap (ANHE *heap, int N, int k)
1779{
1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1781 upheap (heap, k);
1782 else
1783 downheap (heap, N, k);
1784}
1785
1786/* rebuild the heap: this function is used only once and executed rarely */
1787inline_size void
1788reheap (ANHE *heap, int N)
1789{
1790 int i;
1791
1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1793 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1794 for (i = 0; i < N; ++i)
1795 upheap (heap, i + HEAP0);
1796}
1797
1798/*****************************************************************************/
1799
1800/* associate signal watchers to a signal signal */
1801typedef struct
1802{
1803 EV_ATOMIC_T pending;
1804#if EV_MULTIPLICITY
1805 EV_P;
1806#endif
1807 WL head;
1808} ANSIG;
1809
1810static ANSIG signals [EV_NSIG - 1];
1811
1812/*****************************************************************************/
1813
1814#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1815
1816static void noinline ecb_cold
1817evpipe_init (EV_P)
1818{
1819 if (!ev_is_active (&pipe_w))
1820 {
1821# if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
1827 {
1828 evpipe [0] = -1;
1829 fd_intern (evfd); /* doing it twice doesn't hurt */
1830 ev_io_set (&pipe_w, evfd, EV_READ);
1831 }
1832 else
1833# endif
1834 {
1835 while (pipe (evpipe))
1836 ev_syserr ("(libev) error creating signal/async pipe");
1837
1838 fd_intern (evpipe [0]);
1839 fd_intern (evpipe [1]);
1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1841 }
1842
1843 ev_io_start (EV_A_ &pipe_w);
1844 ev_unref (EV_A); /* watcher should not keep loop alive */
1845 }
1846}
1847
1848inline_speed void
1849evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1850{
1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
1870 old_errno = errno; /* save errno because write will clobber it */
1871
1872#if EV_USE_EVENTFD
1873 if (evfd >= 0)
1874 {
1875 uint64_t counter = 1;
1876 write (evfd, &counter, sizeof (uint64_t));
1877 }
1878 else
1879#endif
1880 {
1881 /* win32 people keep sending patches that change this write() to send() */
1882 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1883 /* so when you think this write should be a send instead, please find out */
1884 /* where your send() is from - it's definitely not the microsoft send, and */
1885 /* tell me. thank you. */
1886 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1887 /* check the ev documentation on how to use this flag */
1888 write (evpipe [1], &(evpipe [1]), 1);
1889 }
1890
1891 errno = old_errno;
1892 }
1893}
1894
1895/* called whenever the libev signal pipe */
1896/* got some events (signal, async) */
651static void 1897static void
652siginit (EV_P) 1898pipecb (EV_P_ ev_io *iow, int revents)
653{ 1899{
654 fd_intern (sigpipe [0]); 1900 int i;
655 fd_intern (sigpipe [1]);
656 1901
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 1902 if (revents & EV_READ)
658 ev_io_start (EV_A_ &sigev); 1903 {
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1904#if EV_USE_EVENTFD
1905 if (evfd >= 0)
1906 {
1907 uint64_t counter;
1908 read (evfd, &counter, sizeof (uint64_t));
1909 }
1910 else
1911#endif
1912 {
1913 char dummy;
1914 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1915 read (evpipe [0], &dummy, 1);
1916 }
1917 }
1918
1919 pipe_write_skipped = 0;
1920
1921 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1922
1923#if EV_SIGNAL_ENABLE
1924 if (sig_pending)
1925 {
1926 sig_pending = 0;
1927
1928 ECB_MEMORY_FENCE_RELEASE;
1929
1930 for (i = EV_NSIG - 1; i--; )
1931 if (expect_false (signals [i].pending))
1932 ev_feed_signal_event (EV_A_ i + 1);
1933 }
1934#endif
1935
1936#if EV_ASYNC_ENABLE
1937 if (async_pending)
1938 {
1939 async_pending = 0;
1940
1941 ECB_MEMORY_FENCE_RELEASE;
1942
1943 for (i = asynccnt; i--; )
1944 if (asyncs [i]->sent)
1945 {
1946 asyncs [i]->sent = 0;
1947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1948 }
1949 }
1950#endif
660} 1951}
661 1952
662/*****************************************************************************/ 1953/*****************************************************************************/
663 1954
664static struct ev_child *childs [PID_HASHSIZE]; 1955void
1956ev_feed_signal (int signum) EV_THROW
1957{
1958#if EV_MULTIPLICITY
1959 EV_P = signals [signum - 1].loop;
665 1960
1961 if (!EV_A)
1962 return;
1963#endif
1964
1965 if (!ev_active (&pipe_w))
1966 return;
1967
1968 signals [signum - 1].pending = 1;
1969 evpipe_write (EV_A_ &sig_pending);
1970}
1971
1972static void
1973ev_sighandler (int signum)
1974{
666#ifndef _WIN32 1975#ifdef _WIN32
1976 signal (signum, ev_sighandler);
1977#endif
667 1978
1979 ev_feed_signal (signum);
1980}
1981
1982void noinline
1983ev_feed_signal_event (EV_P_ int signum) EV_THROW
1984{
1985 WL w;
1986
1987 if (expect_false (signum <= 0 || signum > EV_NSIG))
1988 return;
1989
1990 --signum;
1991
1992#if EV_MULTIPLICITY
1993 /* it is permissible to try to feed a signal to the wrong loop */
1994 /* or, likely more useful, feeding a signal nobody is waiting for */
1995
1996 if (expect_false (signals [signum].loop != EV_A))
1997 return;
1998#endif
1999
2000 signals [signum].pending = 0;
2001
2002 for (w = signals [signum].head; w; w = w->next)
2003 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2004}
2005
2006#if EV_USE_SIGNALFD
2007static void
2008sigfdcb (EV_P_ ev_io *iow, int revents)
2009{
2010 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2011
2012 for (;;)
2013 {
2014 ssize_t res = read (sigfd, si, sizeof (si));
2015
2016 /* not ISO-C, as res might be -1, but works with SuS */
2017 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2018 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2019
2020 if (res < (ssize_t)sizeof (si))
2021 break;
2022 }
2023}
2024#endif
2025
2026#endif
2027
2028/*****************************************************************************/
2029
2030#if EV_CHILD_ENABLE
2031static WL childs [EV_PID_HASHSIZE];
2032
668static struct ev_signal childev; 2033static ev_signal childev;
2034
2035#ifndef WIFCONTINUED
2036# define WIFCONTINUED(status) 0
2037#endif
2038
2039/* handle a single child status event */
2040inline_speed void
2041child_reap (EV_P_ int chain, int pid, int status)
2042{
2043 ev_child *w;
2044 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2045
2046 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2047 {
2048 if ((w->pid == pid || !w->pid)
2049 && (!traced || (w->flags & 1)))
2050 {
2051 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2052 w->rpid = pid;
2053 w->rstatus = status;
2054 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2055 }
2056 }
2057}
669 2058
670#ifndef WCONTINUED 2059#ifndef WCONTINUED
671# define WCONTINUED 0 2060# define WCONTINUED 0
672#endif 2061#endif
673 2062
2063/* called on sigchld etc., calls waitpid */
674static void 2064static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 2065childcb (EV_P_ ev_signal *sw, int revents)
691{ 2066{
692 int pid, status; 2067 int pid, status;
693 2068
2069 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2070 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 2071 if (!WCONTINUED
2072 || errno != EINVAL
2073 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2074 return;
2075
696 /* make sure we are called again until all childs have been reaped */ 2076 /* make sure we are called again until all children have been reaped */
2077 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2078 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 2079
699 child_reap (EV_A_ sw, pid, pid, status); 2080 child_reap (EV_A_ pid, pid, status);
2081 if ((EV_PID_HASHSIZE) > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2082 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 2083}
703 2084
704#endif 2085#endif
705 2086
706/*****************************************************************************/ 2087/*****************************************************************************/
707 2088
2089#if EV_USE_IOCP
2090# include "ev_iocp.c"
2091#endif
2092#if EV_USE_PORT
2093# include "ev_port.c"
2094#endif
708#if EV_USE_KQUEUE 2095#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 2096# include "ev_kqueue.c"
710#endif 2097#endif
711#if EV_USE_EPOLL 2098#if EV_USE_EPOLL
712# include "ev_epoll.c" 2099# include "ev_epoll.c"
716#endif 2103#endif
717#if EV_USE_SELECT 2104#if EV_USE_SELECT
718# include "ev_select.c" 2105# include "ev_select.c"
719#endif 2106#endif
720 2107
721int 2108int ecb_cold
722ev_version_major (void) 2109ev_version_major (void) EV_THROW
723{ 2110{
724 return EV_VERSION_MAJOR; 2111 return EV_VERSION_MAJOR;
725} 2112}
726 2113
727int 2114int ecb_cold
728ev_version_minor (void) 2115ev_version_minor (void) EV_THROW
729{ 2116{
730 return EV_VERSION_MINOR; 2117 return EV_VERSION_MINOR;
731} 2118}
732 2119
733/* return true if we are running with elevated privileges and should ignore env variables */ 2120/* return true if we are running with elevated privileges and should ignore env variables */
734static int 2121int inline_size ecb_cold
735enable_secure (void) 2122enable_secure (void)
736{ 2123{
737#ifdef _WIN32 2124#ifdef _WIN32
738 return 0; 2125 return 0;
739#else 2126#else
740 return getuid () != geteuid () 2127 return getuid () != geteuid ()
741 || getgid () != getegid (); 2128 || getgid () != getegid ();
742#endif 2129#endif
743} 2130}
744 2131
745int 2132unsigned int ecb_cold
746ev_method (EV_P) 2133ev_supported_backends (void) EV_THROW
747{ 2134{
748 return method; 2135 unsigned int flags = 0;
749}
750 2136
751static void 2137 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 2138 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2139 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2141 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2142
2143 return flags;
2144}
2145
2146unsigned int ecb_cold
2147ev_recommended_backends (void) EV_THROW
753{ 2148{
754 if (!method) 2149 unsigned int flags = ev_supported_backends ();
2150
2151#ifndef __NetBSD__
2152 /* kqueue is borked on everything but netbsd apparently */
2153 /* it usually doesn't work correctly on anything but sockets and pipes */
2154 flags &= ~EVBACKEND_KQUEUE;
2155#endif
2156#ifdef __APPLE__
2157 /* only select works correctly on that "unix-certified" platform */
2158 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2159 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2160#endif
2161#ifdef __FreeBSD__
2162 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2163#endif
2164
2165 return flags;
2166}
2167
2168unsigned int ecb_cold
2169ev_embeddable_backends (void) EV_THROW
2170{
2171 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2172
2173 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2174 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2175 flags &= ~EVBACKEND_EPOLL;
2176
2177 return flags;
2178}
2179
2180unsigned int
2181ev_backend (EV_P) EV_THROW
2182{
2183 return backend;
2184}
2185
2186#if EV_FEATURE_API
2187unsigned int
2188ev_iteration (EV_P) EV_THROW
2189{
2190 return loop_count;
2191}
2192
2193unsigned int
2194ev_depth (EV_P) EV_THROW
2195{
2196 return loop_depth;
2197}
2198
2199void
2200ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2201{
2202 io_blocktime = interval;
2203}
2204
2205void
2206ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2207{
2208 timeout_blocktime = interval;
2209}
2210
2211void
2212ev_set_userdata (EV_P_ void *data) EV_THROW
2213{
2214 userdata = data;
2215}
2216
2217void *
2218ev_userdata (EV_P) EV_THROW
2219{
2220 return userdata;
2221}
2222
2223void
2224ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2225{
2226 invoke_cb = invoke_pending_cb;
2227}
2228
2229void
2230ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2231{
2232 release_cb = release;
2233 acquire_cb = acquire;
2234}
2235#endif
2236
2237/* initialise a loop structure, must be zero-initialised */
2238static void noinline ecb_cold
2239loop_init (EV_P_ unsigned int flags) EV_THROW
2240{
2241 if (!backend)
755 { 2242 {
2243 origflags = flags;
2244
2245#if EV_USE_REALTIME
2246 if (!have_realtime)
2247 {
2248 struct timespec ts;
2249
2250 if (!clock_gettime (CLOCK_REALTIME, &ts))
2251 have_realtime = 1;
2252 }
2253#endif
2254
756#if EV_USE_MONOTONIC 2255#if EV_USE_MONOTONIC
2256 if (!have_monotonic)
757 { 2257 {
758 struct timespec ts; 2258 struct timespec ts;
2259
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2260 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 2261 have_monotonic = 1;
761 } 2262 }
762#endif 2263#endif
763 2264
2265 /* pid check not overridable via env */
2266#ifndef _WIN32
2267 if (flags & EVFLAG_FORKCHECK)
2268 curpid = getpid ();
2269#endif
2270
2271 if (!(flags & EVFLAG_NOENV)
2272 && !enable_secure ()
2273 && getenv ("LIBEV_FLAGS"))
2274 flags = atoi (getenv ("LIBEV_FLAGS"));
2275
764 ev_rt_now = ev_time (); 2276 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 2277 mn_now = get_clock ();
766 now_floor = mn_now; 2278 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 2279 rtmn_diff = ev_rt_now - mn_now;
2280#if EV_FEATURE_API
2281 invoke_cb = ev_invoke_pending;
2282#endif
768 2283
769 if (methods == EVMETHOD_AUTO) 2284 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2285 timeout_blocktime = 0.;
771 methods = atoi (getenv ("LIBEV_METHODS")); 2286 backend = 0;
772 else 2287 backend_fd = -1;
773 methods = EVMETHOD_ANY; 2288 sig_pending = 0;
2289#if EV_ASYNC_ENABLE
2290 async_pending = 0;
2291#endif
2292 pipe_write_skipped = 0;
2293 pipe_write_wanted = 0;
2294#if EV_USE_INOTIFY
2295 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2296#endif
2297#if EV_USE_SIGNALFD
2298 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2299#endif
774 2300
775 method = 0; 2301 if (!(flags & EVBACKEND_MASK))
2302 flags |= ev_recommended_backends ();
2303
2304#if EV_USE_IOCP
2305 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2306#endif
2307#if EV_USE_PORT
2308 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2309#endif
776#if EV_USE_KQUEUE 2310#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2311 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 2312#endif
779#if EV_USE_EPOLL 2313#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2314 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 2315#endif
782#if EV_USE_POLL 2316#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2317 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 2318#endif
785#if EV_USE_SELECT 2319#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2320 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 2321#endif
788 2322
2323 ev_prepare_init (&pending_w, pendingcb);
2324
2325#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
789 ev_init (&sigev, sigcb); 2326 ev_init (&pipe_w, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 2327 ev_set_priority (&pipe_w, EV_MAXPRI);
2328#endif
791 } 2329 }
792} 2330}
793 2331
794void 2332/* free up a loop structure */
2333void ecb_cold
795loop_destroy (EV_P) 2334ev_loop_destroy (EV_P)
796{ 2335{
797 int i; 2336 int i;
798 2337
2338#if EV_MULTIPLICITY
2339 /* mimic free (0) */
2340 if (!EV_A)
2341 return;
2342#endif
2343
2344#if EV_CLEANUP_ENABLE
2345 /* queue cleanup watchers (and execute them) */
2346 if (expect_false (cleanupcnt))
2347 {
2348 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2349 EV_INVOKE_PENDING;
2350 }
2351#endif
2352
2353#if EV_CHILD_ENABLE
2354 if (ev_is_active (&childev))
2355 {
2356 ev_ref (EV_A); /* child watcher */
2357 ev_signal_stop (EV_A_ &childev);
2358 }
2359#endif
2360
2361 if (ev_is_active (&pipe_w))
2362 {
2363 /*ev_ref (EV_A);*/
2364 /*ev_io_stop (EV_A_ &pipe_w);*/
2365
2366#if EV_USE_EVENTFD
2367 if (evfd >= 0)
2368 close (evfd);
2369#endif
2370
2371 if (evpipe [0] >= 0)
2372 {
2373 EV_WIN32_CLOSE_FD (evpipe [0]);
2374 EV_WIN32_CLOSE_FD (evpipe [1]);
2375 }
2376 }
2377
2378#if EV_USE_SIGNALFD
2379 if (ev_is_active (&sigfd_w))
2380 close (sigfd);
2381#endif
2382
2383#if EV_USE_INOTIFY
2384 if (fs_fd >= 0)
2385 close (fs_fd);
2386#endif
2387
2388 if (backend_fd >= 0)
2389 close (backend_fd);
2390
2391#if EV_USE_IOCP
2392 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2393#endif
2394#if EV_USE_PORT
2395 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2396#endif
799#if EV_USE_KQUEUE 2397#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2398 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 2399#endif
802#if EV_USE_EPOLL 2400#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2401 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 2402#endif
805#if EV_USE_POLL 2403#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2404 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 2405#endif
808#if EV_USE_SELECT 2406#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2407 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 2408#endif
811 2409
812 for (i = NUMPRI; i--; ) 2410 for (i = NUMPRI; i--; )
2411 {
813 array_free (pending, [i]); 2412 array_free (pending, [i]);
2413#if EV_IDLE_ENABLE
2414 array_free (idle, [i]);
2415#endif
2416 }
2417
2418 ev_free (anfds); anfds = 0; anfdmax = 0;
814 2419
815 /* have to use the microsoft-never-gets-it-right macro */ 2420 /* have to use the microsoft-never-gets-it-right macro */
2421 array_free (rfeed, EMPTY);
816 array_free (fdchange, EMPTY); 2422 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 2423 array_free (timer, EMPTY);
818#if EV_PERIODICS 2424#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 2425 array_free (periodic, EMPTY);
820#endif 2426#endif
2427#if EV_FORK_ENABLE
2428 array_free (fork, EMPTY);
2429#endif
2430#if EV_CLEANUP_ENABLE
821 array_free (idle, EMPTY); 2431 array_free (cleanup, EMPTY);
2432#endif
822 array_free (prepare, EMPTY); 2433 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 2434 array_free (check, EMPTY);
2435#if EV_ASYNC_ENABLE
2436 array_free (async, EMPTY);
2437#endif
824 2438
825 method = 0; 2439 backend = 0;
826}
827 2440
828static void 2441#if EV_MULTIPLICITY
2442 if (ev_is_default_loop (EV_A))
2443#endif
2444 ev_default_loop_ptr = 0;
2445#if EV_MULTIPLICITY
2446 else
2447 ev_free (EV_A);
2448#endif
2449}
2450
2451#if EV_USE_INOTIFY
2452inline_size void infy_fork (EV_P);
2453#endif
2454
2455inline_size void
829loop_fork (EV_P) 2456loop_fork (EV_P)
830{ 2457{
2458#if EV_USE_PORT
2459 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2460#endif
2461#if EV_USE_KQUEUE
2462 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2463#endif
831#if EV_USE_EPOLL 2464#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2465 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 2466#endif
834#if EV_USE_KQUEUE 2467#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2468 infy_fork (EV_A);
836#endif 2469#endif
837 2470
838 if (ev_is_active (&sigev)) 2471 if (ev_is_active (&pipe_w))
839 { 2472 {
840 /* default loop */ 2473 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
841 2474
842 ev_ref (EV_A); 2475 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 2476 ev_io_stop (EV_A_ &pipe_w);
844 close (sigpipe [0]);
845 close (sigpipe [1]);
846 2477
847 while (pipe (sigpipe)) 2478#if EV_USE_EVENTFD
848 syserr ("(libev) error creating pipe"); 2479 if (evfd >= 0)
2480 close (evfd);
2481#endif
849 2482
2483 if (evpipe [0] >= 0)
2484 {
2485 EV_WIN32_CLOSE_FD (evpipe [0]);
2486 EV_WIN32_CLOSE_FD (evpipe [1]);
2487 }
2488
2489#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
850 siginit (EV_A); 2490 evpipe_init (EV_A);
2491 /* now iterate over everything, in case we missed something */
2492 pipecb (EV_A_ &pipe_w, EV_READ);
2493#endif
851 } 2494 }
852 2495
853 postfork = 0; 2496 postfork = 0;
854} 2497}
855 2498
856#if EV_MULTIPLICITY 2499#if EV_MULTIPLICITY
2500
857struct ev_loop * 2501struct ev_loop * ecb_cold
858ev_loop_new (int methods) 2502ev_loop_new (unsigned int flags) EV_THROW
859{ 2503{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2504 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 2505
862 memset (loop, 0, sizeof (struct ev_loop)); 2506 memset (EV_A, 0, sizeof (struct ev_loop));
863
864 loop_init (EV_A_ methods); 2507 loop_init (EV_A_ flags);
865 2508
866 if (ev_method (EV_A)) 2509 if (ev_backend (EV_A))
867 return loop; 2510 return EV_A;
868 2511
2512 ev_free (EV_A);
869 return 0; 2513 return 0;
870} 2514}
871 2515
872void 2516#endif /* multiplicity */
873ev_loop_destroy (EV_P)
874{
875 loop_destroy (EV_A);
876 ev_free (loop);
877}
878 2517
879void 2518#if EV_VERIFY
880ev_loop_fork (EV_P) 2519static void noinline ecb_cold
2520verify_watcher (EV_P_ W w)
881{ 2521{
882 postfork = 1; 2522 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
883}
884 2523
2524 if (w->pending)
2525 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2526}
2527
2528static void noinline ecb_cold
2529verify_heap (EV_P_ ANHE *heap, int N)
2530{
2531 int i;
2532
2533 for (i = HEAP0; i < N + HEAP0; ++i)
2534 {
2535 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2536 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2537 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2538
2539 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2540 }
2541}
2542
2543static void noinline ecb_cold
2544array_verify (EV_P_ W *ws, int cnt)
2545{
2546 while (cnt--)
2547 {
2548 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2549 verify_watcher (EV_A_ ws [cnt]);
2550 }
2551}
2552#endif
2553
2554#if EV_FEATURE_API
2555void ecb_cold
2556ev_verify (EV_P) EV_THROW
2557{
2558#if EV_VERIFY
2559 int i, j;
2560 WL w, w2;
2561
2562 assert (activecnt >= -1);
2563
2564 assert (fdchangemax >= fdchangecnt);
2565 for (i = 0; i < fdchangecnt; ++i)
2566 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2567
2568 assert (anfdmax >= 0);
2569 for (i = j = 0; i < anfdmax; ++i)
2570 for (w = w2 = anfds [i].head; w; w = w->next)
2571 {
2572 verify_watcher (EV_A_ (W)w);
2573
2574 if (++j & 1)
2575 w2 = w2->next;
2576
2577 assert (("libev: io watcher list contains a loop", w != w2));
2578 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2579 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2580 }
2581
2582 assert (timermax >= timercnt);
2583 verify_heap (EV_A_ timers, timercnt);
2584
2585#if EV_PERIODIC_ENABLE
2586 assert (periodicmax >= periodiccnt);
2587 verify_heap (EV_A_ periodics, periodiccnt);
2588#endif
2589
2590 for (i = NUMPRI; i--; )
2591 {
2592 assert (pendingmax [i] >= pendingcnt [i]);
2593#if EV_IDLE_ENABLE
2594 assert (idleall >= 0);
2595 assert (idlemax [i] >= idlecnt [i]);
2596 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2597#endif
2598 }
2599
2600#if EV_FORK_ENABLE
2601 assert (forkmax >= forkcnt);
2602 array_verify (EV_A_ (W *)forks, forkcnt);
2603#endif
2604
2605#if EV_CLEANUP_ENABLE
2606 assert (cleanupmax >= cleanupcnt);
2607 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2608#endif
2609
2610#if EV_ASYNC_ENABLE
2611 assert (asyncmax >= asynccnt);
2612 array_verify (EV_A_ (W *)asyncs, asynccnt);
2613#endif
2614
2615#if EV_PREPARE_ENABLE
2616 assert (preparemax >= preparecnt);
2617 array_verify (EV_A_ (W *)prepares, preparecnt);
2618#endif
2619
2620#if EV_CHECK_ENABLE
2621 assert (checkmax >= checkcnt);
2622 array_verify (EV_A_ (W *)checks, checkcnt);
2623#endif
2624
2625# if 0
2626#if EV_CHILD_ENABLE
2627 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2628 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2629#endif
2630# endif
2631#endif
2632}
885#endif 2633#endif
886 2634
887#if EV_MULTIPLICITY 2635#if EV_MULTIPLICITY
888struct ev_loop * 2636struct ev_loop * ecb_cold
889#else 2637#else
890int 2638int
891#endif 2639#endif
892ev_default_loop (int methods) 2640ev_default_loop (unsigned int flags) EV_THROW
893{ 2641{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 2642 if (!ev_default_loop_ptr)
899 { 2643 {
900#if EV_MULTIPLICITY 2644#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 2645 EV_P = ev_default_loop_ptr = &default_loop_struct;
902#else 2646#else
903 default_loop = 1; 2647 ev_default_loop_ptr = 1;
904#endif 2648#endif
905 2649
906 loop_init (EV_A_ methods); 2650 loop_init (EV_A_ flags);
907 2651
908 if (ev_method (EV_A)) 2652 if (ev_backend (EV_A))
909 { 2653 {
910 siginit (EV_A); 2654#if EV_CHILD_ENABLE
911
912#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 2655 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 2656 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 2657 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2658 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 2659#endif
918 } 2660 }
919 else 2661 else
920 default_loop = 0; 2662 ev_default_loop_ptr = 0;
921 } 2663 }
922 2664
923 return default_loop; 2665 return ev_default_loop_ptr;
924} 2666}
925 2667
926void 2668void
927ev_default_destroy (void) 2669ev_loop_fork (EV_P) EV_THROW
928{ 2670{
929#if EV_MULTIPLICITY 2671 postfork = 1; /* must be in line with ev_default_fork */
930 struct ev_loop *loop = default_loop;
931#endif
932
933#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev);
936#endif
937
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A);
945} 2672}
2673
2674/*****************************************************************************/
946 2675
947void 2676void
948ev_default_fork (void) 2677ev_invoke (EV_P_ void *w, int revents)
949{ 2678{
950#if EV_MULTIPLICITY 2679 EV_CB_INVOKE ((W)w, revents);
951 struct ev_loop *loop = default_loop;
952#endif
953
954 if (method)
955 postfork = 1;
956} 2680}
957 2681
958/*****************************************************************************/ 2682unsigned int
959 2683ev_pending_count (EV_P) EV_THROW
960static int
961any_pending (EV_P)
962{ 2684{
963 int pri; 2685 int pri;
2686 unsigned int count = 0;
964 2687
965 for (pri = NUMPRI; pri--; ) 2688 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri]) 2689 count += pendingcnt [pri];
967 return 1;
968 2690
969 return 0; 2691 return count;
970} 2692}
971 2693
972static void 2694void noinline
973call_pending (EV_P) 2695ev_invoke_pending (EV_P)
974{ 2696{
975 int pri; 2697 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
976
977 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 2698 while (pendingcnt [pendingpri])
979 { 2699 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2700 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
981 2701
982 if (p->w)
983 {
984 p->w->pending = 0; 2702 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 2703 EV_CB_INVOKE (p->w, p->events);
986 } 2704 EV_FREQUENT_CHECK;
987 } 2705 }
988} 2706}
989 2707
990static void 2708#if EV_IDLE_ENABLE
2709/* make idle watchers pending. this handles the "call-idle */
2710/* only when higher priorities are idle" logic */
2711inline_size void
2712idle_reify (EV_P)
2713{
2714 if (expect_false (idleall))
2715 {
2716 int pri;
2717
2718 for (pri = NUMPRI; pri--; )
2719 {
2720 if (pendingcnt [pri])
2721 break;
2722
2723 if (idlecnt [pri])
2724 {
2725 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2726 break;
2727 }
2728 }
2729 }
2730}
2731#endif
2732
2733/* make timers pending */
2734inline_size void
991timers_reify (EV_P) 2735timers_reify (EV_P)
992{ 2736{
2737 EV_FREQUENT_CHECK;
2738
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 2739 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
994 { 2740 {
995 struct ev_timer *w = timers [0]; 2741 do
996
997 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998
999 /* first reschedule or stop timer */
1000 if (w->repeat)
1001 { 2742 {
2743 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2744
2745 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2746
2747 /* first reschedule or stop timer */
2748 if (w->repeat)
2749 {
2750 ev_at (w) += w->repeat;
2751 if (ev_at (w) < mn_now)
2752 ev_at (w) = mn_now;
2753
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2754 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 2755
1004 ((WT)w)->at += w->repeat; 2756 ANHE_at_cache (timers [HEAP0]);
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
1008 downheap ((WT *)timers, timercnt, 0); 2757 downheap (timers, timercnt, HEAP0);
2758 }
2759 else
2760 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2761
2762 EV_FREQUENT_CHECK;
2763 feed_reverse (EV_A_ (W)w);
1009 } 2764 }
1010 else 2765 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 2766
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2767 feed_reverse_done (EV_A_ EV_TIMER);
2768 }
2769}
2770
2771#if EV_PERIODIC_ENABLE
2772
2773static void noinline
2774periodic_recalc (EV_P_ ev_periodic *w)
2775{
2776 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2777 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2778
2779 /* the above almost always errs on the low side */
2780 while (at <= ev_rt_now)
1014 } 2781 {
1015} 2782 ev_tstamp nat = at + w->interval;
1016 2783
1017#if EV_PERIODICS 2784 /* when resolution fails us, we use ev_rt_now */
1018static void 2785 if (expect_false (nat == at))
2786 {
2787 at = ev_rt_now;
2788 break;
2789 }
2790
2791 at = nat;
2792 }
2793
2794 ev_at (w) = at;
2795}
2796
2797/* make periodics pending */
2798inline_size void
1019periodics_reify (EV_P) 2799periodics_reify (EV_P)
1020{ 2800{
2801 EV_FREQUENT_CHECK;
2802
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2803 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1022 { 2804 {
1023 struct ev_periodic *w = periodics [0]; 2805 int feed_count = 0;
1024 2806
2807 do
2808 {
2809 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2810
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2811 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 2812
1027 /* first reschedule or stop timer */ 2813 /* first reschedule or stop timer */
2814 if (w->reschedule_cb)
2815 {
2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2817
2818 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2819
2820 ANHE_at_cache (periodics [HEAP0]);
2821 downheap (periodics, periodiccnt, HEAP0);
2822 }
2823 else if (w->interval)
2824 {
2825 periodic_recalc (EV_A_ w);
2826 ANHE_at_cache (periodics [HEAP0]);
2827 downheap (periodics, periodiccnt, HEAP0);
2828 }
2829 else
2830 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2831
2832 EV_FREQUENT_CHECK;
2833 feed_reverse (EV_A_ (W)w);
2834 }
2835 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2836
2837 feed_reverse_done (EV_A_ EV_PERIODIC);
2838 }
2839}
2840
2841/* simply recalculate all periodics */
2842/* TODO: maybe ensure that at least one event happens when jumping forward? */
2843static void noinline ecb_cold
2844periodics_reschedule (EV_P)
2845{
2846 int i;
2847
2848 /* adjust periodics after time jump */
2849 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2850 {
2851 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2852
1028 if (w->reschedule_cb) 2853 if (w->reschedule_cb)
2854 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2855 else if (w->interval)
2856 periodic_recalc (EV_A_ w);
2857
2858 ANHE_at_cache (periodics [i]);
2859 }
2860
2861 reheap (periodics, periodiccnt);
2862}
2863#endif
2864
2865/* adjust all timers by a given offset */
2866static void noinline ecb_cold
2867timers_reschedule (EV_P_ ev_tstamp adjust)
2868{
2869 int i;
2870
2871 for (i = 0; i < timercnt; ++i)
2872 {
2873 ANHE *he = timers + i + HEAP0;
2874 ANHE_w (*he)->at += adjust;
2875 ANHE_at_cache (*he);
2876 }
2877}
2878
2879/* fetch new monotonic and realtime times from the kernel */
2880/* also detect if there was a timejump, and act accordingly */
2881inline_speed void
2882time_update (EV_P_ ev_tstamp max_block)
2883{
2884#if EV_USE_MONOTONIC
2885 if (expect_true (have_monotonic))
2886 {
2887 int i;
2888 ev_tstamp odiff = rtmn_diff;
2889
2890 mn_now = get_clock ();
2891
2892 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2893 /* interpolate in the meantime */
2894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1029 { 2895 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2896 ev_rt_now = rtmn_diff + mn_now;
1031 2897 return;
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 2898 }
1035 else if (w->interval)
1036 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 }
1041 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 2899
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 }
1046}
1047
1048static void
1049periodics_reschedule (EV_P)
1050{
1051 int i;
1052
1053 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i)
1055 {
1056 struct ev_periodic *w = periodics [i];
1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
1067}
1068#endif
1069
1070inline int
1071time_update_monotonic (EV_P)
1072{
1073 mn_now = get_clock ();
1074
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 {
1077 ev_rt_now = rtmn_diff + mn_now;
1078 return 0;
1079 }
1080 else
1081 {
1082 now_floor = mn_now; 2900 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 2901 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 2902
1088static void 2903 /* loop a few times, before making important decisions.
1089time_update (EV_P) 2904 * on the choice of "4": one iteration isn't enough,
1090{ 2905 * in case we get preempted during the calls to
1091 int i; 2906 * ev_time and get_clock. a second call is almost guaranteed
1092 2907 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 2908 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 2909 * in the unlikely event of having been preempted here.
1095 { 2910 */
1096 if (time_update_monotonic (EV_A)) 2911 for (i = 4; --i; )
1097 { 2912 {
1098 ev_tstamp odiff = rtmn_diff; 2913 ev_tstamp diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 2914 rtmn_diff = ev_rt_now - mn_now;
1103 2915
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2916 diff = odiff - rtmn_diff;
2917
2918 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1105 return; /* all is well */ 2919 return; /* all is well */
1106 2920
1107 ev_rt_now = ev_time (); 2921 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 2922 mn_now = get_clock ();
1109 now_floor = mn_now; 2923 now_floor = mn_now;
1110 } 2924 }
1111 2925
2926 /* no timer adjustment, as the monotonic clock doesn't jump */
2927 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112# if EV_PERIODICS 2928# if EV_PERIODIC_ENABLE
2929 periodics_reschedule (EV_A);
2930# endif
2931 }
2932 else
2933#endif
2934 {
2935 ev_rt_now = ev_time ();
2936
2937 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2938 {
2939 /* adjust timers. this is easy, as the offset is the same for all of them */
2940 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2941#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 2942 periodics_reschedule (EV_A);
1114# endif 2943#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 2944 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 2945
1135 mn_now = ev_rt_now; 2946 mn_now = ev_rt_now;
1136 } 2947 }
1137} 2948}
1138 2949
1139void 2950int
1140ev_ref (EV_P)
1141{
1142 ++activecnt;
1143}
1144
1145void
1146ev_unref (EV_P)
1147{
1148 --activecnt;
1149}
1150
1151static int loop_done;
1152
1153void
1154ev_loop (EV_P_ int flags) 2951ev_run (EV_P_ int flags)
1155{ 2952{
1156 double block; 2953#if EV_FEATURE_API
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2954 ++loop_depth;
2955#endif
2956
2957 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2958
2959 loop_done = EVBREAK_CANCEL;
2960
2961 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1158 2962
1159 do 2963 do
1160 { 2964 {
2965#if EV_VERIFY >= 2
2966 ev_verify (EV_A);
2967#endif
2968
2969#ifndef _WIN32
2970 if (expect_false (curpid)) /* penalise the forking check even more */
2971 if (expect_false (getpid () != curpid))
2972 {
2973 curpid = getpid ();
2974 postfork = 1;
2975 }
2976#endif
2977
2978#if EV_FORK_ENABLE
2979 /* we might have forked, so queue fork handlers */
2980 if (expect_false (postfork))
2981 if (forkcnt)
2982 {
2983 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2984 EV_INVOKE_PENDING;
2985 }
2986#endif
2987
2988#if EV_PREPARE_ENABLE
1161 /* queue check watchers (and execute them) */ 2989 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 2990 if (expect_false (preparecnt))
1163 { 2991 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2992 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 2993 EV_INVOKE_PENDING;
1166 } 2994 }
2995#endif
2996
2997 if (expect_false (loop_done))
2998 break;
1167 2999
1168 /* we might have forked, so reify kernel state if necessary */ 3000 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 3001 if (expect_false (postfork))
1170 loop_fork (EV_A); 3002 loop_fork (EV_A);
1171 3003
1172 /* update fd-related kernel structures */ 3004 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 3005 fd_reify (EV_A);
1174 3006
1175 /* calculate blocking time */ 3007 /* calculate blocking time */
3008 {
3009 ev_tstamp waittime = 0.;
3010 ev_tstamp sleeptime = 0.;
1176 3011
1177 /* we only need this for !monotonic clock or timers, but as we basically 3012 /* remember old timestamp for io_blocktime calculation */
1178 always have timers, we just calculate it always */ 3013 ev_tstamp prev_mn_now = mn_now;
1179#if EV_USE_MONOTONIC 3014
1180 if (expect_true (have_monotonic)) 3015 /* update time to cancel out callback processing overhead */
1181 time_update_monotonic (EV_A); 3016 time_update (EV_A_ 1e100);
1182 else 3017
1183#endif 3018 /* from now on, we want a pipe-wake-up */
3019 pipe_write_wanted = 1;
3020
3021 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3022
3023 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1184 { 3024 {
1185 ev_rt_now = ev_time ();
1186 mn_now = ev_rt_now;
1187 }
1188
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 3025 waittime = MAX_BLOCKTIME;
1194 3026
1195 if (timercnt) 3027 if (timercnt)
1196 { 3028 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3029 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1198 if (block > to) block = to; 3030 if (waittime > to) waittime = to;
1199 } 3031 }
1200 3032
1201#if EV_PERIODICS 3033#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 3034 if (periodiccnt)
1203 { 3035 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3036 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1205 if (block > to) block = to; 3037 if (waittime > to) waittime = to;
1206 } 3038 }
1207#endif 3039#endif
1208 3040
1209 if (block < 0.) block = 0.; 3041 /* don't let timeouts decrease the waittime below timeout_blocktime */
3042 if (expect_false (waittime < timeout_blocktime))
3043 waittime = timeout_blocktime;
3044
3045 /* at this point, we NEED to wait, so we have to ensure */
3046 /* to pass a minimum nonzero value to the backend */
3047 if (expect_false (waittime < backend_mintime))
3048 waittime = backend_mintime;
3049
3050 /* extra check because io_blocktime is commonly 0 */
3051 if (expect_false (io_blocktime))
3052 {
3053 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3054
3055 if (sleeptime > waittime - backend_mintime)
3056 sleeptime = waittime - backend_mintime;
3057
3058 if (expect_true (sleeptime > 0.))
3059 {
3060 ev_sleep (sleeptime);
3061 waittime -= sleeptime;
3062 }
3063 }
1210 } 3064 }
1211 3065
1212 method_poll (EV_A_ block); 3066#if EV_FEATURE_API
3067 ++loop_count;
3068#endif
3069 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3070 backend_poll (EV_A_ waittime);
3071 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1213 3072
3073 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3074
3075 if (pipe_write_skipped)
3076 {
3077 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3078 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3079 }
3080
3081
1214 /* update ev_rt_now, do magic */ 3082 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 3083 time_update (EV_A_ waittime + sleeptime);
3084 }
1216 3085
1217 /* queue pending timers and reschedule them */ 3086 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 3087 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 3088#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 3089 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 3090#endif
1222 3091
3092#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 3093 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 3094 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3095#endif
1226 3096
3097#if EV_CHECK_ENABLE
1227 /* queue check watchers, to be executed first */ 3098 /* queue check watchers, to be executed first */
1228 if (checkcnt) 3099 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3101#endif
1230 3102
1231 call_pending (EV_A); 3103 EV_INVOKE_PENDING;
1232 } 3104 }
1233 while (activecnt && !loop_done); 3105 while (expect_true (
3106 activecnt
3107 && !loop_done
3108 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3109 ));
1234 3110
1235 if (loop_done != 2) 3111 if (loop_done == EVBREAK_ONE)
1236 loop_done = 0; 3112 loop_done = EVBREAK_CANCEL;
3113
3114#if EV_FEATURE_API
3115 --loop_depth;
3116#endif
3117
3118 return activecnt;
1237} 3119}
1238 3120
1239void 3121void
1240ev_unloop (EV_P_ int how) 3122ev_break (EV_P_ int how) EV_THROW
1241{ 3123{
1242 loop_done = how; 3124 loop_done = how;
1243} 3125}
1244 3126
3127void
3128ev_ref (EV_P) EV_THROW
3129{
3130 ++activecnt;
3131}
3132
3133void
3134ev_unref (EV_P) EV_THROW
3135{
3136 --activecnt;
3137}
3138
3139void
3140ev_now_update (EV_P) EV_THROW
3141{
3142 time_update (EV_A_ 1e100);
3143}
3144
3145void
3146ev_suspend (EV_P) EV_THROW
3147{
3148 ev_now_update (EV_A);
3149}
3150
3151void
3152ev_resume (EV_P) EV_THROW
3153{
3154 ev_tstamp mn_prev = mn_now;
3155
3156 ev_now_update (EV_A);
3157 timers_reschedule (EV_A_ mn_now - mn_prev);
3158#if EV_PERIODIC_ENABLE
3159 /* TODO: really do this? */
3160 periodics_reschedule (EV_A);
3161#endif
3162}
3163
1245/*****************************************************************************/ 3164/*****************************************************************************/
3165/* singly-linked list management, used when the expected list length is short */
1246 3166
1247inline void 3167inline_size void
1248wlist_add (WL *head, WL elem) 3168wlist_add (WL *head, WL elem)
1249{ 3169{
1250 elem->next = *head; 3170 elem->next = *head;
1251 *head = elem; 3171 *head = elem;
1252} 3172}
1253 3173
1254inline void 3174inline_size void
1255wlist_del (WL *head, WL elem) 3175wlist_del (WL *head, WL elem)
1256{ 3176{
1257 while (*head) 3177 while (*head)
1258 { 3178 {
1259 if (*head == elem) 3179 if (expect_true (*head == elem))
1260 { 3180 {
1261 *head = elem->next; 3181 *head = elem->next;
1262 return; 3182 break;
1263 } 3183 }
1264 3184
1265 head = &(*head)->next; 3185 head = &(*head)->next;
1266 } 3186 }
1267} 3187}
1268 3188
3189/* internal, faster, version of ev_clear_pending */
1269inline void 3190inline_speed void
1270ev_clear_pending (EV_P_ W w) 3191clear_pending (EV_P_ W w)
1271{ 3192{
1272 if (w->pending) 3193 if (w->pending)
1273 { 3194 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3195 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1275 w->pending = 0; 3196 w->pending = 0;
1276 } 3197 }
1277} 3198}
1278 3199
3200int
3201ev_clear_pending (EV_P_ void *w) EV_THROW
3202{
3203 W w_ = (W)w;
3204 int pending = w_->pending;
3205
3206 if (expect_true (pending))
3207 {
3208 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3209 p->w = (W)&pending_w;
3210 w_->pending = 0;
3211 return p->events;
3212 }
3213 else
3214 return 0;
3215}
3216
1279inline void 3217inline_size void
3218pri_adjust (EV_P_ W w)
3219{
3220 int pri = ev_priority (w);
3221 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3222 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3223 ev_set_priority (w, pri);
3224}
3225
3226inline_speed void
1280ev_start (EV_P_ W w, int active) 3227ev_start (EV_P_ W w, int active)
1281{ 3228{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3229 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 3230 w->active = active;
1286 ev_ref (EV_A); 3231 ev_ref (EV_A);
1287} 3232}
1288 3233
1289inline void 3234inline_size void
1290ev_stop (EV_P_ W w) 3235ev_stop (EV_P_ W w)
1291{ 3236{
1292 ev_unref (EV_A); 3237 ev_unref (EV_A);
1293 w->active = 0; 3238 w->active = 0;
1294} 3239}
1295 3240
1296/*****************************************************************************/ 3241/*****************************************************************************/
1297 3242
1298void 3243void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 3244ev_io_start (EV_P_ ev_io *w) EV_THROW
1300{ 3245{
1301 int fd = w->fd; 3246 int fd = w->fd;
1302 3247
1303 if (ev_is_active (w)) 3248 if (expect_false (ev_is_active (w)))
1304 return; 3249 return;
1305 3250
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 3251 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3252 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3253
3254 EV_FREQUENT_CHECK;
1307 3255
1308 ev_start (EV_A_ (W)w, 1); 3256 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3257 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3258 wlist_add (&anfds[fd].head, (WL)w);
1311 3259
1312 fd_change (EV_A_ fd); 3260 /* common bug, apparently */
1313} 3261 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1314 3262
1315void 3263 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3264 w->events &= ~EV__IOFDSET;
3265
3266 EV_FREQUENT_CHECK;
3267}
3268
3269void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 3270ev_io_stop (EV_P_ ev_io *w) EV_THROW
1317{ 3271{
1318 ev_clear_pending (EV_A_ (W)w); 3272 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 3273 if (expect_false (!ev_is_active (w)))
1320 return; 3274 return;
1321 3275
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3276 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 3277
3278 EV_FREQUENT_CHECK;
3279
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3280 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 3281 ev_stop (EV_A_ (W)w);
1326 3282
1327 fd_change (EV_A_ w->fd); 3283 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1328}
1329 3284
1330void 3285 EV_FREQUENT_CHECK;
3286}
3287
3288void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 3289ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1332{ 3290{
1333 if (ev_is_active (w)) 3291 if (expect_false (ev_is_active (w)))
1334 return; 3292 return;
1335 3293
1336 ((WT)w)->at += mn_now; 3294 ev_at (w) += mn_now;
1337 3295
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3296 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 3297
3298 EV_FREQUENT_CHECK;
3299
3300 ++timercnt;
1340 ev_start (EV_A_ (W)w, ++timercnt); 3301 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3302 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 3303 ANHE_w (timers [ev_active (w)]) = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 3304 ANHE_at_cache (timers [ev_active (w)]);
3305 upheap (timers, ev_active (w));
1344 3306
3307 EV_FREQUENT_CHECK;
3308
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3309 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1346} 3310}
1347 3311
1348void 3312void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 3313ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1350{ 3314{
1351 ev_clear_pending (EV_A_ (W)w); 3315 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 3316 if (expect_false (!ev_is_active (w)))
1353 return; 3317 return;
1354 3318
3319 EV_FREQUENT_CHECK;
3320
3321 {
3322 int active = ev_active (w);
3323
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3324 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1356 3325
1357 if (((W)w)->active < timercnt--) 3326 --timercnt;
3327
3328 if (expect_true (active < timercnt + HEAP0))
1358 { 3329 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 3330 timers [active] = timers [timercnt + HEAP0];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3331 adjustheap (timers, timercnt, active);
1361 } 3332 }
3333 }
1362 3334
1363 ((WT)w)->at -= mn_now; 3335 ev_at (w) -= mn_now;
1364 3336
1365 ev_stop (EV_A_ (W)w); 3337 ev_stop (EV_A_ (W)w);
1366}
1367 3338
1368void 3339 EV_FREQUENT_CHECK;
3340}
3341
3342void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 3343ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1370{ 3344{
3345 EV_FREQUENT_CHECK;
3346
3347 clear_pending (EV_A_ (W)w);
3348
1371 if (ev_is_active (w)) 3349 if (ev_is_active (w))
1372 { 3350 {
1373 if (w->repeat) 3351 if (w->repeat)
1374 { 3352 {
1375 ((WT)w)->at = mn_now + w->repeat; 3353 ev_at (w) = mn_now + w->repeat;
3354 ANHE_at_cache (timers [ev_active (w)]);
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3355 adjustheap (timers, timercnt, ev_active (w));
1377 } 3356 }
1378 else 3357 else
1379 ev_timer_stop (EV_A_ w); 3358 ev_timer_stop (EV_A_ w);
1380 } 3359 }
1381 else if (w->repeat) 3360 else if (w->repeat)
3361 {
3362 ev_at (w) = w->repeat;
1382 ev_timer_start (EV_A_ w); 3363 ev_timer_start (EV_A_ w);
1383} 3364 }
1384 3365
3366 EV_FREQUENT_CHECK;
3367}
3368
3369ev_tstamp
3370ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3371{
3372 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3373}
3374
1385#if EV_PERIODICS 3375#if EV_PERIODIC_ENABLE
1386void 3376void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 3377ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1388{ 3378{
1389 if (ev_is_active (w)) 3379 if (expect_false (ev_is_active (w)))
1390 return; 3380 return;
1391 3381
1392 if (w->reschedule_cb) 3382 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3383 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 3384 else if (w->interval)
1395 { 3385 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3386 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 3387 periodic_recalc (EV_A_ w);
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1399 } 3388 }
3389 else
3390 ev_at (w) = w->offset;
1400 3391
3392 EV_FREQUENT_CHECK;
3393
3394 ++periodiccnt;
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 3395 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3396 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 3397 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 3398 ANHE_at_cache (periodics [ev_active (w)]);
3399 upheap (periodics, ev_active (w));
1405 3400
3401 EV_FREQUENT_CHECK;
3402
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3403 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1407} 3404}
1408 3405
1409void 3406void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 3407ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1411{ 3408{
1412 ev_clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 3410 if (expect_false (!ev_is_active (w)))
1414 return; 3411 return;
1415 3412
3413 EV_FREQUENT_CHECK;
3414
3415 {
3416 int active = ev_active (w);
3417
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3418 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1417 3419
1418 if (((W)w)->active < periodiccnt--) 3420 --periodiccnt;
3421
3422 if (expect_true (active < periodiccnt + HEAP0))
1419 { 3423 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3424 periodics [active] = periodics [periodiccnt + HEAP0];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3425 adjustheap (periodics, periodiccnt, active);
1422 } 3426 }
3427 }
1423 3428
1424 ev_stop (EV_A_ (W)w); 3429 ev_stop (EV_A_ (W)w);
1425}
1426 3430
1427void 3431 EV_FREQUENT_CHECK;
3432}
3433
3434void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 3435ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1429{ 3436{
1430 /* TODO: use adjustheap and recalculation */ 3437 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 3438 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 3439 ev_periodic_start (EV_A_ w);
1433} 3440}
1434#endif 3441#endif
1435 3442
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 3443#ifndef SA_RESTART
1503# define SA_RESTART 0 3444# define SA_RESTART 0
1504#endif 3445#endif
1505 3446
3447#if EV_SIGNAL_ENABLE
3448
3449void noinline
3450ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3451{
3452 if (expect_false (ev_is_active (w)))
3453 return;
3454
3455 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3456
3457#if EV_MULTIPLICITY
3458 assert (("libev: a signal must not be attached to two different loops",
3459 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3460
3461 signals [w->signum - 1].loop = EV_A;
3462#endif
3463
3464 EV_FREQUENT_CHECK;
3465
3466#if EV_USE_SIGNALFD
3467 if (sigfd == -2)
3468 {
3469 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3470 if (sigfd < 0 && errno == EINVAL)
3471 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3472
3473 if (sigfd >= 0)
3474 {
3475 fd_intern (sigfd); /* doing it twice will not hurt */
3476
3477 sigemptyset (&sigfd_set);
3478
3479 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3480 ev_set_priority (&sigfd_w, EV_MAXPRI);
3481 ev_io_start (EV_A_ &sigfd_w);
3482 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3483 }
3484 }
3485
3486 if (sigfd >= 0)
3487 {
3488 /* TODO: check .head */
3489 sigaddset (&sigfd_set, w->signum);
3490 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3491
3492 signalfd (sigfd, &sigfd_set, 0);
3493 }
3494#endif
3495
3496 ev_start (EV_A_ (W)w, 1);
3497 wlist_add (&signals [w->signum - 1].head, (WL)w);
3498
3499 if (!((WL)w)->next)
3500# if EV_USE_SIGNALFD
3501 if (sigfd < 0) /*TODO*/
3502# endif
3503 {
3504# ifdef _WIN32
3505 evpipe_init (EV_A);
3506
3507 signal (w->signum, ev_sighandler);
3508# else
3509 struct sigaction sa;
3510
3511 evpipe_init (EV_A);
3512
3513 sa.sa_handler = ev_sighandler;
3514 sigfillset (&sa.sa_mask);
3515 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3516 sigaction (w->signum, &sa, 0);
3517
3518 if (origflags & EVFLAG_NOSIGMASK)
3519 {
3520 sigemptyset (&sa.sa_mask);
3521 sigaddset (&sa.sa_mask, w->signum);
3522 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3523 }
3524#endif
3525 }
3526
3527 EV_FREQUENT_CHECK;
3528}
3529
3530void noinline
3531ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3532{
3533 clear_pending (EV_A_ (W)w);
3534 if (expect_false (!ev_is_active (w)))
3535 return;
3536
3537 EV_FREQUENT_CHECK;
3538
3539 wlist_del (&signals [w->signum - 1].head, (WL)w);
3540 ev_stop (EV_A_ (W)w);
3541
3542 if (!signals [w->signum - 1].head)
3543 {
3544#if EV_MULTIPLICITY
3545 signals [w->signum - 1].loop = 0; /* unattach from signal */
3546#endif
3547#if EV_USE_SIGNALFD
3548 if (sigfd >= 0)
3549 {
3550 sigset_t ss;
3551
3552 sigemptyset (&ss);
3553 sigaddset (&ss, w->signum);
3554 sigdelset (&sigfd_set, w->signum);
3555
3556 signalfd (sigfd, &sigfd_set, 0);
3557 sigprocmask (SIG_UNBLOCK, &ss, 0);
3558 }
3559 else
3560#endif
3561 signal (w->signum, SIG_DFL);
3562 }
3563
3564 EV_FREQUENT_CHECK;
3565}
3566
3567#endif
3568
3569#if EV_CHILD_ENABLE
3570
1506void 3571void
1507ev_signal_start (EV_P_ struct ev_signal *w) 3572ev_child_start (EV_P_ ev_child *w) EV_THROW
1508{ 3573{
1509#if EV_MULTIPLICITY 3574#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3575 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 3576#endif
1512 if (ev_is_active (w)) 3577 if (expect_false (ev_is_active (w)))
1513 return; 3578 return;
1514 3579
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3580 EV_FREQUENT_CHECK;
1516 3581
1517 ev_start (EV_A_ (W)w, 1); 3582 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3583 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1520 3584
1521 if (!((WL)w)->next) 3585 EV_FREQUENT_CHECK;
3586}
3587
3588void
3589ev_child_stop (EV_P_ ev_child *w) EV_THROW
3590{
3591 clear_pending (EV_A_ (W)w);
3592 if (expect_false (!ev_is_active (w)))
3593 return;
3594
3595 EV_FREQUENT_CHECK;
3596
3597 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3598 ev_stop (EV_A_ (W)w);
3599
3600 EV_FREQUENT_CHECK;
3601}
3602
3603#endif
3604
3605#if EV_STAT_ENABLE
3606
3607# ifdef _WIN32
3608# undef lstat
3609# define lstat(a,b) _stati64 (a,b)
3610# endif
3611
3612#define DEF_STAT_INTERVAL 5.0074891
3613#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3614#define MIN_STAT_INTERVAL 0.1074891
3615
3616static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3617
3618#if EV_USE_INOTIFY
3619
3620/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3621# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3622
3623static void noinline
3624infy_add (EV_P_ ev_stat *w)
3625{
3626 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3627
3628 if (w->wd >= 0)
3629 {
3630 struct statfs sfs;
3631
3632 /* now local changes will be tracked by inotify, but remote changes won't */
3633 /* unless the filesystem is known to be local, we therefore still poll */
3634 /* also do poll on <2.6.25, but with normal frequency */
3635
3636 if (!fs_2625)
3637 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3638 else if (!statfs (w->path, &sfs)
3639 && (sfs.f_type == 0x1373 /* devfs */
3640 || sfs.f_type == 0xEF53 /* ext2/3 */
3641 || sfs.f_type == 0x3153464a /* jfs */
3642 || sfs.f_type == 0x52654973 /* reiser3 */
3643 || sfs.f_type == 0x01021994 /* tempfs */
3644 || sfs.f_type == 0x58465342 /* xfs */))
3645 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3646 else
3647 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1522 { 3648 }
3649 else
3650 {
3651 /* can't use inotify, continue to stat */
3652 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3653
3654 /* if path is not there, monitor some parent directory for speedup hints */
3655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3656 /* but an efficiency issue only */
3657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3658 {
3659 char path [4096];
3660 strcpy (path, w->path);
3661
3662 do
3663 {
3664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3666
3667 char *pend = strrchr (path, '/');
3668
3669 if (!pend || pend == path)
3670 break;
3671
3672 *pend = 0;
3673 w->wd = inotify_add_watch (fs_fd, path, mask);
3674 }
3675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3676 }
3677 }
3678
3679 if (w->wd >= 0)
3680 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3681
3682 /* now re-arm timer, if required */
3683 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3684 ev_timer_again (EV_A_ &w->timer);
3685 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3686}
3687
3688static void noinline
3689infy_del (EV_P_ ev_stat *w)
3690{
3691 int slot;
3692 int wd = w->wd;
3693
3694 if (wd < 0)
3695 return;
3696
3697 w->wd = -2;
3698 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3699 wlist_del (&fs_hash [slot].head, (WL)w);
3700
3701 /* remove this watcher, if others are watching it, they will rearm */
3702 inotify_rm_watch (fs_fd, wd);
3703}
3704
3705static void noinline
3706infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3707{
3708 if (slot < 0)
3709 /* overflow, need to check for all hash slots */
3710 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3711 infy_wd (EV_A_ slot, wd, ev);
3712 else
3713 {
3714 WL w_;
3715
3716 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3717 {
3718 ev_stat *w = (ev_stat *)w_;
3719 w_ = w_->next; /* lets us remove this watcher and all before it */
3720
3721 if (w->wd == wd || wd == -1)
3722 {
3723 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3724 {
3725 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3726 w->wd = -1;
3727 infy_add (EV_A_ w); /* re-add, no matter what */
3728 }
3729
3730 stat_timer_cb (EV_A_ &w->timer, 0);
3731 }
3732 }
3733 }
3734}
3735
3736static void
3737infy_cb (EV_P_ ev_io *w, int revents)
3738{
3739 char buf [EV_INOTIFY_BUFSIZE];
3740 int ofs;
3741 int len = read (fs_fd, buf, sizeof (buf));
3742
3743 for (ofs = 0; ofs < len; )
3744 {
3745 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3746 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3747 ofs += sizeof (struct inotify_event) + ev->len;
3748 }
3749}
3750
3751inline_size void ecb_cold
3752ev_check_2625 (EV_P)
3753{
3754 /* kernels < 2.6.25 are borked
3755 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3756 */
3757 if (ev_linux_version () < 0x020619)
3758 return;
3759
3760 fs_2625 = 1;
3761}
3762
3763inline_size int
3764infy_newfd (void)
3765{
3766#if defined IN_CLOEXEC && defined IN_NONBLOCK
3767 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3768 if (fd >= 0)
3769 return fd;
3770#endif
3771 return inotify_init ();
3772}
3773
3774inline_size void
3775infy_init (EV_P)
3776{
3777 if (fs_fd != -2)
3778 return;
3779
3780 fs_fd = -1;
3781
3782 ev_check_2625 (EV_A);
3783
3784 fs_fd = infy_newfd ();
3785
3786 if (fs_fd >= 0)
3787 {
3788 fd_intern (fs_fd);
3789 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3790 ev_set_priority (&fs_w, EV_MAXPRI);
3791 ev_io_start (EV_A_ &fs_w);
3792 ev_unref (EV_A);
3793 }
3794}
3795
3796inline_size void
3797infy_fork (EV_P)
3798{
3799 int slot;
3800
3801 if (fs_fd < 0)
3802 return;
3803
3804 ev_ref (EV_A);
3805 ev_io_stop (EV_A_ &fs_w);
3806 close (fs_fd);
3807 fs_fd = infy_newfd ();
3808
3809 if (fs_fd >= 0)
3810 {
3811 fd_intern (fs_fd);
3812 ev_io_set (&fs_w, fs_fd, EV_READ);
3813 ev_io_start (EV_A_ &fs_w);
3814 ev_unref (EV_A);
3815 }
3816
3817 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3818 {
3819 WL w_ = fs_hash [slot].head;
3820 fs_hash [slot].head = 0;
3821
3822 while (w_)
3823 {
3824 ev_stat *w = (ev_stat *)w_;
3825 w_ = w_->next; /* lets us add this watcher */
3826
3827 w->wd = -1;
3828
3829 if (fs_fd >= 0)
3830 infy_add (EV_A_ w); /* re-add, no matter what */
3831 else
3832 {
3833 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3834 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3835 ev_timer_again (EV_A_ &w->timer);
3836 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3837 }
3838 }
3839 }
3840}
3841
3842#endif
3843
1523#if _WIN32 3844#ifdef _WIN32
1524 signal (w->signum, sighandler); 3845# define EV_LSTAT(p,b) _stati64 (p, b)
1525#else 3846#else
1526 struct sigaction sa; 3847# define EV_LSTAT(p,b) lstat (p, b)
1527 sa.sa_handler = sighandler;
1528 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0);
1531#endif 3848#endif
1532 }
1533}
1534 3849
1535void 3850void
1536ev_signal_stop (EV_P_ struct ev_signal *w) 3851ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1537{ 3852{
1538 ev_clear_pending (EV_A_ (W)w); 3853 if (lstat (w->path, &w->attr) < 0)
1539 if (!ev_is_active (w)) 3854 w->attr.st_nlink = 0;
3855 else if (!w->attr.st_nlink)
3856 w->attr.st_nlink = 1;
3857}
3858
3859static void noinline
3860stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3861{
3862 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3863
3864 ev_statdata prev = w->attr;
3865 ev_stat_stat (EV_A_ w);
3866
3867 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3868 if (
3869 prev.st_dev != w->attr.st_dev
3870 || prev.st_ino != w->attr.st_ino
3871 || prev.st_mode != w->attr.st_mode
3872 || prev.st_nlink != w->attr.st_nlink
3873 || prev.st_uid != w->attr.st_uid
3874 || prev.st_gid != w->attr.st_gid
3875 || prev.st_rdev != w->attr.st_rdev
3876 || prev.st_size != w->attr.st_size
3877 || prev.st_atime != w->attr.st_atime
3878 || prev.st_mtime != w->attr.st_mtime
3879 || prev.st_ctime != w->attr.st_ctime
3880 ) {
3881 /* we only update w->prev on actual differences */
3882 /* in case we test more often than invoke the callback, */
3883 /* to ensure that prev is always different to attr */
3884 w->prev = prev;
3885
3886 #if EV_USE_INOTIFY
3887 if (fs_fd >= 0)
3888 {
3889 infy_del (EV_A_ w);
3890 infy_add (EV_A_ w);
3891 ev_stat_stat (EV_A_ w); /* avoid race... */
3892 }
3893 #endif
3894
3895 ev_feed_event (EV_A_ w, EV_STAT);
3896 }
3897}
3898
3899void
3900ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3901{
3902 if (expect_false (ev_is_active (w)))
1540 return; 3903 return;
1541 3904
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3905 ev_stat_stat (EV_A_ w);
3906
3907 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3908 w->interval = MIN_STAT_INTERVAL;
3909
3910 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3911 ev_set_priority (&w->timer, ev_priority (w));
3912
3913#if EV_USE_INOTIFY
3914 infy_init (EV_A);
3915
3916 if (fs_fd >= 0)
3917 infy_add (EV_A_ w);
3918 else
3919#endif
3920 {
3921 ev_timer_again (EV_A_ &w->timer);
3922 ev_unref (EV_A);
3923 }
3924
3925 ev_start (EV_A_ (W)w, 1);
3926
3927 EV_FREQUENT_CHECK;
3928}
3929
3930void
3931ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3932{
3933 clear_pending (EV_A_ (W)w);
3934 if (expect_false (!ev_is_active (w)))
3935 return;
3936
3937 EV_FREQUENT_CHECK;
3938
3939#if EV_USE_INOTIFY
3940 infy_del (EV_A_ w);
3941#endif
3942
3943 if (ev_is_active (&w->timer))
3944 {
3945 ev_ref (EV_A);
3946 ev_timer_stop (EV_A_ &w->timer);
3947 }
3948
1543 ev_stop (EV_A_ (W)w); 3949 ev_stop (EV_A_ (W)w);
1544 3950
1545 if (!signals [w->signum - 1].head) 3951 EV_FREQUENT_CHECK;
1546 signal (w->signum, SIG_DFL);
1547} 3952}
3953#endif
1548 3954
3955#if EV_IDLE_ENABLE
1549void 3956void
1550ev_child_start (EV_P_ struct ev_child *w) 3957ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1551{ 3958{
1552#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop));
1554#endif
1555 if (ev_is_active (w)) 3959 if (expect_false (ev_is_active (w)))
1556 return; 3960 return;
1557 3961
3962 pri_adjust (EV_A_ (W)w);
3963
3964 EV_FREQUENT_CHECK;
3965
3966 {
3967 int active = ++idlecnt [ABSPRI (w)];
3968
3969 ++idleall;
3970 ev_start (EV_A_ (W)w, active);
3971
3972 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3973 idles [ABSPRI (w)][active - 1] = w;
3974 }
3975
3976 EV_FREQUENT_CHECK;
3977}
3978
3979void
3980ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3981{
3982 clear_pending (EV_A_ (W)w);
3983 if (expect_false (!ev_is_active (w)))
3984 return;
3985
3986 EV_FREQUENT_CHECK;
3987
3988 {
3989 int active = ev_active (w);
3990
3991 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3992 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3993
3994 ev_stop (EV_A_ (W)w);
3995 --idleall;
3996 }
3997
3998 EV_FREQUENT_CHECK;
3999}
4000#endif
4001
4002#if EV_PREPARE_ENABLE
4003void
4004ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4005{
4006 if (expect_false (ev_is_active (w)))
4007 return;
4008
4009 EV_FREQUENT_CHECK;
4010
4011 ev_start (EV_A_ (W)w, ++preparecnt);
4012 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4013 prepares [preparecnt - 1] = w;
4014
4015 EV_FREQUENT_CHECK;
4016}
4017
4018void
4019ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4020{
4021 clear_pending (EV_A_ (W)w);
4022 if (expect_false (!ev_is_active (w)))
4023 return;
4024
4025 EV_FREQUENT_CHECK;
4026
4027 {
4028 int active = ev_active (w);
4029
4030 prepares [active - 1] = prepares [--preparecnt];
4031 ev_active (prepares [active - 1]) = active;
4032 }
4033
4034 ev_stop (EV_A_ (W)w);
4035
4036 EV_FREQUENT_CHECK;
4037}
4038#endif
4039
4040#if EV_CHECK_ENABLE
4041void
4042ev_check_start (EV_P_ ev_check *w) EV_THROW
4043{
4044 if (expect_false (ev_is_active (w)))
4045 return;
4046
4047 EV_FREQUENT_CHECK;
4048
4049 ev_start (EV_A_ (W)w, ++checkcnt);
4050 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4051 checks [checkcnt - 1] = w;
4052
4053 EV_FREQUENT_CHECK;
4054}
4055
4056void
4057ev_check_stop (EV_P_ ev_check *w) EV_THROW
4058{
4059 clear_pending (EV_A_ (W)w);
4060 if (expect_false (!ev_is_active (w)))
4061 return;
4062
4063 EV_FREQUENT_CHECK;
4064
4065 {
4066 int active = ev_active (w);
4067
4068 checks [active - 1] = checks [--checkcnt];
4069 ev_active (checks [active - 1]) = active;
4070 }
4071
4072 ev_stop (EV_A_ (W)w);
4073
4074 EV_FREQUENT_CHECK;
4075}
4076#endif
4077
4078#if EV_EMBED_ENABLE
4079void noinline
4080ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4081{
4082 ev_run (w->other, EVRUN_NOWAIT);
4083}
4084
4085static void
4086embed_io_cb (EV_P_ ev_io *io, int revents)
4087{
4088 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4089
4090 if (ev_cb (w))
4091 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4092 else
4093 ev_run (w->other, EVRUN_NOWAIT);
4094}
4095
4096static void
4097embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4098{
4099 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4100
4101 {
4102 EV_P = w->other;
4103
4104 while (fdchangecnt)
4105 {
4106 fd_reify (EV_A);
4107 ev_run (EV_A_ EVRUN_NOWAIT);
4108 }
4109 }
4110}
4111
4112static void
4113embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4114{
4115 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4116
4117 ev_embed_stop (EV_A_ w);
4118
4119 {
4120 EV_P = w->other;
4121
4122 ev_loop_fork (EV_A);
4123 ev_run (EV_A_ EVRUN_NOWAIT);
4124 }
4125
4126 ev_embed_start (EV_A_ w);
4127}
4128
4129#if 0
4130static void
4131embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4132{
4133 ev_idle_stop (EV_A_ idle);
4134}
4135#endif
4136
4137void
4138ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4139{
4140 if (expect_false (ev_is_active (w)))
4141 return;
4142
4143 {
4144 EV_P = w->other;
4145 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4146 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4147 }
4148
4149 EV_FREQUENT_CHECK;
4150
4151 ev_set_priority (&w->io, ev_priority (w));
4152 ev_io_start (EV_A_ &w->io);
4153
4154 ev_prepare_init (&w->prepare, embed_prepare_cb);
4155 ev_set_priority (&w->prepare, EV_MINPRI);
4156 ev_prepare_start (EV_A_ &w->prepare);
4157
4158 ev_fork_init (&w->fork, embed_fork_cb);
4159 ev_fork_start (EV_A_ &w->fork);
4160
4161 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4162
1558 ev_start (EV_A_ (W)w, 1); 4163 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4164
4165 EV_FREQUENT_CHECK;
1560} 4166}
1561 4167
1562void 4168void
1563ev_child_stop (EV_P_ struct ev_child *w) 4169ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1564{ 4170{
1565 ev_clear_pending (EV_A_ (W)w); 4171 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 4172 if (expect_false (!ev_is_active (w)))
1567 return; 4173 return;
1568 4174
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4175 EV_FREQUENT_CHECK;
4176
4177 ev_io_stop (EV_A_ &w->io);
4178 ev_prepare_stop (EV_A_ &w->prepare);
4179 ev_fork_stop (EV_A_ &w->fork);
4180
1570 ev_stop (EV_A_ (W)w); 4181 ev_stop (EV_A_ (W)w);
4182
4183 EV_FREQUENT_CHECK;
1571} 4184}
4185#endif
4186
4187#if EV_FORK_ENABLE
4188void
4189ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4190{
4191 if (expect_false (ev_is_active (w)))
4192 return;
4193
4194 EV_FREQUENT_CHECK;
4195
4196 ev_start (EV_A_ (W)w, ++forkcnt);
4197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4198 forks [forkcnt - 1] = w;
4199
4200 EV_FREQUENT_CHECK;
4201}
4202
4203void
4204ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4205{
4206 clear_pending (EV_A_ (W)w);
4207 if (expect_false (!ev_is_active (w)))
4208 return;
4209
4210 EV_FREQUENT_CHECK;
4211
4212 {
4213 int active = ev_active (w);
4214
4215 forks [active - 1] = forks [--forkcnt];
4216 ev_active (forks [active - 1]) = active;
4217 }
4218
4219 ev_stop (EV_A_ (W)w);
4220
4221 EV_FREQUENT_CHECK;
4222}
4223#endif
4224
4225#if EV_CLEANUP_ENABLE
4226void
4227ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4228{
4229 if (expect_false (ev_is_active (w)))
4230 return;
4231
4232 EV_FREQUENT_CHECK;
4233
4234 ev_start (EV_A_ (W)w, ++cleanupcnt);
4235 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4236 cleanups [cleanupcnt - 1] = w;
4237
4238 /* cleanup watchers should never keep a refcount on the loop */
4239 ev_unref (EV_A);
4240 EV_FREQUENT_CHECK;
4241}
4242
4243void
4244ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4245{
4246 clear_pending (EV_A_ (W)w);
4247 if (expect_false (!ev_is_active (w)))
4248 return;
4249
4250 EV_FREQUENT_CHECK;
4251 ev_ref (EV_A);
4252
4253 {
4254 int active = ev_active (w);
4255
4256 cleanups [active - 1] = cleanups [--cleanupcnt];
4257 ev_active (cleanups [active - 1]) = active;
4258 }
4259
4260 ev_stop (EV_A_ (W)w);
4261
4262 EV_FREQUENT_CHECK;
4263}
4264#endif
4265
4266#if EV_ASYNC_ENABLE
4267void
4268ev_async_start (EV_P_ ev_async *w) EV_THROW
4269{
4270 if (expect_false (ev_is_active (w)))
4271 return;
4272
4273 w->sent = 0;
4274
4275 evpipe_init (EV_A);
4276
4277 EV_FREQUENT_CHECK;
4278
4279 ev_start (EV_A_ (W)w, ++asynccnt);
4280 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4281 asyncs [asynccnt - 1] = w;
4282
4283 EV_FREQUENT_CHECK;
4284}
4285
4286void
4287ev_async_stop (EV_P_ ev_async *w) EV_THROW
4288{
4289 clear_pending (EV_A_ (W)w);
4290 if (expect_false (!ev_is_active (w)))
4291 return;
4292
4293 EV_FREQUENT_CHECK;
4294
4295 {
4296 int active = ev_active (w);
4297
4298 asyncs [active - 1] = asyncs [--asynccnt];
4299 ev_active (asyncs [active - 1]) = active;
4300 }
4301
4302 ev_stop (EV_A_ (W)w);
4303
4304 EV_FREQUENT_CHECK;
4305}
4306
4307void
4308ev_async_send (EV_P_ ev_async *w) EV_THROW
4309{
4310 w->sent = 1;
4311 evpipe_write (EV_A_ &async_pending);
4312}
4313#endif
1572 4314
1573/*****************************************************************************/ 4315/*****************************************************************************/
1574 4316
1575struct ev_once 4317struct ev_once
1576{ 4318{
1577 struct ev_io io; 4319 ev_io io;
1578 struct ev_timer to; 4320 ev_timer to;
1579 void (*cb)(int revents, void *arg); 4321 void (*cb)(int revents, void *arg);
1580 void *arg; 4322 void *arg;
1581}; 4323};
1582 4324
1583static void 4325static void
1584once_cb (EV_P_ struct ev_once *once, int revents) 4326once_cb (EV_P_ struct ev_once *once, int revents)
1585{ 4327{
1586 void (*cb)(int revents, void *arg) = once->cb; 4328 void (*cb)(int revents, void *arg) = once->cb;
1587 void *arg = once->arg; 4329 void *arg = once->arg;
1588 4330
1589 ev_io_stop (EV_A_ &once->io); 4331 ev_io_stop (EV_A_ &once->io);
1590 ev_timer_stop (EV_A_ &once->to); 4332 ev_timer_stop (EV_A_ &once->to);
1591 ev_free (once); 4333 ev_free (once);
1592 4334
1593 cb (revents, arg); 4335 cb (revents, arg);
1594} 4336}
1595 4337
1596static void 4338static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 4339once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 4340{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4341 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4342
4343 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1600} 4344}
1601 4345
1602static void 4346static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 4347once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 4348{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4349 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4350
4351 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1606} 4352}
1607 4353
1608void 4354void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4355ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1610{ 4356{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4357 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 4358
1613 if (!once) 4359 if (expect_false (!once))
4360 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4361 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1615 else 4362 return;
1616 { 4363 }
4364
1617 once->cb = cb; 4365 once->cb = cb;
1618 once->arg = arg; 4366 once->arg = arg;
1619 4367
1620 ev_init (&once->io, once_cb_io); 4368 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 4369 if (fd >= 0)
4370 {
4371 ev_io_set (&once->io, fd, events);
4372 ev_io_start (EV_A_ &once->io);
4373 }
4374
4375 ev_init (&once->to, once_cb_to);
4376 if (timeout >= 0.)
4377 {
4378 ev_timer_set (&once->to, timeout, 0.);
4379 ev_timer_start (EV_A_ &once->to);
4380 }
4381}
4382
4383/*****************************************************************************/
4384
4385#if EV_WALK_ENABLE
4386void ecb_cold
4387ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4388{
4389 int i, j;
4390 ev_watcher_list *wl, *wn;
4391
4392 if (types & (EV_IO | EV_EMBED))
4393 for (i = 0; i < anfdmax; ++i)
4394 for (wl = anfds [i].head; wl; )
1622 { 4395 {
1623 ev_io_set (&once->io, fd, events); 4396 wn = wl->next;
1624 ev_io_start (EV_A_ &once->io); 4397
4398#if EV_EMBED_ENABLE
4399 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4400 {
4401 if (types & EV_EMBED)
4402 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4403 }
4404 else
4405#endif
4406#if EV_USE_INOTIFY
4407 if (ev_cb ((ev_io *)wl) == infy_cb)
4408 ;
4409 else
4410#endif
4411 if ((ev_io *)wl != &pipe_w)
4412 if (types & EV_IO)
4413 cb (EV_A_ EV_IO, wl);
4414
4415 wl = wn;
1625 } 4416 }
1626 4417
1627 ev_init (&once->to, once_cb_to); 4418 if (types & (EV_TIMER | EV_STAT))
1628 if (timeout >= 0.) 4419 for (i = timercnt + HEAP0; i-- > HEAP0; )
4420#if EV_STAT_ENABLE
4421 /*TODO: timer is not always active*/
4422 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1629 { 4423 {
1630 ev_timer_set (&once->to, timeout, 0.); 4424 if (types & EV_STAT)
1631 ev_timer_start (EV_A_ &once->to); 4425 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1632 } 4426 }
1633 } 4427 else
1634} 4428#endif
4429 if (types & EV_TIMER)
4430 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1635 4431
1636#ifdef __cplusplus 4432#if EV_PERIODIC_ENABLE
1637} 4433 if (types & EV_PERIODIC)
4434 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4435 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4436#endif
4437
4438#if EV_IDLE_ENABLE
4439 if (types & EV_IDLE)
4440 for (j = NUMPRI; j--; )
4441 for (i = idlecnt [j]; i--; )
4442 cb (EV_A_ EV_IDLE, idles [j][i]);
4443#endif
4444
4445#if EV_FORK_ENABLE
4446 if (types & EV_FORK)
4447 for (i = forkcnt; i--; )
4448 if (ev_cb (forks [i]) != embed_fork_cb)
4449 cb (EV_A_ EV_FORK, forks [i]);
4450#endif
4451
4452#if EV_ASYNC_ENABLE
4453 if (types & EV_ASYNC)
4454 for (i = asynccnt; i--; )
4455 cb (EV_A_ EV_ASYNC, asyncs [i]);
4456#endif
4457
4458#if EV_PREPARE_ENABLE
4459 if (types & EV_PREPARE)
4460 for (i = preparecnt; i--; )
4461# if EV_EMBED_ENABLE
4462 if (ev_cb (prepares [i]) != embed_prepare_cb)
1638#endif 4463# endif
4464 cb (EV_A_ EV_PREPARE, prepares [i]);
4465#endif
1639 4466
4467#if EV_CHECK_ENABLE
4468 if (types & EV_CHECK)
4469 for (i = checkcnt; i--; )
4470 cb (EV_A_ EV_CHECK, checks [i]);
4471#endif
4472
4473#if EV_SIGNAL_ENABLE
4474 if (types & EV_SIGNAL)
4475 for (i = 0; i < EV_NSIG - 1; ++i)
4476 for (wl = signals [i].head; wl; )
4477 {
4478 wn = wl->next;
4479 cb (EV_A_ EV_SIGNAL, wl);
4480 wl = wn;
4481 }
4482#endif
4483
4484#if EV_CHILD_ENABLE
4485 if (types & EV_CHILD)
4486 for (i = (EV_PID_HASHSIZE); i--; )
4487 for (wl = childs [i]; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_CHILD, wl);
4491 wl = wn;
4492 }
4493#endif
4494/* EV_STAT 0x00001000 /* stat data changed */
4495/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4496}
4497#endif
4498
4499#if EV_MULTIPLICITY
4500 #include "ev_wrap.h"
4501#endif
4502

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines