ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC vs.
Revision 1.426 by root, Sun May 6 13:42:10 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 206# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
163# endif 209# endif
210# undef EV_AVOID_STDIO
164#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
165 220
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
167 222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
168#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
169# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
170#endif 269#endif
171 270
172#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 273#endif
175 274
176#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
177# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
178#endif 281#endif
179 282
180#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 285#endif
183 286
184#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
185# ifdef _WIN32 288# ifdef _WIN32
186# define EV_USE_POLL 0 289# define EV_USE_POLL 0
187# else 290# else
188# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 292# endif
190#endif 293#endif
191 294
192#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 298# else
196# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
197# endif 300# endif
198#endif 301#endif
199 302
205# define EV_USE_PORT 0 308# define EV_USE_PORT 0
206#endif 309#endif
207 310
208#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 314# else
212# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
213# endif 316# endif
214#endif 317#endif
215 318
216#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 321#endif
223 322
224#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 325#endif
231 326
232#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 330# else
236# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
237# endif 332# endif
238#endif 333#endif
239 334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
241 382
242#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
245#endif 386#endif
253# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
255#endif 396#endif
256 397
257#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 401# include <sys/select.h>
260# endif 402# endif
261#endif 403#endif
262 404
263#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
264# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
265#endif 413#endif
266 414
267#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 416# include <winsock.h>
269#endif 417#endif
270 418
271#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 421# include <stdint.h>
274# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
275extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
276# endif 424# endif
277int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 426# ifdef O_CLOEXEC
279} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
280# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
281#endif 455#endif
282 456
283/**/ 457/**/
284 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
285/* 465/*
286 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 468 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 471
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 519 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
302#else 526#else
303# define expect(expr,value) (expr) 527 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 542 #endif
543#endif
309 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680#endif
681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
312#define inline_size static inline 960#define inline_size ecb_inline
313 961
314#if EV_MINIMAL 962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
315# define inline_speed static noinline 965# define inline_speed static noinline
966#endif
967
968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
316#else 972#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
322 975
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
325 978
326typedef ev_watcher *W; 979typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
329 982
330#define ev_active(w) ((W)(w))->active 983#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 984#define ev_at(w) ((WT)(w))->at
332 985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
333#if EV_USE_MONOTONIC 992#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1004#endif
338 1005
339#ifdef _WIN32 1006#ifdef _WIN32
340# include "ev_win32.c" 1007# include "ev_win32.c"
341#endif 1008#endif
342 1009
343/*****************************************************************************/ 1010/*****************************************************************************/
344 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
345static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
346 1111
347void 1112void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
349{ 1114{
350 syserr_cb = cb; 1115 syserr_cb = cb;
351} 1116}
352 1117
353static void noinline 1118static void noinline ecb_cold
354syserr (const char *msg) 1119ev_syserr (const char *msg)
355{ 1120{
356 if (!msg) 1121 if (!msg)
357 msg = "(libev) system error"; 1122 msg = "(libev) system error";
358 1123
359 if (syserr_cb) 1124 if (syserr_cb)
360 syserr_cb (msg); 1125 syserr_cb (msg);
361 else 1126 else
362 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
363 perror (msg); 1134 perror (msg);
1135#endif
364 abort (); 1136 abort ();
365 } 1137 }
366} 1138}
367 1139
368static void * 1140static void *
369ev_realloc_emul (void *ptr, long size) 1141ev_realloc_emul (void *ptr, long size)
370{ 1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
371 /* some systems, notably openbsd and darwin, fail to properly 1146 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1147 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1148 * the single unix specification, so work around them here.
374 */ 1149 */
375 1150
376 if (size) 1151 if (size)
377 return realloc (ptr, size); 1152 return realloc (ptr, size);
378 1153
379 free (ptr); 1154 free (ptr);
380 return 0; 1155 return 0;
1156#endif
381} 1157}
382 1158
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
384 1160
385void 1161void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
387{ 1163{
388 alloc = cb; 1164 alloc = cb;
389} 1165}
390 1166
391inline_speed void * 1167inline_speed void *
393{ 1169{
394 ptr = alloc (ptr, size); 1170 ptr = alloc (ptr, size);
395 1171
396 if (!ptr && size) 1172 if (!ptr && size)
397 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
399 abort (); 1179 abort ();
400 } 1180 }
401 1181
402 return ptr; 1182 return ptr;
403} 1183}
405#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1187
408/*****************************************************************************/ 1188/*****************************************************************************/
409 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
410typedef struct 1194typedef struct
411{ 1195{
412 WL head; 1196 WL head;
413 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
415#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1205 SOCKET handle;
417#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
418} ANFD; 1210} ANFD;
419 1211
1212/* stores the pending event set for a given watcher */
420typedef struct 1213typedef struct
421{ 1214{
422 W w; 1215 W w;
423 int events; 1216 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1217} ANPENDING;
425 1218
426#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
427typedef struct 1221typedef struct
428{ 1222{
429 WL head; 1223 WL head;
430} ANFS; 1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
431#endif 1245#endif
432 1246
433#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
434 1248
435 struct ev_loop 1249 struct ev_loop
441 #undef VAR 1255 #undef VAR
442 }; 1256 };
443 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
444 1258
445 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
447 1261
448#else 1262#else
449 1263
450 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
451 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
452 #include "ev_vars.h" 1266 #include "ev_vars.h"
453 #undef VAR 1267 #undef VAR
454 1268
455 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
456 1270
457#endif 1271#endif
458 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
459/*****************************************************************************/ 1285/*****************************************************************************/
460 1286
1287#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1288ev_tstamp
462ev_time (void) 1289ev_time (void) EV_THROW
463{ 1290{
464#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
465 struct timespec ts; 1294 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1297 }
1298#endif
1299
469 struct timeval tv; 1300 struct timeval tv;
470 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1303}
1304#endif
474 1305
475ev_tstamp inline_size 1306inline_size ev_tstamp
476get_clock (void) 1307get_clock (void)
477{ 1308{
478#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
480 { 1311 {
487 return ev_time (); 1318 return ev_time ();
488} 1319}
489 1320
490#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
491ev_tstamp 1322ev_tstamp
492ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
493{ 1324{
494 return ev_rt_now; 1325 return ev_rt_now;
495} 1326}
496#endif 1327#endif
497 1328
498void 1329void
499ev_sleep (ev_tstamp delay) 1330ev_sleep (ev_tstamp delay) EV_THROW
500{ 1331{
501 if (delay > 0.) 1332 if (delay > 0.)
502 { 1333 {
503#if EV_USE_NANOSLEEP 1334#if EV_USE_NANOSLEEP
504 struct timespec ts; 1335 struct timespec ts;
505 1336
506 ts.tv_sec = (time_t)delay; 1337 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1338 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1339#elif defined _WIN32
511 Sleep ((unsigned long)(delay * 1e3)); 1340 Sleep ((unsigned long)(delay * 1e3));
512#else 1341#else
513 struct timeval tv; 1342 struct timeval tv;
514 1343
515 tv.tv_sec = (time_t)delay; 1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1345 /* something not guaranteed by newer posix versions, but guaranteed */
517 1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1348 select (0, 0, 0, 0, &tv);
519#endif 1349#endif
520 } 1350 }
521} 1351}
522 1352
523/*****************************************************************************/ 1353/*****************************************************************************/
524 1354
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 1356
527int inline_size 1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
528array_nextsize (int elem, int cur, int cnt) 1360array_nextsize (int elem, int cur, int cnt)
529{ 1361{
530 int ncur = cur + 1; 1362 int ncur = cur + 1;
531 1363
532 do 1364 do
533 ncur <<= 1; 1365 ncur <<= 1;
534 while (cnt > ncur); 1366 while (cnt > ncur);
535 1367
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 { 1370 {
539 ncur *= elem; 1371 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4; 1373 ncur = ncur - sizeof (void *) * 4;
543 } 1375 }
544 1376
545 return ncur; 1377 return ncur;
546} 1378}
547 1379
548static noinline void * 1380static void * noinline ecb_cold
549array_realloc (int elem, void *base, int *cur, int cnt) 1381array_realloc (int elem, void *base, int *cur, int cnt)
550{ 1382{
551 *cur = array_nextsize (elem, *cur, cnt); 1383 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 1384 return ev_realloc (base, elem * *cur);
553} 1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 1389
555#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 1391 if (expect_false ((cnt) > (cur))) \
557 { \ 1392 { \
558 int ocur_ = (cur); \ 1393 int ecb_unused ocur_ = (cur); \
559 (base) = (type *)array_realloc \ 1394 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
562 } 1397 }
563 1398
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 1406 }
572#endif 1407#endif
573 1408
574#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 1411
577/*****************************************************************************/ 1412/*****************************************************************************/
578 1413
1414/* dummy callback for pending events */
1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
1417{
1418}
1419
579void noinline 1420void noinline
580ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
581{ 1422{
582 W w_ = (W)w; 1423 W w_ = (W)w;
583 int pri = ABSPRI (w_); 1424 int pri = ABSPRI (w_);
584 1425
585 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
589 w_->pending = ++pendingcnt [pri]; 1430 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_; 1432 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 1433 pendings [pri][w_->pending - 1].events = revents;
593 } 1434 }
594}
595 1435
596void inline_speed 1436 pendingpri = NUMPRI - 1;
1437}
1438
1439inline_speed void
1440feed_reverse (EV_P_ W w)
1441{
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444}
1445
1446inline_size void
1447feed_reverse_done (EV_P_ int revents)
1448{
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452}
1453
1454inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 1455queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 1456{
599 int i; 1457 int i;
600 1458
601 for (i = 0; i < eventcnt; ++i) 1459 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 1460 ev_feed_event (EV_A_ events [i], type);
603} 1461}
604 1462
605/*****************************************************************************/ 1463/*****************************************************************************/
606 1464
607void inline_size 1465inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 1466fd_event_nocheck (EV_P_ int fd, int revents)
622{ 1467{
623 ANFD *anfd = anfds + fd; 1468 ANFD *anfd = anfds + fd;
624 ev_io *w; 1469 ev_io *w;
625 1470
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 1475 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 1476 ev_feed_event (EV_A_ (W)w, ev);
632 } 1477 }
633} 1478}
634 1479
1480/* do not submit kernel events for fds that have reify set */
1481/* because that means they changed while we were polling for new events */
1482inline_speed void
1483fd_event (EV_P_ int fd, int revents)
1484{
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489}
1490
635void 1491void
636ev_feed_fd_event (EV_P_ int fd, int revents) 1492ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
637{ 1493{
638 if (fd >= 0 && fd < anfdmax) 1494 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 1495 fd_event_nocheck (EV_A_ fd, revents);
640} 1496}
641 1497
642void inline_size 1498/* make sure the external fd watch events are in-sync */
1499/* with the kernel/libev internal state */
1500inline_size void
643fd_reify (EV_P) 1501fd_reify (EV_P)
644{ 1502{
645 int i; 1503 int i;
1504
1505#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1506 for (i = 0; i < fdchangecnt; ++i)
1507 {
1508 int fd = fdchanges [i];
1509 ANFD *anfd = anfds + fd;
1510
1511 if (anfd->reify & EV__IOFDSET && anfd->head)
1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
1517 unsigned long arg;
1518
1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
1526 }
1527 }
1528#endif
646 1529
647 for (i = 0; i < fdchangecnt; ++i) 1530 for (i = 0; i < fdchangecnt; ++i)
648 { 1531 {
649 int fd = fdchanges [i]; 1532 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd; 1533 ANFD *anfd = anfds + fd;
651 ev_io *w; 1534 ev_io *w;
652 1535
653 unsigned char events = 0; 1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
654 1538
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1539 anfd->reify = 0;
656 events |= (unsigned char)w->events;
657 1540
658#if EV_SELECT_IS_WINSOCKET 1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
659 if (events)
660 { 1542 {
661 unsigned long argp; 1543 anfd->events = 0;
662 #ifdef EV_FD_TO_WIN32_HANDLE 1544
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
664 #else 1546 anfd->events |= (unsigned char)w->events;
665 anfd->handle = _get_osfhandle (fd); 1547
666 #endif 1548 if (o_events != anfd->events)
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1549 o_reify = EV__IOFDSET; /* actually |= */
668 } 1550 }
669#endif
670 1551
671 { 1552 if (o_reify & EV__IOFDSET)
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 1553 backend_modify (EV_A_ fd, o_events, anfd->events);
680 }
681 } 1554 }
682 1555
683 fdchangecnt = 0; 1556 fdchangecnt = 0;
684} 1557}
685 1558
686void inline_size 1559/* something about the given fd changed */
1560inline_size void
687fd_change (EV_P_ int fd, int flags) 1561fd_change (EV_P_ int fd, int flags)
688{ 1562{
689 unsigned char reify = anfds [fd].reify; 1563 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 1564 anfds [fd].reify |= flags;
691 1565
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 1570 fdchanges [fdchangecnt - 1] = fd;
697 } 1571 }
698} 1572}
699 1573
700void inline_speed 1574/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575inline_speed void ecb_cold
701fd_kill (EV_P_ int fd) 1576fd_kill (EV_P_ int fd)
702{ 1577{
703 ev_io *w; 1578 ev_io *w;
704 1579
705 while ((w = (ev_io *)anfds [fd].head)) 1580 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 1582 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 1584 }
710} 1585}
711 1586
712int inline_size 1587/* check whether the given fd is actually valid, for error recovery */
1588inline_size int ecb_cold
713fd_valid (int fd) 1589fd_valid (int fd)
714{ 1590{
715#ifdef _WIN32 1591#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1593#else
718 return fcntl (fd, F_GETFD) != -1; 1594 return fcntl (fd, F_GETFD) != -1;
719#endif 1595#endif
720} 1596}
721 1597
722/* called on EBADF to verify fds */ 1598/* called on EBADF to verify fds */
723static void noinline 1599static void noinline ecb_cold
724fd_ebadf (EV_P) 1600fd_ebadf (EV_P)
725{ 1601{
726 int fd; 1602 int fd;
727 1603
728 for (fd = 0; fd < anfdmax; ++fd) 1604 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1605 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1606 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1607 fd_kill (EV_A_ fd);
732} 1608}
733 1609
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1610/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1611static void noinline ecb_cold
736fd_enomem (EV_P) 1612fd_enomem (EV_P)
737{ 1613{
738 int fd; 1614 int fd;
739 1615
740 for (fd = anfdmax; fd--; ) 1616 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1617 if (anfds [fd].events)
742 { 1618 {
743 fd_kill (EV_A_ fd); 1619 fd_kill (EV_A_ fd);
744 return; 1620 break;
745 } 1621 }
746} 1622}
747 1623
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1624/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1625static void noinline
753 1629
754 for (fd = 0; fd < anfdmax; ++fd) 1630 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1631 if (anfds [fd].events)
756 { 1632 {
757 anfds [fd].events = 0; 1633 anfds [fd].events = 0;
1634 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1636 }
760} 1637}
761 1638
1639/* used to prepare libev internal fd's */
1640/* this is not fork-safe */
1641inline_speed void
1642fd_intern (int fd)
1643{
1644#ifdef _WIN32
1645 unsigned long arg = 1;
1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1647#else
1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
1649 fcntl (fd, F_SETFL, O_NONBLOCK);
1650#endif
1651}
1652
762/*****************************************************************************/ 1653/*****************************************************************************/
1654
1655/*
1656 * the heap functions want a real array index. array index 0 is guaranteed to not
1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1658 * the branching factor of the d-tree.
1659 */
763 1660
764/* 1661/*
765 * at the moment we allow libev the luxury of two heaps, 1662 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1663 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1664 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1665 * the difference is about 5% with 50000+ watchers.
769 */ 1666 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1667#if EV_USE_4HEAP
772 1668
773#define DHEAP 4 1669#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1670#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1671#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1672#define UPHEAP_DONE(p,k) ((p) == (k))
775 1673
776/* towards the root */ 1674/* away from the root */
777void inline_speed 1675inline_speed void
778upheap (WT *heap, int k) 1676downheap (ANHE *heap, int N, int k)
779{ 1677{
780 WT w = heap [k]; 1678 ANHE he = heap [k];
781 ev_tstamp w_at = w->at; 1679 ANHE *E = heap + N + HEAP0;
782 1680
783 for (;;) 1681 for (;;)
784 { 1682 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat; 1683 ev_tstamp minat;
809 WT *minpos; 1684 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1685 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 1686
812 // find minimum child 1687 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 1688 if (expect_true (pos + DHEAP - 1 < E))
814 { 1689 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at); 1690 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1691 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1692 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1693 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 1694 }
820 else if (pos < E) 1695 else if (pos < E)
821 { 1696 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at); 1697 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1698 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1699 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1700 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
826 } 1701 }
827 else 1702 else
828 break; 1703 break;
829 1704
830 if (w->at <= minat) 1705 if (ANHE_at (he) <= minat)
831 break; 1706 break;
832 1707
833 ev_active (*minpos) = k;
834 heap [k] = *minpos; 1708 heap [k] = *minpos;
1709 ev_active (ANHE_w (*minpos)) = k;
835 1710
836 k = minpos - heap; 1711 k = minpos - heap;
837 } 1712 }
838 1713
839 heap [k] = w; 1714 heap [k] = he;
840 ev_active (heap [k]) = k; 1715 ev_active (ANHE_w (he)) = k;
841} 1716}
842 1717
843#else // 4HEAP 1718#else /* 4HEAP */
844 1719
845#define HEAP0 1 1720#define HEAP0 1
1721#define HPARENT(k) ((k) >> 1)
1722#define UPHEAP_DONE(p,k) (!(p))
846 1723
847/* towards the root */ 1724/* away from the root */
848void inline_speed 1725inline_speed void
849upheap (WT *heap, int k) 1726downheap (ANHE *heap, int N, int k)
850{ 1727{
851 WT w = heap [k]; 1728 ANHE he = heap [k];
852 1729
853 for (;;) 1730 for (;;)
854 { 1731 {
855 int p = k >> 1; 1732 int c = k << 1;
856 1733
857 /* maybe we could use a dummy element at heap [0]? */ 1734 if (c >= N + HEAP0)
858 if (!p || heap [p]->at <= w->at)
859 break; 1735 break;
860 1736
861 heap [k] = heap [p]; 1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
862 ev_active (heap [k]) = k; 1738 ? 1 : 0;
863 k = p;
864 }
865 1739
866 heap [k] = w; 1740 if (ANHE_at (he) <= ANHE_at (heap [c]))
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break; 1741 break;
882 1742
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c]; 1743 heap [k] = heap [c];
890 ((W)heap [k])->active = k; 1744 ev_active (ANHE_w (heap [k])) = k;
891 1745
892 k = c; 1746 k = c;
893 } 1747 }
894 1748
895 heap [k] = w; 1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752#endif
1753
1754/* towards the root */
1755inline_speed void
1756upheap (ANHE *heap, int k)
1757{
1758 ANHE he = heap [k];
1759
1760 for (;;)
1761 {
1762 int p = HPARENT (k);
1763
1764 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1765 break;
1766
1767 heap [k] = heap [p];
896 ev_active (heap [k]) = k; 1768 ev_active (ANHE_w (heap [k])) = k;
897} 1769 k = p;
898#endif 1770 }
899 1771
900void inline_size 1772 heap [k] = he;
1773 ev_active (ANHE_w (he)) = k;
1774}
1775
1776/* move an element suitably so it is in a correct place */
1777inline_size void
901adjustheap (WT *heap, int N, int k) 1778adjustheap (ANHE *heap, int N, int k)
902{ 1779{
1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
903 upheap (heap, k); 1781 upheap (heap, k);
1782 else
904 downheap (heap, N, k); 1783 downheap (heap, N, k);
1784}
1785
1786/* rebuild the heap: this function is used only once and executed rarely */
1787inline_size void
1788reheap (ANHE *heap, int N)
1789{
1790 int i;
1791
1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1793 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1794 for (i = 0; i < N; ++i)
1795 upheap (heap, i + HEAP0);
905} 1796}
906 1797
907/*****************************************************************************/ 1798/*****************************************************************************/
908 1799
1800/* associate signal watchers to a signal signal */
909typedef struct 1801typedef struct
910{ 1802{
1803 EV_ATOMIC_T pending;
1804#if EV_MULTIPLICITY
1805 EV_P;
1806#endif
911 WL head; 1807 WL head;
912 EV_ATOMIC_T gotsig;
913} ANSIG; 1808} ANSIG;
914 1809
915static ANSIG *signals; 1810static ANSIG signals [EV_NSIG - 1];
916static int signalmax;
917
918static EV_ATOMIC_T gotsig;
919
920void inline_size
921signals_init (ANSIG *base, int count)
922{
923 while (count--)
924 {
925 base->head = 0;
926 base->gotsig = 0;
927
928 ++base;
929 }
930}
931 1811
932/*****************************************************************************/ 1812/*****************************************************************************/
933 1813
934void inline_speed 1814#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
935fd_intern (int fd)
936{
937#ifdef _WIN32
938 int arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif
944}
945 1815
946static void noinline 1816static void noinline ecb_cold
947evpipe_init (EV_P) 1817evpipe_init (EV_P)
948{ 1818{
949 if (!ev_is_active (&pipeev)) 1819 if (!ev_is_active (&pipe_w))
950 { 1820 {
951#if EV_USE_EVENTFD 1821# if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
952 if ((evfd = eventfd (0, 0)) >= 0) 1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
953 { 1827 {
954 evpipe [0] = -1; 1828 evpipe [0] = -1;
955 fd_intern (evfd); 1829 fd_intern (evfd); /* doing it twice doesn't hurt */
956 ev_io_set (&pipeev, evfd, EV_READ); 1830 ev_io_set (&pipe_w, evfd, EV_READ);
957 } 1831 }
958 else 1832 else
959#endif 1833# endif
960 { 1834 {
961 while (pipe (evpipe)) 1835 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe"); 1836 ev_syserr ("(libev) error creating signal/async pipe");
963 1837
964 fd_intern (evpipe [0]); 1838 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]); 1839 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ); 1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
967 } 1841 }
968 1842
969 ev_io_start (EV_A_ &pipeev); 1843 ev_io_start (EV_A_ &pipe_w);
970 ev_unref (EV_A); /* watcher should not keep loop alive */ 1844 ev_unref (EV_A); /* watcher should not keep loop alive */
971 } 1845 }
972} 1846}
973 1847
974void inline_size 1848inline_speed void
975evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1849evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{ 1850{
977 if (!*flag) 1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
978 { 1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
979 int old_errno = errno; /* save errno because write might clobber it */ 1870 old_errno = errno; /* save errno because write will clobber it */
980
981 *flag = 1;
982 1871
983#if EV_USE_EVENTFD 1872#if EV_USE_EVENTFD
984 if (evfd >= 0) 1873 if (evfd >= 0)
985 { 1874 {
986 uint64_t counter = 1; 1875 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t)); 1876 write (evfd, &counter, sizeof (uint64_t));
988 } 1877 }
989 else 1878 else
990#endif 1879#endif
1880 {
1881 /* win32 people keep sending patches that change this write() to send() */
1882 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1883 /* so when you think this write should be a send instead, please find out */
1884 /* where your send() is from - it's definitely not the microsoft send, and */
1885 /* tell me. thank you. */
1886 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1887 /* check the ev documentation on how to use this flag */
991 write (evpipe [1], &old_errno, 1); 1888 write (evpipe [1], &(evpipe [1]), 1);
1889 }
992 1890
993 errno = old_errno; 1891 errno = old_errno;
994 } 1892 }
995} 1893}
996 1894
1895/* called whenever the libev signal pipe */
1896/* got some events (signal, async) */
997static void 1897static void
998pipecb (EV_P_ ev_io *iow, int revents) 1898pipecb (EV_P_ ev_io *iow, int revents)
999{ 1899{
1900 int i;
1901
1902 if (revents & EV_READ)
1903 {
1000#if EV_USE_EVENTFD 1904#if EV_USE_EVENTFD
1001 if (evfd >= 0) 1905 if (evfd >= 0)
1002 { 1906 {
1003 uint64_t counter; 1907 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t)); 1908 read (evfd, &counter, sizeof (uint64_t));
1005 } 1909 }
1006 else 1910 else
1007#endif 1911#endif
1008 { 1912 {
1009 char dummy; 1913 char dummy;
1914 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1010 read (evpipe [0], &dummy, 1); 1915 read (evpipe [0], &dummy, 1);
1916 }
1917 }
1918
1919 pipe_write_skipped = 0;
1920
1921 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1922
1923#if EV_SIGNAL_ENABLE
1924 if (sig_pending)
1011 } 1925 {
1926 sig_pending = 0;
1012 1927
1013 if (gotsig && ev_is_default_loop (EV_A)) 1928 ECB_MEMORY_FENCE_RELEASE;
1014 {
1015 int signum;
1016 gotsig = 0;
1017 1929
1018 for (signum = signalmax; signum--; ) 1930 for (i = EV_NSIG - 1; i--; )
1019 if (signals [signum].gotsig) 1931 if (expect_false (signals [i].pending))
1020 ev_feed_signal_event (EV_A_ signum + 1); 1932 ev_feed_signal_event (EV_A_ i + 1);
1021 } 1933 }
1934#endif
1022 1935
1023#if EV_ASYNC_ENABLE 1936#if EV_ASYNC_ENABLE
1024 if (gotasync) 1937 if (async_pending)
1025 { 1938 {
1026 int i; 1939 async_pending = 0;
1027 gotasync = 0; 1940
1941 ECB_MEMORY_FENCE_RELEASE;
1028 1942
1029 for (i = asynccnt; i--; ) 1943 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent) 1944 if (asyncs [i]->sent)
1031 { 1945 {
1032 asyncs [i]->sent = 0; 1946 asyncs [i]->sent = 0;
1036#endif 1950#endif
1037} 1951}
1038 1952
1039/*****************************************************************************/ 1953/*****************************************************************************/
1040 1954
1955void
1956ev_feed_signal (int signum) EV_THROW
1957{
1958#if EV_MULTIPLICITY
1959 EV_P = signals [signum - 1].loop;
1960
1961 if (!EV_A)
1962 return;
1963#endif
1964
1965 if (!ev_active (&pipe_w))
1966 return;
1967
1968 signals [signum - 1].pending = 1;
1969 evpipe_write (EV_A_ &sig_pending);
1970}
1971
1041static void 1972static void
1042ev_sighandler (int signum) 1973ev_sighandler (int signum)
1043{ 1974{
1975#ifdef _WIN32
1976 signal (signum, ev_sighandler);
1977#endif
1978
1979 ev_feed_signal (signum);
1980}
1981
1982void noinline
1983ev_feed_signal_event (EV_P_ int signum) EV_THROW
1984{
1985 WL w;
1986
1987 if (expect_false (signum <= 0 || signum > EV_NSIG))
1988 return;
1989
1990 --signum;
1991
1044#if EV_MULTIPLICITY 1992#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct; 1993 /* it is permissible to try to feed a signal to the wrong loop */
1046#endif 1994 /* or, likely more useful, feeding a signal nobody is waiting for */
1047 1995
1048#if _WIN32 1996 if (expect_false (signals [signum].loop != EV_A))
1049 signal (signum, ev_sighandler);
1050#endif
1051
1052 signals [signum - 1].gotsig = 1;
1053 evpipe_write (EV_A_ &gotsig);
1054}
1055
1056void noinline
1057ev_feed_signal_event (EV_P_ int signum)
1058{
1059 WL w;
1060
1061#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1063#endif
1064
1065 --signum;
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return; 1997 return;
1998#endif
1069 1999
1070 signals [signum].gotsig = 0; 2000 signals [signum].pending = 0;
1071 2001
1072 for (w = signals [signum].head; w; w = w->next) 2002 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2003 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074} 2004}
1075 2005
2006#if EV_USE_SIGNALFD
2007static void
2008sigfdcb (EV_P_ ev_io *iow, int revents)
2009{
2010 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2011
2012 for (;;)
2013 {
2014 ssize_t res = read (sigfd, si, sizeof (si));
2015
2016 /* not ISO-C, as res might be -1, but works with SuS */
2017 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2018 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2019
2020 if (res < (ssize_t)sizeof (si))
2021 break;
2022 }
2023}
2024#endif
2025
2026#endif
2027
1076/*****************************************************************************/ 2028/*****************************************************************************/
1077 2029
2030#if EV_CHILD_ENABLE
1078static WL childs [EV_PID_HASHSIZE]; 2031static WL childs [EV_PID_HASHSIZE];
1079
1080#ifndef _WIN32
1081 2032
1082static ev_signal childev; 2033static ev_signal childev;
1083 2034
1084#ifndef WIFCONTINUED 2035#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0 2036# define WIFCONTINUED(status) 0
1086#endif 2037#endif
1087 2038
1088void inline_speed 2039/* handle a single child status event */
2040inline_speed void
1089child_reap (EV_P_ int chain, int pid, int status) 2041child_reap (EV_P_ int chain, int pid, int status)
1090{ 2042{
1091 ev_child *w; 2043 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2044 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093 2045
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2046 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 { 2047 {
1096 if ((w->pid == pid || !w->pid) 2048 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1))) 2049 && (!traced || (w->flags & 1)))
1098 { 2050 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2051 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1106 2058
1107#ifndef WCONTINUED 2059#ifndef WCONTINUED
1108# define WCONTINUED 0 2060# define WCONTINUED 0
1109#endif 2061#endif
1110 2062
2063/* called on sigchld etc., calls waitpid */
1111static void 2064static void
1112childcb (EV_P_ ev_signal *sw, int revents) 2065childcb (EV_P_ ev_signal *sw, int revents)
1113{ 2066{
1114 int pid, status; 2067 int pid, status;
1115 2068
1123 /* make sure we are called again until all children have been reaped */ 2076 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */ 2077 /* we need to do it this way so that the callback gets called before we continue */
1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2078 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1126 2079
1127 child_reap (EV_A_ pid, pid, status); 2080 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1) 2081 if ((EV_PID_HASHSIZE) > 1)
1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2082 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1130} 2083}
1131 2084
1132#endif 2085#endif
1133 2086
1134/*****************************************************************************/ 2087/*****************************************************************************/
1135 2088
2089#if EV_USE_IOCP
2090# include "ev_iocp.c"
2091#endif
1136#if EV_USE_PORT 2092#if EV_USE_PORT
1137# include "ev_port.c" 2093# include "ev_port.c"
1138#endif 2094#endif
1139#if EV_USE_KQUEUE 2095#if EV_USE_KQUEUE
1140# include "ev_kqueue.c" 2096# include "ev_kqueue.c"
1147#endif 2103#endif
1148#if EV_USE_SELECT 2104#if EV_USE_SELECT
1149# include "ev_select.c" 2105# include "ev_select.c"
1150#endif 2106#endif
1151 2107
1152int 2108int ecb_cold
1153ev_version_major (void) 2109ev_version_major (void) EV_THROW
1154{ 2110{
1155 return EV_VERSION_MAJOR; 2111 return EV_VERSION_MAJOR;
1156} 2112}
1157 2113
1158int 2114int ecb_cold
1159ev_version_minor (void) 2115ev_version_minor (void) EV_THROW
1160{ 2116{
1161 return EV_VERSION_MINOR; 2117 return EV_VERSION_MINOR;
1162} 2118}
1163 2119
1164/* return true if we are running with elevated privileges and should ignore env variables */ 2120/* return true if we are running with elevated privileges and should ignore env variables */
1165int inline_size 2121int inline_size ecb_cold
1166enable_secure (void) 2122enable_secure (void)
1167{ 2123{
1168#ifdef _WIN32 2124#ifdef _WIN32
1169 return 0; 2125 return 0;
1170#else 2126#else
1171 return getuid () != geteuid () 2127 return getuid () != geteuid ()
1172 || getgid () != getegid (); 2128 || getgid () != getegid ();
1173#endif 2129#endif
1174} 2130}
1175 2131
1176unsigned int 2132unsigned int ecb_cold
1177ev_supported_backends (void) 2133ev_supported_backends (void) EV_THROW
1178{ 2134{
1179 unsigned int flags = 0; 2135 unsigned int flags = 0;
1180 2136
1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2137 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1182 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2138 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2141 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186 2142
1187 return flags; 2143 return flags;
1188} 2144}
1189 2145
1190unsigned int 2146unsigned int ecb_cold
1191ev_recommended_backends (void) 2147ev_recommended_backends (void) EV_THROW
1192{ 2148{
1193 unsigned int flags = ev_supported_backends (); 2149 unsigned int flags = ev_supported_backends ();
1194 2150
1195#ifndef __NetBSD__ 2151#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */ 2152 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */ 2153 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE; 2154 flags &= ~EVBACKEND_KQUEUE;
1199#endif 2155#endif
1200#ifdef __APPLE__ 2156#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation 2157 /* only select works correctly on that "unix-certified" platform */
1202 flags &= ~EVBACKEND_POLL; 2158 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2159 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2160#endif
2161#ifdef __FreeBSD__
2162 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1203#endif 2163#endif
1204 2164
1205 return flags; 2165 return flags;
1206} 2166}
1207 2167
2168unsigned int ecb_cold
2169ev_embeddable_backends (void) EV_THROW
2170{
2171 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2172
2173 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2174 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2175 flags &= ~EVBACKEND_EPOLL;
2176
2177 return flags;
2178}
2179
1208unsigned int 2180unsigned int
1209ev_embeddable_backends (void) 2181ev_backend (EV_P) EV_THROW
1210{ 2182{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2183 return backend;
1212
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
1218} 2184}
1219 2185
2186#if EV_FEATURE_API
1220unsigned int 2187unsigned int
1221ev_backend (EV_P) 2188ev_iteration (EV_P) EV_THROW
1222{ 2189{
1223 return backend; 2190 return loop_count;
1224} 2191}
1225 2192
1226unsigned int 2193unsigned int
1227ev_loop_count (EV_P) 2194ev_depth (EV_P) EV_THROW
1228{ 2195{
1229 return loop_count; 2196 return loop_depth;
1230} 2197}
1231 2198
1232void 2199void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2200ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1234{ 2201{
1235 io_blocktime = interval; 2202 io_blocktime = interval;
1236} 2203}
1237 2204
1238void 2205void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2206ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1240{ 2207{
1241 timeout_blocktime = interval; 2208 timeout_blocktime = interval;
1242} 2209}
1243 2210
2211void
2212ev_set_userdata (EV_P_ void *data) EV_THROW
2213{
2214 userdata = data;
2215}
2216
2217void *
2218ev_userdata (EV_P) EV_THROW
2219{
2220 return userdata;
2221}
2222
2223void
2224ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2225{
2226 invoke_cb = invoke_pending_cb;
2227}
2228
2229void
2230ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2231{
2232 release_cb = release;
2233 acquire_cb = acquire;
2234}
2235#endif
2236
2237/* initialise a loop structure, must be zero-initialised */
1244static void noinline 2238static void noinline ecb_cold
1245loop_init (EV_P_ unsigned int flags) 2239loop_init (EV_P_ unsigned int flags) EV_THROW
1246{ 2240{
1247 if (!backend) 2241 if (!backend)
1248 { 2242 {
2243 origflags = flags;
2244
2245#if EV_USE_REALTIME
2246 if (!have_realtime)
2247 {
2248 struct timespec ts;
2249
2250 if (!clock_gettime (CLOCK_REALTIME, &ts))
2251 have_realtime = 1;
2252 }
2253#endif
2254
1249#if EV_USE_MONOTONIC 2255#if EV_USE_MONOTONIC
2256 if (!have_monotonic)
1250 { 2257 {
1251 struct timespec ts; 2258 struct timespec ts;
2259
1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2260 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1253 have_monotonic = 1; 2261 have_monotonic = 1;
1254 } 2262 }
1255#endif
1256
1257 ev_rt_now = ev_time ();
1258 mn_now = get_clock ();
1259 now_floor = mn_now;
1260 rtmn_diff = ev_rt_now - mn_now;
1261
1262 io_blocktime = 0.;
1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif 2263#endif
1270 2264
1271 /* pid check not overridable via env */ 2265 /* pid check not overridable via env */
1272#ifndef _WIN32 2266#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK) 2267 if (flags & EVFLAG_FORKCHECK)
1277 if (!(flags & EVFLAG_NOENV) 2271 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure () 2272 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS")) 2273 && getenv ("LIBEV_FLAGS"))
1280 flags = atoi (getenv ("LIBEV_FLAGS")); 2274 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 2275
1282 if (!(flags & 0x0000ffffU)) 2276 ev_rt_now = ev_time ();
2277 mn_now = get_clock ();
2278 now_floor = mn_now;
2279 rtmn_diff = ev_rt_now - mn_now;
2280#if EV_FEATURE_API
2281 invoke_cb = ev_invoke_pending;
2282#endif
2283
2284 io_blocktime = 0.;
2285 timeout_blocktime = 0.;
2286 backend = 0;
2287 backend_fd = -1;
2288 sig_pending = 0;
2289#if EV_ASYNC_ENABLE
2290 async_pending = 0;
2291#endif
2292 pipe_write_skipped = 0;
2293 pipe_write_wanted = 0;
2294#if EV_USE_INOTIFY
2295 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2296#endif
2297#if EV_USE_SIGNALFD
2298 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2299#endif
2300
2301 if (!(flags & EVBACKEND_MASK))
1283 flags |= ev_recommended_backends (); 2302 flags |= ev_recommended_backends ();
1284 2303
2304#if EV_USE_IOCP
2305 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2306#endif
1285#if EV_USE_PORT 2307#if EV_USE_PORT
1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2308 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1287#endif 2309#endif
1288#if EV_USE_KQUEUE 2310#if EV_USE_KQUEUE
1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2311 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1296#endif 2318#endif
1297#if EV_USE_SELECT 2319#if EV_USE_SELECT
1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2320 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1299#endif 2321#endif
1300 2322
2323 ev_prepare_init (&pending_w, pendingcb);
2324
2325#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1301 ev_init (&pipeev, pipecb); 2326 ev_init (&pipe_w, pipecb);
1302 ev_set_priority (&pipeev, EV_MAXPRI); 2327 ev_set_priority (&pipe_w, EV_MAXPRI);
2328#endif
1303 } 2329 }
1304} 2330}
1305 2331
1306static void noinline 2332/* free up a loop structure */
2333void ecb_cold
1307loop_destroy (EV_P) 2334ev_loop_destroy (EV_P)
1308{ 2335{
1309 int i; 2336 int i;
1310 2337
2338#if EV_MULTIPLICITY
2339 /* mimic free (0) */
2340 if (!EV_A)
2341 return;
2342#endif
2343
2344#if EV_CLEANUP_ENABLE
2345 /* queue cleanup watchers (and execute them) */
2346 if (expect_false (cleanupcnt))
2347 {
2348 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2349 EV_INVOKE_PENDING;
2350 }
2351#endif
2352
2353#if EV_CHILD_ENABLE
2354 if (ev_is_active (&childev))
2355 {
2356 ev_ref (EV_A); /* child watcher */
2357 ev_signal_stop (EV_A_ &childev);
2358 }
2359#endif
2360
1311 if (ev_is_active (&pipeev)) 2361 if (ev_is_active (&pipe_w))
1312 { 2362 {
1313 ev_ref (EV_A); /* signal watcher */ 2363 /*ev_ref (EV_A);*/
1314 ev_io_stop (EV_A_ &pipeev); 2364 /*ev_io_stop (EV_A_ &pipe_w);*/
1315 2365
1316#if EV_USE_EVENTFD 2366#if EV_USE_EVENTFD
1317 if (evfd >= 0) 2367 if (evfd >= 0)
1318 close (evfd); 2368 close (evfd);
1319#endif 2369#endif
1320 2370
1321 if (evpipe [0] >= 0) 2371 if (evpipe [0] >= 0)
1322 { 2372 {
1323 close (evpipe [0]); 2373 EV_WIN32_CLOSE_FD (evpipe [0]);
1324 close (evpipe [1]); 2374 EV_WIN32_CLOSE_FD (evpipe [1]);
1325 } 2375 }
1326 } 2376 }
2377
2378#if EV_USE_SIGNALFD
2379 if (ev_is_active (&sigfd_w))
2380 close (sigfd);
2381#endif
1327 2382
1328#if EV_USE_INOTIFY 2383#if EV_USE_INOTIFY
1329 if (fs_fd >= 0) 2384 if (fs_fd >= 0)
1330 close (fs_fd); 2385 close (fs_fd);
1331#endif 2386#endif
1332 2387
1333 if (backend_fd >= 0) 2388 if (backend_fd >= 0)
1334 close (backend_fd); 2389 close (backend_fd);
1335 2390
2391#if EV_USE_IOCP
2392 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2393#endif
1336#if EV_USE_PORT 2394#if EV_USE_PORT
1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2395 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1338#endif 2396#endif
1339#if EV_USE_KQUEUE 2397#if EV_USE_KQUEUE
1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2398 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1355#if EV_IDLE_ENABLE 2413#if EV_IDLE_ENABLE
1356 array_free (idle, [i]); 2414 array_free (idle, [i]);
1357#endif 2415#endif
1358 } 2416 }
1359 2417
1360 ev_free (anfds); anfdmax = 0; 2418 ev_free (anfds); anfds = 0; anfdmax = 0;
1361 2419
1362 /* have to use the microsoft-never-gets-it-right macro */ 2420 /* have to use the microsoft-never-gets-it-right macro */
2421 array_free (rfeed, EMPTY);
1363 array_free (fdchange, EMPTY); 2422 array_free (fdchange, EMPTY);
1364 array_free (timer, EMPTY); 2423 array_free (timer, EMPTY);
1365#if EV_PERIODIC_ENABLE 2424#if EV_PERIODIC_ENABLE
1366 array_free (periodic, EMPTY); 2425 array_free (periodic, EMPTY);
1367#endif 2426#endif
1368#if EV_FORK_ENABLE 2427#if EV_FORK_ENABLE
1369 array_free (fork, EMPTY); 2428 array_free (fork, EMPTY);
1370#endif 2429#endif
2430#if EV_CLEANUP_ENABLE
2431 array_free (cleanup, EMPTY);
2432#endif
1371 array_free (prepare, EMPTY); 2433 array_free (prepare, EMPTY);
1372 array_free (check, EMPTY); 2434 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE 2435#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY); 2436 array_free (async, EMPTY);
1375#endif 2437#endif
1376 2438
1377 backend = 0; 2439 backend = 0;
2440
2441#if EV_MULTIPLICITY
2442 if (ev_is_default_loop (EV_A))
2443#endif
2444 ev_default_loop_ptr = 0;
2445#if EV_MULTIPLICITY
2446 else
2447 ev_free (EV_A);
2448#endif
1378} 2449}
1379 2450
1380#if EV_USE_INOTIFY 2451#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P); 2452inline_size void infy_fork (EV_P);
1382#endif 2453#endif
1383 2454
1384void inline_size 2455inline_size void
1385loop_fork (EV_P) 2456loop_fork (EV_P)
1386{ 2457{
1387#if EV_USE_PORT 2458#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2459 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif 2460#endif
1395#endif 2466#endif
1396#if EV_USE_INOTIFY 2467#if EV_USE_INOTIFY
1397 infy_fork (EV_A); 2468 infy_fork (EV_A);
1398#endif 2469#endif
1399 2470
1400 if (ev_is_active (&pipeev)) 2471 if (ev_is_active (&pipe_w))
1401 { 2472 {
1402 /* this "locks" the handlers against writing to the pipe */ 2473 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
1408 2474
1409 ev_ref (EV_A); 2475 ev_ref (EV_A);
1410 ev_io_stop (EV_A_ &pipeev); 2476 ev_io_stop (EV_A_ &pipe_w);
1411 2477
1412#if EV_USE_EVENTFD 2478#if EV_USE_EVENTFD
1413 if (evfd >= 0) 2479 if (evfd >= 0)
1414 close (evfd); 2480 close (evfd);
1415#endif 2481#endif
1416 2482
1417 if (evpipe [0] >= 0) 2483 if (evpipe [0] >= 0)
1418 { 2484 {
1419 close (evpipe [0]); 2485 EV_WIN32_CLOSE_FD (evpipe [0]);
1420 close (evpipe [1]); 2486 EV_WIN32_CLOSE_FD (evpipe [1]);
1421 } 2487 }
1422 2488
2489#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1423 evpipe_init (EV_A); 2490 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */ 2491 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ); 2492 pipecb (EV_A_ &pipe_w, EV_READ);
2493#endif
1426 } 2494 }
1427 2495
1428 postfork = 0; 2496 postfork = 0;
1429} 2497}
1430 2498
1431#if EV_MULTIPLICITY 2499#if EV_MULTIPLICITY
2500
1432struct ev_loop * 2501struct ev_loop * ecb_cold
1433ev_loop_new (unsigned int flags) 2502ev_loop_new (unsigned int flags) EV_THROW
1434{ 2503{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2504 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436 2505
1437 memset (loop, 0, sizeof (struct ev_loop)); 2506 memset (EV_A, 0, sizeof (struct ev_loop));
1438
1439 loop_init (EV_A_ flags); 2507 loop_init (EV_A_ flags);
1440 2508
1441 if (ev_backend (EV_A)) 2509 if (ev_backend (EV_A))
1442 return loop; 2510 return EV_A;
1443 2511
2512 ev_free (EV_A);
1444 return 0; 2513 return 0;
1445} 2514}
1446 2515
1447void 2516#endif /* multiplicity */
1448ev_loop_destroy (EV_P)
1449{
1450 loop_destroy (EV_A);
1451 ev_free (loop);
1452}
1453 2517
1454void 2518#if EV_VERIFY
1455ev_loop_fork (EV_P) 2519static void noinline ecb_cold
2520verify_watcher (EV_P_ W w)
1456{ 2521{
1457 postfork = 1; /* must be in line with ev_default_fork */ 2522 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2523
2524 if (w->pending)
2525 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2526}
2527
2528static void noinline ecb_cold
2529verify_heap (EV_P_ ANHE *heap, int N)
2530{
2531 int i;
2532
2533 for (i = HEAP0; i < N + HEAP0; ++i)
2534 {
2535 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2536 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2537 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2538
2539 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2540 }
2541}
2542
2543static void noinline ecb_cold
2544array_verify (EV_P_ W *ws, int cnt)
2545{
2546 while (cnt--)
2547 {
2548 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2549 verify_watcher (EV_A_ ws [cnt]);
2550 }
2551}
2552#endif
2553
2554#if EV_FEATURE_API
2555void ecb_cold
2556ev_verify (EV_P) EV_THROW
2557{
2558#if EV_VERIFY
2559 int i, j;
2560 WL w, w2;
2561
2562 assert (activecnt >= -1);
2563
2564 assert (fdchangemax >= fdchangecnt);
2565 for (i = 0; i < fdchangecnt; ++i)
2566 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2567
2568 assert (anfdmax >= 0);
2569 for (i = j = 0; i < anfdmax; ++i)
2570 for (w = w2 = anfds [i].head; w; w = w->next)
2571 {
2572 verify_watcher (EV_A_ (W)w);
2573
2574 if (++j & 1)
2575 w2 = w2->next;
2576
2577 assert (("libev: io watcher list contains a loop", w != w2));
2578 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2579 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2580 }
2581
2582 assert (timermax >= timercnt);
2583 verify_heap (EV_A_ timers, timercnt);
2584
2585#if EV_PERIODIC_ENABLE
2586 assert (periodicmax >= periodiccnt);
2587 verify_heap (EV_A_ periodics, periodiccnt);
2588#endif
2589
2590 for (i = NUMPRI; i--; )
2591 {
2592 assert (pendingmax [i] >= pendingcnt [i]);
2593#if EV_IDLE_ENABLE
2594 assert (idleall >= 0);
2595 assert (idlemax [i] >= idlecnt [i]);
2596 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2597#endif
2598 }
2599
2600#if EV_FORK_ENABLE
2601 assert (forkmax >= forkcnt);
2602 array_verify (EV_A_ (W *)forks, forkcnt);
2603#endif
2604
2605#if EV_CLEANUP_ENABLE
2606 assert (cleanupmax >= cleanupcnt);
2607 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2608#endif
2609
2610#if EV_ASYNC_ENABLE
2611 assert (asyncmax >= asynccnt);
2612 array_verify (EV_A_ (W *)asyncs, asynccnt);
2613#endif
2614
2615#if EV_PREPARE_ENABLE
2616 assert (preparemax >= preparecnt);
2617 array_verify (EV_A_ (W *)prepares, preparecnt);
2618#endif
2619
2620#if EV_CHECK_ENABLE
2621 assert (checkmax >= checkcnt);
2622 array_verify (EV_A_ (W *)checks, checkcnt);
2623#endif
2624
2625# if 0
2626#if EV_CHILD_ENABLE
2627 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2628 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2629#endif
2630# endif
2631#endif
1458} 2632}
1459#endif 2633#endif
1460 2634
1461#if EV_MULTIPLICITY 2635#if EV_MULTIPLICITY
1462struct ev_loop * 2636struct ev_loop * ecb_cold
1463ev_default_loop_init (unsigned int flags)
1464#else 2637#else
1465int 2638int
2639#endif
1466ev_default_loop (unsigned int flags) 2640ev_default_loop (unsigned int flags) EV_THROW
1467#endif
1468{ 2641{
1469 if (!ev_default_loop_ptr) 2642 if (!ev_default_loop_ptr)
1470 { 2643 {
1471#if EV_MULTIPLICITY 2644#if EV_MULTIPLICITY
1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2645 EV_P = ev_default_loop_ptr = &default_loop_struct;
1473#else 2646#else
1474 ev_default_loop_ptr = 1; 2647 ev_default_loop_ptr = 1;
1475#endif 2648#endif
1476 2649
1477 loop_init (EV_A_ flags); 2650 loop_init (EV_A_ flags);
1478 2651
1479 if (ev_backend (EV_A)) 2652 if (ev_backend (EV_A))
1480 { 2653 {
1481#ifndef _WIN32 2654#if EV_CHILD_ENABLE
1482 ev_signal_init (&childev, childcb, SIGCHLD); 2655 ev_signal_init (&childev, childcb, SIGCHLD);
1483 ev_set_priority (&childev, EV_MAXPRI); 2656 ev_set_priority (&childev, EV_MAXPRI);
1484 ev_signal_start (EV_A_ &childev); 2657 ev_signal_start (EV_A_ &childev);
1485 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2658 ev_unref (EV_A); /* child watcher should not keep loop alive */
1486#endif 2659#endif
1491 2664
1492 return ev_default_loop_ptr; 2665 return ev_default_loop_ptr;
1493} 2666}
1494 2667
1495void 2668void
1496ev_default_destroy (void) 2669ev_loop_fork (EV_P) EV_THROW
1497{ 2670{
1498#if EV_MULTIPLICITY
1499 struct ev_loop *loop = ev_default_loop_ptr;
1500#endif
1501
1502#ifndef _WIN32
1503 ev_ref (EV_A); /* child watcher */
1504 ev_signal_stop (EV_A_ &childev);
1505#endif
1506
1507 loop_destroy (EV_A);
1508}
1509
1510void
1511ev_default_fork (void)
1512{
1513#if EV_MULTIPLICITY
1514 struct ev_loop *loop = ev_default_loop_ptr;
1515#endif
1516
1517 if (backend)
1518 postfork = 1; /* must be in line with ev_loop_fork */ 2671 postfork = 1; /* must be in line with ev_default_fork */
1519} 2672}
1520 2673
1521/*****************************************************************************/ 2674/*****************************************************************************/
1522 2675
1523void 2676void
1524ev_invoke (EV_P_ void *w, int revents) 2677ev_invoke (EV_P_ void *w, int revents)
1525{ 2678{
1526 EV_CB_INVOKE ((W)w, revents); 2679 EV_CB_INVOKE ((W)w, revents);
1527} 2680}
1528 2681
1529void inline_speed 2682unsigned int
1530call_pending (EV_P) 2683ev_pending_count (EV_P) EV_THROW
1531{ 2684{
1532 int pri; 2685 int pri;
2686 unsigned int count = 0;
1533 2687
1534 for (pri = NUMPRI; pri--; ) 2688 for (pri = NUMPRI; pri--; )
2689 count += pendingcnt [pri];
2690
2691 return count;
2692}
2693
2694void noinline
2695ev_invoke_pending (EV_P)
2696{
2697 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1535 while (pendingcnt [pri]) 2698 while (pendingcnt [pendingpri])
1536 { 2699 {
1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2700 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1538 2701
1539 if (expect_true (p->w))
1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542
1543 p->w->pending = 0; 2702 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 2703 EV_CB_INVOKE (p->w, p->events);
1545 } 2704 EV_FREQUENT_CHECK;
1546 } 2705 }
1547} 2706}
1548 2707
1549#if EV_IDLE_ENABLE 2708#if EV_IDLE_ENABLE
1550void inline_size 2709/* make idle watchers pending. this handles the "call-idle */
2710/* only when higher priorities are idle" logic */
2711inline_size void
1551idle_reify (EV_P) 2712idle_reify (EV_P)
1552{ 2713{
1553 if (expect_false (idleall)) 2714 if (expect_false (idleall))
1554 { 2715 {
1555 int pri; 2716 int pri;
1567 } 2728 }
1568 } 2729 }
1569} 2730}
1570#endif 2731#endif
1571 2732
1572void inline_size 2733/* make timers pending */
2734inline_size void
1573timers_reify (EV_P) 2735timers_reify (EV_P)
1574{ 2736{
2737 EV_FREQUENT_CHECK;
2738
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2739 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 2740 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 2741 do
1578
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580
1581 /* first reschedule or stop timer */
1582 if (w->repeat)
1583 { 2742 {
2743 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2744
2745 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2746
2747 /* first reschedule or stop timer */
2748 if (w->repeat)
2749 {
2750 ev_at (w) += w->repeat;
2751 if (ev_at (w) < mn_now)
2752 ev_at (w) = mn_now;
2753
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2754 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585 2755
1586 ev_at (w) += w->repeat; 2756 ANHE_at_cache (timers [HEAP0]);
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
1590 downheap (timers, timercnt, HEAP0); 2757 downheap (timers, timercnt, HEAP0);
2758 }
2759 else
2760 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2761
2762 EV_FREQUENT_CHECK;
2763 feed_reverse (EV_A_ (W)w);
1591 } 2764 }
1592 else 2765 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 2766
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2767 feed_reverse_done (EV_A_ EV_TIMER);
1596 } 2768 }
1597} 2769}
1598 2770
1599#if EV_PERIODIC_ENABLE 2771#if EV_PERIODIC_ENABLE
1600void inline_size 2772
2773static void noinline
2774periodic_recalc (EV_P_ ev_periodic *w)
2775{
2776 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2777 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2778
2779 /* the above almost always errs on the low side */
2780 while (at <= ev_rt_now)
2781 {
2782 ev_tstamp nat = at + w->interval;
2783
2784 /* when resolution fails us, we use ev_rt_now */
2785 if (expect_false (nat == at))
2786 {
2787 at = ev_rt_now;
2788 break;
2789 }
2790
2791 at = nat;
2792 }
2793
2794 ev_at (w) = at;
2795}
2796
2797/* make periodics pending */
2798inline_size void
1601periodics_reify (EV_P) 2799periodics_reify (EV_P)
1602{ 2800{
2801 EV_FREQUENT_CHECK;
2802
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2803 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 2804 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2805 int feed_count = 0;
1606 2806
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2807 do
1608
1609 /* first reschedule or stop timer */
1610 if (w->reschedule_cb)
1611 { 2808 {
2809 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2810
2811 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2812
2813 /* first reschedule or stop timer */
2814 if (w->reschedule_cb)
2815 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2817
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2818 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2819
2820 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 2821 downheap (periodics, periodiccnt, HEAP0);
2822 }
2823 else if (w->interval)
2824 {
2825 periodic_recalc (EV_A_ w);
2826 ANHE_at_cache (periodics [HEAP0]);
2827 downheap (periodics, periodiccnt, HEAP0);
2828 }
2829 else
2830 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2831
2832 EV_FREQUENT_CHECK;
2833 feed_reverse (EV_A_ (W)w);
1615 } 2834 }
1616 else if (w->interval) 2835 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
1622 }
1623 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 2836
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2837 feed_reverse_done (EV_A_ EV_PERIODIC);
1627 } 2838 }
1628} 2839}
1629 2840
2841/* simply recalculate all periodics */
2842/* TODO: maybe ensure that at least one event happens when jumping forward? */
1630static void noinline 2843static void noinline ecb_cold
1631periodics_reschedule (EV_P) 2844periodics_reschedule (EV_P)
1632{ 2845{
1633 int i; 2846 int i;
1634 2847
1635 /* adjust periodics after time jump */ 2848 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 2849 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 2850 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 2851 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 2852
1640 if (w->reschedule_cb) 2853 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2854 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 2855 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2856 periodic_recalc (EV_A_ w);
2857
2858 ANHE_at_cache (periodics [i]);
2859 }
2860
2861 reheap (periodics, periodiccnt);
2862}
2863#endif
2864
2865/* adjust all timers by a given offset */
2866static void noinline ecb_cold
2867timers_reschedule (EV_P_ ev_tstamp adjust)
2868{
2869 int i;
2870
2871 for (i = 0; i < timercnt; ++i)
1644 } 2872 {
1645 2873 ANHE *he = timers + i + HEAP0;
1646 /* now rebuild the heap */ 2874 ANHE_w (*he)->at += adjust;
1647 for (i = periodiccnt >> 1; --i; ) 2875 ANHE_at_cache (*he);
1648 downheap (periodics, periodiccnt, i + HEAP0); 2876 }
1649} 2877}
1650#endif
1651 2878
1652void inline_speed 2879/* fetch new monotonic and realtime times from the kernel */
2880/* also detect if there was a timejump, and act accordingly */
2881inline_speed void
1653time_update (EV_P_ ev_tstamp max_block) 2882time_update (EV_P_ ev_tstamp max_block)
1654{ 2883{
1655 int i;
1656
1657#if EV_USE_MONOTONIC 2884#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic)) 2885 if (expect_true (have_monotonic))
1659 { 2886 {
2887 int i;
1660 ev_tstamp odiff = rtmn_diff; 2888 ev_tstamp odiff = rtmn_diff;
1661 2889
1662 mn_now = get_clock (); 2890 mn_now = get_clock ();
1663 2891
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2892 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1680 * doesn't hurt either as we only do this on time-jumps or 2908 * doesn't hurt either as we only do this on time-jumps or
1681 * in the unlikely event of having been preempted here. 2909 * in the unlikely event of having been preempted here.
1682 */ 2910 */
1683 for (i = 4; --i; ) 2911 for (i = 4; --i; )
1684 { 2912 {
2913 ev_tstamp diff;
1685 rtmn_diff = ev_rt_now - mn_now; 2914 rtmn_diff = ev_rt_now - mn_now;
1686 2915
2916 diff = odiff - rtmn_diff;
2917
1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2918 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1688 return; /* all is well */ 2919 return; /* all is well */
1689 2920
1690 ev_rt_now = ev_time (); 2921 ev_rt_now = ev_time ();
1691 mn_now = get_clock (); 2922 mn_now = get_clock ();
1692 now_floor = mn_now; 2923 now_floor = mn_now;
1693 } 2924 }
1694 2925
2926 /* no timer adjustment, as the monotonic clock doesn't jump */
2927 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1695# if EV_PERIODIC_ENABLE 2928# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A); 2929 periodics_reschedule (EV_A);
1697# endif 2930# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 } 2931 }
1701 else 2932 else
1702#endif 2933#endif
1703 { 2934 {
1704 ev_rt_now = ev_time (); 2935 ev_rt_now = ev_time ();
1705 2936
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2937 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 { 2938 {
2939 /* adjust timers. this is easy, as the offset is the same for all of them */
2940 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1708#if EV_PERIODIC_ENABLE 2941#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 2942 periodics_reschedule (EV_A);
1710#endif 2943#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1714 } 2944 }
1715 2945
1716 mn_now = ev_rt_now; 2946 mn_now = ev_rt_now;
1717 } 2947 }
1718} 2948}
1719 2949
1720void 2950int
1721ev_ref (EV_P)
1722{
1723 ++activecnt;
1724}
1725
1726void
1727ev_unref (EV_P)
1728{
1729 --activecnt;
1730}
1731
1732static int loop_done;
1733
1734void
1735ev_loop (EV_P_ int flags) 2951ev_run (EV_P_ int flags)
1736{ 2952{
2953#if EV_FEATURE_API
2954 ++loop_depth;
2955#endif
2956
2957 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2958
1737 loop_done = EVUNLOOP_CANCEL; 2959 loop_done = EVBREAK_CANCEL;
1738 2960
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2961 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1740 2962
1741 do 2963 do
1742 { 2964 {
2965#if EV_VERIFY >= 2
2966 ev_verify (EV_A);
2967#endif
2968
1743#ifndef _WIN32 2969#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 2970 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 2971 if (expect_false (getpid () != curpid))
1746 { 2972 {
1747 curpid = getpid (); 2973 curpid = getpid ();
1753 /* we might have forked, so queue fork handlers */ 2979 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork)) 2980 if (expect_false (postfork))
1755 if (forkcnt) 2981 if (forkcnt)
1756 { 2982 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2983 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A); 2984 EV_INVOKE_PENDING;
1759 } 2985 }
1760#endif 2986#endif
1761 2987
2988#if EV_PREPARE_ENABLE
1762 /* queue prepare watchers (and execute them) */ 2989 /* queue prepare watchers (and execute them) */
1763 if (expect_false (preparecnt)) 2990 if (expect_false (preparecnt))
1764 { 2991 {
1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2992 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1766 call_pending (EV_A); 2993 EV_INVOKE_PENDING;
1767 } 2994 }
2995#endif
1768 2996
1769 if (expect_false (!activecnt)) 2997 if (expect_false (loop_done))
1770 break; 2998 break;
1771 2999
1772 /* we might have forked, so reify kernel state if necessary */ 3000 /* we might have forked, so reify kernel state if necessary */
1773 if (expect_false (postfork)) 3001 if (expect_false (postfork))
1774 loop_fork (EV_A); 3002 loop_fork (EV_A);
1779 /* calculate blocking time */ 3007 /* calculate blocking time */
1780 { 3008 {
1781 ev_tstamp waittime = 0.; 3009 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.; 3010 ev_tstamp sleeptime = 0.;
1783 3011
3012 /* remember old timestamp for io_blocktime calculation */
3013 ev_tstamp prev_mn_now = mn_now;
3014
3015 /* update time to cancel out callback processing overhead */
3016 time_update (EV_A_ 1e100);
3017
3018 /* from now on, we want a pipe-wake-up */
3019 pipe_write_wanted = 1;
3020
3021 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3022
1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3023 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1785 { 3024 {
1786 /* update time to cancel out callback processing overhead */
1787 time_update (EV_A_ 1e100);
1788
1789 waittime = MAX_BLOCKTIME; 3025 waittime = MAX_BLOCKTIME;
1790 3026
1791 if (timercnt) 3027 if (timercnt)
1792 { 3028 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 3029 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1794 if (waittime > to) waittime = to; 3030 if (waittime > to) waittime = to;
1795 } 3031 }
1796 3032
1797#if EV_PERIODIC_ENABLE 3033#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 3034 if (periodiccnt)
1799 { 3035 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3036 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1801 if (waittime > to) waittime = to; 3037 if (waittime > to) waittime = to;
1802 } 3038 }
1803#endif 3039#endif
1804 3040
3041 /* don't let timeouts decrease the waittime below timeout_blocktime */
1805 if (expect_false (waittime < timeout_blocktime)) 3042 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime; 3043 waittime = timeout_blocktime;
1807 3044
1808 sleeptime = waittime - backend_fudge; 3045 /* at this point, we NEED to wait, so we have to ensure */
3046 /* to pass a minimum nonzero value to the backend */
3047 if (expect_false (waittime < backend_mintime))
3048 waittime = backend_mintime;
1809 3049
3050 /* extra check because io_blocktime is commonly 0 */
1810 if (expect_true (sleeptime > io_blocktime)) 3051 if (expect_false (io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 { 3052 {
3053 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3054
3055 if (sleeptime > waittime - backend_mintime)
3056 sleeptime = waittime - backend_mintime;
3057
3058 if (expect_true (sleeptime > 0.))
3059 {
1815 ev_sleep (sleeptime); 3060 ev_sleep (sleeptime);
1816 waittime -= sleeptime; 3061 waittime -= sleeptime;
3062 }
1817 } 3063 }
1818 } 3064 }
1819 3065
3066#if EV_FEATURE_API
1820 ++loop_count; 3067 ++loop_count;
3068#endif
3069 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1821 backend_poll (EV_A_ waittime); 3070 backend_poll (EV_A_ waittime);
3071 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3072
3073 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3074
3075 if (pipe_write_skipped)
3076 {
3077 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3078 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3079 }
3080
1822 3081
1823 /* update ev_rt_now, do magic */ 3082 /* update ev_rt_now, do magic */
1824 time_update (EV_A_ waittime + sleeptime); 3083 time_update (EV_A_ waittime + sleeptime);
1825 } 3084 }
1826 3085
1833#if EV_IDLE_ENABLE 3092#if EV_IDLE_ENABLE
1834 /* queue idle watchers unless other events are pending */ 3093 /* queue idle watchers unless other events are pending */
1835 idle_reify (EV_A); 3094 idle_reify (EV_A);
1836#endif 3095#endif
1837 3096
3097#if EV_CHECK_ENABLE
1838 /* queue check watchers, to be executed first */ 3098 /* queue check watchers, to be executed first */
1839 if (expect_false (checkcnt)) 3099 if (expect_false (checkcnt))
1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3101#endif
1841 3102
1842 call_pending (EV_A); 3103 EV_INVOKE_PENDING;
1843 } 3104 }
1844 while (expect_true ( 3105 while (expect_true (
1845 activecnt 3106 activecnt
1846 && !loop_done 3107 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3108 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1848 )); 3109 ));
1849 3110
1850 if (loop_done == EVUNLOOP_ONE) 3111 if (loop_done == EVBREAK_ONE)
1851 loop_done = EVUNLOOP_CANCEL; 3112 loop_done = EVBREAK_CANCEL;
3113
3114#if EV_FEATURE_API
3115 --loop_depth;
3116#endif
3117
3118 return activecnt;
1852} 3119}
1853 3120
1854void 3121void
1855ev_unloop (EV_P_ int how) 3122ev_break (EV_P_ int how) EV_THROW
1856{ 3123{
1857 loop_done = how; 3124 loop_done = how;
1858} 3125}
1859 3126
3127void
3128ev_ref (EV_P) EV_THROW
3129{
3130 ++activecnt;
3131}
3132
3133void
3134ev_unref (EV_P) EV_THROW
3135{
3136 --activecnt;
3137}
3138
3139void
3140ev_now_update (EV_P) EV_THROW
3141{
3142 time_update (EV_A_ 1e100);
3143}
3144
3145void
3146ev_suspend (EV_P) EV_THROW
3147{
3148 ev_now_update (EV_A);
3149}
3150
3151void
3152ev_resume (EV_P) EV_THROW
3153{
3154 ev_tstamp mn_prev = mn_now;
3155
3156 ev_now_update (EV_A);
3157 timers_reschedule (EV_A_ mn_now - mn_prev);
3158#if EV_PERIODIC_ENABLE
3159 /* TODO: really do this? */
3160 periodics_reschedule (EV_A);
3161#endif
3162}
3163
1860/*****************************************************************************/ 3164/*****************************************************************************/
3165/* singly-linked list management, used when the expected list length is short */
1861 3166
1862void inline_size 3167inline_size void
1863wlist_add (WL *head, WL elem) 3168wlist_add (WL *head, WL elem)
1864{ 3169{
1865 elem->next = *head; 3170 elem->next = *head;
1866 *head = elem; 3171 *head = elem;
1867} 3172}
1868 3173
1869void inline_size 3174inline_size void
1870wlist_del (WL *head, WL elem) 3175wlist_del (WL *head, WL elem)
1871{ 3176{
1872 while (*head) 3177 while (*head)
1873 { 3178 {
1874 if (*head == elem) 3179 if (expect_true (*head == elem))
1875 { 3180 {
1876 *head = elem->next; 3181 *head = elem->next;
1877 return; 3182 break;
1878 } 3183 }
1879 3184
1880 head = &(*head)->next; 3185 head = &(*head)->next;
1881 } 3186 }
1882} 3187}
1883 3188
1884void inline_speed 3189/* internal, faster, version of ev_clear_pending */
3190inline_speed void
1885clear_pending (EV_P_ W w) 3191clear_pending (EV_P_ W w)
1886{ 3192{
1887 if (w->pending) 3193 if (w->pending)
1888 { 3194 {
1889 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3195 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1890 w->pending = 0; 3196 w->pending = 0;
1891 } 3197 }
1892} 3198}
1893 3199
1894int 3200int
1895ev_clear_pending (EV_P_ void *w) 3201ev_clear_pending (EV_P_ void *w) EV_THROW
1896{ 3202{
1897 W w_ = (W)w; 3203 W w_ = (W)w;
1898 int pending = w_->pending; 3204 int pending = w_->pending;
1899 3205
1900 if (expect_true (pending)) 3206 if (expect_true (pending))
1901 { 3207 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3208 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3209 p->w = (W)&pending_w;
1903 w_->pending = 0; 3210 w_->pending = 0;
1904 p->w = 0;
1905 return p->events; 3211 return p->events;
1906 } 3212 }
1907 else 3213 else
1908 return 0; 3214 return 0;
1909} 3215}
1910 3216
1911void inline_size 3217inline_size void
1912pri_adjust (EV_P_ W w) 3218pri_adjust (EV_P_ W w)
1913{ 3219{
1914 int pri = w->priority; 3220 int pri = ev_priority (w);
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3221 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3222 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri; 3223 ev_set_priority (w, pri);
1918} 3224}
1919 3225
1920void inline_speed 3226inline_speed void
1921ev_start (EV_P_ W w, int active) 3227ev_start (EV_P_ W w, int active)
1922{ 3228{
1923 pri_adjust (EV_A_ w); 3229 pri_adjust (EV_A_ w);
1924 w->active = active; 3230 w->active = active;
1925 ev_ref (EV_A); 3231 ev_ref (EV_A);
1926} 3232}
1927 3233
1928void inline_size 3234inline_size void
1929ev_stop (EV_P_ W w) 3235ev_stop (EV_P_ W w)
1930{ 3236{
1931 ev_unref (EV_A); 3237 ev_unref (EV_A);
1932 w->active = 0; 3238 w->active = 0;
1933} 3239}
1934 3240
1935/*****************************************************************************/ 3241/*****************************************************************************/
1936 3242
1937void noinline 3243void noinline
1938ev_io_start (EV_P_ ev_io *w) 3244ev_io_start (EV_P_ ev_io *w) EV_THROW
1939{ 3245{
1940 int fd = w->fd; 3246 int fd = w->fd;
1941 3247
1942 if (expect_false (ev_is_active (w))) 3248 if (expect_false (ev_is_active (w)))
1943 return; 3249 return;
1944 3250
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 3251 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3252 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3253
3254 EV_FREQUENT_CHECK;
1946 3255
1947 ev_start (EV_A_ (W)w, 1); 3256 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3257 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1949 wlist_add (&anfds[fd].head, (WL)w); 3258 wlist_add (&anfds[fd].head, (WL)w);
1950 3259
3260 /* common bug, apparently */
3261 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3262
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3263 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1952 w->events &= ~EV_IOFDSET; 3264 w->events &= ~EV__IOFDSET;
3265
3266 EV_FREQUENT_CHECK;
1953} 3267}
1954 3268
1955void noinline 3269void noinline
1956ev_io_stop (EV_P_ ev_io *w) 3270ev_io_stop (EV_P_ ev_io *w) EV_THROW
1957{ 3271{
1958 clear_pending (EV_A_ (W)w); 3272 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 3273 if (expect_false (!ev_is_active (w)))
1960 return; 3274 return;
1961 3275
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3276 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3277
3278 EV_FREQUENT_CHECK;
1963 3279
1964 wlist_del (&anfds[w->fd].head, (WL)w); 3280 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 3281 ev_stop (EV_A_ (W)w);
1966 3282
1967 fd_change (EV_A_ w->fd, 1); 3283 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3284
3285 EV_FREQUENT_CHECK;
1968} 3286}
1969 3287
1970void noinline 3288void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 3289ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1972{ 3290{
1973 if (expect_false (ev_is_active (w))) 3291 if (expect_false (ev_is_active (w)))
1974 return; 3292 return;
1975 3293
1976 ev_at (w) += mn_now; 3294 ev_at (w) += mn_now;
1977 3295
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3296 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 3297
3298 EV_FREQUENT_CHECK;
3299
3300 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3301 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 3302 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 3303 ANHE_w (timers [ev_active (w)]) = (WT)w;
3304 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 3305 upheap (timers, ev_active (w));
1984 3306
3307 EV_FREQUENT_CHECK;
3308
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 3309 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 3310}
1987 3311
1988void noinline 3312void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 3313ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1990{ 3314{
1991 clear_pending (EV_A_ (W)w); 3315 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 3316 if (expect_false (!ev_is_active (w)))
1993 return; 3317 return;
1994 3318
3319 EV_FREQUENT_CHECK;
3320
1995 { 3321 {
1996 int active = ev_active (w); 3322 int active = ev_active (w);
1997 3323
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 3324 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 3325
3326 --timercnt;
3327
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 3328 if (expect_true (active < timercnt + HEAP0))
2001 { 3329 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 3330 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 3331 adjustheap (timers, timercnt, active);
2004 } 3332 }
2005
2006 --timercnt;
2007 } 3333 }
2008 3334
2009 ev_at (w) -= mn_now; 3335 ev_at (w) -= mn_now;
2010 3336
2011 ev_stop (EV_A_ (W)w); 3337 ev_stop (EV_A_ (W)w);
3338
3339 EV_FREQUENT_CHECK;
2012} 3340}
2013 3341
2014void noinline 3342void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 3343ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2016{ 3344{
3345 EV_FREQUENT_CHECK;
3346
3347 clear_pending (EV_A_ (W)w);
3348
2017 if (ev_is_active (w)) 3349 if (ev_is_active (w))
2018 { 3350 {
2019 if (w->repeat) 3351 if (w->repeat)
2020 { 3352 {
2021 ev_at (w) = mn_now + w->repeat; 3353 ev_at (w) = mn_now + w->repeat;
3354 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 3355 adjustheap (timers, timercnt, ev_active (w));
2023 } 3356 }
2024 else 3357 else
2025 ev_timer_stop (EV_A_ w); 3358 ev_timer_stop (EV_A_ w);
2026 } 3359 }
2027 else if (w->repeat) 3360 else if (w->repeat)
2028 { 3361 {
2029 ev_at (w) = w->repeat; 3362 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 3363 ev_timer_start (EV_A_ w);
2031 } 3364 }
3365
3366 EV_FREQUENT_CHECK;
3367}
3368
3369ev_tstamp
3370ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3371{
3372 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2032} 3373}
2033 3374
2034#if EV_PERIODIC_ENABLE 3375#if EV_PERIODIC_ENABLE
2035void noinline 3376void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 3377ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2037{ 3378{
2038 if (expect_false (ev_is_active (w))) 3379 if (expect_false (ev_is_active (w)))
2039 return; 3380 return;
2040 3381
2041 if (w->reschedule_cb) 3382 if (w->reschedule_cb)
2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3383 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2043 else if (w->interval) 3384 else if (w->interval)
2044 { 3385 {
2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3386 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2046 /* this formula differs from the one in periodic_reify because we do not always round up */ 3387 periodic_recalc (EV_A_ w);
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 3388 }
2049 else 3389 else
2050 ev_at (w) = w->offset; 3390 ev_at (w) = w->offset;
2051 3391
3392 EV_FREQUENT_CHECK;
3393
3394 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3395 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 3396 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 3397 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3398 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 3399 upheap (periodics, ev_active (w));
2056 3400
3401 EV_FREQUENT_CHECK;
3402
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 3403 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 3404}
2059 3405
2060void noinline 3406void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 3407ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2062{ 3408{
2063 clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 3410 if (expect_false (!ev_is_active (w)))
2065 return; 3411 return;
2066 3412
3413 EV_FREQUENT_CHECK;
3414
2067 { 3415 {
2068 int active = ev_active (w); 3416 int active = ev_active (w);
2069 3417
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 3418 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 3419
3420 --periodiccnt;
3421
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3422 if (expect_true (active < periodiccnt + HEAP0))
2073 { 3423 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3424 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 3425 adjustheap (periodics, periodiccnt, active);
2076 } 3426 }
2077
2078 --periodiccnt;
2079 } 3427 }
2080 3428
2081 ev_stop (EV_A_ (W)w); 3429 ev_stop (EV_A_ (W)w);
3430
3431 EV_FREQUENT_CHECK;
2082} 3432}
2083 3433
2084void noinline 3434void noinline
2085ev_periodic_again (EV_P_ ev_periodic *w) 3435ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2086{ 3436{
2087 /* TODO: use adjustheap and recalculation */ 3437 /* TODO: use adjustheap and recalculation */
2088 ev_periodic_stop (EV_A_ w); 3438 ev_periodic_stop (EV_A_ w);
2089 ev_periodic_start (EV_A_ w); 3439 ev_periodic_start (EV_A_ w);
2090} 3440}
2092 3442
2093#ifndef SA_RESTART 3443#ifndef SA_RESTART
2094# define SA_RESTART 0 3444# define SA_RESTART 0
2095#endif 3445#endif
2096 3446
3447#if EV_SIGNAL_ENABLE
3448
2097void noinline 3449void noinline
2098ev_signal_start (EV_P_ ev_signal *w) 3450ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2099{ 3451{
2100#if EV_MULTIPLICITY
2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2102#endif
2103 if (expect_false (ev_is_active (w))) 3452 if (expect_false (ev_is_active (w)))
2104 return; 3453 return;
2105 3454
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3455 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2107 3456
2108 evpipe_init (EV_A); 3457#if EV_MULTIPLICITY
3458 assert (("libev: a signal must not be attached to two different loops",
3459 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2109 3460
3461 signals [w->signum - 1].loop = EV_A;
3462#endif
3463
3464 EV_FREQUENT_CHECK;
3465
3466#if EV_USE_SIGNALFD
3467 if (sigfd == -2)
2110 { 3468 {
2111#ifndef _WIN32 3469 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2112 sigset_t full, prev; 3470 if (sigfd < 0 && errno == EINVAL)
2113 sigfillset (&full); 3471 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116 3472
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3473 if (sigfd >= 0)
3474 {
3475 fd_intern (sigfd); /* doing it twice will not hurt */
2118 3476
2119#ifndef _WIN32 3477 sigemptyset (&sigfd_set);
2120 sigprocmask (SIG_SETMASK, &prev, 0); 3478
2121#endif 3479 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3480 ev_set_priority (&sigfd_w, EV_MAXPRI);
3481 ev_io_start (EV_A_ &sigfd_w);
3482 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3483 }
2122 } 3484 }
3485
3486 if (sigfd >= 0)
3487 {
3488 /* TODO: check .head */
3489 sigaddset (&sigfd_set, w->signum);
3490 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3491
3492 signalfd (sigfd, &sigfd_set, 0);
3493 }
3494#endif
2123 3495
2124 ev_start (EV_A_ (W)w, 1); 3496 ev_start (EV_A_ (W)w, 1);
2125 wlist_add (&signals [w->signum - 1].head, (WL)w); 3497 wlist_add (&signals [w->signum - 1].head, (WL)w);
2126 3498
2127 if (!((WL)w)->next) 3499 if (!((WL)w)->next)
3500# if EV_USE_SIGNALFD
3501 if (sigfd < 0) /*TODO*/
3502# endif
2128 { 3503 {
2129#if _WIN32 3504# ifdef _WIN32
3505 evpipe_init (EV_A);
3506
2130 signal (w->signum, ev_sighandler); 3507 signal (w->signum, ev_sighandler);
2131#else 3508# else
2132 struct sigaction sa; 3509 struct sigaction sa;
3510
3511 evpipe_init (EV_A);
3512
2133 sa.sa_handler = ev_sighandler; 3513 sa.sa_handler = ev_sighandler;
2134 sigfillset (&sa.sa_mask); 3514 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3515 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 3516 sigaction (w->signum, &sa, 0);
3517
3518 if (origflags & EVFLAG_NOSIGMASK)
3519 {
3520 sigemptyset (&sa.sa_mask);
3521 sigaddset (&sa.sa_mask, w->signum);
3522 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3523 }
2137#endif 3524#endif
2138 } 3525 }
3526
3527 EV_FREQUENT_CHECK;
2139} 3528}
2140 3529
2141void noinline 3530void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 3531ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2143{ 3532{
2144 clear_pending (EV_A_ (W)w); 3533 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3534 if (expect_false (!ev_is_active (w)))
2146 return; 3535 return;
2147 3536
3537 EV_FREQUENT_CHECK;
3538
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 3539 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
2150 3541
2151 if (!signals [w->signum - 1].head) 3542 if (!signals [w->signum - 1].head)
3543 {
3544#if EV_MULTIPLICITY
3545 signals [w->signum - 1].loop = 0; /* unattach from signal */
3546#endif
3547#if EV_USE_SIGNALFD
3548 if (sigfd >= 0)
3549 {
3550 sigset_t ss;
3551
3552 sigemptyset (&ss);
3553 sigaddset (&ss, w->signum);
3554 sigdelset (&sigfd_set, w->signum);
3555
3556 signalfd (sigfd, &sigfd_set, 0);
3557 sigprocmask (SIG_UNBLOCK, &ss, 0);
3558 }
3559 else
3560#endif
2152 signal (w->signum, SIG_DFL); 3561 signal (w->signum, SIG_DFL);
3562 }
3563
3564 EV_FREQUENT_CHECK;
2153} 3565}
3566
3567#endif
3568
3569#if EV_CHILD_ENABLE
2154 3570
2155void 3571void
2156ev_child_start (EV_P_ ev_child *w) 3572ev_child_start (EV_P_ ev_child *w) EV_THROW
2157{ 3573{
2158#if EV_MULTIPLICITY 3574#if EV_MULTIPLICITY
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3575 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 3576#endif
2161 if (expect_false (ev_is_active (w))) 3577 if (expect_false (ev_is_active (w)))
2162 return; 3578 return;
2163 3579
3580 EV_FREQUENT_CHECK;
3581
2164 ev_start (EV_A_ (W)w, 1); 3582 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3583 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3584
3585 EV_FREQUENT_CHECK;
2166} 3586}
2167 3587
2168void 3588void
2169ev_child_stop (EV_P_ ev_child *w) 3589ev_child_stop (EV_P_ ev_child *w) EV_THROW
2170{ 3590{
2171 clear_pending (EV_A_ (W)w); 3591 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 3592 if (expect_false (!ev_is_active (w)))
2173 return; 3593 return;
2174 3594
3595 EV_FREQUENT_CHECK;
3596
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3597 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 3598 ev_stop (EV_A_ (W)w);
3599
3600 EV_FREQUENT_CHECK;
2177} 3601}
3602
3603#endif
2178 3604
2179#if EV_STAT_ENABLE 3605#if EV_STAT_ENABLE
2180 3606
2181# ifdef _WIN32 3607# ifdef _WIN32
2182# undef lstat 3608# undef lstat
2183# define lstat(a,b) _stati64 (a,b) 3609# define lstat(a,b) _stati64 (a,b)
2184# endif 3610# endif
2185 3611
2186#define DEF_STAT_INTERVAL 5.0074891 3612#define DEF_STAT_INTERVAL 5.0074891
3613#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2187#define MIN_STAT_INTERVAL 0.1074891 3614#define MIN_STAT_INTERVAL 0.1074891
2188 3615
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3616static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190 3617
2191#if EV_USE_INOTIFY 3618#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192 3619
3620/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3621# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2193 3622
2194static void noinline 3623static void noinline
2195infy_add (EV_P_ ev_stat *w) 3624infy_add (EV_P_ ev_stat *w)
2196{ 3625{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3626 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198 3627
2199 if (w->wd < 0) 3628 if (w->wd >= 0)
3629 {
3630 struct statfs sfs;
3631
3632 /* now local changes will be tracked by inotify, but remote changes won't */
3633 /* unless the filesystem is known to be local, we therefore still poll */
3634 /* also do poll on <2.6.25, but with normal frequency */
3635
3636 if (!fs_2625)
3637 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3638 else if (!statfs (w->path, &sfs)
3639 && (sfs.f_type == 0x1373 /* devfs */
3640 || sfs.f_type == 0xEF53 /* ext2/3 */
3641 || sfs.f_type == 0x3153464a /* jfs */
3642 || sfs.f_type == 0x52654973 /* reiser3 */
3643 || sfs.f_type == 0x01021994 /* tempfs */
3644 || sfs.f_type == 0x58465342 /* xfs */))
3645 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3646 else
3647 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2200 { 3648 }
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3649 else
3650 {
3651 /* can't use inotify, continue to stat */
3652 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2202 3653
2203 /* monitor some parent directory for speedup hints */ 3654 /* if path is not there, monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2205 /* but an efficiency issue only */ 3656 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 { 3658 {
2208 char path [4096]; 3659 char path [4096];
2209 strcpy (path, w->path); 3660 strcpy (path, w->path);
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215 3666
2216 char *pend = strrchr (path, '/'); 3667 char *pend = strrchr (path, '/');
2217 3668
2218 if (!pend) 3669 if (!pend || pend == path)
2219 break; /* whoops, no '/', complain to your admin */ 3670 break;
2220 3671
2221 *pend = 0; 3672 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask); 3673 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 } 3674 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 } 3676 }
2226 } 3677 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229 3678
2230 if (w->wd >= 0) 3679 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3680 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3681
3682 /* now re-arm timer, if required */
3683 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3684 ev_timer_again (EV_A_ &w->timer);
3685 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2232} 3686}
2233 3687
2234static void noinline 3688static void noinline
2235infy_del (EV_P_ ev_stat *w) 3689infy_del (EV_P_ ev_stat *w)
2236{ 3690{
2239 3693
2240 if (wd < 0) 3694 if (wd < 0)
2241 return; 3695 return;
2242 3696
2243 w->wd = -2; 3697 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3698 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w); 3699 wlist_del (&fs_hash [slot].head, (WL)w);
2246 3700
2247 /* remove this watcher, if others are watching it, they will rearm */ 3701 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd); 3702 inotify_rm_watch (fs_fd, wd);
2249} 3703}
2250 3704
2251static void noinline 3705static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3706infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{ 3707{
2254 if (slot < 0) 3708 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */ 3709 /* overflow, need to check for all hash slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3710 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2257 infy_wd (EV_A_ slot, wd, ev); 3711 infy_wd (EV_A_ slot, wd, ev);
2258 else 3712 else
2259 { 3713 {
2260 WL w_; 3714 WL w_;
2261 3715
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3716 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2263 { 3717 {
2264 ev_stat *w = (ev_stat *)w_; 3718 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */ 3719 w_ = w_->next; /* lets us remove this watcher and all before it */
2266 3720
2267 if (w->wd == wd || wd == -1) 3721 if (w->wd == wd || wd == -1)
2268 { 3722 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3723 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 { 3724 {
3725 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2271 w->wd = -1; 3726 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */ 3727 infy_add (EV_A_ w); /* re-add, no matter what */
2273 } 3728 }
2274 3729
2275 stat_timer_cb (EV_A_ &w->timer, 0); 3730 stat_timer_cb (EV_A_ &w->timer, 0);
2280 3735
2281static void 3736static void
2282infy_cb (EV_P_ ev_io *w, int revents) 3737infy_cb (EV_P_ ev_io *w, int revents)
2283{ 3738{
2284 char buf [EV_INOTIFY_BUFSIZE]; 3739 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs; 3740 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf)); 3741 int len = read (fs_fd, buf, sizeof (buf));
2288 3742
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3743 for (ofs = 0; ofs < len; )
3744 {
3745 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3746 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3747 ofs += sizeof (struct inotify_event) + ev->len;
3748 }
2291} 3749}
2292 3750
2293void inline_size 3751inline_size void ecb_cold
3752ev_check_2625 (EV_P)
3753{
3754 /* kernels < 2.6.25 are borked
3755 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3756 */
3757 if (ev_linux_version () < 0x020619)
3758 return;
3759
3760 fs_2625 = 1;
3761}
3762
3763inline_size int
3764infy_newfd (void)
3765{
3766#if defined IN_CLOEXEC && defined IN_NONBLOCK
3767 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3768 if (fd >= 0)
3769 return fd;
3770#endif
3771 return inotify_init ();
3772}
3773
3774inline_size void
2294infy_init (EV_P) 3775infy_init (EV_P)
2295{ 3776{
2296 if (fs_fd != -2) 3777 if (fs_fd != -2)
2297 return; 3778 return;
2298 3779
3780 fs_fd = -1;
3781
3782 ev_check_2625 (EV_A);
3783
2299 fs_fd = inotify_init (); 3784 fs_fd = infy_newfd ();
2300 3785
2301 if (fs_fd >= 0) 3786 if (fs_fd >= 0)
2302 { 3787 {
3788 fd_intern (fs_fd);
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3789 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI); 3790 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w); 3791 ev_io_start (EV_A_ &fs_w);
3792 ev_unref (EV_A);
2306 } 3793 }
2307} 3794}
2308 3795
2309void inline_size 3796inline_size void
2310infy_fork (EV_P) 3797infy_fork (EV_P)
2311{ 3798{
2312 int slot; 3799 int slot;
2313 3800
2314 if (fs_fd < 0) 3801 if (fs_fd < 0)
2315 return; 3802 return;
2316 3803
3804 ev_ref (EV_A);
3805 ev_io_stop (EV_A_ &fs_w);
2317 close (fs_fd); 3806 close (fs_fd);
2318 fs_fd = inotify_init (); 3807 fs_fd = infy_newfd ();
2319 3808
3809 if (fs_fd >= 0)
3810 {
3811 fd_intern (fs_fd);
3812 ev_io_set (&fs_w, fs_fd, EV_READ);
3813 ev_io_start (EV_A_ &fs_w);
3814 ev_unref (EV_A);
3815 }
3816
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3817 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2321 { 3818 {
2322 WL w_ = fs_hash [slot].head; 3819 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0; 3820 fs_hash [slot].head = 0;
2324 3821
2325 while (w_) 3822 while (w_)
2330 w->wd = -1; 3827 w->wd = -1;
2331 3828
2332 if (fs_fd >= 0) 3829 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 3830 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else 3831 else
3832 {
3833 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3834 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2335 ev_timer_start (EV_A_ &w->timer); 3835 ev_timer_again (EV_A_ &w->timer);
3836 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3837 }
2336 } 3838 }
2337
2338 } 3839 }
2339} 3840}
2340 3841
3842#endif
3843
3844#ifdef _WIN32
3845# define EV_LSTAT(p,b) _stati64 (p, b)
3846#else
3847# define EV_LSTAT(p,b) lstat (p, b)
2341#endif 3848#endif
2342 3849
2343void 3850void
2344ev_stat_stat (EV_P_ ev_stat *w) 3851ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2345{ 3852{
2346 if (lstat (w->path, &w->attr) < 0) 3853 if (lstat (w->path, &w->attr) < 0)
2347 w->attr.st_nlink = 0; 3854 w->attr.st_nlink = 0;
2348 else if (!w->attr.st_nlink) 3855 else if (!w->attr.st_nlink)
2349 w->attr.st_nlink = 1; 3856 w->attr.st_nlink = 1;
2352static void noinline 3859static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3860stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{ 3861{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3862 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356 3863
2357 /* we copy this here each the time so that */ 3864 ev_statdata prev = w->attr;
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w); 3865 ev_stat_stat (EV_A_ w);
2361 3866
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3867 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if ( 3868 if (
2364 w->prev.st_dev != w->attr.st_dev 3869 prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino 3870 || prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode 3871 || prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink 3872 || prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid 3873 || prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid 3874 || prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev 3875 || prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size 3876 || prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime 3877 || prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime 3878 || prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime 3879 || prev.st_ctime != w->attr.st_ctime
2375 ) { 3880 ) {
3881 /* we only update w->prev on actual differences */
3882 /* in case we test more often than invoke the callback, */
3883 /* to ensure that prev is always different to attr */
3884 w->prev = prev;
3885
2376 #if EV_USE_INOTIFY 3886 #if EV_USE_INOTIFY
3887 if (fs_fd >= 0)
3888 {
2377 infy_del (EV_A_ w); 3889 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w); 3890 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */ 3891 ev_stat_stat (EV_A_ w); /* avoid race... */
3892 }
2380 #endif 3893 #endif
2381 3894
2382 ev_feed_event (EV_A_ w, EV_STAT); 3895 ev_feed_event (EV_A_ w, EV_STAT);
2383 } 3896 }
2384} 3897}
2385 3898
2386void 3899void
2387ev_stat_start (EV_P_ ev_stat *w) 3900ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2388{ 3901{
2389 if (expect_false (ev_is_active (w))) 3902 if (expect_false (ev_is_active (w)))
2390 return; 3903 return;
2391 3904
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w); 3905 ev_stat_stat (EV_A_ w);
2397 3906
3907 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2398 if (w->interval < MIN_STAT_INTERVAL) 3908 w->interval = MIN_STAT_INTERVAL;
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400 3909
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3910 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2402 ev_set_priority (&w->timer, ev_priority (w)); 3911 ev_set_priority (&w->timer, ev_priority (w));
2403 3912
2404#if EV_USE_INOTIFY 3913#if EV_USE_INOTIFY
2405 infy_init (EV_A); 3914 infy_init (EV_A);
2406 3915
2407 if (fs_fd >= 0) 3916 if (fs_fd >= 0)
2408 infy_add (EV_A_ w); 3917 infy_add (EV_A_ w);
2409 else 3918 else
2410#endif 3919#endif
3920 {
2411 ev_timer_start (EV_A_ &w->timer); 3921 ev_timer_again (EV_A_ &w->timer);
3922 ev_unref (EV_A);
3923 }
2412 3924
2413 ev_start (EV_A_ (W)w, 1); 3925 ev_start (EV_A_ (W)w, 1);
3926
3927 EV_FREQUENT_CHECK;
2414} 3928}
2415 3929
2416void 3930void
2417ev_stat_stop (EV_P_ ev_stat *w) 3931ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2418{ 3932{
2419 clear_pending (EV_A_ (W)w); 3933 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 3934 if (expect_false (!ev_is_active (w)))
2421 return; 3935 return;
2422 3936
3937 EV_FREQUENT_CHECK;
3938
2423#if EV_USE_INOTIFY 3939#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 3940 infy_del (EV_A_ w);
2425#endif 3941#endif
3942
3943 if (ev_is_active (&w->timer))
3944 {
3945 ev_ref (EV_A);
2426 ev_timer_stop (EV_A_ &w->timer); 3946 ev_timer_stop (EV_A_ &w->timer);
3947 }
2427 3948
2428 ev_stop (EV_A_ (W)w); 3949 ev_stop (EV_A_ (W)w);
3950
3951 EV_FREQUENT_CHECK;
2429} 3952}
2430#endif 3953#endif
2431 3954
2432#if EV_IDLE_ENABLE 3955#if EV_IDLE_ENABLE
2433void 3956void
2434ev_idle_start (EV_P_ ev_idle *w) 3957ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2435{ 3958{
2436 if (expect_false (ev_is_active (w))) 3959 if (expect_false (ev_is_active (w)))
2437 return; 3960 return;
2438 3961
2439 pri_adjust (EV_A_ (W)w); 3962 pri_adjust (EV_A_ (W)w);
3963
3964 EV_FREQUENT_CHECK;
2440 3965
2441 { 3966 {
2442 int active = ++idlecnt [ABSPRI (w)]; 3967 int active = ++idlecnt [ABSPRI (w)];
2443 3968
2444 ++idleall; 3969 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 3970 ev_start (EV_A_ (W)w, active);
2446 3971
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3972 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 3973 idles [ABSPRI (w)][active - 1] = w;
2449 } 3974 }
3975
3976 EV_FREQUENT_CHECK;
2450} 3977}
2451 3978
2452void 3979void
2453ev_idle_stop (EV_P_ ev_idle *w) 3980ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2454{ 3981{
2455 clear_pending (EV_A_ (W)w); 3982 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3983 if (expect_false (!ev_is_active (w)))
2457 return; 3984 return;
2458 3985
3986 EV_FREQUENT_CHECK;
3987
2459 { 3988 {
2460 int active = ev_active (w); 3989 int active = ev_active (w);
2461 3990
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3991 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3992 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 3993
2465 ev_stop (EV_A_ (W)w); 3994 ev_stop (EV_A_ (W)w);
2466 --idleall; 3995 --idleall;
2467 } 3996 }
2468}
2469#endif
2470 3997
3998 EV_FREQUENT_CHECK;
3999}
4000#endif
4001
4002#if EV_PREPARE_ENABLE
2471void 4003void
2472ev_prepare_start (EV_P_ ev_prepare *w) 4004ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2473{ 4005{
2474 if (expect_false (ev_is_active (w))) 4006 if (expect_false (ev_is_active (w)))
2475 return; 4007 return;
4008
4009 EV_FREQUENT_CHECK;
2476 4010
2477 ev_start (EV_A_ (W)w, ++preparecnt); 4011 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4012 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 4013 prepares [preparecnt - 1] = w;
4014
4015 EV_FREQUENT_CHECK;
2480} 4016}
2481 4017
2482void 4018void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 4019ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2484{ 4020{
2485 clear_pending (EV_A_ (W)w); 4021 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 4022 if (expect_false (!ev_is_active (w)))
2487 return; 4023 return;
2488 4024
4025 EV_FREQUENT_CHECK;
4026
2489 { 4027 {
2490 int active = ev_active (w); 4028 int active = ev_active (w);
2491 4029
2492 prepares [active - 1] = prepares [--preparecnt]; 4030 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 4031 ev_active (prepares [active - 1]) = active;
2494 } 4032 }
2495 4033
2496 ev_stop (EV_A_ (W)w); 4034 ev_stop (EV_A_ (W)w);
2497}
2498 4035
4036 EV_FREQUENT_CHECK;
4037}
4038#endif
4039
4040#if EV_CHECK_ENABLE
2499void 4041void
2500ev_check_start (EV_P_ ev_check *w) 4042ev_check_start (EV_P_ ev_check *w) EV_THROW
2501{ 4043{
2502 if (expect_false (ev_is_active (w))) 4044 if (expect_false (ev_is_active (w)))
2503 return; 4045 return;
4046
4047 EV_FREQUENT_CHECK;
2504 4048
2505 ev_start (EV_A_ (W)w, ++checkcnt); 4049 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4050 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 4051 checks [checkcnt - 1] = w;
4052
4053 EV_FREQUENT_CHECK;
2508} 4054}
2509 4055
2510void 4056void
2511ev_check_stop (EV_P_ ev_check *w) 4057ev_check_stop (EV_P_ ev_check *w) EV_THROW
2512{ 4058{
2513 clear_pending (EV_A_ (W)w); 4059 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 4060 if (expect_false (!ev_is_active (w)))
2515 return; 4061 return;
2516 4062
4063 EV_FREQUENT_CHECK;
4064
2517 { 4065 {
2518 int active = ev_active (w); 4066 int active = ev_active (w);
2519 4067
2520 checks [active - 1] = checks [--checkcnt]; 4068 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 4069 ev_active (checks [active - 1]) = active;
2522 } 4070 }
2523 4071
2524 ev_stop (EV_A_ (W)w); 4072 ev_stop (EV_A_ (W)w);
4073
4074 EV_FREQUENT_CHECK;
2525} 4075}
4076#endif
2526 4077
2527#if EV_EMBED_ENABLE 4078#if EV_EMBED_ENABLE
2528void noinline 4079void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 4080ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2530{ 4081{
2531 ev_loop (w->other, EVLOOP_NONBLOCK); 4082 ev_run (w->other, EVRUN_NOWAIT);
2532} 4083}
2533 4084
2534static void 4085static void
2535embed_io_cb (EV_P_ ev_io *io, int revents) 4086embed_io_cb (EV_P_ ev_io *io, int revents)
2536{ 4087{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4088 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538 4089
2539 if (ev_cb (w)) 4090 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4091 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else 4092 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK); 4093 ev_run (w->other, EVRUN_NOWAIT);
2543} 4094}
2544 4095
2545static void 4096static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4097embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{ 4098{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4099 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549 4100
2550 { 4101 {
2551 struct ev_loop *loop = w->other; 4102 EV_P = w->other;
2552 4103
2553 while (fdchangecnt) 4104 while (fdchangecnt)
2554 { 4105 {
2555 fd_reify (EV_A); 4106 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4107 ev_run (EV_A_ EVRUN_NOWAIT);
2557 } 4108 }
2558 } 4109 }
4110}
4111
4112static void
4113embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4114{
4115 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4116
4117 ev_embed_stop (EV_A_ w);
4118
4119 {
4120 EV_P = w->other;
4121
4122 ev_loop_fork (EV_A);
4123 ev_run (EV_A_ EVRUN_NOWAIT);
4124 }
4125
4126 ev_embed_start (EV_A_ w);
2559} 4127}
2560 4128
2561#if 0 4129#if 0
2562static void 4130static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4131embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2565 ev_idle_stop (EV_A_ idle); 4133 ev_idle_stop (EV_A_ idle);
2566} 4134}
2567#endif 4135#endif
2568 4136
2569void 4137void
2570ev_embed_start (EV_P_ ev_embed *w) 4138ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2571{ 4139{
2572 if (expect_false (ev_is_active (w))) 4140 if (expect_false (ev_is_active (w)))
2573 return; 4141 return;
2574 4142
2575 { 4143 {
2576 struct ev_loop *loop = w->other; 4144 EV_P = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4145 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4146 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 4147 }
4148
4149 EV_FREQUENT_CHECK;
2580 4150
2581 ev_set_priority (&w->io, ev_priority (w)); 4151 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 4152 ev_io_start (EV_A_ &w->io);
2583 4153
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 4154 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 4155 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 4156 ev_prepare_start (EV_A_ &w->prepare);
2587 4157
4158 ev_fork_init (&w->fork, embed_fork_cb);
4159 ev_fork_start (EV_A_ &w->fork);
4160
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4161 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 4162
2590 ev_start (EV_A_ (W)w, 1); 4163 ev_start (EV_A_ (W)w, 1);
4164
4165 EV_FREQUENT_CHECK;
2591} 4166}
2592 4167
2593void 4168void
2594ev_embed_stop (EV_P_ ev_embed *w) 4169ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2595{ 4170{
2596 clear_pending (EV_A_ (W)w); 4171 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 4172 if (expect_false (!ev_is_active (w)))
2598 return; 4173 return;
2599 4174
4175 EV_FREQUENT_CHECK;
4176
2600 ev_io_stop (EV_A_ &w->io); 4177 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 4178 ev_prepare_stop (EV_A_ &w->prepare);
4179 ev_fork_stop (EV_A_ &w->fork);
2602 4180
2603 ev_stop (EV_A_ (W)w); 4181 ev_stop (EV_A_ (W)w);
4182
4183 EV_FREQUENT_CHECK;
2604} 4184}
2605#endif 4185#endif
2606 4186
2607#if EV_FORK_ENABLE 4187#if EV_FORK_ENABLE
2608void 4188void
2609ev_fork_start (EV_P_ ev_fork *w) 4189ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2610{ 4190{
2611 if (expect_false (ev_is_active (w))) 4191 if (expect_false (ev_is_active (w)))
2612 return; 4192 return;
4193
4194 EV_FREQUENT_CHECK;
2613 4195
2614 ev_start (EV_A_ (W)w, ++forkcnt); 4196 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 4198 forks [forkcnt - 1] = w;
4199
4200 EV_FREQUENT_CHECK;
2617} 4201}
2618 4202
2619void 4203void
2620ev_fork_stop (EV_P_ ev_fork *w) 4204ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2621{ 4205{
2622 clear_pending (EV_A_ (W)w); 4206 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 4207 if (expect_false (!ev_is_active (w)))
2624 return; 4208 return;
2625 4209
4210 EV_FREQUENT_CHECK;
4211
2626 { 4212 {
2627 int active = ev_active (w); 4213 int active = ev_active (w);
2628 4214
2629 forks [active - 1] = forks [--forkcnt]; 4215 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 4216 ev_active (forks [active - 1]) = active;
2631 } 4217 }
2632 4218
2633 ev_stop (EV_A_ (W)w); 4219 ev_stop (EV_A_ (W)w);
4220
4221 EV_FREQUENT_CHECK;
4222}
4223#endif
4224
4225#if EV_CLEANUP_ENABLE
4226void
4227ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4228{
4229 if (expect_false (ev_is_active (w)))
4230 return;
4231
4232 EV_FREQUENT_CHECK;
4233
4234 ev_start (EV_A_ (W)w, ++cleanupcnt);
4235 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4236 cleanups [cleanupcnt - 1] = w;
4237
4238 /* cleanup watchers should never keep a refcount on the loop */
4239 ev_unref (EV_A);
4240 EV_FREQUENT_CHECK;
4241}
4242
4243void
4244ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4245{
4246 clear_pending (EV_A_ (W)w);
4247 if (expect_false (!ev_is_active (w)))
4248 return;
4249
4250 EV_FREQUENT_CHECK;
4251 ev_ref (EV_A);
4252
4253 {
4254 int active = ev_active (w);
4255
4256 cleanups [active - 1] = cleanups [--cleanupcnt];
4257 ev_active (cleanups [active - 1]) = active;
4258 }
4259
4260 ev_stop (EV_A_ (W)w);
4261
4262 EV_FREQUENT_CHECK;
2634} 4263}
2635#endif 4264#endif
2636 4265
2637#if EV_ASYNC_ENABLE 4266#if EV_ASYNC_ENABLE
2638void 4267void
2639ev_async_start (EV_P_ ev_async *w) 4268ev_async_start (EV_P_ ev_async *w) EV_THROW
2640{ 4269{
2641 if (expect_false (ev_is_active (w))) 4270 if (expect_false (ev_is_active (w)))
2642 return; 4271 return;
2643 4272
4273 w->sent = 0;
4274
2644 evpipe_init (EV_A); 4275 evpipe_init (EV_A);
4276
4277 EV_FREQUENT_CHECK;
2645 4278
2646 ev_start (EV_A_ (W)w, ++asynccnt); 4279 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4280 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 4281 asyncs [asynccnt - 1] = w;
4282
4283 EV_FREQUENT_CHECK;
2649} 4284}
2650 4285
2651void 4286void
2652ev_async_stop (EV_P_ ev_async *w) 4287ev_async_stop (EV_P_ ev_async *w) EV_THROW
2653{ 4288{
2654 clear_pending (EV_A_ (W)w); 4289 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 4290 if (expect_false (!ev_is_active (w)))
2656 return; 4291 return;
2657 4292
4293 EV_FREQUENT_CHECK;
4294
2658 { 4295 {
2659 int active = ev_active (w); 4296 int active = ev_active (w);
2660 4297
2661 asyncs [active - 1] = asyncs [--asynccnt]; 4298 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 4299 ev_active (asyncs [active - 1]) = active;
2663 } 4300 }
2664 4301
2665 ev_stop (EV_A_ (W)w); 4302 ev_stop (EV_A_ (W)w);
4303
4304 EV_FREQUENT_CHECK;
2666} 4305}
2667 4306
2668void 4307void
2669ev_async_send (EV_P_ ev_async *w) 4308ev_async_send (EV_P_ ev_async *w) EV_THROW
2670{ 4309{
2671 w->sent = 1; 4310 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync); 4311 evpipe_write (EV_A_ &async_pending);
2673} 4312}
2674#endif 4313#endif
2675 4314
2676/*****************************************************************************/ 4315/*****************************************************************************/
2677 4316
2687once_cb (EV_P_ struct ev_once *once, int revents) 4326once_cb (EV_P_ struct ev_once *once, int revents)
2688{ 4327{
2689 void (*cb)(int revents, void *arg) = once->cb; 4328 void (*cb)(int revents, void *arg) = once->cb;
2690 void *arg = once->arg; 4329 void *arg = once->arg;
2691 4330
2692 ev_io_stop (EV_A_ &once->io); 4331 ev_io_stop (EV_A_ &once->io);
2693 ev_timer_stop (EV_A_ &once->to); 4332 ev_timer_stop (EV_A_ &once->to);
2694 ev_free (once); 4333 ev_free (once);
2695 4334
2696 cb (revents, arg); 4335 cb (revents, arg);
2697} 4336}
2698 4337
2699static void 4338static void
2700once_cb_io (EV_P_ ev_io *w, int revents) 4339once_cb_io (EV_P_ ev_io *w, int revents)
2701{ 4340{
2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4341 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4342
4343 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2703} 4344}
2704 4345
2705static void 4346static void
2706once_cb_to (EV_P_ ev_timer *w, int revents) 4347once_cb_to (EV_P_ ev_timer *w, int revents)
2707{ 4348{
2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4349 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4350
4351 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2709} 4352}
2710 4353
2711void 4354void
2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4355ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2713{ 4356{
2714 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4357 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2715 4358
2716 if (expect_false (!once)) 4359 if (expect_false (!once))
2717 { 4360 {
2718 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4361 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2719 return; 4362 return;
2720 } 4363 }
2721 4364
2722 once->cb = cb; 4365 once->cb = cb;
2723 once->arg = arg; 4366 once->arg = arg;
2735 ev_timer_set (&once->to, timeout, 0.); 4378 ev_timer_set (&once->to, timeout, 0.);
2736 ev_timer_start (EV_A_ &once->to); 4379 ev_timer_start (EV_A_ &once->to);
2737 } 4380 }
2738} 4381}
2739 4382
4383/*****************************************************************************/
4384
4385#if EV_WALK_ENABLE
4386void ecb_cold
4387ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4388{
4389 int i, j;
4390 ev_watcher_list *wl, *wn;
4391
4392 if (types & (EV_IO | EV_EMBED))
4393 for (i = 0; i < anfdmax; ++i)
4394 for (wl = anfds [i].head; wl; )
4395 {
4396 wn = wl->next;
4397
4398#if EV_EMBED_ENABLE
4399 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4400 {
4401 if (types & EV_EMBED)
4402 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4403 }
4404 else
4405#endif
4406#if EV_USE_INOTIFY
4407 if (ev_cb ((ev_io *)wl) == infy_cb)
4408 ;
4409 else
4410#endif
4411 if ((ev_io *)wl != &pipe_w)
4412 if (types & EV_IO)
4413 cb (EV_A_ EV_IO, wl);
4414
4415 wl = wn;
4416 }
4417
4418 if (types & (EV_TIMER | EV_STAT))
4419 for (i = timercnt + HEAP0; i-- > HEAP0; )
4420#if EV_STAT_ENABLE
4421 /*TODO: timer is not always active*/
4422 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4423 {
4424 if (types & EV_STAT)
4425 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4426 }
4427 else
4428#endif
4429 if (types & EV_TIMER)
4430 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4431
4432#if EV_PERIODIC_ENABLE
4433 if (types & EV_PERIODIC)
4434 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4435 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4436#endif
4437
4438#if EV_IDLE_ENABLE
4439 if (types & EV_IDLE)
4440 for (j = NUMPRI; j--; )
4441 for (i = idlecnt [j]; i--; )
4442 cb (EV_A_ EV_IDLE, idles [j][i]);
4443#endif
4444
4445#if EV_FORK_ENABLE
4446 if (types & EV_FORK)
4447 for (i = forkcnt; i--; )
4448 if (ev_cb (forks [i]) != embed_fork_cb)
4449 cb (EV_A_ EV_FORK, forks [i]);
4450#endif
4451
4452#if EV_ASYNC_ENABLE
4453 if (types & EV_ASYNC)
4454 for (i = asynccnt; i--; )
4455 cb (EV_A_ EV_ASYNC, asyncs [i]);
4456#endif
4457
4458#if EV_PREPARE_ENABLE
4459 if (types & EV_PREPARE)
4460 for (i = preparecnt; i--; )
4461# if EV_EMBED_ENABLE
4462 if (ev_cb (prepares [i]) != embed_prepare_cb)
4463# endif
4464 cb (EV_A_ EV_PREPARE, prepares [i]);
4465#endif
4466
4467#if EV_CHECK_ENABLE
4468 if (types & EV_CHECK)
4469 for (i = checkcnt; i--; )
4470 cb (EV_A_ EV_CHECK, checks [i]);
4471#endif
4472
4473#if EV_SIGNAL_ENABLE
4474 if (types & EV_SIGNAL)
4475 for (i = 0; i < EV_NSIG - 1; ++i)
4476 for (wl = signals [i].head; wl; )
4477 {
4478 wn = wl->next;
4479 cb (EV_A_ EV_SIGNAL, wl);
4480 wl = wn;
4481 }
4482#endif
4483
4484#if EV_CHILD_ENABLE
4485 if (types & EV_CHILD)
4486 for (i = (EV_PID_HASHSIZE); i--; )
4487 for (wl = childs [i]; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_CHILD, wl);
4491 wl = wn;
4492 }
4493#endif
4494/* EV_STAT 0x00001000 /* stat data changed */
4495/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4496}
4497#endif
4498
2740#if EV_MULTIPLICITY 4499#if EV_MULTIPLICITY
2741 #include "ev_wrap.h" 4500 #include "ev_wrap.h"
2742#endif 4501#endif
2743 4502
2744#ifdef __cplusplus
2745}
2746#endif
2747

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines