ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.427 by root, Sun May 6 19:29:59 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
111#ifndef _WIN32 199#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 200# include <sys/time.h>
114# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
115#else 203#else
204# include <io.h>
116# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 206# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
120# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
121#endif 260# endif
122 261#endif
123/**/
124 262
125#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
126# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
127#endif 269#endif
128 270
129#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
131#endif 281#endif
132 282
133#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 285#endif
136 286
137#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
138# ifdef _WIN32 288# ifdef _WIN32
139# define EV_USE_POLL 0 289# define EV_USE_POLL 0
140# else 290# else
141# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 292# endif
143#endif 293#endif
144 294
145#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
146# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
147#endif 301#endif
148 302
149#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
151#endif 305#endif
152 306
153#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 308# define EV_USE_PORT 0
155#endif 309#endif
156 310
157/**/ 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
318
319#ifndef EV_PID_HASHSIZE
320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
158 382
159#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
162#endif 386#endif
164#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
167#endif 391#endif
168 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
169#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 416# include <winsock.h>
171#endif 417#endif
172 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
173/**/ 457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
174 471
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
180#ifdef EV_H 509#ifndef ECB_H
181# include EV_H 510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
182#else 526#else
183# include "ev.h" 527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
184#endif 542 #endif
543#endif
185 544
186#if __GNUC__ >= 3 545/*****************************************************************************/
187# define expect(expr,value) __builtin_expect ((expr),(value)) 546
188# define inline static inline 547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
189#else 649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
190# define expect(expr,value) (expr) 678 #define ecb_expect(expr,value) (expr)
191# define inline static 679 #define ecb_prefetch(addr,rw,locality)
192#endif 680#endif
193 681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
194#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
196 713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
960#define inline_size ecb_inline
961
962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
965# define inline_speed static noinline
966#endif
967
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
972#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
199 975
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
202 978
203typedef struct ev_watcher *W; 979typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 980typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
206 982
983#define ev_active(w) ((W)(w))->active
984#define ev_at(w) ((WT)(w))->at
985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
992#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
1004#endif
208 1005
209#ifdef _WIN32 1006#ifdef _WIN32
210# include "ev_win32.c" 1007# include "ev_win32.c"
211#endif 1008#endif
212 1009
213/*****************************************************************************/ 1010/*****************************************************************************/
214 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
215static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
216 1111
1112void ecb_cold
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
218{ 1114{
219 syserr_cb = cb; 1115 syserr_cb = cb;
220} 1116}
221 1117
222static void 1118static void noinline ecb_cold
223syserr (const char *msg) 1119ev_syserr (const char *msg)
224{ 1120{
225 if (!msg) 1121 if (!msg)
226 msg = "(libev) system error"; 1122 msg = "(libev) system error";
227 1123
228 if (syserr_cb) 1124 if (syserr_cb)
229 syserr_cb (msg); 1125 syserr_cb (msg);
230 else 1126 else
231 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
232 perror (msg); 1134 perror (msg);
1135#endif
233 abort (); 1136 abort ();
234 } 1137 }
235} 1138}
236 1139
1140static void *
1141ev_realloc_emul (void *ptr, long size)
1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
1146 /* some systems, notably openbsd and darwin, fail to properly
1147 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 * the single unix specification, so work around them here.
1149 */
1150
1151 if (size)
1152 return realloc (ptr, size);
1153
1154 free (ptr);
1155 return 0;
1156#endif
1157}
1158
237static void *(*alloc)(void *ptr, long size); 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
238 1160
1161void ecb_cold
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
240{ 1163{
241 alloc = cb; 1164 alloc = cb;
242} 1165}
243 1166
244static void * 1167inline_speed void *
245ev_realloc (void *ptr, long size) 1168ev_realloc (void *ptr, long size)
246{ 1169{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1170 ptr = alloc (ptr, size);
248 1171
249 if (!ptr && size) 1172 if (!ptr && size)
250 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
252 abort (); 1179 abort ();
253 } 1180 }
254 1181
255 return ptr; 1182 return ptr;
256} 1183}
258#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
260 1187
261/*****************************************************************************/ 1188/*****************************************************************************/
262 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
263typedef struct 1194typedef struct
264{ 1195{
265 WL head; 1196 WL head;
266 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
268#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
269 SOCKET handle; 1205 SOCKET handle;
270#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
271} ANFD; 1210} ANFD;
272 1211
1212/* stores the pending event set for a given watcher */
273typedef struct 1213typedef struct
274{ 1214{
275 W w; 1215 W w;
276 int events; 1216 int events; /* the pending event set for the given watcher */
277} ANPENDING; 1217} ANPENDING;
1218
1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
1221typedef struct
1222{
1223 WL head;
1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
1245#endif
278 1246
279#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
280 1248
281 struct ev_loop 1249 struct ev_loop
282 { 1250 {
287 #undef VAR 1255 #undef VAR
288 }; 1256 };
289 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
290 1258
291 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
292 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
293 1261
294#else 1262#else
295 1263
296 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
297 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
298 #include "ev_vars.h" 1266 #include "ev_vars.h"
299 #undef VAR 1267 #undef VAR
300 1268
301 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
302 1270
303#endif 1271#endif
304 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
305/*****************************************************************************/ 1285/*****************************************************************************/
306 1286
1287#ifndef EV_HAVE_EV_TIME
307ev_tstamp 1288ev_tstamp
308ev_time (void) 1289ev_time (void) EV_THROW
309{ 1290{
310#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
311 struct timespec ts; 1294 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 1297 }
1298#endif
1299
315 struct timeval tv; 1300 struct timeval tv;
316 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 1303}
1304#endif
320 1305
321inline ev_tstamp 1306inline_size ev_tstamp
322get_clock (void) 1307get_clock (void)
323{ 1308{
324#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
326 { 1311 {
333 return ev_time (); 1318 return ev_time ();
334} 1319}
335 1320
336#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
337ev_tstamp 1322ev_tstamp
338ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
339{ 1324{
340 return ev_rt_now; 1325 return ev_rt_now;
341} 1326}
342#endif 1327#endif
343 1328
344#define array_roundsize(type,n) (((n) | 4) & ~3) 1329void
1330ev_sleep (ev_tstamp delay) EV_THROW
1331{
1332 if (delay > 0.)
1333 {
1334#if EV_USE_NANOSLEEP
1335 struct timespec ts;
1336
1337 EV_TS_SET (ts, delay);
1338 nanosleep (&ts, 0);
1339#elif defined _WIN32
1340 Sleep ((unsigned long)(delay * 1e3));
1341#else
1342 struct timeval tv;
1343
1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1345 /* something not guaranteed by newer posix versions, but guaranteed */
1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
1348 select (0, 0, 0, 0, &tv);
1349#endif
1350 }
1351}
1352
1353/*****************************************************************************/
1354
1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356
1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
1360array_nextsize (int elem, int cur, int cnt)
1361{
1362 int ncur = cur + 1;
1363
1364 do
1365 ncur <<= 1;
1366 while (cnt > ncur);
1367
1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1370 {
1371 ncur *= elem;
1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1373 ncur = ncur - sizeof (void *) * 4;
1374 ncur /= elem;
1375 }
1376
1377 return ncur;
1378}
1379
1380static void * noinline ecb_cold
1381array_realloc (int elem, void *base, int *cur, int cnt)
1382{
1383 *cur = array_nextsize (elem, *cur, cnt);
1384 return ev_realloc (base, elem * *cur);
1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 1389
346#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 1391 if (expect_false ((cnt) > (cur))) \
348 { \ 1392 { \
349 int newcnt = cur; \ 1393 int ecb_unused ocur_ = (cur); \
350 do \ 1394 (base) = (type *)array_realloc \
351 { \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 1397 }
360 1398
1399#if 0
361#define array_slim(type,stem) \ 1400#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1401 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 1402 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1403 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1404 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 1406 }
1407#endif
368 1408
369#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 1411
372/*****************************************************************************/ 1412/*****************************************************************************/
373 1413
374static void 1414/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 1417{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 1418}
386 1419
387void 1420void noinline
388ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
389{ 1422{
390 W w_ = (W)w; 1423 W w_ = (W)w;
1424 int pri = ABSPRI (w_);
391 1425
392 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
1427 pendings [pri][w_->pending - 1].events |= revents;
1428 else
393 { 1429 {
1430 w_->pending = ++pendingcnt [pri];
1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1432 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1433 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 1434 }
397 1435
398 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1436 pendingpri = NUMPRI - 1;
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 1437}
403 1438
404static void 1439inline_speed void
1440feed_reverse (EV_P_ W w)
1441{
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444}
1445
1446inline_size void
1447feed_reverse_done (EV_P_ int revents)
1448{
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452}
1453
1454inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 1455queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 1456{
407 int i; 1457 int i;
408 1458
409 for (i = 0; i < eventcnt; ++i) 1459 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 1460 ev_feed_event (EV_A_ events [i], type);
411} 1461}
412 1462
1463/*****************************************************************************/
1464
413inline void 1465inline_speed void
414fd_event (EV_P_ int fd, int revents) 1466fd_event_nocheck (EV_P_ int fd, int revents)
415{ 1467{
416 ANFD *anfd = anfds + fd; 1468 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 1469 ev_io *w;
418 1470
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 1472 {
421 int ev = w->events & revents; 1473 int ev = w->events & revents;
422 1474
423 if (ev) 1475 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 1476 ev_feed_event (EV_A_ (W)w, ev);
425 } 1477 }
426} 1478}
427 1479
1480/* do not submit kernel events for fds that have reify set */
1481/* because that means they changed while we were polling for new events */
1482inline_speed void
1483fd_event (EV_P_ int fd, int revents)
1484{
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489}
1490
428void 1491void
429ev_feed_fd_event (EV_P_ int fd, int revents) 1492ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
430{ 1493{
1494 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 1495 fd_event_nocheck (EV_A_ fd, revents);
432} 1496}
433 1497
434/*****************************************************************************/ 1498/* make sure the external fd watch events are in-sync */
435 1499/* with the kernel/libev internal state */
436inline void 1500inline_size void
437fd_reify (EV_P) 1501fd_reify (EV_P)
438{ 1502{
439 int i; 1503 int i;
440 1504
1505#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
441 for (i = 0; i < fdchangecnt; ++i) 1506 for (i = 0; i < fdchangecnt; ++i)
442 { 1507 {
443 int fd = fdchanges [i]; 1508 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 1509 ANFD *anfd = anfds + fd;
445 struct ev_io *w;
446 1510
447 int events = 0; 1511 if (anfd->reify & EV__IOFDSET && anfd->head)
448
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
450 events |= w->events;
451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 { 1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
455 unsigned long argp; 1517 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 1518
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
458 } 1526 }
1527 }
459#endif 1528#endif
460 1529
1530 for (i = 0; i < fdchangecnt; ++i)
1531 {
1532 int fd = fdchanges [i];
1533 ANFD *anfd = anfds + fd;
1534 ev_io *w;
1535
1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
1538
461 anfd->reify = 0; 1539 anfd->reify = 0;
462 1540
1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1542 {
1543 anfd->events = 0;
1544
1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1546 anfd->events |= (unsigned char)w->events;
1547
1548 if (o_events != anfd->events)
1549 o_reify = EV__IOFDSET; /* actually |= */
1550 }
1551
1552 if (o_reify & EV__IOFDSET)
463 backend_modify (EV_A_ fd, anfd->events, events); 1553 backend_modify (EV_A_ fd, o_events, anfd->events);
464 anfd->events = events;
465 } 1554 }
466 1555
467 fdchangecnt = 0; 1556 fdchangecnt = 0;
468} 1557}
469 1558
470static void 1559/* something about the given fd changed */
1560inline_size void
471fd_change (EV_P_ int fd) 1561fd_change (EV_P_ int fd, int flags)
472{ 1562{
473 if (expect_false (anfds [fd].reify)) 1563 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 1564 anfds [fd].reify |= flags;
477 1565
1566 if (expect_true (!reify))
1567 {
478 ++fdchangecnt; 1568 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 1570 fdchanges [fdchangecnt - 1] = fd;
1571 }
481} 1572}
482 1573
483static void 1574/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575inline_speed void ecb_cold
484fd_kill (EV_P_ int fd) 1576fd_kill (EV_P_ int fd)
485{ 1577{
486 struct ev_io *w; 1578 ev_io *w;
487 1579
488 while ((w = (struct ev_io *)anfds [fd].head)) 1580 while ((w = (ev_io *)anfds [fd].head))
489 { 1581 {
490 ev_io_stop (EV_A_ w); 1582 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 1584 }
493} 1585}
494 1586
495inline int 1587/* check whether the given fd is actually valid, for error recovery */
1588inline_size int ecb_cold
496fd_valid (int fd) 1589fd_valid (int fd)
497{ 1590{
498#ifdef _WIN32 1591#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
500#else 1593#else
501 return fcntl (fd, F_GETFD) != -1; 1594 return fcntl (fd, F_GETFD) != -1;
502#endif 1595#endif
503} 1596}
504 1597
505/* called on EBADF to verify fds */ 1598/* called on EBADF to verify fds */
506static void 1599static void noinline ecb_cold
507fd_ebadf (EV_P) 1600fd_ebadf (EV_P)
508{ 1601{
509 int fd; 1602 int fd;
510 1603
511 for (fd = 0; fd < anfdmax; ++fd) 1604 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 1605 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 1606 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 1607 fd_kill (EV_A_ fd);
515} 1608}
516 1609
517/* called on ENOMEM in select/poll to kill some fds and retry */ 1610/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 1611static void noinline ecb_cold
519fd_enomem (EV_P) 1612fd_enomem (EV_P)
520{ 1613{
521 int fd; 1614 int fd;
522 1615
523 for (fd = anfdmax; fd--; ) 1616 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 1617 if (anfds [fd].events)
525 { 1618 {
526 fd_kill (EV_A_ fd); 1619 fd_kill (EV_A_ fd);
527 return; 1620 break;
528 } 1621 }
529} 1622}
530 1623
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 1624/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1625static void noinline
533fd_rearm_all (EV_P) 1626fd_rearm_all (EV_P)
534{ 1627{
535 int fd; 1628 int fd;
536 1629
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1630 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1631 if (anfds [fd].events)
540 { 1632 {
541 anfds [fd].events = 0; 1633 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1634 anfds [fd].emask = 0;
1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1636 }
544} 1637}
545 1638
546/*****************************************************************************/ 1639/* used to prepare libev internal fd's */
547 1640/* this is not fork-safe */
548static void
549upheap (WT *heap, int k)
550{
551 WT w = heap [k];
552
553 while (k && heap [k >> 1]->at > w->at)
554 {
555 heap [k] = heap [k >> 1];
556 ((W)heap [k])->active = k + 1;
557 k >>= 1;
558 }
559
560 heap [k] = w;
561 ((W)heap [k])->active = k + 1;
562
563}
564
565static void
566downheap (WT *heap, int N, int k)
567{
568 WT w = heap [k];
569
570 while (k < (N >> 1))
571 {
572 int j = k << 1;
573
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break;
579
580 heap [k] = heap [j];
581 ((W)heap [k])->active = k + 1;
582 k = j;
583 }
584
585 heap [k] = w;
586 ((W)heap [k])->active = k + 1;
587}
588
589inline void 1641inline_speed void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
596/*****************************************************************************/
597
598typedef struct
599{
600 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG;
603
604static ANSIG *signals;
605static int signalmax;
606
607static int sigpipe [2];
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610
611static void
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1642fd_intern (int fd)
676{ 1643{
677#ifdef _WIN32 1644#ifdef _WIN32
678 int arg = 1; 1645 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
680#else 1647#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1649 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1650#endif
684} 1651}
685 1652
1653/*****************************************************************************/
1654
1655/*
1656 * the heap functions want a real array index. array index 0 is guaranteed to not
1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1658 * the branching factor of the d-tree.
1659 */
1660
1661/*
1662 * at the moment we allow libev the luxury of two heaps,
1663 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1664 * which is more cache-efficient.
1665 * the difference is about 5% with 50000+ watchers.
1666 */
1667#if EV_USE_4HEAP
1668
1669#define DHEAP 4
1670#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1671#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1672#define UPHEAP_DONE(p,k) ((p) == (k))
1673
1674/* away from the root */
1675inline_speed void
1676downheap (ANHE *heap, int N, int k)
1677{
1678 ANHE he = heap [k];
1679 ANHE *E = heap + N + HEAP0;
1680
1681 for (;;)
1682 {
1683 ev_tstamp minat;
1684 ANHE *minpos;
1685 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1686
1687 /* find minimum child */
1688 if (expect_true (pos + DHEAP - 1 < E))
1689 {
1690 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1691 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1694 }
1695 else if (pos < E)
1696 {
1697 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1698 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1699 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1700 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1701 }
1702 else
1703 break;
1704
1705 if (ANHE_at (he) <= minat)
1706 break;
1707
1708 heap [k] = *minpos;
1709 ev_active (ANHE_w (*minpos)) = k;
1710
1711 k = minpos - heap;
1712 }
1713
1714 heap [k] = he;
1715 ev_active (ANHE_w (he)) = k;
1716}
1717
1718#else /* 4HEAP */
1719
1720#define HEAP0 1
1721#define HPARENT(k) ((k) >> 1)
1722#define UPHEAP_DONE(p,k) (!(p))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729
1730 for (;;)
1731 {
1732 int c = k << 1;
1733
1734 if (c >= N + HEAP0)
1735 break;
1736
1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1738 ? 1 : 0;
1739
1740 if (ANHE_at (he) <= ANHE_at (heap [c]))
1741 break;
1742
1743 heap [k] = heap [c];
1744 ev_active (ANHE_w (heap [k])) = k;
1745
1746 k = c;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752#endif
1753
1754/* towards the root */
1755inline_speed void
1756upheap (ANHE *heap, int k)
1757{
1758 ANHE he = heap [k];
1759
1760 for (;;)
1761 {
1762 int p = HPARENT (k);
1763
1764 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1765 break;
1766
1767 heap [k] = heap [p];
1768 ev_active (ANHE_w (heap [k])) = k;
1769 k = p;
1770 }
1771
1772 heap [k] = he;
1773 ev_active (ANHE_w (he)) = k;
1774}
1775
1776/* move an element suitably so it is in a correct place */
1777inline_size void
1778adjustheap (ANHE *heap, int N, int k)
1779{
1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1781 upheap (heap, k);
1782 else
1783 downheap (heap, N, k);
1784}
1785
1786/* rebuild the heap: this function is used only once and executed rarely */
1787inline_size void
1788reheap (ANHE *heap, int N)
1789{
1790 int i;
1791
1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1793 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1794 for (i = 0; i < N; ++i)
1795 upheap (heap, i + HEAP0);
1796}
1797
1798/*****************************************************************************/
1799
1800/* associate signal watchers to a signal signal */
1801typedef struct
1802{
1803 EV_ATOMIC_T pending;
1804#if EV_MULTIPLICITY
1805 EV_P;
1806#endif
1807 WL head;
1808} ANSIG;
1809
1810static ANSIG signals [EV_NSIG - 1];
1811
1812/*****************************************************************************/
1813
1814#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1815
1816static void noinline ecb_cold
1817evpipe_init (EV_P)
1818{
1819 if (!ev_is_active (&pipe_w))
1820 {
1821# if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
1827 {
1828 evpipe [0] = -1;
1829 fd_intern (evfd); /* doing it twice doesn't hurt */
1830 ev_io_set (&pipe_w, evfd, EV_READ);
1831 }
1832 else
1833# endif
1834 {
1835 while (pipe (evpipe))
1836 ev_syserr ("(libev) error creating signal/async pipe");
1837
1838 fd_intern (evpipe [0]);
1839 fd_intern (evpipe [1]);
1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1841 }
1842
1843 ev_io_start (EV_A_ &pipe_w);
1844 ev_unref (EV_A); /* watcher should not keep loop alive */
1845 }
1846}
1847
1848inline_speed void
1849evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1850{
1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
1870 old_errno = errno; /* save errno because write will clobber it */
1871
1872#if EV_USE_EVENTFD
1873 if (evfd >= 0)
1874 {
1875 uint64_t counter = 1;
1876 write (evfd, &counter, sizeof (uint64_t));
1877 }
1878 else
1879#endif
1880 {
1881#ifdef _WIN32
1882 WSABUF buf;
1883 DWORD sent;
1884 buf.buf = &buf;
1885 buf.len = 1;
1886 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1887#else
1888 write (evpipe [1], &(evpipe [1]), 1);
1889#endif
1890 }
1891
1892 errno = old_errno;
1893 }
1894}
1895
1896/* called whenever the libev signal pipe */
1897/* got some events (signal, async) */
686static void 1898static void
687siginit (EV_P) 1899pipecb (EV_P_ ev_io *iow, int revents)
688{ 1900{
689 fd_intern (sigpipe [0]); 1901 int i;
690 fd_intern (sigpipe [1]);
691 1902
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1903 if (revents & EV_READ)
693 ev_io_start (EV_A_ &sigev); 1904 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1905#if EV_USE_EVENTFD
1906 if (evfd >= 0)
1907 {
1908 uint64_t counter;
1909 read (evfd, &counter, sizeof (uint64_t));
1910 }
1911 else
1912#endif
1913 {
1914 char dummy[4];
1915#ifdef _WIN32
1916 WSABUF buf;
1917 DWORD recvd;
1918 buf.buf = dummy;
1919 buf.len = sizeof (dummy);
1920 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1921#else
1922 read (evpipe [0], &dummy, sizeof (dummy));
1923#endif
1924 }
1925 }
1926
1927 pipe_write_skipped = 0;
1928
1929 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1930
1931#if EV_SIGNAL_ENABLE
1932 if (sig_pending)
1933 {
1934 sig_pending = 0;
1935
1936 ECB_MEMORY_FENCE_RELEASE;
1937
1938 for (i = EV_NSIG - 1; i--; )
1939 if (expect_false (signals [i].pending))
1940 ev_feed_signal_event (EV_A_ i + 1);
1941 }
1942#endif
1943
1944#if EV_ASYNC_ENABLE
1945 if (async_pending)
1946 {
1947 async_pending = 0;
1948
1949 ECB_MEMORY_FENCE_RELEASE;
1950
1951 for (i = asynccnt; i--; )
1952 if (asyncs [i]->sent)
1953 {
1954 asyncs [i]->sent = 0;
1955 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1956 }
1957 }
1958#endif
695} 1959}
696 1960
697/*****************************************************************************/ 1961/*****************************************************************************/
698 1962
699static struct ev_child *childs [PID_HASHSIZE]; 1963void
1964ev_feed_signal (int signum) EV_THROW
1965{
1966#if EV_MULTIPLICITY
1967 EV_P = signals [signum - 1].loop;
700 1968
1969 if (!EV_A)
1970 return;
1971#endif
1972
1973 if (!ev_active (&pipe_w))
1974 return;
1975
1976 signals [signum - 1].pending = 1;
1977 evpipe_write (EV_A_ &sig_pending);
1978}
1979
1980static void
1981ev_sighandler (int signum)
1982{
701#ifndef _WIN32 1983#ifdef _WIN32
1984 signal (signum, ev_sighandler);
1985#endif
702 1986
1987 ev_feed_signal (signum);
1988}
1989
1990void noinline
1991ev_feed_signal_event (EV_P_ int signum) EV_THROW
1992{
1993 WL w;
1994
1995 if (expect_false (signum <= 0 || signum > EV_NSIG))
1996 return;
1997
1998 --signum;
1999
2000#if EV_MULTIPLICITY
2001 /* it is permissible to try to feed a signal to the wrong loop */
2002 /* or, likely more useful, feeding a signal nobody is waiting for */
2003
2004 if (expect_false (signals [signum].loop != EV_A))
2005 return;
2006#endif
2007
2008 signals [signum].pending = 0;
2009
2010 for (w = signals [signum].head; w; w = w->next)
2011 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2012}
2013
2014#if EV_USE_SIGNALFD
2015static void
2016sigfdcb (EV_P_ ev_io *iow, int revents)
2017{
2018 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2019
2020 for (;;)
2021 {
2022 ssize_t res = read (sigfd, si, sizeof (si));
2023
2024 /* not ISO-C, as res might be -1, but works with SuS */
2025 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2026 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2027
2028 if (res < (ssize_t)sizeof (si))
2029 break;
2030 }
2031}
2032#endif
2033
2034#endif
2035
2036/*****************************************************************************/
2037
2038#if EV_CHILD_ENABLE
2039static WL childs [EV_PID_HASHSIZE];
2040
703static struct ev_signal childev; 2041static ev_signal childev;
2042
2043#ifndef WIFCONTINUED
2044# define WIFCONTINUED(status) 0
2045#endif
2046
2047/* handle a single child status event */
2048inline_speed void
2049child_reap (EV_P_ int chain, int pid, int status)
2050{
2051 ev_child *w;
2052 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2053
2054 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2055 {
2056 if ((w->pid == pid || !w->pid)
2057 && (!traced || (w->flags & 1)))
2058 {
2059 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2060 w->rpid = pid;
2061 w->rstatus = status;
2062 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2063 }
2064 }
2065}
704 2066
705#ifndef WCONTINUED 2067#ifndef WCONTINUED
706# define WCONTINUED 0 2068# define WCONTINUED 0
707#endif 2069#endif
708 2070
2071/* called on sigchld etc., calls waitpid */
709static void 2072static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 2073childcb (EV_P_ ev_signal *sw, int revents)
726{ 2074{
727 int pid, status; 2075 int pid, status;
728 2076
2077 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2078 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 2079 if (!WCONTINUED
2080 || errno != EINVAL
2081 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2082 return;
2083
731 /* make sure we are called again until all childs have been reaped */ 2084 /* make sure we are called again until all children have been reaped */
2085 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2086 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 2087
734 child_reap (EV_A_ sw, pid, pid, status); 2088 child_reap (EV_A_ pid, pid, status);
2089 if ((EV_PID_HASHSIZE) > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2090 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 2091}
738 2092
739#endif 2093#endif
740 2094
741/*****************************************************************************/ 2095/*****************************************************************************/
742 2096
2097#if EV_USE_IOCP
2098# include "ev_iocp.c"
2099#endif
743#if EV_USE_PORT 2100#if EV_USE_PORT
744# include "ev_port.c" 2101# include "ev_port.c"
745#endif 2102#endif
746#if EV_USE_KQUEUE 2103#if EV_USE_KQUEUE
747# include "ev_kqueue.c" 2104# include "ev_kqueue.c"
754#endif 2111#endif
755#if EV_USE_SELECT 2112#if EV_USE_SELECT
756# include "ev_select.c" 2113# include "ev_select.c"
757#endif 2114#endif
758 2115
759int 2116int ecb_cold
760ev_version_major (void) 2117ev_version_major (void) EV_THROW
761{ 2118{
762 return EV_VERSION_MAJOR; 2119 return EV_VERSION_MAJOR;
763} 2120}
764 2121
765int 2122int ecb_cold
766ev_version_minor (void) 2123ev_version_minor (void) EV_THROW
767{ 2124{
768 return EV_VERSION_MINOR; 2125 return EV_VERSION_MINOR;
769} 2126}
770 2127
771/* return true if we are running with elevated privileges and should ignore env variables */ 2128/* return true if we are running with elevated privileges and should ignore env variables */
772static int 2129int inline_size ecb_cold
773enable_secure (void) 2130enable_secure (void)
774{ 2131{
775#ifdef _WIN32 2132#ifdef _WIN32
776 return 0; 2133 return 0;
777#else 2134#else
778 return getuid () != geteuid () 2135 return getuid () != geteuid ()
779 || getgid () != getegid (); 2136 || getgid () != getegid ();
780#endif 2137#endif
781} 2138}
782 2139
783unsigned int 2140unsigned int ecb_cold
784ev_supported_backends (void) 2141ev_supported_backends (void) EV_THROW
785{ 2142{
786 unsigned int flags = 0; 2143 unsigned int flags = 0;
787 2144
788 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2145 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
789 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2146 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
792 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2149 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
793 2150
794 return flags; 2151 return flags;
795} 2152}
796 2153
797unsigned int 2154unsigned int ecb_cold
798ev_recommended_backends (void) 2155ev_recommended_backends (void) EV_THROW
799{ 2156{
800 unsigned int flags = ev_recommended_backends (); 2157 unsigned int flags = ev_supported_backends ();
801 2158
802#ifndef __NetBSD__ 2159#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 2160 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 2161 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 2162 flags &= ~EVBACKEND_KQUEUE;
806#endif 2163#endif
807#ifdef __APPLE__ 2164#ifdef __APPLE__
808 // flags &= ~EVBACKEND_KQUEUE; for documentation 2165 /* only select works correctly on that "unix-certified" platform */
809 flags &= ~EVBACKEND_POLL; 2166 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2167 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2168#endif
2169#ifdef __FreeBSD__
2170 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
810#endif 2171#endif
811 2172
812 return flags; 2173 return flags;
813} 2174}
814 2175
2176unsigned int ecb_cold
2177ev_embeddable_backends (void) EV_THROW
2178{
2179 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2180
2181 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2182 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2183 flags &= ~EVBACKEND_EPOLL;
2184
2185 return flags;
2186}
2187
815unsigned int 2188unsigned int
816ev_backend (EV_P) 2189ev_backend (EV_P) EV_THROW
817{ 2190{
818 return backend; 2191 return backend;
819} 2192}
820 2193
821static void 2194#if EV_FEATURE_API
2195unsigned int
2196ev_iteration (EV_P) EV_THROW
2197{
2198 return loop_count;
2199}
2200
2201unsigned int
2202ev_depth (EV_P) EV_THROW
2203{
2204 return loop_depth;
2205}
2206
2207void
2208ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2209{
2210 io_blocktime = interval;
2211}
2212
2213void
2214ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2215{
2216 timeout_blocktime = interval;
2217}
2218
2219void
2220ev_set_userdata (EV_P_ void *data) EV_THROW
2221{
2222 userdata = data;
2223}
2224
2225void *
2226ev_userdata (EV_P) EV_THROW
2227{
2228 return userdata;
2229}
2230
2231void
2232ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2233{
2234 invoke_cb = invoke_pending_cb;
2235}
2236
2237void
2238ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2239{
2240 release_cb = release;
2241 acquire_cb = acquire;
2242}
2243#endif
2244
2245/* initialise a loop structure, must be zero-initialised */
2246static void noinline ecb_cold
822loop_init (EV_P_ unsigned int flags) 2247loop_init (EV_P_ unsigned int flags) EV_THROW
823{ 2248{
824 if (!backend) 2249 if (!backend)
825 { 2250 {
2251 origflags = flags;
2252
2253#if EV_USE_REALTIME
2254 if (!have_realtime)
2255 {
2256 struct timespec ts;
2257
2258 if (!clock_gettime (CLOCK_REALTIME, &ts))
2259 have_realtime = 1;
2260 }
2261#endif
2262
826#if EV_USE_MONOTONIC 2263#if EV_USE_MONOTONIC
2264 if (!have_monotonic)
827 { 2265 {
828 struct timespec ts; 2266 struct timespec ts;
2267
829 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2268 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
830 have_monotonic = 1; 2269 have_monotonic = 1;
831 } 2270 }
832#endif 2271#endif
833 2272
834 ev_rt_now = ev_time (); 2273 /* pid check not overridable via env */
835 mn_now = get_clock (); 2274#ifndef _WIN32
836 now_floor = mn_now; 2275 if (flags & EVFLAG_FORKCHECK)
837 rtmn_diff = ev_rt_now - mn_now; 2276 curpid = getpid ();
2277#endif
838 2278
839 if (!(flags & EVFLAG_NOENV) 2279 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 2280 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 2281 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 2282 flags = atoi (getenv ("LIBEV_FLAGS"));
843 2283
844 if (!(flags & 0x0000ffffUL)) 2284 ev_rt_now = ev_time ();
2285 mn_now = get_clock ();
2286 now_floor = mn_now;
2287 rtmn_diff = ev_rt_now - mn_now;
2288#if EV_FEATURE_API
2289 invoke_cb = ev_invoke_pending;
2290#endif
2291
2292 io_blocktime = 0.;
2293 timeout_blocktime = 0.;
2294 backend = 0;
2295 backend_fd = -1;
2296 sig_pending = 0;
2297#if EV_ASYNC_ENABLE
2298 async_pending = 0;
2299#endif
2300 pipe_write_skipped = 0;
2301 pipe_write_wanted = 0;
2302#if EV_USE_INOTIFY
2303 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2304#endif
2305#if EV_USE_SIGNALFD
2306 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2307#endif
2308
2309 if (!(flags & EVBACKEND_MASK))
845 flags |= ev_recommended_backends (); 2310 flags |= ev_recommended_backends ();
846 2311
847 backend = 0; 2312#if EV_USE_IOCP
2313 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2314#endif
848#if EV_USE_PORT 2315#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2316 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 2317#endif
851#if EV_USE_KQUEUE 2318#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2319 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
859#endif 2326#endif
860#if EV_USE_SELECT 2327#if EV_USE_SELECT
861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2328 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
862#endif 2329#endif
863 2330
2331 ev_prepare_init (&pending_w, pendingcb);
2332
2333#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
864 ev_init (&sigev, sigcb); 2334 ev_init (&pipe_w, pipecb);
865 ev_set_priority (&sigev, EV_MAXPRI); 2335 ev_set_priority (&pipe_w, EV_MAXPRI);
2336#endif
866 } 2337 }
867} 2338}
868 2339
869static void 2340/* free up a loop structure */
2341void ecb_cold
870loop_destroy (EV_P) 2342ev_loop_destroy (EV_P)
871{ 2343{
872 int i; 2344 int i;
873 2345
2346#if EV_MULTIPLICITY
2347 /* mimic free (0) */
2348 if (!EV_A)
2349 return;
2350#endif
2351
2352#if EV_CLEANUP_ENABLE
2353 /* queue cleanup watchers (and execute them) */
2354 if (expect_false (cleanupcnt))
2355 {
2356 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2357 EV_INVOKE_PENDING;
2358 }
2359#endif
2360
2361#if EV_CHILD_ENABLE
2362 if (ev_is_active (&childev))
2363 {
2364 ev_ref (EV_A); /* child watcher */
2365 ev_signal_stop (EV_A_ &childev);
2366 }
2367#endif
2368
2369 if (ev_is_active (&pipe_w))
2370 {
2371 /*ev_ref (EV_A);*/
2372 /*ev_io_stop (EV_A_ &pipe_w);*/
2373
2374#if EV_USE_EVENTFD
2375 if (evfd >= 0)
2376 close (evfd);
2377#endif
2378
2379 if (evpipe [0] >= 0)
2380 {
2381 EV_WIN32_CLOSE_FD (evpipe [0]);
2382 EV_WIN32_CLOSE_FD (evpipe [1]);
2383 }
2384 }
2385
2386#if EV_USE_SIGNALFD
2387 if (ev_is_active (&sigfd_w))
2388 close (sigfd);
2389#endif
2390
2391#if EV_USE_INOTIFY
2392 if (fs_fd >= 0)
2393 close (fs_fd);
2394#endif
2395
2396 if (backend_fd >= 0)
2397 close (backend_fd);
2398
2399#if EV_USE_IOCP
2400 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2401#endif
874#if EV_USE_PORT 2402#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2403 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 2404#endif
877#if EV_USE_KQUEUE 2405#if EV_USE_KQUEUE
878 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2406 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
886#if EV_USE_SELECT 2414#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2415 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 2416#endif
889 2417
890 for (i = NUMPRI; i--; ) 2418 for (i = NUMPRI; i--; )
2419 {
891 array_free (pending, [i]); 2420 array_free (pending, [i]);
2421#if EV_IDLE_ENABLE
2422 array_free (idle, [i]);
2423#endif
2424 }
2425
2426 ev_free (anfds); anfds = 0; anfdmax = 0;
892 2427
893 /* have to use the microsoft-never-gets-it-right macro */ 2428 /* have to use the microsoft-never-gets-it-right macro */
2429 array_free (rfeed, EMPTY);
894 array_free (fdchange, EMPTY0); 2430 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 2431 array_free (timer, EMPTY);
896#if EV_PERIODICS 2432#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 2433 array_free (periodic, EMPTY);
898#endif 2434#endif
2435#if EV_FORK_ENABLE
2436 array_free (fork, EMPTY);
2437#endif
2438#if EV_CLEANUP_ENABLE
899 array_free (idle, EMPTY0); 2439 array_free (cleanup, EMPTY);
2440#endif
900 array_free (prepare, EMPTY0); 2441 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 2442 array_free (check, EMPTY);
2443#if EV_ASYNC_ENABLE
2444 array_free (async, EMPTY);
2445#endif
902 2446
903 backend = 0; 2447 backend = 0;
904}
905 2448
906static void 2449#if EV_MULTIPLICITY
2450 if (ev_is_default_loop (EV_A))
2451#endif
2452 ev_default_loop_ptr = 0;
2453#if EV_MULTIPLICITY
2454 else
2455 ev_free (EV_A);
2456#endif
2457}
2458
2459#if EV_USE_INOTIFY
2460inline_size void infy_fork (EV_P);
2461#endif
2462
2463inline_size void
907loop_fork (EV_P) 2464loop_fork (EV_P)
908{ 2465{
909#if EV_USE_PORT 2466#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2467 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 2468#endif
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2470 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 2471#endif
915#if EV_USE_EPOLL 2472#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2473 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
917#endif 2474#endif
2475#if EV_USE_INOTIFY
2476 infy_fork (EV_A);
2477#endif
918 2478
919 if (ev_is_active (&sigev)) 2479 if (ev_is_active (&pipe_w))
920 { 2480 {
921 /* default loop */ 2481 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
922 2482
923 ev_ref (EV_A); 2483 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev); 2484 ev_io_stop (EV_A_ &pipe_w);
925 close (sigpipe [0]);
926 close (sigpipe [1]);
927 2485
928 while (pipe (sigpipe)) 2486#if EV_USE_EVENTFD
929 syserr ("(libev) error creating pipe"); 2487 if (evfd >= 0)
2488 close (evfd);
2489#endif
930 2490
2491 if (evpipe [0] >= 0)
2492 {
2493 EV_WIN32_CLOSE_FD (evpipe [0]);
2494 EV_WIN32_CLOSE_FD (evpipe [1]);
2495 }
2496
2497#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
931 siginit (EV_A); 2498 evpipe_init (EV_A);
2499 /* now iterate over everything, in case we missed something */
2500 pipecb (EV_A_ &pipe_w, EV_READ);
2501#endif
932 } 2502 }
933 2503
934 postfork = 0; 2504 postfork = 0;
935} 2505}
936 2506
937#if EV_MULTIPLICITY 2507#if EV_MULTIPLICITY
2508
938struct ev_loop * 2509struct ev_loop * ecb_cold
939ev_loop_new (unsigned int flags) 2510ev_loop_new (unsigned int flags) EV_THROW
940{ 2511{
941 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2512 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
942 2513
943 memset (loop, 0, sizeof (struct ev_loop)); 2514 memset (EV_A, 0, sizeof (struct ev_loop));
944
945 loop_init (EV_A_ flags); 2515 loop_init (EV_A_ flags);
946 2516
947 if (ev_backend (EV_A)) 2517 if (ev_backend (EV_A))
948 return loop; 2518 return EV_A;
949 2519
2520 ev_free (EV_A);
950 return 0; 2521 return 0;
951} 2522}
952 2523
953void 2524#endif /* multiplicity */
954ev_loop_destroy (EV_P)
955{
956 loop_destroy (EV_A);
957 ev_free (loop);
958}
959 2525
960void 2526#if EV_VERIFY
961ev_loop_fork (EV_P) 2527static void noinline ecb_cold
2528verify_watcher (EV_P_ W w)
962{ 2529{
963 postfork = 1; 2530 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
964}
965 2531
2532 if (w->pending)
2533 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2534}
2535
2536static void noinline ecb_cold
2537verify_heap (EV_P_ ANHE *heap, int N)
2538{
2539 int i;
2540
2541 for (i = HEAP0; i < N + HEAP0; ++i)
2542 {
2543 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2544 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2545 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2546
2547 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2548 }
2549}
2550
2551static void noinline ecb_cold
2552array_verify (EV_P_ W *ws, int cnt)
2553{
2554 while (cnt--)
2555 {
2556 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2557 verify_watcher (EV_A_ ws [cnt]);
2558 }
2559}
2560#endif
2561
2562#if EV_FEATURE_API
2563void ecb_cold
2564ev_verify (EV_P) EV_THROW
2565{
2566#if EV_VERIFY
2567 int i, j;
2568 WL w, w2;
2569
2570 assert (activecnt >= -1);
2571
2572 assert (fdchangemax >= fdchangecnt);
2573 for (i = 0; i < fdchangecnt; ++i)
2574 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2575
2576 assert (anfdmax >= 0);
2577 for (i = j = 0; i < anfdmax; ++i)
2578 for (w = w2 = anfds [i].head; w; w = w->next)
2579 {
2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (++j & 1)
2583 w2 = w2->next;
2584
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2587 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2588 }
2589
2590 assert (timermax >= timercnt);
2591 verify_heap (EV_A_ timers, timercnt);
2592
2593#if EV_PERIODIC_ENABLE
2594 assert (periodicmax >= periodiccnt);
2595 verify_heap (EV_A_ periodics, periodiccnt);
2596#endif
2597
2598 for (i = NUMPRI; i--; )
2599 {
2600 assert (pendingmax [i] >= pendingcnt [i]);
2601#if EV_IDLE_ENABLE
2602 assert (idleall >= 0);
2603 assert (idlemax [i] >= idlecnt [i]);
2604 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2605#endif
2606 }
2607
2608#if EV_FORK_ENABLE
2609 assert (forkmax >= forkcnt);
2610 array_verify (EV_A_ (W *)forks, forkcnt);
2611#endif
2612
2613#if EV_CLEANUP_ENABLE
2614 assert (cleanupmax >= cleanupcnt);
2615 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2616#endif
2617
2618#if EV_ASYNC_ENABLE
2619 assert (asyncmax >= asynccnt);
2620 array_verify (EV_A_ (W *)asyncs, asynccnt);
2621#endif
2622
2623#if EV_PREPARE_ENABLE
2624 assert (preparemax >= preparecnt);
2625 array_verify (EV_A_ (W *)prepares, preparecnt);
2626#endif
2627
2628#if EV_CHECK_ENABLE
2629 assert (checkmax >= checkcnt);
2630 array_verify (EV_A_ (W *)checks, checkcnt);
2631#endif
2632
2633# if 0
2634#if EV_CHILD_ENABLE
2635 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2636 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2637#endif
2638# endif
2639#endif
2640}
966#endif 2641#endif
967 2642
968#if EV_MULTIPLICITY 2643#if EV_MULTIPLICITY
969struct ev_loop * 2644struct ev_loop * ecb_cold
970ev_default_loop_init (unsigned int flags)
971#else 2645#else
972int 2646int
2647#endif
973ev_default_loop (unsigned int flags) 2648ev_default_loop (unsigned int flags) EV_THROW
974#endif
975{ 2649{
976 if (sigpipe [0] == sigpipe [1])
977 if (pipe (sigpipe))
978 return 0;
979
980 if (!ev_default_loop_ptr) 2650 if (!ev_default_loop_ptr)
981 { 2651 {
982#if EV_MULTIPLICITY 2652#if EV_MULTIPLICITY
983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2653 EV_P = ev_default_loop_ptr = &default_loop_struct;
984#else 2654#else
985 ev_default_loop_ptr = 1; 2655 ev_default_loop_ptr = 1;
986#endif 2656#endif
987 2657
988 loop_init (EV_A_ flags); 2658 loop_init (EV_A_ flags);
989 2659
990 if (ev_backend (EV_A)) 2660 if (ev_backend (EV_A))
991 { 2661 {
992 siginit (EV_A); 2662#if EV_CHILD_ENABLE
993
994#ifndef _WIN32
995 ev_signal_init (&childev, childcb, SIGCHLD); 2663 ev_signal_init (&childev, childcb, SIGCHLD);
996 ev_set_priority (&childev, EV_MAXPRI); 2664 ev_set_priority (&childev, EV_MAXPRI);
997 ev_signal_start (EV_A_ &childev); 2665 ev_signal_start (EV_A_ &childev);
998 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2666 ev_unref (EV_A); /* child watcher should not keep loop alive */
999#endif 2667#endif
1004 2672
1005 return ev_default_loop_ptr; 2673 return ev_default_loop_ptr;
1006} 2674}
1007 2675
1008void 2676void
1009ev_default_destroy (void) 2677ev_loop_fork (EV_P) EV_THROW
1010{ 2678{
1011#if EV_MULTIPLICITY 2679 postfork = 1; /* must be in line with ev_default_fork */
1012 struct ev_loop *loop = ev_default_loop_ptr;
1013#endif
1014
1015#ifndef _WIN32
1016 ev_ref (EV_A); /* child watcher */
1017 ev_signal_stop (EV_A_ &childev);
1018#endif
1019
1020 ev_ref (EV_A); /* signal watcher */
1021 ev_io_stop (EV_A_ &sigev);
1022
1023 close (sigpipe [0]); sigpipe [0] = 0;
1024 close (sigpipe [1]); sigpipe [1] = 0;
1025
1026 loop_destroy (EV_A);
1027} 2680}
2681
2682/*****************************************************************************/
1028 2683
1029void 2684void
1030ev_default_fork (void) 2685ev_invoke (EV_P_ void *w, int revents)
1031{ 2686{
1032#if EV_MULTIPLICITY 2687 EV_CB_INVOKE ((W)w, revents);
1033 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif
1035
1036 if (backend)
1037 postfork = 1;
1038} 2688}
1039 2689
1040/*****************************************************************************/ 2690unsigned int
1041 2691ev_pending_count (EV_P) EV_THROW
1042static int
1043any_pending (EV_P)
1044{ 2692{
1045 int pri; 2693 int pri;
2694 unsigned int count = 0;
1046 2695
1047 for (pri = NUMPRI; pri--; ) 2696 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri]) 2697 count += pendingcnt [pri];
1049 return 1;
1050 2698
1051 return 0; 2699 return count;
1052} 2700}
1053 2701
1054inline void 2702void noinline
1055call_pending (EV_P) 2703ev_invoke_pending (EV_P)
1056{ 2704{
1057 int pri; 2705 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1058
1059 for (pri = NUMPRI; pri--; )
1060 while (pendingcnt [pri]) 2706 while (pendingcnt [pendingpri])
1061 { 2707 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2708 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1063 2709
1064 if (expect_true (p->w))
1065 {
1066 p->w->pending = 0; 2710 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 2711 EV_CB_INVOKE (p->w, p->events);
1068 } 2712 EV_FREQUENT_CHECK;
1069 } 2713 }
1070} 2714}
1071 2715
2716#if EV_IDLE_ENABLE
2717/* make idle watchers pending. this handles the "call-idle */
2718/* only when higher priorities are idle" logic */
1072inline void 2719inline_size void
2720idle_reify (EV_P)
2721{
2722 if (expect_false (idleall))
2723 {
2724 int pri;
2725
2726 for (pri = NUMPRI; pri--; )
2727 {
2728 if (pendingcnt [pri])
2729 break;
2730
2731 if (idlecnt [pri])
2732 {
2733 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2734 break;
2735 }
2736 }
2737 }
2738}
2739#endif
2740
2741/* make timers pending */
2742inline_size void
1073timers_reify (EV_P) 2743timers_reify (EV_P)
1074{ 2744{
2745 EV_FREQUENT_CHECK;
2746
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 2747 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1076 { 2748 {
1077 struct ev_timer *w = timers [0]; 2749 do
1078
1079 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1080
1081 /* first reschedule or stop timer */
1082 if (w->repeat)
1083 { 2750 {
2751 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2752
2753 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2754
2755 /* first reschedule or stop timer */
2756 if (w->repeat)
2757 {
2758 ev_at (w) += w->repeat;
2759 if (ev_at (w) < mn_now)
2760 ev_at (w) = mn_now;
2761
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2762 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 2763
1086 ((WT)w)->at += w->repeat; 2764 ANHE_at_cache (timers [HEAP0]);
1087 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now;
1089
1090 downheap ((WT *)timers, timercnt, 0); 2765 downheap (timers, timercnt, HEAP0);
2766 }
2767 else
2768 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2769
2770 EV_FREQUENT_CHECK;
2771 feed_reverse (EV_A_ (W)w);
1091 } 2772 }
1092 else 2773 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 2774
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2775 feed_reverse_done (EV_A_ EV_TIMER);
2776 }
2777}
2778
2779#if EV_PERIODIC_ENABLE
2780
2781static void noinline
2782periodic_recalc (EV_P_ ev_periodic *w)
2783{
2784 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2785 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2786
2787 /* the above almost always errs on the low side */
2788 while (at <= ev_rt_now)
1096 } 2789 {
1097} 2790 ev_tstamp nat = at + w->interval;
1098 2791
1099#if EV_PERIODICS 2792 /* when resolution fails us, we use ev_rt_now */
2793 if (expect_false (nat == at))
2794 {
2795 at = ev_rt_now;
2796 break;
2797 }
2798
2799 at = nat;
2800 }
2801
2802 ev_at (w) = at;
2803}
2804
2805/* make periodics pending */
1100inline void 2806inline_size void
1101periodics_reify (EV_P) 2807periodics_reify (EV_P)
1102{ 2808{
2809 EV_FREQUENT_CHECK;
2810
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2811 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1104 { 2812 {
1105 struct ev_periodic *w = periodics [0]; 2813 int feed_count = 0;
1106 2814
2815 do
2816 {
2817 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2818
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2819 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 2820
1109 /* first reschedule or stop timer */ 2821 /* first reschedule or stop timer */
2822 if (w->reschedule_cb)
2823 {
2824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2825
2826 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2827
2828 ANHE_at_cache (periodics [HEAP0]);
2829 downheap (periodics, periodiccnt, HEAP0);
2830 }
2831 else if (w->interval)
2832 {
2833 periodic_recalc (EV_A_ w);
2834 ANHE_at_cache (periodics [HEAP0]);
2835 downheap (periodics, periodiccnt, HEAP0);
2836 }
2837 else
2838 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2839
2840 EV_FREQUENT_CHECK;
2841 feed_reverse (EV_A_ (W)w);
2842 }
2843 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2844
2845 feed_reverse_done (EV_A_ EV_PERIODIC);
2846 }
2847}
2848
2849/* simply recalculate all periodics */
2850/* TODO: maybe ensure that at least one event happens when jumping forward? */
2851static void noinline ecb_cold
2852periodics_reschedule (EV_P)
2853{
2854 int i;
2855
2856 /* adjust periodics after time jump */
2857 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2858 {
2859 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2860
1110 if (w->reschedule_cb) 2861 if (w->reschedule_cb)
2862 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2863 else if (w->interval)
2864 periodic_recalc (EV_A_ w);
2865
2866 ANHE_at_cache (periodics [i]);
2867 }
2868
2869 reheap (periodics, periodiccnt);
2870}
2871#endif
2872
2873/* adjust all timers by a given offset */
2874static void noinline ecb_cold
2875timers_reschedule (EV_P_ ev_tstamp adjust)
2876{
2877 int i;
2878
2879 for (i = 0; i < timercnt; ++i)
2880 {
2881 ANHE *he = timers + i + HEAP0;
2882 ANHE_w (*he)->at += adjust;
2883 ANHE_at_cache (*he);
2884 }
2885}
2886
2887/* fetch new monotonic and realtime times from the kernel */
2888/* also detect if there was a timejump, and act accordingly */
2889inline_speed void
2890time_update (EV_P_ ev_tstamp max_block)
2891{
2892#if EV_USE_MONOTONIC
2893 if (expect_true (have_monotonic))
2894 {
2895 int i;
2896 ev_tstamp odiff = rtmn_diff;
2897
2898 mn_now = get_clock ();
2899
2900 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2901 /* interpolate in the meantime */
2902 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1111 { 2903 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2904 ev_rt_now = rtmn_diff + mn_now;
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2905 return;
1114 downheap ((WT *)periodics, periodiccnt, 0);
1115 } 2906 }
1116 else if (w->interval)
1117 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0);
1121 }
1122 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 2907
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 }
1127}
1128
1129static void
1130periodics_reschedule (EV_P)
1131{
1132 int i;
1133
1134 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i)
1136 {
1137 struct ev_periodic *w = periodics [i];
1138
1139 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1143 }
1144
1145 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i);
1148}
1149#endif
1150
1151inline int
1152time_update_monotonic (EV_P)
1153{
1154 mn_now = get_clock ();
1155
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 {
1158 ev_rt_now = rtmn_diff + mn_now;
1159 return 0;
1160 }
1161 else
1162 {
1163 now_floor = mn_now; 2908 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 2909 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 2910
1169inline void 2911 /* loop a few times, before making important decisions.
1170time_update (EV_P) 2912 * on the choice of "4": one iteration isn't enough,
1171{ 2913 * in case we get preempted during the calls to
1172 int i; 2914 * ev_time and get_clock. a second call is almost guaranteed
1173 2915 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 2916 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 2917 * in the unlikely event of having been preempted here.
1176 { 2918 */
1177 if (time_update_monotonic (EV_A)) 2919 for (i = 4; --i; )
1178 { 2920 {
1179 ev_tstamp odiff = rtmn_diff; 2921 ev_tstamp diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 2922 rtmn_diff = ev_rt_now - mn_now;
1184 2923
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2924 diff = odiff - rtmn_diff;
2925
2926 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1186 return; /* all is well */ 2927 return; /* all is well */
1187 2928
1188 ev_rt_now = ev_time (); 2929 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 2930 mn_now = get_clock ();
1190 now_floor = mn_now; 2931 now_floor = mn_now;
1191 } 2932 }
1192 2933
2934 /* no timer adjustment, as the monotonic clock doesn't jump */
2935 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1193# if EV_PERIODICS 2936# if EV_PERIODIC_ENABLE
2937 periodics_reschedule (EV_A);
2938# endif
2939 }
2940 else
2941#endif
2942 {
2943 ev_rt_now = ev_time ();
2944
2945 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2946 {
2947 /* adjust timers. this is easy, as the offset is the same for all of them */
2948 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2949#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 2950 periodics_reschedule (EV_A);
1195# endif 2951#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 2952 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 }
1215 2953
1216 mn_now = ev_rt_now; 2954 mn_now = ev_rt_now;
1217 } 2955 }
1218} 2956}
1219 2957
1220void 2958int
1221ev_ref (EV_P)
1222{
1223 ++activecnt;
1224}
1225
1226void
1227ev_unref (EV_P)
1228{
1229 --activecnt;
1230}
1231
1232static int loop_done;
1233
1234void
1235ev_loop (EV_P_ int flags) 2959ev_run (EV_P_ int flags)
1236{ 2960{
1237 double block; 2961#if EV_FEATURE_API
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2962 ++loop_depth;
2963#endif
1239 2964
1240 while (activecnt) 2965 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2966
2967 loop_done = EVBREAK_CANCEL;
2968
2969 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2970
2971 do
1241 { 2972 {
2973#if EV_VERIFY >= 2
2974 ev_verify (EV_A);
2975#endif
2976
2977#ifndef _WIN32
2978 if (expect_false (curpid)) /* penalise the forking check even more */
2979 if (expect_false (getpid () != curpid))
2980 {
2981 curpid = getpid ();
2982 postfork = 1;
2983 }
2984#endif
2985
2986#if EV_FORK_ENABLE
2987 /* we might have forked, so queue fork handlers */
2988 if (expect_false (postfork))
2989 if (forkcnt)
2990 {
2991 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2992 EV_INVOKE_PENDING;
2993 }
2994#endif
2995
2996#if EV_PREPARE_ENABLE
1242 /* queue check watchers (and execute them) */ 2997 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 2998 if (expect_false (preparecnt))
1244 { 2999 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3000 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 3001 EV_INVOKE_PENDING;
1247 } 3002 }
3003#endif
3004
3005 if (expect_false (loop_done))
3006 break;
1248 3007
1249 /* we might have forked, so reify kernel state if necessary */ 3008 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 3009 if (expect_false (postfork))
1251 loop_fork (EV_A); 3010 loop_fork (EV_A);
1252 3011
1253 /* update fd-related kernel structures */ 3012 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 3013 fd_reify (EV_A);
1255 3014
1256 /* calculate blocking time */ 3015 /* calculate blocking time */
3016 {
3017 ev_tstamp waittime = 0.;
3018 ev_tstamp sleeptime = 0.;
1257 3019
1258 /* we only need this for !monotonic clock or timers, but as we basically 3020 /* remember old timestamp for io_blocktime calculation */
1259 always have timers, we just calculate it always */ 3021 ev_tstamp prev_mn_now = mn_now;
1260#if EV_USE_MONOTONIC 3022
1261 if (expect_true (have_monotonic)) 3023 /* update time to cancel out callback processing overhead */
1262 time_update_monotonic (EV_A); 3024 time_update (EV_A_ 1e100);
1263 else 3025
1264#endif 3026 /* from now on, we want a pipe-wake-up */
3027 pipe_write_wanted = 1;
3028
3029 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3030
3031 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1265 { 3032 {
1266 ev_rt_now = ev_time ();
1267 mn_now = ev_rt_now;
1268 }
1269
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 3033 waittime = MAX_BLOCKTIME;
1275 3034
1276 if (timercnt) 3035 if (timercnt)
1277 { 3036 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3037 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1279 if (block > to) block = to; 3038 if (waittime > to) waittime = to;
1280 } 3039 }
1281 3040
1282#if EV_PERIODICS 3041#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 3042 if (periodiccnt)
1284 { 3043 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3044 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1286 if (block > to) block = to; 3045 if (waittime > to) waittime = to;
1287 } 3046 }
1288#endif 3047#endif
1289 3048
1290 if (expect_false (block < 0.)) block = 0.; 3049 /* don't let timeouts decrease the waittime below timeout_blocktime */
3050 if (expect_false (waittime < timeout_blocktime))
3051 waittime = timeout_blocktime;
3052
3053 /* at this point, we NEED to wait, so we have to ensure */
3054 /* to pass a minimum nonzero value to the backend */
3055 if (expect_false (waittime < backend_mintime))
3056 waittime = backend_mintime;
3057
3058 /* extra check because io_blocktime is commonly 0 */
3059 if (expect_false (io_blocktime))
3060 {
3061 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3062
3063 if (sleeptime > waittime - backend_mintime)
3064 sleeptime = waittime - backend_mintime;
3065
3066 if (expect_true (sleeptime > 0.))
3067 {
3068 ev_sleep (sleeptime);
3069 waittime -= sleeptime;
3070 }
3071 }
1291 } 3072 }
1292 3073
3074#if EV_FEATURE_API
3075 ++loop_count;
3076#endif
3077 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1293 backend_poll (EV_A_ block); 3078 backend_poll (EV_A_ waittime);
3079 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1294 3080
3081 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3082
3083 if (pipe_write_skipped)
3084 {
3085 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3086 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3087 }
3088
3089
1295 /* update ev_rt_now, do magic */ 3090 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 3091 time_update (EV_A_ waittime + sleeptime);
3092 }
1297 3093
1298 /* queue pending timers and reschedule them */ 3094 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 3095 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 3096#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 3097 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 3098#endif
1303 3099
3100#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 3101 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 3102 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3103#endif
1307 3104
3105#if EV_CHECK_ENABLE
1308 /* queue check watchers, to be executed first */ 3106 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 3107 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3108 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3109#endif
1311 3110
1312 call_pending (EV_A); 3111 EV_INVOKE_PENDING;
1313
1314 if (expect_false (loop_done))
1315 break;
1316 } 3112 }
3113 while (expect_true (
3114 activecnt
3115 && !loop_done
3116 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3117 ));
1317 3118
1318 if (loop_done != 2) 3119 if (loop_done == EVBREAK_ONE)
1319 loop_done = 0; 3120 loop_done = EVBREAK_CANCEL;
3121
3122#if EV_FEATURE_API
3123 --loop_depth;
3124#endif
3125
3126 return activecnt;
1320} 3127}
1321 3128
1322void 3129void
1323ev_unloop (EV_P_ int how) 3130ev_break (EV_P_ int how) EV_THROW
1324{ 3131{
1325 loop_done = how; 3132 loop_done = how;
1326} 3133}
1327 3134
3135void
3136ev_ref (EV_P) EV_THROW
3137{
3138 ++activecnt;
3139}
3140
3141void
3142ev_unref (EV_P) EV_THROW
3143{
3144 --activecnt;
3145}
3146
3147void
3148ev_now_update (EV_P) EV_THROW
3149{
3150 time_update (EV_A_ 1e100);
3151}
3152
3153void
3154ev_suspend (EV_P) EV_THROW
3155{
3156 ev_now_update (EV_A);
3157}
3158
3159void
3160ev_resume (EV_P) EV_THROW
3161{
3162 ev_tstamp mn_prev = mn_now;
3163
3164 ev_now_update (EV_A);
3165 timers_reschedule (EV_A_ mn_now - mn_prev);
3166#if EV_PERIODIC_ENABLE
3167 /* TODO: really do this? */
3168 periodics_reschedule (EV_A);
3169#endif
3170}
3171
1328/*****************************************************************************/ 3172/*****************************************************************************/
3173/* singly-linked list management, used when the expected list length is short */
1329 3174
1330inline void 3175inline_size void
1331wlist_add (WL *head, WL elem) 3176wlist_add (WL *head, WL elem)
1332{ 3177{
1333 elem->next = *head; 3178 elem->next = *head;
1334 *head = elem; 3179 *head = elem;
1335} 3180}
1336 3181
1337inline void 3182inline_size void
1338wlist_del (WL *head, WL elem) 3183wlist_del (WL *head, WL elem)
1339{ 3184{
1340 while (*head) 3185 while (*head)
1341 { 3186 {
1342 if (*head == elem) 3187 if (expect_true (*head == elem))
1343 { 3188 {
1344 *head = elem->next; 3189 *head = elem->next;
1345 return; 3190 break;
1346 } 3191 }
1347 3192
1348 head = &(*head)->next; 3193 head = &(*head)->next;
1349 } 3194 }
1350} 3195}
1351 3196
3197/* internal, faster, version of ev_clear_pending */
1352inline void 3198inline_speed void
1353ev_clear_pending (EV_P_ W w) 3199clear_pending (EV_P_ W w)
1354{ 3200{
1355 if (w->pending) 3201 if (w->pending)
1356 { 3202 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3203 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1358 w->pending = 0; 3204 w->pending = 0;
1359 } 3205 }
1360} 3206}
1361 3207
3208int
3209ev_clear_pending (EV_P_ void *w) EV_THROW
3210{
3211 W w_ = (W)w;
3212 int pending = w_->pending;
3213
3214 if (expect_true (pending))
3215 {
3216 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3217 p->w = (W)&pending_w;
3218 w_->pending = 0;
3219 return p->events;
3220 }
3221 else
3222 return 0;
3223}
3224
1362inline void 3225inline_size void
3226pri_adjust (EV_P_ W w)
3227{
3228 int pri = ev_priority (w);
3229 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3230 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3231 ev_set_priority (w, pri);
3232}
3233
3234inline_speed void
1363ev_start (EV_P_ W w, int active) 3235ev_start (EV_P_ W w, int active)
1364{ 3236{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3237 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 3238 w->active = active;
1369 ev_ref (EV_A); 3239 ev_ref (EV_A);
1370} 3240}
1371 3241
1372inline void 3242inline_size void
1373ev_stop (EV_P_ W w) 3243ev_stop (EV_P_ W w)
1374{ 3244{
1375 ev_unref (EV_A); 3245 ev_unref (EV_A);
1376 w->active = 0; 3246 w->active = 0;
1377} 3247}
1378 3248
1379/*****************************************************************************/ 3249/*****************************************************************************/
1380 3250
1381void 3251void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 3252ev_io_start (EV_P_ ev_io *w) EV_THROW
1383{ 3253{
1384 int fd = w->fd; 3254 int fd = w->fd;
1385 3255
1386 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
1387 return; 3257 return;
1388 3258
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 3259 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3260 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3261
3262 EV_FREQUENT_CHECK;
1390 3263
1391 ev_start (EV_A_ (W)w, 1); 3264 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3266 wlist_add (&anfds[fd].head, (WL)w);
1394 3267
1395 fd_change (EV_A_ fd); 3268 /* common bug, apparently */
1396} 3269 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1397 3270
1398void 3271 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3272 w->events &= ~EV__IOFDSET;
3273
3274 EV_FREQUENT_CHECK;
3275}
3276
3277void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 3278ev_io_stop (EV_P_ ev_io *w) EV_THROW
1400{ 3279{
1401 ev_clear_pending (EV_A_ (W)w); 3280 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 3281 if (expect_false (!ev_is_active (w)))
1403 return; 3282 return;
1404 3283
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3284 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 3285
3286 EV_FREQUENT_CHECK;
3287
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3288 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 3289 ev_stop (EV_A_ (W)w);
1409 3290
1410 fd_change (EV_A_ w->fd); 3291 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1411}
1412 3292
1413void 3293 EV_FREQUENT_CHECK;
3294}
3295
3296void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 3297ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1415{ 3298{
1416 if (expect_false (ev_is_active (w))) 3299 if (expect_false (ev_is_active (w)))
1417 return; 3300 return;
1418 3301
1419 ((WT)w)->at += mn_now; 3302 ev_at (w) += mn_now;
1420 3303
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3304 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 3305
3306 EV_FREQUENT_CHECK;
3307
3308 ++timercnt;
1423 ev_start (EV_A_ (W)w, ++timercnt); 3309 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3310 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1425 timers [timercnt - 1] = w; 3311 ANHE_w (timers [ev_active (w)]) = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 3312 ANHE_at_cache (timers [ev_active (w)]);
3313 upheap (timers, ev_active (w));
1427 3314
3315 EV_FREQUENT_CHECK;
3316
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3317 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1429} 3318}
1430 3319
1431void 3320void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 3321ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1433{ 3322{
1434 ev_clear_pending (EV_A_ (W)w); 3323 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 3324 if (expect_false (!ev_is_active (w)))
1436 return; 3325 return;
1437 3326
3327 EV_FREQUENT_CHECK;
3328
3329 {
3330 int active = ev_active (w);
3331
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3332 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1439 3333
3334 --timercnt;
3335
1440 if (expect_true (((W)w)->active < timercnt--)) 3336 if (expect_true (active < timercnt + HEAP0))
1441 { 3337 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 3338 timers [active] = timers [timercnt + HEAP0];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3339 adjustheap (timers, timercnt, active);
1444 } 3340 }
3341 }
1445 3342
1446 ((WT)w)->at -= mn_now; 3343 ev_at (w) -= mn_now;
1447 3344
1448 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
1449}
1450 3346
1451void 3347 EV_FREQUENT_CHECK;
3348}
3349
3350void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 3351ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1453{ 3352{
3353 EV_FREQUENT_CHECK;
3354
3355 clear_pending (EV_A_ (W)w);
3356
1454 if (ev_is_active (w)) 3357 if (ev_is_active (w))
1455 { 3358 {
1456 if (w->repeat) 3359 if (w->repeat)
1457 { 3360 {
1458 ((WT)w)->at = mn_now + w->repeat; 3361 ev_at (w) = mn_now + w->repeat;
3362 ANHE_at_cache (timers [ev_active (w)]);
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3363 adjustheap (timers, timercnt, ev_active (w));
1460 } 3364 }
1461 else 3365 else
1462 ev_timer_stop (EV_A_ w); 3366 ev_timer_stop (EV_A_ w);
1463 } 3367 }
1464 else if (w->repeat) 3368 else if (w->repeat)
1465 { 3369 {
1466 w->at = w->repeat; 3370 ev_at (w) = w->repeat;
1467 ev_timer_start (EV_A_ w); 3371 ev_timer_start (EV_A_ w);
1468 } 3372 }
1469}
1470 3373
3374 EV_FREQUENT_CHECK;
3375}
3376
3377ev_tstamp
3378ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3379{
3380 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3381}
3382
1471#if EV_PERIODICS 3383#if EV_PERIODIC_ENABLE
1472void 3384void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 3385ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1474{ 3386{
1475 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
1476 return; 3388 return;
1477 3389
1478 if (w->reschedule_cb) 3390 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 3392 else if (w->interval)
1481 { 3393 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 3395 periodic_recalc (EV_A_ w);
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1485 } 3396 }
3397 else
3398 ev_at (w) = w->offset;
1486 3399
3400 EV_FREQUENT_CHECK;
3401
3402 ++periodiccnt;
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 3403 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3404 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 3405 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 3406 ANHE_at_cache (periodics [ev_active (w)]);
3407 upheap (periodics, ev_active (w));
1491 3408
3409 EV_FREQUENT_CHECK;
3410
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1493} 3412}
1494 3413
1495void 3414void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 3415ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1497{ 3416{
1498 ev_clear_pending (EV_A_ (W)w); 3417 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 3418 if (expect_false (!ev_is_active (w)))
1500 return; 3419 return;
1501 3420
3421 EV_FREQUENT_CHECK;
3422
3423 {
3424 int active = ev_active (w);
3425
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1503 3427
3428 --periodiccnt;
3429
1504 if (expect_true (((W)w)->active < periodiccnt--)) 3430 if (expect_true (active < periodiccnt + HEAP0))
1505 { 3431 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3432 periodics [active] = periodics [periodiccnt + HEAP0];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3433 adjustheap (periodics, periodiccnt, active);
1508 } 3434 }
3435 }
1509 3436
1510 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
1511}
1512 3438
1513void 3439 EV_FREQUENT_CHECK;
3440}
3441
3442void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 3443ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1515{ 3444{
1516 /* TODO: use adjustheap and recalculation */ 3445 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 3446 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 3447 ev_periodic_start (EV_A_ w);
1519} 3448}
1520#endif 3449#endif
1521 3450
1522void 3451#ifndef SA_RESTART
1523ev_idle_start (EV_P_ struct ev_idle *w) 3452# define SA_RESTART 0
3453#endif
3454
3455#if EV_SIGNAL_ENABLE
3456
3457void noinline
3458ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1524{ 3459{
1525 if (expect_false (ev_is_active (w))) 3460 if (expect_false (ev_is_active (w)))
1526 return; 3461 return;
1527 3462
3463 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3464
3465#if EV_MULTIPLICITY
3466 assert (("libev: a signal must not be attached to two different loops",
3467 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3468
3469 signals [w->signum - 1].loop = EV_A;
3470#endif
3471
3472 EV_FREQUENT_CHECK;
3473
3474#if EV_USE_SIGNALFD
3475 if (sigfd == -2)
3476 {
3477 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3478 if (sigfd < 0 && errno == EINVAL)
3479 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3480
3481 if (sigfd >= 0)
3482 {
3483 fd_intern (sigfd); /* doing it twice will not hurt */
3484
3485 sigemptyset (&sigfd_set);
3486
3487 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3488 ev_set_priority (&sigfd_w, EV_MAXPRI);
3489 ev_io_start (EV_A_ &sigfd_w);
3490 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3491 }
3492 }
3493
3494 if (sigfd >= 0)
3495 {
3496 /* TODO: check .head */
3497 sigaddset (&sigfd_set, w->signum);
3498 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3499
3500 signalfd (sigfd, &sigfd_set, 0);
3501 }
3502#endif
3503
1528 ev_start (EV_A_ (W)w, ++idlecnt); 3504 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3505 wlist_add (&signals [w->signum - 1].head, (WL)w);
1530 idles [idlecnt - 1] = w;
1531}
1532 3506
1533void 3507 if (!((WL)w)->next)
1534ev_idle_stop (EV_P_ struct ev_idle *w) 3508# if EV_USE_SIGNALFD
3509 if (sigfd < 0) /*TODO*/
3510# endif
3511 {
3512# ifdef _WIN32
3513 evpipe_init (EV_A);
3514
3515 signal (w->signum, ev_sighandler);
3516# else
3517 struct sigaction sa;
3518
3519 evpipe_init (EV_A);
3520
3521 sa.sa_handler = ev_sighandler;
3522 sigfillset (&sa.sa_mask);
3523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3524 sigaction (w->signum, &sa, 0);
3525
3526 if (origflags & EVFLAG_NOSIGMASK)
3527 {
3528 sigemptyset (&sa.sa_mask);
3529 sigaddset (&sa.sa_mask, w->signum);
3530 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3531 }
3532#endif
3533 }
3534
3535 EV_FREQUENT_CHECK;
3536}
3537
3538void noinline
3539ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1535{ 3540{
1536 ev_clear_pending (EV_A_ (W)w); 3541 clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w))) 3542 if (expect_false (!ev_is_active (w)))
1538 return; 3543 return;
1539 3544
1540 idles [((W)w)->active - 1] = idles [--idlecnt]; 3545 EV_FREQUENT_CHECK;
3546
3547 wlist_del (&signals [w->signum - 1].head, (WL)w);
1541 ev_stop (EV_A_ (W)w); 3548 ev_stop (EV_A_ (W)w);
3549
3550 if (!signals [w->signum - 1].head)
3551 {
3552#if EV_MULTIPLICITY
3553 signals [w->signum - 1].loop = 0; /* unattach from signal */
3554#endif
3555#if EV_USE_SIGNALFD
3556 if (sigfd >= 0)
3557 {
3558 sigset_t ss;
3559
3560 sigemptyset (&ss);
3561 sigaddset (&ss, w->signum);
3562 sigdelset (&sigfd_set, w->signum);
3563
3564 signalfd (sigfd, &sigfd_set, 0);
3565 sigprocmask (SIG_UNBLOCK, &ss, 0);
3566 }
3567 else
3568#endif
3569 signal (w->signum, SIG_DFL);
3570 }
3571
3572 EV_FREQUENT_CHECK;
1542} 3573}
3574
3575#endif
3576
3577#if EV_CHILD_ENABLE
1543 3578
1544void 3579void
1545ev_prepare_start (EV_P_ struct ev_prepare *w) 3580ev_child_start (EV_P_ ev_child *w) EV_THROW
1546{ 3581{
3582#if EV_MULTIPLICITY
3583 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3584#endif
1547 if (expect_false (ev_is_active (w))) 3585 if (expect_false (ev_is_active (w)))
1548 return; 3586 return;
1549 3587
3588 EV_FREQUENT_CHECK;
3589
1550 ev_start (EV_A_ (W)w, ++preparecnt); 3590 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3591 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1552 prepares [preparecnt - 1] = w; 3592
3593 EV_FREQUENT_CHECK;
1553} 3594}
1554 3595
1555void 3596void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w) 3597ev_child_stop (EV_P_ ev_child *w) EV_THROW
1557{ 3598{
1558 ev_clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
1560 return; 3601 return;
1561 3602
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3603 EV_FREQUENT_CHECK;
3604
3605 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1563 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
1564} 3609}
3610
3611#endif
3612
3613#if EV_STAT_ENABLE
3614
3615# ifdef _WIN32
3616# undef lstat
3617# define lstat(a,b) _stati64 (a,b)
3618# endif
3619
3620#define DEF_STAT_INTERVAL 5.0074891
3621#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3622#define MIN_STAT_INTERVAL 0.1074891
3623
3624static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3625
3626#if EV_USE_INOTIFY
3627
3628/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3629# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3630
3631static void noinline
3632infy_add (EV_P_ ev_stat *w)
3633{
3634 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3635
3636 if (w->wd >= 0)
3637 {
3638 struct statfs sfs;
3639
3640 /* now local changes will be tracked by inotify, but remote changes won't */
3641 /* unless the filesystem is known to be local, we therefore still poll */
3642 /* also do poll on <2.6.25, but with normal frequency */
3643
3644 if (!fs_2625)
3645 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3646 else if (!statfs (w->path, &sfs)
3647 && (sfs.f_type == 0x1373 /* devfs */
3648 || sfs.f_type == 0xEF53 /* ext2/3 */
3649 || sfs.f_type == 0x3153464a /* jfs */
3650 || sfs.f_type == 0x52654973 /* reiser3 */
3651 || sfs.f_type == 0x01021994 /* tempfs */
3652 || sfs.f_type == 0x58465342 /* xfs */))
3653 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3654 else
3655 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3656 }
3657 else
3658 {
3659 /* can't use inotify, continue to stat */
3660 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3661
3662 /* if path is not there, monitor some parent directory for speedup hints */
3663 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3664 /* but an efficiency issue only */
3665 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3666 {
3667 char path [4096];
3668 strcpy (path, w->path);
3669
3670 do
3671 {
3672 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3673 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3674
3675 char *pend = strrchr (path, '/');
3676
3677 if (!pend || pend == path)
3678 break;
3679
3680 *pend = 0;
3681 w->wd = inotify_add_watch (fs_fd, path, mask);
3682 }
3683 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3684 }
3685 }
3686
3687 if (w->wd >= 0)
3688 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3689
3690 /* now re-arm timer, if required */
3691 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3692 ev_timer_again (EV_A_ &w->timer);
3693 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3694}
3695
3696static void noinline
3697infy_del (EV_P_ ev_stat *w)
3698{
3699 int slot;
3700 int wd = w->wd;
3701
3702 if (wd < 0)
3703 return;
3704
3705 w->wd = -2;
3706 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3707 wlist_del (&fs_hash [slot].head, (WL)w);
3708
3709 /* remove this watcher, if others are watching it, they will rearm */
3710 inotify_rm_watch (fs_fd, wd);
3711}
3712
3713static void noinline
3714infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3715{
3716 if (slot < 0)
3717 /* overflow, need to check for all hash slots */
3718 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3719 infy_wd (EV_A_ slot, wd, ev);
3720 else
3721 {
3722 WL w_;
3723
3724 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3725 {
3726 ev_stat *w = (ev_stat *)w_;
3727 w_ = w_->next; /* lets us remove this watcher and all before it */
3728
3729 if (w->wd == wd || wd == -1)
3730 {
3731 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3732 {
3733 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3734 w->wd = -1;
3735 infy_add (EV_A_ w); /* re-add, no matter what */
3736 }
3737
3738 stat_timer_cb (EV_A_ &w->timer, 0);
3739 }
3740 }
3741 }
3742}
3743
3744static void
3745infy_cb (EV_P_ ev_io *w, int revents)
3746{
3747 char buf [EV_INOTIFY_BUFSIZE];
3748 int ofs;
3749 int len = read (fs_fd, buf, sizeof (buf));
3750
3751 for (ofs = 0; ofs < len; )
3752 {
3753 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3754 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3755 ofs += sizeof (struct inotify_event) + ev->len;
3756 }
3757}
3758
3759inline_size void ecb_cold
3760ev_check_2625 (EV_P)
3761{
3762 /* kernels < 2.6.25 are borked
3763 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3764 */
3765 if (ev_linux_version () < 0x020619)
3766 return;
3767
3768 fs_2625 = 1;
3769}
3770
3771inline_size int
3772infy_newfd (void)
3773{
3774#if defined IN_CLOEXEC && defined IN_NONBLOCK
3775 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3776 if (fd >= 0)
3777 return fd;
3778#endif
3779 return inotify_init ();
3780}
3781
3782inline_size void
3783infy_init (EV_P)
3784{
3785 if (fs_fd != -2)
3786 return;
3787
3788 fs_fd = -1;
3789
3790 ev_check_2625 (EV_A);
3791
3792 fs_fd = infy_newfd ();
3793
3794 if (fs_fd >= 0)
3795 {
3796 fd_intern (fs_fd);
3797 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3798 ev_set_priority (&fs_w, EV_MAXPRI);
3799 ev_io_start (EV_A_ &fs_w);
3800 ev_unref (EV_A);
3801 }
3802}
3803
3804inline_size void
3805infy_fork (EV_P)
3806{
3807 int slot;
3808
3809 if (fs_fd < 0)
3810 return;
3811
3812 ev_ref (EV_A);
3813 ev_io_stop (EV_A_ &fs_w);
3814 close (fs_fd);
3815 fs_fd = infy_newfd ();
3816
3817 if (fs_fd >= 0)
3818 {
3819 fd_intern (fs_fd);
3820 ev_io_set (&fs_w, fs_fd, EV_READ);
3821 ev_io_start (EV_A_ &fs_w);
3822 ev_unref (EV_A);
3823 }
3824
3825 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3826 {
3827 WL w_ = fs_hash [slot].head;
3828 fs_hash [slot].head = 0;
3829
3830 while (w_)
3831 {
3832 ev_stat *w = (ev_stat *)w_;
3833 w_ = w_->next; /* lets us add this watcher */
3834
3835 w->wd = -1;
3836
3837 if (fs_fd >= 0)
3838 infy_add (EV_A_ w); /* re-add, no matter what */
3839 else
3840 {
3841 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3842 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3843 ev_timer_again (EV_A_ &w->timer);
3844 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3845 }
3846 }
3847 }
3848}
3849
3850#endif
3851
3852#ifdef _WIN32
3853# define EV_LSTAT(p,b) _stati64 (p, b)
3854#else
3855# define EV_LSTAT(p,b) lstat (p, b)
3856#endif
1565 3857
1566void 3858void
1567ev_check_start (EV_P_ struct ev_check *w) 3859ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3860{
3861 if (lstat (w->path, &w->attr) < 0)
3862 w->attr.st_nlink = 0;
3863 else if (!w->attr.st_nlink)
3864 w->attr.st_nlink = 1;
3865}
3866
3867static void noinline
3868stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3869{
3870 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3871
3872 ev_statdata prev = w->attr;
3873 ev_stat_stat (EV_A_ w);
3874
3875 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3876 if (
3877 prev.st_dev != w->attr.st_dev
3878 || prev.st_ino != w->attr.st_ino
3879 || prev.st_mode != w->attr.st_mode
3880 || prev.st_nlink != w->attr.st_nlink
3881 || prev.st_uid != w->attr.st_uid
3882 || prev.st_gid != w->attr.st_gid
3883 || prev.st_rdev != w->attr.st_rdev
3884 || prev.st_size != w->attr.st_size
3885 || prev.st_atime != w->attr.st_atime
3886 || prev.st_mtime != w->attr.st_mtime
3887 || prev.st_ctime != w->attr.st_ctime
3888 ) {
3889 /* we only update w->prev on actual differences */
3890 /* in case we test more often than invoke the callback, */
3891 /* to ensure that prev is always different to attr */
3892 w->prev = prev;
3893
3894 #if EV_USE_INOTIFY
3895 if (fs_fd >= 0)
3896 {
3897 infy_del (EV_A_ w);
3898 infy_add (EV_A_ w);
3899 ev_stat_stat (EV_A_ w); /* avoid race... */
3900 }
3901 #endif
3902
3903 ev_feed_event (EV_A_ w, EV_STAT);
3904 }
3905}
3906
3907void
3908ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1568{ 3909{
1569 if (expect_false (ev_is_active (w))) 3910 if (expect_false (ev_is_active (w)))
1570 return; 3911 return;
1571 3912
3913 ev_stat_stat (EV_A_ w);
3914
3915 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3916 w->interval = MIN_STAT_INTERVAL;
3917
3918 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3919 ev_set_priority (&w->timer, ev_priority (w));
3920
3921#if EV_USE_INOTIFY
3922 infy_init (EV_A);
3923
3924 if (fs_fd >= 0)
3925 infy_add (EV_A_ w);
3926 else
3927#endif
3928 {
3929 ev_timer_again (EV_A_ &w->timer);
3930 ev_unref (EV_A);
3931 }
3932
1572 ev_start (EV_A_ (W)w, ++checkcnt); 3933 ev_start (EV_A_ (W)w, 1);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3934
1574 checks [checkcnt - 1] = w; 3935 EV_FREQUENT_CHECK;
1575} 3936}
1576 3937
1577void 3938void
1578ev_check_stop (EV_P_ struct ev_check *w) 3939ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1579{ 3940{
1580 ev_clear_pending (EV_A_ (W)w); 3941 clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w))) 3942 if (expect_false (!ev_is_active (w)))
1582 return; 3943 return;
1583 3944
1584 checks [((W)w)->active - 1] = checks [--checkcnt]; 3945 EV_FREQUENT_CHECK;
3946
3947#if EV_USE_INOTIFY
3948 infy_del (EV_A_ w);
3949#endif
3950
3951 if (ev_is_active (&w->timer))
3952 {
3953 ev_ref (EV_A);
3954 ev_timer_stop (EV_A_ &w->timer);
3955 }
3956
1585 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
1586}
1587 3958
1588#ifndef SA_RESTART 3959 EV_FREQUENT_CHECK;
1589# define SA_RESTART 0 3960}
1590#endif 3961#endif
1591 3962
3963#if EV_IDLE_ENABLE
1592void 3964void
1593ev_signal_start (EV_P_ struct ev_signal *w) 3965ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1594{ 3966{
1595#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif
1598 if (expect_false (ev_is_active (w))) 3967 if (expect_false (ev_is_active (w)))
1599 return; 3968 return;
1600 3969
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3970 pri_adjust (EV_A_ (W)w);
1602 3971
3972 EV_FREQUENT_CHECK;
3973
3974 {
3975 int active = ++idlecnt [ABSPRI (w)];
3976
3977 ++idleall;
1603 ev_start (EV_A_ (W)w, 1); 3978 ev_start (EV_A_ (W)w, active);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1606 3979
1607 if (!((WL)w)->next) 3980 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1608 { 3981 idles [ABSPRI (w)][active - 1] = w;
1609#if _WIN32
1610 signal (w->signum, sighandler);
1611#else
1612 struct sigaction sa;
1613 sa.sa_handler = sighandler;
1614 sigfillset (&sa.sa_mask);
1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1616 sigaction (w->signum, &sa, 0);
1617#endif
1618 } 3982 }
3983
3984 EV_FREQUENT_CHECK;
1619} 3985}
1620 3986
1621void 3987void
1622ev_signal_stop (EV_P_ struct ev_signal *w) 3988ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1623{ 3989{
1624 ev_clear_pending (EV_A_ (W)w); 3990 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 3991 if (expect_false (!ev_is_active (w)))
1626 return; 3992 return;
1627 3993
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3994 EV_FREQUENT_CHECK;
3995
3996 {
3997 int active = ev_active (w);
3998
3999 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4000 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4001
1629 ev_stop (EV_A_ (W)w); 4002 ev_stop (EV_A_ (W)w);
4003 --idleall;
4004 }
1630 4005
1631 if (!signals [w->signum - 1].head) 4006 EV_FREQUENT_CHECK;
1632 signal (w->signum, SIG_DFL);
1633} 4007}
4008#endif
1634 4009
4010#if EV_PREPARE_ENABLE
1635void 4011void
1636ev_child_start (EV_P_ struct ev_child *w) 4012ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1637{ 4013{
1638#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif
1641 if (expect_false (ev_is_active (w))) 4014 if (expect_false (ev_is_active (w)))
1642 return; 4015 return;
1643 4016
4017 EV_FREQUENT_CHECK;
4018
1644 ev_start (EV_A_ (W)w, 1); 4019 ev_start (EV_A_ (W)w, ++preparecnt);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4020 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4021 prepares [preparecnt - 1] = w;
4022
4023 EV_FREQUENT_CHECK;
1646} 4024}
1647 4025
1648void 4026void
1649ev_child_stop (EV_P_ struct ev_child *w) 4027ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1650{ 4028{
1651 ev_clear_pending (EV_A_ (W)w); 4029 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 4030 if (expect_false (!ev_is_active (w)))
1653 return; 4031 return;
1654 4032
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4033 EV_FREQUENT_CHECK;
4034
4035 {
4036 int active = ev_active (w);
4037
4038 prepares [active - 1] = prepares [--preparecnt];
4039 ev_active (prepares [active - 1]) = active;
4040 }
4041
1656 ev_stop (EV_A_ (W)w); 4042 ev_stop (EV_A_ (W)w);
4043
4044 EV_FREQUENT_CHECK;
1657} 4045}
4046#endif
4047
4048#if EV_CHECK_ENABLE
4049void
4050ev_check_start (EV_P_ ev_check *w) EV_THROW
4051{
4052 if (expect_false (ev_is_active (w)))
4053 return;
4054
4055 EV_FREQUENT_CHECK;
4056
4057 ev_start (EV_A_ (W)w, ++checkcnt);
4058 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4059 checks [checkcnt - 1] = w;
4060
4061 EV_FREQUENT_CHECK;
4062}
4063
4064void
4065ev_check_stop (EV_P_ ev_check *w) EV_THROW
4066{
4067 clear_pending (EV_A_ (W)w);
4068 if (expect_false (!ev_is_active (w)))
4069 return;
4070
4071 EV_FREQUENT_CHECK;
4072
4073 {
4074 int active = ev_active (w);
4075
4076 checks [active - 1] = checks [--checkcnt];
4077 ev_active (checks [active - 1]) = active;
4078 }
4079
4080 ev_stop (EV_A_ (W)w);
4081
4082 EV_FREQUENT_CHECK;
4083}
4084#endif
4085
4086#if EV_EMBED_ENABLE
4087void noinline
4088ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4089{
4090 ev_run (w->other, EVRUN_NOWAIT);
4091}
4092
4093static void
4094embed_io_cb (EV_P_ ev_io *io, int revents)
4095{
4096 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4097
4098 if (ev_cb (w))
4099 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4100 else
4101 ev_run (w->other, EVRUN_NOWAIT);
4102}
4103
4104static void
4105embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4106{
4107 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4108
4109 {
4110 EV_P = w->other;
4111
4112 while (fdchangecnt)
4113 {
4114 fd_reify (EV_A);
4115 ev_run (EV_A_ EVRUN_NOWAIT);
4116 }
4117 }
4118}
4119
4120static void
4121embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4122{
4123 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4124
4125 ev_embed_stop (EV_A_ w);
4126
4127 {
4128 EV_P = w->other;
4129
4130 ev_loop_fork (EV_A);
4131 ev_run (EV_A_ EVRUN_NOWAIT);
4132 }
4133
4134 ev_embed_start (EV_A_ w);
4135}
4136
4137#if 0
4138static void
4139embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4140{
4141 ev_idle_stop (EV_A_ idle);
4142}
4143#endif
4144
4145void
4146ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4147{
4148 if (expect_false (ev_is_active (w)))
4149 return;
4150
4151 {
4152 EV_P = w->other;
4153 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4154 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4155 }
4156
4157 EV_FREQUENT_CHECK;
4158
4159 ev_set_priority (&w->io, ev_priority (w));
4160 ev_io_start (EV_A_ &w->io);
4161
4162 ev_prepare_init (&w->prepare, embed_prepare_cb);
4163 ev_set_priority (&w->prepare, EV_MINPRI);
4164 ev_prepare_start (EV_A_ &w->prepare);
4165
4166 ev_fork_init (&w->fork, embed_fork_cb);
4167 ev_fork_start (EV_A_ &w->fork);
4168
4169 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4170
4171 ev_start (EV_A_ (W)w, 1);
4172
4173 EV_FREQUENT_CHECK;
4174}
4175
4176void
4177ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4178{
4179 clear_pending (EV_A_ (W)w);
4180 if (expect_false (!ev_is_active (w)))
4181 return;
4182
4183 EV_FREQUENT_CHECK;
4184
4185 ev_io_stop (EV_A_ &w->io);
4186 ev_prepare_stop (EV_A_ &w->prepare);
4187 ev_fork_stop (EV_A_ &w->fork);
4188
4189 ev_stop (EV_A_ (W)w);
4190
4191 EV_FREQUENT_CHECK;
4192}
4193#endif
4194
4195#if EV_FORK_ENABLE
4196void
4197ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4198{
4199 if (expect_false (ev_is_active (w)))
4200 return;
4201
4202 EV_FREQUENT_CHECK;
4203
4204 ev_start (EV_A_ (W)w, ++forkcnt);
4205 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4206 forks [forkcnt - 1] = w;
4207
4208 EV_FREQUENT_CHECK;
4209}
4210
4211void
4212ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4213{
4214 clear_pending (EV_A_ (W)w);
4215 if (expect_false (!ev_is_active (w)))
4216 return;
4217
4218 EV_FREQUENT_CHECK;
4219
4220 {
4221 int active = ev_active (w);
4222
4223 forks [active - 1] = forks [--forkcnt];
4224 ev_active (forks [active - 1]) = active;
4225 }
4226
4227 ev_stop (EV_A_ (W)w);
4228
4229 EV_FREQUENT_CHECK;
4230}
4231#endif
4232
4233#if EV_CLEANUP_ENABLE
4234void
4235ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4236{
4237 if (expect_false (ev_is_active (w)))
4238 return;
4239
4240 EV_FREQUENT_CHECK;
4241
4242 ev_start (EV_A_ (W)w, ++cleanupcnt);
4243 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4244 cleanups [cleanupcnt - 1] = w;
4245
4246 /* cleanup watchers should never keep a refcount on the loop */
4247 ev_unref (EV_A);
4248 EV_FREQUENT_CHECK;
4249}
4250
4251void
4252ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4253{
4254 clear_pending (EV_A_ (W)w);
4255 if (expect_false (!ev_is_active (w)))
4256 return;
4257
4258 EV_FREQUENT_CHECK;
4259 ev_ref (EV_A);
4260
4261 {
4262 int active = ev_active (w);
4263
4264 cleanups [active - 1] = cleanups [--cleanupcnt];
4265 ev_active (cleanups [active - 1]) = active;
4266 }
4267
4268 ev_stop (EV_A_ (W)w);
4269
4270 EV_FREQUENT_CHECK;
4271}
4272#endif
4273
4274#if EV_ASYNC_ENABLE
4275void
4276ev_async_start (EV_P_ ev_async *w) EV_THROW
4277{
4278 if (expect_false (ev_is_active (w)))
4279 return;
4280
4281 w->sent = 0;
4282
4283 evpipe_init (EV_A);
4284
4285 EV_FREQUENT_CHECK;
4286
4287 ev_start (EV_A_ (W)w, ++asynccnt);
4288 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4289 asyncs [asynccnt - 1] = w;
4290
4291 EV_FREQUENT_CHECK;
4292}
4293
4294void
4295ev_async_stop (EV_P_ ev_async *w) EV_THROW
4296{
4297 clear_pending (EV_A_ (W)w);
4298 if (expect_false (!ev_is_active (w)))
4299 return;
4300
4301 EV_FREQUENT_CHECK;
4302
4303 {
4304 int active = ev_active (w);
4305
4306 asyncs [active - 1] = asyncs [--asynccnt];
4307 ev_active (asyncs [active - 1]) = active;
4308 }
4309
4310 ev_stop (EV_A_ (W)w);
4311
4312 EV_FREQUENT_CHECK;
4313}
4314
4315void
4316ev_async_send (EV_P_ ev_async *w) EV_THROW
4317{
4318 w->sent = 1;
4319 evpipe_write (EV_A_ &async_pending);
4320}
4321#endif
1658 4322
1659/*****************************************************************************/ 4323/*****************************************************************************/
1660 4324
1661struct ev_once 4325struct ev_once
1662{ 4326{
1663 struct ev_io io; 4327 ev_io io;
1664 struct ev_timer to; 4328 ev_timer to;
1665 void (*cb)(int revents, void *arg); 4329 void (*cb)(int revents, void *arg);
1666 void *arg; 4330 void *arg;
1667}; 4331};
1668 4332
1669static void 4333static void
1670once_cb (EV_P_ struct ev_once *once, int revents) 4334once_cb (EV_P_ struct ev_once *once, int revents)
1671{ 4335{
1672 void (*cb)(int revents, void *arg) = once->cb; 4336 void (*cb)(int revents, void *arg) = once->cb;
1673 void *arg = once->arg; 4337 void *arg = once->arg;
1674 4338
1675 ev_io_stop (EV_A_ &once->io); 4339 ev_io_stop (EV_A_ &once->io);
1676 ev_timer_stop (EV_A_ &once->to); 4340 ev_timer_stop (EV_A_ &once->to);
1677 ev_free (once); 4341 ev_free (once);
1678 4342
1679 cb (revents, arg); 4343 cb (revents, arg);
1680} 4344}
1681 4345
1682static void 4346static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 4347once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 4348{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4349 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4350
4351 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1686} 4352}
1687 4353
1688static void 4354static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 4355once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 4356{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4357 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4358
4359 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1692} 4360}
1693 4361
1694void 4362void
1695ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1696{ 4364{
1697 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4365 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1698 4366
1699 if (expect_false (!once)) 4367 if (expect_false (!once))
1700 { 4368 {
1701 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4369 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1702 return; 4370 return;
1703 } 4371 }
1704 4372
1705 once->cb = cb; 4373 once->cb = cb;
1706 once->arg = arg; 4374 once->arg = arg;
1718 ev_timer_set (&once->to, timeout, 0.); 4386 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 4387 ev_timer_start (EV_A_ &once->to);
1720 } 4388 }
1721} 4389}
1722 4390
1723#ifdef __cplusplus 4391/*****************************************************************************/
1724} 4392
4393#if EV_WALK_ENABLE
4394void ecb_cold
4395ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4396{
4397 int i, j;
4398 ev_watcher_list *wl, *wn;
4399
4400 if (types & (EV_IO | EV_EMBED))
4401 for (i = 0; i < anfdmax; ++i)
4402 for (wl = anfds [i].head; wl; )
4403 {
4404 wn = wl->next;
4405
4406#if EV_EMBED_ENABLE
4407 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4408 {
4409 if (types & EV_EMBED)
4410 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4411 }
4412 else
4413#endif
4414#if EV_USE_INOTIFY
4415 if (ev_cb ((ev_io *)wl) == infy_cb)
4416 ;
4417 else
4418#endif
4419 if ((ev_io *)wl != &pipe_w)
4420 if (types & EV_IO)
4421 cb (EV_A_ EV_IO, wl);
4422
4423 wl = wn;
4424 }
4425
4426 if (types & (EV_TIMER | EV_STAT))
4427 for (i = timercnt + HEAP0; i-- > HEAP0; )
4428#if EV_STAT_ENABLE
4429 /*TODO: timer is not always active*/
4430 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4431 {
4432 if (types & EV_STAT)
4433 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4434 }
4435 else
4436#endif
4437 if (types & EV_TIMER)
4438 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4439
4440#if EV_PERIODIC_ENABLE
4441 if (types & EV_PERIODIC)
4442 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4443 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4444#endif
4445
4446#if EV_IDLE_ENABLE
4447 if (types & EV_IDLE)
4448 for (j = NUMPRI; j--; )
4449 for (i = idlecnt [j]; i--; )
4450 cb (EV_A_ EV_IDLE, idles [j][i]);
4451#endif
4452
4453#if EV_FORK_ENABLE
4454 if (types & EV_FORK)
4455 for (i = forkcnt; i--; )
4456 if (ev_cb (forks [i]) != embed_fork_cb)
4457 cb (EV_A_ EV_FORK, forks [i]);
4458#endif
4459
4460#if EV_ASYNC_ENABLE
4461 if (types & EV_ASYNC)
4462 for (i = asynccnt; i--; )
4463 cb (EV_A_ EV_ASYNC, asyncs [i]);
4464#endif
4465
4466#if EV_PREPARE_ENABLE
4467 if (types & EV_PREPARE)
4468 for (i = preparecnt; i--; )
4469# if EV_EMBED_ENABLE
4470 if (ev_cb (prepares [i]) != embed_prepare_cb)
1725#endif 4471# endif
4472 cb (EV_A_ EV_PREPARE, prepares [i]);
4473#endif
1726 4474
4475#if EV_CHECK_ENABLE
4476 if (types & EV_CHECK)
4477 for (i = checkcnt; i--; )
4478 cb (EV_A_ EV_CHECK, checks [i]);
4479#endif
4480
4481#if EV_SIGNAL_ENABLE
4482 if (types & EV_SIGNAL)
4483 for (i = 0; i < EV_NSIG - 1; ++i)
4484 for (wl = signals [i].head; wl; )
4485 {
4486 wn = wl->next;
4487 cb (EV_A_ EV_SIGNAL, wl);
4488 wl = wn;
4489 }
4490#endif
4491
4492#if EV_CHILD_ENABLE
4493 if (types & EV_CHILD)
4494 for (i = (EV_PID_HASHSIZE); i--; )
4495 for (wl = childs [i]; wl; )
4496 {
4497 wn = wl->next;
4498 cb (EV_A_ EV_CHILD, wl);
4499 wl = wn;
4500 }
4501#endif
4502/* EV_STAT 0x00001000 /* stat data changed */
4503/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4504}
4505#endif
4506
4507#if EV_MULTIPLICITY
4508 #include "ev_wrap.h"
4509#endif
4510

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines