ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC vs.
Revision 1.429 by root, Tue May 8 15:50:49 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 206# include <windows.h>
207# include <winsock2.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
171# else 267# else
172# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
173# endif 269# endif
174#endif 270#endif
175 271
176#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
178#endif 274#endif
179 275
180#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
183# else 279# else
184# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
185# endif 281# endif
186#endif 282#endif
187 283
188#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
189# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
190#endif 286#endif
191 287
192#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
193# ifdef _WIN32 289# ifdef _WIN32
194# define EV_USE_POLL 0 290# define EV_USE_POLL 0
195# else 291# else
196# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
197# endif 293# endif
198#endif 294#endif
199 295
200#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
203# else 299# else
204# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
205# endif 301# endif
206#endif 302#endif
207 303
213# define EV_USE_PORT 0 309# define EV_USE_PORT 0
214#endif 310#endif
215 311
216#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
219# else 315# else
220# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
221# endif 317# endif
222#endif 318#endif
223 319
224#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif 322#endif
231 323
232#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif 326#endif
239 327
240#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
243# else 331# else
244# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
245# endif 341# endif
246#endif 342#endif
247 343
248#if 0 /* debugging */ 344#if 0 /* debugging */
249# define EV_VERIFY 3 345# define EV_VERIFY 3
250# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
252#endif 348#endif
253 349
254#ifndef EV_VERIFY 350#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
256#endif 352#endif
257 353
258#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
260#endif 356#endif
261 357
262#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
264#endif 374#endif
265 375
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
267 383
268#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
269# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
270# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
271#endif 387#endif
279# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
281#endif 397#endif
282 398
283#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
284# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
285# include <sys/select.h> 402# include <sys/select.h>
286# endif 403# endif
287#endif 404#endif
288 405
289#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
290# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
291#endif 414#endif
292 415
293#if EV_SELECT_IS_WINSOCKET 416#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h> 417# include <winsock.h>
295#endif 418#endif
296 419
297#if EV_USE_EVENTFD 420#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 421/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h> 422# include <stdint.h>
300# ifdef __cplusplus 423# ifndef EFD_NONBLOCK
301extern "C" { 424# define EFD_NONBLOCK O_NONBLOCK
302# endif 425# endif
303int eventfd (unsigned int initval, int flags); 426# ifndef EFD_CLOEXEC
304# ifdef __cplusplus 427# ifdef O_CLOEXEC
305} 428# define EFD_CLOEXEC O_CLOEXEC
429# else
430# define EFD_CLOEXEC 02000000
431# endif
306# endif 432# endif
433EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
434#endif
435
436#if EV_USE_SIGNALFD
437/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
438# include <stdint.h>
439# ifndef SFD_NONBLOCK
440# define SFD_NONBLOCK O_NONBLOCK
441# endif
442# ifndef SFD_CLOEXEC
443# ifdef O_CLOEXEC
444# define SFD_CLOEXEC O_CLOEXEC
445# else
446# define SFD_CLOEXEC 02000000
447# endif
448# endif
449EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
450
451struct signalfd_siginfo
452{
453 uint32_t ssi_signo;
454 char pad[128 - sizeof (uint32_t)];
455};
307#endif 456#endif
308 457
309/**/ 458/**/
310 459
311#if EV_VERIFY >= 3 460#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 461# define EV_FREQUENT_CHECK ev_verify (EV_A)
313#else 462#else
314# define EV_FREQUENT_CHECK do { } while (0) 463# define EV_FREQUENT_CHECK do { } while (0)
315#endif 464#endif
316 465
317/* 466/*
318 * This is used to avoid floating point rounding problems. 467 * This is used to work around floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000. 468 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */ 469 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
471/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
326 472
327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 473#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 474#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
330 475
476#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
477#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
478
479/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
480/* ECB.H BEGIN */
481/*
482 * libecb - http://software.schmorp.de/pkg/libecb
483 *
484 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
485 * Copyright (©) 2011 Emanuele Giaquinta
486 * All rights reserved.
487 *
488 * Redistribution and use in source and binary forms, with or without modifica-
489 * tion, are permitted provided that the following conditions are met:
490 *
491 * 1. Redistributions of source code must retain the above copyright notice,
492 * this list of conditions and the following disclaimer.
493 *
494 * 2. Redistributions in binary form must reproduce the above copyright
495 * notice, this list of conditions and the following disclaimer in the
496 * documentation and/or other materials provided with the distribution.
497 *
498 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
499 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
500 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
501 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
502 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
503 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
504 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
505 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
506 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
507 * OF THE POSSIBILITY OF SUCH DAMAGE.
508 */
509
510#ifndef ECB_H
511#define ECB_H
512
513#ifdef _WIN32
514 typedef signed char int8_t;
515 typedef unsigned char uint8_t;
516 typedef signed short int16_t;
517 typedef unsigned short uint16_t;
518 typedef signed int int32_t;
519 typedef unsigned int uint32_t;
331#if __GNUC__ >= 4 520 #if __GNUC__
332# define expect(expr,value) __builtin_expect ((expr),(value)) 521 typedef signed long long int64_t;
333# define noinline __attribute__ ((noinline)) 522 typedef unsigned long long uint64_t;
523 #else /* _MSC_VER || __BORLANDC__ */
524 typedef signed __int64 int64_t;
525 typedef unsigned __int64 uint64_t;
526 #endif
334#else 527#else
335# define expect(expr,value) (expr) 528 #include <inttypes.h>
336# define noinline
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
338# define inline
339# endif 529#endif
530
531/* many compilers define _GNUC_ to some versions but then only implement
532 * what their idiot authors think are the "more important" extensions,
533 * causing enormous grief in return for some better fake benchmark numbers.
534 * or so.
535 * we try to detect these and simply assume they are not gcc - if they have
536 * an issue with that they should have done it right in the first place.
537 */
538#ifndef ECB_GCC_VERSION
539 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
540 #define ECB_GCC_VERSION(major,minor) 0
541 #else
542 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
340#endif 543 #endif
544#endif
341 545
546/*****************************************************************************/
547
548/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
549/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
550
551#if ECB_NO_THREADS
552# define ECB_NO_SMP 1
553#endif
554
555#if ECB_NO_THREADS || ECB_NO_SMP
556 #define ECB_MEMORY_FENCE do { } while (0)
557#endif
558
559#ifndef ECB_MEMORY_FENCE
560 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
561 #if __i386 || __i386__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
564 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
565 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
568 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
569 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
570 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
571 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
572 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
573 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
574 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
575 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
576 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
577 #elif __sparc || __sparc__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
579 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
580 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
581 #elif defined __s390__ || defined __s390x__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
583 #elif defined __mips__
584 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
585 #elif defined __alpha__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
587 #endif
588 #endif
589#endif
590
591#ifndef ECB_MEMORY_FENCE
592 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
593 #define ECB_MEMORY_FENCE __sync_synchronize ()
594 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
595 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
596 #elif _MSC_VER >= 1400 /* VC++ 2005 */
597 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
598 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
599 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
600 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
601 #elif defined _WIN32
602 #include <WinNT.h>
603 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
604 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
605 #include <mbarrier.h>
606 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
607 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
608 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
609 #elif __xlC__
610 #define ECB_MEMORY_FENCE __sync ()
611 #endif
612#endif
613
614#ifndef ECB_MEMORY_FENCE
615 #if !ECB_AVOID_PTHREADS
616 /*
617 * if you get undefined symbol references to pthread_mutex_lock,
618 * or failure to find pthread.h, then you should implement
619 * the ECB_MEMORY_FENCE operations for your cpu/compiler
620 * OR provide pthread.h and link against the posix thread library
621 * of your system.
622 */
623 #include <pthread.h>
624 #define ECB_NEEDS_PTHREADS 1
625 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
626
627 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
628 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
629 #endif
630#endif
631
632#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
634#endif
635
636#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
637 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
638#endif
639
640/*****************************************************************************/
641
642#define ECB_C99 (__STDC_VERSION__ >= 199901L)
643
644#if __cplusplus
645 #define ecb_inline static inline
646#elif ECB_GCC_VERSION(2,5)
647 #define ecb_inline static __inline__
648#elif ECB_C99
649 #define ecb_inline static inline
650#else
651 #define ecb_inline static
652#endif
653
654#if ECB_GCC_VERSION(3,3)
655 #define ecb_restrict __restrict__
656#elif ECB_C99
657 #define ecb_restrict restrict
658#else
659 #define ecb_restrict
660#endif
661
662typedef int ecb_bool;
663
664#define ECB_CONCAT_(a, b) a ## b
665#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
666#define ECB_STRINGIFY_(a) # a
667#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
668
669#define ecb_function_ ecb_inline
670
671#if ECB_GCC_VERSION(3,1)
672 #define ecb_attribute(attrlist) __attribute__(attrlist)
673 #define ecb_is_constant(expr) __builtin_constant_p (expr)
674 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
675 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
676#else
677 #define ecb_attribute(attrlist)
678 #define ecb_is_constant(expr) 0
679 #define ecb_expect(expr,value) (expr)
680 #define ecb_prefetch(addr,rw,locality)
681#endif
682
683/* no emulation for ecb_decltype */
684#if ECB_GCC_VERSION(4,5)
685 #define ecb_decltype(x) __decltype(x)
686#elif ECB_GCC_VERSION(3,0)
687 #define ecb_decltype(x) __typeof(x)
688#endif
689
690#define ecb_noinline ecb_attribute ((__noinline__))
691#define ecb_noreturn ecb_attribute ((__noreturn__))
692#define ecb_unused ecb_attribute ((__unused__))
693#define ecb_const ecb_attribute ((__const__))
694#define ecb_pure ecb_attribute ((__pure__))
695
696#if ECB_GCC_VERSION(4,3)
697 #define ecb_artificial ecb_attribute ((__artificial__))
698 #define ecb_hot ecb_attribute ((__hot__))
699 #define ecb_cold ecb_attribute ((__cold__))
700#else
701 #define ecb_artificial
702 #define ecb_hot
703 #define ecb_cold
704#endif
705
706/* put around conditional expressions if you are very sure that the */
707/* expression is mostly true or mostly false. note that these return */
708/* booleans, not the expression. */
342#define expect_false(expr) expect ((expr) != 0, 0) 709#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
343#define expect_true(expr) expect ((expr) != 0, 1) 710#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
711/* for compatibility to the rest of the world */
712#define ecb_likely(expr) ecb_expect_true (expr)
713#define ecb_unlikely(expr) ecb_expect_false (expr)
714
715/* count trailing zero bits and count # of one bits */
716#if ECB_GCC_VERSION(3,4)
717 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
718 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
719 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
720 #define ecb_ctz32(x) __builtin_ctz (x)
721 #define ecb_ctz64(x) __builtin_ctzll (x)
722 #define ecb_popcount32(x) __builtin_popcount (x)
723 /* no popcountll */
724#else
725 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_ctz32 (uint32_t x)
728 {
729 int r = 0;
730
731 x &= ~x + 1; /* this isolates the lowest bit */
732
733#if ECB_branchless_on_i386
734 r += !!(x & 0xaaaaaaaa) << 0;
735 r += !!(x & 0xcccccccc) << 1;
736 r += !!(x & 0xf0f0f0f0) << 2;
737 r += !!(x & 0xff00ff00) << 3;
738 r += !!(x & 0xffff0000) << 4;
739#else
740 if (x & 0xaaaaaaaa) r += 1;
741 if (x & 0xcccccccc) r += 2;
742 if (x & 0xf0f0f0f0) r += 4;
743 if (x & 0xff00ff00) r += 8;
744 if (x & 0xffff0000) r += 16;
745#endif
746
747 return r;
748 }
749
750 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
751 ecb_function_ int
752 ecb_ctz64 (uint64_t x)
753 {
754 int shift = x & 0xffffffffU ? 0 : 32;
755 return ecb_ctz32 (x >> shift) + shift;
756 }
757
758 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
759 ecb_function_ int
760 ecb_popcount32 (uint32_t x)
761 {
762 x -= (x >> 1) & 0x55555555;
763 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
764 x = ((x >> 4) + x) & 0x0f0f0f0f;
765 x *= 0x01010101;
766
767 return x >> 24;
768 }
769
770 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
771 ecb_function_ int ecb_ld32 (uint32_t x)
772 {
773 int r = 0;
774
775 if (x >> 16) { x >>= 16; r += 16; }
776 if (x >> 8) { x >>= 8; r += 8; }
777 if (x >> 4) { x >>= 4; r += 4; }
778 if (x >> 2) { x >>= 2; r += 2; }
779 if (x >> 1) { r += 1; }
780
781 return r;
782 }
783
784 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
785 ecb_function_ int ecb_ld64 (uint64_t x)
786 {
787 int r = 0;
788
789 if (x >> 32) { x >>= 32; r += 32; }
790
791 return r + ecb_ld32 (x);
792 }
793#endif
794
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
796ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
797{
798 return ( (x * 0x0802U & 0x22110U)
799 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
800}
801
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
803ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
804{
805 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
806 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
807 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
808 x = ( x >> 8 ) | ( x << 8);
809
810 return x;
811}
812
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
814ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
815{
816 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
817 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
818 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
819 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
820 x = ( x >> 16 ) | ( x << 16);
821
822 return x;
823}
824
825/* popcount64 is only available on 64 bit cpus as gcc builtin */
826/* so for this version we are lazy */
827ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
828ecb_function_ int
829ecb_popcount64 (uint64_t x)
830{
831 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
832}
833
834ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
841ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
842
843ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
844ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
845ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
846ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
847ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
848ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
849ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
850ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
851
852#if ECB_GCC_VERSION(4,3)
853 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
854 #define ecb_bswap32(x) __builtin_bswap32 (x)
855 #define ecb_bswap64(x) __builtin_bswap64 (x)
856#else
857 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
858 ecb_function_ uint16_t
859 ecb_bswap16 (uint16_t x)
860 {
861 return ecb_rotl16 (x, 8);
862 }
863
864 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
865 ecb_function_ uint32_t
866 ecb_bswap32 (uint32_t x)
867 {
868 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
869 }
870
871 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
872 ecb_function_ uint64_t
873 ecb_bswap64 (uint64_t x)
874 {
875 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
876 }
877#endif
878
879#if ECB_GCC_VERSION(4,5)
880 #define ecb_unreachable() __builtin_unreachable ()
881#else
882 /* this seems to work fine, but gcc always emits a warning for it :/ */
883 ecb_inline void ecb_unreachable (void) ecb_noreturn;
884 ecb_inline void ecb_unreachable (void) { }
885#endif
886
887/* try to tell the compiler that some condition is definitely true */
888#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
889
890ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
891ecb_inline unsigned char
892ecb_byteorder_helper (void)
893{
894 const uint32_t u = 0x11223344;
895 return *(unsigned char *)&u;
896}
897
898ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
899ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
900ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
901ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
902
903#if ECB_GCC_VERSION(3,0) || ECB_C99
904 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
905#else
906 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
907#endif
908
909#if __cplusplus
910 template<typename T>
911 static inline T ecb_div_rd (T val, T div)
912 {
913 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
914 }
915 template<typename T>
916 static inline T ecb_div_ru (T val, T div)
917 {
918 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
919 }
920#else
921 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
922 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
923#endif
924
925#if ecb_cplusplus_does_not_suck
926 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
927 template<typename T, int N>
928 static inline int ecb_array_length (const T (&arr)[N])
929 {
930 return N;
931 }
932#else
933 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
934#endif
935
936#endif
937
938/* ECB.H END */
939
940#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
941/* if your architecture doesn't need memory fences, e.g. because it is
942 * single-cpu/core, or if you use libev in a project that doesn't use libev
943 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
944 * libev, in which cases the memory fences become nops.
945 * alternatively, you can remove this #error and link against libpthread,
946 * which will then provide the memory fences.
947 */
948# error "memory fences not defined for your architecture, please report"
949#endif
950
951#ifndef ECB_MEMORY_FENCE
952# define ECB_MEMORY_FENCE do { } while (0)
953# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
954# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
955#endif
956
957#define expect_false(cond) ecb_expect_false (cond)
958#define expect_true(cond) ecb_expect_true (cond)
959#define noinline ecb_noinline
960
344#define inline_size static inline 961#define inline_size ecb_inline
345 962
346#if EV_MINIMAL 963#if EV_FEATURE_CODE
964# define inline_speed ecb_inline
965#else
347# define inline_speed static noinline 966# define inline_speed static noinline
967#endif
968
969#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
970
971#if EV_MINPRI == EV_MAXPRI
972# define ABSPRI(w) (((W)w), 0)
348#else 973#else
349# define inline_speed static inline
350#endif
351
352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 974# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
975#endif
354 976
355#define EMPTY /* required for microsofts broken pseudo-c compiler */ 977#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */ 978#define EMPTY2(a,b) /* used to suppress some warnings */
357 979
358typedef ev_watcher *W; 980typedef ev_watcher *W;
360typedef ev_watcher_time *WT; 982typedef ev_watcher_time *WT;
361 983
362#define ev_active(w) ((W)(w))->active 984#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at 985#define ev_at(w) ((WT)(w))->at
364 986
987#if EV_USE_REALTIME
988/* sig_atomic_t is used to avoid per-thread variables or locking but still */
989/* giving it a reasonably high chance of working on typical architectures */
990static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
991#endif
992
365#if EV_USE_MONOTONIC 993#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 994static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
995#endif
996
997#ifndef EV_FD_TO_WIN32_HANDLE
998# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
999#endif
1000#ifndef EV_WIN32_HANDLE_TO_FD
1001# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1002#endif
1003#ifndef EV_WIN32_CLOSE_FD
1004# define EV_WIN32_CLOSE_FD(fd) close (fd)
369#endif 1005#endif
370 1006
371#ifdef _WIN32 1007#ifdef _WIN32
372# include "ev_win32.c" 1008# include "ev_win32.c"
373#endif 1009#endif
374 1010
375/*****************************************************************************/ 1011/*****************************************************************************/
376 1012
1013/* define a suitable floor function (only used by periodics atm) */
1014
1015#if EV_USE_FLOOR
1016# include <math.h>
1017# define ev_floor(v) floor (v)
1018#else
1019
1020#include <float.h>
1021
1022/* a floor() replacement function, should be independent of ev_tstamp type */
1023static ev_tstamp noinline
1024ev_floor (ev_tstamp v)
1025{
1026 /* the choice of shift factor is not terribly important */
1027#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1028 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1029#else
1030 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1031#endif
1032
1033 /* argument too large for an unsigned long? */
1034 if (expect_false (v >= shift))
1035 {
1036 ev_tstamp f;
1037
1038 if (v == v - 1.)
1039 return v; /* very large number */
1040
1041 f = shift * ev_floor (v * (1. / shift));
1042 return f + ev_floor (v - f);
1043 }
1044
1045 /* special treatment for negative args? */
1046 if (expect_false (v < 0.))
1047 {
1048 ev_tstamp f = -ev_floor (-v);
1049
1050 return f - (f == v ? 0 : 1);
1051 }
1052
1053 /* fits into an unsigned long */
1054 return (unsigned long)v;
1055}
1056
1057#endif
1058
1059/*****************************************************************************/
1060
1061#ifdef __linux
1062# include <sys/utsname.h>
1063#endif
1064
1065static unsigned int noinline ecb_cold
1066ev_linux_version (void)
1067{
1068#ifdef __linux
1069 unsigned int v = 0;
1070 struct utsname buf;
1071 int i;
1072 char *p = buf.release;
1073
1074 if (uname (&buf))
1075 return 0;
1076
1077 for (i = 3+1; --i; )
1078 {
1079 unsigned int c = 0;
1080
1081 for (;;)
1082 {
1083 if (*p >= '0' && *p <= '9')
1084 c = c * 10 + *p++ - '0';
1085 else
1086 {
1087 p += *p == '.';
1088 break;
1089 }
1090 }
1091
1092 v = (v << 8) | c;
1093 }
1094
1095 return v;
1096#else
1097 return 0;
1098#endif
1099}
1100
1101/*****************************************************************************/
1102
1103#if EV_AVOID_STDIO
1104static void noinline ecb_cold
1105ev_printerr (const char *msg)
1106{
1107 write (STDERR_FILENO, msg, strlen (msg));
1108}
1109#endif
1110
377static void (*syserr_cb)(const char *msg); 1111static void (*syserr_cb)(const char *msg) EV_THROW;
378 1112
379void 1113void ecb_cold
380ev_set_syserr_cb (void (*cb)(const char *msg)) 1114ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
381{ 1115{
382 syserr_cb = cb; 1116 syserr_cb = cb;
383} 1117}
384 1118
385static void noinline 1119static void noinline ecb_cold
386syserr (const char *msg) 1120ev_syserr (const char *msg)
387{ 1121{
388 if (!msg) 1122 if (!msg)
389 msg = "(libev) system error"; 1123 msg = "(libev) system error";
390 1124
391 if (syserr_cb) 1125 if (syserr_cb)
392 syserr_cb (msg); 1126 syserr_cb (msg);
393 else 1127 else
394 { 1128 {
1129#if EV_AVOID_STDIO
1130 ev_printerr (msg);
1131 ev_printerr (": ");
1132 ev_printerr (strerror (errno));
1133 ev_printerr ("\n");
1134#else
395 perror (msg); 1135 perror (msg);
1136#endif
396 abort (); 1137 abort ();
397 } 1138 }
398} 1139}
399 1140
400static void * 1141static void *
401ev_realloc_emul (void *ptr, long size) 1142ev_realloc_emul (void *ptr, long size)
402{ 1143{
1144#if __GLIBC__
1145 return realloc (ptr, size);
1146#else
403 /* some systems, notably openbsd and darwin, fail to properly 1147 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and 1148 * implement realloc (x, 0) (as required by both ansi c-89 and
405 * the single unix specification, so work around them here. 1149 * the single unix specification, so work around them here.
406 */ 1150 */
407 1151
408 if (size) 1152 if (size)
409 return realloc (ptr, size); 1153 return realloc (ptr, size);
410 1154
411 free (ptr); 1155 free (ptr);
412 return 0; 1156 return 0;
1157#endif
413} 1158}
414 1159
415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1160static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
416 1161
417void 1162void ecb_cold
418ev_set_allocator (void *(*cb)(void *ptr, long size)) 1163ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
419{ 1164{
420 alloc = cb; 1165 alloc = cb;
421} 1166}
422 1167
423inline_speed void * 1168inline_speed void *
425{ 1170{
426 ptr = alloc (ptr, size); 1171 ptr = alloc (ptr, size);
427 1172
428 if (!ptr && size) 1173 if (!ptr && size)
429 { 1174 {
1175#if EV_AVOID_STDIO
1176 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1177#else
430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1178 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1179#endif
431 abort (); 1180 abort ();
432 } 1181 }
433 1182
434 return ptr; 1183 return ptr;
435} 1184}
437#define ev_malloc(size) ev_realloc (0, (size)) 1186#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0) 1187#define ev_free(ptr) ev_realloc ((ptr), 0)
439 1188
440/*****************************************************************************/ 1189/*****************************************************************************/
441 1190
1191/* set in reify when reification needed */
1192#define EV_ANFD_REIFY 1
1193
1194/* file descriptor info structure */
442typedef struct 1195typedef struct
443{ 1196{
444 WL head; 1197 WL head;
445 unsigned char events; 1198 unsigned char events; /* the events watched for */
1199 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1200 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
446 unsigned char reify; 1201 unsigned char unused;
1202#if EV_USE_EPOLL
1203 unsigned int egen; /* generation counter to counter epoll bugs */
1204#endif
447#if EV_SELECT_IS_WINSOCKET 1205#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 SOCKET handle; 1206 SOCKET handle;
449#endif 1207#endif
1208#if EV_USE_IOCP
1209 OVERLAPPED or, ow;
1210#endif
450} ANFD; 1211} ANFD;
451 1212
1213/* stores the pending event set for a given watcher */
452typedef struct 1214typedef struct
453{ 1215{
454 W w; 1216 W w;
455 int events; 1217 int events; /* the pending event set for the given watcher */
456} ANPENDING; 1218} ANPENDING;
457 1219
458#if EV_USE_INOTIFY 1220#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */ 1221/* hash table entry per inotify-id */
460typedef struct 1222typedef struct
463} ANFS; 1225} ANFS;
464#endif 1226#endif
465 1227
466/* Heap Entry */ 1228/* Heap Entry */
467#if EV_HEAP_CACHE_AT 1229#if EV_HEAP_CACHE_AT
1230 /* a heap element */
468 typedef struct { 1231 typedef struct {
469 ev_tstamp at; 1232 ev_tstamp at;
470 WT w; 1233 WT w;
471 } ANHE; 1234 } ANHE;
472 1235
473 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1236 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1237 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1238 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else 1239#else
1240 /* a heap element */
477 typedef WT ANHE; 1241 typedef WT ANHE;
478 1242
479 #define ANHE_w(he) (he) 1243 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at 1244 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he) 1245 #define ANHE_at_cache(he)
492 #undef VAR 1256 #undef VAR
493 }; 1257 };
494 #include "ev_wrap.h" 1258 #include "ev_wrap.h"
495 1259
496 static struct ev_loop default_loop_struct; 1260 static struct ev_loop default_loop_struct;
497 struct ev_loop *ev_default_loop_ptr; 1261 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
498 1262
499#else 1263#else
500 1264
501 ev_tstamp ev_rt_now; 1265 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
502 #define VAR(name,decl) static decl; 1266 #define VAR(name,decl) static decl;
503 #include "ev_vars.h" 1267 #include "ev_vars.h"
504 #undef VAR 1268 #undef VAR
505 1269
506 static int ev_default_loop_ptr; 1270 static int ev_default_loop_ptr;
507 1271
508#endif 1272#endif
509 1273
1274#if EV_FEATURE_API
1275# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1276# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1277# define EV_INVOKE_PENDING invoke_cb (EV_A)
1278#else
1279# define EV_RELEASE_CB (void)0
1280# define EV_ACQUIRE_CB (void)0
1281# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1282#endif
1283
1284#define EVBREAK_RECURSE 0x80
1285
510/*****************************************************************************/ 1286/*****************************************************************************/
511 1287
1288#ifndef EV_HAVE_EV_TIME
512ev_tstamp 1289ev_tstamp
513ev_time (void) 1290ev_time (void) EV_THROW
514{ 1291{
515#if EV_USE_REALTIME 1292#if EV_USE_REALTIME
1293 if (expect_true (have_realtime))
1294 {
516 struct timespec ts; 1295 struct timespec ts;
517 clock_gettime (CLOCK_REALTIME, &ts); 1296 clock_gettime (CLOCK_REALTIME, &ts);
518 return ts.tv_sec + ts.tv_nsec * 1e-9; 1297 return ts.tv_sec + ts.tv_nsec * 1e-9;
519#else 1298 }
1299#endif
1300
520 struct timeval tv; 1301 struct timeval tv;
521 gettimeofday (&tv, 0); 1302 gettimeofday (&tv, 0);
522 return tv.tv_sec + tv.tv_usec * 1e-6; 1303 return tv.tv_sec + tv.tv_usec * 1e-6;
523#endif
524} 1304}
1305#endif
525 1306
526ev_tstamp inline_size 1307inline_size ev_tstamp
527get_clock (void) 1308get_clock (void)
528{ 1309{
529#if EV_USE_MONOTONIC 1310#if EV_USE_MONOTONIC
530 if (expect_true (have_monotonic)) 1311 if (expect_true (have_monotonic))
531 { 1312 {
538 return ev_time (); 1319 return ev_time ();
539} 1320}
540 1321
541#if EV_MULTIPLICITY 1322#if EV_MULTIPLICITY
542ev_tstamp 1323ev_tstamp
543ev_now (EV_P) 1324ev_now (EV_P) EV_THROW
544{ 1325{
545 return ev_rt_now; 1326 return ev_rt_now;
546} 1327}
547#endif 1328#endif
548 1329
549void 1330void
550ev_sleep (ev_tstamp delay) 1331ev_sleep (ev_tstamp delay) EV_THROW
551{ 1332{
552 if (delay > 0.) 1333 if (delay > 0.)
553 { 1334 {
554#if EV_USE_NANOSLEEP 1335#if EV_USE_NANOSLEEP
555 struct timespec ts; 1336 struct timespec ts;
556 1337
557 ts.tv_sec = (time_t)delay; 1338 EV_TS_SET (ts, delay);
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0); 1339 nanosleep (&ts, 0);
561#elif defined(_WIN32) 1340#elif defined _WIN32
562 Sleep ((unsigned long)(delay * 1e3)); 1341 Sleep ((unsigned long)(delay * 1e3));
563#else 1342#else
564 struct timeval tv; 1343 struct timeval tv;
565 1344
566 tv.tv_sec = (time_t)delay; 1345 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1346 /* something not guaranteed by newer posix versions, but guaranteed */
568 1347 /* by older ones */
1348 EV_TV_SET (tv, delay);
569 select (0, 0, 0, 0, &tv); 1349 select (0, 0, 0, 0, &tv);
570#endif 1350#endif
571 } 1351 }
572} 1352}
573 1353
574/*****************************************************************************/ 1354/*****************************************************************************/
575 1355
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1356#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577 1357
578int inline_size 1358/* find a suitable new size for the given array, */
1359/* hopefully by rounding to a nice-to-malloc size */
1360inline_size int
579array_nextsize (int elem, int cur, int cnt) 1361array_nextsize (int elem, int cur, int cnt)
580{ 1362{
581 int ncur = cur + 1; 1363 int ncur = cur + 1;
582 1364
583 do 1365 do
584 ncur <<= 1; 1366 ncur <<= 1;
585 while (cnt > ncur); 1367 while (cnt > ncur);
586 1368
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1369 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1370 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 { 1371 {
590 ncur *= elem; 1372 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1373 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4; 1374 ncur = ncur - sizeof (void *) * 4;
594 } 1376 }
595 1377
596 return ncur; 1378 return ncur;
597} 1379}
598 1380
599static noinline void * 1381static void * noinline ecb_cold
600array_realloc (int elem, void *base, int *cur, int cnt) 1382array_realloc (int elem, void *base, int *cur, int cnt)
601{ 1383{
602 *cur = array_nextsize (elem, *cur, cnt); 1384 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur); 1385 return ev_realloc (base, elem * *cur);
604} 1386}
1387
1388#define array_init_zero(base,count) \
1389 memset ((void *)(base), 0, sizeof (*(base)) * (count))
605 1390
606#define array_needsize(type,base,cur,cnt,init) \ 1391#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \ 1392 if (expect_false ((cnt) > (cur))) \
608 { \ 1393 { \
609 int ocur_ = (cur); \ 1394 int ecb_unused ocur_ = (cur); \
610 (base) = (type *)array_realloc \ 1395 (base) = (type *)array_realloc \
611 (sizeof (type), (base), &(cur), (cnt)); \ 1396 (sizeof (type), (base), &(cur), (cnt)); \
612 init ((base) + (ocur_), (cur) - ocur_); \ 1397 init ((base) + (ocur_), (cur) - ocur_); \
613 } 1398 }
614 1399
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1406 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 } 1407 }
623#endif 1408#endif
624 1409
625#define array_free(stem, idx) \ 1410#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1411 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
627 1412
628/*****************************************************************************/ 1413/*****************************************************************************/
629 1414
1415/* dummy callback for pending events */
1416static void noinline
1417pendingcb (EV_P_ ev_prepare *w, int revents)
1418{
1419}
1420
630void noinline 1421void noinline
631ev_feed_event (EV_P_ void *w, int revents) 1422ev_feed_event (EV_P_ void *w, int revents) EV_THROW
632{ 1423{
633 W w_ = (W)w; 1424 W w_ = (W)w;
634 int pri = ABSPRI (w_); 1425 int pri = ABSPRI (w_);
635 1426
636 if (expect_false (w_->pending)) 1427 if (expect_false (w_->pending))
640 w_->pending = ++pendingcnt [pri]; 1431 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1432 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_; 1433 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents; 1434 pendings [pri][w_->pending - 1].events = revents;
644 } 1435 }
645}
646 1436
647void inline_speed 1437 pendingpri = NUMPRI - 1;
1438}
1439
1440inline_speed void
1441feed_reverse (EV_P_ W w)
1442{
1443 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1444 rfeeds [rfeedcnt++] = w;
1445}
1446
1447inline_size void
1448feed_reverse_done (EV_P_ int revents)
1449{
1450 do
1451 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1452 while (rfeedcnt);
1453}
1454
1455inline_speed void
648queue_events (EV_P_ W *events, int eventcnt, int type) 1456queue_events (EV_P_ W *events, int eventcnt, int type)
649{ 1457{
650 int i; 1458 int i;
651 1459
652 for (i = 0; i < eventcnt; ++i) 1460 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type); 1461 ev_feed_event (EV_A_ events [i], type);
654} 1462}
655 1463
656/*****************************************************************************/ 1464/*****************************************************************************/
657 1465
658void inline_size 1466inline_speed void
659anfds_init (ANFD *base, int count)
660{
661 while (count--)
662 {
663 base->head = 0;
664 base->events = EV_NONE;
665 base->reify = 0;
666
667 ++base;
668 }
669}
670
671void inline_speed
672fd_event (EV_P_ int fd, int revents) 1467fd_event_nocheck (EV_P_ int fd, int revents)
673{ 1468{
674 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
675 ev_io *w; 1470 ev_io *w;
676 1471
677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1472 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
681 if (ev) 1476 if (ev)
682 ev_feed_event (EV_A_ (W)w, ev); 1477 ev_feed_event (EV_A_ (W)w, ev);
683 } 1478 }
684} 1479}
685 1480
1481/* do not submit kernel events for fds that have reify set */
1482/* because that means they changed while we were polling for new events */
1483inline_speed void
1484fd_event (EV_P_ int fd, int revents)
1485{
1486 ANFD *anfd = anfds + fd;
1487
1488 if (expect_true (!anfd->reify))
1489 fd_event_nocheck (EV_A_ fd, revents);
1490}
1491
686void 1492void
687ev_feed_fd_event (EV_P_ int fd, int revents) 1493ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
688{ 1494{
689 if (fd >= 0 && fd < anfdmax) 1495 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents); 1496 fd_event_nocheck (EV_A_ fd, revents);
691} 1497}
692 1498
693void inline_size 1499/* make sure the external fd watch events are in-sync */
1500/* with the kernel/libev internal state */
1501inline_size void
694fd_reify (EV_P) 1502fd_reify (EV_P)
695{ 1503{
696 int i; 1504 int i;
1505
1506#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1507 for (i = 0; i < fdchangecnt; ++i)
1508 {
1509 int fd = fdchanges [i];
1510 ANFD *anfd = anfds + fd;
1511
1512 if (anfd->reify & EV__IOFDSET && anfd->head)
1513 {
1514 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1515
1516 if (handle != anfd->handle)
1517 {
1518 unsigned long arg;
1519
1520 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1521
1522 /* handle changed, but fd didn't - we need to do it in two steps */
1523 backend_modify (EV_A_ fd, anfd->events, 0);
1524 anfd->events = 0;
1525 anfd->handle = handle;
1526 }
1527 }
1528 }
1529#endif
697 1530
698 for (i = 0; i < fdchangecnt; ++i) 1531 for (i = 0; i < fdchangecnt; ++i)
699 { 1532 {
700 int fd = fdchanges [i]; 1533 int fd = fdchanges [i];
701 ANFD *anfd = anfds + fd; 1534 ANFD *anfd = anfds + fd;
702 ev_io *w; 1535 ev_io *w;
703 1536
704 unsigned char events = 0; 1537 unsigned char o_events = anfd->events;
1538 unsigned char o_reify = anfd->reify;
705 1539
706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1540 anfd->reify = 0;
707 events |= (unsigned char)w->events;
708 1541
709#if EV_SELECT_IS_WINSOCKET 1542 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
710 if (events)
711 { 1543 {
712 unsigned long arg; 1544 anfd->events = 0;
713 #ifdef EV_FD_TO_WIN32_HANDLE 1545
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1546 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
715 #else 1547 anfd->events |= (unsigned char)w->events;
716 anfd->handle = _get_osfhandle (fd); 1548
717 #endif 1549 if (o_events != anfd->events)
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1550 o_reify = EV__IOFDSET; /* actually |= */
719 } 1551 }
720#endif
721 1552
722 { 1553 if (o_reify & EV__IOFDSET)
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
726 anfd->reify = 0;
727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events); 1554 backend_modify (EV_A_ fd, o_events, anfd->events);
731 }
732 } 1555 }
733 1556
734 fdchangecnt = 0; 1557 fdchangecnt = 0;
735} 1558}
736 1559
737void inline_size 1560/* something about the given fd changed */
1561inline_size void
738fd_change (EV_P_ int fd, int flags) 1562fd_change (EV_P_ int fd, int flags)
739{ 1563{
740 unsigned char reify = anfds [fd].reify; 1564 unsigned char reify = anfds [fd].reify;
741 anfds [fd].reify |= flags; 1565 anfds [fd].reify |= flags;
742 1566
746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
747 fdchanges [fdchangecnt - 1] = fd; 1571 fdchanges [fdchangecnt - 1] = fd;
748 } 1572 }
749} 1573}
750 1574
751void inline_speed 1575/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1576inline_speed void ecb_cold
752fd_kill (EV_P_ int fd) 1577fd_kill (EV_P_ int fd)
753{ 1578{
754 ev_io *w; 1579 ev_io *w;
755 1580
756 while ((w = (ev_io *)anfds [fd].head)) 1581 while ((w = (ev_io *)anfds [fd].head))
758 ev_io_stop (EV_A_ w); 1583 ev_io_stop (EV_A_ w);
759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1584 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
760 } 1585 }
761} 1586}
762 1587
763int inline_size 1588/* check whether the given fd is actually valid, for error recovery */
1589inline_size int ecb_cold
764fd_valid (int fd) 1590fd_valid (int fd)
765{ 1591{
766#ifdef _WIN32 1592#ifdef _WIN32
767 return _get_osfhandle (fd) != -1; 1593 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
768#else 1594#else
769 return fcntl (fd, F_GETFD) != -1; 1595 return fcntl (fd, F_GETFD) != -1;
770#endif 1596#endif
771} 1597}
772 1598
773/* called on EBADF to verify fds */ 1599/* called on EBADF to verify fds */
774static void noinline 1600static void noinline ecb_cold
775fd_ebadf (EV_P) 1601fd_ebadf (EV_P)
776{ 1602{
777 int fd; 1603 int fd;
778 1604
779 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
781 if (!fd_valid (fd) && errno == EBADF) 1607 if (!fd_valid (fd) && errno == EBADF)
782 fd_kill (EV_A_ fd); 1608 fd_kill (EV_A_ fd);
783} 1609}
784 1610
785/* called on ENOMEM in select/poll to kill some fds and retry */ 1611/* called on ENOMEM in select/poll to kill some fds and retry */
786static void noinline 1612static void noinline ecb_cold
787fd_enomem (EV_P) 1613fd_enomem (EV_P)
788{ 1614{
789 int fd; 1615 int fd;
790 1616
791 for (fd = anfdmax; fd--; ) 1617 for (fd = anfdmax; fd--; )
792 if (anfds [fd].events) 1618 if (anfds [fd].events)
793 { 1619 {
794 fd_kill (EV_A_ fd); 1620 fd_kill (EV_A_ fd);
795 return; 1621 break;
796 } 1622 }
797} 1623}
798 1624
799/* usually called after fork if backend needs to re-arm all fds from scratch */ 1625/* usually called after fork if backend needs to re-arm all fds from scratch */
800static void noinline 1626static void noinline
804 1630
805 for (fd = 0; fd < anfdmax; ++fd) 1631 for (fd = 0; fd < anfdmax; ++fd)
806 if (anfds [fd].events) 1632 if (anfds [fd].events)
807 { 1633 {
808 anfds [fd].events = 0; 1634 anfds [fd].events = 0;
1635 anfds [fd].emask = 0;
809 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1636 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
810 } 1637 }
811} 1638}
812 1639
1640/* used to prepare libev internal fd's */
1641/* this is not fork-safe */
1642inline_speed void
1643fd_intern (int fd)
1644{
1645#ifdef _WIN32
1646 unsigned long arg = 1;
1647 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1648#else
1649 fcntl (fd, F_SETFD, FD_CLOEXEC);
1650 fcntl (fd, F_SETFL, O_NONBLOCK);
1651#endif
1652}
1653
813/*****************************************************************************/ 1654/*****************************************************************************/
814 1655
815/* 1656/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not 1657 * the heap functions want a real array index. array index 0 is guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1658 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree. 1659 * the branching factor of the d-tree.
819 */ 1660 */
820 1661
821/* 1662/*
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1671#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1672#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k)) 1673#define UPHEAP_DONE(p,k) ((p) == (k))
833 1674
834/* away from the root */ 1675/* away from the root */
835void inline_speed 1676inline_speed void
836downheap (ANHE *heap, int N, int k) 1677downheap (ANHE *heap, int N, int k)
837{ 1678{
838 ANHE he = heap [k]; 1679 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0; 1680 ANHE *E = heap + N + HEAP0;
840 1681
880#define HEAP0 1 1721#define HEAP0 1
881#define HPARENT(k) ((k) >> 1) 1722#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p)) 1723#define UPHEAP_DONE(p,k) (!(p))
883 1724
884/* away from the root */ 1725/* away from the root */
885void inline_speed 1726inline_speed void
886downheap (ANHE *heap, int N, int k) 1727downheap (ANHE *heap, int N, int k)
887{ 1728{
888 ANHE he = heap [k]; 1729 ANHE he = heap [k];
889 1730
890 for (;;) 1731 for (;;)
891 { 1732 {
892 int c = k << 1; 1733 int c = k << 1;
893 1734
894 if (c > N + HEAP0 - 1) 1735 if (c >= N + HEAP0)
895 break; 1736 break;
896 1737
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1738 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0; 1739 ? 1 : 0;
899 1740
910 ev_active (ANHE_w (he)) = k; 1751 ev_active (ANHE_w (he)) = k;
911} 1752}
912#endif 1753#endif
913 1754
914/* towards the root */ 1755/* towards the root */
915void inline_speed 1756inline_speed void
916upheap (ANHE *heap, int k) 1757upheap (ANHE *heap, int k)
917{ 1758{
918 ANHE he = heap [k]; 1759 ANHE he = heap [k];
919 1760
920 for (;;) 1761 for (;;)
931 1772
932 heap [k] = he; 1773 heap [k] = he;
933 ev_active (ANHE_w (he)) = k; 1774 ev_active (ANHE_w (he)) = k;
934} 1775}
935 1776
936void inline_size 1777/* move an element suitably so it is in a correct place */
1778inline_size void
937adjustheap (ANHE *heap, int N, int k) 1779adjustheap (ANHE *heap, int N, int k)
938{ 1780{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1781 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
940 upheap (heap, k); 1782 upheap (heap, k);
941 else 1783 else
942 downheap (heap, N, k); 1784 downheap (heap, N, k);
943} 1785}
944 1786
945/* rebuild the heap: this function is used only once and executed rarely */ 1787/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size 1788inline_size void
947reheap (ANHE *heap, int N) 1789reheap (ANHE *heap, int N)
948{ 1790{
949 int i; 1791 int i;
950 1792
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1793 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 upheap (heap, i + HEAP0); 1796 upheap (heap, i + HEAP0);
955} 1797}
956 1798
957/*****************************************************************************/ 1799/*****************************************************************************/
958 1800
1801/* associate signal watchers to a signal signal */
959typedef struct 1802typedef struct
960{ 1803{
1804 EV_ATOMIC_T pending;
1805#if EV_MULTIPLICITY
1806 EV_P;
1807#endif
961 WL head; 1808 WL head;
962 EV_ATOMIC_T gotsig;
963} ANSIG; 1809} ANSIG;
964 1810
965static ANSIG *signals; 1811static ANSIG signals [EV_NSIG - 1];
966static int signalmax;
967
968static EV_ATOMIC_T gotsig;
969
970void inline_size
971signals_init (ANSIG *base, int count)
972{
973 while (count--)
974 {
975 base->head = 0;
976 base->gotsig = 0;
977
978 ++base;
979 }
980}
981 1812
982/*****************************************************************************/ 1813/*****************************************************************************/
983 1814
984void inline_speed 1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
985fd_intern (int fd)
986{
987#ifdef _WIN32
988 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif
994}
995 1816
996static void noinline 1817static void noinline ecb_cold
997evpipe_init (EV_P) 1818evpipe_init (EV_P)
998{ 1819{
999 if (!ev_is_active (&pipeev)) 1820 if (!ev_is_active (&pipe_w))
1000 { 1821 {
1001#if EV_USE_EVENTFD 1822# if EV_USE_EVENTFD
1823 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1824 if (evfd < 0 && errno == EINVAL)
1002 if ((evfd = eventfd (0, 0)) >= 0) 1825 evfd = eventfd (0, 0);
1826
1827 if (evfd >= 0)
1003 { 1828 {
1004 evpipe [0] = -1; 1829 evpipe [0] = -1;
1005 fd_intern (evfd); 1830 fd_intern (evfd); /* doing it twice doesn't hurt */
1006 ev_io_set (&pipeev, evfd, EV_READ); 1831 ev_io_set (&pipe_w, evfd, EV_READ);
1007 } 1832 }
1008 else 1833 else
1009#endif 1834# endif
1010 { 1835 {
1011 while (pipe (evpipe)) 1836 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe"); 1837 ev_syserr ("(libev) error creating signal/async pipe");
1013 1838
1014 fd_intern (evpipe [0]); 1839 fd_intern (evpipe [0]);
1015 fd_intern (evpipe [1]); 1840 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ); 1841 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1017 } 1842 }
1018 1843
1019 ev_io_start (EV_A_ &pipeev); 1844 ev_io_start (EV_A_ &pipe_w);
1020 ev_unref (EV_A); /* watcher should not keep loop alive */ 1845 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 } 1846 }
1022} 1847}
1023 1848
1024void inline_size 1849inline_speed void
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1850evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{ 1851{
1027 if (!*flag) 1852 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1853
1854 if (expect_true (*flag))
1855 return;
1856
1857 *flag = 1;
1858
1859 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1860
1861 pipe_write_skipped = 1;
1862
1863 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1864
1865 if (pipe_write_wanted)
1028 { 1866 {
1867 int old_errno;
1868
1869 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1870
1029 int old_errno = errno; /* save errno because write might clobber it */ 1871 old_errno = errno; /* save errno because write will clobber it */
1030
1031 *flag = 1;
1032 1872
1033#if EV_USE_EVENTFD 1873#if EV_USE_EVENTFD
1034 if (evfd >= 0) 1874 if (evfd >= 0)
1035 { 1875 {
1036 uint64_t counter = 1; 1876 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t)); 1877 write (evfd, &counter, sizeof (uint64_t));
1038 } 1878 }
1039 else 1879 else
1040#endif 1880#endif
1881 {
1882#ifdef _WIN32
1883 WSABUF buf;
1884 DWORD sent;
1885 buf.buf = &buf;
1886 buf.len = 1;
1887 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1888#else
1041 write (evpipe [1], &old_errno, 1); 1889 write (evpipe [1], &(evpipe [1]), 1);
1890#endif
1891 }
1042 1892
1043 errno = old_errno; 1893 errno = old_errno;
1044 } 1894 }
1045} 1895}
1046 1896
1897/* called whenever the libev signal pipe */
1898/* got some events (signal, async) */
1047static void 1899static void
1048pipecb (EV_P_ ev_io *iow, int revents) 1900pipecb (EV_P_ ev_io *iow, int revents)
1049{ 1901{
1902 int i;
1903
1904 if (revents & EV_READ)
1905 {
1050#if EV_USE_EVENTFD 1906#if EV_USE_EVENTFD
1051 if (evfd >= 0) 1907 if (evfd >= 0)
1052 { 1908 {
1053 uint64_t counter; 1909 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t)); 1910 read (evfd, &counter, sizeof (uint64_t));
1055 } 1911 }
1056 else 1912 else
1057#endif 1913#endif
1058 { 1914 {
1059 char dummy; 1915 char dummy[4];
1916#ifdef _WIN32
1917 WSABUF buf;
1918 DWORD recvd;
1919 buf.buf = dummy;
1920 buf.len = sizeof (dummy);
1921 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1922#else
1060 read (evpipe [0], &dummy, 1); 1923 read (evpipe [0], &dummy, sizeof (dummy));
1924#endif
1925 }
1926 }
1927
1928 pipe_write_skipped = 0;
1929
1930 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1931
1932#if EV_SIGNAL_ENABLE
1933 if (sig_pending)
1061 } 1934 {
1935 sig_pending = 0;
1062 1936
1063 if (gotsig && ev_is_default_loop (EV_A)) 1937 ECB_MEMORY_FENCE_RELEASE;
1064 {
1065 int signum;
1066 gotsig = 0;
1067 1938
1068 for (signum = signalmax; signum--; ) 1939 for (i = EV_NSIG - 1; i--; )
1069 if (signals [signum].gotsig) 1940 if (expect_false (signals [i].pending))
1070 ev_feed_signal_event (EV_A_ signum + 1); 1941 ev_feed_signal_event (EV_A_ i + 1);
1071 } 1942 }
1943#endif
1072 1944
1073#if EV_ASYNC_ENABLE 1945#if EV_ASYNC_ENABLE
1074 if (gotasync) 1946 if (async_pending)
1075 { 1947 {
1076 int i; 1948 async_pending = 0;
1077 gotasync = 0; 1949
1950 ECB_MEMORY_FENCE_RELEASE;
1078 1951
1079 for (i = asynccnt; i--; ) 1952 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent) 1953 if (asyncs [i]->sent)
1081 { 1954 {
1082 asyncs [i]->sent = 0; 1955 asyncs [i]->sent = 0;
1086#endif 1959#endif
1087} 1960}
1088 1961
1089/*****************************************************************************/ 1962/*****************************************************************************/
1090 1963
1964void
1965ev_feed_signal (int signum) EV_THROW
1966{
1967#if EV_MULTIPLICITY
1968 EV_P = signals [signum - 1].loop;
1969
1970 if (!EV_A)
1971 return;
1972#endif
1973
1974 if (!ev_active (&pipe_w))
1975 return;
1976
1977 signals [signum - 1].pending = 1;
1978 evpipe_write (EV_A_ &sig_pending);
1979}
1980
1091static void 1981static void
1092ev_sighandler (int signum) 1982ev_sighandler (int signum)
1093{ 1983{
1984#ifdef _WIN32
1985 signal (signum, ev_sighandler);
1986#endif
1987
1988 ev_feed_signal (signum);
1989}
1990
1991void noinline
1992ev_feed_signal_event (EV_P_ int signum) EV_THROW
1993{
1994 WL w;
1995
1996 if (expect_false (signum <= 0 || signum > EV_NSIG))
1997 return;
1998
1999 --signum;
2000
1094#if EV_MULTIPLICITY 2001#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct; 2002 /* it is permissible to try to feed a signal to the wrong loop */
1096#endif 2003 /* or, likely more useful, feeding a signal nobody is waiting for */
1097 2004
1098#if _WIN32 2005 if (expect_false (signals [signum].loop != EV_A))
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return; 2006 return;
2007#endif
1119 2008
1120 signals [signum].gotsig = 0; 2009 signals [signum].pending = 0;
1121 2010
1122 for (w = signals [signum].head; w; w = w->next) 2011 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2012 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124} 2013}
1125 2014
2015#if EV_USE_SIGNALFD
2016static void
2017sigfdcb (EV_P_ ev_io *iow, int revents)
2018{
2019 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2020
2021 for (;;)
2022 {
2023 ssize_t res = read (sigfd, si, sizeof (si));
2024
2025 /* not ISO-C, as res might be -1, but works with SuS */
2026 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2027 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2028
2029 if (res < (ssize_t)sizeof (si))
2030 break;
2031 }
2032}
2033#endif
2034
2035#endif
2036
1126/*****************************************************************************/ 2037/*****************************************************************************/
1127 2038
2039#if EV_CHILD_ENABLE
1128static WL childs [EV_PID_HASHSIZE]; 2040static WL childs [EV_PID_HASHSIZE];
1129
1130#ifndef _WIN32
1131 2041
1132static ev_signal childev; 2042static ev_signal childev;
1133 2043
1134#ifndef WIFCONTINUED 2044#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0 2045# define WIFCONTINUED(status) 0
1136#endif 2046#endif
1137 2047
1138void inline_speed 2048/* handle a single child status event */
2049inline_speed void
1139child_reap (EV_P_ int chain, int pid, int status) 2050child_reap (EV_P_ int chain, int pid, int status)
1140{ 2051{
1141 ev_child *w; 2052 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2053 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143 2054
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2055 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 { 2056 {
1146 if ((w->pid == pid || !w->pid) 2057 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1))) 2058 && (!traced || (w->flags & 1)))
1148 { 2059 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2060 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 2067
1157#ifndef WCONTINUED 2068#ifndef WCONTINUED
1158# define WCONTINUED 0 2069# define WCONTINUED 0
1159#endif 2070#endif
1160 2071
2072/* called on sigchld etc., calls waitpid */
1161static void 2073static void
1162childcb (EV_P_ ev_signal *sw, int revents) 2074childcb (EV_P_ ev_signal *sw, int revents)
1163{ 2075{
1164 int pid, status; 2076 int pid, status;
1165 2077
1173 /* make sure we are called again until all children have been reaped */ 2085 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */ 2086 /* we need to do it this way so that the callback gets called before we continue */
1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2087 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1176 2088
1177 child_reap (EV_A_ pid, pid, status); 2089 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1) 2090 if ((EV_PID_HASHSIZE) > 1)
1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2091 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1180} 2092}
1181 2093
1182#endif 2094#endif
1183 2095
1184/*****************************************************************************/ 2096/*****************************************************************************/
1185 2097
2098#if EV_USE_IOCP
2099# include "ev_iocp.c"
2100#endif
1186#if EV_USE_PORT 2101#if EV_USE_PORT
1187# include "ev_port.c" 2102# include "ev_port.c"
1188#endif 2103#endif
1189#if EV_USE_KQUEUE 2104#if EV_USE_KQUEUE
1190# include "ev_kqueue.c" 2105# include "ev_kqueue.c"
1197#endif 2112#endif
1198#if EV_USE_SELECT 2113#if EV_USE_SELECT
1199# include "ev_select.c" 2114# include "ev_select.c"
1200#endif 2115#endif
1201 2116
1202int 2117int ecb_cold
1203ev_version_major (void) 2118ev_version_major (void) EV_THROW
1204{ 2119{
1205 return EV_VERSION_MAJOR; 2120 return EV_VERSION_MAJOR;
1206} 2121}
1207 2122
1208int 2123int ecb_cold
1209ev_version_minor (void) 2124ev_version_minor (void) EV_THROW
1210{ 2125{
1211 return EV_VERSION_MINOR; 2126 return EV_VERSION_MINOR;
1212} 2127}
1213 2128
1214/* return true if we are running with elevated privileges and should ignore env variables */ 2129/* return true if we are running with elevated privileges and should ignore env variables */
1215int inline_size 2130int inline_size ecb_cold
1216enable_secure (void) 2131enable_secure (void)
1217{ 2132{
1218#ifdef _WIN32 2133#ifdef _WIN32
1219 return 0; 2134 return 0;
1220#else 2135#else
1221 return getuid () != geteuid () 2136 return getuid () != geteuid ()
1222 || getgid () != getegid (); 2137 || getgid () != getegid ();
1223#endif 2138#endif
1224} 2139}
1225 2140
1226unsigned int 2141unsigned int ecb_cold
1227ev_supported_backends (void) 2142ev_supported_backends (void) EV_THROW
1228{ 2143{
1229 unsigned int flags = 0; 2144 unsigned int flags = 0;
1230 2145
1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2146 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2147 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2150 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236 2151
1237 return flags; 2152 return flags;
1238} 2153}
1239 2154
1240unsigned int 2155unsigned int ecb_cold
1241ev_recommended_backends (void) 2156ev_recommended_backends (void) EV_THROW
1242{ 2157{
1243 unsigned int flags = ev_supported_backends (); 2158 unsigned int flags = ev_supported_backends ();
1244 2159
1245#ifndef __NetBSD__ 2160#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */ 2161 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */ 2162 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE; 2163 flags &= ~EVBACKEND_KQUEUE;
1249#endif 2164#endif
1250#ifdef __APPLE__ 2165#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation 2166 /* only select works correctly on that "unix-certified" platform */
1252 flags &= ~EVBACKEND_POLL; 2167 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2168 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2169#endif
2170#ifdef __FreeBSD__
2171 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1253#endif 2172#endif
1254 2173
1255 return flags; 2174 return flags;
1256} 2175}
1257 2176
2177unsigned int ecb_cold
2178ev_embeddable_backends (void) EV_THROW
2179{
2180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2181
2182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2184 flags &= ~EVBACKEND_EPOLL;
2185
2186 return flags;
2187}
2188
1258unsigned int 2189unsigned int
1259ev_embeddable_backends (void) 2190ev_backend (EV_P) EV_THROW
1260{ 2191{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2192 return backend;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268} 2193}
1269 2194
2195#if EV_FEATURE_API
1270unsigned int 2196unsigned int
1271ev_backend (EV_P) 2197ev_iteration (EV_P) EV_THROW
1272{ 2198{
1273 return backend; 2199 return loop_count;
1274} 2200}
1275 2201
1276unsigned int 2202unsigned int
1277ev_loop_count (EV_P) 2203ev_depth (EV_P) EV_THROW
1278{ 2204{
1279 return loop_count; 2205 return loop_depth;
1280} 2206}
1281 2207
1282void 2208void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2209ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1284{ 2210{
1285 io_blocktime = interval; 2211 io_blocktime = interval;
1286} 2212}
1287 2213
1288void 2214void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2215ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1290{ 2216{
1291 timeout_blocktime = interval; 2217 timeout_blocktime = interval;
1292} 2218}
1293 2219
2220void
2221ev_set_userdata (EV_P_ void *data) EV_THROW
2222{
2223 userdata = data;
2224}
2225
2226void *
2227ev_userdata (EV_P) EV_THROW
2228{
2229 return userdata;
2230}
2231
2232void
2233ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2234{
2235 invoke_cb = invoke_pending_cb;
2236}
2237
2238void
2239ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2240{
2241 release_cb = release;
2242 acquire_cb = acquire;
2243}
2244#endif
2245
2246/* initialise a loop structure, must be zero-initialised */
1294static void noinline 2247static void noinline ecb_cold
1295loop_init (EV_P_ unsigned int flags) 2248loop_init (EV_P_ unsigned int flags) EV_THROW
1296{ 2249{
1297 if (!backend) 2250 if (!backend)
1298 { 2251 {
2252 origflags = flags;
2253
2254#if EV_USE_REALTIME
2255 if (!have_realtime)
2256 {
2257 struct timespec ts;
2258
2259 if (!clock_gettime (CLOCK_REALTIME, &ts))
2260 have_realtime = 1;
2261 }
2262#endif
2263
1299#if EV_USE_MONOTONIC 2264#if EV_USE_MONOTONIC
2265 if (!have_monotonic)
1300 { 2266 {
1301 struct timespec ts; 2267 struct timespec ts;
2268
1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2269 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1303 have_monotonic = 1; 2270 have_monotonic = 1;
1304 } 2271 }
1305#endif
1306
1307 ev_rt_now = ev_time ();
1308 mn_now = get_clock ();
1309 now_floor = mn_now;
1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif 2272#endif
1320 2273
1321 /* pid check not overridable via env */ 2274 /* pid check not overridable via env */
1322#ifndef _WIN32 2275#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK) 2276 if (flags & EVFLAG_FORKCHECK)
1327 if (!(flags & EVFLAG_NOENV) 2280 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure () 2281 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS")) 2282 && getenv ("LIBEV_FLAGS"))
1330 flags = atoi (getenv ("LIBEV_FLAGS")); 2283 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 2284
1332 if (!(flags & 0x0000ffffU)) 2285 ev_rt_now = ev_time ();
2286 mn_now = get_clock ();
2287 now_floor = mn_now;
2288 rtmn_diff = ev_rt_now - mn_now;
2289#if EV_FEATURE_API
2290 invoke_cb = ev_invoke_pending;
2291#endif
2292
2293 io_blocktime = 0.;
2294 timeout_blocktime = 0.;
2295 backend = 0;
2296 backend_fd = -1;
2297 sig_pending = 0;
2298#if EV_ASYNC_ENABLE
2299 async_pending = 0;
2300#endif
2301 pipe_write_skipped = 0;
2302 pipe_write_wanted = 0;
2303#if EV_USE_INOTIFY
2304 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2305#endif
2306#if EV_USE_SIGNALFD
2307 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2308#endif
2309
2310 if (!(flags & EVBACKEND_MASK))
1333 flags |= ev_recommended_backends (); 2311 flags |= ev_recommended_backends ();
1334 2312
2313#if EV_USE_IOCP
2314 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2315#endif
1335#if EV_USE_PORT 2316#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1337#endif 2318#endif
1338#if EV_USE_KQUEUE 2319#if EV_USE_KQUEUE
1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1346#endif 2327#endif
1347#if EV_USE_SELECT 2328#if EV_USE_SELECT
1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1349#endif 2330#endif
1350 2331
2332 ev_prepare_init (&pending_w, pendingcb);
2333
2334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1351 ev_init (&pipeev, pipecb); 2335 ev_init (&pipe_w, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI); 2336 ev_set_priority (&pipe_w, EV_MAXPRI);
2337#endif
1353 } 2338 }
1354} 2339}
1355 2340
1356static void noinline 2341/* free up a loop structure */
2342void ecb_cold
1357loop_destroy (EV_P) 2343ev_loop_destroy (EV_P)
1358{ 2344{
1359 int i; 2345 int i;
1360 2346
2347#if EV_MULTIPLICITY
2348 /* mimic free (0) */
2349 if (!EV_A)
2350 return;
2351#endif
2352
2353#if EV_CLEANUP_ENABLE
2354 /* queue cleanup watchers (and execute them) */
2355 if (expect_false (cleanupcnt))
2356 {
2357 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2358 EV_INVOKE_PENDING;
2359 }
2360#endif
2361
2362#if EV_CHILD_ENABLE
2363 if (ev_is_active (&childev))
2364 {
2365 ev_ref (EV_A); /* child watcher */
2366 ev_signal_stop (EV_A_ &childev);
2367 }
2368#endif
2369
1361 if (ev_is_active (&pipeev)) 2370 if (ev_is_active (&pipe_w))
1362 { 2371 {
1363 ev_ref (EV_A); /* signal watcher */ 2372 /*ev_ref (EV_A);*/
1364 ev_io_stop (EV_A_ &pipeev); 2373 /*ev_io_stop (EV_A_ &pipe_w);*/
1365 2374
1366#if EV_USE_EVENTFD 2375#if EV_USE_EVENTFD
1367 if (evfd >= 0) 2376 if (evfd >= 0)
1368 close (evfd); 2377 close (evfd);
1369#endif 2378#endif
1370 2379
1371 if (evpipe [0] >= 0) 2380 if (evpipe [0] >= 0)
1372 { 2381 {
1373 close (evpipe [0]); 2382 EV_WIN32_CLOSE_FD (evpipe [0]);
1374 close (evpipe [1]); 2383 EV_WIN32_CLOSE_FD (evpipe [1]);
1375 } 2384 }
1376 } 2385 }
2386
2387#if EV_USE_SIGNALFD
2388 if (ev_is_active (&sigfd_w))
2389 close (sigfd);
2390#endif
1377 2391
1378#if EV_USE_INOTIFY 2392#if EV_USE_INOTIFY
1379 if (fs_fd >= 0) 2393 if (fs_fd >= 0)
1380 close (fs_fd); 2394 close (fs_fd);
1381#endif 2395#endif
1382 2396
1383 if (backend_fd >= 0) 2397 if (backend_fd >= 0)
1384 close (backend_fd); 2398 close (backend_fd);
1385 2399
2400#if EV_USE_IOCP
2401 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2402#endif
1386#if EV_USE_PORT 2403#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2404 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1388#endif 2405#endif
1389#if EV_USE_KQUEUE 2406#if EV_USE_KQUEUE
1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2407 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1405#if EV_IDLE_ENABLE 2422#if EV_IDLE_ENABLE
1406 array_free (idle, [i]); 2423 array_free (idle, [i]);
1407#endif 2424#endif
1408 } 2425 }
1409 2426
1410 ev_free (anfds); anfdmax = 0; 2427 ev_free (anfds); anfds = 0; anfdmax = 0;
1411 2428
1412 /* have to use the microsoft-never-gets-it-right macro */ 2429 /* have to use the microsoft-never-gets-it-right macro */
2430 array_free (rfeed, EMPTY);
1413 array_free (fdchange, EMPTY); 2431 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY); 2432 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE 2433#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY); 2434 array_free (periodic, EMPTY);
1417#endif 2435#endif
1418#if EV_FORK_ENABLE 2436#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY); 2437 array_free (fork, EMPTY);
1420#endif 2438#endif
2439#if EV_CLEANUP_ENABLE
2440 array_free (cleanup, EMPTY);
2441#endif
1421 array_free (prepare, EMPTY); 2442 array_free (prepare, EMPTY);
1422 array_free (check, EMPTY); 2443 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE 2444#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY); 2445 array_free (async, EMPTY);
1425#endif 2446#endif
1426 2447
1427 backend = 0; 2448 backend = 0;
2449
2450#if EV_MULTIPLICITY
2451 if (ev_is_default_loop (EV_A))
2452#endif
2453 ev_default_loop_ptr = 0;
2454#if EV_MULTIPLICITY
2455 else
2456 ev_free (EV_A);
2457#endif
1428} 2458}
1429 2459
1430#if EV_USE_INOTIFY 2460#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P); 2461inline_size void infy_fork (EV_P);
1432#endif 2462#endif
1433 2463
1434void inline_size 2464inline_size void
1435loop_fork (EV_P) 2465loop_fork (EV_P)
1436{ 2466{
1437#if EV_USE_PORT 2467#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2468 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif 2469#endif
1445#endif 2475#endif
1446#if EV_USE_INOTIFY 2476#if EV_USE_INOTIFY
1447 infy_fork (EV_A); 2477 infy_fork (EV_A);
1448#endif 2478#endif
1449 2479
1450 if (ev_is_active (&pipeev)) 2480 if (ev_is_active (&pipe_w))
1451 { 2481 {
1452 /* this "locks" the handlers against writing to the pipe */ 2482 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1458 2483
1459 ev_ref (EV_A); 2484 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev); 2485 ev_io_stop (EV_A_ &pipe_w);
1461 2486
1462#if EV_USE_EVENTFD 2487#if EV_USE_EVENTFD
1463 if (evfd >= 0) 2488 if (evfd >= 0)
1464 close (evfd); 2489 close (evfd);
1465#endif 2490#endif
1466 2491
1467 if (evpipe [0] >= 0) 2492 if (evpipe [0] >= 0)
1468 { 2493 {
1469 close (evpipe [0]); 2494 EV_WIN32_CLOSE_FD (evpipe [0]);
1470 close (evpipe [1]); 2495 EV_WIN32_CLOSE_FD (evpipe [1]);
1471 } 2496 }
1472 2497
2498#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1473 evpipe_init (EV_A); 2499 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */ 2500 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ); 2501 pipecb (EV_A_ &pipe_w, EV_READ);
2502#endif
1476 } 2503 }
1477 2504
1478 postfork = 0; 2505 postfork = 0;
1479} 2506}
1480 2507
1481#if EV_MULTIPLICITY 2508#if EV_MULTIPLICITY
1482 2509
1483struct ev_loop * 2510struct ev_loop * ecb_cold
1484ev_loop_new (unsigned int flags) 2511ev_loop_new (unsigned int flags) EV_THROW
1485{ 2512{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2513 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 2514
1488 memset (loop, 0, sizeof (struct ev_loop)); 2515 memset (EV_A, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags); 2516 loop_init (EV_A_ flags);
1491 2517
1492 if (ev_backend (EV_A)) 2518 if (ev_backend (EV_A))
1493 return loop; 2519 return EV_A;
1494 2520
2521 ev_free (EV_A);
1495 return 0; 2522 return 0;
1496} 2523}
1497 2524
1498void 2525#endif /* multiplicity */
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510 2526
1511#if EV_VERIFY 2527#if EV_VERIFY
1512void noinline 2528static void noinline ecb_cold
1513verify_watcher (EV_P_ W w) 2529verify_watcher (EV_P_ W w)
1514{ 2530{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2531 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516 2532
1517 if (w->pending) 2533 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2534 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519} 2535}
1520 2536
1521static void noinline 2537static void noinline ecb_cold
1522verify_heap (EV_P_ ANHE *heap, int N) 2538verify_heap (EV_P_ ANHE *heap, int N)
1523{ 2539{
1524 int i; 2540 int i;
1525 2541
1526 for (i = HEAP0; i < N + HEAP0; ++i) 2542 for (i = HEAP0; i < N + HEAP0; ++i)
1527 { 2543 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2544 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2545 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2546 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531 2547
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2548 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 } 2549 }
1534} 2550}
1535 2551
1536static void noinline 2552static void noinline ecb_cold
1537array_verify (EV_P_ W *ws, int cnt) 2553array_verify (EV_P_ W *ws, int cnt)
1538{ 2554{
1539 while (cnt--) 2555 while (cnt--)
1540 { 2556 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2557 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]); 2558 verify_watcher (EV_A_ ws [cnt]);
1543 } 2559 }
1544} 2560}
1545#endif 2561#endif
1546 2562
1547void 2563#if EV_FEATURE_API
1548ev_loop_verify (EV_P) 2564void ecb_cold
2565ev_verify (EV_P) EV_THROW
1549{ 2566{
1550#if EV_VERIFY 2567#if EV_VERIFY
1551 int i; 2568 int i;
1552 WL w; 2569 WL w, w2;
1553 2570
1554 assert (activecnt >= -1); 2571 assert (activecnt >= -1);
1555 2572
1556 assert (fdchangemax >= fdchangecnt); 2573 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i) 2574 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2575 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1559 2576
1560 assert (anfdmax >= 0); 2577 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i) 2578 for (i = 0; i < anfdmax; ++i)
2579 {
2580 int j = 0;
2581
1562 for (w = anfds [i].head; w; w = w->next) 2582 for (w = w2 = anfds [i].head; w; w = w->next)
1563 { 2583 {
1564 verify_watcher (EV_A_ (W)w); 2584 verify_watcher (EV_A_ (W)w);
2585
2586 if (j++ & 1)
2587 {
2588 assert (("libev: io watcher list contains a loop", w != w2));
2589 w2 = w2->next;
2590 }
2591
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2592 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2593 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 } 2594 }
2595 }
1568 2596
1569 assert (timermax >= timercnt); 2597 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt); 2598 verify_heap (EV_A_ timers, timercnt);
1571 2599
1572#if EV_PERIODIC_ENABLE 2600#if EV_PERIODIC_ENABLE
1587#if EV_FORK_ENABLE 2615#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt); 2616 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt); 2617 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif 2618#endif
1591 2619
2620#if EV_CLEANUP_ENABLE
2621 assert (cleanupmax >= cleanupcnt);
2622 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2623#endif
2624
1592#if EV_ASYNC_ENABLE 2625#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt); 2626 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt); 2627 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif 2628#endif
1596 2629
2630#if EV_PREPARE_ENABLE
1597 assert (preparemax >= preparecnt); 2631 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt); 2632 array_verify (EV_A_ (W *)prepares, preparecnt);
2633#endif
1599 2634
2635#if EV_CHECK_ENABLE
1600 assert (checkmax >= checkcnt); 2636 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt); 2637 array_verify (EV_A_ (W *)checks, checkcnt);
2638#endif
1602 2639
1603# if 0 2640# if 0
2641#if EV_CHILD_ENABLE
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2642 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2643 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2644#endif
1606# endif 2645# endif
1607#endif 2646#endif
1608} 2647}
1609 2648#endif
1610#endif /* multiplicity */
1611 2649
1612#if EV_MULTIPLICITY 2650#if EV_MULTIPLICITY
1613struct ev_loop * 2651struct ev_loop * ecb_cold
1614ev_default_loop_init (unsigned int flags)
1615#else 2652#else
1616int 2653int
2654#endif
1617ev_default_loop (unsigned int flags) 2655ev_default_loop (unsigned int flags) EV_THROW
1618#endif
1619{ 2656{
1620 if (!ev_default_loop_ptr) 2657 if (!ev_default_loop_ptr)
1621 { 2658 {
1622#if EV_MULTIPLICITY 2659#if EV_MULTIPLICITY
1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2660 EV_P = ev_default_loop_ptr = &default_loop_struct;
1624#else 2661#else
1625 ev_default_loop_ptr = 1; 2662 ev_default_loop_ptr = 1;
1626#endif 2663#endif
1627 2664
1628 loop_init (EV_A_ flags); 2665 loop_init (EV_A_ flags);
1629 2666
1630 if (ev_backend (EV_A)) 2667 if (ev_backend (EV_A))
1631 { 2668 {
1632#ifndef _WIN32 2669#if EV_CHILD_ENABLE
1633 ev_signal_init (&childev, childcb, SIGCHLD); 2670 ev_signal_init (&childev, childcb, SIGCHLD);
1634 ev_set_priority (&childev, EV_MAXPRI); 2671 ev_set_priority (&childev, EV_MAXPRI);
1635 ev_signal_start (EV_A_ &childev); 2672 ev_signal_start (EV_A_ &childev);
1636 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2673 ev_unref (EV_A); /* child watcher should not keep loop alive */
1637#endif 2674#endif
1642 2679
1643 return ev_default_loop_ptr; 2680 return ev_default_loop_ptr;
1644} 2681}
1645 2682
1646void 2683void
1647ev_default_destroy (void) 2684ev_loop_fork (EV_P) EV_THROW
1648{ 2685{
1649#if EV_MULTIPLICITY
1650 struct ev_loop *loop = ev_default_loop_ptr;
1651#endif
1652
1653#ifndef _WIN32
1654 ev_ref (EV_A); /* child watcher */
1655 ev_signal_stop (EV_A_ &childev);
1656#endif
1657
1658 loop_destroy (EV_A);
1659}
1660
1661void
1662ev_default_fork (void)
1663{
1664#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr;
1666#endif
1667
1668 if (backend)
1669 postfork = 1; /* must be in line with ev_loop_fork */ 2686 postfork = 1; /* must be in line with ev_default_fork */
1670} 2687}
1671 2688
1672/*****************************************************************************/ 2689/*****************************************************************************/
1673 2690
1674void 2691void
1675ev_invoke (EV_P_ void *w, int revents) 2692ev_invoke (EV_P_ void *w, int revents)
1676{ 2693{
1677 EV_CB_INVOKE ((W)w, revents); 2694 EV_CB_INVOKE ((W)w, revents);
1678} 2695}
1679 2696
1680void inline_speed 2697unsigned int
1681call_pending (EV_P) 2698ev_pending_count (EV_P) EV_THROW
1682{ 2699{
1683 int pri; 2700 int pri;
2701 unsigned int count = 0;
1684 2702
1685 for (pri = NUMPRI; pri--; ) 2703 for (pri = NUMPRI; pri--; )
2704 count += pendingcnt [pri];
2705
2706 return count;
2707}
2708
2709void noinline
2710ev_invoke_pending (EV_P)
2711{
2712 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1686 while (pendingcnt [pri]) 2713 while (pendingcnt [pendingpri])
1687 { 2714 {
1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2715 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1689 2716
1690 if (expect_true (p->w))
1691 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1693
1694 p->w->pending = 0; 2717 p->w->pending = 0;
1695 EV_CB_INVOKE (p->w, p->events); 2718 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK; 2719 EV_FREQUENT_CHECK;
1697 }
1698 } 2720 }
1699} 2721}
1700 2722
1701#if EV_IDLE_ENABLE 2723#if EV_IDLE_ENABLE
1702void inline_size 2724/* make idle watchers pending. this handles the "call-idle */
2725/* only when higher priorities are idle" logic */
2726inline_size void
1703idle_reify (EV_P) 2727idle_reify (EV_P)
1704{ 2728{
1705 if (expect_false (idleall)) 2729 if (expect_false (idleall))
1706 { 2730 {
1707 int pri; 2731 int pri;
1719 } 2743 }
1720 } 2744 }
1721} 2745}
1722#endif 2746#endif
1723 2747
1724void inline_size 2748/* make timers pending */
2749inline_size void
1725timers_reify (EV_P) 2750timers_reify (EV_P)
1726{ 2751{
1727 EV_FREQUENT_CHECK; 2752 EV_FREQUENT_CHECK;
1728 2753
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2754 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 { 2755 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2756 do
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 { 2757 {
2758 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2759
2760 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2761
2762 /* first reschedule or stop timer */
2763 if (w->repeat)
2764 {
1738 ev_at (w) += w->repeat; 2765 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now) 2766 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now; 2767 ev_at (w) = mn_now;
1741 2768
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2769 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743 2770
1744 ANHE_at_cache (timers [HEAP0]); 2771 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0); 2772 downheap (timers, timercnt, HEAP0);
2773 }
2774 else
2775 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2776
2777 EV_FREQUENT_CHECK;
2778 feed_reverse (EV_A_ (W)w);
1746 } 2779 }
1747 else 2780 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749 2781
1750 EV_FREQUENT_CHECK; 2782 feed_reverse_done (EV_A_ EV_TIMER);
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 } 2783 }
1753} 2784}
1754 2785
1755#if EV_PERIODIC_ENABLE 2786#if EV_PERIODIC_ENABLE
1756void inline_size 2787
2788static void noinline
2789periodic_recalc (EV_P_ ev_periodic *w)
2790{
2791 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2792 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2793
2794 /* the above almost always errs on the low side */
2795 while (at <= ev_rt_now)
2796 {
2797 ev_tstamp nat = at + w->interval;
2798
2799 /* when resolution fails us, we use ev_rt_now */
2800 if (expect_false (nat == at))
2801 {
2802 at = ev_rt_now;
2803 break;
2804 }
2805
2806 at = nat;
2807 }
2808
2809 ev_at (w) = at;
2810}
2811
2812/* make periodics pending */
2813inline_size void
1757periodics_reify (EV_P) 2814periodics_reify (EV_P)
1758{ 2815{
1759 EV_FREQUENT_CHECK; 2816 EV_FREQUENT_CHECK;
1760 2817
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2818 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 { 2819 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2820 int feed_count = 0;
1764 2821
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2822 do
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 { 2823 {
2824 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2825
2826 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2827
2828 /* first reschedule or stop timer */
2829 if (w->reschedule_cb)
2830 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2831 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771 2832
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2833 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773 2834
1774 ANHE_at_cache (periodics [HEAP0]); 2835 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0); 2836 downheap (periodics, periodiccnt, HEAP0);
2837 }
2838 else if (w->interval)
2839 {
2840 periodic_recalc (EV_A_ w);
2841 ANHE_at_cache (periodics [HEAP0]);
2842 downheap (periodics, periodiccnt, HEAP0);
2843 }
2844 else
2845 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2846
2847 EV_FREQUENT_CHECK;
2848 feed_reverse (EV_A_ (W)w);
1776 } 2849 }
1777 else if (w->interval) 2850 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785 2851
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2852 feed_reverse_done (EV_A_ EV_PERIODIC);
1801 } 2853 }
1802} 2854}
1803 2855
2856/* simply recalculate all periodics */
2857/* TODO: maybe ensure that at least one event happens when jumping forward? */
1804static void noinline 2858static void noinline ecb_cold
1805periodics_reschedule (EV_P) 2859periodics_reschedule (EV_P)
1806{ 2860{
1807 int i; 2861 int i;
1808 2862
1809 /* adjust periodics after time jump */ 2863 /* adjust periodics after time jump */
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2866 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813 2867
1814 if (w->reschedule_cb) 2868 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2869 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval) 2870 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2871 periodic_recalc (EV_A_ w);
1818 2872
1819 ANHE_at_cache (periodics [i]); 2873 ANHE_at_cache (periodics [i]);
1820 } 2874 }
1821 2875
1822 reheap (periodics, periodiccnt); 2876 reheap (periodics, periodiccnt);
1823} 2877}
1824#endif 2878#endif
1825 2879
1826void inline_speed 2880/* adjust all timers by a given offset */
2881static void noinline ecb_cold
2882timers_reschedule (EV_P_ ev_tstamp adjust)
2883{
2884 int i;
2885
2886 for (i = 0; i < timercnt; ++i)
2887 {
2888 ANHE *he = timers + i + HEAP0;
2889 ANHE_w (*he)->at += adjust;
2890 ANHE_at_cache (*he);
2891 }
2892}
2893
2894/* fetch new monotonic and realtime times from the kernel */
2895/* also detect if there was a timejump, and act accordingly */
2896inline_speed void
1827time_update (EV_P_ ev_tstamp max_block) 2897time_update (EV_P_ ev_tstamp max_block)
1828{ 2898{
1829 int i;
1830
1831#if EV_USE_MONOTONIC 2899#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic)) 2900 if (expect_true (have_monotonic))
1833 { 2901 {
2902 int i;
1834 ev_tstamp odiff = rtmn_diff; 2903 ev_tstamp odiff = rtmn_diff;
1835 2904
1836 mn_now = get_clock (); 2905 mn_now = get_clock ();
1837 2906
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2907 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1854 * doesn't hurt either as we only do this on time-jumps or 2923 * doesn't hurt either as we only do this on time-jumps or
1855 * in the unlikely event of having been preempted here. 2924 * in the unlikely event of having been preempted here.
1856 */ 2925 */
1857 for (i = 4; --i; ) 2926 for (i = 4; --i; )
1858 { 2927 {
2928 ev_tstamp diff;
1859 rtmn_diff = ev_rt_now - mn_now; 2929 rtmn_diff = ev_rt_now - mn_now;
1860 2930
2931 diff = odiff - rtmn_diff;
2932
1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2933 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1862 return; /* all is well */ 2934 return; /* all is well */
1863 2935
1864 ev_rt_now = ev_time (); 2936 ev_rt_now = ev_time ();
1865 mn_now = get_clock (); 2937 mn_now = get_clock ();
1866 now_floor = mn_now; 2938 now_floor = mn_now;
1867 } 2939 }
1868 2940
2941 /* no timer adjustment, as the monotonic clock doesn't jump */
2942 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869# if EV_PERIODIC_ENABLE 2943# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A); 2944 periodics_reschedule (EV_A);
1871# endif 2945# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 } 2946 }
1875 else 2947 else
1876#endif 2948#endif
1877 { 2949 {
1878 ev_rt_now = ev_time (); 2950 ev_rt_now = ev_time ();
1879 2951
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2952 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 { 2953 {
2954 /* adjust timers. this is easy, as the offset is the same for all of them */
2955 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1882#if EV_PERIODIC_ENABLE 2956#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A); 2957 periodics_reschedule (EV_A);
1884#endif 2958#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1892 } 2959 }
1893 2960
1894 mn_now = ev_rt_now; 2961 mn_now = ev_rt_now;
1895 } 2962 }
1896} 2963}
1897 2964
1898void 2965int
1899ev_ref (EV_P)
1900{
1901 ++activecnt;
1902}
1903
1904void
1905ev_unref (EV_P)
1906{
1907 --activecnt;
1908}
1909
1910static int loop_done;
1911
1912void
1913ev_loop (EV_P_ int flags) 2966ev_run (EV_P_ int flags)
1914{ 2967{
2968#if EV_FEATURE_API
2969 ++loop_depth;
2970#endif
2971
2972 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2973
1915 loop_done = EVUNLOOP_CANCEL; 2974 loop_done = EVBREAK_CANCEL;
1916 2975
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2976 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1918 2977
1919 do 2978 do
1920 { 2979 {
1921#if EV_VERIFY >= 2 2980#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A); 2981 ev_verify (EV_A);
1923#endif 2982#endif
1924 2983
1925#ifndef _WIN32 2984#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */ 2985 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid)) 2986 if (expect_false (getpid () != curpid))
1935 /* we might have forked, so queue fork handlers */ 2994 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork)) 2995 if (expect_false (postfork))
1937 if (forkcnt) 2996 if (forkcnt)
1938 { 2997 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2998 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A); 2999 EV_INVOKE_PENDING;
1941 } 3000 }
1942#endif 3001#endif
1943 3002
3003#if EV_PREPARE_ENABLE
1944 /* queue prepare watchers (and execute them) */ 3004 /* queue prepare watchers (and execute them) */
1945 if (expect_false (preparecnt)) 3005 if (expect_false (preparecnt))
1946 { 3006 {
1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3007 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1948 call_pending (EV_A); 3008 EV_INVOKE_PENDING;
1949 } 3009 }
3010#endif
1950 3011
1951 if (expect_false (!activecnt)) 3012 if (expect_false (loop_done))
1952 break; 3013 break;
1953 3014
1954 /* we might have forked, so reify kernel state if necessary */ 3015 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork)) 3016 if (expect_false (postfork))
1956 loop_fork (EV_A); 3017 loop_fork (EV_A);
1961 /* calculate blocking time */ 3022 /* calculate blocking time */
1962 { 3023 {
1963 ev_tstamp waittime = 0.; 3024 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.; 3025 ev_tstamp sleeptime = 0.;
1965 3026
3027 /* remember old timestamp for io_blocktime calculation */
3028 ev_tstamp prev_mn_now = mn_now;
3029
3030 /* update time to cancel out callback processing overhead */
3031 time_update (EV_A_ 1e100);
3032
3033 /* from now on, we want a pipe-wake-up */
3034 pipe_write_wanted = 1;
3035
3036 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3037
1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3038 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1967 { 3039 {
1968 /* update time to cancel out callback processing overhead */
1969 time_update (EV_A_ 1e100);
1970
1971 waittime = MAX_BLOCKTIME; 3040 waittime = MAX_BLOCKTIME;
1972 3041
1973 if (timercnt) 3042 if (timercnt)
1974 { 3043 {
1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3044 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1976 if (waittime > to) waittime = to; 3045 if (waittime > to) waittime = to;
1977 } 3046 }
1978 3047
1979#if EV_PERIODIC_ENABLE 3048#if EV_PERIODIC_ENABLE
1980 if (periodiccnt) 3049 if (periodiccnt)
1981 { 3050 {
1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3051 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1983 if (waittime > to) waittime = to; 3052 if (waittime > to) waittime = to;
1984 } 3053 }
1985#endif 3054#endif
1986 3055
3056 /* don't let timeouts decrease the waittime below timeout_blocktime */
1987 if (expect_false (waittime < timeout_blocktime)) 3057 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime; 3058 waittime = timeout_blocktime;
1989 3059
1990 sleeptime = waittime - backend_fudge; 3060 /* at this point, we NEED to wait, so we have to ensure */
3061 /* to pass a minimum nonzero value to the backend */
3062 if (expect_false (waittime < backend_mintime))
3063 waittime = backend_mintime;
1991 3064
3065 /* extra check because io_blocktime is commonly 0 */
1992 if (expect_true (sleeptime > io_blocktime)) 3066 if (expect_false (io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 { 3067 {
3068 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3069
3070 if (sleeptime > waittime - backend_mintime)
3071 sleeptime = waittime - backend_mintime;
3072
3073 if (expect_true (sleeptime > 0.))
3074 {
1997 ev_sleep (sleeptime); 3075 ev_sleep (sleeptime);
1998 waittime -= sleeptime; 3076 waittime -= sleeptime;
3077 }
1999 } 3078 }
2000 } 3079 }
2001 3080
3081#if EV_FEATURE_API
2002 ++loop_count; 3082 ++loop_count;
3083#endif
3084 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2003 backend_poll (EV_A_ waittime); 3085 backend_poll (EV_A_ waittime);
3086 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3087
3088 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3089
3090 if (pipe_write_skipped)
3091 {
3092 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3093 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3094 }
3095
2004 3096
2005 /* update ev_rt_now, do magic */ 3097 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime); 3098 time_update (EV_A_ waittime + sleeptime);
2007 } 3099 }
2008 3100
2015#if EV_IDLE_ENABLE 3107#if EV_IDLE_ENABLE
2016 /* queue idle watchers unless other events are pending */ 3108 /* queue idle watchers unless other events are pending */
2017 idle_reify (EV_A); 3109 idle_reify (EV_A);
2018#endif 3110#endif
2019 3111
3112#if EV_CHECK_ENABLE
2020 /* queue check watchers, to be executed first */ 3113 /* queue check watchers, to be executed first */
2021 if (expect_false (checkcnt)) 3114 if (expect_false (checkcnt))
2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3115 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3116#endif
2023 3117
2024 call_pending (EV_A); 3118 EV_INVOKE_PENDING;
2025 } 3119 }
2026 while (expect_true ( 3120 while (expect_true (
2027 activecnt 3121 activecnt
2028 && !loop_done 3122 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3123 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2030 )); 3124 ));
2031 3125
2032 if (loop_done == EVUNLOOP_ONE) 3126 if (loop_done == EVBREAK_ONE)
2033 loop_done = EVUNLOOP_CANCEL; 3127 loop_done = EVBREAK_CANCEL;
3128
3129#if EV_FEATURE_API
3130 --loop_depth;
3131#endif
3132
3133 return activecnt;
2034} 3134}
2035 3135
2036void 3136void
2037ev_unloop (EV_P_ int how) 3137ev_break (EV_P_ int how) EV_THROW
2038{ 3138{
2039 loop_done = how; 3139 loop_done = how;
2040} 3140}
2041 3141
3142void
3143ev_ref (EV_P) EV_THROW
3144{
3145 ++activecnt;
3146}
3147
3148void
3149ev_unref (EV_P) EV_THROW
3150{
3151 --activecnt;
3152}
3153
3154void
3155ev_now_update (EV_P) EV_THROW
3156{
3157 time_update (EV_A_ 1e100);
3158}
3159
3160void
3161ev_suspend (EV_P) EV_THROW
3162{
3163 ev_now_update (EV_A);
3164}
3165
3166void
3167ev_resume (EV_P) EV_THROW
3168{
3169 ev_tstamp mn_prev = mn_now;
3170
3171 ev_now_update (EV_A);
3172 timers_reschedule (EV_A_ mn_now - mn_prev);
3173#if EV_PERIODIC_ENABLE
3174 /* TODO: really do this? */
3175 periodics_reschedule (EV_A);
3176#endif
3177}
3178
2042/*****************************************************************************/ 3179/*****************************************************************************/
3180/* singly-linked list management, used when the expected list length is short */
2043 3181
2044void inline_size 3182inline_size void
2045wlist_add (WL *head, WL elem) 3183wlist_add (WL *head, WL elem)
2046{ 3184{
2047 elem->next = *head; 3185 elem->next = *head;
2048 *head = elem; 3186 *head = elem;
2049} 3187}
2050 3188
2051void inline_size 3189inline_size void
2052wlist_del (WL *head, WL elem) 3190wlist_del (WL *head, WL elem)
2053{ 3191{
2054 while (*head) 3192 while (*head)
2055 { 3193 {
2056 if (*head == elem) 3194 if (expect_true (*head == elem))
2057 { 3195 {
2058 *head = elem->next; 3196 *head = elem->next;
2059 return; 3197 break;
2060 } 3198 }
2061 3199
2062 head = &(*head)->next; 3200 head = &(*head)->next;
2063 } 3201 }
2064} 3202}
2065 3203
2066void inline_speed 3204/* internal, faster, version of ev_clear_pending */
3205inline_speed void
2067clear_pending (EV_P_ W w) 3206clear_pending (EV_P_ W w)
2068{ 3207{
2069 if (w->pending) 3208 if (w->pending)
2070 { 3209 {
2071 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3210 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2072 w->pending = 0; 3211 w->pending = 0;
2073 } 3212 }
2074} 3213}
2075 3214
2076int 3215int
2077ev_clear_pending (EV_P_ void *w) 3216ev_clear_pending (EV_P_ void *w) EV_THROW
2078{ 3217{
2079 W w_ = (W)w; 3218 W w_ = (W)w;
2080 int pending = w_->pending; 3219 int pending = w_->pending;
2081 3220
2082 if (expect_true (pending)) 3221 if (expect_true (pending))
2083 { 3222 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3223 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3224 p->w = (W)&pending_w;
2085 w_->pending = 0; 3225 w_->pending = 0;
2086 p->w = 0;
2087 return p->events; 3226 return p->events;
2088 } 3227 }
2089 else 3228 else
2090 return 0; 3229 return 0;
2091} 3230}
2092 3231
2093void inline_size 3232inline_size void
2094pri_adjust (EV_P_ W w) 3233pri_adjust (EV_P_ W w)
2095{ 3234{
2096 int pri = w->priority; 3235 int pri = ev_priority (w);
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3236 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3237 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri; 3238 ev_set_priority (w, pri);
2100} 3239}
2101 3240
2102void inline_speed 3241inline_speed void
2103ev_start (EV_P_ W w, int active) 3242ev_start (EV_P_ W w, int active)
2104{ 3243{
2105 pri_adjust (EV_A_ w); 3244 pri_adjust (EV_A_ w);
2106 w->active = active; 3245 w->active = active;
2107 ev_ref (EV_A); 3246 ev_ref (EV_A);
2108} 3247}
2109 3248
2110void inline_size 3249inline_size void
2111ev_stop (EV_P_ W w) 3250ev_stop (EV_P_ W w)
2112{ 3251{
2113 ev_unref (EV_A); 3252 ev_unref (EV_A);
2114 w->active = 0; 3253 w->active = 0;
2115} 3254}
2116 3255
2117/*****************************************************************************/ 3256/*****************************************************************************/
2118 3257
2119void noinline 3258void noinline
2120ev_io_start (EV_P_ ev_io *w) 3259ev_io_start (EV_P_ ev_io *w) EV_THROW
2121{ 3260{
2122 int fd = w->fd; 3261 int fd = w->fd;
2123 3262
2124 if (expect_false (ev_is_active (w))) 3263 if (expect_false (ev_is_active (w)))
2125 return; 3264 return;
2126 3265
2127 assert (("ev_io_start called with negative fd", fd >= 0)); 3266 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3267 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 3268
2129 EV_FREQUENT_CHECK; 3269 EV_FREQUENT_CHECK;
2130 3270
2131 ev_start (EV_A_ (W)w, 1); 3271 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3272 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 3273 wlist_add (&anfds[fd].head, (WL)w);
2134 3274
3275 /* common bug, apparently */
3276 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3277
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3278 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 3279 w->events &= ~EV__IOFDSET;
2137 3280
2138 EV_FREQUENT_CHECK; 3281 EV_FREQUENT_CHECK;
2139} 3282}
2140 3283
2141void noinline 3284void noinline
2142ev_io_stop (EV_P_ ev_io *w) 3285ev_io_stop (EV_P_ ev_io *w) EV_THROW
2143{ 3286{
2144 clear_pending (EV_A_ (W)w); 3287 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3288 if (expect_false (!ev_is_active (w)))
2146 return; 3289 return;
2147 3290
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3291 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 3292
2150 EV_FREQUENT_CHECK; 3293 EV_FREQUENT_CHECK;
2151 3294
2152 wlist_del (&anfds[w->fd].head, (WL)w); 3295 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
2154 3297
2155 fd_change (EV_A_ w->fd, 1); 3298 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2156 3299
2157 EV_FREQUENT_CHECK; 3300 EV_FREQUENT_CHECK;
2158} 3301}
2159 3302
2160void noinline 3303void noinline
2161ev_timer_start (EV_P_ ev_timer *w) 3304ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2162{ 3305{
2163 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
2164 return; 3307 return;
2165 3308
2166 ev_at (w) += mn_now; 3309 ev_at (w) += mn_now;
2167 3310
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3311 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 3312
2170 EV_FREQUENT_CHECK; 3313 EV_FREQUENT_CHECK;
2171 3314
2172 ++timercnt; 3315 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3316 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 3319 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 3320 upheap (timers, ev_active (w));
2178 3321
2179 EV_FREQUENT_CHECK; 3322 EV_FREQUENT_CHECK;
2180 3323
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3324 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 3325}
2183 3326
2184void noinline 3327void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 3328ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2186{ 3329{
2187 clear_pending (EV_A_ (W)w); 3330 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w))) 3331 if (expect_false (!ev_is_active (w)))
2189 return; 3332 return;
2190 3333
2191 EV_FREQUENT_CHECK; 3334 EV_FREQUENT_CHECK;
2192 3335
2193 { 3336 {
2194 int active = ev_active (w); 3337 int active = ev_active (w);
2195 3338
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3339 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 3340
2198 --timercnt; 3341 --timercnt;
2199 3342
2200 if (expect_true (active < timercnt + HEAP0)) 3343 if (expect_true (active < timercnt + HEAP0))
2201 { 3344 {
2202 timers [active] = timers [timercnt + HEAP0]; 3345 timers [active] = timers [timercnt + HEAP0];
2203 adjustheap (timers, timercnt, active); 3346 adjustheap (timers, timercnt, active);
2204 } 3347 }
2205 } 3348 }
2206 3349
2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now; 3350 ev_at (w) -= mn_now;
2210 3351
2211 ev_stop (EV_A_ (W)w); 3352 ev_stop (EV_A_ (W)w);
3353
3354 EV_FREQUENT_CHECK;
2212} 3355}
2213 3356
2214void noinline 3357void noinline
2215ev_timer_again (EV_P_ ev_timer *w) 3358ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2216{ 3359{
2217 EV_FREQUENT_CHECK; 3360 EV_FREQUENT_CHECK;
3361
3362 clear_pending (EV_A_ (W)w);
2218 3363
2219 if (ev_is_active (w)) 3364 if (ev_is_active (w))
2220 { 3365 {
2221 if (w->repeat) 3366 if (w->repeat)
2222 { 3367 {
2234 } 3379 }
2235 3380
2236 EV_FREQUENT_CHECK; 3381 EV_FREQUENT_CHECK;
2237} 3382}
2238 3383
3384ev_tstamp
3385ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3386{
3387 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3388}
3389
2239#if EV_PERIODIC_ENABLE 3390#if EV_PERIODIC_ENABLE
2240void noinline 3391void noinline
2241ev_periodic_start (EV_P_ ev_periodic *w) 3392ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2242{ 3393{
2243 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2244 return; 3395 return;
2245 3396
2246 if (w->reschedule_cb) 3397 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3398 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 3399 else if (w->interval)
2249 { 3400 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3401 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 3402 periodic_recalc (EV_A_ w);
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 3403 }
2254 else 3404 else
2255 ev_at (w) = w->offset; 3405 ev_at (w) = w->offset;
2256 3406
2257 EV_FREQUENT_CHECK; 3407 EV_FREQUENT_CHECK;
2263 ANHE_at_cache (periodics [ev_active (w)]); 3413 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 3414 upheap (periodics, ev_active (w));
2265 3415
2266 EV_FREQUENT_CHECK; 3416 EV_FREQUENT_CHECK;
2267 3417
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3418 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 3419}
2270 3420
2271void noinline 3421void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 3422ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2273{ 3423{
2274 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2275 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2276 return; 3426 return;
2277 3427
2278 EV_FREQUENT_CHECK; 3428 EV_FREQUENT_CHECK;
2279 3429
2280 { 3430 {
2281 int active = ev_active (w); 3431 int active = ev_active (w);
2282 3432
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3433 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 3434
2285 --periodiccnt; 3435 --periodiccnt;
2286 3436
2287 if (expect_true (active < periodiccnt + HEAP0)) 3437 if (expect_true (active < periodiccnt + HEAP0))
2288 { 3438 {
2289 periodics [active] = periodics [periodiccnt + HEAP0]; 3439 periodics [active] = periodics [periodiccnt + HEAP0];
2290 adjustheap (periodics, periodiccnt, active); 3440 adjustheap (periodics, periodiccnt, active);
2291 } 3441 }
2292 } 3442 }
2293 3443
2294 EV_FREQUENT_CHECK;
2295
2296 ev_stop (EV_A_ (W)w); 3444 ev_stop (EV_A_ (W)w);
3445
3446 EV_FREQUENT_CHECK;
2297} 3447}
2298 3448
2299void noinline 3449void noinline
2300ev_periodic_again (EV_P_ ev_periodic *w) 3450ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2301{ 3451{
2302 /* TODO: use adjustheap and recalculation */ 3452 /* TODO: use adjustheap and recalculation */
2303 ev_periodic_stop (EV_A_ w); 3453 ev_periodic_stop (EV_A_ w);
2304 ev_periodic_start (EV_A_ w); 3454 ev_periodic_start (EV_A_ w);
2305} 3455}
2307 3457
2308#ifndef SA_RESTART 3458#ifndef SA_RESTART
2309# define SA_RESTART 0 3459# define SA_RESTART 0
2310#endif 3460#endif
2311 3461
3462#if EV_SIGNAL_ENABLE
3463
2312void noinline 3464void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 3465ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2314{ 3466{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
2318 if (expect_false (ev_is_active (w))) 3467 if (expect_false (ev_is_active (w)))
2319 return; 3468 return;
2320 3469
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3470 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2322 3471
2323 evpipe_init (EV_A); 3472#if EV_MULTIPLICITY
3473 assert (("libev: a signal must not be attached to two different loops",
3474 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2324 3475
2325 EV_FREQUENT_CHECK; 3476 signals [w->signum - 1].loop = EV_A;
3477#endif
2326 3478
3479 EV_FREQUENT_CHECK;
3480
3481#if EV_USE_SIGNALFD
3482 if (sigfd == -2)
2327 { 3483 {
2328#ifndef _WIN32 3484 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2329 sigset_t full, prev; 3485 if (sigfd < 0 && errno == EINVAL)
2330 sigfillset (&full); 3486 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333 3487
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3488 if (sigfd >= 0)
3489 {
3490 fd_intern (sigfd); /* doing it twice will not hurt */
2335 3491
2336#ifndef _WIN32 3492 sigemptyset (&sigfd_set);
2337 sigprocmask (SIG_SETMASK, &prev, 0); 3493
2338#endif 3494 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3495 ev_set_priority (&sigfd_w, EV_MAXPRI);
3496 ev_io_start (EV_A_ &sigfd_w);
3497 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3498 }
2339 } 3499 }
3500
3501 if (sigfd >= 0)
3502 {
3503 /* TODO: check .head */
3504 sigaddset (&sigfd_set, w->signum);
3505 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3506
3507 signalfd (sigfd, &sigfd_set, 0);
3508 }
3509#endif
2340 3510
2341 ev_start (EV_A_ (W)w, 1); 3511 ev_start (EV_A_ (W)w, 1);
2342 wlist_add (&signals [w->signum - 1].head, (WL)w); 3512 wlist_add (&signals [w->signum - 1].head, (WL)w);
2343 3513
2344 if (!((WL)w)->next) 3514 if (!((WL)w)->next)
3515# if EV_USE_SIGNALFD
3516 if (sigfd < 0) /*TODO*/
3517# endif
2345 { 3518 {
2346#if _WIN32 3519# ifdef _WIN32
3520 evpipe_init (EV_A);
3521
2347 signal (w->signum, ev_sighandler); 3522 signal (w->signum, ev_sighandler);
2348#else 3523# else
2349 struct sigaction sa; 3524 struct sigaction sa;
3525
3526 evpipe_init (EV_A);
3527
2350 sa.sa_handler = ev_sighandler; 3528 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 3529 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3530 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 3531 sigaction (w->signum, &sa, 0);
3532
3533 if (origflags & EVFLAG_NOSIGMASK)
3534 {
3535 sigemptyset (&sa.sa_mask);
3536 sigaddset (&sa.sa_mask, w->signum);
3537 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3538 }
2354#endif 3539#endif
2355 } 3540 }
2356 3541
2357 EV_FREQUENT_CHECK; 3542 EV_FREQUENT_CHECK;
2358} 3543}
2359 3544
2360void noinline 3545void noinline
2361ev_signal_stop (EV_P_ ev_signal *w) 3546ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2362{ 3547{
2363 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2364 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2365 return; 3550 return;
2366 3551
2368 3553
2369 wlist_del (&signals [w->signum - 1].head, (WL)w); 3554 wlist_del (&signals [w->signum - 1].head, (WL)w);
2370 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
2371 3556
2372 if (!signals [w->signum - 1].head) 3557 if (!signals [w->signum - 1].head)
3558 {
3559#if EV_MULTIPLICITY
3560 signals [w->signum - 1].loop = 0; /* unattach from signal */
3561#endif
3562#if EV_USE_SIGNALFD
3563 if (sigfd >= 0)
3564 {
3565 sigset_t ss;
3566
3567 sigemptyset (&ss);
3568 sigaddset (&ss, w->signum);
3569 sigdelset (&sigfd_set, w->signum);
3570
3571 signalfd (sigfd, &sigfd_set, 0);
3572 sigprocmask (SIG_UNBLOCK, &ss, 0);
3573 }
3574 else
3575#endif
2373 signal (w->signum, SIG_DFL); 3576 signal (w->signum, SIG_DFL);
3577 }
2374 3578
2375 EV_FREQUENT_CHECK; 3579 EV_FREQUENT_CHECK;
2376} 3580}
3581
3582#endif
3583
3584#if EV_CHILD_ENABLE
2377 3585
2378void 3586void
2379ev_child_start (EV_P_ ev_child *w) 3587ev_child_start (EV_P_ ev_child *w) EV_THROW
2380{ 3588{
2381#if EV_MULTIPLICITY 3589#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3590 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 3591#endif
2384 if (expect_false (ev_is_active (w))) 3592 if (expect_false (ev_is_active (w)))
2385 return; 3593 return;
2386 3594
2387 EV_FREQUENT_CHECK; 3595 EV_FREQUENT_CHECK;
2388 3596
2389 ev_start (EV_A_ (W)w, 1); 3597 ev_start (EV_A_ (W)w, 1);
2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3598 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2391 3599
2392 EV_FREQUENT_CHECK; 3600 EV_FREQUENT_CHECK;
2393} 3601}
2394 3602
2395void 3603void
2396ev_child_stop (EV_P_ ev_child *w) 3604ev_child_stop (EV_P_ ev_child *w) EV_THROW
2397{ 3605{
2398 clear_pending (EV_A_ (W)w); 3606 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3607 if (expect_false (!ev_is_active (w)))
2400 return; 3608 return;
2401 3609
2402 EV_FREQUENT_CHECK; 3610 EV_FREQUENT_CHECK;
2403 3611
2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3612 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2405 ev_stop (EV_A_ (W)w); 3613 ev_stop (EV_A_ (W)w);
2406 3614
2407 EV_FREQUENT_CHECK; 3615 EV_FREQUENT_CHECK;
2408} 3616}
3617
3618#endif
2409 3619
2410#if EV_STAT_ENABLE 3620#if EV_STAT_ENABLE
2411 3621
2412# ifdef _WIN32 3622# ifdef _WIN32
2413# undef lstat 3623# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 3624# define lstat(a,b) _stati64 (a,b)
2415# endif 3625# endif
2416 3626
2417#define DEF_STAT_INTERVAL 5.0074891 3627#define DEF_STAT_INTERVAL 5.0074891
3628#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 3629#define MIN_STAT_INTERVAL 0.1074891
2419 3630
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3631static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 3632
2422#if EV_USE_INOTIFY 3633#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 3634
3635/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3636# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2424 3637
2425static void noinline 3638static void noinline
2426infy_add (EV_P_ ev_stat *w) 3639infy_add (EV_P_ ev_stat *w)
2427{ 3640{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3641 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 3642
2430 if (w->wd < 0) 3643 if (w->wd >= 0)
3644 {
3645 struct statfs sfs;
3646
3647 /* now local changes will be tracked by inotify, but remote changes won't */
3648 /* unless the filesystem is known to be local, we therefore still poll */
3649 /* also do poll on <2.6.25, but with normal frequency */
3650
3651 if (!fs_2625)
3652 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3653 else if (!statfs (w->path, &sfs)
3654 && (sfs.f_type == 0x1373 /* devfs */
3655 || sfs.f_type == 0xEF53 /* ext2/3 */
3656 || sfs.f_type == 0x3153464a /* jfs */
3657 || sfs.f_type == 0x52654973 /* reiser3 */
3658 || sfs.f_type == 0x01021994 /* tempfs */
3659 || sfs.f_type == 0x58465342 /* xfs */))
3660 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3661 else
3662 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2431 { 3663 }
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3664 else
3665 {
3666 /* can't use inotify, continue to stat */
3667 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2433 3668
2434 /* monitor some parent directory for speedup hints */ 3669 /* if path is not there, monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3670 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 3671 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3672 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 3673 {
2439 char path [4096]; 3674 char path [4096];
2440 strcpy (path, w->path); 3675 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3679 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3680 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 3681
2447 char *pend = strrchr (path, '/'); 3682 char *pend = strrchr (path, '/');
2448 3683
2449 if (!pend) 3684 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 3685 break;
2451 3686
2452 *pend = 0; 3687 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 3688 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 3689 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3690 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 3691 }
2457 } 3692 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 3693
2461 if (w->wd >= 0) 3694 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3695 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3696
3697 /* now re-arm timer, if required */
3698 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3699 ev_timer_again (EV_A_ &w->timer);
3700 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2463} 3701}
2464 3702
2465static void noinline 3703static void noinline
2466infy_del (EV_P_ ev_stat *w) 3704infy_del (EV_P_ ev_stat *w)
2467{ 3705{
2470 3708
2471 if (wd < 0) 3709 if (wd < 0)
2472 return; 3710 return;
2473 3711
2474 w->wd = -2; 3712 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3713 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w); 3714 wlist_del (&fs_hash [slot].head, (WL)w);
2477 3715
2478 /* remove this watcher, if others are watching it, they will rearm */ 3716 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd); 3717 inotify_rm_watch (fs_fd, wd);
2480} 3718}
2481 3719
2482static void noinline 3720static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3721infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 3722{
2485 if (slot < 0) 3723 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */ 3724 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3725 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 3726 infy_wd (EV_A_ slot, wd, ev);
2489 else 3727 else
2490 { 3728 {
2491 WL w_; 3729 WL w_;
2492 3730
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3731 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2494 { 3732 {
2495 ev_stat *w = (ev_stat *)w_; 3733 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */ 3734 w_ = w_->next; /* lets us remove this watcher and all before it */
2497 3735
2498 if (w->wd == wd || wd == -1) 3736 if (w->wd == wd || wd == -1)
2499 { 3737 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3738 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 3739 {
3740 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2502 w->wd = -1; 3741 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 3742 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 3743 }
2505 3744
2506 stat_timer_cb (EV_A_ &w->timer, 0); 3745 stat_timer_cb (EV_A_ &w->timer, 0);
2511 3750
2512static void 3751static void
2513infy_cb (EV_P_ ev_io *w, int revents) 3752infy_cb (EV_P_ ev_io *w, int revents)
2514{ 3753{
2515 char buf [EV_INOTIFY_BUFSIZE]; 3754 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs; 3755 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf)); 3756 int len = read (fs_fd, buf, sizeof (buf));
2519 3757
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3758 for (ofs = 0; ofs < len; )
3759 {
3760 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3761 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3762 ofs += sizeof (struct inotify_event) + ev->len;
3763 }
2522} 3764}
2523 3765
2524void inline_size 3766inline_size void ecb_cold
3767ev_check_2625 (EV_P)
3768{
3769 /* kernels < 2.6.25 are borked
3770 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3771 */
3772 if (ev_linux_version () < 0x020619)
3773 return;
3774
3775 fs_2625 = 1;
3776}
3777
3778inline_size int
3779infy_newfd (void)
3780{
3781#if defined IN_CLOEXEC && defined IN_NONBLOCK
3782 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3783 if (fd >= 0)
3784 return fd;
3785#endif
3786 return inotify_init ();
3787}
3788
3789inline_size void
2525infy_init (EV_P) 3790infy_init (EV_P)
2526{ 3791{
2527 if (fs_fd != -2) 3792 if (fs_fd != -2)
2528 return; 3793 return;
2529 3794
3795 fs_fd = -1;
3796
3797 ev_check_2625 (EV_A);
3798
2530 fs_fd = inotify_init (); 3799 fs_fd = infy_newfd ();
2531 3800
2532 if (fs_fd >= 0) 3801 if (fs_fd >= 0)
2533 { 3802 {
3803 fd_intern (fs_fd);
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3804 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI); 3805 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w); 3806 ev_io_start (EV_A_ &fs_w);
3807 ev_unref (EV_A);
2537 } 3808 }
2538} 3809}
2539 3810
2540void inline_size 3811inline_size void
2541infy_fork (EV_P) 3812infy_fork (EV_P)
2542{ 3813{
2543 int slot; 3814 int slot;
2544 3815
2545 if (fs_fd < 0) 3816 if (fs_fd < 0)
2546 return; 3817 return;
2547 3818
3819 ev_ref (EV_A);
3820 ev_io_stop (EV_A_ &fs_w);
2548 close (fs_fd); 3821 close (fs_fd);
2549 fs_fd = inotify_init (); 3822 fs_fd = infy_newfd ();
2550 3823
3824 if (fs_fd >= 0)
3825 {
3826 fd_intern (fs_fd);
3827 ev_io_set (&fs_w, fs_fd, EV_READ);
3828 ev_io_start (EV_A_ &fs_w);
3829 ev_unref (EV_A);
3830 }
3831
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3832 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2552 { 3833 {
2553 WL w_ = fs_hash [slot].head; 3834 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0; 3835 fs_hash [slot].head = 0;
2555 3836
2556 while (w_) 3837 while (w_)
2561 w->wd = -1; 3842 w->wd = -1;
2562 3843
2563 if (fs_fd >= 0) 3844 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */ 3845 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else 3846 else
3847 {
3848 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3849 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2566 ev_timer_start (EV_A_ &w->timer); 3850 ev_timer_again (EV_A_ &w->timer);
3851 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3852 }
2567 } 3853 }
2568
2569 } 3854 }
2570} 3855}
2571 3856
2572#endif 3857#endif
2573 3858
2576#else 3861#else
2577# define EV_LSTAT(p,b) lstat (p, b) 3862# define EV_LSTAT(p,b) lstat (p, b)
2578#endif 3863#endif
2579 3864
2580void 3865void
2581ev_stat_stat (EV_P_ ev_stat *w) 3866ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2582{ 3867{
2583 if (lstat (w->path, &w->attr) < 0) 3868 if (lstat (w->path, &w->attr) < 0)
2584 w->attr.st_nlink = 0; 3869 w->attr.st_nlink = 0;
2585 else if (!w->attr.st_nlink) 3870 else if (!w->attr.st_nlink)
2586 w->attr.st_nlink = 1; 3871 w->attr.st_nlink = 1;
2589static void noinline 3874static void noinline
2590stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3875stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2591{ 3876{
2592 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3877 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2593 3878
2594 /* we copy this here each the time so that */ 3879 ev_statdata prev = w->attr;
2595 /* prev has the old value when the callback gets invoked */
2596 w->prev = w->attr;
2597 ev_stat_stat (EV_A_ w); 3880 ev_stat_stat (EV_A_ w);
2598 3881
2599 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3882 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2600 if ( 3883 if (
2601 w->prev.st_dev != w->attr.st_dev 3884 prev.st_dev != w->attr.st_dev
2602 || w->prev.st_ino != w->attr.st_ino 3885 || prev.st_ino != w->attr.st_ino
2603 || w->prev.st_mode != w->attr.st_mode 3886 || prev.st_mode != w->attr.st_mode
2604 || w->prev.st_nlink != w->attr.st_nlink 3887 || prev.st_nlink != w->attr.st_nlink
2605 || w->prev.st_uid != w->attr.st_uid 3888 || prev.st_uid != w->attr.st_uid
2606 || w->prev.st_gid != w->attr.st_gid 3889 || prev.st_gid != w->attr.st_gid
2607 || w->prev.st_rdev != w->attr.st_rdev 3890 || prev.st_rdev != w->attr.st_rdev
2608 || w->prev.st_size != w->attr.st_size 3891 || prev.st_size != w->attr.st_size
2609 || w->prev.st_atime != w->attr.st_atime 3892 || prev.st_atime != w->attr.st_atime
2610 || w->prev.st_mtime != w->attr.st_mtime 3893 || prev.st_mtime != w->attr.st_mtime
2611 || w->prev.st_ctime != w->attr.st_ctime 3894 || prev.st_ctime != w->attr.st_ctime
2612 ) { 3895 ) {
3896 /* we only update w->prev on actual differences */
3897 /* in case we test more often than invoke the callback, */
3898 /* to ensure that prev is always different to attr */
3899 w->prev = prev;
3900
2613 #if EV_USE_INOTIFY 3901 #if EV_USE_INOTIFY
3902 if (fs_fd >= 0)
3903 {
2614 infy_del (EV_A_ w); 3904 infy_del (EV_A_ w);
2615 infy_add (EV_A_ w); 3905 infy_add (EV_A_ w);
2616 ev_stat_stat (EV_A_ w); /* avoid race... */ 3906 ev_stat_stat (EV_A_ w); /* avoid race... */
3907 }
2617 #endif 3908 #endif
2618 3909
2619 ev_feed_event (EV_A_ w, EV_STAT); 3910 ev_feed_event (EV_A_ w, EV_STAT);
2620 } 3911 }
2621} 3912}
2622 3913
2623void 3914void
2624ev_stat_start (EV_P_ ev_stat *w) 3915ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2625{ 3916{
2626 if (expect_false (ev_is_active (w))) 3917 if (expect_false (ev_is_active (w)))
2627 return; 3918 return;
2628 3919
2629 /* since we use memcmp, we need to clear any padding data etc. */
2630 memset (&w->prev, 0, sizeof (ev_statdata));
2631 memset (&w->attr, 0, sizeof (ev_statdata));
2632
2633 ev_stat_stat (EV_A_ w); 3920 ev_stat_stat (EV_A_ w);
2634 3921
3922 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2635 if (w->interval < MIN_STAT_INTERVAL) 3923 w->interval = MIN_STAT_INTERVAL;
2636 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2637 3924
2638 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3925 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2639 ev_set_priority (&w->timer, ev_priority (w)); 3926 ev_set_priority (&w->timer, ev_priority (w));
2640 3927
2641#if EV_USE_INOTIFY 3928#if EV_USE_INOTIFY
2642 infy_init (EV_A); 3929 infy_init (EV_A);
2643 3930
2644 if (fs_fd >= 0) 3931 if (fs_fd >= 0)
2645 infy_add (EV_A_ w); 3932 infy_add (EV_A_ w);
2646 else 3933 else
2647#endif 3934#endif
3935 {
2648 ev_timer_start (EV_A_ &w->timer); 3936 ev_timer_again (EV_A_ &w->timer);
3937 ev_unref (EV_A);
3938 }
2649 3939
2650 ev_start (EV_A_ (W)w, 1); 3940 ev_start (EV_A_ (W)w, 1);
2651 3941
2652 EV_FREQUENT_CHECK; 3942 EV_FREQUENT_CHECK;
2653} 3943}
2654 3944
2655void 3945void
2656ev_stat_stop (EV_P_ ev_stat *w) 3946ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2657{ 3947{
2658 clear_pending (EV_A_ (W)w); 3948 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3949 if (expect_false (!ev_is_active (w)))
2660 return; 3950 return;
2661 3951
2662 EV_FREQUENT_CHECK; 3952 EV_FREQUENT_CHECK;
2663 3953
2664#if EV_USE_INOTIFY 3954#if EV_USE_INOTIFY
2665 infy_del (EV_A_ w); 3955 infy_del (EV_A_ w);
2666#endif 3956#endif
3957
3958 if (ev_is_active (&w->timer))
3959 {
3960 ev_ref (EV_A);
2667 ev_timer_stop (EV_A_ &w->timer); 3961 ev_timer_stop (EV_A_ &w->timer);
3962 }
2668 3963
2669 ev_stop (EV_A_ (W)w); 3964 ev_stop (EV_A_ (W)w);
2670 3965
2671 EV_FREQUENT_CHECK; 3966 EV_FREQUENT_CHECK;
2672} 3967}
2673#endif 3968#endif
2674 3969
2675#if EV_IDLE_ENABLE 3970#if EV_IDLE_ENABLE
2676void 3971void
2677ev_idle_start (EV_P_ ev_idle *w) 3972ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2678{ 3973{
2679 if (expect_false (ev_is_active (w))) 3974 if (expect_false (ev_is_active (w)))
2680 return; 3975 return;
2681 3976
2682 pri_adjust (EV_A_ (W)w); 3977 pri_adjust (EV_A_ (W)w);
2695 3990
2696 EV_FREQUENT_CHECK; 3991 EV_FREQUENT_CHECK;
2697} 3992}
2698 3993
2699void 3994void
2700ev_idle_stop (EV_P_ ev_idle *w) 3995ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2701{ 3996{
2702 clear_pending (EV_A_ (W)w); 3997 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3998 if (expect_false (!ev_is_active (w)))
2704 return; 3999 return;
2705 4000
2717 4012
2718 EV_FREQUENT_CHECK; 4013 EV_FREQUENT_CHECK;
2719} 4014}
2720#endif 4015#endif
2721 4016
4017#if EV_PREPARE_ENABLE
2722void 4018void
2723ev_prepare_start (EV_P_ ev_prepare *w) 4019ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2724{ 4020{
2725 if (expect_false (ev_is_active (w))) 4021 if (expect_false (ev_is_active (w)))
2726 return; 4022 return;
2727 4023
2728 EV_FREQUENT_CHECK; 4024 EV_FREQUENT_CHECK;
2733 4029
2734 EV_FREQUENT_CHECK; 4030 EV_FREQUENT_CHECK;
2735} 4031}
2736 4032
2737void 4033void
2738ev_prepare_stop (EV_P_ ev_prepare *w) 4034ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2739{ 4035{
2740 clear_pending (EV_A_ (W)w); 4036 clear_pending (EV_A_ (W)w);
2741 if (expect_false (!ev_is_active (w))) 4037 if (expect_false (!ev_is_active (w)))
2742 return; 4038 return;
2743 4039
2752 4048
2753 ev_stop (EV_A_ (W)w); 4049 ev_stop (EV_A_ (W)w);
2754 4050
2755 EV_FREQUENT_CHECK; 4051 EV_FREQUENT_CHECK;
2756} 4052}
4053#endif
2757 4054
4055#if EV_CHECK_ENABLE
2758void 4056void
2759ev_check_start (EV_P_ ev_check *w) 4057ev_check_start (EV_P_ ev_check *w) EV_THROW
2760{ 4058{
2761 if (expect_false (ev_is_active (w))) 4059 if (expect_false (ev_is_active (w)))
2762 return; 4060 return;
2763 4061
2764 EV_FREQUENT_CHECK; 4062 EV_FREQUENT_CHECK;
2769 4067
2770 EV_FREQUENT_CHECK; 4068 EV_FREQUENT_CHECK;
2771} 4069}
2772 4070
2773void 4071void
2774ev_check_stop (EV_P_ ev_check *w) 4072ev_check_stop (EV_P_ ev_check *w) EV_THROW
2775{ 4073{
2776 clear_pending (EV_A_ (W)w); 4074 clear_pending (EV_A_ (W)w);
2777 if (expect_false (!ev_is_active (w))) 4075 if (expect_false (!ev_is_active (w)))
2778 return; 4076 return;
2779 4077
2788 4086
2789 ev_stop (EV_A_ (W)w); 4087 ev_stop (EV_A_ (W)w);
2790 4088
2791 EV_FREQUENT_CHECK; 4089 EV_FREQUENT_CHECK;
2792} 4090}
4091#endif
2793 4092
2794#if EV_EMBED_ENABLE 4093#if EV_EMBED_ENABLE
2795void noinline 4094void noinline
2796ev_embed_sweep (EV_P_ ev_embed *w) 4095ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2797{ 4096{
2798 ev_loop (w->other, EVLOOP_NONBLOCK); 4097 ev_run (w->other, EVRUN_NOWAIT);
2799} 4098}
2800 4099
2801static void 4100static void
2802embed_io_cb (EV_P_ ev_io *io, int revents) 4101embed_io_cb (EV_P_ ev_io *io, int revents)
2803{ 4102{
2804 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4103 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2805 4104
2806 if (ev_cb (w)) 4105 if (ev_cb (w))
2807 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4106 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2808 else 4107 else
2809 ev_loop (w->other, EVLOOP_NONBLOCK); 4108 ev_run (w->other, EVRUN_NOWAIT);
2810} 4109}
2811 4110
2812static void 4111static void
2813embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4112embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2814{ 4113{
2815 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4114 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2816 4115
2817 { 4116 {
2818 struct ev_loop *loop = w->other; 4117 EV_P = w->other;
2819 4118
2820 while (fdchangecnt) 4119 while (fdchangecnt)
2821 { 4120 {
2822 fd_reify (EV_A); 4121 fd_reify (EV_A);
2823 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4122 ev_run (EV_A_ EVRUN_NOWAIT);
2824 } 4123 }
2825 } 4124 }
4125}
4126
4127static void
4128embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4129{
4130 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4131
4132 ev_embed_stop (EV_A_ w);
4133
4134 {
4135 EV_P = w->other;
4136
4137 ev_loop_fork (EV_A);
4138 ev_run (EV_A_ EVRUN_NOWAIT);
4139 }
4140
4141 ev_embed_start (EV_A_ w);
2826} 4142}
2827 4143
2828#if 0 4144#if 0
2829static void 4145static void
2830embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4146embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2832 ev_idle_stop (EV_A_ idle); 4148 ev_idle_stop (EV_A_ idle);
2833} 4149}
2834#endif 4150#endif
2835 4151
2836void 4152void
2837ev_embed_start (EV_P_ ev_embed *w) 4153ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2838{ 4154{
2839 if (expect_false (ev_is_active (w))) 4155 if (expect_false (ev_is_active (w)))
2840 return; 4156 return;
2841 4157
2842 { 4158 {
2843 struct ev_loop *loop = w->other; 4159 EV_P = w->other;
2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4160 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4161 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2846 } 4162 }
2847 4163
2848 EV_FREQUENT_CHECK; 4164 EV_FREQUENT_CHECK;
2849 4165
2852 4168
2853 ev_prepare_init (&w->prepare, embed_prepare_cb); 4169 ev_prepare_init (&w->prepare, embed_prepare_cb);
2854 ev_set_priority (&w->prepare, EV_MINPRI); 4170 ev_set_priority (&w->prepare, EV_MINPRI);
2855 ev_prepare_start (EV_A_ &w->prepare); 4171 ev_prepare_start (EV_A_ &w->prepare);
2856 4172
4173 ev_fork_init (&w->fork, embed_fork_cb);
4174 ev_fork_start (EV_A_ &w->fork);
4175
2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4176 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2858 4177
2859 ev_start (EV_A_ (W)w, 1); 4178 ev_start (EV_A_ (W)w, 1);
2860 4179
2861 EV_FREQUENT_CHECK; 4180 EV_FREQUENT_CHECK;
2862} 4181}
2863 4182
2864void 4183void
2865ev_embed_stop (EV_P_ ev_embed *w) 4184ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2866{ 4185{
2867 clear_pending (EV_A_ (W)w); 4186 clear_pending (EV_A_ (W)w);
2868 if (expect_false (!ev_is_active (w))) 4187 if (expect_false (!ev_is_active (w)))
2869 return; 4188 return;
2870 4189
2871 EV_FREQUENT_CHECK; 4190 EV_FREQUENT_CHECK;
2872 4191
2873 ev_io_stop (EV_A_ &w->io); 4192 ev_io_stop (EV_A_ &w->io);
2874 ev_prepare_stop (EV_A_ &w->prepare); 4193 ev_prepare_stop (EV_A_ &w->prepare);
4194 ev_fork_stop (EV_A_ &w->fork);
2875 4195
2876 ev_stop (EV_A_ (W)w); 4196 ev_stop (EV_A_ (W)w);
2877 4197
2878 EV_FREQUENT_CHECK; 4198 EV_FREQUENT_CHECK;
2879} 4199}
2880#endif 4200#endif
2881 4201
2882#if EV_FORK_ENABLE 4202#if EV_FORK_ENABLE
2883void 4203void
2884ev_fork_start (EV_P_ ev_fork *w) 4204ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2885{ 4205{
2886 if (expect_false (ev_is_active (w))) 4206 if (expect_false (ev_is_active (w)))
2887 return; 4207 return;
2888 4208
2889 EV_FREQUENT_CHECK; 4209 EV_FREQUENT_CHECK;
2894 4214
2895 EV_FREQUENT_CHECK; 4215 EV_FREQUENT_CHECK;
2896} 4216}
2897 4217
2898void 4218void
2899ev_fork_stop (EV_P_ ev_fork *w) 4219ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2900{ 4220{
2901 clear_pending (EV_A_ (W)w); 4221 clear_pending (EV_A_ (W)w);
2902 if (expect_false (!ev_is_active (w))) 4222 if (expect_false (!ev_is_active (w)))
2903 return; 4223 return;
2904 4224
2915 4235
2916 EV_FREQUENT_CHECK; 4236 EV_FREQUENT_CHECK;
2917} 4237}
2918#endif 4238#endif
2919 4239
4240#if EV_CLEANUP_ENABLE
4241void
4242ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4243{
4244 if (expect_false (ev_is_active (w)))
4245 return;
4246
4247 EV_FREQUENT_CHECK;
4248
4249 ev_start (EV_A_ (W)w, ++cleanupcnt);
4250 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4251 cleanups [cleanupcnt - 1] = w;
4252
4253 /* cleanup watchers should never keep a refcount on the loop */
4254 ev_unref (EV_A);
4255 EV_FREQUENT_CHECK;
4256}
4257
4258void
4259ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4260{
4261 clear_pending (EV_A_ (W)w);
4262 if (expect_false (!ev_is_active (w)))
4263 return;
4264
4265 EV_FREQUENT_CHECK;
4266 ev_ref (EV_A);
4267
4268 {
4269 int active = ev_active (w);
4270
4271 cleanups [active - 1] = cleanups [--cleanupcnt];
4272 ev_active (cleanups [active - 1]) = active;
4273 }
4274
4275 ev_stop (EV_A_ (W)w);
4276
4277 EV_FREQUENT_CHECK;
4278}
4279#endif
4280
2920#if EV_ASYNC_ENABLE 4281#if EV_ASYNC_ENABLE
2921void 4282void
2922ev_async_start (EV_P_ ev_async *w) 4283ev_async_start (EV_P_ ev_async *w) EV_THROW
2923{ 4284{
2924 if (expect_false (ev_is_active (w))) 4285 if (expect_false (ev_is_active (w)))
2925 return; 4286 return;
4287
4288 w->sent = 0;
2926 4289
2927 evpipe_init (EV_A); 4290 evpipe_init (EV_A);
2928 4291
2929 EV_FREQUENT_CHECK; 4292 EV_FREQUENT_CHECK;
2930 4293
2934 4297
2935 EV_FREQUENT_CHECK; 4298 EV_FREQUENT_CHECK;
2936} 4299}
2937 4300
2938void 4301void
2939ev_async_stop (EV_P_ ev_async *w) 4302ev_async_stop (EV_P_ ev_async *w) EV_THROW
2940{ 4303{
2941 clear_pending (EV_A_ (W)w); 4304 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w))) 4305 if (expect_false (!ev_is_active (w)))
2943 return; 4306 return;
2944 4307
2955 4318
2956 EV_FREQUENT_CHECK; 4319 EV_FREQUENT_CHECK;
2957} 4320}
2958 4321
2959void 4322void
2960ev_async_send (EV_P_ ev_async *w) 4323ev_async_send (EV_P_ ev_async *w) EV_THROW
2961{ 4324{
2962 w->sent = 1; 4325 w->sent = 1;
2963 evpipe_write (EV_A_ &gotasync); 4326 evpipe_write (EV_A_ &async_pending);
2964} 4327}
2965#endif 4328#endif
2966 4329
2967/*****************************************************************************/ 4330/*****************************************************************************/
2968 4331
2978once_cb (EV_P_ struct ev_once *once, int revents) 4341once_cb (EV_P_ struct ev_once *once, int revents)
2979{ 4342{
2980 void (*cb)(int revents, void *arg) = once->cb; 4343 void (*cb)(int revents, void *arg) = once->cb;
2981 void *arg = once->arg; 4344 void *arg = once->arg;
2982 4345
2983 ev_io_stop (EV_A_ &once->io); 4346 ev_io_stop (EV_A_ &once->io);
2984 ev_timer_stop (EV_A_ &once->to); 4347 ev_timer_stop (EV_A_ &once->to);
2985 ev_free (once); 4348 ev_free (once);
2986 4349
2987 cb (revents, arg); 4350 cb (revents, arg);
2988} 4351}
2989 4352
2990static void 4353static void
2991once_cb_io (EV_P_ ev_io *w, int revents) 4354once_cb_io (EV_P_ ev_io *w, int revents)
2992{ 4355{
2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4356 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4357
4358 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2994} 4359}
2995 4360
2996static void 4361static void
2997once_cb_to (EV_P_ ev_timer *w, int revents) 4362once_cb_to (EV_P_ ev_timer *w, int revents)
2998{ 4363{
2999 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4364 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4365
4366 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3000} 4367}
3001 4368
3002void 4369void
3003ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4370ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3004{ 4371{
3005 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4372 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3006 4373
3007 if (expect_false (!once)) 4374 if (expect_false (!once))
3008 { 4375 {
3009 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4376 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3010 return; 4377 return;
3011 } 4378 }
3012 4379
3013 once->cb = cb; 4380 once->cb = cb;
3014 once->arg = arg; 4381 once->arg = arg;
3026 ev_timer_set (&once->to, timeout, 0.); 4393 ev_timer_set (&once->to, timeout, 0.);
3027 ev_timer_start (EV_A_ &once->to); 4394 ev_timer_start (EV_A_ &once->to);
3028 } 4395 }
3029} 4396}
3030 4397
4398/*****************************************************************************/
4399
4400#if EV_WALK_ENABLE
4401void ecb_cold
4402ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4403{
4404 int i, j;
4405 ev_watcher_list *wl, *wn;
4406
4407 if (types & (EV_IO | EV_EMBED))
4408 for (i = 0; i < anfdmax; ++i)
4409 for (wl = anfds [i].head; wl; )
4410 {
4411 wn = wl->next;
4412
4413#if EV_EMBED_ENABLE
4414 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4415 {
4416 if (types & EV_EMBED)
4417 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4418 }
4419 else
4420#endif
4421#if EV_USE_INOTIFY
4422 if (ev_cb ((ev_io *)wl) == infy_cb)
4423 ;
4424 else
4425#endif
4426 if ((ev_io *)wl != &pipe_w)
4427 if (types & EV_IO)
4428 cb (EV_A_ EV_IO, wl);
4429
4430 wl = wn;
4431 }
4432
4433 if (types & (EV_TIMER | EV_STAT))
4434 for (i = timercnt + HEAP0; i-- > HEAP0; )
4435#if EV_STAT_ENABLE
4436 /*TODO: timer is not always active*/
4437 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4438 {
4439 if (types & EV_STAT)
4440 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4441 }
4442 else
4443#endif
4444 if (types & EV_TIMER)
4445 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4446
4447#if EV_PERIODIC_ENABLE
4448 if (types & EV_PERIODIC)
4449 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4450 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4451#endif
4452
4453#if EV_IDLE_ENABLE
4454 if (types & EV_IDLE)
4455 for (j = NUMPRI; j--; )
4456 for (i = idlecnt [j]; i--; )
4457 cb (EV_A_ EV_IDLE, idles [j][i]);
4458#endif
4459
4460#if EV_FORK_ENABLE
4461 if (types & EV_FORK)
4462 for (i = forkcnt; i--; )
4463 if (ev_cb (forks [i]) != embed_fork_cb)
4464 cb (EV_A_ EV_FORK, forks [i]);
4465#endif
4466
4467#if EV_ASYNC_ENABLE
4468 if (types & EV_ASYNC)
4469 for (i = asynccnt; i--; )
4470 cb (EV_A_ EV_ASYNC, asyncs [i]);
4471#endif
4472
4473#if EV_PREPARE_ENABLE
4474 if (types & EV_PREPARE)
4475 for (i = preparecnt; i--; )
4476# if EV_EMBED_ENABLE
4477 if (ev_cb (prepares [i]) != embed_prepare_cb)
4478# endif
4479 cb (EV_A_ EV_PREPARE, prepares [i]);
4480#endif
4481
4482#if EV_CHECK_ENABLE
4483 if (types & EV_CHECK)
4484 for (i = checkcnt; i--; )
4485 cb (EV_A_ EV_CHECK, checks [i]);
4486#endif
4487
4488#if EV_SIGNAL_ENABLE
4489 if (types & EV_SIGNAL)
4490 for (i = 0; i < EV_NSIG - 1; ++i)
4491 for (wl = signals [i].head; wl; )
4492 {
4493 wn = wl->next;
4494 cb (EV_A_ EV_SIGNAL, wl);
4495 wl = wn;
4496 }
4497#endif
4498
4499#if EV_CHILD_ENABLE
4500 if (types & EV_CHILD)
4501 for (i = (EV_PID_HASHSIZE); i--; )
4502 for (wl = childs [i]; wl; )
4503 {
4504 wn = wl->next;
4505 cb (EV_A_ EV_CHILD, wl);
4506 wl = wn;
4507 }
4508#endif
4509/* EV_STAT 0x00001000 /* stat data changed */
4510/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4511}
4512#endif
4513
3031#if EV_MULTIPLICITY 4514#if EV_MULTIPLICITY
3032 #include "ev_wrap.h" 4515 #include "ev_wrap.h"
3033#endif 4516#endif
3034 4517
3035#ifdef __cplusplus
3036}
3037#endif
3038

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines