ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.43 by root, Fri Nov 2 20:21:33 2007 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
33#endif 146#endif
34 147
35#include <math.h> 148#include <math.h>
36#include <stdlib.h> 149#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 150#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 151#include <stddef.h>
41 152
42#include <stdio.h> 153#include <stdio.h>
43 154
44#include <assert.h> 155#include <assert.h>
45#include <errno.h> 156#include <errno.h>
46#include <sys/types.h> 157#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 158#include <time.h>
50 159
51/**/ 160#include <signal.h>
161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
168#ifndef _WIN32
169# include <sys/time.h>
170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
178# endif
179#endif
180
181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
52 190
53#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
54# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
55#endif 209#endif
56 210
57#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
59#endif 213#endif
60 214
61#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
63#endif 221#endif
64 222
65#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
66# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
67#endif 228# endif
229#endif
68 230
231#ifndef EV_USE_KQUEUE
232# define EV_USE_KQUEUE 0
233#endif
234
69#ifndef EV_USE_REALTIME 235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
70# define EV_USE_REALTIME 1 241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
71#endif 244# endif
245#endif
72 246
73/**/ 247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
74 304
75#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
76# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
78#endif 308#endif
80#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
81# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
82# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
83#endif 313#endif
84 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
85/**/ 353/**/
86 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
87#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
88#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
89#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
90/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
91 374
92#include "ev.h"
93
94#if __GNUC__ >= 3 375#if __GNUC__ >= 4
95# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
96# define inline inline 377# define noinline __attribute__ ((noinline))
97#else 378#else
98# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
99# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
100#endif 384#endif
101 385
102#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
104 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
105#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
106#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
107 403
404#define EMPTY /* required for microsofts broken pseudo-c compiler */
405#define EMPTY2(a,b) /* used to suppress some warnings */
406
108typedef struct ev_watcher *W; 407typedef ev_watcher *W;
109typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
110typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
111 410
112static ev_tstamp now_floor, now, diff; /* monotonic clock */ 411#define ev_active(w) ((W)(w))->active
113ev_tstamp ev_now; 412#define ev_at(w) ((WT)(w))->at
114int ev_method;
115 413
116static int have_monotonic; /* runtime */ 414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
117 419
118static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 420#if EV_USE_MONOTONIC
119static void (*method_modify)(int fd, int oev, int nev); 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
120static void (*method_poll)(ev_tstamp timeout); 422#endif
423
424#ifdef _WIN32
425# include "ev_win32.c"
426#endif
121 427
122/*****************************************************************************/ 428/*****************************************************************************/
123 429
430static void (*syserr_cb)(const char *msg);
431
432void
433ev_set_syserr_cb (void (*cb)(const char *msg))
434{
435 syserr_cb = cb;
436}
437
438static void noinline
439ev_syserr (const char *msg)
440{
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451}
452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470void
471ev_set_allocator (void *(*cb)(void *ptr, long size))
472{
473 alloc = cb;
474}
475
476inline_speed void *
477ev_realloc (void *ptr, long size)
478{
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488}
489
490#define ev_malloc(size) ev_realloc (0, (size))
491#define ev_free(ptr) ev_realloc ((ptr), 0)
492
493/*****************************************************************************/
494
495/* file descriptor info structure */
496typedef struct
497{
498 WL head;
499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
506#if EV_SELECT_IS_WINSOCKET
507 SOCKET handle;
508#endif
509} ANFD;
510
511/* stores the pending event set for a given watcher */
512typedef struct
513{
514 W w;
515 int events; /* the pending event set for the given watcher */
516} ANPENDING;
517
518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
520typedef struct
521{
522 WL head;
523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544#endif
545
546#if EV_MULTIPLICITY
547
548 struct ev_loop
549 {
550 ev_tstamp ev_rt_now;
551 #define ev_rt_now ((loop)->ev_rt_now)
552 #define VAR(name,decl) decl;
553 #include "ev_vars.h"
554 #undef VAR
555 };
556 #include "ev_wrap.h"
557
558 static struct ev_loop default_loop_struct;
559 struct ev_loop *ev_default_loop_ptr;
560
561#else
562
563 ev_tstamp ev_rt_now;
564 #define VAR(name,decl) static decl;
565 #include "ev_vars.h"
566 #undef VAR
567
568 static int ev_default_loop_ptr;
569
570#endif
571
572/*****************************************************************************/
573
574#ifndef EV_HAVE_EV_TIME
124ev_tstamp 575ev_tstamp
125ev_time (void) 576ev_time (void)
126{ 577{
127#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
128 struct timespec ts; 581 struct timespec ts;
129 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
130 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
131#else 584 }
585#endif
586
132 struct timeval tv; 587 struct timeval tv;
133 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
134 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
135#endif
136} 590}
591#endif
137 592
138static ev_tstamp 593inline_size ev_tstamp
139get_clock (void) 594get_clock (void)
140{ 595{
141#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
142 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
143 { 598 {
148#endif 603#endif
149 604
150 return ev_time (); 605 return ev_time ();
151} 606}
152 607
153#define array_roundsize(base,n) ((n) | 4 & ~3) 608#if EV_MULTIPLICITY
609ev_tstamp
610ev_now (EV_P)
611{
612 return ev_rt_now;
613}
614#endif
154 615
155#define array_needsize(base,cur,cnt,init) \ 616void
156 if (expect_false ((cnt) > cur)) \ 617ev_sleep (ev_tstamp delay)
157 { \ 618{
158 int newcnt = cur; \ 619 if (delay > 0.)
159 do \
160 { \
161 newcnt = array_roundsize (base, newcnt << 1); \
162 } \
163 while ((cnt) > newcnt); \
164 \
165 base = realloc (base, sizeof (*base) * (newcnt)); \
166 init (base + cur, newcnt - cur); \
167 cur = newcnt; \
168 } 620 {
621#if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628#elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630#else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640#endif
641 }
642}
169 643
170/*****************************************************************************/ 644/*****************************************************************************/
171 645
172typedef struct 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
173{
174 struct ev_io *head;
175 unsigned char events;
176 unsigned char reify;
177} ANFD;
178 647
179static ANFD *anfds; 648/* find a suitable new size for the given array, */
180static int anfdmax; 649/* hopefully by rounding to a ncie-to-malloc size */
181 650inline_size int
182static void 651array_nextsize (int elem, int cur, int cnt)
183anfds_init (ANFD *base, int count)
184{ 652{
185 while (count--) 653 int ncur = cur + 1;
186 {
187 base->head = 0;
188 base->events = EV_NONE;
189 base->reify = 0;
190 654
191 ++base; 655 do
656 ncur <<= 1;
657 while (cnt > ncur);
658
659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
192 } 661 {
193} 662 ncur *= elem;
194 663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
195typedef struct 664 ncur = ncur - sizeof (void *) * 4;
196{ 665 ncur /= elem;
197 W w;
198 int events;
199} ANPENDING;
200
201static ANPENDING *pendings [NUMPRI];
202static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
203
204static void
205event (W w, int events)
206{
207 if (w->pending)
208 { 666 }
667
668 return ncur;
669}
670
671static noinline void *
672array_realloc (int elem, void *base, int *cur, int cnt)
673{
674 *cur = array_nextsize (elem, *cur, cnt);
675 return ev_realloc (base, elem * *cur);
676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
680
681#define array_needsize(type,base,cur,cnt,init) \
682 if (expect_false ((cnt) > (cur))) \
683 { \
684 int ocur_ = (cur); \
685 (base) = (type *)array_realloc \
686 (sizeof (type), (base), &(cur), (cnt)); \
687 init ((base) + (ocur_), (cur) - ocur_); \
688 }
689
690#if 0
691#define array_slim(type,stem) \
692 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
693 { \
694 stem ## max = array_roundsize (stem ## cnt >> 1); \
695 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
697 }
698#endif
699
700#define array_free(stem, idx) \
701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
702
703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
710
711void noinline
712ev_feed_event (EV_P_ void *w, int revents)
713{
714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
716
717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
720 {
721 w_->pending = ++pendingcnt [pri];
722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
723 pendings [pri][w_->pending - 1].w = w_;
209 pendings [ABSPRI (w)][w->pending - 1].events |= events; 724 pendings [pri][w_->pending - 1].events = revents;
210 return;
211 } 725 }
212
213 w->pending = ++pendingcnt [ABSPRI (w)];
214 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
215 pendings [ABSPRI (w)][w->pending - 1].w = w;
216 pendings [ABSPRI (w)][w->pending - 1].events = events;
217} 726}
218 727
219static void 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
220queue_events (W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
221{ 745{
222 int i; 746 int i;
223 747
224 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
225 event (events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
226} 750}
227 751
228static void 752/*****************************************************************************/
753
754inline_speed void
229fd_event (int fd, int events) 755fd_event (EV_P_ int fd, int revents)
230{ 756{
231 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
232 struct ev_io *w; 758 ev_io *w;
233 759
234 for (w = anfd->head; w; w = w->next) 760 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
235 { 761 {
236 int ev = w->events & events; 762 int ev = w->events & revents;
237 763
238 if (ev) 764 if (ev)
239 event ((W)w, ev); 765 ev_feed_event (EV_A_ (W)w, ev);
240 } 766 }
241} 767}
242 768
243/*****************************************************************************/ 769void
770ev_feed_fd_event (EV_P_ int fd, int revents)
771{
772 if (fd >= 0 && fd < anfdmax)
773 fd_event (EV_A_ fd, revents);
774}
244 775
245static int *fdchanges; 776/* make sure the external fd watch events are in-sync */
246static int fdchangemax, fdchangecnt; 777/* with the kernel/libev internal state */
247 778inline_size void
248static void 779fd_reify (EV_P)
249fd_reify (void)
250{ 780{
251 int i; 781 int i;
252 782
253 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
254 { 784 {
255 int fd = fdchanges [i]; 785 int fd = fdchanges [i];
256 ANFD *anfd = anfds + fd; 786 ANFD *anfd = anfds + fd;
257 struct ev_io *w; 787 ev_io *w;
258 788
259 int events = 0; 789 unsigned char events = 0;
260 790
261 for (w = anfd->head; w; w = w->next) 791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
262 events |= w->events; 792 events |= (unsigned char)w->events;
263 793
264 anfd->reify = 0; 794#if EV_SELECT_IS_WINSOCKET
265 795 if (events)
266 if (anfd->events != events)
267 { 796 {
268 method_modify (fd, anfd->events, events); 797 unsigned long arg;
269 anfd->events = events; 798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
801 anfd->handle = _get_osfhandle (fd);
802 #endif
803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
270 } 804 }
805#endif
806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
811 anfd->reify = 0;
812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
271 } 817 }
272 818
273 fdchangecnt = 0; 819 fdchangecnt = 0;
274} 820}
275 821
276static void 822/* something about the given fd changed */
277fd_change (int fd) 823inline_size void
824fd_change (EV_P_ int fd, int flags)
278{ 825{
279 if (anfds [fd].reify || fdchangecnt < 0) 826 unsigned char reify = anfds [fd].reify;
280 return;
281
282 anfds [fd].reify = 1; 827 anfds [fd].reify |= flags;
283 828
829 if (expect_true (!reify))
830 {
284 ++fdchangecnt; 831 ++fdchangecnt;
285 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
286 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
834 }
287} 835}
288 836
289static void 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
290fd_kill (int fd) 839fd_kill (EV_P_ int fd)
291{ 840{
292 struct ev_io *w; 841 ev_io *w;
293 842
294 printf ("killing fd %d\n", fd);//D
295 while ((w = anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
296 { 844 {
297 ev_io_stop (w); 845 ev_io_stop (EV_A_ w);
298 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
299 } 847 }
848}
849
850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
852fd_valid (int fd)
853{
854#ifdef _WIN32
855 return _get_osfhandle (fd) != -1;
856#else
857 return fcntl (fd, F_GETFD) != -1;
858#endif
300} 859}
301 860
302/* called on EBADF to verify fds */ 861/* called on EBADF to verify fds */
303static void 862static void noinline
304fd_ebadf (void) 863fd_ebadf (EV_P)
305{ 864{
306 int fd; 865 int fd;
307 866
308 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
309 if (anfds [fd].events) 868 if (anfds [fd].events)
310 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
311 fd_kill (fd); 870 fd_kill (EV_A_ fd);
312} 871}
313 872
314/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
315static void 874static void noinline
316fd_enomem (void) 875fd_enomem (EV_P)
317{ 876{
318 int fd = anfdmax; 877 int fd;
319 878
320 while (fd--) 879 for (fd = anfdmax; fd--; )
321 if (anfds [fd].events) 880 if (anfds [fd].events)
322 { 881 {
323 close (fd);
324 fd_kill (fd); 882 fd_kill (EV_A_ fd);
325 return; 883 return;
326 } 884 }
327} 885}
328 886
887/* usually called after fork if backend needs to re-arm all fds from scratch */
888static void noinline
889fd_rearm_all (EV_P)
890{
891 int fd;
892
893 for (fd = 0; fd < anfdmax; ++fd)
894 if (anfds [fd].events)
895 {
896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
899 }
900}
901
329/*****************************************************************************/ 902/*****************************************************************************/
330 903
331static struct ev_timer **timers; 904/*
332static int timermax, timercnt; 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
907 * the branching factor of the d-tree.
908 */
333 909
334static struct ev_periodic **periodics; 910/*
335static int periodicmax, periodiccnt; 911 * at the moment we allow libev the luxury of two heaps,
912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
913 * which is more cache-efficient.
914 * the difference is about 5% with 50000+ watchers.
915 */
916#if EV_USE_4HEAP
336 917
337static void 918#define DHEAP 4
338upheap (WT *timers, int k) 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
339{ 920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
340 WT w = timers [k]; 921#define UPHEAP_DONE(p,k) ((p) == (k))
341 922
342 while (k && timers [k >> 1]->at > w->at) 923/* away from the root */
343 { 924inline_speed void
344 timers [k] = timers [k >> 1];
345 timers [k]->active = k + 1;
346 k >>= 1;
347 }
348
349 timers [k] = w;
350 timers [k]->active = k + 1;
351
352}
353
354static void
355downheap (WT *timers, int N, int k) 925downheap (ANHE *heap, int N, int k)
356{ 926{
357 WT w = timers [k]; 927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
358 929
359 while (k < (N >> 1)) 930 for (;;)
360 { 931 {
361 int j = k << 1; 932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
362 935
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
364 ++j; 938 {
365 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
366 if (w->at <= timers [j]->at) 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
367 break; 952 break;
368 953
369 timers [k] = timers [j]; 954 if (ANHE_at (he) <= minat)
370 timers [k]->active = k + 1; 955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
992 heap [k] = heap [c];
993 ev_active (ANHE_w (heap [k])) = k;
994
371 k = j; 995 k = c;
996 }
997
998 heap [k] = he;
999 ev_active (ANHE_w (he)) = k;
1000}
1001#endif
1002
1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
372 } 1010 {
1011 int p = HPARENT (k);
373 1012
374 timers [k] = w; 1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
375 timers [k]->active = k + 1; 1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
1026inline_size void
1027adjustheap (ANHE *heap, int N, int k)
1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1030 upheap (heap, k);
1031 else
1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
376} 1045}
377 1046
378/*****************************************************************************/ 1047/*****************************************************************************/
379 1048
1049/* associate signal watchers to a signal signal */
380typedef struct 1050typedef struct
381{ 1051{
382 struct ev_signal *head; 1052 WL head;
383 sig_atomic_t volatile gotsig; 1053 EV_ATOMIC_T gotsig;
384} ANSIG; 1054} ANSIG;
385 1055
386static ANSIG *signals; 1056static ANSIG *signals;
387static int signalmax; 1057static int signalmax;
388 1058
389static int sigpipe [2]; 1059static EV_ATOMIC_T gotsig;
390static sig_atomic_t volatile gotsig;
391static struct ev_io sigev;
392 1060
1061/*****************************************************************************/
1062
1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
1066fd_intern (int fd)
1067{
1068#ifdef _WIN32
1069 unsigned long arg = 1;
1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1071#else
1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
1073 fcntl (fd, F_SETFL, O_NONBLOCK);
1074#endif
1075}
1076
1077static void noinline
1078evpipe_init (EV_P)
1079{
1080 if (!ev_is_active (&pipe_w))
1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
1095 fd_intern (evpipe [0]);
1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
1099
1100 ev_io_start (EV_A_ &pipe_w);
1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103}
1104
1105inline_size void
1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107{
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126}
1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
393static void 1130static void
394signals_init (ANSIG *base, int count) 1131pipecb (EV_P_ ev_io *iow, int revents)
395{ 1132{
396 while (count--) 1133#if EV_USE_EVENTFD
1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
397 { 1138 }
398 base->head = 0; 1139 else
1140#endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
1145
1146 if (gotsig && ev_is_default_loop (EV_A))
1147 {
1148 int signum;
399 base->gotsig = 0; 1149 gotsig = 0;
400 1150
401 ++base; 1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156#if EV_ASYNC_ENABLE
1157 if (gotasync)
402 } 1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169#endif
403} 1170}
1171
1172/*****************************************************************************/
404 1173
405static void 1174static void
406sighandler (int signum) 1175ev_sighandler (int signum)
407{ 1176{
1177#if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179#endif
1180
1181#if _WIN32
1182 signal (signum, ev_sighandler);
1183#endif
1184
408 signals [signum - 1].gotsig = 1; 1185 signals [signum - 1].gotsig = 1;
409 1186 evpipe_write (EV_A_ &gotsig);
410 if (!gotsig)
411 {
412 gotsig = 1;
413 write (sigpipe [1], &signum, 1);
414 }
415} 1187}
416 1188
417static void 1189void noinline
418sigcb (struct ev_io *iow, int revents) 1190ev_feed_signal_event (EV_P_ int signum)
419{ 1191{
420 struct ev_signal *w; 1192 WL w;
1193
1194#if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196#endif
1197
421 int signum; 1198 --signum;
422 1199
423 read (sigpipe [0], &revents, 1); 1200 if (signum < 0 || signum >= signalmax)
424 gotsig = 0; 1201 return;
425 1202
426 for (signum = signalmax; signum--; )
427 if (signals [signum].gotsig)
428 {
429 signals [signum].gotsig = 0; 1203 signals [signum].gotsig = 0;
430 1204
431 for (w = signals [signum].head; w; w = w->next) 1205 for (w = signals [signum].head; w; w = w->next)
432 event ((W)w, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
433 }
434}
435
436static void
437siginit (void)
438{
439 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
440 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
441
442 /* rather than sort out wether we really need nb, set it */
443 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
444 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
445
446 ev_io_set (&sigev, sigpipe [0], EV_READ);
447 ev_io_start (&sigev);
448} 1207}
449 1208
450/*****************************************************************************/ 1209/*****************************************************************************/
451 1210
452static struct ev_idle **idles; 1211static WL childs [EV_PID_HASHSIZE];
453static int idlemax, idlecnt;
454 1212
455static struct ev_prepare **prepares; 1213#ifndef _WIN32
456static int preparemax, preparecnt;
457 1214
458static struct ev_check **checks;
459static int checkmax, checkcnt;
460
461/*****************************************************************************/
462
463static struct ev_child *childs [PID_HASHSIZE];
464static struct ev_signal childev; 1215static ev_signal childev;
1216
1217#ifndef WIFCONTINUED
1218# define WIFCONTINUED(status) 0
1219#endif
1220
1221/* handle a single child status event */
1222inline_speed void
1223child_reap (EV_P_ int chain, int pid, int status)
1224{
1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1227
1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
1232 {
1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1234 w->rpid = pid;
1235 w->rstatus = status;
1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1237 }
1238 }
1239}
465 1240
466#ifndef WCONTINUED 1241#ifndef WCONTINUED
467# define WCONTINUED 0 1242# define WCONTINUED 0
468#endif 1243#endif
469 1244
1245/* called on sigchld etc., calls waitpid */
470static void 1246static void
471childcb (struct ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
472{ 1248{
473 struct ev_child *w;
474 int pid, status; 1249 int pid, status;
475 1250
1251 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
476 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1252 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
477 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1253 if (!WCONTINUED
478 if (w->pid == pid || !w->pid) 1254 || errno != EINVAL
479 { 1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
480 w->status = status; 1256 return;
481 event ((W)w, EV_CHILD); 1257
482 } 1258 /* make sure we are called again until all children have been reaped */
1259 /* we need to do it this way so that the callback gets called before we continue */
1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1261
1262 child_reap (EV_A_ pid, pid, status);
1263 if (EV_PID_HASHSIZE > 1)
1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
483} 1265}
1266
1267#endif
484 1268
485/*****************************************************************************/ 1269/*****************************************************************************/
486 1270
1271#if EV_USE_PORT
1272# include "ev_port.c"
1273#endif
1274#if EV_USE_KQUEUE
1275# include "ev_kqueue.c"
1276#endif
487#if EV_USE_EPOLL 1277#if EV_USE_EPOLL
488# include "ev_epoll.c" 1278# include "ev_epoll.c"
489#endif 1279#endif
490#if EV_USE_POLL 1280#if EV_USE_POLL
491# include "ev_poll.c" 1281# include "ev_poll.c"
504ev_version_minor (void) 1294ev_version_minor (void)
505{ 1295{
506 return EV_VERSION_MINOR; 1296 return EV_VERSION_MINOR;
507} 1297}
508 1298
509/* return true if we are running with elevated privileges and ignore env variables */ 1299/* return true if we are running with elevated privileges and should ignore env variables */
510static int 1300int inline_size
511enable_secure () 1301enable_secure (void)
512{ 1302{
1303#ifdef _WIN32
1304 return 0;
1305#else
513 return getuid () != geteuid () 1306 return getuid () != geteuid ()
514 || getgid () != getegid (); 1307 || getgid () != getegid ();
1308#endif
515} 1309}
516 1310
517int ev_init (int methods) 1311unsigned int
1312ev_supported_backends (void)
518{ 1313{
519 if (!ev_method) 1314 unsigned int flags = 0;
1315
1316 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1317 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1318 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1319 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1320 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1321
1322 return flags;
1323}
1324
1325unsigned int
1326ev_recommended_backends (void)
1327{
1328 unsigned int flags = ev_supported_backends ();
1329
1330#ifndef __NetBSD__
1331 /* kqueue is borked on everything but netbsd apparently */
1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1333 flags &= ~EVBACKEND_KQUEUE;
1334#endif
1335#ifdef __APPLE__
1336 /* only select works correctly on that "unix-certified" platform */
1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1339#endif
1340
1341 return flags;
1342}
1343
1344unsigned int
1345ev_embeddable_backends (void)
1346{
1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1348
1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
1351 flags &= ~EVBACKEND_EPOLL;
1352
1353 return flags;
1354}
1355
1356unsigned int
1357ev_backend (EV_P)
1358{
1359 return backend;
1360}
1361
1362unsigned int
1363ev_loop_count (EV_P)
1364{
1365 return loop_count;
1366}
1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1374void
1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376{
1377 io_blocktime = interval;
1378}
1379
1380void
1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382{
1383 timeout_blocktime = interval;
1384}
1385
1386/* initialise a loop structure, must be zero-initialised */
1387static void noinline
1388loop_init (EV_P_ unsigned int flags)
1389{
1390 if (!backend)
520 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
521#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1404 {
1405 struct timespec ts;
1406
1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1408 have_monotonic = 1;
1409 }
1410#endif
1411
1412 ev_rt_now = ev_time ();
1413 mn_now = get_clock ();
1414 now_floor = mn_now;
1415 rtmn_diff = ev_rt_now - mn_now;
1416
1417 io_blocktime = 0.;
1418 timeout_blocktime = 0.;
1419 backend = 0;
1420 backend_fd = -1;
1421 gotasync = 0;
1422#if EV_USE_INOTIFY
1423 fs_fd = -2;
1424#endif
1425
1426 /* pid check not overridable via env */
1427#ifndef _WIN32
1428 if (flags & EVFLAG_FORKCHECK)
1429 curpid = getpid ();
1430#endif
1431
1432 if (!(flags & EVFLAG_NOENV)
1433 && !enable_secure ()
1434 && getenv ("LIBEV_FLAGS"))
1435 flags = atoi (getenv ("LIBEV_FLAGS"));
1436
1437 if (!(flags & 0x0000ffffU))
1438 flags |= ev_recommended_backends ();
1439
1440#if EV_USE_PORT
1441 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1442#endif
1443#if EV_USE_KQUEUE
1444 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1445#endif
1446#if EV_USE_EPOLL
1447 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1448#endif
1449#if EV_USE_POLL
1450 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1451#endif
1452#if EV_USE_SELECT
1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1454#endif
1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1458 ev_init (&pipe_w, pipecb);
1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1460 }
1461}
1462
1463/* free up a loop structure */
1464static void noinline
1465loop_destroy (EV_P)
1466{
1467 int i;
1468
1469 if (ev_is_active (&pipe_w))
1470 {
1471 ev_ref (EV_A); /* signal watcher */
1472 ev_io_stop (EV_A_ &pipe_w);
1473
1474#if EV_USE_EVENTFD
1475 if (evfd >= 0)
1476 close (evfd);
1477#endif
1478
1479 if (evpipe [0] >= 0)
1480 {
1481 close (evpipe [0]);
1482 close (evpipe [1]);
1483 }
1484 }
1485
1486#if EV_USE_INOTIFY
1487 if (fs_fd >= 0)
1488 close (fs_fd);
1489#endif
1490
1491 if (backend_fd >= 0)
1492 close (backend_fd);
1493
1494#if EV_USE_PORT
1495 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1496#endif
1497#if EV_USE_KQUEUE
1498 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1499#endif
1500#if EV_USE_EPOLL
1501 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1502#endif
1503#if EV_USE_POLL
1504 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1505#endif
1506#if EV_USE_SELECT
1507 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1508#endif
1509
1510 for (i = NUMPRI; i--; )
1511 {
1512 array_free (pending, [i]);
1513#if EV_IDLE_ENABLE
1514 array_free (idle, [i]);
1515#endif
1516 }
1517
1518 ev_free (anfds); anfdmax = 0;
1519
1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1522 array_free (fdchange, EMPTY);
1523 array_free (timer, EMPTY);
1524#if EV_PERIODIC_ENABLE
1525 array_free (periodic, EMPTY);
1526#endif
1527#if EV_FORK_ENABLE
1528 array_free (fork, EMPTY);
1529#endif
1530 array_free (prepare, EMPTY);
1531 array_free (check, EMPTY);
1532#if EV_ASYNC_ENABLE
1533 array_free (async, EMPTY);
1534#endif
1535
1536 backend = 0;
1537}
1538
1539#if EV_USE_INOTIFY
1540inline_size void infy_fork (EV_P);
1541#endif
1542
1543inline_size void
1544loop_fork (EV_P)
1545{
1546#if EV_USE_PORT
1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1548#endif
1549#if EV_USE_KQUEUE
1550 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1551#endif
1552#if EV_USE_EPOLL
1553 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1554#endif
1555#if EV_USE_INOTIFY
1556 infy_fork (EV_A);
1557#endif
1558
1559 if (ev_is_active (&pipe_w))
1560 {
1561 /* this "locks" the handlers against writing to the pipe */
1562 /* while we modify the fd vars */
1563 gotsig = 1;
1564#if EV_ASYNC_ENABLE
1565 gotasync = 1;
1566#endif
1567
1568 ev_ref (EV_A);
1569 ev_io_stop (EV_A_ &pipe_w);
1570
1571#if EV_USE_EVENTFD
1572 if (evfd >= 0)
1573 close (evfd);
1574#endif
1575
1576 if (evpipe [0] >= 0)
1577 {
1578 close (evpipe [0]);
1579 close (evpipe [1]);
1580 }
1581
1582 evpipe_init (EV_A);
1583 /* now iterate over everything, in case we missed something */
1584 pipecb (EV_A_ &pipe_w, EV_READ);
1585 }
1586
1587 postfork = 0;
1588}
1589
1590#if EV_MULTIPLICITY
1591
1592struct ev_loop *
1593ev_loop_new (unsigned int flags)
1594{
1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1596
1597 memset (loop, 0, sizeof (struct ev_loop));
1598
1599 loop_init (EV_A_ flags);
1600
1601 if (ev_backend (EV_A))
1602 return loop;
1603
1604 return 0;
1605}
1606
1607void
1608ev_loop_destroy (EV_P)
1609{
1610 loop_destroy (EV_A);
1611 ev_free (loop);
1612}
1613
1614void
1615ev_loop_fork (EV_P)
1616{
1617 postfork = 1; /* must be in line with ev_default_fork */
1618}
1619
1620#if EV_VERIFY
1621static void noinline
1622verify_watcher (EV_P_ W w)
1623{
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628}
1629
1630static void noinline
1631verify_heap (EV_P_ ANHE *heap, int N)
1632{
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643}
1644
1645static void noinline
1646array_verify (EV_P_ W *ws, int cnt)
1647{
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653}
1654#endif
1655
1656void
1657ev_loop_verify (EV_P)
1658{
1659#if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
522 { 1672 {
523 struct timespec ts; 1673 verify_watcher (EV_A_ (W)w);
524 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
525 have_monotonic = 1; 1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
526 } 1676 }
1677
1678 assert (timermax >= timercnt);
1679 verify_heap (EV_A_ timers, timercnt);
1680
1681#if EV_PERIODIC_ENABLE
1682 assert (periodicmax >= periodiccnt);
1683 verify_heap (EV_A_ periodics, periodiccnt);
1684#endif
1685
1686 for (i = NUMPRI; i--; )
1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689#if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693#endif
1694 }
1695
1696#if EV_FORK_ENABLE
1697 assert (forkmax >= forkcnt);
1698 array_verify (EV_A_ (W *)forks, forkcnt);
1699#endif
1700
1701#if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704#endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712# if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
527#endif 1715# endif
528
529 ev_now = ev_time ();
530 now = get_clock ();
531 now_floor = now;
532 diff = ev_now - now;
533
534 if (pipe (sigpipe))
535 return 0;
536
537 if (methods == EVMETHOD_AUTO)
538 if (!enable_secure () && getenv ("LIBEV_METHODS"))
539 methods = atoi (getenv ("LIBEV_METHODS"));
540 else
541 methods = EVMETHOD_ANY;
542
543 ev_method = 0;
544#if EV_USE_EPOLL
545 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods);
546#endif 1716#endif
547#if EV_USE_POLL 1717}
548 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods);
549#endif
550#if EV_USE_SELECT
551 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods);
552#endif
553 1718
554 if (ev_method) 1719#endif /* multiplicity */
1720
1721#if EV_MULTIPLICITY
1722struct ev_loop *
1723ev_default_loop_init (unsigned int flags)
1724#else
1725int
1726ev_default_loop (unsigned int flags)
1727#endif
1728{
1729 if (!ev_default_loop_ptr)
1730 {
1731#if EV_MULTIPLICITY
1732 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1733#else
1734 ev_default_loop_ptr = 1;
1735#endif
1736
1737 loop_init (EV_A_ flags);
1738
1739 if (ev_backend (EV_A))
555 { 1740 {
556 ev_watcher_init (&sigev, sigcb); 1741#ifndef _WIN32
557 siginit ();
558
559 ev_signal_init (&childev, childcb, SIGCHLD); 1742 ev_signal_init (&childev, childcb, SIGCHLD);
1743 ev_set_priority (&childev, EV_MAXPRI);
560 ev_signal_start (&childev); 1744 ev_signal_start (EV_A_ &childev);
1745 ev_unref (EV_A); /* child watcher should not keep loop alive */
1746#endif
561 } 1747 }
1748 else
1749 ev_default_loop_ptr = 0;
562 } 1750 }
563 1751
564 return ev_method; 1752 return ev_default_loop_ptr;
1753}
1754
1755void
1756ev_default_destroy (void)
1757{
1758#if EV_MULTIPLICITY
1759 struct ev_loop *loop = ev_default_loop_ptr;
1760#endif
1761
1762 ev_default_loop_ptr = 0;
1763
1764#ifndef _WIN32
1765 ev_ref (EV_A); /* child watcher */
1766 ev_signal_stop (EV_A_ &childev);
1767#endif
1768
1769 loop_destroy (EV_A);
1770}
1771
1772void
1773ev_default_fork (void)
1774{
1775#if EV_MULTIPLICITY
1776 struct ev_loop *loop = ev_default_loop_ptr;
1777#endif
1778
1779 postfork = 1; /* must be in line with ev_loop_fork */
565} 1780}
566 1781
567/*****************************************************************************/ 1782/*****************************************************************************/
568 1783
569void 1784void
570ev_fork_prepare (void) 1785ev_invoke (EV_P_ void *w, int revents)
571{ 1786{
572 /* nop */ 1787 EV_CB_INVOKE ((W)w, revents);
573} 1788}
574 1789
575void 1790inline_speed void
576ev_fork_parent (void)
577{
578 /* nop */
579}
580
581void
582ev_fork_child (void)
583{
584#if EV_USE_EPOLL
585 if (ev_method == EVMETHOD_EPOLL)
586 epoll_postfork_child ();
587#endif
588
589 ev_io_stop (&sigev);
590 close (sigpipe [0]);
591 close (sigpipe [1]);
592 pipe (sigpipe);
593 siginit ();
594}
595
596/*****************************************************************************/
597
598static void
599call_pending (void) 1791call_pending (EV_P)
600{ 1792{
601 int pri; 1793 int pri;
602 1794
603 for (pri = NUMPRI; pri--; ) 1795 for (pri = NUMPRI; pri--; )
604 while (pendingcnt [pri]) 1796 while (pendingcnt [pri])
605 { 1797 {
606 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
607 1799
608 if (p->w) 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
609 { 1801 /* ^ this is no longer true, as pending_w could be here */
1802
610 p->w->pending = 0; 1803 p->w->pending = 0;
611 p->w->cb (p->w, p->events); 1804 EV_CB_INVOKE (p->w, p->events);
612 } 1805 EV_FREQUENT_CHECK;
613 } 1806 }
614} 1807}
615 1808
616static void 1809#if EV_IDLE_ENABLE
617timers_reify (void) 1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1812inline_size void
1813idle_reify (EV_P)
618{ 1814{
619 while (timercnt && timers [0]->at <= now) 1815 if (expect_false (idleall))
620 { 1816 {
621 struct ev_timer *w = timers [0]; 1817 int pri;
622 1818
623 /* first reschedule or stop timer */ 1819 for (pri = NUMPRI; pri--; )
624 if (w->repeat)
625 { 1820 {
626 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1821 if (pendingcnt [pri])
627 w->at = now + w->repeat; 1822 break;
628 downheap ((WT *)timers, timercnt, 0);
629 }
630 else
631 ev_timer_stop (w); /* nonrepeating: stop timer */
632 1823
633 event ((W)w, EV_TIMEOUT); 1824 if (idlecnt [pri])
634 }
635}
636
637static void
638periodics_reify (void)
639{
640 while (periodiccnt && periodics [0]->at <= ev_now)
641 {
642 struct ev_periodic *w = periodics [0];
643
644 /* first reschedule or stop timer */
645 if (w->interval)
646 {
647 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval;
648 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now));
649 downheap ((WT *)periodics, periodiccnt, 0);
650 }
651 else
652 ev_periodic_stop (w); /* nonrepeating: stop timer */
653
654 event ((W)w, EV_PERIODIC);
655 }
656}
657
658static void
659periodics_reschedule (ev_tstamp diff)
660{
661 int i;
662
663 /* adjust periodics after time jump */
664 for (i = 0; i < periodiccnt; ++i)
665 {
666 struct ev_periodic *w = periodics [i];
667
668 if (w->interval)
669 {
670 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
671
672 if (fabs (diff) >= 1e-4)
673 { 1825 {
674 ev_periodic_stop (w); 1826 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
675 ev_periodic_start (w); 1827 break;
676
677 i = 0; /* restart loop, inefficient, but time jumps should be rare */
678 } 1828 }
679 } 1829 }
680 } 1830 }
681} 1831}
1832#endif
682 1833
683static int 1834/* make timers pending */
684time_update_monotonic (void) 1835inline_size void
1836timers_reify (EV_P)
685{ 1837{
686 now = get_clock (); 1838 EV_FREQUENT_CHECK;
687 1839
688 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
689 {
690 ev_now = now + diff;
691 return 0;
692 } 1841 {
693 else 1842 do
1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1851 ev_at (w) += w->repeat;
1852 if (ev_at (w) < mn_now)
1853 ev_at (w) = mn_now;
1854
1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1856
1857 ANHE_at_cache (timers [HEAP0]);
1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1865 }
1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1867
1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
694 { 1869 }
695 now_floor = now; 1870}
696 ev_now = ev_time (); 1871
697 return 1; 1872#if EV_PERIODIC_ENABLE
1873/* make periodics pending */
1874inline_size void
1875periodics_reify (EV_P)
1876{
1877 EV_FREQUENT_CHECK;
1878
1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
698 } 1880 {
699} 1881 int feed_count = 0;
700 1882
701static void 1883 do
702time_update (void) 1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1893
1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1895
1896 ANHE_at_cache (periodics [HEAP0]);
1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1923 }
1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1925
1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1927 }
1928}
1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1932static void noinline
1933periodics_reschedule (EV_P)
703{ 1934{
704 int i; 1935 int i;
705 1936
1937 /* adjust periodics after time jump */
1938 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1941
1942 if (w->reschedule_cb)
1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1944 else if (w->interval)
1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1946
1947 ANHE_at_cache (periodics [i]);
1948 }
1949
1950 reheap (periodics, periodiccnt);
1951}
1952#endif
1953
1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1960 for (i = 0; i < timercnt; ++i)
1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1966}
1967
1968/* fetch new monotonic and realtime times from the kernel */
1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1971time_update (EV_P_ ev_tstamp max_block)
1972{
706#if EV_USE_MONOTONIC 1973#if EV_USE_MONOTONIC
707 if (expect_true (have_monotonic)) 1974 if (expect_true (have_monotonic))
708 { 1975 {
709 if (time_update_monotonic ()) 1976 int i;
1977 ev_tstamp odiff = rtmn_diff;
1978
1979 mn_now = get_clock ();
1980
1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1982 /* interpolate in the meantime */
1983 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
710 { 1984 {
711 ev_tstamp odiff = diff; 1985 ev_rt_now = rtmn_diff + mn_now;
712 1986 return;
713 for (i = 4; --i; ) /* loop a few times, before making important decisions */
714 {
715 diff = ev_now - now;
716
717 if (fabs (odiff - diff) < MIN_TIMEJUMP)
718 return; /* all is well */
719
720 ev_now = ev_time ();
721 now = get_clock ();
722 now_floor = now;
723 }
724
725 periodics_reschedule (diff - odiff);
726 /* no timer adjustment, as the monotonic clock doesn't jump */
727 } 1987 }
1988
1989 now_floor = mn_now;
1990 ev_rt_now = ev_time ();
1991
1992 /* loop a few times, before making important decisions.
1993 * on the choice of "4": one iteration isn't enough,
1994 * in case we get preempted during the calls to
1995 * ev_time and get_clock. a second call is almost guaranteed
1996 * to succeed in that case, though. and looping a few more times
1997 * doesn't hurt either as we only do this on time-jumps or
1998 * in the unlikely event of having been preempted here.
1999 */
2000 for (i = 4; --i; )
2001 {
2002 rtmn_diff = ev_rt_now - mn_now;
2003
2004 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2005 return; /* all is well */
2006
2007 ev_rt_now = ev_time ();
2008 mn_now = get_clock ();
2009 now_floor = mn_now;
2010 }
2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2014# if EV_PERIODIC_ENABLE
2015 periodics_reschedule (EV_A);
2016# endif
728 } 2017 }
729 else 2018 else
730#endif 2019#endif
731 { 2020 {
732 ev_now = ev_time (); 2021 ev_rt_now = ev_time ();
733 2022
734 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
735 { 2024 {
736 periodics_reschedule (ev_now - now);
737
738 /* adjust timers. this is easy, as the offset is the same for all */ 2025 /* adjust timers. this is easy, as the offset is the same for all of them */
739 for (i = 0; i < timercnt; ++i) 2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
740 timers [i]->at += diff; 2027#if EV_PERIODIC_ENABLE
2028 periodics_reschedule (EV_A);
2029#endif
741 } 2030 }
742 2031
743 now = ev_now; 2032 mn_now = ev_rt_now;
744 } 2033 }
745} 2034}
746 2035
747int ev_loop_done; 2036void
748
749void ev_loop (int flags) 2037ev_loop (EV_P_ int flags)
750{ 2038{
751 double block; 2039 ++loop_depth;
752 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2040
2041 loop_done = EVUNLOOP_CANCEL;
2042
2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
753 2044
754 do 2045 do
755 { 2046 {
2047#if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049#endif
2050
2051#ifndef _WIN32
2052 if (expect_false (curpid)) /* penalise the forking check even more */
2053 if (expect_false (getpid () != curpid))
2054 {
2055 curpid = getpid ();
2056 postfork = 1;
2057 }
2058#endif
2059
2060#if EV_FORK_ENABLE
2061 /* we might have forked, so queue fork handlers */
2062 if (expect_false (postfork))
2063 if (forkcnt)
2064 {
2065 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2066 call_pending (EV_A);
2067 }
2068#endif
2069
756 /* queue check watchers (and execute them) */ 2070 /* queue prepare watchers (and execute them) */
757 if (expect_false (preparecnt)) 2071 if (expect_false (preparecnt))
758 { 2072 {
759 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
760 call_pending (); 2074 call_pending (EV_A);
761 } 2075 }
762 2076
2077 /* we might have forked, so reify kernel state if necessary */
2078 if (expect_false (postfork))
2079 loop_fork (EV_A);
2080
763 /* update fd-related kernel structures */ 2081 /* update fd-related kernel structures */
764 fd_reify (); 2082 fd_reify (EV_A);
765 2083
766 /* calculate blocking time */ 2084 /* calculate blocking time */
2085 {
2086 ev_tstamp waittime = 0.;
2087 ev_tstamp sleeptime = 0.;
767 2088
768 /* we only need this for !monotonic clockor timers, but as we basically 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
769 always have timers, we just calculate it always */
770#if EV_USE_MONOTONIC
771 if (expect_true (have_monotonic))
772 time_update_monotonic ();
773 else
774#endif
775 { 2090 {
776 ev_now = ev_time (); 2091 /* remember old timestamp for io_blocktime calculation */
777 now = ev_now; 2092 ev_tstamp prev_mn_now = mn_now;
778 }
779 2093
780 if (flags & EVLOOP_NONBLOCK || idlecnt) 2094 /* update time to cancel out callback processing overhead */
781 block = 0.; 2095 time_update (EV_A_ 1e100);
782 else 2096
783 {
784 block = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
785 2098
786 if (timercnt) 2099 if (timercnt)
787 { 2100 {
788 ev_tstamp to = timers [0]->at - now + method_fudge; 2101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
789 if (block > to) block = to; 2102 if (waittime > to) waittime = to;
790 } 2103 }
791 2104
2105#if EV_PERIODIC_ENABLE
792 if (periodiccnt) 2106 if (periodiccnt)
793 { 2107 {
794 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
795 if (block > to) block = to; 2109 if (waittime > to) waittime = to;
796 } 2110 }
2111#endif
797 2112
798 if (block < 0.) block = 0.; 2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
2114 if (expect_false (waittime < timeout_blocktime))
2115 waittime = timeout_blocktime;
2116
2117 /* extra check because io_blocktime is commonly 0 */
2118 if (expect_false (io_blocktime))
2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
2127 ev_sleep (sleeptime);
2128 waittime -= sleeptime;
2129 }
2130 }
799 } 2131 }
800 2132
801 method_poll (block); 2133 ++loop_count;
2134 backend_poll (EV_A_ waittime);
802 2135
803 /* update ev_now, do magic */ 2136 /* update ev_rt_now, do magic */
804 time_update (); 2137 time_update (EV_A_ waittime + sleeptime);
2138 }
805 2139
806 /* queue pending timers and reschedule them */ 2140 /* queue pending timers and reschedule them */
807 timers_reify (); /* relative timers called last */ 2141 timers_reify (EV_A); /* relative timers called last */
2142#if EV_PERIODIC_ENABLE
808 periodics_reify (); /* absolute timers called first */ 2143 periodics_reify (EV_A); /* absolute timers called first */
2144#endif
809 2145
2146#if EV_IDLE_ENABLE
810 /* queue idle watchers unless io or timers are pending */ 2147 /* queue idle watchers unless other events are pending */
811 if (!pendingcnt) 2148 idle_reify (EV_A);
812 queue_events ((W *)idles, idlecnt, EV_IDLE); 2149#endif
813 2150
814 /* queue check watchers, to be executed first */ 2151 /* queue check watchers, to be executed first */
815 if (checkcnt) 2152 if (expect_false (checkcnt))
816 queue_events ((W *)checks, checkcnt, EV_CHECK); 2153 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
817 2154
818 call_pending (); 2155 call_pending (EV_A);
819 } 2156 }
820 while (!ev_loop_done); 2157 while (expect_true (
2158 activecnt
2159 && !loop_done
2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2161 ));
821 2162
822 if (ev_loop_done != 2) 2163 if (loop_done == EVUNLOOP_ONE)
2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
2167}
2168
2169void
2170ev_unloop (EV_P_ int how)
2171{
823 ev_loop_done = 0; 2172 loop_done = how;
2173}
2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
824} 2210}
825 2211
826/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
827 2214
828static void 2215inline_size void
829wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
830{ 2217{
831 elem->next = *head; 2218 elem->next = *head;
832 *head = elem; 2219 *head = elem;
833} 2220}
834 2221
835static void 2222inline_size void
836wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
837{ 2224{
838 while (*head) 2225 while (*head)
839 { 2226 {
840 if (*head == elem) 2227 if (*head == elem)
845 2232
846 head = &(*head)->next; 2233 head = &(*head)->next;
847 } 2234 }
848} 2235}
849 2236
850static void 2237/* internal, faster, version of ev_clear_pending */
2238inline_speed void
851ev_clear_pending (W w) 2239clear_pending (EV_P_ W w)
852{ 2240{
853 if (w->pending) 2241 if (w->pending)
854 { 2242 {
855 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
856 w->pending = 0; 2244 w->pending = 0;
857 } 2245 }
858} 2246}
859 2247
860static void 2248int
2249ev_clear_pending (EV_P_ void *w)
2250{
2251 W w_ = (W)w;
2252 int pending = w_->pending;
2253
2254 if (expect_true (pending))
2255 {
2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
2258 w_->pending = 0;
2259 return p->events;
2260 }
2261 else
2262 return 0;
2263}
2264
2265inline_size void
2266pri_adjust (EV_P_ W w)
2267{
2268 int pri = ev_priority (w);
2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2271 ev_set_priority (w, pri);
2272}
2273
2274inline_speed void
861ev_start (W w, int active) 2275ev_start (EV_P_ W w, int active)
862{ 2276{
863 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2277 pri_adjust (EV_A_ w);
864 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
865
866 w->active = active; 2278 w->active = active;
2279 ev_ref (EV_A);
867} 2280}
868 2281
869static void 2282inline_size void
870ev_stop (W w) 2283ev_stop (EV_P_ W w)
871{ 2284{
2285 ev_unref (EV_A);
872 w->active = 0; 2286 w->active = 0;
873} 2287}
874 2288
875/*****************************************************************************/ 2289/*****************************************************************************/
876 2290
877void 2291void noinline
878ev_io_start (struct ev_io *w) 2292ev_io_start (EV_P_ ev_io *w)
879{ 2293{
880 int fd = w->fd; 2294 int fd = w->fd;
881 2295
882 if (ev_is_active (w)) 2296 if (expect_false (ev_is_active (w)))
883 return; 2297 return;
884 2298
885 assert (("ev_io_start called with negative fd", fd >= 0)); 2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
886 2301
2302 EV_FREQUENT_CHECK;
2303
887 ev_start ((W)w, 1); 2304 ev_start (EV_A_ (W)w, 1);
888 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
889 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2306 wlist_add (&anfds[fd].head, (WL)w);
890 2307
891 fd_change (fd); 2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
892} 2309 w->events &= ~EV__IOFDSET;
893 2310
894void 2311 EV_FREQUENT_CHECK;
2312}
2313
2314void noinline
895ev_io_stop (struct ev_io *w) 2315ev_io_stop (EV_P_ ev_io *w)
896{ 2316{
897 ev_clear_pending ((W)w); 2317 clear_pending (EV_A_ (W)w);
898 if (!ev_is_active (w)) 2318 if (expect_false (!ev_is_active (w)))
899 return; 2319 return;
900 2320
2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2322
2323 EV_FREQUENT_CHECK;
2324
901 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2325 wlist_del (&anfds[w->fd].head, (WL)w);
902 ev_stop ((W)w); 2326 ev_stop (EV_A_ (W)w);
903 2327
904 fd_change (w->fd); 2328 fd_change (EV_A_ w->fd, 1);
905}
906 2329
907void 2330 EV_FREQUENT_CHECK;
2331}
2332
2333void noinline
908ev_timer_start (struct ev_timer *w) 2334ev_timer_start (EV_P_ ev_timer *w)
909{ 2335{
910 if (ev_is_active (w)) 2336 if (expect_false (ev_is_active (w)))
911 return; 2337 return;
912 2338
913 w->at += now; 2339 ev_at (w) += mn_now;
914 2340
915 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
916 2342
917 ev_start ((W)w, ++timercnt); 2343 EV_FREQUENT_CHECK;
918 array_needsize (timers, timermax, timercnt, );
919 timers [timercnt - 1] = w;
920 upheap ((WT *)timers, timercnt - 1);
921}
922 2344
923void 2345 ++timercnt;
2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
2349 ANHE_at_cache (timers [ev_active (w)]);
2350 upheap (timers, ev_active (w));
2351
2352 EV_FREQUENT_CHECK;
2353
2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2355}
2356
2357void noinline
924ev_timer_stop (struct ev_timer *w) 2358ev_timer_stop (EV_P_ ev_timer *w)
925{ 2359{
926 ev_clear_pending ((W)w); 2360 clear_pending (EV_A_ (W)w);
927 if (!ev_is_active (w)) 2361 if (expect_false (!ev_is_active (w)))
928 return; 2362 return;
929 2363
930 if (w->active < timercnt--) 2364 EV_FREQUENT_CHECK;
2365
2366 {
2367 int active = ev_active (w);
2368
2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2370
2371 --timercnt;
2372
2373 if (expect_true (active < timercnt + HEAP0))
931 { 2374 {
932 timers [w->active - 1] = timers [timercnt]; 2375 timers [active] = timers [timercnt + HEAP0];
933 downheap ((WT *)timers, timercnt, w->active - 1); 2376 adjustheap (timers, timercnt, active);
934 } 2377 }
2378 }
935 2379
936 w->at = w->repeat; 2380 EV_FREQUENT_CHECK;
937 2381
2382 ev_at (w) -= mn_now;
2383
938 ev_stop ((W)w); 2384 ev_stop (EV_A_ (W)w);
939} 2385}
940 2386
941void 2387void noinline
942ev_timer_again (struct ev_timer *w) 2388ev_timer_again (EV_P_ ev_timer *w)
943{ 2389{
2390 EV_FREQUENT_CHECK;
2391
944 if (ev_is_active (w)) 2392 if (ev_is_active (w))
945 { 2393 {
946 if (w->repeat) 2394 if (w->repeat)
947 { 2395 {
948 w->at = now + w->repeat; 2396 ev_at (w) = mn_now + w->repeat;
2397 ANHE_at_cache (timers [ev_active (w)]);
949 downheap ((WT *)timers, timercnt, w->active - 1); 2398 adjustheap (timers, timercnt, ev_active (w));
950 } 2399 }
951 else 2400 else
952 ev_timer_stop (w); 2401 ev_timer_stop (EV_A_ w);
953 } 2402 }
954 else if (w->repeat) 2403 else if (w->repeat)
2404 {
2405 ev_at (w) = w->repeat;
955 ev_timer_start (w); 2406 ev_timer_start (EV_A_ w);
956} 2407 }
957 2408
958void 2409 EV_FREQUENT_CHECK;
2410}
2411
2412#if EV_PERIODIC_ENABLE
2413void noinline
959ev_periodic_start (struct ev_periodic *w) 2414ev_periodic_start (EV_P_ ev_periodic *w)
960{ 2415{
961 if (ev_is_active (w)) 2416 if (expect_false (ev_is_active (w)))
962 return; 2417 return;
963 2418
2419 if (w->reschedule_cb)
2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2421 else if (w->interval)
2422 {
964 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
965
966 /* this formula differs from the one in periodic_reify because we do not always round up */ 2424 /* this formula differs from the one in periodic_reify because we do not always round up */
967 if (w->interval)
968 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2426 }
2427 else
2428 ev_at (w) = w->offset;
969 2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
970 ev_start ((W)w, ++periodiccnt); 2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
971 array_needsize (periodics, periodicmax, periodiccnt, ); 2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
972 periodics [periodiccnt - 1] = w; 2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
973 upheap ((WT *)periodics, periodiccnt - 1); 2436 ANHE_at_cache (periodics [ev_active (w)]);
974} 2437 upheap (periodics, ev_active (w));
975 2438
976void 2439 EV_FREQUENT_CHECK;
2440
2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2442}
2443
2444void noinline
977ev_periodic_stop (struct ev_periodic *w) 2445ev_periodic_stop (EV_P_ ev_periodic *w)
978{ 2446{
979 ev_clear_pending ((W)w); 2447 clear_pending (EV_A_ (W)w);
980 if (!ev_is_active (w)) 2448 if (expect_false (!ev_is_active (w)))
981 return; 2449 return;
982 2450
983 if (w->active < periodiccnt--) 2451 EV_FREQUENT_CHECK;
2452
2453 {
2454 int active = ev_active (w);
2455
2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2457
2458 --periodiccnt;
2459
2460 if (expect_true (active < periodiccnt + HEAP0))
984 { 2461 {
985 periodics [w->active - 1] = periodics [periodiccnt]; 2462 periodics [active] = periodics [periodiccnt + HEAP0];
986 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2463 adjustheap (periodics, periodiccnt, active);
987 } 2464 }
2465 }
988 2466
2467 EV_FREQUENT_CHECK;
2468
989 ev_stop ((W)w); 2469 ev_stop (EV_A_ (W)w);
990} 2470}
991 2471
992void 2472void noinline
2473ev_periodic_again (EV_P_ ev_periodic *w)
2474{
2475 /* TODO: use adjustheap and recalculation */
2476 ev_periodic_stop (EV_A_ w);
2477 ev_periodic_start (EV_A_ w);
2478}
2479#endif
2480
2481#ifndef SA_RESTART
2482# define SA_RESTART 0
2483#endif
2484
2485void noinline
993ev_signal_start (struct ev_signal *w) 2486ev_signal_start (EV_P_ ev_signal *w)
994{ 2487{
2488#if EV_MULTIPLICITY
2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2490#endif
995 if (ev_is_active (w)) 2491 if (expect_false (ev_is_active (w)))
996 return; 2492 return;
997 2493
998 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
999 2495
2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
2499
2500 {
2501#ifndef _WIN32
2502 sigset_t full, prev;
2503 sigfillset (&full);
2504 sigprocmask (SIG_SETMASK, &full, &prev);
2505#endif
2506
2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2508
2509#ifndef _WIN32
2510 sigprocmask (SIG_SETMASK, &prev, 0);
2511#endif
2512 }
2513
1000 ev_start ((W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
1001 array_needsize (signals, signalmax, w->signum, signals_init);
1002 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2515 wlist_add (&signals [w->signum - 1].head, (WL)w);
1003 2516
1004 if (!w->next) 2517 if (!((WL)w)->next)
1005 { 2518 {
2519#if _WIN32
2520 signal (w->signum, ev_sighandler);
2521#else
1006 struct sigaction sa; 2522 struct sigaction sa;
1007 sa.sa_handler = sighandler; 2523 sa.sa_handler = ev_sighandler;
1008 sigfillset (&sa.sa_mask); 2524 sigfillset (&sa.sa_mask);
1009 sa.sa_flags = 0; 2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1010 sigaction (w->signum, &sa, 0); 2526 sigaction (w->signum, &sa, 0);
2527#endif
1011 } 2528 }
1012}
1013 2529
1014void 2530 EV_FREQUENT_CHECK;
2531}
2532
2533void noinline
1015ev_signal_stop (struct ev_signal *w) 2534ev_signal_stop (EV_P_ ev_signal *w)
1016{ 2535{
1017 ev_clear_pending ((W)w); 2536 clear_pending (EV_A_ (W)w);
1018 if (!ev_is_active (w)) 2537 if (expect_false (!ev_is_active (w)))
1019 return; 2538 return;
1020 2539
2540 EV_FREQUENT_CHECK;
2541
1021 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
1022 ev_stop ((W)w); 2543 ev_stop (EV_A_ (W)w);
1023 2544
1024 if (!signals [w->signum - 1].head) 2545 if (!signals [w->signum - 1].head)
1025 signal (w->signum, SIG_DFL); 2546 signal (w->signum, SIG_DFL);
1026}
1027 2547
2548 EV_FREQUENT_CHECK;
2549}
2550
1028void 2551void
1029ev_idle_start (struct ev_idle *w) 2552ev_child_start (EV_P_ ev_child *w)
1030{ 2553{
2554#if EV_MULTIPLICITY
2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2556#endif
1031 if (ev_is_active (w)) 2557 if (expect_false (ev_is_active (w)))
1032 return; 2558 return;
1033 2559
1034 ev_start ((W)w, ++idlecnt); 2560 EV_FREQUENT_CHECK;
1035 array_needsize (idles, idlemax, idlecnt, );
1036 idles [idlecnt - 1] = w;
1037}
1038 2561
2562 ev_start (EV_A_ (W)w, 1);
2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2564
2565 EV_FREQUENT_CHECK;
2566}
2567
1039void 2568void
1040ev_idle_stop (struct ev_idle *w) 2569ev_child_stop (EV_P_ ev_child *w)
1041{ 2570{
1042 ev_clear_pending ((W)w); 2571 clear_pending (EV_A_ (W)w);
1043 if (ev_is_active (w)) 2572 if (expect_false (!ev_is_active (w)))
1044 return; 2573 return;
1045 2574
1046 idles [w->active - 1] = idles [--idlecnt]; 2575 EV_FREQUENT_CHECK;
2576
2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1047 ev_stop ((W)w); 2578 ev_stop (EV_A_ (W)w);
1048}
1049 2579
1050void 2580 EV_FREQUENT_CHECK;
1051ev_prepare_start (struct ev_prepare *w) 2581}
2582
2583#if EV_STAT_ENABLE
2584
2585# ifdef _WIN32
2586# undef lstat
2587# define lstat(a,b) _stati64 (a,b)
2588# endif
2589
2590#define DEF_STAT_INTERVAL 5.0074891
2591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2592#define MIN_STAT_INTERVAL 0.1074891
2593
2594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2595
2596#if EV_USE_INOTIFY
2597# define EV_INOTIFY_BUFSIZE 8192
2598
2599static void noinline
2600infy_add (EV_P_ ev_stat *w)
1052{ 2601{
1053 if (ev_is_active (w)) 2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2603
2604 if (w->wd < 0)
2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2608
2609 /* monitor some parent directory for speedup hints */
2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2611 /* but an efficiency issue only */
2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2613 {
2614 char path [4096];
2615 strcpy (path, w->path);
2616
2617 do
2618 {
2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2621
2622 char *pend = strrchr (path, '/');
2623
2624 if (!pend || pend == path)
2625 break;
2626
2627 *pend = 0;
2628 w->wd = inotify_add_watch (fs_fd, path, mask);
2629 }
2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2631 }
2632 }
2633
2634 if (w->wd >= 0)
2635 {
2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
2655}
2656
2657static void noinline
2658infy_del (EV_P_ ev_stat *w)
2659{
2660 int slot;
2661 int wd = w->wd;
2662
2663 if (wd < 0)
1054 return; 2664 return;
1055 2665
2666 w->wd = -2;
2667 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2668 wlist_del (&fs_hash [slot].head, (WL)w);
2669
2670 /* remove this watcher, if others are watching it, they will rearm */
2671 inotify_rm_watch (fs_fd, wd);
2672}
2673
2674static void noinline
2675infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2676{
2677 if (slot < 0)
2678 /* overflow, need to check for all hash slots */
2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2680 infy_wd (EV_A_ slot, wd, ev);
2681 else
2682 {
2683 WL w_;
2684
2685 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2686 {
2687 ev_stat *w = (ev_stat *)w_;
2688 w_ = w_->next; /* lets us remove this watcher and all before it */
2689
2690 if (w->wd == wd || wd == -1)
2691 {
2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2695 w->wd = -1;
2696 infy_add (EV_A_ w); /* re-add, no matter what */
2697 }
2698
2699 stat_timer_cb (EV_A_ &w->timer, 0);
2700 }
2701 }
2702 }
2703}
2704
2705static void
2706infy_cb (EV_P_ ev_io *w, int revents)
2707{
2708 char buf [EV_INOTIFY_BUFSIZE];
2709 struct inotify_event *ev = (struct inotify_event *)buf;
2710 int ofs;
2711 int len = read (fs_fd, buf, sizeof (buf));
2712
2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2715}
2716
2717inline_size void
2718check_2625 (EV_P)
2719{
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738}
2739
2740inline_size void
2741infy_init (EV_P)
2742{
2743 if (fs_fd != -2)
2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
2749
2750 fs_fd = inotify_init ();
2751
2752 if (fs_fd >= 0)
2753 {
2754 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2755 ev_set_priority (&fs_w, EV_MAXPRI);
2756 ev_io_start (EV_A_ &fs_w);
2757 }
2758}
2759
2760inline_size void
2761infy_fork (EV_P)
2762{
2763 int slot;
2764
2765 if (fs_fd < 0)
2766 return;
2767
2768 close (fs_fd);
2769 fs_fd = inotify_init ();
2770
2771 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2772 {
2773 WL w_ = fs_hash [slot].head;
2774 fs_hash [slot].head = 0;
2775
2776 while (w_)
2777 {
2778 ev_stat *w = (ev_stat *)w_;
2779 w_ = w_->next; /* lets us add this watcher */
2780
2781 w->wd = -1;
2782
2783 if (fs_fd >= 0)
2784 infy_add (EV_A_ w); /* re-add, no matter what */
2785 else
2786 ev_timer_again (EV_A_ &w->timer);
2787 }
2788 }
2789}
2790
2791#endif
2792
2793#ifdef _WIN32
2794# define EV_LSTAT(p,b) _stati64 (p, b)
2795#else
2796# define EV_LSTAT(p,b) lstat (p, b)
2797#endif
2798
2799void
2800ev_stat_stat (EV_P_ ev_stat *w)
2801{
2802 if (lstat (w->path, &w->attr) < 0)
2803 w->attr.st_nlink = 0;
2804 else if (!w->attr.st_nlink)
2805 w->attr.st_nlink = 1;
2806}
2807
2808static void noinline
2809stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2810{
2811 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2812
2813 /* we copy this here each the time so that */
2814 /* prev has the old value when the callback gets invoked */
2815 w->prev = w->attr;
2816 ev_stat_stat (EV_A_ w);
2817
2818 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2819 if (
2820 w->prev.st_dev != w->attr.st_dev
2821 || w->prev.st_ino != w->attr.st_ino
2822 || w->prev.st_mode != w->attr.st_mode
2823 || w->prev.st_nlink != w->attr.st_nlink
2824 || w->prev.st_uid != w->attr.st_uid
2825 || w->prev.st_gid != w->attr.st_gid
2826 || w->prev.st_rdev != w->attr.st_rdev
2827 || w->prev.st_size != w->attr.st_size
2828 || w->prev.st_atime != w->attr.st_atime
2829 || w->prev.st_mtime != w->attr.st_mtime
2830 || w->prev.st_ctime != w->attr.st_ctime
2831 ) {
2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
2835 infy_del (EV_A_ w);
2836 infy_add (EV_A_ w);
2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
2839 #endif
2840
2841 ev_feed_event (EV_A_ w, EV_STAT);
2842 }
2843}
2844
2845void
2846ev_stat_start (EV_P_ ev_stat *w)
2847{
2848 if (expect_false (ev_is_active (w)))
2849 return;
2850
2851 ev_stat_stat (EV_A_ w);
2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2854 w->interval = MIN_STAT_INTERVAL;
2855
2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2857 ev_set_priority (&w->timer, ev_priority (w));
2858
2859#if EV_USE_INOTIFY
2860 infy_init (EV_A);
2861
2862 if (fs_fd >= 0)
2863 infy_add (EV_A_ w);
2864 else
2865#endif
2866 ev_timer_again (EV_A_ &w->timer);
2867
2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
2871}
2872
2873void
2874ev_stat_stop (EV_P_ ev_stat *w)
2875{
2876 clear_pending (EV_A_ (W)w);
2877 if (expect_false (!ev_is_active (w)))
2878 return;
2879
2880 EV_FREQUENT_CHECK;
2881
2882#if EV_USE_INOTIFY
2883 infy_del (EV_A_ w);
2884#endif
2885 ev_timer_stop (EV_A_ &w->timer);
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891#endif
2892
2893#if EV_IDLE_ENABLE
2894void
2895ev_idle_start (EV_P_ ev_idle *w)
2896{
2897 if (expect_false (ev_is_active (w)))
2898 return;
2899
2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ++idlecnt [ABSPRI (w)];
2906
2907 ++idleall;
2908 ev_start (EV_A_ (W)w, active);
2909
2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2911 idles [ABSPRI (w)][active - 1] = w;
2912 }
2913
2914 EV_FREQUENT_CHECK;
2915}
2916
2917void
2918ev_idle_stop (EV_P_ ev_idle *w)
2919{
2920 clear_pending (EV_A_ (W)w);
2921 if (expect_false (!ev_is_active (w)))
2922 return;
2923
2924 EV_FREQUENT_CHECK;
2925
2926 {
2927 int active = ev_active (w);
2928
2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2931
2932 ev_stop (EV_A_ (W)w);
2933 --idleall;
2934 }
2935
2936 EV_FREQUENT_CHECK;
2937}
2938#endif
2939
2940void
2941ev_prepare_start (EV_P_ ev_prepare *w)
2942{
2943 if (expect_false (ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
1056 ev_start ((W)w, ++preparecnt); 2948 ev_start (EV_A_ (W)w, ++preparecnt);
1057 array_needsize (prepares, preparemax, preparecnt, ); 2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1058 prepares [preparecnt - 1] = w; 2950 prepares [preparecnt - 1] = w;
1059}
1060 2951
2952 EV_FREQUENT_CHECK;
2953}
2954
1061void 2955void
1062ev_prepare_stop (struct ev_prepare *w) 2956ev_prepare_stop (EV_P_ ev_prepare *w)
1063{ 2957{
1064 ev_clear_pending ((W)w); 2958 clear_pending (EV_A_ (W)w);
1065 if (ev_is_active (w)) 2959 if (expect_false (!ev_is_active (w)))
1066 return; 2960 return;
1067 2961
2962 EV_FREQUENT_CHECK;
2963
2964 {
2965 int active = ev_active (w);
2966
1068 prepares [w->active - 1] = prepares [--preparecnt]; 2967 prepares [active - 1] = prepares [--preparecnt];
2968 ev_active (prepares [active - 1]) = active;
2969 }
2970
1069 ev_stop ((W)w); 2971 ev_stop (EV_A_ (W)w);
1070}
1071 2972
2973 EV_FREQUENT_CHECK;
2974}
2975
1072void 2976void
1073ev_check_start (struct ev_check *w) 2977ev_check_start (EV_P_ ev_check *w)
1074{ 2978{
1075 if (ev_is_active (w)) 2979 if (expect_false (ev_is_active (w)))
1076 return; 2980 return;
1077 2981
2982 EV_FREQUENT_CHECK;
2983
1078 ev_start ((W)w, ++checkcnt); 2984 ev_start (EV_A_ (W)w, ++checkcnt);
1079 array_needsize (checks, checkmax, checkcnt, ); 2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1080 checks [checkcnt - 1] = w; 2986 checks [checkcnt - 1] = w;
1081}
1082 2987
2988 EV_FREQUENT_CHECK;
2989}
2990
1083void 2991void
1084ev_check_stop (struct ev_check *w) 2992ev_check_stop (EV_P_ ev_check *w)
1085{ 2993{
1086 ev_clear_pending ((W)w); 2994 clear_pending (EV_A_ (W)w);
1087 if (ev_is_active (w)) 2995 if (expect_false (!ev_is_active (w)))
1088 return; 2996 return;
1089 2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
1090 checks [w->active - 1] = checks [--checkcnt]; 3003 checks [active - 1] = checks [--checkcnt];
3004 ev_active (checks [active - 1]) = active;
3005 }
3006
1091 ev_stop ((W)w); 3007 ev_stop (EV_A_ (W)w);
1092}
1093 3008
1094void 3009 EV_FREQUENT_CHECK;
1095ev_child_start (struct ev_child *w) 3010}
3011
3012#if EV_EMBED_ENABLE
3013void noinline
3014ev_embed_sweep (EV_P_ ev_embed *w)
1096{ 3015{
3016 ev_loop (w->other, EVLOOP_NONBLOCK);
3017}
3018
3019static void
3020embed_io_cb (EV_P_ ev_io *io, int revents)
3021{
3022 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3023
1097 if (ev_is_active (w)) 3024 if (ev_cb (w))
3025 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3026 else
3027 ev_loop (w->other, EVLOOP_NONBLOCK);
3028}
3029
3030static void
3031embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3032{
3033 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3034
3035 {
3036 struct ev_loop *loop = w->other;
3037
3038 while (fdchangecnt)
3039 {
3040 fd_reify (EV_A);
3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3042 }
3043 }
3044}
3045
3046static void
3047embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048{
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061}
3062
3063#if 0
3064static void
3065embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3066{
3067 ev_idle_stop (EV_A_ idle);
3068}
3069#endif
3070
3071void
3072ev_embed_start (EV_P_ ev_embed *w)
3073{
3074 if (expect_false (ev_is_active (w)))
1098 return; 3075 return;
1099 3076
3077 {
3078 struct ev_loop *loop = w->other;
3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3081 }
3082
3083 EV_FREQUENT_CHECK;
3084
3085 ev_set_priority (&w->io, ev_priority (w));
3086 ev_io_start (EV_A_ &w->io);
3087
3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
3089 ev_set_priority (&w->prepare, EV_MINPRI);
3090 ev_prepare_start (EV_A_ &w->prepare);
3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3096
1100 ev_start ((W)w, 1); 3097 ev_start (EV_A_ (W)w, 1);
1101 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1102}
1103 3098
3099 EV_FREQUENT_CHECK;
3100}
3101
1104void 3102void
1105ev_child_stop (struct ev_child *w) 3103ev_embed_stop (EV_P_ ev_embed *w)
1106{ 3104{
1107 ev_clear_pending ((W)w); 3105 clear_pending (EV_A_ (W)w);
1108 if (ev_is_active (w)) 3106 if (expect_false (!ev_is_active (w)))
1109 return; 3107 return;
1110 3108
1111 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3109 EV_FREQUENT_CHECK;
3110
3111 ev_io_stop (EV_A_ &w->io);
3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
3114
3115 EV_FREQUENT_CHECK;
3116}
3117#endif
3118
3119#if EV_FORK_ENABLE
3120void
3121ev_fork_start (EV_P_ ev_fork *w)
3122{
3123 if (expect_false (ev_is_active (w)))
3124 return;
3125
3126 EV_FREQUENT_CHECK;
3127
3128 ev_start (EV_A_ (W)w, ++forkcnt);
3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
3133}
3134
3135void
3136ev_fork_stop (EV_P_ ev_fork *w)
3137{
3138 clear_pending (EV_A_ (W)w);
3139 if (expect_false (!ev_is_active (w)))
3140 return;
3141
3142 EV_FREQUENT_CHECK;
3143
3144 {
3145 int active = ev_active (w);
3146
3147 forks [active - 1] = forks [--forkcnt];
3148 ev_active (forks [active - 1]) = active;
3149 }
3150
1112 ev_stop ((W)w); 3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
1113} 3154}
3155#endif
3156
3157#if EV_ASYNC_ENABLE
3158void
3159ev_async_start (EV_P_ ev_async *w)
3160{
3161 if (expect_false (ev_is_active (w)))
3162 return;
3163
3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
3167
3168 ev_start (EV_A_ (W)w, ++asynccnt);
3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_async_stop (EV_P_ ev_async *w)
3177{
3178 clear_pending (EV_A_ (W)w);
3179 if (expect_false (!ev_is_active (w)))
3180 return;
3181
3182 EV_FREQUENT_CHECK;
3183
3184 {
3185 int active = ev_active (w);
3186
3187 asyncs [active - 1] = asyncs [--asynccnt];
3188 ev_active (asyncs [active - 1]) = active;
3189 }
3190
3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
3194}
3195
3196void
3197ev_async_send (EV_P_ ev_async *w)
3198{
3199 w->sent = 1;
3200 evpipe_write (EV_A_ &gotasync);
3201}
3202#endif
1114 3203
1115/*****************************************************************************/ 3204/*****************************************************************************/
1116 3205
1117struct ev_once 3206struct ev_once
1118{ 3207{
1119 struct ev_io io; 3208 ev_io io;
1120 struct ev_timer to; 3209 ev_timer to;
1121 void (*cb)(int revents, void *arg); 3210 void (*cb)(int revents, void *arg);
1122 void *arg; 3211 void *arg;
1123}; 3212};
1124 3213
1125static void 3214static void
1126once_cb (struct ev_once *once, int revents) 3215once_cb (EV_P_ struct ev_once *once, int revents)
1127{ 3216{
1128 void (*cb)(int revents, void *arg) = once->cb; 3217 void (*cb)(int revents, void *arg) = once->cb;
1129 void *arg = once->arg; 3218 void *arg = once->arg;
1130 3219
1131 ev_io_stop (&once->io); 3220 ev_io_stop (EV_A_ &once->io);
1132 ev_timer_stop (&once->to); 3221 ev_timer_stop (EV_A_ &once->to);
1133 free (once); 3222 ev_free (once);
1134 3223
1135 cb (revents, arg); 3224 cb (revents, arg);
1136} 3225}
1137 3226
1138static void 3227static void
1139once_cb_io (struct ev_io *w, int revents) 3228once_cb_io (EV_P_ ev_io *w, int revents)
1140{ 3229{
1141 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1142} 3233}
1143 3234
1144static void 3235static void
1145once_cb_to (struct ev_timer *w, int revents) 3236once_cb_to (EV_P_ ev_timer *w, int revents)
1146{ 3237{
1147 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1148}
1149 3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3241}
3242
1150void 3243void
1151ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3244ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1152{ 3245{
1153 struct ev_once *once = malloc (sizeof (struct ev_once)); 3246 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1154 3247
1155 if (!once) 3248 if (expect_false (!once))
3249 {
1156 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3250 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1157 else 3251 return;
1158 { 3252 }
3253
1159 once->cb = cb; 3254 once->cb = cb;
1160 once->arg = arg; 3255 once->arg = arg;
1161 3256
1162 ev_watcher_init (&once->io, once_cb_io); 3257 ev_init (&once->io, once_cb_io);
1163 if (fd >= 0) 3258 if (fd >= 0)
3259 {
3260 ev_io_set (&once->io, fd, events);
3261 ev_io_start (EV_A_ &once->io);
3262 }
3263
3264 ev_init (&once->to, once_cb_to);
3265 if (timeout >= 0.)
3266 {
3267 ev_timer_set (&once->to, timeout, 0.);
3268 ev_timer_start (EV_A_ &once->to);
3269 }
3270}
3271
3272/*****************************************************************************/
3273
3274#if EV_WALK_ENABLE
3275void
3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277{
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
1164 { 3284 {
1165 ev_io_set (&once->io, fd, events); 3285 wn = wl->next;
1166 ev_io_start (&once->io); 3286
3287#if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294#endif
3295#if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299#endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
1167 } 3305 }
1168 3306
1169 ev_watcher_init (&once->to, once_cb_to); 3307 if (types & (EV_TIMER | EV_STAT))
1170 if (timeout >= 0.) 3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309#if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1171 { 3312 {
1172 ev_timer_set (&once->to, timeout, 0.); 3313 if (types & EV_STAT)
1173 ev_timer_start (&once->to); 3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1174 } 3315 }
1175 } 3316 else
1176} 3317#endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1177 3320
1178/*****************************************************************************/ 3321#if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325#endif
1179 3326
1180#if 0 3327#if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332#endif
1181 3333
1182struct ev_io wio; 3334#if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339#endif
1183 3340
1184static void 3341#if EV_ASYNC_ENABLE
1185sin_cb (struct ev_io *w, int revents) 3342 if (types & EV_ASYNC)
1186{ 3343 for (i = asynccnt; i--; )
1187 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
1188} 3345#endif
1189 3346
1190static void 3347 if (types & EV_PREPARE)
1191ocb (struct ev_timer *w, int revents) 3348 for (i = preparecnt; i--; )
1192{ 3349#if EV_EMBED_ENABLE
1193 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
1194 ev_timer_stop (w); 3351#endif
1195 ev_timer_start (w); 3352 cb (EV_A_ EV_PREPARE, prepares [i]);
1196}
1197 3353
1198static void 3354 if (types & EV_CHECK)
1199scb (struct ev_signal *w, int revents) 3355 for (i = checkcnt; i--; )
1200{ 3356 cb (EV_A_ EV_CHECK, checks [i]);
1201 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1202 ev_io_stop (&wio);
1203 ev_io_start (&wio);
1204}
1205 3357
1206static void 3358 if (types & EV_SIGNAL)
1207gcb (struct ev_signal *w, int revents)
1208{
1209 fprintf (stderr, "generic %x\n", revents);
1210
1211}
1212
1213int main (void)
1214{
1215 ev_init (0);
1216
1217 ev_io_init (&wio, sin_cb, 0, EV_READ);
1218 ev_io_start (&wio);
1219
1220 struct ev_timer t[10000];
1221
1222#if 0
1223 int i;
1224 for (i = 0; i < 10000; ++i) 3359 for (i = 0; i < signalmax; ++i)
1225 { 3360 for (wl = signals [i].head; wl; )
1226 struct ev_timer *w = t + i; 3361 {
1227 ev_watcher_init (w, ocb, i); 3362 wn = wl->next;
1228 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3363 cb (EV_A_ EV_SIGNAL, wl);
1229 ev_timer_start (w); 3364 wl = wn;
1230 if (drand48 () < 0.5) 3365 }
1231 ev_timer_stop (w);
1232 }
1233#endif
1234 3366
1235 struct ev_timer t1; 3367 if (types & EV_CHILD)
1236 ev_timer_init (&t1, ocb, 5, 10); 3368 for (i = EV_PID_HASHSIZE; i--; )
1237 ev_timer_start (&t1); 3369 for (wl = childs [i]; wl; )
1238 3370 {
1239 struct ev_signal sig; 3371 wn = wl->next;
1240 ev_signal_init (&sig, scb, SIGQUIT); 3372 cb (EV_A_ EV_CHILD, wl);
1241 ev_signal_start (&sig); 3373 wl = wn;
1242 3374 }
1243 struct ev_check cw; 3375/* EV_STAT 0x00001000 /* stat data changed */
1244 ev_check_init (&cw, gcb); 3376/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1245 ev_check_start (&cw);
1246
1247 struct ev_idle iw;
1248 ev_idle_init (&iw, gcb);
1249 ev_idle_start (&iw);
1250
1251 ev_loop (0);
1252
1253 return 0;
1254} 3377}
1255
1256#endif 3378#endif
1257 3379
3380#if EV_MULTIPLICITY
3381 #include "ev_wrap.h"
3382#endif
1258 3383
3384#ifdef __cplusplus
3385}
3386#endif
1259 3387
1260

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines