ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.430 by root, Wed May 9 16:50:23 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
111#ifndef _WIN32 199#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 200# include <sys/time.h>
114# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
115#else 203#else
204# include <io.h>
116# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 206# include <windows.h>
207# include <winsock2.h>
118# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
120# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
121#endif 261# endif
122 262#endif
123/**/
124 263
125#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
126# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
127#endif 270#endif
128 271
129#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
131#endif 282#endif
132 283
133#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 286#endif
136 287
137#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
138# ifdef _WIN32 289# ifdef _WIN32
139# define EV_USE_POLL 0 290# define EV_USE_POLL 0
140# else 291# else
141# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 293# endif
143#endif 294#endif
144 295
145#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
146# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
147#endif 302#endif
148 303
149#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
151#endif 306#endif
152 307
153#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 309# define EV_USE_PORT 0
155#endif 310#endif
156 311
157/**/ 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
158 383
159#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
162#endif 387#endif
164#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
167#endif 392#endif
168 393
169#if EV_SELECT_IS_WINSOCKET 394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
170# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
171#endif 452#endif
172 453
173/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
174 468
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
180#ifdef EV_H 506#ifndef ECB_H
181# include EV_H 507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
516 #if __GNUC__
517 typedef signed long long int64_t;
518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
182#else 523#else
183# include "ev.h" 524 #include <inttypes.h>
525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
184#endif 539 #endif
540#endif
185 541
186#if __GNUC__ >= 3 542/*****************************************************************************/
187# define expect(expr,value) __builtin_expect ((expr),(value)) 543
188# define inline static inline 544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
189#else 646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
190# define expect(expr,value) (expr) 675 #define ecb_expect(expr,value) (expr)
191# define inline static 676 #define ecb_prefetch(addr,rw,locality)
192#endif 677#endif
193 678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
194#define expect_false(expr) expect ((expr) != 0, 0) 705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
196 710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
957#define inline_size ecb_inline
958
959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
962# define inline_speed static noinline
963#endif
964
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
969#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
199 972
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 973#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 974#define EMPTY2(a,b) /* used to suppress some warnings */
202 975
203typedef struct ev_watcher *W; 976typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 977typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 978typedef ev_watcher_time *WT;
206 979
980#define ev_active(w) ((W)(w))->active
981#define ev_at(w) ((WT)(w))->at
982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
989#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
1001#endif
208 1002
209#ifdef _WIN32 1003#ifdef _WIN32
210# include "ev_win32.c" 1004# include "ev_win32.c"
211#endif 1005#endif
212 1006
213/*****************************************************************************/ 1007/*****************************************************************************/
214 1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
215static void (*syserr_cb)(const char *msg); 1107static void (*syserr_cb)(const char *msg) EV_THROW;
216 1108
1109void ecb_cold
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 1110ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
218{ 1111{
219 syserr_cb = cb; 1112 syserr_cb = cb;
220} 1113}
221 1114
222static void 1115static void noinline ecb_cold
223syserr (const char *msg) 1116ev_syserr (const char *msg)
224{ 1117{
225 if (!msg) 1118 if (!msg)
226 msg = "(libev) system error"; 1119 msg = "(libev) system error";
227 1120
228 if (syserr_cb) 1121 if (syserr_cb)
229 syserr_cb (msg); 1122 syserr_cb (msg);
230 else 1123 else
231 { 1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
232 perror (msg); 1131 perror (msg);
1132#endif
233 abort (); 1133 abort ();
234 } 1134 }
235} 1135}
236 1136
1137static void *
1138ev_realloc_emul (void *ptr, long size)
1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153#endif
1154}
1155
237static void *(*alloc)(void *ptr, long size); 1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
238 1157
1158void ecb_cold
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1159ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
240{ 1160{
241 alloc = cb; 1161 alloc = cb;
242} 1162}
243 1163
244static void * 1164inline_speed void *
245ev_realloc (void *ptr, long size) 1165ev_realloc (void *ptr, long size)
246{ 1166{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1167 ptr = alloc (ptr, size);
248 1168
249 if (!ptr && size) 1169 if (!ptr && size)
250 { 1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
252 abort (); 1176 abort ();
253 } 1177 }
254 1178
255 return ptr; 1179 return ptr;
256} 1180}
258#define ev_malloc(size) ev_realloc (0, (size)) 1182#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 1183#define ev_free(ptr) ev_realloc ((ptr), 0)
260 1184
261/*****************************************************************************/ 1185/*****************************************************************************/
262 1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
263typedef struct 1191typedef struct
264{ 1192{
265 WL head; 1193 WL head;
266 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
268#if EV_SELECT_IS_WINSOCKET 1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
269 SOCKET handle; 1202 SOCKET handle;
270#endif 1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
271} ANFD; 1207} ANFD;
272 1208
1209/* stores the pending event set for a given watcher */
273typedef struct 1210typedef struct
274{ 1211{
275 W w; 1212 W w;
276 int events; 1213 int events; /* the pending event set for the given watcher */
277} ANPENDING; 1214} ANPENDING;
1215
1216#if EV_USE_INOTIFY
1217/* hash table entry per inotify-id */
1218typedef struct
1219{
1220 WL head;
1221} ANFS;
1222#endif
1223
1224/* Heap Entry */
1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235#else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
1242#endif
278 1243
279#if EV_MULTIPLICITY 1244#if EV_MULTIPLICITY
280 1245
281 struct ev_loop 1246 struct ev_loop
282 { 1247 {
287 #undef VAR 1252 #undef VAR
288 }; 1253 };
289 #include "ev_wrap.h" 1254 #include "ev_wrap.h"
290 1255
291 static struct ev_loop default_loop_struct; 1256 static struct ev_loop default_loop_struct;
292 struct ev_loop *ev_default_loop_ptr; 1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
293 1258
294#else 1259#else
295 1260
296 ev_tstamp ev_rt_now; 1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
297 #define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
298 #include "ev_vars.h" 1263 #include "ev_vars.h"
299 #undef VAR 1264 #undef VAR
300 1265
301 static int ev_default_loop_ptr; 1266 static int ev_default_loop_ptr;
302 1267
303#endif 1268#endif
304 1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
1281
305/*****************************************************************************/ 1282/*****************************************************************************/
306 1283
1284#ifndef EV_HAVE_EV_TIME
307ev_tstamp 1285ev_tstamp
308ev_time (void) 1286ev_time (void) EV_THROW
309{ 1287{
310#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
311 struct timespec ts; 1291 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 1294 }
1295#endif
1296
315 struct timeval tv; 1297 struct timeval tv;
316 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 1300}
1301#endif
320 1302
321inline ev_tstamp 1303inline_size ev_tstamp
322get_clock (void) 1304get_clock (void)
323{ 1305{
324#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
326 { 1308 {
333 return ev_time (); 1315 return ev_time ();
334} 1316}
335 1317
336#if EV_MULTIPLICITY 1318#if EV_MULTIPLICITY
337ev_tstamp 1319ev_tstamp
338ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
339{ 1321{
340 return ev_rt_now; 1322 return ev_rt_now;
341} 1323}
342#endif 1324#endif
343 1325
344#define array_roundsize(type,n) (((n) | 4) & ~3) 1326void
1327ev_sleep (ev_tstamp delay) EV_THROW
1328{
1329 if (delay > 0.)
1330 {
1331#if EV_USE_NANOSLEEP
1332 struct timespec ts;
1333
1334 EV_TS_SET (ts, delay);
1335 nanosleep (&ts, 0);
1336#elif defined _WIN32
1337 Sleep ((unsigned long)(delay * 1e3));
1338#else
1339 struct timeval tv;
1340
1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1342 /* something not guaranteed by newer posix versions, but guaranteed */
1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
1345 select (0, 0, 0, 0, &tv);
1346#endif
1347 }
1348}
1349
1350/*****************************************************************************/
1351
1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
1357array_nextsize (int elem, int cur, int cnt)
1358{
1359 int ncur = cur + 1;
1360
1361 do
1362 ncur <<= 1;
1363 while (cnt > ncur);
1364
1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1367 {
1368 ncur *= elem;
1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1370 ncur = ncur - sizeof (void *) * 4;
1371 ncur /= elem;
1372 }
1373
1374 return ncur;
1375}
1376
1377static void * noinline ecb_cold
1378array_realloc (int elem, void *base, int *cur, int cnt)
1379{
1380 *cur = array_nextsize (elem, *cur, cnt);
1381 return ev_realloc (base, elem * *cur);
1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 1386
346#define array_needsize(type,base,cur,cnt,init) \ 1387#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 1388 if (expect_false ((cnt) > (cur))) \
348 { \ 1389 { \
349 int newcnt = cur; \ 1390 int ecb_unused ocur_ = (cur); \
350 do \ 1391 (base) = (type *)array_realloc \
351 { \ 1392 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 1393 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 1394 }
360 1395
1396#if 0
361#define array_slim(type,stem) \ 1397#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1398 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 1399 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1400 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1401 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 1403 }
1404#endif
368 1405
369#define array_free(stem, idx) \ 1406#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 1408
372/*****************************************************************************/ 1409/*****************************************************************************/
373 1410
374static void 1411/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 1414{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 1415}
386 1416
387void 1417void noinline
388ev_feed_event (EV_P_ void *w, int revents) 1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
389{ 1419{
390 W w_ = (W)w; 1420 W w_ = (W)w;
1421 int pri = ABSPRI (w_);
391 1422
392 if (expect_false (w_->pending)) 1423 if (expect_false (w_->pending))
1424 pendings [pri][w_->pending - 1].events |= revents;
1425 else
393 { 1426 {
1427 w_->pending = ++pendingcnt [pri];
1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1429 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1430 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 1431 }
397 1432
398 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1433 pendingpri = NUMPRI - 1;
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 1434}
403 1435
404static void 1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 1453{
407 int i; 1454 int i;
408 1455
409 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
411} 1458}
412 1459
1460/*****************************************************************************/
1461
413inline void 1462inline_speed void
414fd_event (EV_P_ int fd, int revents) 1463fd_event_nocheck (EV_P_ int fd, int revents)
415{ 1464{
416 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 1466 ev_io *w;
418 1467
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 1469 {
421 int ev = w->events & revents; 1470 int ev = w->events & revents;
422 1471
423 if (ev) 1472 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
425 } 1474 }
426} 1475}
427 1476
1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
428void 1488void
429ev_feed_fd_event (EV_P_ int fd, int revents) 1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
430{ 1490{
1491 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 1492 fd_event_nocheck (EV_A_ fd, revents);
432} 1493}
433 1494
434/*****************************************************************************/ 1495/* make sure the external fd watch events are in-sync */
435 1496/* with the kernel/libev internal state */
436inline void 1497inline_size void
437fd_reify (EV_P) 1498fd_reify (EV_P)
438{ 1499{
439 int i; 1500 int i;
440 1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
441 for (i = 0; i < fdchangecnt; ++i) 1503 for (i = 0; i < fdchangecnt; ++i)
442 { 1504 {
443 int fd = fdchanges [i]; 1505 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 1506 ANFD *anfd = anfds + fd;
445 struct ev_io *w;
446 1507
447 int events = 0; 1508 if (anfd->reify & EV__IOFDSET && anfd->head)
448
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
450 events |= w->events;
451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 { 1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
455 unsigned long argp; 1514 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 1515
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
458 } 1523 }
1524 }
459#endif 1525#endif
460 1526
1527 for (i = 0; i < fdchangecnt; ++i)
1528 {
1529 int fd = fdchanges [i];
1530 ANFD *anfd = anfds + fd;
1531 ev_io *w;
1532
1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
1535
461 anfd->reify = 0; 1536 anfd->reify = 0;
462 1537
1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1539 {
1540 anfd->events = 0;
1541
1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1543 anfd->events |= (unsigned char)w->events;
1544
1545 if (o_events != anfd->events)
1546 o_reify = EV__IOFDSET; /* actually |= */
1547 }
1548
1549 if (o_reify & EV__IOFDSET)
463 backend_modify (EV_A_ fd, anfd->events, events); 1550 backend_modify (EV_A_ fd, o_events, anfd->events);
464 anfd->events = events;
465 } 1551 }
466 1552
467 fdchangecnt = 0; 1553 fdchangecnt = 0;
468} 1554}
469 1555
470static void 1556/* something about the given fd changed */
1557inline_size void
471fd_change (EV_P_ int fd) 1558fd_change (EV_P_ int fd, int flags)
472{ 1559{
473 if (expect_false (anfds [fd].reify)) 1560 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 1561 anfds [fd].reify |= flags;
477 1562
1563 if (expect_true (!reify))
1564 {
478 ++fdchangecnt; 1565 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
1568 }
481} 1569}
482 1570
483static void 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
484fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
485{ 1574{
486 struct ev_io *w; 1575 ev_io *w;
487 1576
488 while ((w = (struct ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
489 { 1578 {
490 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 1581 }
493} 1582}
494 1583
495inline int 1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
496fd_valid (int fd) 1586fd_valid (int fd)
497{ 1587{
498#ifdef _WIN32 1588#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
500#else 1590#else
501 return fcntl (fd, F_GETFD) != -1; 1591 return fcntl (fd, F_GETFD) != -1;
502#endif 1592#endif
503} 1593}
504 1594
505/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
506static void 1596static void noinline ecb_cold
507fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
508{ 1598{
509 int fd; 1599 int fd;
510 1600
511 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 1602 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
515} 1605}
516 1606
517/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 1608static void noinline ecb_cold
519fd_enomem (EV_P) 1609fd_enomem (EV_P)
520{ 1610{
521 int fd; 1611 int fd;
522 1612
523 for (fd = anfdmax; fd--; ) 1613 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 1614 if (anfds [fd].events)
525 { 1615 {
526 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
527 return; 1617 break;
528 } 1618 }
529} 1619}
530 1620
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1622static void noinline
533fd_rearm_all (EV_P) 1623fd_rearm_all (EV_P)
534{ 1624{
535 int fd; 1625 int fd;
536 1626
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1628 if (anfds [fd].events)
540 { 1629 {
541 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1631 anfds [fd].emask = 0;
1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1633 }
544} 1634}
545 1635
546/*****************************************************************************/ 1636/* used to prepare libev internal fd's */
547 1637/* this is not fork-safe */
548static void
549upheap (WT *heap, int k)
550{
551 WT w = heap [k];
552
553 while (k && heap [k >> 1]->at > w->at)
554 {
555 heap [k] = heap [k >> 1];
556 ((W)heap [k])->active = k + 1;
557 k >>= 1;
558 }
559
560 heap [k] = w;
561 ((W)heap [k])->active = k + 1;
562
563}
564
565static void
566downheap (WT *heap, int N, int k)
567{
568 WT w = heap [k];
569
570 while (k < (N >> 1))
571 {
572 int j = k << 1;
573
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break;
579
580 heap [k] = heap [j];
581 ((W)heap [k])->active = k + 1;
582 k = j;
583 }
584
585 heap [k] = w;
586 ((W)heap [k])->active = k + 1;
587}
588
589inline void 1638inline_speed void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
596/*****************************************************************************/
597
598typedef struct
599{
600 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG;
603
604static ANSIG *signals;
605static int signalmax;
606
607static int sigpipe [2];
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610
611static void
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1639fd_intern (int fd)
676{ 1640{
677#ifdef _WIN32 1641#ifdef _WIN32
678 int arg = 1; 1642 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
680#else 1644#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1646 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1647#endif
684} 1648}
685 1649
1650/*****************************************************************************/
1651
1652/*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658/*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664#if EV_USE_4HEAP
1665
1666#define DHEAP 4
1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669#define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671/* away from the root */
1672inline_speed void
1673downheap (ANHE *heap, int N, int k)
1674{
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713}
1714
1715#else /* 4HEAP */
1716
1717#define HEAP0 1
1718#define HPARENT(k) ((k) >> 1)
1719#define UPHEAP_DONE(p,k) (!(p))
1720
1721/* away from the root */
1722inline_speed void
1723downheap (ANHE *heap, int N, int k)
1724{
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748}
1749#endif
1750
1751/* towards the root */
1752inline_speed void
1753upheap (ANHE *heap, int k)
1754{
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771}
1772
1773/* move an element suitably so it is in a correct place */
1774inline_size void
1775adjustheap (ANHE *heap, int N, int k)
1776{
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781}
1782
1783/* rebuild the heap: this function is used only once and executed rarely */
1784inline_size void
1785reheap (ANHE *heap, int N)
1786{
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793}
1794
1795/*****************************************************************************/
1796
1797/* associate signal watchers to a signal signal */
1798typedef struct
1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
1804 WL head;
1805} ANSIG;
1806
1807static ANSIG signals [EV_NSIG - 1];
1808
1809/*****************************************************************************/
1810
1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
1813static void noinline ecb_cold
1814evpipe_init (EV_P)
1815{
1816 if (!ev_is_active (&pipe_w))
1817 {
1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830# endif
1831 {
1832 while (pipe (evpipe))
1833 ev_syserr ("(libev) error creating signal/async pipe");
1834
1835 fd_intern (evpipe [0]);
1836 fd_intern (evpipe [1]);
1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
1840 ev_io_start (EV_A_ &pipe_w);
1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1842 }
1843}
1844
1845inline_speed void
1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1847{
1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
1867 old_errno = errno; /* save errno because write will clobber it */
1868
1869#if EV_USE_EVENTFD
1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876#endif
1877 {
1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
1888
1889 errno = old_errno;
1890 }
1891}
1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
686static void 1895static void
687siginit (EV_P) 1896pipecb (EV_P_ ev_io *iow, int revents)
688{ 1897{
689 fd_intern (sigpipe [0]); 1898 int i;
690 fd_intern (sigpipe [1]);
691 1899
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1900 if (revents & EV_READ)
693 ev_io_start (EV_A_ &sigev); 1901 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1902#if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909#endif
1910 {
1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 buf.buf = dummy;
1916 buf.len = sizeof (dummy);
1917 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1918#else
1919 read (evpipe [0], &dummy, sizeof (dummy));
1920#endif
1921 }
1922 }
1923
1924 pipe_write_skipped = 0;
1925
1926 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1927
1928#if EV_SIGNAL_ENABLE
1929 if (sig_pending)
1930 {
1931 sig_pending = 0;
1932
1933 ECB_MEMORY_FENCE_RELEASE;
1934
1935 for (i = EV_NSIG - 1; i--; )
1936 if (expect_false (signals [i].pending))
1937 ev_feed_signal_event (EV_A_ i + 1);
1938 }
1939#endif
1940
1941#if EV_ASYNC_ENABLE
1942 if (async_pending)
1943 {
1944 async_pending = 0;
1945
1946 ECB_MEMORY_FENCE_RELEASE;
1947
1948 for (i = asynccnt; i--; )
1949 if (asyncs [i]->sent)
1950 {
1951 asyncs [i]->sent = 0;
1952 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1953 }
1954 }
1955#endif
695} 1956}
696 1957
697/*****************************************************************************/ 1958/*****************************************************************************/
698 1959
699static struct ev_child *childs [PID_HASHSIZE]; 1960void
1961ev_feed_signal (int signum) EV_THROW
1962{
1963#if EV_MULTIPLICITY
1964 EV_P = signals [signum - 1].loop;
700 1965
1966 if (!EV_A)
1967 return;
1968#endif
1969
1970 if (!ev_active (&pipe_w))
1971 return;
1972
1973 signals [signum - 1].pending = 1;
1974 evpipe_write (EV_A_ &sig_pending);
1975}
1976
1977static void
1978ev_sighandler (int signum)
1979{
701#ifndef _WIN32 1980#ifdef _WIN32
1981 signal (signum, ev_sighandler);
1982#endif
702 1983
1984 ev_feed_signal (signum);
1985}
1986
1987void noinline
1988ev_feed_signal_event (EV_P_ int signum) EV_THROW
1989{
1990 WL w;
1991
1992 if (expect_false (signum <= 0 || signum > EV_NSIG))
1993 return;
1994
1995 --signum;
1996
1997#if EV_MULTIPLICITY
1998 /* it is permissible to try to feed a signal to the wrong loop */
1999 /* or, likely more useful, feeding a signal nobody is waiting for */
2000
2001 if (expect_false (signals [signum].loop != EV_A))
2002 return;
2003#endif
2004
2005 signals [signum].pending = 0;
2006
2007 for (w = signals [signum].head; w; w = w->next)
2008 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2009}
2010
2011#if EV_USE_SIGNALFD
2012static void
2013sigfdcb (EV_P_ ev_io *iow, int revents)
2014{
2015 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2016
2017 for (;;)
2018 {
2019 ssize_t res = read (sigfd, si, sizeof (si));
2020
2021 /* not ISO-C, as res might be -1, but works with SuS */
2022 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2023 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2024
2025 if (res < (ssize_t)sizeof (si))
2026 break;
2027 }
2028}
2029#endif
2030
2031#endif
2032
2033/*****************************************************************************/
2034
2035#if EV_CHILD_ENABLE
2036static WL childs [EV_PID_HASHSIZE];
2037
703static struct ev_signal childev; 2038static ev_signal childev;
2039
2040#ifndef WIFCONTINUED
2041# define WIFCONTINUED(status) 0
2042#endif
2043
2044/* handle a single child status event */
2045inline_speed void
2046child_reap (EV_P_ int chain, int pid, int status)
2047{
2048 ev_child *w;
2049 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2050
2051 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2052 {
2053 if ((w->pid == pid || !w->pid)
2054 && (!traced || (w->flags & 1)))
2055 {
2056 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2057 w->rpid = pid;
2058 w->rstatus = status;
2059 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2060 }
2061 }
2062}
704 2063
705#ifndef WCONTINUED 2064#ifndef WCONTINUED
706# define WCONTINUED 0 2065# define WCONTINUED 0
707#endif 2066#endif
708 2067
2068/* called on sigchld etc., calls waitpid */
709static void 2069static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 2070childcb (EV_P_ ev_signal *sw, int revents)
726{ 2071{
727 int pid, status; 2072 int pid, status;
728 2073
2074 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2075 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 2076 if (!WCONTINUED
2077 || errno != EINVAL
2078 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2079 return;
2080
731 /* make sure we are called again until all childs have been reaped */ 2081 /* make sure we are called again until all children have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 2082 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2083 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 2084
735 child_reap (EV_A_ sw, pid, pid, status); 2085 child_reap (EV_A_ pid, pid, status);
2086 if ((EV_PID_HASHSIZE) > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2087 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 2088}
739 2089
740#endif 2090#endif
741 2091
742/*****************************************************************************/ 2092/*****************************************************************************/
743 2093
2094#if EV_USE_IOCP
2095# include "ev_iocp.c"
2096#endif
744#if EV_USE_PORT 2097#if EV_USE_PORT
745# include "ev_port.c" 2098# include "ev_port.c"
746#endif 2099#endif
747#if EV_USE_KQUEUE 2100#if EV_USE_KQUEUE
748# include "ev_kqueue.c" 2101# include "ev_kqueue.c"
755#endif 2108#endif
756#if EV_USE_SELECT 2109#if EV_USE_SELECT
757# include "ev_select.c" 2110# include "ev_select.c"
758#endif 2111#endif
759 2112
760int 2113int ecb_cold
761ev_version_major (void) 2114ev_version_major (void) EV_THROW
762{ 2115{
763 return EV_VERSION_MAJOR; 2116 return EV_VERSION_MAJOR;
764} 2117}
765 2118
766int 2119int ecb_cold
767ev_version_minor (void) 2120ev_version_minor (void) EV_THROW
768{ 2121{
769 return EV_VERSION_MINOR; 2122 return EV_VERSION_MINOR;
770} 2123}
771 2124
772/* return true if we are running with elevated privileges and should ignore env variables */ 2125/* return true if we are running with elevated privileges and should ignore env variables */
773static int 2126int inline_size ecb_cold
774enable_secure (void) 2127enable_secure (void)
775{ 2128{
776#ifdef _WIN32 2129#ifdef _WIN32
777 return 0; 2130 return 0;
778#else 2131#else
779 return getuid () != geteuid () 2132 return getuid () != geteuid ()
780 || getgid () != getegid (); 2133 || getgid () != getegid ();
781#endif 2134#endif
782} 2135}
783 2136
784unsigned int 2137unsigned int ecb_cold
785ev_supported_backends (void) 2138ev_supported_backends (void) EV_THROW
786{ 2139{
787 unsigned int flags = 0; 2140 unsigned int flags = 0;
788 2141
789 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2142 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
790 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2143 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
793 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2146 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
794 2147
795 return flags; 2148 return flags;
796} 2149}
797 2150
798unsigned int 2151unsigned int ecb_cold
799ev_recommended_backends (void) 2152ev_recommended_backends (void) EV_THROW
800{ 2153{
801 unsigned int flags = ev_supported_backends (); 2154 unsigned int flags = ev_supported_backends ();
802 2155
803#ifndef __NetBSD__ 2156#ifndef __NetBSD__
804 /* kqueue is borked on everything but netbsd apparently */ 2157 /* kqueue is borked on everything but netbsd apparently */
805 /* it usually doesn't work correctly on anything but sockets and pipes */ 2158 /* it usually doesn't work correctly on anything but sockets and pipes */
806 flags &= ~EVBACKEND_KQUEUE; 2159 flags &= ~EVBACKEND_KQUEUE;
807#endif 2160#endif
808#ifdef __APPLE__ 2161#ifdef __APPLE__
809 // flags &= ~EVBACKEND_KQUEUE; for documentation 2162 /* only select works correctly on that "unix-certified" platform */
810 flags &= ~EVBACKEND_POLL; 2163 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2164 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2165#endif
2166#ifdef __FreeBSD__
2167 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
811#endif 2168#endif
812 2169
813 return flags; 2170 return flags;
814} 2171}
815 2172
2173unsigned int ecb_cold
2174ev_embeddable_backends (void) EV_THROW
2175{
2176 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2177
2178 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2179 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2180 flags &= ~EVBACKEND_EPOLL;
2181
2182 return flags;
2183}
2184
816unsigned int 2185unsigned int
817ev_backend (EV_P) 2186ev_backend (EV_P) EV_THROW
818{ 2187{
819 return backend; 2188 return backend;
820} 2189}
821 2190
822static void 2191#if EV_FEATURE_API
2192unsigned int
2193ev_iteration (EV_P) EV_THROW
2194{
2195 return loop_count;
2196}
2197
2198unsigned int
2199ev_depth (EV_P) EV_THROW
2200{
2201 return loop_depth;
2202}
2203
2204void
2205ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2206{
2207 io_blocktime = interval;
2208}
2209
2210void
2211ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2212{
2213 timeout_blocktime = interval;
2214}
2215
2216void
2217ev_set_userdata (EV_P_ void *data) EV_THROW
2218{
2219 userdata = data;
2220}
2221
2222void *
2223ev_userdata (EV_P) EV_THROW
2224{
2225 return userdata;
2226}
2227
2228void
2229ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2230{
2231 invoke_cb = invoke_pending_cb;
2232}
2233
2234void
2235ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2236{
2237 release_cb = release;
2238 acquire_cb = acquire;
2239}
2240#endif
2241
2242/* initialise a loop structure, must be zero-initialised */
2243static void noinline ecb_cold
823loop_init (EV_P_ unsigned int flags) 2244loop_init (EV_P_ unsigned int flags) EV_THROW
824{ 2245{
825 if (!backend) 2246 if (!backend)
826 { 2247 {
2248 origflags = flags;
2249
2250#if EV_USE_REALTIME
2251 if (!have_realtime)
2252 {
2253 struct timespec ts;
2254
2255 if (!clock_gettime (CLOCK_REALTIME, &ts))
2256 have_realtime = 1;
2257 }
2258#endif
2259
827#if EV_USE_MONOTONIC 2260#if EV_USE_MONOTONIC
2261 if (!have_monotonic)
828 { 2262 {
829 struct timespec ts; 2263 struct timespec ts;
2264
830 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2265 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
831 have_monotonic = 1; 2266 have_monotonic = 1;
832 } 2267 }
833#endif 2268#endif
834 2269
835 ev_rt_now = ev_time (); 2270 /* pid check not overridable via env */
836 mn_now = get_clock (); 2271#ifndef _WIN32
837 now_floor = mn_now; 2272 if (flags & EVFLAG_FORKCHECK)
838 rtmn_diff = ev_rt_now - mn_now; 2273 curpid = getpid ();
2274#endif
839 2275
840 if (!(flags & EVFLAG_NOENV) 2276 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 2277 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 2278 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 2279 flags = atoi (getenv ("LIBEV_FLAGS"));
844 2280
845 if (!(flags & 0x0000ffffUL)) 2281 ev_rt_now = ev_time ();
2282 mn_now = get_clock ();
2283 now_floor = mn_now;
2284 rtmn_diff = ev_rt_now - mn_now;
2285#if EV_FEATURE_API
2286 invoke_cb = ev_invoke_pending;
2287#endif
2288
2289 io_blocktime = 0.;
2290 timeout_blocktime = 0.;
2291 backend = 0;
2292 backend_fd = -1;
2293 sig_pending = 0;
2294#if EV_ASYNC_ENABLE
2295 async_pending = 0;
2296#endif
2297 pipe_write_skipped = 0;
2298 pipe_write_wanted = 0;
2299#if EV_USE_INOTIFY
2300 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2301#endif
2302#if EV_USE_SIGNALFD
2303 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2304#endif
2305
2306 if (!(flags & EVBACKEND_MASK))
846 flags |= ev_recommended_backends (); 2307 flags |= ev_recommended_backends ();
847 2308
848 backend = 0; 2309#if EV_USE_IOCP
2310 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2311#endif
849#if EV_USE_PORT 2312#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2313 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 2314#endif
852#if EV_USE_KQUEUE 2315#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2316 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
860#endif 2323#endif
861#if EV_USE_SELECT 2324#if EV_USE_SELECT
862 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2325 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
863#endif 2326#endif
864 2327
2328 ev_prepare_init (&pending_w, pendingcb);
2329
2330#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
865 ev_init (&sigev, sigcb); 2331 ev_init (&pipe_w, pipecb);
866 ev_set_priority (&sigev, EV_MAXPRI); 2332 ev_set_priority (&pipe_w, EV_MAXPRI);
2333#endif
867 } 2334 }
868} 2335}
869 2336
870static void 2337/* free up a loop structure */
2338void ecb_cold
871loop_destroy (EV_P) 2339ev_loop_destroy (EV_P)
872{ 2340{
873 int i; 2341 int i;
874 2342
2343#if EV_MULTIPLICITY
2344 /* mimic free (0) */
2345 if (!EV_A)
2346 return;
2347#endif
2348
2349#if EV_CLEANUP_ENABLE
2350 /* queue cleanup watchers (and execute them) */
2351 if (expect_false (cleanupcnt))
2352 {
2353 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2354 EV_INVOKE_PENDING;
2355 }
2356#endif
2357
2358#if EV_CHILD_ENABLE
2359 if (ev_is_active (&childev))
2360 {
2361 ev_ref (EV_A); /* child watcher */
2362 ev_signal_stop (EV_A_ &childev);
2363 }
2364#endif
2365
2366 if (ev_is_active (&pipe_w))
2367 {
2368 /*ev_ref (EV_A);*/
2369 /*ev_io_stop (EV_A_ &pipe_w);*/
2370
2371#if EV_USE_EVENTFD
2372 if (evfd >= 0)
2373 close (evfd);
2374#endif
2375
2376 if (evpipe [0] >= 0)
2377 {
2378 EV_WIN32_CLOSE_FD (evpipe [0]);
2379 EV_WIN32_CLOSE_FD (evpipe [1]);
2380 }
2381 }
2382
2383#if EV_USE_SIGNALFD
2384 if (ev_is_active (&sigfd_w))
2385 close (sigfd);
2386#endif
2387
2388#if EV_USE_INOTIFY
2389 if (fs_fd >= 0)
2390 close (fs_fd);
2391#endif
2392
2393 if (backend_fd >= 0)
2394 close (backend_fd);
2395
2396#if EV_USE_IOCP
2397 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2398#endif
875#if EV_USE_PORT 2399#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2400 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 2401#endif
878#if EV_USE_KQUEUE 2402#if EV_USE_KQUEUE
879 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2403 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
887#if EV_USE_SELECT 2411#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2412 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 2413#endif
890 2414
891 for (i = NUMPRI; i--; ) 2415 for (i = NUMPRI; i--; )
2416 {
892 array_free (pending, [i]); 2417 array_free (pending, [i]);
2418#if EV_IDLE_ENABLE
2419 array_free (idle, [i]);
2420#endif
2421 }
2422
2423 ev_free (anfds); anfds = 0; anfdmax = 0;
893 2424
894 /* have to use the microsoft-never-gets-it-right macro */ 2425 /* have to use the microsoft-never-gets-it-right macro */
2426 array_free (rfeed, EMPTY);
895 array_free (fdchange, EMPTY0); 2427 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 2428 array_free (timer, EMPTY);
897#if EV_PERIODICS 2429#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 2430 array_free (periodic, EMPTY);
899#endif 2431#endif
2432#if EV_FORK_ENABLE
2433 array_free (fork, EMPTY);
2434#endif
2435#if EV_CLEANUP_ENABLE
900 array_free (idle, EMPTY0); 2436 array_free (cleanup, EMPTY);
2437#endif
901 array_free (prepare, EMPTY0); 2438 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 2439 array_free (check, EMPTY);
2440#if EV_ASYNC_ENABLE
2441 array_free (async, EMPTY);
2442#endif
903 2443
904 backend = 0; 2444 backend = 0;
905}
906 2445
907static void 2446#if EV_MULTIPLICITY
2447 if (ev_is_default_loop (EV_A))
2448#endif
2449 ev_default_loop_ptr = 0;
2450#if EV_MULTIPLICITY
2451 else
2452 ev_free (EV_A);
2453#endif
2454}
2455
2456#if EV_USE_INOTIFY
2457inline_size void infy_fork (EV_P);
2458#endif
2459
2460inline_size void
908loop_fork (EV_P) 2461loop_fork (EV_P)
909{ 2462{
910#if EV_USE_PORT 2463#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2464 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 2465#endif
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2467 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 2468#endif
916#if EV_USE_EPOLL 2469#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2470 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
918#endif 2471#endif
2472#if EV_USE_INOTIFY
2473 infy_fork (EV_A);
2474#endif
919 2475
920 if (ev_is_active (&sigev)) 2476 if (ev_is_active (&pipe_w))
921 { 2477 {
922 /* default loop */ 2478 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
923 2479
924 ev_ref (EV_A); 2480 ev_ref (EV_A);
925 ev_io_stop (EV_A_ &sigev); 2481 ev_io_stop (EV_A_ &pipe_w);
926 close (sigpipe [0]);
927 close (sigpipe [1]);
928 2482
929 while (pipe (sigpipe)) 2483#if EV_USE_EVENTFD
930 syserr ("(libev) error creating pipe"); 2484 if (evfd >= 0)
2485 close (evfd);
2486#endif
931 2487
2488 if (evpipe [0] >= 0)
2489 {
2490 EV_WIN32_CLOSE_FD (evpipe [0]);
2491 EV_WIN32_CLOSE_FD (evpipe [1]);
2492 }
2493
2494#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
932 siginit (EV_A); 2495 evpipe_init (EV_A);
2496 /* now iterate over everything, in case we missed something */
2497 pipecb (EV_A_ &pipe_w, EV_READ);
2498#endif
933 } 2499 }
934 2500
935 postfork = 0; 2501 postfork = 0;
936} 2502}
937 2503
938#if EV_MULTIPLICITY 2504#if EV_MULTIPLICITY
2505
939struct ev_loop * 2506struct ev_loop * ecb_cold
940ev_loop_new (unsigned int flags) 2507ev_loop_new (unsigned int flags) EV_THROW
941{ 2508{
942 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2509 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
943 2510
944 memset (loop, 0, sizeof (struct ev_loop)); 2511 memset (EV_A, 0, sizeof (struct ev_loop));
945
946 loop_init (EV_A_ flags); 2512 loop_init (EV_A_ flags);
947 2513
948 if (ev_backend (EV_A)) 2514 if (ev_backend (EV_A))
949 return loop; 2515 return EV_A;
950 2516
2517 ev_free (EV_A);
951 return 0; 2518 return 0;
952} 2519}
953 2520
954void 2521#endif /* multiplicity */
955ev_loop_destroy (EV_P)
956{
957 loop_destroy (EV_A);
958 ev_free (loop);
959}
960 2522
961void 2523#if EV_VERIFY
962ev_loop_fork (EV_P) 2524static void noinline ecb_cold
2525verify_watcher (EV_P_ W w)
963{ 2526{
964 postfork = 1; 2527 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
965}
966 2528
2529 if (w->pending)
2530 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2531}
2532
2533static void noinline ecb_cold
2534verify_heap (EV_P_ ANHE *heap, int N)
2535{
2536 int i;
2537
2538 for (i = HEAP0; i < N + HEAP0; ++i)
2539 {
2540 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2541 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2542 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2543
2544 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2545 }
2546}
2547
2548static void noinline ecb_cold
2549array_verify (EV_P_ W *ws, int cnt)
2550{
2551 while (cnt--)
2552 {
2553 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2554 verify_watcher (EV_A_ ws [cnt]);
2555 }
2556}
2557#endif
2558
2559#if EV_FEATURE_API
2560void ecb_cold
2561ev_verify (EV_P) EV_THROW
2562{
2563#if EV_VERIFY
2564 int i;
2565 WL w, w2;
2566
2567 assert (activecnt >= -1);
2568
2569 assert (fdchangemax >= fdchangecnt);
2570 for (i = 0; i < fdchangecnt; ++i)
2571 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2572
2573 assert (anfdmax >= 0);
2574 for (i = 0; i < anfdmax; ++i)
2575 {
2576 int j = 0;
2577
2578 for (w = w2 = anfds [i].head; w; w = w->next)
2579 {
2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (j++ & 1)
2583 {
2584 assert (("libev: io watcher list contains a loop", w != w2));
2585 w2 = w2->next;
2586 }
2587
2588 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2589 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2590 }
2591 }
2592
2593 assert (timermax >= timercnt);
2594 verify_heap (EV_A_ timers, timercnt);
2595
2596#if EV_PERIODIC_ENABLE
2597 assert (periodicmax >= periodiccnt);
2598 verify_heap (EV_A_ periodics, periodiccnt);
2599#endif
2600
2601 for (i = NUMPRI; i--; )
2602 {
2603 assert (pendingmax [i] >= pendingcnt [i]);
2604#if EV_IDLE_ENABLE
2605 assert (idleall >= 0);
2606 assert (idlemax [i] >= idlecnt [i]);
2607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2608#endif
2609 }
2610
2611#if EV_FORK_ENABLE
2612 assert (forkmax >= forkcnt);
2613 array_verify (EV_A_ (W *)forks, forkcnt);
2614#endif
2615
2616#if EV_CLEANUP_ENABLE
2617 assert (cleanupmax >= cleanupcnt);
2618 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619#endif
2620
2621#if EV_ASYNC_ENABLE
2622 assert (asyncmax >= asynccnt);
2623 array_verify (EV_A_ (W *)asyncs, asynccnt);
2624#endif
2625
2626#if EV_PREPARE_ENABLE
2627 assert (preparemax >= preparecnt);
2628 array_verify (EV_A_ (W *)prepares, preparecnt);
2629#endif
2630
2631#if EV_CHECK_ENABLE
2632 assert (checkmax >= checkcnt);
2633 array_verify (EV_A_ (W *)checks, checkcnt);
2634#endif
2635
2636# if 0
2637#if EV_CHILD_ENABLE
2638 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2639 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640#endif
2641# endif
2642#endif
2643}
967#endif 2644#endif
968 2645
969#if EV_MULTIPLICITY 2646#if EV_MULTIPLICITY
970struct ev_loop * 2647struct ev_loop * ecb_cold
971ev_default_loop_init (unsigned int flags)
972#else 2648#else
973int 2649int
2650#endif
974ev_default_loop (unsigned int flags) 2651ev_default_loop (unsigned int flags) EV_THROW
975#endif
976{ 2652{
977 if (sigpipe [0] == sigpipe [1])
978 if (pipe (sigpipe))
979 return 0;
980
981 if (!ev_default_loop_ptr) 2653 if (!ev_default_loop_ptr)
982 { 2654 {
983#if EV_MULTIPLICITY 2655#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2656 EV_P = ev_default_loop_ptr = &default_loop_struct;
985#else 2657#else
986 ev_default_loop_ptr = 1; 2658 ev_default_loop_ptr = 1;
987#endif 2659#endif
988 2660
989 loop_init (EV_A_ flags); 2661 loop_init (EV_A_ flags);
990 2662
991 if (ev_backend (EV_A)) 2663 if (ev_backend (EV_A))
992 { 2664 {
993 siginit (EV_A); 2665#if EV_CHILD_ENABLE
994
995#ifndef _WIN32
996 ev_signal_init (&childev, childcb, SIGCHLD); 2666 ev_signal_init (&childev, childcb, SIGCHLD);
997 ev_set_priority (&childev, EV_MAXPRI); 2667 ev_set_priority (&childev, EV_MAXPRI);
998 ev_signal_start (EV_A_ &childev); 2668 ev_signal_start (EV_A_ &childev);
999 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2669 ev_unref (EV_A); /* child watcher should not keep loop alive */
1000#endif 2670#endif
1005 2675
1006 return ev_default_loop_ptr; 2676 return ev_default_loop_ptr;
1007} 2677}
1008 2678
1009void 2679void
1010ev_default_destroy (void) 2680ev_loop_fork (EV_P) EV_THROW
1011{ 2681{
1012#if EV_MULTIPLICITY 2682 postfork = 1; /* must be in line with ev_default_fork */
1013 struct ev_loop *loop = ev_default_loop_ptr;
1014#endif
1015
1016#ifndef _WIN32
1017 ev_ref (EV_A); /* child watcher */
1018 ev_signal_stop (EV_A_ &childev);
1019#endif
1020
1021 ev_ref (EV_A); /* signal watcher */
1022 ev_io_stop (EV_A_ &sigev);
1023
1024 close (sigpipe [0]); sigpipe [0] = 0;
1025 close (sigpipe [1]); sigpipe [1] = 0;
1026
1027 loop_destroy (EV_A);
1028} 2683}
2684
2685/*****************************************************************************/
1029 2686
1030void 2687void
1031ev_default_fork (void) 2688ev_invoke (EV_P_ void *w, int revents)
1032{ 2689{
1033#if EV_MULTIPLICITY 2690 EV_CB_INVOKE ((W)w, revents);
1034 struct ev_loop *loop = ev_default_loop_ptr;
1035#endif
1036
1037 if (backend)
1038 postfork = 1;
1039} 2691}
1040 2692
1041/*****************************************************************************/ 2693unsigned int
1042 2694ev_pending_count (EV_P) EV_THROW
1043static int
1044any_pending (EV_P)
1045{ 2695{
1046 int pri; 2696 int pri;
2697 unsigned int count = 0;
1047 2698
1048 for (pri = NUMPRI; pri--; ) 2699 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri]) 2700 count += pendingcnt [pri];
1050 return 1;
1051 2701
1052 return 0; 2702 return count;
1053} 2703}
1054 2704
1055inline void 2705void noinline
1056call_pending (EV_P) 2706ev_invoke_pending (EV_P)
1057{ 2707{
1058 int pri; 2708 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1059
1060 for (pri = NUMPRI; pri--; )
1061 while (pendingcnt [pri]) 2709 while (pendingcnt [pendingpri])
1062 { 2710 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2711 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1064 2712
1065 if (expect_true (p->w))
1066 {
1067 p->w->pending = 0; 2713 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 2714 EV_CB_INVOKE (p->w, p->events);
1069 } 2715 EV_FREQUENT_CHECK;
1070 } 2716 }
1071} 2717}
1072 2718
2719#if EV_IDLE_ENABLE
2720/* make idle watchers pending. this handles the "call-idle */
2721/* only when higher priorities are idle" logic */
1073inline void 2722inline_size void
2723idle_reify (EV_P)
2724{
2725 if (expect_false (idleall))
2726 {
2727 int pri;
2728
2729 for (pri = NUMPRI; pri--; )
2730 {
2731 if (pendingcnt [pri])
2732 break;
2733
2734 if (idlecnt [pri])
2735 {
2736 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2737 break;
2738 }
2739 }
2740 }
2741}
2742#endif
2743
2744/* make timers pending */
2745inline_size void
1074timers_reify (EV_P) 2746timers_reify (EV_P)
1075{ 2747{
2748 EV_FREQUENT_CHECK;
2749
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 2750 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1077 { 2751 {
1078 struct ev_timer *w = timers [0]; 2752 do
1079
1080 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1081
1082 /* first reschedule or stop timer */
1083 if (w->repeat)
1084 { 2753 {
2754 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755
2756 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757
2758 /* first reschedule or stop timer */
2759 if (w->repeat)
2760 {
2761 ev_at (w) += w->repeat;
2762 if (ev_at (w) < mn_now)
2763 ev_at (w) = mn_now;
2764
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2765 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086 2766
1087 ((WT)w)->at += w->repeat; 2767 ANHE_at_cache (timers [HEAP0]);
1088 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now;
1090
1091 downheap ((WT *)timers, timercnt, 0); 2768 downheap (timers, timercnt, HEAP0);
2769 }
2770 else
2771 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772
2773 EV_FREQUENT_CHECK;
2774 feed_reverse (EV_A_ (W)w);
1092 } 2775 }
1093 else 2776 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1095 2777
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2778 feed_reverse_done (EV_A_ EV_TIMER);
2779 }
2780}
2781
2782#if EV_PERIODIC_ENABLE
2783
2784static void noinline
2785periodic_recalc (EV_P_ ev_periodic *w)
2786{
2787 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789
2790 /* the above almost always errs on the low side */
2791 while (at <= ev_rt_now)
1097 } 2792 {
1098} 2793 ev_tstamp nat = at + w->interval;
1099 2794
1100#if EV_PERIODICS 2795 /* when resolution fails us, we use ev_rt_now */
2796 if (expect_false (nat == at))
2797 {
2798 at = ev_rt_now;
2799 break;
2800 }
2801
2802 at = nat;
2803 }
2804
2805 ev_at (w) = at;
2806}
2807
2808/* make periodics pending */
1101inline void 2809inline_size void
1102periodics_reify (EV_P) 2810periodics_reify (EV_P)
1103{ 2811{
2812 EV_FREQUENT_CHECK;
2813
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1105 { 2815 {
1106 struct ev_periodic *w = periodics [0]; 2816 int feed_count = 0;
1107 2817
2818 do
2819 {
2820 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2822 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 2823
1110 /* first reschedule or stop timer */ 2824 /* first reschedule or stop timer */
2825 if (w->reschedule_cb)
2826 {
2827 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2828
2829 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2830
2831 ANHE_at_cache (periodics [HEAP0]);
2832 downheap (periodics, periodiccnt, HEAP0);
2833 }
2834 else if (w->interval)
2835 {
2836 periodic_recalc (EV_A_ w);
2837 ANHE_at_cache (periodics [HEAP0]);
2838 downheap (periodics, periodiccnt, HEAP0);
2839 }
2840 else
2841 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842
2843 EV_FREQUENT_CHECK;
2844 feed_reverse (EV_A_ (W)w);
2845 }
2846 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2847
2848 feed_reverse_done (EV_A_ EV_PERIODIC);
2849 }
2850}
2851
2852/* simply recalculate all periodics */
2853/* TODO: maybe ensure that at least one event happens when jumping forward? */
2854static void noinline ecb_cold
2855periodics_reschedule (EV_P)
2856{
2857 int i;
2858
2859 /* adjust periodics after time jump */
2860 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2861 {
2862 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2863
1111 if (w->reschedule_cb) 2864 if (w->reschedule_cb)
2865 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2866 else if (w->interval)
2867 periodic_recalc (EV_A_ w);
2868
2869 ANHE_at_cache (periodics [i]);
2870 }
2871
2872 reheap (periodics, periodiccnt);
2873}
2874#endif
2875
2876/* adjust all timers by a given offset */
2877static void noinline ecb_cold
2878timers_reschedule (EV_P_ ev_tstamp adjust)
2879{
2880 int i;
2881
2882 for (i = 0; i < timercnt; ++i)
2883 {
2884 ANHE *he = timers + i + HEAP0;
2885 ANHE_w (*he)->at += adjust;
2886 ANHE_at_cache (*he);
2887 }
2888}
2889
2890/* fetch new monotonic and realtime times from the kernel */
2891/* also detect if there was a timejump, and act accordingly */
2892inline_speed void
2893time_update (EV_P_ ev_tstamp max_block)
2894{
2895#if EV_USE_MONOTONIC
2896 if (expect_true (have_monotonic))
2897 {
2898 int i;
2899 ev_tstamp odiff = rtmn_diff;
2900
2901 mn_now = get_clock ();
2902
2903 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2904 /* interpolate in the meantime */
2905 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1112 { 2906 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2907 ev_rt_now = rtmn_diff + mn_now;
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2908 return;
1115 downheap ((WT *)periodics, periodiccnt, 0);
1116 } 2909 }
1117 else if (w->interval)
1118 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0);
1122 }
1123 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 2910
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 }
1128}
1129
1130static void
1131periodics_reschedule (EV_P)
1132{
1133 int i;
1134
1135 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i)
1137 {
1138 struct ev_periodic *w = periodics [i];
1139
1140 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1144 }
1145
1146 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i);
1149}
1150#endif
1151
1152inline int
1153time_update_monotonic (EV_P)
1154{
1155 mn_now = get_clock ();
1156
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 {
1159 ev_rt_now = rtmn_diff + mn_now;
1160 return 0;
1161 }
1162 else
1163 {
1164 now_floor = mn_now; 2911 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 2912 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 2913
1170inline void 2914 /* loop a few times, before making important decisions.
1171time_update (EV_P) 2915 * on the choice of "4": one iteration isn't enough,
1172{ 2916 * in case we get preempted during the calls to
1173 int i; 2917 * ev_time and get_clock. a second call is almost guaranteed
1174 2918 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 2919 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 2920 * in the unlikely event of having been preempted here.
1177 { 2921 */
1178 if (time_update_monotonic (EV_A)) 2922 for (i = 4; --i; )
1179 { 2923 {
1180 ev_tstamp odiff = rtmn_diff; 2924 ev_tstamp diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 2925 rtmn_diff = ev_rt_now - mn_now;
1185 2926
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2927 diff = odiff - rtmn_diff;
2928
2929 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1187 return; /* all is well */ 2930 return; /* all is well */
1188 2931
1189 ev_rt_now = ev_time (); 2932 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 2933 mn_now = get_clock ();
1191 now_floor = mn_now; 2934 now_floor = mn_now;
1192 } 2935 }
1193 2936
2937 /* no timer adjustment, as the monotonic clock doesn't jump */
2938 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1194# if EV_PERIODICS 2939# if EV_PERIODIC_ENABLE
2940 periodics_reschedule (EV_A);
2941# endif
2942 }
2943 else
2944#endif
2945 {
2946 ev_rt_now = ev_time ();
2947
2948 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2949 {
2950 /* adjust timers. this is easy, as the offset is the same for all of them */
2951 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2952#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 2953 periodics_reschedule (EV_A);
1196# endif 2954#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 } 2955 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */
1213 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 }
1216 2956
1217 mn_now = ev_rt_now; 2957 mn_now = ev_rt_now;
1218 } 2958 }
1219} 2959}
1220 2960
1221void 2961int
1222ev_ref (EV_P)
1223{
1224 ++activecnt;
1225}
1226
1227void
1228ev_unref (EV_P)
1229{
1230 --activecnt;
1231}
1232
1233static int loop_done;
1234
1235void
1236ev_loop (EV_P_ int flags) 2962ev_run (EV_P_ int flags)
1237{ 2963{
1238 double block; 2964#if EV_FEATURE_API
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2965 ++loop_depth;
2966#endif
1240 2967
1241 while (activecnt) 2968 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969
2970 loop_done = EVBREAK_CANCEL;
2971
2972 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2973
2974 do
1242 { 2975 {
2976#if EV_VERIFY >= 2
2977 ev_verify (EV_A);
2978#endif
2979
2980#ifndef _WIN32
2981 if (expect_false (curpid)) /* penalise the forking check even more */
2982 if (expect_false (getpid () != curpid))
2983 {
2984 curpid = getpid ();
2985 postfork = 1;
2986 }
2987#endif
2988
2989#if EV_FORK_ENABLE
2990 /* we might have forked, so queue fork handlers */
2991 if (expect_false (postfork))
2992 if (forkcnt)
2993 {
2994 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2995 EV_INVOKE_PENDING;
2996 }
2997#endif
2998
2999#if EV_PREPARE_ENABLE
1243 /* queue check watchers (and execute them) */ 3000 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 3001 if (expect_false (preparecnt))
1245 { 3002 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3003 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 3004 EV_INVOKE_PENDING;
1248 } 3005 }
3006#endif
3007
3008 if (expect_false (loop_done))
3009 break;
1249 3010
1250 /* we might have forked, so reify kernel state if necessary */ 3011 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 3012 if (expect_false (postfork))
1252 loop_fork (EV_A); 3013 loop_fork (EV_A);
1253 3014
1254 /* update fd-related kernel structures */ 3015 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 3016 fd_reify (EV_A);
1256 3017
1257 /* calculate blocking time */ 3018 /* calculate blocking time */
3019 {
3020 ev_tstamp waittime = 0.;
3021 ev_tstamp sleeptime = 0.;
1258 3022
1259 /* we only need this for !monotonic clock or timers, but as we basically 3023 /* remember old timestamp for io_blocktime calculation */
1260 always have timers, we just calculate it always */ 3024 ev_tstamp prev_mn_now = mn_now;
1261#if EV_USE_MONOTONIC 3025
1262 if (expect_true (have_monotonic)) 3026 /* update time to cancel out callback processing overhead */
1263 time_update_monotonic (EV_A); 3027 time_update (EV_A_ 1e100);
1264 else 3028
1265#endif 3029 /* from now on, we want a pipe-wake-up */
3030 pipe_write_wanted = 1;
3031
3032 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033
3034 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1266 { 3035 {
1267 ev_rt_now = ev_time ();
1268 mn_now = ev_rt_now;
1269 }
1270
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 3036 waittime = MAX_BLOCKTIME;
1276 3037
1277 if (timercnt) 3038 if (timercnt)
1278 { 3039 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3040 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1280 if (block > to) block = to; 3041 if (waittime > to) waittime = to;
1281 } 3042 }
1282 3043
1283#if EV_PERIODICS 3044#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 3045 if (periodiccnt)
1285 { 3046 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3047 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1287 if (block > to) block = to; 3048 if (waittime > to) waittime = to;
1288 } 3049 }
1289#endif 3050#endif
1290 3051
1291 if (expect_false (block < 0.)) block = 0.; 3052 /* don't let timeouts decrease the waittime below timeout_blocktime */
3053 if (expect_false (waittime < timeout_blocktime))
3054 waittime = timeout_blocktime;
3055
3056 /* at this point, we NEED to wait, so we have to ensure */
3057 /* to pass a minimum nonzero value to the backend */
3058 if (expect_false (waittime < backend_mintime))
3059 waittime = backend_mintime;
3060
3061 /* extra check because io_blocktime is commonly 0 */
3062 if (expect_false (io_blocktime))
3063 {
3064 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065
3066 if (sleeptime > waittime - backend_mintime)
3067 sleeptime = waittime - backend_mintime;
3068
3069 if (expect_true (sleeptime > 0.))
3070 {
3071 ev_sleep (sleeptime);
3072 waittime -= sleeptime;
3073 }
3074 }
1292 } 3075 }
1293 3076
3077#if EV_FEATURE_API
3078 ++loop_count;
3079#endif
3080 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1294 backend_poll (EV_A_ block); 3081 backend_poll (EV_A_ waittime);
3082 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1295 3083
3084 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085
3086 if (pipe_write_skipped)
3087 {
3088 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090 }
3091
3092
1296 /* update ev_rt_now, do magic */ 3093 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 3094 time_update (EV_A_ waittime + sleeptime);
3095 }
1298 3096
1299 /* queue pending timers and reschedule them */ 3097 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 3098 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 3099#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 3100 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 3101#endif
1304 3102
3103#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 3104 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 3105 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3106#endif
1308 3107
3108#if EV_CHECK_ENABLE
1309 /* queue check watchers, to be executed first */ 3109 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 3110 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3111 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112#endif
1312 3113
1313 call_pending (EV_A); 3114 EV_INVOKE_PENDING;
1314
1315 if (expect_false (loop_done))
1316 break;
1317 } 3115 }
3116 while (expect_true (
3117 activecnt
3118 && !loop_done
3119 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3120 ));
1318 3121
1319 if (loop_done != 2) 3122 if (loop_done == EVBREAK_ONE)
1320 loop_done = 0; 3123 loop_done = EVBREAK_CANCEL;
3124
3125#if EV_FEATURE_API
3126 --loop_depth;
3127#endif
3128
3129 return activecnt;
1321} 3130}
1322 3131
1323void 3132void
1324ev_unloop (EV_P_ int how) 3133ev_break (EV_P_ int how) EV_THROW
1325{ 3134{
1326 loop_done = how; 3135 loop_done = how;
1327} 3136}
1328 3137
3138void
3139ev_ref (EV_P) EV_THROW
3140{
3141 ++activecnt;
3142}
3143
3144void
3145ev_unref (EV_P) EV_THROW
3146{
3147 --activecnt;
3148}
3149
3150void
3151ev_now_update (EV_P) EV_THROW
3152{
3153 time_update (EV_A_ 1e100);
3154}
3155
3156void
3157ev_suspend (EV_P) EV_THROW
3158{
3159 ev_now_update (EV_A);
3160}
3161
3162void
3163ev_resume (EV_P) EV_THROW
3164{
3165 ev_tstamp mn_prev = mn_now;
3166
3167 ev_now_update (EV_A);
3168 timers_reschedule (EV_A_ mn_now - mn_prev);
3169#if EV_PERIODIC_ENABLE
3170 /* TODO: really do this? */
3171 periodics_reschedule (EV_A);
3172#endif
3173}
3174
1329/*****************************************************************************/ 3175/*****************************************************************************/
3176/* singly-linked list management, used when the expected list length is short */
1330 3177
1331inline void 3178inline_size void
1332wlist_add (WL *head, WL elem) 3179wlist_add (WL *head, WL elem)
1333{ 3180{
1334 elem->next = *head; 3181 elem->next = *head;
1335 *head = elem; 3182 *head = elem;
1336} 3183}
1337 3184
1338inline void 3185inline_size void
1339wlist_del (WL *head, WL elem) 3186wlist_del (WL *head, WL elem)
1340{ 3187{
1341 while (*head) 3188 while (*head)
1342 { 3189 {
1343 if (*head == elem) 3190 if (expect_true (*head == elem))
1344 { 3191 {
1345 *head = elem->next; 3192 *head = elem->next;
1346 return; 3193 break;
1347 } 3194 }
1348 3195
1349 head = &(*head)->next; 3196 head = &(*head)->next;
1350 } 3197 }
1351} 3198}
1352 3199
3200/* internal, faster, version of ev_clear_pending */
1353inline void 3201inline_speed void
1354ev_clear_pending (EV_P_ W w) 3202clear_pending (EV_P_ W w)
1355{ 3203{
1356 if (w->pending) 3204 if (w->pending)
1357 { 3205 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3206 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1359 w->pending = 0; 3207 w->pending = 0;
1360 } 3208 }
1361} 3209}
1362 3210
3211int
3212ev_clear_pending (EV_P_ void *w) EV_THROW
3213{
3214 W w_ = (W)w;
3215 int pending = w_->pending;
3216
3217 if (expect_true (pending))
3218 {
3219 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 p->w = (W)&pending_w;
3221 w_->pending = 0;
3222 return p->events;
3223 }
3224 else
3225 return 0;
3226}
3227
1363inline void 3228inline_size void
3229pri_adjust (EV_P_ W w)
3230{
3231 int pri = ev_priority (w);
3232 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3233 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3234 ev_set_priority (w, pri);
3235}
3236
3237inline_speed void
1364ev_start (EV_P_ W w, int active) 3238ev_start (EV_P_ W w, int active)
1365{ 3239{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3240 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 3241 w->active = active;
1370 ev_ref (EV_A); 3242 ev_ref (EV_A);
1371} 3243}
1372 3244
1373inline void 3245inline_size void
1374ev_stop (EV_P_ W w) 3246ev_stop (EV_P_ W w)
1375{ 3247{
1376 ev_unref (EV_A); 3248 ev_unref (EV_A);
1377 w->active = 0; 3249 w->active = 0;
1378} 3250}
1379 3251
1380/*****************************************************************************/ 3252/*****************************************************************************/
1381 3253
1382void 3254void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 3255ev_io_start (EV_P_ ev_io *w) EV_THROW
1384{ 3256{
1385 int fd = w->fd; 3257 int fd = w->fd;
1386 3258
1387 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
1388 return; 3260 return;
1389 3261
1390 assert (("ev_io_start called with negative fd", fd >= 0)); 3262 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3263 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3264
3265 EV_FREQUENT_CHECK;
1391 3266
1392 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
1393 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3268 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3269 wlist_add (&anfds[fd].head, (WL)w);
1395 3270
1396 fd_change (EV_A_ fd); 3271 /* common bug, apparently */
1397} 3272 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1398 3273
1399void 3274 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3275 w->events &= ~EV__IOFDSET;
3276
3277 EV_FREQUENT_CHECK;
3278}
3279
3280void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 3281ev_io_stop (EV_P_ ev_io *w) EV_THROW
1401{ 3282{
1402 ev_clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
1404 return; 3285 return;
1405 3286
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3287 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 3288
3289 EV_FREQUENT_CHECK;
3290
1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3291 wlist_del (&anfds[w->fd].head, (WL)w);
1409 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
1410 3293
1411 fd_change (EV_A_ w->fd); 3294 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1412}
1413 3295
1414void 3296 EV_FREQUENT_CHECK;
3297}
3298
3299void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 3300ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1416{ 3301{
1417 if (expect_false (ev_is_active (w))) 3302 if (expect_false (ev_is_active (w)))
1418 return; 3303 return;
1419 3304
1420 ((WT)w)->at += mn_now; 3305 ev_at (w) += mn_now;
1421 3306
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3307 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 3308
3309 EV_FREQUENT_CHECK;
3310
3311 ++timercnt;
1424 ev_start (EV_A_ (W)w, ++timercnt); 3312 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3313 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1426 timers [timercnt - 1] = w; 3314 ANHE_w (timers [ev_active (w)]) = (WT)w;
1427 upheap ((WT *)timers, timercnt - 1); 3315 ANHE_at_cache (timers [ev_active (w)]);
3316 upheap (timers, ev_active (w));
1428 3317
3318 EV_FREQUENT_CHECK;
3319
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3320 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1430} 3321}
1431 3322
1432void 3323void noinline
1433ev_timer_stop (EV_P_ struct ev_timer *w) 3324ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1434{ 3325{
1435 ev_clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 3327 if (expect_false (!ev_is_active (w)))
1437 return; 3328 return;
1438 3329
3330 EV_FREQUENT_CHECK;
3331
3332 {
3333 int active = ev_active (w);
3334
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3335 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1440 3336
3337 --timercnt;
3338
1441 if (expect_true (((W)w)->active < timercnt--)) 3339 if (expect_true (active < timercnt + HEAP0))
1442 { 3340 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 3341 timers [active] = timers [timercnt + HEAP0];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3342 adjustheap (timers, timercnt, active);
1445 } 3343 }
3344 }
1446 3345
1447 ((WT)w)->at -= mn_now; 3346 ev_at (w) -= mn_now;
1448 3347
1449 ev_stop (EV_A_ (W)w); 3348 ev_stop (EV_A_ (W)w);
1450}
1451 3349
1452void 3350 EV_FREQUENT_CHECK;
3351}
3352
3353void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 3354ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1454{ 3355{
3356 EV_FREQUENT_CHECK;
3357
3358 clear_pending (EV_A_ (W)w);
3359
1455 if (ev_is_active (w)) 3360 if (ev_is_active (w))
1456 { 3361 {
1457 if (w->repeat) 3362 if (w->repeat)
1458 { 3363 {
1459 ((WT)w)->at = mn_now + w->repeat; 3364 ev_at (w) = mn_now + w->repeat;
3365 ANHE_at_cache (timers [ev_active (w)]);
1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3366 adjustheap (timers, timercnt, ev_active (w));
1461 } 3367 }
1462 else 3368 else
1463 ev_timer_stop (EV_A_ w); 3369 ev_timer_stop (EV_A_ w);
1464 } 3370 }
1465 else if (w->repeat) 3371 else if (w->repeat)
1466 { 3372 {
1467 w->at = w->repeat; 3373 ev_at (w) = w->repeat;
1468 ev_timer_start (EV_A_ w); 3374 ev_timer_start (EV_A_ w);
1469 } 3375 }
1470}
1471 3376
3377 EV_FREQUENT_CHECK;
3378}
3379
3380ev_tstamp
3381ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382{
3383 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3384}
3385
1472#if EV_PERIODICS 3386#if EV_PERIODIC_ENABLE
1473void 3387void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 3388ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1475{ 3389{
1476 if (expect_false (ev_is_active (w))) 3390 if (expect_false (ev_is_active (w)))
1477 return; 3391 return;
1478 3392
1479 if (w->reschedule_cb) 3393 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3394 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 3395 else if (w->interval)
1482 { 3396 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3397 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 3398 periodic_recalc (EV_A_ w);
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1486 } 3399 }
3400 else
3401 ev_at (w) = w->offset;
1487 3402
3403 EV_FREQUENT_CHECK;
3404
3405 ++periodiccnt;
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 3406 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3407 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 3408 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 3409 ANHE_at_cache (periodics [ev_active (w)]);
3410 upheap (periodics, ev_active (w));
1492 3411
3412 EV_FREQUENT_CHECK;
3413
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3414 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1494} 3415}
1495 3416
1496void 3417void noinline
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 3418ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1498{ 3419{
1499 ev_clear_pending (EV_A_ (W)w); 3420 clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 3421 if (expect_false (!ev_is_active (w)))
1501 return; 3422 return;
1502 3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ev_active (w);
3428
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3429 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1504 3430
3431 --periodiccnt;
3432
1505 if (expect_true (((W)w)->active < periodiccnt--)) 3433 if (expect_true (active < periodiccnt + HEAP0))
1506 { 3434 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3435 periodics [active] = periodics [periodiccnt + HEAP0];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3436 adjustheap (periodics, periodiccnt, active);
1509 } 3437 }
3438 }
1510 3439
1511 ev_stop (EV_A_ (W)w); 3440 ev_stop (EV_A_ (W)w);
1512}
1513 3441
1514void 3442 EV_FREQUENT_CHECK;
3443}
3444
3445void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 3446ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1516{ 3447{
1517 /* TODO: use adjustheap and recalculation */ 3448 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 3449 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 3450 ev_periodic_start (EV_A_ w);
1520} 3451}
1521#endif 3452#endif
1522 3453
1523void 3454#ifndef SA_RESTART
1524ev_idle_start (EV_P_ struct ev_idle *w) 3455# define SA_RESTART 0
3456#endif
3457
3458#if EV_SIGNAL_ENABLE
3459
3460void noinline
3461ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1525{ 3462{
1526 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
1527 return; 3464 return;
1528 3465
3466 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3467
3468#if EV_MULTIPLICITY
3469 assert (("libev: a signal must not be attached to two different loops",
3470 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3471
3472 signals [w->signum - 1].loop = EV_A;
3473#endif
3474
3475 EV_FREQUENT_CHECK;
3476
3477#if EV_USE_SIGNALFD
3478 if (sigfd == -2)
3479 {
3480 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3481 if (sigfd < 0 && errno == EINVAL)
3482 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3483
3484 if (sigfd >= 0)
3485 {
3486 fd_intern (sigfd); /* doing it twice will not hurt */
3487
3488 sigemptyset (&sigfd_set);
3489
3490 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491 ev_set_priority (&sigfd_w, EV_MAXPRI);
3492 ev_io_start (EV_A_ &sigfd_w);
3493 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494 }
3495 }
3496
3497 if (sigfd >= 0)
3498 {
3499 /* TODO: check .head */
3500 sigaddset (&sigfd_set, w->signum);
3501 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502
3503 signalfd (sigfd, &sigfd_set, 0);
3504 }
3505#endif
3506
1529 ev_start (EV_A_ (W)w, ++idlecnt); 3507 ev_start (EV_A_ (W)w, 1);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3508 wlist_add (&signals [w->signum - 1].head, (WL)w);
1531 idles [idlecnt - 1] = w;
1532}
1533 3509
1534void 3510 if (!((WL)w)->next)
1535ev_idle_stop (EV_P_ struct ev_idle *w) 3511# if EV_USE_SIGNALFD
3512 if (sigfd < 0) /*TODO*/
3513# endif
3514 {
3515# ifdef _WIN32
3516 evpipe_init (EV_A);
3517
3518 signal (w->signum, ev_sighandler);
3519# else
3520 struct sigaction sa;
3521
3522 evpipe_init (EV_A);
3523
3524 sa.sa_handler = ev_sighandler;
3525 sigfillset (&sa.sa_mask);
3526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3527 sigaction (w->signum, &sa, 0);
3528
3529 if (origflags & EVFLAG_NOSIGMASK)
3530 {
3531 sigemptyset (&sa.sa_mask);
3532 sigaddset (&sa.sa_mask, w->signum);
3533 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534 }
3535#endif
3536 }
3537
3538 EV_FREQUENT_CHECK;
3539}
3540
3541void noinline
3542ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1536{ 3543{
1537 ev_clear_pending (EV_A_ (W)w); 3544 clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w))) 3545 if (expect_false (!ev_is_active (w)))
1539 return; 3546 return;
1540 3547
1541 idles [((W)w)->active - 1] = idles [--idlecnt]; 3548 EV_FREQUENT_CHECK;
3549
3550 wlist_del (&signals [w->signum - 1].head, (WL)w);
1542 ev_stop (EV_A_ (W)w); 3551 ev_stop (EV_A_ (W)w);
3552
3553 if (!signals [w->signum - 1].head)
3554 {
3555#if EV_MULTIPLICITY
3556 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557#endif
3558#if EV_USE_SIGNALFD
3559 if (sigfd >= 0)
3560 {
3561 sigset_t ss;
3562
3563 sigemptyset (&ss);
3564 sigaddset (&ss, w->signum);
3565 sigdelset (&sigfd_set, w->signum);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 }
3570 else
3571#endif
3572 signal (w->signum, SIG_DFL);
3573 }
3574
3575 EV_FREQUENT_CHECK;
1543} 3576}
3577
3578#endif
3579
3580#if EV_CHILD_ENABLE
1544 3581
1545void 3582void
1546ev_prepare_start (EV_P_ struct ev_prepare *w) 3583ev_child_start (EV_P_ ev_child *w) EV_THROW
1547{ 3584{
3585#if EV_MULTIPLICITY
3586 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3587#endif
1548 if (expect_false (ev_is_active (w))) 3588 if (expect_false (ev_is_active (w)))
1549 return; 3589 return;
1550 3590
3591 EV_FREQUENT_CHECK;
3592
1551 ev_start (EV_A_ (W)w, ++preparecnt); 3593 ev_start (EV_A_ (W)w, 1);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3594 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1553 prepares [preparecnt - 1] = w; 3595
3596 EV_FREQUENT_CHECK;
1554} 3597}
1555 3598
1556void 3599void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w) 3600ev_child_stop (EV_P_ ev_child *w) EV_THROW
1558{ 3601{
1559 ev_clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w))) 3603 if (expect_false (!ev_is_active (w)))
1561 return; 3604 return;
1562 3605
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3606 EV_FREQUENT_CHECK;
3607
3608 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1564 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
1565} 3612}
3613
3614#endif
3615
3616#if EV_STAT_ENABLE
3617
3618# ifdef _WIN32
3619# undef lstat
3620# define lstat(a,b) _stati64 (a,b)
3621# endif
3622
3623#define DEF_STAT_INTERVAL 5.0074891
3624#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3625#define MIN_STAT_INTERVAL 0.1074891
3626
3627static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3628
3629#if EV_USE_INOTIFY
3630
3631/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3633
3634static void noinline
3635infy_add (EV_P_ ev_stat *w)
3636{
3637 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3638
3639 if (w->wd >= 0)
3640 {
3641 struct statfs sfs;
3642
3643 /* now local changes will be tracked by inotify, but remote changes won't */
3644 /* unless the filesystem is known to be local, we therefore still poll */
3645 /* also do poll on <2.6.25, but with normal frequency */
3646
3647 if (!fs_2625)
3648 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649 else if (!statfs (w->path, &sfs)
3650 && (sfs.f_type == 0x1373 /* devfs */
3651 || sfs.f_type == 0xEF53 /* ext2/3 */
3652 || sfs.f_type == 0x3153464a /* jfs */
3653 || sfs.f_type == 0x52654973 /* reiser3 */
3654 || sfs.f_type == 0x01021994 /* tempfs */
3655 || sfs.f_type == 0x58465342 /* xfs */))
3656 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657 else
3658 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3659 }
3660 else
3661 {
3662 /* can't use inotify, continue to stat */
3663 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3664
3665 /* if path is not there, monitor some parent directory for speedup hints */
3666 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3667 /* but an efficiency issue only */
3668 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3669 {
3670 char path [4096];
3671 strcpy (path, w->path);
3672
3673 do
3674 {
3675 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3676 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3677
3678 char *pend = strrchr (path, '/');
3679
3680 if (!pend || pend == path)
3681 break;
3682
3683 *pend = 0;
3684 w->wd = inotify_add_watch (fs_fd, path, mask);
3685 }
3686 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3687 }
3688 }
3689
3690 if (w->wd >= 0)
3691 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692
3693 /* now re-arm timer, if required */
3694 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695 ev_timer_again (EV_A_ &w->timer);
3696 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3697}
3698
3699static void noinline
3700infy_del (EV_P_ ev_stat *w)
3701{
3702 int slot;
3703 int wd = w->wd;
3704
3705 if (wd < 0)
3706 return;
3707
3708 w->wd = -2;
3709 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3710 wlist_del (&fs_hash [slot].head, (WL)w);
3711
3712 /* remove this watcher, if others are watching it, they will rearm */
3713 inotify_rm_watch (fs_fd, wd);
3714}
3715
3716static void noinline
3717infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3718{
3719 if (slot < 0)
3720 /* overflow, need to check for all hash slots */
3721 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3722 infy_wd (EV_A_ slot, wd, ev);
3723 else
3724 {
3725 WL w_;
3726
3727 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3728 {
3729 ev_stat *w = (ev_stat *)w_;
3730 w_ = w_->next; /* lets us remove this watcher and all before it */
3731
3732 if (w->wd == wd || wd == -1)
3733 {
3734 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3735 {
3736 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3737 w->wd = -1;
3738 infy_add (EV_A_ w); /* re-add, no matter what */
3739 }
3740
3741 stat_timer_cb (EV_A_ &w->timer, 0);
3742 }
3743 }
3744 }
3745}
3746
3747static void
3748infy_cb (EV_P_ ev_io *w, int revents)
3749{
3750 char buf [EV_INOTIFY_BUFSIZE];
3751 int ofs;
3752 int len = read (fs_fd, buf, sizeof (buf));
3753
3754 for (ofs = 0; ofs < len; )
3755 {
3756 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3757 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758 ofs += sizeof (struct inotify_event) + ev->len;
3759 }
3760}
3761
3762inline_size void ecb_cold
3763ev_check_2625 (EV_P)
3764{
3765 /* kernels < 2.6.25 are borked
3766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3767 */
3768 if (ev_linux_version () < 0x020619)
3769 return;
3770
3771 fs_2625 = 1;
3772}
3773
3774inline_size int
3775infy_newfd (void)
3776{
3777#if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779 if (fd >= 0)
3780 return fd;
3781#endif
3782 return inotify_init ();
3783}
3784
3785inline_size void
3786infy_init (EV_P)
3787{
3788 if (fs_fd != -2)
3789 return;
3790
3791 fs_fd = -1;
3792
3793 ev_check_2625 (EV_A);
3794
3795 fs_fd = infy_newfd ();
3796
3797 if (fs_fd >= 0)
3798 {
3799 fd_intern (fs_fd);
3800 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3801 ev_set_priority (&fs_w, EV_MAXPRI);
3802 ev_io_start (EV_A_ &fs_w);
3803 ev_unref (EV_A);
3804 }
3805}
3806
3807inline_size void
3808infy_fork (EV_P)
3809{
3810 int slot;
3811
3812 if (fs_fd < 0)
3813 return;
3814
3815 ev_ref (EV_A);
3816 ev_io_stop (EV_A_ &fs_w);
3817 close (fs_fd);
3818 fs_fd = infy_newfd ();
3819
3820 if (fs_fd >= 0)
3821 {
3822 fd_intern (fs_fd);
3823 ev_io_set (&fs_w, fs_fd, EV_READ);
3824 ev_io_start (EV_A_ &fs_w);
3825 ev_unref (EV_A);
3826 }
3827
3828 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3829 {
3830 WL w_ = fs_hash [slot].head;
3831 fs_hash [slot].head = 0;
3832
3833 while (w_)
3834 {
3835 ev_stat *w = (ev_stat *)w_;
3836 w_ = w_->next; /* lets us add this watcher */
3837
3838 w->wd = -1;
3839
3840 if (fs_fd >= 0)
3841 infy_add (EV_A_ w); /* re-add, no matter what */
3842 else
3843 {
3844 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3846 ev_timer_again (EV_A_ &w->timer);
3847 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848 }
3849 }
3850 }
3851}
3852
3853#endif
3854
3855#ifdef _WIN32
3856# define EV_LSTAT(p,b) _stati64 (p, b)
3857#else
3858# define EV_LSTAT(p,b) lstat (p, b)
3859#endif
1566 3860
1567void 3861void
1568ev_check_start (EV_P_ struct ev_check *w) 3862ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3863{
3864 if (lstat (w->path, &w->attr) < 0)
3865 w->attr.st_nlink = 0;
3866 else if (!w->attr.st_nlink)
3867 w->attr.st_nlink = 1;
3868}
3869
3870static void noinline
3871stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3872{
3873 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3874
3875 ev_statdata prev = w->attr;
3876 ev_stat_stat (EV_A_ w);
3877
3878 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3879 if (
3880 prev.st_dev != w->attr.st_dev
3881 || prev.st_ino != w->attr.st_ino
3882 || prev.st_mode != w->attr.st_mode
3883 || prev.st_nlink != w->attr.st_nlink
3884 || prev.st_uid != w->attr.st_uid
3885 || prev.st_gid != w->attr.st_gid
3886 || prev.st_rdev != w->attr.st_rdev
3887 || prev.st_size != w->attr.st_size
3888 || prev.st_atime != w->attr.st_atime
3889 || prev.st_mtime != w->attr.st_mtime
3890 || prev.st_ctime != w->attr.st_ctime
3891 ) {
3892 /* we only update w->prev on actual differences */
3893 /* in case we test more often than invoke the callback, */
3894 /* to ensure that prev is always different to attr */
3895 w->prev = prev;
3896
3897 #if EV_USE_INOTIFY
3898 if (fs_fd >= 0)
3899 {
3900 infy_del (EV_A_ w);
3901 infy_add (EV_A_ w);
3902 ev_stat_stat (EV_A_ w); /* avoid race... */
3903 }
3904 #endif
3905
3906 ev_feed_event (EV_A_ w, EV_STAT);
3907 }
3908}
3909
3910void
3911ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1569{ 3912{
1570 if (expect_false (ev_is_active (w))) 3913 if (expect_false (ev_is_active (w)))
1571 return; 3914 return;
1572 3915
3916 ev_stat_stat (EV_A_ w);
3917
3918 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3919 w->interval = MIN_STAT_INTERVAL;
3920
3921 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3922 ev_set_priority (&w->timer, ev_priority (w));
3923
3924#if EV_USE_INOTIFY
3925 infy_init (EV_A);
3926
3927 if (fs_fd >= 0)
3928 infy_add (EV_A_ w);
3929 else
3930#endif
3931 {
3932 ev_timer_again (EV_A_ &w->timer);
3933 ev_unref (EV_A);
3934 }
3935
1573 ev_start (EV_A_ (W)w, ++checkcnt); 3936 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3937
1575 checks [checkcnt - 1] = w; 3938 EV_FREQUENT_CHECK;
1576} 3939}
1577 3940
1578void 3941void
1579ev_check_stop (EV_P_ struct ev_check *w) 3942ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1580{ 3943{
1581 ev_clear_pending (EV_A_ (W)w); 3944 clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w))) 3945 if (expect_false (!ev_is_active (w)))
1583 return; 3946 return;
1584 3947
1585 checks [((W)w)->active - 1] = checks [--checkcnt]; 3948 EV_FREQUENT_CHECK;
3949
3950#if EV_USE_INOTIFY
3951 infy_del (EV_A_ w);
3952#endif
3953
3954 if (ev_is_active (&w->timer))
3955 {
3956 ev_ref (EV_A);
3957 ev_timer_stop (EV_A_ &w->timer);
3958 }
3959
1586 ev_stop (EV_A_ (W)w); 3960 ev_stop (EV_A_ (W)w);
1587}
1588 3961
1589#ifndef SA_RESTART 3962 EV_FREQUENT_CHECK;
1590# define SA_RESTART 0 3963}
1591#endif 3964#endif
1592 3965
3966#if EV_IDLE_ENABLE
1593void 3967void
1594ev_signal_start (EV_P_ struct ev_signal *w) 3968ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1595{ 3969{
1596#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif
1599 if (expect_false (ev_is_active (w))) 3970 if (expect_false (ev_is_active (w)))
1600 return; 3971 return;
1601 3972
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3973 pri_adjust (EV_A_ (W)w);
1603 3974
3975 EV_FREQUENT_CHECK;
3976
3977 {
3978 int active = ++idlecnt [ABSPRI (w)];
3979
3980 ++idleall;
1604 ev_start (EV_A_ (W)w, 1); 3981 ev_start (EV_A_ (W)w, active);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1607 3982
1608 if (!((WL)w)->next) 3983 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1609 { 3984 idles [ABSPRI (w)][active - 1] = w;
1610#if _WIN32
1611 signal (w->signum, sighandler);
1612#else
1613 struct sigaction sa;
1614 sa.sa_handler = sighandler;
1615 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0);
1618#endif
1619 } 3985 }
3986
3987 EV_FREQUENT_CHECK;
1620} 3988}
1621 3989
1622void 3990void
1623ev_signal_stop (EV_P_ struct ev_signal *w) 3991ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1624{ 3992{
1625 ev_clear_pending (EV_A_ (W)w); 3993 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 3994 if (expect_false (!ev_is_active (w)))
1627 return; 3995 return;
1628 3996
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3997 EV_FREQUENT_CHECK;
3998
3999 {
4000 int active = ev_active (w);
4001
4002 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4003 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4004
1630 ev_stop (EV_A_ (W)w); 4005 ev_stop (EV_A_ (W)w);
4006 --idleall;
4007 }
1631 4008
1632 if (!signals [w->signum - 1].head) 4009 EV_FREQUENT_CHECK;
1633 signal (w->signum, SIG_DFL);
1634} 4010}
4011#endif
1635 4012
4013#if EV_PREPARE_ENABLE
1636void 4014void
1637ev_child_start (EV_P_ struct ev_child *w) 4015ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1638{ 4016{
1639#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif
1642 if (expect_false (ev_is_active (w))) 4017 if (expect_false (ev_is_active (w)))
1643 return; 4018 return;
1644 4019
4020 EV_FREQUENT_CHECK;
4021
1645 ev_start (EV_A_ (W)w, 1); 4022 ev_start (EV_A_ (W)w, ++preparecnt);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4024 prepares [preparecnt - 1] = w;
4025
4026 EV_FREQUENT_CHECK;
1647} 4027}
1648 4028
1649void 4029void
1650ev_child_stop (EV_P_ struct ev_child *w) 4030ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1651{ 4031{
1652 ev_clear_pending (EV_A_ (W)w); 4032 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 4033 if (expect_false (!ev_is_active (w)))
1654 return; 4034 return;
1655 4035
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4036 EV_FREQUENT_CHECK;
4037
4038 {
4039 int active = ev_active (w);
4040
4041 prepares [active - 1] = prepares [--preparecnt];
4042 ev_active (prepares [active - 1]) = active;
4043 }
4044
1657 ev_stop (EV_A_ (W)w); 4045 ev_stop (EV_A_ (W)w);
4046
4047 EV_FREQUENT_CHECK;
1658} 4048}
4049#endif
4050
4051#if EV_CHECK_ENABLE
4052void
4053ev_check_start (EV_P_ ev_check *w) EV_THROW
4054{
4055 if (expect_false (ev_is_active (w)))
4056 return;
4057
4058 EV_FREQUENT_CHECK;
4059
4060 ev_start (EV_A_ (W)w, ++checkcnt);
4061 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4062 checks [checkcnt - 1] = w;
4063
4064 EV_FREQUENT_CHECK;
4065}
4066
4067void
4068ev_check_stop (EV_P_ ev_check *w) EV_THROW
4069{
4070 clear_pending (EV_A_ (W)w);
4071 if (expect_false (!ev_is_active (w)))
4072 return;
4073
4074 EV_FREQUENT_CHECK;
4075
4076 {
4077 int active = ev_active (w);
4078
4079 checks [active - 1] = checks [--checkcnt];
4080 ev_active (checks [active - 1]) = active;
4081 }
4082
4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
4086}
4087#endif
4088
4089#if EV_EMBED_ENABLE
4090void noinline
4091ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4092{
4093 ev_run (w->other, EVRUN_NOWAIT);
4094}
4095
4096static void
4097embed_io_cb (EV_P_ ev_io *io, int revents)
4098{
4099 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4100
4101 if (ev_cb (w))
4102 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4103 else
4104 ev_run (w->other, EVRUN_NOWAIT);
4105}
4106
4107static void
4108embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4109{
4110 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4111
4112 {
4113 EV_P = w->other;
4114
4115 while (fdchangecnt)
4116 {
4117 fd_reify (EV_A);
4118 ev_run (EV_A_ EVRUN_NOWAIT);
4119 }
4120 }
4121}
4122
4123static void
4124embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4125{
4126 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4127
4128 ev_embed_stop (EV_A_ w);
4129
4130 {
4131 EV_P = w->other;
4132
4133 ev_loop_fork (EV_A);
4134 ev_run (EV_A_ EVRUN_NOWAIT);
4135 }
4136
4137 ev_embed_start (EV_A_ w);
4138}
4139
4140#if 0
4141static void
4142embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4143{
4144 ev_idle_stop (EV_A_ idle);
4145}
4146#endif
4147
4148void
4149ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4150{
4151 if (expect_false (ev_is_active (w)))
4152 return;
4153
4154 {
4155 EV_P = w->other;
4156 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4157 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4158 }
4159
4160 EV_FREQUENT_CHECK;
4161
4162 ev_set_priority (&w->io, ev_priority (w));
4163 ev_io_start (EV_A_ &w->io);
4164
4165 ev_prepare_init (&w->prepare, embed_prepare_cb);
4166 ev_set_priority (&w->prepare, EV_MINPRI);
4167 ev_prepare_start (EV_A_ &w->prepare);
4168
4169 ev_fork_init (&w->fork, embed_fork_cb);
4170 ev_fork_start (EV_A_ &w->fork);
4171
4172 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4173
4174 ev_start (EV_A_ (W)w, 1);
4175
4176 EV_FREQUENT_CHECK;
4177}
4178
4179void
4180ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4181{
4182 clear_pending (EV_A_ (W)w);
4183 if (expect_false (!ev_is_active (w)))
4184 return;
4185
4186 EV_FREQUENT_CHECK;
4187
4188 ev_io_stop (EV_A_ &w->io);
4189 ev_prepare_stop (EV_A_ &w->prepare);
4190 ev_fork_stop (EV_A_ &w->fork);
4191
4192 ev_stop (EV_A_ (W)w);
4193
4194 EV_FREQUENT_CHECK;
4195}
4196#endif
4197
4198#if EV_FORK_ENABLE
4199void
4200ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4201{
4202 if (expect_false (ev_is_active (w)))
4203 return;
4204
4205 EV_FREQUENT_CHECK;
4206
4207 ev_start (EV_A_ (W)w, ++forkcnt);
4208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4209 forks [forkcnt - 1] = w;
4210
4211 EV_FREQUENT_CHECK;
4212}
4213
4214void
4215ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4216{
4217 clear_pending (EV_A_ (W)w);
4218 if (expect_false (!ev_is_active (w)))
4219 return;
4220
4221 EV_FREQUENT_CHECK;
4222
4223 {
4224 int active = ev_active (w);
4225
4226 forks [active - 1] = forks [--forkcnt];
4227 ev_active (forks [active - 1]) = active;
4228 }
4229
4230 ev_stop (EV_A_ (W)w);
4231
4232 EV_FREQUENT_CHECK;
4233}
4234#endif
4235
4236#if EV_CLEANUP_ENABLE
4237void
4238ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239{
4240 if (expect_false (ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_start (EV_A_ (W)w, ++cleanupcnt);
4246 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247 cleanups [cleanupcnt - 1] = w;
4248
4249 /* cleanup watchers should never keep a refcount on the loop */
4250 ev_unref (EV_A);
4251 EV_FREQUENT_CHECK;
4252}
4253
4254void
4255ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256{
4257 clear_pending (EV_A_ (W)w);
4258 if (expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262 ev_ref (EV_A);
4263
4264 {
4265 int active = ev_active (w);
4266
4267 cleanups [active - 1] = cleanups [--cleanupcnt];
4268 ev_active (cleanups [active - 1]) = active;
4269 }
4270
4271 ev_stop (EV_A_ (W)w);
4272
4273 EV_FREQUENT_CHECK;
4274}
4275#endif
4276
4277#if EV_ASYNC_ENABLE
4278void
4279ev_async_start (EV_P_ ev_async *w) EV_THROW
4280{
4281 if (expect_false (ev_is_active (w)))
4282 return;
4283
4284 w->sent = 0;
4285
4286 evpipe_init (EV_A);
4287
4288 EV_FREQUENT_CHECK;
4289
4290 ev_start (EV_A_ (W)w, ++asynccnt);
4291 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4292 asyncs [asynccnt - 1] = w;
4293
4294 EV_FREQUENT_CHECK;
4295}
4296
4297void
4298ev_async_stop (EV_P_ ev_async *w) EV_THROW
4299{
4300 clear_pending (EV_A_ (W)w);
4301 if (expect_false (!ev_is_active (w)))
4302 return;
4303
4304 EV_FREQUENT_CHECK;
4305
4306 {
4307 int active = ev_active (w);
4308
4309 asyncs [active - 1] = asyncs [--asynccnt];
4310 ev_active (asyncs [active - 1]) = active;
4311 }
4312
4313 ev_stop (EV_A_ (W)w);
4314
4315 EV_FREQUENT_CHECK;
4316}
4317
4318void
4319ev_async_send (EV_P_ ev_async *w) EV_THROW
4320{
4321 w->sent = 1;
4322 evpipe_write (EV_A_ &async_pending);
4323}
4324#endif
1659 4325
1660/*****************************************************************************/ 4326/*****************************************************************************/
1661 4327
1662struct ev_once 4328struct ev_once
1663{ 4329{
1664 struct ev_io io; 4330 ev_io io;
1665 struct ev_timer to; 4331 ev_timer to;
1666 void (*cb)(int revents, void *arg); 4332 void (*cb)(int revents, void *arg);
1667 void *arg; 4333 void *arg;
1668}; 4334};
1669 4335
1670static void 4336static void
1671once_cb (EV_P_ struct ev_once *once, int revents) 4337once_cb (EV_P_ struct ev_once *once, int revents)
1672{ 4338{
1673 void (*cb)(int revents, void *arg) = once->cb; 4339 void (*cb)(int revents, void *arg) = once->cb;
1674 void *arg = once->arg; 4340 void *arg = once->arg;
1675 4341
1676 ev_io_stop (EV_A_ &once->io); 4342 ev_io_stop (EV_A_ &once->io);
1677 ev_timer_stop (EV_A_ &once->to); 4343 ev_timer_stop (EV_A_ &once->to);
1678 ev_free (once); 4344 ev_free (once);
1679 4345
1680 cb (revents, arg); 4346 cb (revents, arg);
1681} 4347}
1682 4348
1683static void 4349static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 4350once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 4351{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4352 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4353
4354 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1687} 4355}
1688 4356
1689static void 4357static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 4358once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 4359{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4360 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4361
4362 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1693} 4363}
1694 4364
1695void 4365void
1696ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4366ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1697{ 4367{
1698 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4368 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1699 4369
1700 if (expect_false (!once)) 4370 if (expect_false (!once))
1701 { 4371 {
1702 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4372 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1703 return; 4373 return;
1704 } 4374 }
1705 4375
1706 once->cb = cb; 4376 once->cb = cb;
1707 once->arg = arg; 4377 once->arg = arg;
1719 ev_timer_set (&once->to, timeout, 0.); 4389 ev_timer_set (&once->to, timeout, 0.);
1720 ev_timer_start (EV_A_ &once->to); 4390 ev_timer_start (EV_A_ &once->to);
1721 } 4391 }
1722} 4392}
1723 4393
1724#ifdef __cplusplus 4394/*****************************************************************************/
1725} 4395
4396#if EV_WALK_ENABLE
4397void ecb_cold
4398ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399{
4400 int i, j;
4401 ev_watcher_list *wl, *wn;
4402
4403 if (types & (EV_IO | EV_EMBED))
4404 for (i = 0; i < anfdmax; ++i)
4405 for (wl = anfds [i].head; wl; )
4406 {
4407 wn = wl->next;
4408
4409#if EV_EMBED_ENABLE
4410 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411 {
4412 if (types & EV_EMBED)
4413 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414 }
4415 else
4416#endif
4417#if EV_USE_INOTIFY
4418 if (ev_cb ((ev_io *)wl) == infy_cb)
4419 ;
4420 else
4421#endif
4422 if ((ev_io *)wl != &pipe_w)
4423 if (types & EV_IO)
4424 cb (EV_A_ EV_IO, wl);
4425
4426 wl = wn;
4427 }
4428
4429 if (types & (EV_TIMER | EV_STAT))
4430 for (i = timercnt + HEAP0; i-- > HEAP0; )
4431#if EV_STAT_ENABLE
4432 /*TODO: timer is not always active*/
4433 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4434 {
4435 if (types & EV_STAT)
4436 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4437 }
4438 else
4439#endif
4440 if (types & EV_TIMER)
4441 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4442
4443#if EV_PERIODIC_ENABLE
4444 if (types & EV_PERIODIC)
4445 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447#endif
4448
4449#if EV_IDLE_ENABLE
4450 if (types & EV_IDLE)
4451 for (j = NUMPRI; j--; )
4452 for (i = idlecnt [j]; i--; )
4453 cb (EV_A_ EV_IDLE, idles [j][i]);
4454#endif
4455
4456#if EV_FORK_ENABLE
4457 if (types & EV_FORK)
4458 for (i = forkcnt; i--; )
4459 if (ev_cb (forks [i]) != embed_fork_cb)
4460 cb (EV_A_ EV_FORK, forks [i]);
4461#endif
4462
4463#if EV_ASYNC_ENABLE
4464 if (types & EV_ASYNC)
4465 for (i = asynccnt; i--; )
4466 cb (EV_A_ EV_ASYNC, asyncs [i]);
4467#endif
4468
4469#if EV_PREPARE_ENABLE
4470 if (types & EV_PREPARE)
4471 for (i = preparecnt; i--; )
4472# if EV_EMBED_ENABLE
4473 if (ev_cb (prepares [i]) != embed_prepare_cb)
1726#endif 4474# endif
4475 cb (EV_A_ EV_PREPARE, prepares [i]);
4476#endif
1727 4477
4478#if EV_CHECK_ENABLE
4479 if (types & EV_CHECK)
4480 for (i = checkcnt; i--; )
4481 cb (EV_A_ EV_CHECK, checks [i]);
4482#endif
4483
4484#if EV_SIGNAL_ENABLE
4485 if (types & EV_SIGNAL)
4486 for (i = 0; i < EV_NSIG - 1; ++i)
4487 for (wl = signals [i].head; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_SIGNAL, wl);
4491 wl = wn;
4492 }
4493#endif
4494
4495#if EV_CHILD_ENABLE
4496 if (types & EV_CHILD)
4497 for (i = (EV_PID_HASHSIZE); i--; )
4498 for (wl = childs [i]; wl; )
4499 {
4500 wn = wl->next;
4501 cb (EV_A_ EV_CHILD, wl);
4502 wl = wn;
4503 }
4504#endif
4505/* EV_STAT 0x00001000 /* stat data changed */
4506/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507}
4508#endif
4509
4510#if EV_MULTIPLICITY
4511 #include "ev_wrap.h"
4512#endif
4513

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines